

1 **IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth**

2
3 Ioanna Antoniadi^{1†*}, Eduardo Mateo-Bonmatí^{1,6†}, Markéta Pernisová^{2‡}, Federica
4 Brunoni^{1,3‡}, Mariana Antoniadi¹, Mauricio Garcia-Atance Villalonga⁴, Anita Ament³,
5 Michal Karády³, Colin Turnbull⁴, Karel Doležal^{3,5}, Ales Pěnčík³, Karin Ljung¹, and Ondřej
6 Novák^{1,3*}

7
8 ¹Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish
9 University of Agricultural Sciences, SE-901 83 Umeå, Sweden.

10 ²Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, Central
11 European Institute of Technology (CEITEC), and NCBR, Faculty of Science, Masaryk University,
12 CZ-62500 Brno, Czech Republic.

13 ³Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of
14 Sciences and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic.

15 ⁴Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.

16 ⁵Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371 Olomouc,
17 Czech Republic

18 ⁶Current address: John Innes Centre, NR4 7UA, Norwich, United Kingdom.

19
20 [†]*These authors have contributed equally to this work as first authors*

21 [‡]*These authors have contributed equally to this work as second authors*

22
23 *Correspondence to:

24 Ioanna Antoniadi: ioanna.antoniadi@slu.se and,
25 Ondrej Novak: novako@ueb.cas.cz

26
27
28
29 Keywords (5-8): Cytokinin, auxin, metabolism, plant hormone, root growth

30
31
32 Running title (5 words max): IPT9 promotes root growth.

33
34 Word count (total): 10504

35 Abstract: 257; Introduction: 1069; Methods: 1388; Results: 1632 ;Discussion: 2014;
36 Legends: 671, References: 2929.

37
38 Figures: 5

39 Tables: 0

40 Supplementary Figures: 3

41 Supplementary Tables: 1

43 **ABSTRACT**

44 Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their
45 interactions in plant underground growth are well established, occurring at the levels of
46 metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are
47 represented by more than one active molecule. Multiple mutant lines, blocking specific parts of
48 cytokinin biosynthetic pathways, have enabled research in plants with deficiencies in specific
49 cytokinin-types. While most of these mutants have confirmed the impeding effect of cytokinin on
50 root growth, the *ipt29* double mutant instead surprisingly exhibits reduced primary root length
51 compared to wild type. This mutant is impaired in *cis*-zeatin (cZ) production, a cytokinin-type that
52 had been considered inactive in the past. Here we have further investigated the intriguing *ipt29*
53 root phenotype, opposite to known cytokinin functions, and the (bio)activity of cZ. Our data
54 suggest that despite the *ipt29* short-root phenotype, cZ application has a negative impact on
55 primary root growth and can activate a cytokinin response in the stele. Grafting experiments
56 revealed that the root phenotype of *ipt29* depends on local signaling which does not relate to
57 directly to cytokinin levels. Notably, *ipt29* displayed increased auxin levels in the root tissue.
58 Moreover, analyses of the differential contributions of *ipt2* and *ipt9* to the *ipt29* short-root
59 phenotype demonstrated that, despite its deficiency on cZ levels, *ipt2* does not show any root
60 phenotype or auxin homeostasis variation while *ipt9* mutants were indistinguishable from *ipt29*.
61 We conclude that IPT9 functions may go beyond cZ biosynthesis, directly or indirectly, implicating
62 effects on auxin homeostasis and therefore influencing plant growth.

63 **INTRODUCTION**

64 Plant roots are a highly powerful and dynamic part of the plant body that builds its underground
65 architecture in search of water, anchorage and nourishment. Thus, the regulation of root growth
66 and development is essential to plant prosperity and to their adaptability in changing
67 environmental conditions. Cytokinins (CKs) have been long known inhibitors of root growth and
68 development (1) and multiple mutants blocking CK biosynthesis, display enhanced primary root
69 length compared to the wild type plants (2). In the past, *cis*-zeatin (cZ)-forms of cytokinin (CK)
70 were considered less important than isopentenyl adenine (iP) and *trans*-zeatin (tZ)-forms due to
71 their weaker responses in some bioassays (3,4) but also due to lack of research on them. More
72 recently, it has been shown that cZ can be perceived by CK receptors in *Arabidopsis thaliana*
73 (hereafter, *Arabidopsis*) and *Zea mays* (hereafter, maize; (5–8)) and that they are also bioactive
74 in several assays (9). cZ-types were also detected as the main CK compound in developing seeds
75 of chickpeas (*Cicer arietinum*; (10)), in all tissues of maize (11), in the flag leaves of rice (*Oryza*
76 *sativa*; (12)) and during embryogenesis of pea (*Pisum sativum*; (13)). Additional evidence for cZ
77 activity were presented when enzymes responsible for zeatin-O-glucosides production showed
78 striking preference in cZ conjugation in maize (11). Similarly, the cZ-O-glucosyltransferases
79 (cZOGT1,2,3) identified in rice preferentially catalyze O-glucosylation of cZ-CKs than tZ-CKs (14).
80 The suggestion that cZ has physiological effects on plant development was based on the
81 phenotypes of cZOGT overexpressor lines in rice, which displayed defects in crown root numbers,
82 leaf senescence and shoot size (14). The direct impact of cZ activity in root elongation impairment
83 was also exhibited *in tandem* with upregulation of CK response genes in rice (14). Salinity stress
84 caused fast accumulation of cZ and the cZ precursor, cZR (*cis*-zeatin riboside) in maize roots,
85 while no change was observed in tZ levels (15). Similar increases in cZ-types were also observed
86 following drought (16), heat (17) and biotic stress (18). In addition, a biological role for cZ-types
87 in the regulation of xylem specification was recently reported (19). However, even though the
88 double mutant of tRNA-AtIPTs, *ipt29*, had undetectable levels of all cZ-types, it displayed only
89 chlorotic phenotype and was otherwise developmentally normal (2). Overall, cZ-types have been
90 detected in more than 150 plant species and regardless their evolutionary complexity (9).
91 CK biosynthesis is catalyzed by 9 isopentenyl transferase enzymes (IPTs) in *Arabidopsis* (2).
92 IPT1 and IPT3-8 are responsible for isopentenyl adenine (iP) and tZ compounds production (2).
93 The biosynthesis of the latter ones requires an additional carboxylation step catalyzed by two
94 cytochrome P450 enzymes (CYP735A1 and CYP735A2) (20,21). In parallel, IPT2 and IPT9 are
95 responsible for cZ-type production following tRNA degradation (2). CK compounds can be
96 categorized in two ways: (1) according to their side chain modifications (iP-, tZ- and cZ-

97 compounds), and (2) to the changes in their adenine molecule during their metabolism (the
98 precursor forms: phosphates and ribosides, the active free bases and the catabolite products: *N*-
99 and *O*-glucosides (reviewed in (22)). The participation of *cZ*-compounds in CK homeostatic
100 mechanism was demonstrated by the unanimous increased concentrations of *cZ*-types when *tZ*-
101 types were deficient, in *ipt1 ipt3 ipt5 ipt7 (ipt1357)* and *cyp735a1 cyp735a1a2 (cypa1a2)* multiple
102 mutants (20,23) and in *abcg14* (24,25). Interestingly, *cZ*-CK levels were increased in the mutants
103 mentioned above only when *tZ*-types levels were reduced but not *iP*-types. The identification of
104 *cZR* as a major transport form of CK could also contribute to maintenance of CK homeostasis in
105 the shoots (26).

106 The active CK molecules, free bases, are perceived by hybrid histidine kinases (HKs) in the CK-
107 responsive cells and transcription is activated via a phospho-relay signaling cascade (27). The
108 final step of this signaling network involves type-B nuclear RESPONSE REGULATOR (B-RR)
109 proteins that mediate transcriptional activation by binding to promoters of immediate-early target
110 genes via a conserved Myb-related DNA-binding domain. Global RR-B transcriptional activity and
111 thus *in vivo* monitoring of these CK-dependent transcriptional responses, can be facilitated by the
112 CK-responsive synthetic reporter *TCSn::GFP* expression in *Arabidopsis* plants (28). The signal
113 output of this reporter line has also been shown to reflect CK content (29).

114 Although CK plays a pivotal role in root growth and development, several studies have shown
115 that appropriate plant underground growth also depends on CK cross-talks with other
116 phytohormones, such as indole-3-acetic acid (IAA), the main auxin. Derived from the amino acid
117 L-Tryptophan (Trp), parallel biosynthetic and inactivation pathways converge to control IAA
118 concentration (30). The main biosynthetic route, deaminates Trp to indole-3-pyruvic acid (IPyA)
119 which is then decarboxylated to IAA. Although not completely clear, other routes exist connecting
120 IAA biosynthesis with defensive compounds (glucosinolates) via indole acetaldoxime (IAOx). It
121 has been hypothesized that IAOx, is then converted to indole acetonitrile (IAN) which is finally
122 transformed into IAA. IAA levels are also controlled by redundant inactivation mechanisms
123 including conjugation to sugars catalysed by different UGTs (42), GH3-driven conjugation to
124 amino acids (43,44), and oxidation via DAO enzymes (45,46).

125 In this work, we monitored the primary root growth of three multiple mutant lines *ipt357*, *cypa1a2*
126 and *ipt29*, which have impeded production of *iP*-, *tZ*- and *cZ*-type compounds, respectively. While
127 *ipt357* and *cypa1a2* enhanced root growth is in agreement with the inhibitory effect of CKs on
128 primary root growth, *ipt29* roots displayed severe retardation compared to wild type root length
129 as also previously reported (19). We therefore investigated further the *ipt29* root phenotype,
130 opposite to CK known functions, and the (bio)activity of *cZ* in the root tip. Our results showed that

131 in spite of the defective growth of *ipt29* root, exogenous application of *cZ* triggers CK responses
132 in the root vasculature and halts primary root growth. In parallel, grafting experiments indicated
133 that *ipt29* root phenotype relies mainly on local signaling. Since this root signal was proven to be
134 CK-independent, we examined auxin as a possible candidate, finding enhanced auxin levels the
135 roots of *ipt29*. Finally, we analysed the differential contribution of *ipt2* and *ipt9* to the short-root
136 phenotype. Surprisingly, even though there was a remarkable effect on *cZ* levels, *ipt2* root length
137 and IAA levels were found normal while the *ipt9* single mutant showed a strong root phenotype
138 and IAA levels indistinguishable from *ipt29*. No additional insertions in *ipt9* were found by genome-
139 wide sequencing, and complementation tests and transgenic overexpression further confirmed
140 the link between the short root phenotype and lesions in *IPT9*. Our data suggests that *IPT9*
141 bifunctionally works on *cZ* and IAA homeostasis and promotes root growth.

142

143 MATERIALS AND METHODS

144 Plant material, culture conditions and root phenotyping

145 Unless otherwise stated, all *Arabidopsis thaliana* plants studied in this work were homozygous for
146 the mutations indicated. Single mutants *ipt2* (2), *ipt9-1* (2) multiple mutant *ipt357* (2), *cypa1a2*
147 (20), *ipt29* (2), and the transgenic reporter line *TCSn::GFP* (28), *ARR5_{pro}::GUS* (55), all in Col-0
148 background, were previously described. The Nottingham Arabidopsis Stock Centre provided
149 seeds for the wild-type accession Col-0 (N1092), and *ipt9-2* (GABI_302F10; N428966).

150 The presence and position of all insertions were confirmed by PCR amplification using gene-
151 specific primers, together with insertion-specific primers (Supplemental Table 1). In all
152 experiments the seeds were surface sterilised with 20% (v/v) dilution of bleach for 5 min (2 × 2.5
153 min) and then rinsed five times with sterile water before sown under sterile conditions on Petri
154 dishes containing half-strength Murashige and Skoog agar medium with 1% of sucrose.
155 Stratification occurred at 4°C for 3 days and then plates were transferred to light at 22 ± 1°C where
156 the seedlings grew for 7 days under cool white fluorescent light (maximum irradiance 150 µmol
157 m⁻² s⁻¹). For primary root length phenotyping the plates were scanned with Epson Perfection
158 V600 Photo. Length quantifications were performed using FIJI software (56).

159

160 Seedling treatments

161 Plants were grown in the above-described solid media supplemented with 100 nM of iP, fZ and
162 cZ (Olchemim), respectively. After 7 days the plates were scanned and the root length was
163 measured. For the root elongation assay, the seedlings were grown for 6 days in hormone-free
164 media (as described in the previous section) prior to transfer to the media supplemented with 100

165 nM iP, tZ and cZ, under sterile conditions. The seedlings' root tip positions were marked on the
166 plates and they were returned to the growth chamber for 24h. After that, the plates were scanned
167 and root elongation was measured.

168

169 **Histochemical staining**

170 *ARR5_{pro}:GUS* seedlings were stained in 0.1 M sodium phosphate buffer (pH 7.0) containing 0.1%
171 X-GlcA sodium salt (Duchefa), 1 mM K₃[Fe(CN)₆], 1 mM K₄[Fe(CN)₆] and 0.05% Triton X-100 for
172 30 minutes at 37°C and were incubated overnight in 80% (vol/vol) ethanol at room temperature.
173 Tissue clearing was conducted as previously described in (57).

174

175 **Microscopy**

176 GFP expression patterns in 7-day-old *TCSn::GFP* seedlings was recorded using confocal laser
177 scanning microscopy (Zeiss LSM800). The 488 nm laser line was employed for the GFP
178 fluorescence detection, and emission was detected between 490 and 580 nm. Two tile scans
179 were performed for root imaging. DIC microscopy was performed on an Olympus BX61
180 microscope equipped with $\times 10$ and $\times 20$ air objectives and a DP70 CCD camera.

181

182 **Auxin and Cytokinin measurements**

183 Wild type and mutant plant roots were excised after 7 days of growth. The tissue was weighted
184 and snap frozen in liquid nitrogen until hormone purification and analysis when frozen samples
185 were thawed on ice.

186 For CKs analysis, samples (10 mg fresh weight) were homogenized and extracted in 0.5 ml of
187 modified Bielecki buffer (60% MeOH, 10% HCOOH and 30% H₂O) together with a cocktail of
188 stable isotope-labelled internal standards used as a reference (0.25 pmol of CK bases, ribosides,
189 N-glucosides, and 0.5 pmol of CK O-glucosides, nucleotides per sample added). CKs were
190 purified using in-tip solid-phase microextraction based on the StageTips technology as described
191 previously (58). Briefly, combined multi-StageTips (containing C18/SDB-RPSS/Cation-SR layers)
192 were activated sequentially with 50 μ l each of acetone, methanol, water, 50% (v/v) nitric acid and
193 water (by centrifugation at 434 $\times g$, 15 min, 4 °C). After application of the sample (500 μ l, 678 $\times g$,
194 30 min, 4 °C), the microcolumns were washed sequentially with 50 μ l of water and methanol
195 (525 $\times g$, 20 min, 4 °C), and elution of samples was performed with 50 μ l of 0.5M NH₄OH in 60%
196 (v/v) methanol (525 $\times g$, 20 min, 4 °C). The eluates were then evaporated to dryness *in vacuo* and
197 stored at -20 °C. The CK profile was then quantitatively analysed by multiple reaction monitoring
198 using an ultra-high performance liquid chromatography-electrospray tandem mass spectrometry

199 (UHPLC-MS/MS). Separation was performed on an Acquity UPLC i-Class System (Waters,
200 Milford, MA, USA) equipped with an Acquity UPLC BEH Shield RP18 column (150x2.1 mm, 1.7
201 μ m; Waters), and the effluent was introduced into the electrospray ion source of a triple
202 quadrupole mass spectrometer Xevo TQ-S MS (Waters).

203 Analysis of endogenous IAA precursors and metabolites was performed using the method
204 described in (59). Briefly, approx. 2.5 mg of roots or 10 mg of shoots were extracted in 50 mM
205 phosphate buffer (pH 7.0) containing 0.1% sodium diethyldithiocarbamate and stable isotope-
206 labelled internal standards. 200 μ l portion of each extract was acidified with 1M HCl to pH 2.7 and
207 purified by in-tip micro solid phase extraction (in-tip μ SPE). For quantification of IPyA, the second
208 200 μ l portion of the extract was derivatized by cysteamine (0.75 M, pH 8.2) for 15 minutes,
209 acidified with 3M HCl to pH 2.7 and purified by in-tip μ SPE. After evaporation under reduced
210 pressure, samples were analyzed using HPLC system 1260 Infinity II (Agilent Technologies,
211 Santa Clara, CA, USA) equipped with Kinetex C18 (50 mm x 2.1 mm, 1.7 μ m; Phenomenex
212 Torrance, CA, USA). The LC system was linked to 6495 Triple Quad mass spectrometer (Agilent
213 Technologies).

214 CK and auxin concentrations were determined using MassLynx software (v4.2; Waters) and Mass
215 Hunter software (version B.05.02; Agilent Technologies), respectively, using stable isotope
216 dilution method. At least four independent biological replicates were performed, including two
217 technical replicates of each.

218

219 **Grafting Experiments**

220 Plants were grown vertically on 100 mm square plates containing 25 ml of 1/2 MS growth media
221 at pH 5.7. Seeds (10 mg) were added to a 1.5ml Eppendorf tube with 1 ml of 70% ethanol and
222 shaken at 21°C for 30 seconds. After washing with 1 ml of milliQ water, seeds were surface
223 sterilised for 6 minutes in 1 ml of 1:10 diluted bleach, then washed six times with 1 ml of milliQ
224 water. A 200 μ l Gilson pipette was then used to suck up one seed at a time and transfer it on to
225 plates, that were then kept at 4°C for 48 hours for stratification. The plates were then transferred
226 to a controlled environment room at 23°C with a 16 hour photoperiod. After 5 days, plates were
227 placed in a lit cupboard at 27°C. At 6 days post-stratification, simple hypocotyl grafting without a
228 supporting collar was performed according to Turnbull et al. 2002. The non-grafted, self-grafted
229 and trans-grafted seedlings were placed again at 27°C for another 4 days, then transferred back
230 to 23°C. The plants were checked every day for evidence of contamination and to eliminate any
231 adventitious roots growing above the grafting incision. This was carried out causing minimum

232 disturbance to allow for graft union formation (60). Eight days post grafting the plates were
233 scanned and the root length was measured in all successful grafts.

234

235 **Transgene complementation**

236 To construct the *35S_{pro}:IPT9*, the At5g20040 transcription unit was amplified from Col-0 cDNA
237 using the Q5 High-Fidelity DNA Polymerase (NEB), as recommended by the manufacturer using
238 the oligonucleotides attB_IPT9_F and attB_IPT9_R, that contained attB sites at their 5' ends
239 (Supplemental Table 1). The PCR product obtained were purified using the Monarch DNA Gel
240 Extraction Kit (NEB) and cloned into the pDONR207 using a BP Clonase II Kit (Thermo Fisher).
241 Chemically competent *Escherichia coli* DH5 α cells were transformed by the heat-shock method
242 (Dagert and Ehrlich 1979), and the structural integrity of the inserts carried by transformants was
243 verified by Sanger sequencing. The insert cloned in the pDONR207 was subcloned into the
244 pMDC32 Gateway-compatible destination vector (61) via an LR Clonase II (Thermo Fisher)
245 reaction. The transgene was mobilized into *Agrobacterium tumefaciens* GV3101 (C58C1 Rif^R)
246 cells and those were used to transform Col-0, *ipt9-1* and *ipt9-2* plants by the floral dipping (62).
247 T₁ transgenic plants were selected on plates supplemented with 15 mg/L Hygromycin B
248 (Duchefa).

249

250 **Genome-wide identification of additional T-DNA insertions in KG7770**

251 We sequenced the *ipt9-1* (KG7770) genome and followed a tagged-sequence strategy to map
252 the potential additional insertions as described in (44). Briefly, 8.6 μ g of nuclear-enriched DNA
253 was purified from 0.5 g of *ipt9-1* seedlings as previously described in (63). Whole-genome
254 sequencing of the sample was performed at BGI Hong Kong using a BGISEQ-500 sequencing
255 platform. 28.93 million 150-bp-long reads were obtained, reaching a 32X genome depth. Trimmed
256 fastq files were used to map the position of the insertion using Easymap software (64). Raw reads
257 were deposited in Short Read Archive with the code SRX14238175.

258

259 **RESULTS**

260 **Cytokinin deficient mutants display different primary root phenotypes**

261 CK biosynthesis pathway can be blocked, in principle, in three different levels targeted by the
262 mutants *ipt357* (2), *cypa1a2* (20) and *ipt29* (2). These three mutant lines are known for impaired
263 iP-, *tZ* and *cZ*- biosynthesis, respectively (Figure 1A). CK's inhibitory effect in root growth has
264 been well established (1) and most CK deficient and insensitive mutants display longer primary
265 roots accordingly (65). Here, we have grown *ipt357*, *cypa1a2* and *ipt29* mutants for seven days
266 and assessed their primary root growth. The mutants *ipt357* and *cypa1a2* displayed longer
267 primary root phenotypes compared to Col-0 (Figure 1B-C) while *ipt29*, impaired in *cZ* production,
268 exhibited a severely reduced root growth (Figure 1B-C). While this phenotype of *ipt29* has been
269 previously described by other authors (19), it remains enigmatic. Therefore, here we aimed to
270 elucidate the *ipt29* short-root mutant phenotype by using the *ipt357* and *cypa1a2* mutants as
271 controls.

272 The primary root defect observed in *ipt29* mutant was consistent with shorter meristematic root
273 zone size compared to Col-0 (Figure 1D-E) and its CK metabolic profile showed severely lower
274 levels of *cZR* and *cZ* but also of iP compared to wild type plants (Figure 1F). Both the *ipt357* and
275 the *cypa1a2* mutants displayed lower contents for *tZ* riboside and *tZ* compared to Col-0, while
276 iPR and iP levels were higher only in *cypa1a2* mutant (Figure 1F).

277

278 ***ipt29* short-root phenotype is cytokinin independent and is controlled by local signals**

279 To assess whether exogenous CK supply could rescue the defective root phenotypes of these
280 mutant lines, *ipt357*, *cypa1a2* and *ipt29* were grown for seven days in media supplemented with
281 100 nM iP, *tZ* or *cZ*. All three CK compounds inhibited root growth in all genotypes (Figure 2A).
282 The inhibitory effect on root growth was similar for *tZ* and iP and lower for *cZ* both in the wild-type
283 and all the mutant lines (Figure 2A-B). While the longer root phenotypes of *ipt357* and *cypa1a2*
284 observed compared to Col-0 in mock conditions were inverted in response to CK treatments, the
285 short root phenotype of *ipt29* still remained (Figure 2A). In fact, 100 nM *cZ* could fully rescue the
286 *ipt357* and *cypa1a2* root phenotypes but not that of *ipt29* (Figure 2A). Similar results were
287 observed in root growth elongation rate assays in which the same genotypes were grown for six
288 days in MS media and then transferred for one day to media supplemented with 100 nM iP, *tZ* or
289 *cZ* (Supplementary Figure 1A-B). None of these three active CKs could rescue the short-root
290 phenotype of *ipt29* (Figure 2A), nor any of the *cZ* concentrations applied in the dose-response
291 assay shown in Figure 2D.

292 Induction of CK responses following 100 nM iP, tZ and cZ treatment was assessed with
293 fluorescence imaging of root tips from the CK response reporter line *TCSn:GFP*. All three CKs
294 were able to induce CK signaling when seedlings were grown on treated media (Figure 2C) or
295 when seedlings were transferred for 24 h to media containing the respective treatment
296 (Supplementary Figure 1C). Both the *TCSn:GFP* and the transcriptional fusion of *ARABIDOPSIS*
297 *THALIANA RESPONSE REGULATOR5 (ARR5)* promoter to the β -glucuronidase (*ARR5_{pro}:GUS*)
298 lines (55) displayed increased intensity of CK signaling in response to 24 h of different CK types,
299 in the order: iP > tZ > cZ (Supplementary Figure 1C, D). Finally, comparing *ipt29* root phenotype
300 with Col-0 when plants were grown for 14 days confirmed that the root remained significantly
301 shorter in the mutant even after a longer growth period (Figure 2E).

302
303 The results obtained so far pinpointed that the cZ deficiency of the *ipt29* mutant most likely was
304 not linked with the short-root phenotype, and therefore another non-CK signal could be the
305 explanation. As a first step, we examined whether this signal was shoot-derived or local. To
306 answer this, reciprocal grafts were performed between scions and rootstocks derived from Col-0
307 and *ipt29* genotypes, and grafts of the same genotype were used as controls, as shown in Figure
308 3A.

309 The grafts were performed when the plants were four-day-old and thereafter their root growth was
310 recorded daily. As shown in Figure 3B, the control grafts Col-0/Col-0 (scion/rootstock) and
311 *ipt29*/*ipt29* had the previously observed difference in primary root length (Figure 1B-C). The
312 reciprocal grafts *ipt29*/Col-0 and Col-0/*ipt29* both displayed shorter roots compared to the wild
313 type control graft. Since the Col-0 scion was not sufficient to restore the short-root phenotype of
314 the *ipt29* rootstock (Figure 3B), we concluded that the signal controlling the phenotype is not
315 shoot-derived and it is likely locally generated in root tissues.

316

317 **A strong link was observed between auxin metabolism and the *ipt29* short-root 318 phenotype**

319 Our results so far indicated that the shorter root phenotype of the *ipt29* mutant is not CK-
320 dependent and is controlled locally in the root tissue. Another signal that often interacts with CK
321 to regulate root growth and can act locally is auxin (66,67). Therefore, we carried out a detailed
322 profiling of auxin and related metabolites, analysing separately shoot and root tissues for the
323 active form IAA as well as several precursors such as anthranilate (ANT), Trp, IPyA, and IAN,
324 and inactive forms like indole-3-acetyl glutamate (IAA-Glu), 2-oxindole-3-acetic acid (oxIAA) or 2-
325 oxoindole-3-acetyl-1-O- β -D-glucose (oxIAA-glc) (Figure 4A, B). Both in shoot and root tissues,

326 IAA levels were significantly higher in *ipt29* than Col-0, this difference being more acute in root
327 tissues. In shoots, IAA levels were slightly higher in *ipt29* compared to wild type, while all the
328 inactive forms analysed were depleted. Regarding the precursors, ANT levels were reduced in
329 *ipt29* while the others were indistinguishable from Col-0 (Figure 4A). In roots, IAA metabolism
330 was more strikingly affected with higher levels of IAA inactivated catabolites, while among the
331 precursors only Trp levels were significantly higher in *ipt29* than Col-0 (Figure 4B). The chlorotic
332 phenotype of *ipt29* leaves suggests some type of chloroplast malfunction, pointing to a potential
333 defect on the IAA precursor Trp. Our results, however, discard any Trp deficiency and rather
334 discovered a clear link between the *ipt29* mutation and higher IAA levels. Overall effects of auxin
335 on root growth are very concentration dependent: low concentrations of IAA normally promote
336 growth, but altering IAA homeostasis and enhancing IAA concentrations results in growth
337 inhibition, potentially explaining the *ipt29* root phenotype.

338

339 **IPT9 is solely responsible for the cZ-independent *ipt29* phenotype**

340 To ascertain whether there is a differential contribution to the *ipt29* phenotype from either of the
341 two paralog genes, we analysed the primary root phenotype of both single mutants. Surprisingly,
342 while *ipt2* single mutant root phenotype was indistinguishable from the wild type, *ipt9* roots were
343 as short as those of the double *ipt29* (Figure 5A-B). We then wondered if levels of cZR, cZ and
344 IAA could explain these differential phenotypic contributions in the single mutants. However,
345 concentrations of cZR and cZ were much more reduced in *ipt2* than in *ipt9* roots, further confirming
346 the CK-independence of the *ipt29* short root phenotype (Figure 5C). In line with the link found
347 between the *ipt29* short root phenotype and IAA metabolism, *ipt9* showed higher IAA levels both
348 in shoot and root while *ipt2* IAA levels were indistinguishable from Col-0 (Figure 4A, B).

349

350 Since all our analysis have been performed using previously reported T-DNA insertional mutants
351 and it is well established that the average number of T-DNAs in insertional lines is greater than
352 two (68), we wondered if an additional insertional event could explain the defects we observe in
353 *ipt9*. To rule out this possibility, we sequenced the *ipt9* genome and followed a tagged-sequencing
354 strategy to map the position of all the insertional events. We confirmed the presence of an
355 insertion only in At5g20040 (*IPT9*; Supplemental Figure 2A). We also obtained a second
356 insertional allele for *IPT9*, the line GK_302_F10 from the GABI-KAT collection. Therefore, we re-
357 named the already published allele of *IPT9* (KG7770) as *ipt9-1*, and the GABI-KAT line as *ipt9-2*.
358 The insertions interrupt the second (*ipt9-1*) and the eighth (*ipt9-2*) intron of the *IPT9* gene, both
359 affecting the sequence coding for the tRNA delta(2)-isopentenylpyrophosphate transferase

360 protein domain (IPP; pfam01715; Figure 5D). We then performed a phenotypic complementation
361 assay with both alleles. All homozygous and trans-heterozygous plants combining *ipt9* mutant
362 alleles showed significantly shorter roots than Col-0, thus confirming the direct relationship
363 between *IPT9* malfunction and the *ipt9* and *ipt29* short root phenotype (Figure 5E-F), among other
364 phenotypic traits such as chlorotic leaves (Supplementary Figure 2B-D) and shorter stems
365 (Supplementary Figure 2E-G). We next transferred a transgene containing a wild-type version of
366 *IPT9* driven by cauliflower mosaic virus 35S promoter to both *ipt9-1* and *ipt9-2* mutant lines (Figure
367 5E, F, Supplementary Figure 3 A-C). Detailed analysis of multiple independent transgenic families
368 (selected from different T₀ families) showed that not only in most of the transgenics the root
369 phenotype was restored to wild-type levels but also that in some families, roots were even longer
370 than Col-0 (Figure 5E, F, Supplementary Figure 3 A-C). To remove potential interactions between
371 the wild type and the mutant version of *IPT9* in any mutant background, we also introduced the
372 transgene into Col-0 plants. Again, some families, 6 out of 10 analysed in detail, showed
373 enhanced root growth compared to non-transgenic Col-0 (Supplemental Figure 3D, E). To explore
374 the IAA metabolic landscape of these plants overexpressing *IPT9*, we performed auxin profiling
375 of shoots and roots (Figure 4A, B). While in shoots the effects of this transgene increased the IAA
376 levels even further, IAA levels in roots were the same as Col-0. Other differential shoot/root effects
377 of the transgene such as the increased levels of ANT, Trp and IAA-Glu found in shoots were not
378 mimicked in roots (Figure 4A,B). IPyA was the only exception, with higher levels in both tissues.
379 In conclusion, our allelic and transgenic complementation combined with phenotypic and
380 hormonal analyses demonstrated that mutations in the *IPT9* are wholly responsible for the *ipt29*
381 short root phenotype.

382

383 **DISCUSSION**

384 CKs are important for plant development as they are regulating multiple plant functions. In
385 contrast with other plant hormones, such as auxins or brassinosteroids, CKs have more than one
386 active molecule. These are the nucleobases iP, fZ, cZ and dihydrozeatin. They can bind to CK
387 receptors and initiate the corresponding hormonal responses affecting various physiological
388 aspects of plant growth such as root growth, contributing thus to plant development and
389 adaptation. These four molecules have different affinities to their receptors (6–8,69), they can be
390 produced in same but also in spatially different locations within the plant tissues (19–21,70–80)
391 and they are degraded and conjugated at different rates (9,81,82). It is thus interesting to
392 understand why this hormone has four, instead of one, active molecules and whether these could
393 possibly have different effects in specific plant functions, such as root growth.

394 **The *ipt29* double mutant has a unique primary root phenotype**

395 The triple and double mutants, *ipt357*, *cypa1a2* and *ipt29*, are inhibited in different parts of the
396 CK iP, tZ and cZ biosynthesis pathways, respectively (Figure 1A). Previous studies have shown
397 that *ipt357* has a longer primary root compared to wild type, supporting the inhibitory effect of CK
398 on root growth (1) and our results show that this is also the case for the *cypa1a2* double mutant.
399 Interestingly *ipt29*, specifically blocked cZ production, has shorter roots compared to wild type
400 plants.

401 This intriguing phenotype that could potentially suggest that cZ has an opposite effect in root
402 growth compared to the other active CK compounds, triggered not only our interest but also the
403 one of Kollmer *et al* (19). In their work studying the CKX7 gene, they found that CKX7 enzyme
404 preferred cZ compounds as substrate compared to other CKs (9,19) and that plants that
405 overexpressed CKX7 had severely retarded root growth compared to wild type, similarly to *ipt29*
406 root phenotype (19). Their results showed that cZ-CKs play an important, yet not exclusive, role
407 in vascular differentiation as other CK-types could affect this process. However, the question of
408 why the *ipt29* mutant has a shorter root phenotype remained unanswered.

409 Our results confirmed the defective primary root phenotype of *ipt29* in comparison with Col-0 and
410 the other adenylate-IPT mutants that had longer primary roots (Figure 1B-C). The observed
411 phenotypes were in accordance with shorter and longer meristematic zone of the mutants' roots,
412 respectively (Figure 1D-E). The correspondence of root meristem size and primary root length of
413 *ipt29* mutant is in agreement with previous findings (19).

414 Initially, we compared the CK profiles between 7-day-old Col-0 and the CK-type deficient mutants.
415 The results overall confirmed the expected reduced CK-types content in the respective mutant.
416 In addition, the higher concentration of tZ and tZR in *ipt357* and the reciprocal effect of higher CK
417 iP-type and lower tZ-type levels in *cypa1a2* mutant roots, suggested that in young Arabidopsis
418 roots most of the iPMRP produced by IPT action is converted into tZRMP for tZ-ypes production.
419 This supports the importance of tZ in Arabidopsis young roots in agreement with this compound's
420 prevalence in CK responsive cells of the same plant and tissue (29). In *ipt29* mutant roots, cZ-
421 CKs concentrations were severely reduced as previously shown in older plants (2,19). Based on
422 the reduced concentration of iP in *ipt29* and the increased cZ levels in *ipt357* mutants, an
423 enigmatic hypothesis could be a potential enzymatic connection between iP and cZ biosynthesis
424 pathways.

425

426 **cZ deficiency is not linked with the *ipt29* short-root phenotype**

427 All active CK molecules (iP, tZ, cZ) were able to suppress the increased root growth (Figure 2A-
428 B) and growth rate (Sup. Fig 1A-B) phenotypes of *ipt357* and *cypa1a2*, indicating that the longer
429 root phenotypes in these mutants are caused by CK deficiency. These experiments (Figure 2A,
430 B and Supplementary Figure 1A-B) also revealed that cZ has the weakest effect on root length
431 and growth rate compared to the other two active CKs applied (tZ>iP>>cZ), implying that cZ could
432 have a less important role in root growth regulation compared to the other two compounds.
433 Although actual embryos have not been examined, embryonic effects seem unlikely to be the
434 cause of the *ipt29* phenotype because of the following results. Firstly, the seeds of *ipt29*
435 germinated at the same time as Col-0. Secondly, *ipt29* mutants grown for the longer period of 14
436 days displayed the same retarded root growth compared to the wild type as the 7-day-old
437 seedlings (Figure 2E). Finally, the *ipt29* root defects could be also attributed to the lower root
438 growth rate of this mutant (Supplementary Figure 1A-B) which is a post-embryonic process.
439 Overall, since no applied concentration of cZ (Figure 2D) and no other CK treatment (Figure 2A)
440 could alter the retarded root growth or elongation of *ipt29* mutant, it can be concluded that
441 inhibition of root growth in *ipt29* mutant is a CK-independent phenotype.
442 In fact, when cZ was applied exogenously the root phenotype of *ipt357* and *cypa1a2* could be
443 fully rescued (Figure 2A and Supplementary Figure 1A-B). This supports that cZ acts as an
444 inhibitor of root growth, like the other active CKs, possibly following binding of cZ to AHK CK
445 receptors and thus activating downstream signaling. Indeed, cZ treatment was able to activate
446 the CK response reporter line, *TCSn:GFP* (28), although in lower intensity compared to iP and tZ
447 (Figure 2C and Supplementary Figure 1C). It has been previously shown that CK receptors differ
448 in their preference of CK isoforms (6,83,84) and Lomin et al, summarized in their review data
449 supporting that cZ has lower affinity to AHK receptors compared to iP and tZ in both *Arabidopsis*
450 and maize (85).
451 An alternative scenario for the cZ-driven responses mentioned above that cannot be excluded is
452 that cZ, at least partially, converts to tZ via potential isomerization by zeatin cis-/trans-isomerase
453 as shown in maize cultures. When these were incubated for 20 min with cZ, about one tenth of
454 the compound was converted to tZ (8). Another explanation in our case could be that cZ
455 conversion into tZ occurs via the hydroxylation of N6-isopentenyl side chain or other unknown
456 reaction. In parallel, feeding experiments on *Arabidopsis* protoplasts and maize cultured cells with
457 labelled cZ indicated to a metabolic route from cZ not only to respective conjugates but also back
458 to its precursor forms (8,29). However, in such feeding experiments on rice seedlings, tobacco
459 cells, oat leaves and *Arabidopsis* protoplasts no isomerization was observed between tZ- and cZ-
460 ribosides (9,14,86). Likewise, lack of isomerization from tZ to cZ was inferred from absence of

461 detectable cZ-types in the *ipt29* double mutant (2). The above studies suggest that cZ-type levels
462 are pivotally controlled by *de novo* cZ-biosynthesis through the tRNA pathway. Lack of *cis-trans*
463 isomerization also indicates that the high levels of cZR being transported through the plant body
464 (26) are more likely to have a biological role directly as cZR or cZ rather than contributing to the
465 tZ- CK pools of the sink.

466

467 **The *ipt29* mutant phenotype is governed by local signals in the root**

468 Previous grafting experiments have revealed that CKs can act not only as local signals but also
469 as distal ones. Interestingly, cZ-types and more specifically cZR are prevalent compounds in
470 phloem and xylem sap of *Arabidopsis* (26) although this compound seems to be almost inactive
471 when tested *in vitro* receptor binding assays in *Arabidopsis* and maize (7,8). In agreement, cZR
472 was unable to initiate ARR5-mediated CK response (7). On the other hand, cZR had strong effect
473 in tobacco callus growth and oat chlorophyll retention bioassays (9). This indicates that cZR can
474 have great activity in bioassays probably after its conversion to the bioactive cZ. Transport of cZ
475 CKs in inactive forms such as cZR could provide a further regulatory level to control extent of CK
476 responses.

477 Shoot-born CKs can act as an inhibitory signal of nodule formation on *Lotus japonicus* roots (87).
478 The defective phenotype of *ipt1357* quadrupole mutant scion and rootstock could be restored by
479 Col-0 rootstock and scion in reciprocal grafting experiments (23). Also, *cypa1a2* shoot phenotype
480 was rescued when the mutant scion was merged with wild type rootstock (20). To verify that *ipt29*
481 sort root phenotype is unrelated to endogenously transported CKs, grafting experiments were
482 performed (Figure 3). Shoot-derived CKs from Col-0 scion were unable to restore the *ipt29*
483 rootstock phenotype (Figure 3B) suggesting that the signal controlling this phenotype is a local
484 signal in the root and according to our results it is not CK-dependent.

485

486 **Link to auxin metabolism and differential contribution of *ipt2* and *ipt9* to the short root 487 phenotype**

488 Auxin and CKs have been previously shown to interact at many levels such as biosynthesis,
489 signalling and transport controlling several developmental processes including lateral root
490 initiation, vascular development and meristem size and maintenance (88). Examples of CK-auxin
491 crosstalk include the SUPPRESSOR OF HYPOCOTYL2 (SHY2), which controls root meristem
492 activity by balancing auxin and CK responses. While the SKP1-CULLIN1-F-BOX (SCF)–
493 TRANSPORT INHIBITOR RESISTANT1 (SCFT^{IR1}) complex enables the auxin-dependent
494 degradation of SHY2 (47,48), B-RRs-regulated CK signaling in the root meristem transition zone,

495 directly activates *SHY2* transcription. *SHY2* then negatively affects auxin efflux and response. In
496 addition, *SHY2* also induces CK biosynthesis by upregulation of *IPT5* (49,50) Interaction of the
497 two hormones also control the activity of the quiescent center (QC). In fact, ARR1-dependent CK
498 signaling causes downregulation of the auxin influx carrier *LIKE AUXIN RESISTANT2* (*LAX2*),
499 leading to attenuation of auxin response and division in QC cells (51). In the QC, the transcription
500 factor SCARECROW (SCR) suppresses ARR1 and affects auxin biosynthesis (52). Auxin also
501 antagonizes CK by direct transcriptional activation of *ARR7* and *ARR15* that are repressors of CK
502 signaling (53). A domain of high-auxin signaling in the xylem cells and a domain of high-CK
503 signaling in the procambium and phloem cell lineages is described to control vascular tissue
504 patterning. Very recently, auxin was found to activate the TARGET OF MONOPTEROS 5 and
505 LONESOME HIGHWAY (TMO5/LHW) heterodimer complex that serves as central organizer for
506 vascular development and patterning in the root apical meristem. The TMO5/LHW module, in
507 turn, directly controls SHORTROOT (SHR) to balance CK levels (54).
508 Auxin was thus a good candidate signal to assess as a potential explanation for the *ipt29*
509 phenotype, since it can act in the root to regulate growth and development in crosstalk with CKs.
510 IAA exhibited higher abundance compared to wild type in the short-root *ipt29* mutant (Figure 4A).
511 This correlated with increases of IAA inactive forms such as oxIAA, oxIAA-glc, and IAA-Glu
512 (Figure 4B). The link between auxin metabolism and the shorter root phenotype was further
513 examined in the *ipt2* and *ipt9* single mutants. The short-root phenotype and altered IAA levels of
514 *ipt29* were maintained only by the *ipt9* mutation and not by *ipt2* which showed wild type primary
515 root growth and IAA levels (Figure 4 and 5). The concentration of cZR and cZ in the roots of *ipt2*
516 were reduced as severely as in *ipt29* compared to Col-0, while the depletion was much less
517 pronounced in *ipt9* roots (Figure 5C). This result in combination with the phenotype of the root
518 confirms our previous finding that the short root phenotype of *ipt9* and *ipt29* are not dependent on
519 cZ concentration. In contrast, IAA content was elevated exclusively in the plants with short-root
520 phenotypes (Figure 4) confirming the link between auxin and the phenotype in question.
521 We further carefully evaluated the connexion between lesions in *IPT9* and the root phenotypes.
522 After confirming that there were no additional insertions in the original *ipt9* mutant, we isolated a
523 new allele for this gene showing very similar phenotypic traits. Complementation analyses
524 confirmed the connection between mutations in *IPT9* and the observed phenotypes, further
525 supported by transgenic plants expressing a wild-type version of *IPT9* in both mutant
526 backgrounds. Intriguingly, many of the independent overexpressor lines had roots even longer
527 than those of Col-0. Further research is required to elucidate the potential quantitative effects of
528 *IPT9* transcript levels on root length. Overall, our work indicates that the *IPT9* gene is essential

529 for primary root growth. Although this gene is involved in biosynthesis of cZ-CKs, we hypothesize
530 that IPT9 could be functioning through manipulation of local auxin concentration in order to control
531 root growth.

532 **FIGURE LEGENDS**

533 **Figure 1. Mutants in different cytokinin biosynthetic genes show differential effects on**
534 **primary root length and meristem size.** (A) Simplified version of the parallel cytokinin
535 biosynthesis pathways. (B, C) Primary root phenotype and length quantification of the wild-type
536 Col-0, the triple mutant *ipt357*, and the double mutants *cyp753a1 cyp753a2* (*cypa1a2*) and *ipt29*.
537 (D, E) Root meristem phenotype and size quantification of the assorted genotypes. (F)
538 Quantification of some biologically active cytokinins in the assorted genotypes expressed as
539 picomoles per 100 roots. Pictures were taken 7 days after stratification (das). Scale bars indicate
540 (B) 1 cm, and (D) 100 μ m. Asterisks indicate values significantly different from Col-0 in a (C, E)
541 Student' *t* test and (D) Mann-Whitney *U* test (* $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$; $n\geq$ (C)
542 13, (E) 24, (F) 6). ADP/ATP, adenosine di/triphosphate; DMAPP, dimethylallyl diphosphate; tRNA,
543 transferTransfer ribonucleic acid; IPT, isopentenyltransferase; iPR, isopentenyladenosine; cZR,
544 *cis*-zeatin riboside; tZR, *trans*-zeatin riboside; iP, isopentenyladenine; tZ, *trans*-zeatin; cZ, *cis*-
545 zeatin.

546

547 **Figure 2. Mutants in different cytokinin biosynthetic genes show differential effects on**
548 **primary root length and meristem size.** (A) Primary root length of the wild-type Col-0, and the
549 *ipt357*, *cypa1a2*, and *ipt29* multiple mutants grown for 7 days in media supplemented with 100
550 nM of iP, tZ and cZ. Black asterisks indicate values significantly different from Col-0 mock
551 treatment and colour asterisks indicate significant differences from the corresponding mock
552 genotype in a One-way ANOVA test (** $p<0.001$, **** $p<0.0001$; $n\geq 13$). (B) Root growth inhibitory
553 effects of iP, tZ and cZ on the genotypes mentioned in (A). (C) Cytokinin signalling reporter TCSn
554 response to different cytokinin treatments. (D) cZ dose-response treatment of Col-0 and the *ipt29*
555 double mutant. Primary root length after 7 days growing in media supplemented with different cZ
556 concentrations. Dots indicate average \pm SD of at least 20 seedlings (E).

557

558 **Figure 3. *ipt29* phenotype is mainly controlled by local signals.** (A) Schematics representing
559 grafting experiments performed between Col-0 and *ipt29* shoot and root. Col-0 and *ipt29* were
560 self-grafted as controls. (B) Primary root growth of grafted seedlings. Dots indicate the average \pm
561 s.e.m. of the primary root length ($n=24$) of grafted and self-grafted seedlings of the assorted
562 genotypes.

563

564 **Figure 4 . Shoot and root profiling of auxin metabolites in cZ biosynthetic mutants.**
565 Anthranilate (ANT), Tryptophan (Trp), indole-3-pyruvic acid (IPyA), indole-3- acetonitrile (IAN),
566 indole-3-acetic acid (IAA), 2-oxindole-3-acetic acid (oxIAA), 2-oxoindole-3-acetyl-1-O- β -D-acetic
567 acid glucose (oxIAA-glc), and indole-3-acetyl glutamateacetic acid glutamic (IAA-Glu) levels were
568 quantified in (A) aerial tissues and (B) roots of Col-0, *ipt29*, *ipt2*, *ipt9*, 35S_{pro}:IPT9 7-days-old
569 seedlings. Concentrations are expressed in picomols per g of fresh weight. Error bars indicate
570 standard error and asterisks indicate values significantly different from Col-0 in a Student's *t* test
571 (* $p <0.05$, ** $p <0.01$, *** $p <0.001$, **** $p <0.0001$; $n\geq 4$).

572

573 **Figure 5. Lesions in *IPT9* are solely responsible of the *ipt29* phenotype and are cZ-**
574 **independent.** (A, B) Primary root phenotype (A) and length quantification (B) of Col-0, *ipt2*, *ipt9*,
575 and *ipt29*. Asterisks indicate values significantly different from Col-0 in a Student's *t* test (* $p <0.05$,
576 ** $p <0.01$, *** $p <0.001$, **** $p <0.0001$; $n=5$). (C) cZR and cZ quantification of shoot and root of
577 Col-0, *ipt2*, *ipt9*, and *ipt29*. (D) Structure of the *IPT9* gene and protein with the nature and positions
578 of the *ipt9* mutations indicated. Boxes and lines represent exons and introns, respectively. Open
579 and coloured boxes represent untranslated and translated regions, respectively. Triangles
580 indicate T-DNA insertions in *ipt9-1* and *ipt9-2* mutants. Greenish shadowed regions represent
581 exons encoding and region of the protein corresponding to the tRNA delta(2)-

582 isopentenylpyrophosphate transferase (IPP; pfam01715) domain. (E, F) Primary root phenotype
583 (E) and length quantification (F) of Col-0, homozygous *ipt9-1*, and *ipt9-2*, trans-heterozygous *ipt9-1*/
584 *ipt9-2*, and *ipt9-2*/*ipt9-1*, and transgenic plants in the *ipt9-1* background expressing *IPT9* under
585 the constitutive 35S promoter. Different letters indicate values significantly different ($p < 0.05$; n
586 of each population is indicated above the genotype) in a Tukey's post-doc test. Pictures were
587 taken (A, E) at 7 days. Scale bars indicate (A, E) 1 cm, (D) 0.5 kb and 100 amino acids.
588

589 **Acknowledgements**

590 We thank NASC for providing the plant lines used in this work and Roger Granbom (UPSC, Umeå,
591 Sweden) for technical assistance. The Microscopy Platform of UPSC, the Swedish Metabolomics
592 Centre and Plant Sciences Core Facility of CEITEC Masaryk University are acknowledged for
593 their technical support. The work was funded by the European Molecular Biology Organization
594 (EMBO short term fellowship, project 7034) (MP). KL acknowledge Sweden's Innovation Agency
595 (Vinnova 2016-00504), the Knut and Alice Wallenberg Foundation (KAW 2016.0341 and KAW
596 2016.0352), the Swedish Research Council (VR 2018-04235) and Kempestiftelsen (JCK-2711
597 and JCK-1811). The Ministry of Education, Youth and Sports of the Czech Republic founded the
598 work via the European Regional Development Fund-Project 'Plants as a tool for sustainable global
599 development' (CZ.02.1.01/0.0/0.0/16_019/0000827) (ON, KD, AP, MK) and project
600 "MSCAfellow@MUNI" [CZ.02.2.69/0.0/0.0/17_050/0008496] (MP).

601

602 **Author contributions**

603 I.A., O.N. and M.P. conceived the project; I.A., M.A. and M.P. performed the phenotypic, treatment
604 and confocal experiments; O.N., A.P. I.A., M.P, F.B., M.K., K.D., E. M.-B. and A.A. conducted the
605 purification and quantification of auxins and cytokinins; E. M.-B. performed the genetic analysis,
606 cloning and phenotyping; M.-G.V., I.A. and C.T. discussed and performed the grafting experiment.
607 I.A., E. M.-B., M.P. and O.N. analysed and interpreted the data; I.A. and E. M.-B. made the
608 Figures; I.A. prepared the manuscript draft; I.A., E. M.-B., and K.L. wrote the paper with input from
609 all authors.

610

611 **Author Information**

612 ORCID IDs:

613 Ioanna Antoniadi: 0000-0001-9053-2788

614 Eduardo Mateo-Bonmatí: 0000-0002-2364-5173

615 Markéta Pernisová: 0000-0002-5803-2879

616 Federica Brunoni: 0000-0003-1497-9419

617 Anita Ament: 0000-0001-5563-7330

618 Michal Karády: 0000-0002-5603-706X

619 Colin Turnbull: 0000-0001-6635-1418

620 Karel Doležal: 0000000349380350

621 Ales Pěnčík: 0000-0002-1314-2249

622 Karin Ljung: 0000-0003-2901-189X

623 Ondrej Novák: 0000-0003-3452-0154

624

625 **SUPPORTING INFORMATION**

626 **Supplementary Figure 1:** 24 h treatment with different CKs inhibit root growth and trigger CK
627 signalling reporters *TCSn:GFP* and *ARR5_{pro}:GUS*.

628 **Supplementary Figure 2:** Insertion number analysis performed in *ipt9-1* and shoot phenotypes
629 of the *ipt9* mutants.

630 **Supplementary Figure 3:** Root phenotypic effects of the *35S_{pro}:IPT9* transgene in mutant and
631 wild-type backgrounds.

632 **Supplementary Table 1:** Primer sets used in this work

633

634

635 **References**

- 636 1. Stenlid G. Cytokinins as inhibitors of root growth. *Physiol Plant.* 1982;56(4):500–6.
- 637 2. Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, et al. Roles of *Arabidopsis* ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. *Proc Natl Acad Sci U S A* [Internet]. 2006 Oct 31;103(44):16598–603. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637627/>&tool=pmcentrez&rendertype=abstract
- 643 3. Schmitz RY, Skoog F, Playtis a. J, Leonard NJ. Cytokinins: synthesis and biological activity of geometric and position isomers of zeatin. *Plant Physiol* [Internet]. 1972 Dec 1;50(6):702–5. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366220/>&tool=pmcentrez&rendertype=abstract
- 648 4. Kamínek M, Vaněk T, Motyka V. Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. *J Plant Growth Regul.* 1987;6(2):113–20.
- 650 5. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, et al. Identification of CRE1 as a cytokinin receptor from *Arabidopsis*. *Nature.* 2001;409(6823):1060–3.
- 652 6. Romanov G a, Lomin SN, Schmülling T. Biochemical characteristics and ligand-binding properties of *Arabidopsis* cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. *J Exp Bot* [Internet]. 2006 Jan [cited 2014 Mar 7];57(15):4051–8. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17075078/>
- 656 7. Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov G a, Strnad M, et al. Two cytokinin receptors of *Arabidopsis thaliana*, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. *Plant Cell Physiol* [Internet]. 2004 Sep;45(9):1299–305. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC15509853/>
- 660 8. Yonekura-sakakibara K, Kojima M, Yamaya T, Sakakibara H. Molecular Characterization of Cytokinin-Responsive Histidine Kinases in Maize . Differential Ligand Preferences and Response to *cis*-Zeatin 1. *Plant Physiol.* 2004;134(4):1654–61.
- 663 9. Gajdosová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, et al. Distribution, biological activities, metabolism, and the conceivable function of *cis*-zeatin-type cytokinins in plants. *J Exp Bot* [Internet]. 2011 May [cited 2014 Aug 28];62(8):2827–40. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC31282330/>
- 667 10. Emery JRN, Leport L, Barton JE, Turner NC, Atkins CA, Agriculture M. *cis*-Isomers of Cytokinins Predominate in Chickpea Seeds throughout Their Development 1. *Plant Physiol.* 1998;117:1515–23.
- 670 11. Veach YK, Martin RC, Mok DWS, Malbeck J, Vankova R, Mok MC. O-Glucosylation of *cis*-Zeatin in Maize . Characterization of Genes , Enzymes , and Endogenous Cytokinins 1. *Plant P.* 2003;131:1374–80.
- 673 12. Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in *Oryza sativa*. *Plant Cell Physiol* [Internet]. 2009 Jul [cited 2014 Aug 28];50(7):1201–14. Available from:

678 13. Quesnelle PE, Emery RJN. *cis*-Cytokinins that predominate in *Pisum sativum* during
679 early embryogenesis will accelerate embryo growth in vitro. *Can J Bot.* 2007;85:9–103.

680 14. Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H. Cytokinin Activity of *cis*-Zeatin
681 and Phenotypic Alterations Induced by Overexpression of Putative *cis*-Zeatin-O-
682 glucosyltransferase in Rice. *Plant Physiol [Internet].* 2012 Sep [cited 2012 Sep
683 6];160(1):319–31. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22811434>

684 15. Výroubalová S, Václavíková K, Turecková V, Novák O, Smehilová M, Hluská T, et al.
685 Characterization of new maize genes putatively involved in cytokinin metabolism and
686 their expression during osmotic stress in relation to cytokinin levels. *Plant Physiol
687 [Internet].* 2009 Sep [cited 2014 Sep 29];151(1):433–47. Available from:
688 <http://www.ncbi.nlm.nih.gov/article/2735981>&tool=pmcentrez&ren
689 dertype=abstract

690 16. Havlová M, Dobrev PI, Motyka V, Storchová H, Libus J, Dobrá J, et al. The role of
691 cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-
692 glucosyltransferase gene under 35S or SAG12 promoters. *Plant Cell Environ [Internet].*
693 2008 Mar [cited 2014 Sep 29];31(3):341–53. Available from:
694 <http://www.ncbi.nlm.nih.gov/pubmed/18088334>

695 17. Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil IT, Haisel D, et al. Comparison of
696 hormonal responses to heat, drought and combined stress in tobacco plants with
697 elevated proline content. *J Plant Physiol [Internet].* 2010 Nov 1 [cited 2014 Sep
698 11];167(16):1360–70. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/20619485>

699 18. Petry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, et al.
700 Identification of *Rhodococcus fascians* cytokinins and their modus operandi to reshape
701 the plant. *Proc Natl Acad Sci U S A [Internet].* 2009 Jan 20;106(3):929–34. Available
702 from:
703 <http://www.ncbi.nlm.nih.gov/article/2630087>&tool=pmcentrez&ren
704 dertype=abstract

705 19. Kollmer I, Novák O, Strnad M, Schmülling T, Werner T. Overexpression of the cytosolic
706 cytokinin oxidase/dehydrogenase (CKX7) from *Arabidopsis* causes specific changes in
707 root growth and xylem differentiation. *Plant J [Internet].* 2014 Feb 17 [cited 2014 Mar
708 27];1–13. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24528491>

709 20. Kiba T, Takei K, Kojima M, Sakakibara H. Side-chain modification of cytokinins controls
710 shoot growth in *Arabidopsis*. *Dev Cell [Internet].* 2013 Nov 25 [cited 2014 May
711 3];27(4):452–61. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24286826>

712 21. Takei K, Yamaya T, Sakakibara H. *Arabidopsis* CYP735A1 and CYP735A2 encode
713 cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. *J Biol Chem
714 [Internet].* 2004 Oct 1 [cited 2012 Jul 17];279(40):41866–72. Available from:
715 <http://www.ncbi.nlm.nih.gov/pubmed/15280363>

716 22. Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. *Annu Rev Plant Biol
717 [Internet].* 2006 Jan [cited 2012 Jul 27];57:431–49. Available from:
718 <http://www.ncbi.nlm.nih.gov/pubmed/16669769>

719 23. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K,

720

722 Miyawaki K, et al. Cytokinins are central regulators of cambial activity. *Proc Natl Acad Sci*
723 *U S A* [Internet]. 2008 Dec 16;105(50):20027–31. Available from:
724 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605004/>&tool=pmcentrez&rendertype=abstract

726 24. Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, et al. Arabidopsis ABCG14 is essential for
727 the root-to-shoot translocation of cytokinin. *Proc Natl Acad Sci U S A* [Internet]. 2014 Apr
728 28 [cited 2014 May 5];111(19):7150–5. Available from:
729 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024864/>&tool=pmcentrez&rendertype=abstract

731 25. Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, et al. Arabidopsis ABCG14 protein
732 controls the acropetal translocation of root-synthesized cytokinins. *Nat Commun*
733 [Internet]. 2014 Feb 11 [cited 2014 Feb 12];5:3274. Available from:
734 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC24513716/>

735 26. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. Regulation
736 of cytokinin biosynthesis, compartmentalization and translocation. *J Exp Bot* [Internet].
737 2008 Jan [cited 2012 Jul 15];59(1):75–83. Available from:
738 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17872922/>

739 27. Kieber JJ, Schaller GE. Cytokinin signaling in plant development. *Development* [Internet].
740 2018;145(4):1–7. Available from: <http://dev.biologists.org/lookup/doi/10.1242/dev.149344>

741 28. Zürcher E, Tavor-Deslex D, Lituiev D, Enkeli K, Tarr PT, Müller B. A robust and sensitive
742 synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in
743 *planta*. *Plant Physiol* [Internet]. 2013 Jan 25 [cited 2013 Mar 1];161(3):1066–75. Available
744 from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355633/>

745 29. Antoniadi I, Novák O, Gelová Z, Johnson A, Plíhal O, Simerský R, et al. Cell-surface
746 receptors enable perception of extracellular cytokinins. *Nat Commun* [Internet]. 2020 Dec
747 1 [cited 2021 Apr 12];11(1):1–10. Available from: <https://doi.org/10.1038/s41467-020-17700-9>

749 30. Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin metabolism in plants. *Cold Spring*
750 *Harb Perspect Med*. 2021;11(3):1–23.

751 31. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Doležal K, et al. TAA1-
752 Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development.
753 *Cell*. 2008;133(1):177–91.

754 32. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, et al. Rapid Synthesis of Auxin via a
755 New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. *Cell*.
756 2008;133(1):164–76.

757 33. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M. The TRANSPORT
758 INHIBITOR RESPONSE2 Gene is required for auxin synthesis and diverse aspects of
759 plant development. *Plant Physiol*. 2009;151(1):168–79.

760 34. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, et al. The main
761 auxin biosynthesis pathway in Arabidopsis. *Proc Natl Acad Sci U S A*.
762 2011;108(45):18512–7.

763 35. Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, et al. The Arabidopsis
764 YUCCA1 Flavin Monooxygenase functions in the Indole-3-Pyruvic acid branch of Auxin

765 Biosynthesis. *Plant Cell*. 2011;23(11):3961–73.

766 36. Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, et al. Conversion of tryptophan
767 to indole-3-acetic acid by tryptophan aminotransferases of *Arabidopsis* and YUCCAs in
768 *Arabidopsis*. *Proc Natl Acad Sci U S A*. 2011;108(45):18518–23.

769 37. Hull AK, Vij R, Celenza JL. *Arabidopsis* cytochrome P450s that catalyze the first step of
770 tryptophan-dependent indole-3-acetic acid biosynthesis. *Proc Natl Acad Sci U S A*.
771 2000;97(5):2379–84.

772 38. Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. Cytochrome P450 CYP79B2 from
773 *Arabidopsis* catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor
774 of indole glucosinolates and indole-3-acetic acid. *J Biol Chem*. 2000;275(43):33712–7.

775 39. Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, et al. Trp-dependent auxin
776 biosynthesis in *Arabidopsis*: Involvement of cytochrome P450s CYP79B2 and CYP79B3.
777 *Genes Dev*. 2002;16(23):3100–12.

778 40. Pollmann S, Neu D, Weiler EW. Molecular cloning and characterization of an amidase
779 from *Arabidopsis thaliana* capable of converting indole-3-acetamide into the plant growth
780 hormone, indole-3-acetic acid. *Phytochemistry*. 2003;62(3):293–300.

781 41. Sánchez-Parra B, Frerigmann H, Alonso MMP, Loba VC, Jost R, Hentrich M, et al.
782 Characterization of four bifunctional plant IAM/PAM-amidohydrolases capable of
783 contributing to auxin biosynthesis. *Plants*. 2014;3(3):324–47.

784 42. Mateo-Bonmatí E, Casanova-Sáez R, Šimura J, Ljung K. Broadening the roles of UDP-
785 glycosyltransferases in auxin homeostasis and plant development. *New Phytol*.
786 2021;232(2):642–54.

787 43. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, et al.
788 Characterization of an *arabidopsis* enzyme family that conjugates amino acids to indole-
789 3-acetic acid. *Plant Cell*. 2005;17(2):616–27.

790 44. Casanova-Sáez R, Mateo-Bonmatí E, Šimura J, Pěnčík A, Novák O, Staswick P, et al.
791 Inactivation of the entire *Arabidopsis* group II GH3s confers tolerance to salinity and
792 water deficit. *New Phytologist*. 2022. 0–3 p.

793 45. Müller K, Dobrev PI, Pencík A, Hosek P, Vondráková Z, Filepová R, et al. Dioxygenase
794 for auxin oxidation 1 catalyzes the oxidation of IAA amino acid conjugates. *Plant Physiol*.
795 2021;187(1):103–15.

796 46. Porco S, Pěnčík A, Rasheda A, Vo U, Casanova-Sáez R, Bishopp A, et al. Dioxygenase-
797 encoding AtDAO1 gene controls IAA oxidation and homeostasis in *arabidopsis*. *Proc Natl
798 Acad Sci U S A*. 2016;113(39):11016–21.

799 47. Dharmasiri N, Dharmasiri S, Jones AM, Estelle M. Auxin Action in a Cell-Free System.
800 *Curr Biol CB Biol*. 2003;13:1418–22.

801 48. Tian Q, Uhlir NJ, Reed JW. *Arabidopsis* SHY2 / IAA3 Inhibits Auxin-Regulated Gene
802 Expression. 2002;14(February):301–19.

803 49. Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, et al. A
804 genetic framework for the control of cell division and differentiation in the root meristem.
805 *Science [Internet]*. 2008 Nov 28;322(5906):1380–4. Available from:
806 <http://www.ncbi.nlm.nih.gov/pubmed/19039136>

807 50. Moubayidin L, Perilli S, Dello Iorio R, Di Mambro R, Costantino P, Sabatini S. The rate of
808 cell differentiation controls the arabidopsis root meristem growth phase. *Curr Biol*
809 [Internet]. 2010;20(12):1138–43. Available from:
810 <http://dx.doi.org/10.1016/j.cub.2010.05.035>

811 51. Zhang W, Swarup R, Bennett M, Schaller GE, Kieber JJ. Cytokinin induces cell division in
812 the quiescent center of the Arabidopsis root apical meristem. *Curr Biol* [Internet]. 2013
813 Oct 21 [cited 2014 Mar 20];23(20):1979–89. Available from:
814 <http://www.ncbi.nlm.nih.gov/pubmed/24120642>

815 52. Moubayidin L, Di Mambro R, Sozzani R, Pacifici E, Salvi E, Terpstra I, et al. Spatial
816 coordination between stem cell activity and cell differentiation in the root meristem. *Dev*
817 *Cell* [Internet]. 2013 Aug 26 [cited 2014 Oct 15];26(4):405–15. Available from:
818 <http://www.ncbi.nlm.nih.gov/pubmed/23987513>

819 53. Müller B, Sheen J. Cytokinin and auxin interplay in root stem-cell specification during
820 early embryogenesis. *Nature* [Internet]. 2008 Jun 19 [cited 2013 Mar 7];453(7198):1094–
821 7. Available from:
822 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2601652/>&tool=pmcentrez&rendertype=abstract

824 54. Yang BJ, Minne M, Brunoni F, Plačková L, Petřík I, Sun Y, et al. Non-cell autonomous
825 and spatiotemporal signalling from a tissue organizer orchestrates root vascular
826 development. *Nat Plants*. 2021;7(11):1485–94.

827 55. Che P, Gingerich DJ, Lall S, Howell SH. Global and Hormone-Induced Gene Expression
828 Changes during Shoot Development in Arabidopsis. 2002;14(November):2771–85.

829 56. Schindelin J, Arganda-carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji : an
830 open-source platform for biological-image analysis. *Nat Methods*. 2012;9(7):676–82.

831 57. Malamy JE, Benfey PN. Organization and cell differentiation in lateral roots of
832 *Arabidopsis thaliana*. *Development*. 1997;124:33–44.

833 58. Svačinová J, Novák O, Plačková L, Lenobel RR, Holík J, Strnad M, et al. A new approach
834 for cytokinin isolation from *Arabidopsis* tissues using miniaturized purification: pipette tip
835 solid-phase extraction. *Plant Methods* [Internet]. 2012 Jan 17 [cited 2012 Sep 7];8(1):17.
836 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22594941>

837 59. Pěnčík A, Casanova-Sáez R, Pilařová V, Žukauskaite A, Pinto R, Micol JL, et al. Ultra-
838 rapid auxin metabolite profiling for high-throughput mutant screening in *Arabidopsis*. *J*
839 *Exp Bot*. 2018;69(10):2569–79.

840 60. Turnbull CGN, Booker JP, Leyser HMO. Micrografting techniques for testing long-
841 distance signalling in *Arabidopsis*. *Plant J* [Internet]. 2002 Oct;32(2):255–62. Available
842 from: <http://www.ncbi.nlm.nih.gov/pubmed/12383090>

843 61. Curtis MD, Grossniklaus U. A Gateway Cloning Vector Set for High-Throughput
844 Functional Analysis of Genes in *Planta*. *Plant Physiol*. 2003;133(2):462–9.

845 62. Clough SJ, Bent AF. Floral dip: A simplified method for *Agrobacterium*-mediated
846 transformation of *Arabidopsis thaliana*. *Plant J*. 1998;16(6):735–43.

847 63. Hanania U, Velcheva M, Sahar N, Perl A. An Improved Method for Isolating High-Quality
848 DNA From *Vitis vinifera* Nuclei. *Plant Mol Biol Report*. 2004;22:173–7.

849 64. Lup SD, Wilson-sánchez D, Andreu-sánchez S. Easymap : A User-Friendly Software
850 Package for Rapid Mapping-by-Sequencing of Point Mutations and Large Insertions.
851 2021;12(May):1–10.

852 65. Argyros RD, Mathews DE, Chiang Y-H, Palmer CM, Thibault DM, Etheridge N, et al.
853 Type B response regulators of *Arabidopsis* play key roles in cytokinin signaling and plant
854 development. *Plant Cell* [Internet]. 2008 Aug [cited 2014 Sep 7];20(8):2102–16. Available
855 from:
856 <http://www.ncbi.nlm.nih.gov/article/2553617>&tool=pmcentrez&ren
857 dertype=abstract

858 66. Su Y-H, Liu Y-B, Zhang X-S. Auxin-cytokinin interaction regulates meristem development.
859 *Mol Plant* [Internet]. 2011 Jul [cited 2012 Jul 18];4(4):616–25. Available from:
860 <http://www.ncbi.nlm.nih.gov/article/3146736>&tool=pmcentrez&ren
861 dertype=abstract

862 67. Brumos J, Robles LM, Yun J, Vu TC, Jackson S, Alonso JM, et al. Local Auxin
863 Biosynthesis Is a Key Regulator of Plant Article Local Auxin Biosynthesis Is a Key
864 Regulator of Plant Development. *Dev Cell* [Internet]. 2018;47(3):306-318.e5. Available
865 from: <https://doi.org/10.1016/j.devcel.2018.09.022>

866 68. Wilson-Sánchez D, Rubio-Díaz S, Muñoz-Viana R, Pérez-Pérez JM, Jover-Gil S, Ponce
867 MR, et al. Leaf phenomics: A systematic reverse genetic screen for *Arabidopsis* leaf
868 mutants. *Plant J.* 2014;79(5):878–91.

869 69. Schwartzenberg K von, Núñez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, et al.
870 Cytokinins in the bryophyte *Physcomitrella patens*: analyses of activity, distribution, and
871 cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular
872 cytokinins. *Plant Physiol* [Internet]. 2007 Dec [cited 2014 Aug 31];145(3):786–800.
873 Available from:
874 <http://www.ncbi.nlm.nih.gov/article/2048801>&tool=pmcentrez&ren
875 dertype=abstract

876 70. Kiba T, Yamada H, Sato S, Kato T, Tabata S, Mizuno T. The Type-A Response
877 Regulator , ARR15 , Acts as a Negative Regulator in the Cytokinin-Mediated Signal
878 Transduction in *Arabidopsis thaliana*. 2003;44(8):868–74.

879 71. Kiba T, Yamada H, Mizuno T. Characterization of the ARR15 and ARR16 response
880 regulators with special reference to the cytokinin signaling pathway mediated by the
881 AHK4 histidine kinase in roots of *Arabidopsis thaliana*. *Plant Cell Physiol* [Internet]. 2002
882 Sep;43(9):1059–66. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/12354925>

883 72. To JPC, Haberer G, Ferreira FJ, Derue J, Schaller GE, Alonso JM, et al. Type-A
884 *Arabidopsis* Response Regulators Are Partially Redundant Negative Regulators of
885 Cytokinin Signaling. 2004;16(March):658–71.

886 73. To JPC, Deruère J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, et al. Cytokinin
887 regulates type-A *Arabidopsis* Response Regulator activity and protein stability via two-
888 component phosphorelay. *Plant Cell* [Internet]. 2007 Dec [cited 2012 Jul
889 17];19(12):3901–14. Available from:
890 <http://www.ncbi.nlm.nih.gov/article/2217641>&tool=pmcentrez&ren
891 dertype=abstract

892 74. Tanaka Y, Suzuki T, Yamashino T, Mizuno T. Comparative Studies of the AHP Histidine-

893 containing Phosphotransmitters Implicated in His-to-Asp Phosphorelay in *Arabidopsis*
894 *thaliana*. 2004;68(2):462–5.

895 75. Miyawaki K, Matsumoto-Kitano M, Kakimoto T. Expression of cytokinin biosynthetic
896 isopentenyltransferase genes in *Arabidopsis* : tissue specificity and regulation by auxin,
897 cytokinin, and nitrate. *Plant J* [Internet]. 2004 Jan [cited 2012 Jul 23];37(1):128–38.
898 Available from: <http://doi.wiley.com/10.1046/j.1365-313X.2003.01945.x>

899 76. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, et al. Functional
900 analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the
901 direct activation pathway in *Arabidopsis*. *Plant Cell* [Internet]. 2009 Oct [cited 2012 Jul
902 13];21(10):3152–69. Available from:
903 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782294/>&tool=pmcentrez&rendertype=abstract

905 77. Werner T, Motyka V, Laucou V, Smets R, Onckelen H Van, Thomas S. Cytokinin-
906 Deficient Transgenic *Arabidopsis* Plants Show Functions of Cytokinins in the Regulation
907 of Shoot and Root Meristem Activity. *Plant Cell*. 2003;15(11):2532–50.

908 78. Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. Histidine Kinase Homologs
909 That Act as Cytokinin Receptors Possess Overlapping Functions in the Regulation of
910 Shoot and Root Growth in *Arabidopsis*. *Plant Cell*. 2004;16(6):1365–77.

911 79. Higuchi M, Pischke MS, Miyawaki K, Hashimoto Y, Seki M, Mahonen AP, et al. In planta
912 functions of the *Arabidopsis* cytokinin receptor family. *PNAS*. 2004;101(23):8821–6.

913 80. D'Agostino IB, Deruère J, Kieber JJ. Characterization of the response of the *Arabidopsis*
914 response regulator gene family to cytokinin. *Plant Physiol* [Internet]. 2000
915 Dec;124(4):1706–17. Available from:
916 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC159868/>&tool=pmcentrez&rendertype=abstract

918 81. Kowalska M, Galuszka P, Frébortová J, Šebela M, Béres T, Hluská T, et al. Vacuolar and
919 cytosolic cytokinin dehydrogenases of *Arabidopsis thaliana*: heterologous expression,
920 purification and properties. *Phytochemistry* [Internet]. 2010 Dec [cited 2014 Sep
921 2];71(17–18):1970–8. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC20825956>

922 82. Galuszka P, Popelková H, Werner T, Frébortová J, Pospíšilová H, Mik V, et al.
923 Biochemical Characterization of Cytokinin Oxidases/Dehydrogenases from *Arabidopsis*
924 *thaliana* Expressed in *Nicotiana tabacum* L. *J Plant Growth Regul* [Internet]. 2007 Aug 21
925 [cited 2012 Nov 10];26(3):255–67. Available from:
926 <http://www.springerlink.com/index/10.1007/s00344-007-9008-5>

927 83. Lomin SN, Yonekura-Sakakibara K, Romanov GA, Sakakibara H. Ligand-binding
928 properties and subcellular localization of maize cytokinin receptors. *J Exp Bot*.
929 2011;62(14):5149–59.

930 84. Stolz A, Riefler M, Lomin SN, Achazi K, Romanov G a, Schmülling T. The specificity of
931 cytokinin signalling in *Arabidopsis thaliana* is mediated by differing ligand affinities and
932 expression profiles of the receptors. *Plant J* [Internet]. 2011 Jul [cited 2012 Jul
933 31];67(1):157–68. Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC31426428>

934 85. Lomin SN, Krivosheev DM, Steklov MY, Osolodkin DI, Romanov G a. Receptor
935 properties and features of cytokinin signaling. *Acta Naturae* [Internet]. 2012 Jul;4(3):31–
936 45. Available from:

937 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491891/>&tool=pmcentrez&rendertype=abstract

938

939 86. Antoniadi I, Plačková L, Simonovik B, Doležal K, Turnbull C, Ljung K, et al. Cell-Type-Specific Cytokinin Distribution within the *Arabidopsis* Primary Root Apex. *Plant Cell* [Internet]. 2015;27(7):1955–67. Available from: <http://www.plantcell.org/lookup/doi/10.1105/tpc.15.00176>

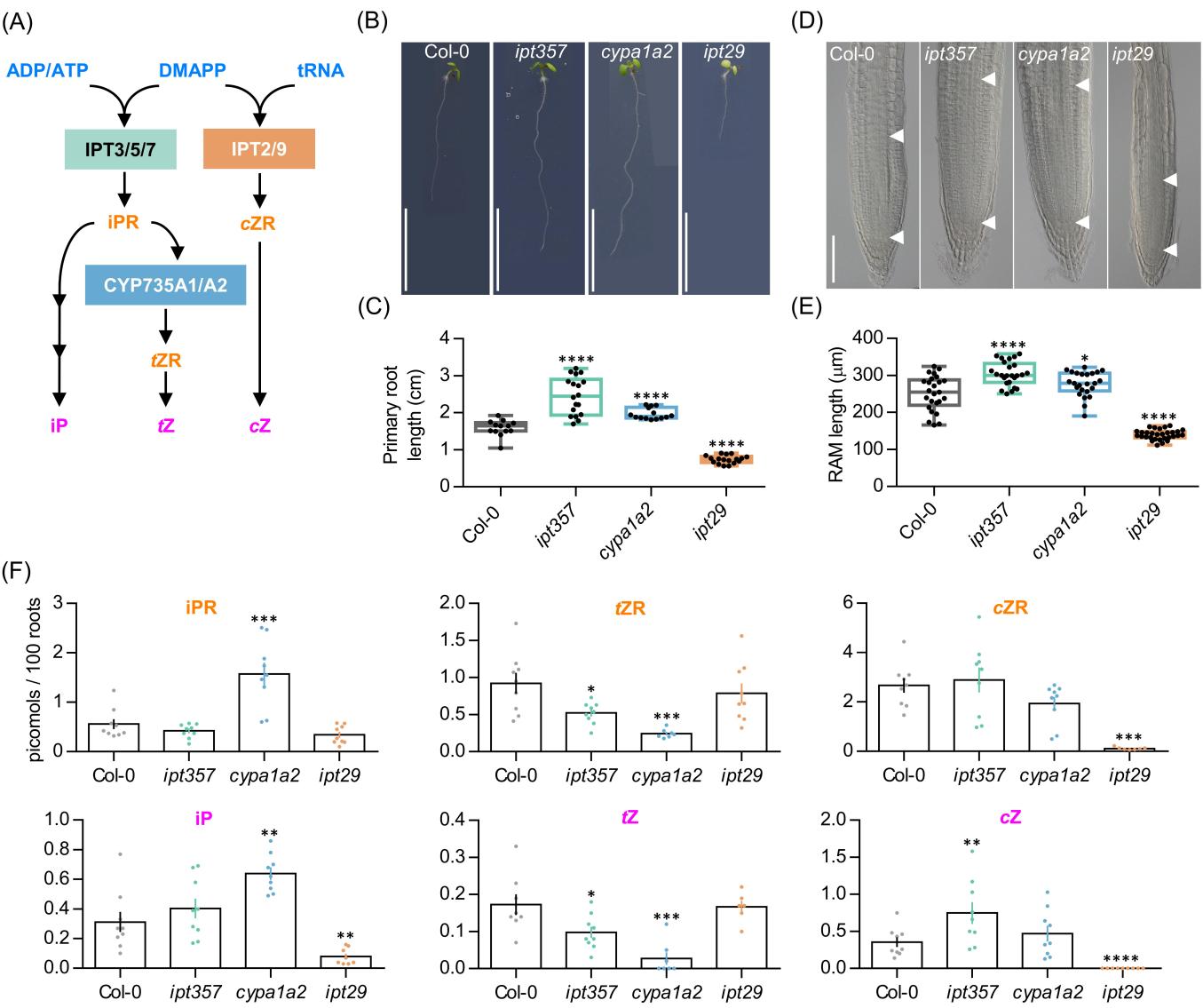
940

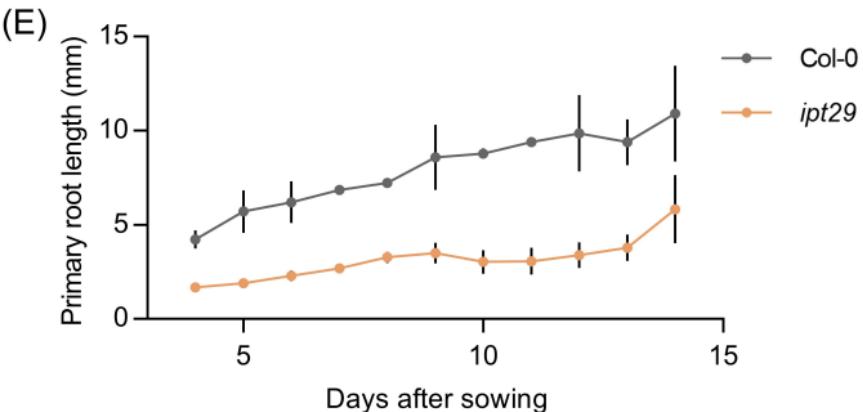
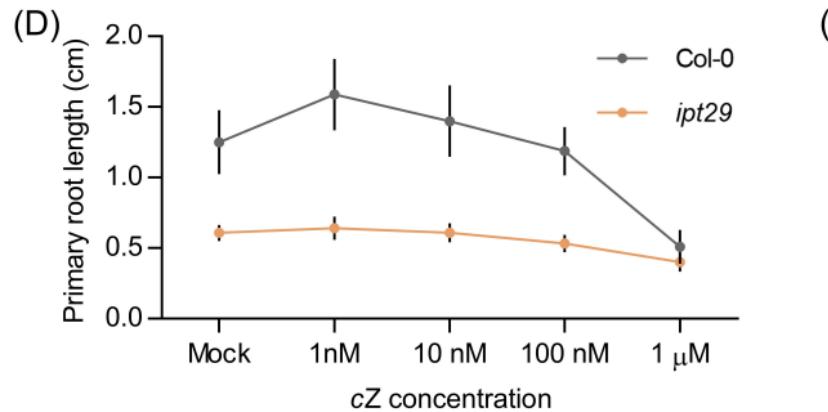
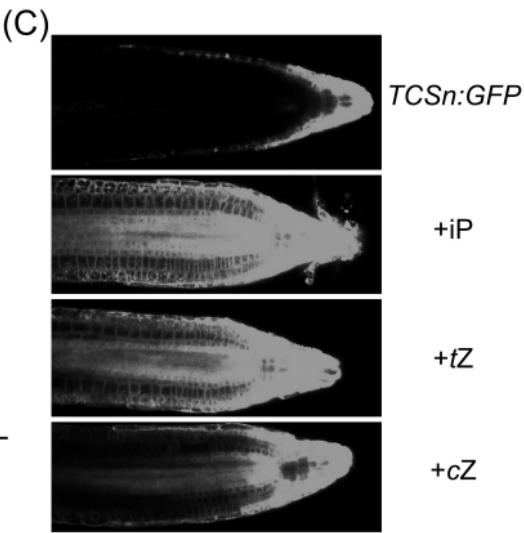
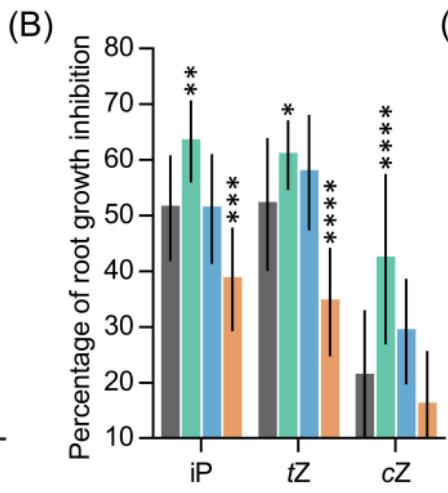
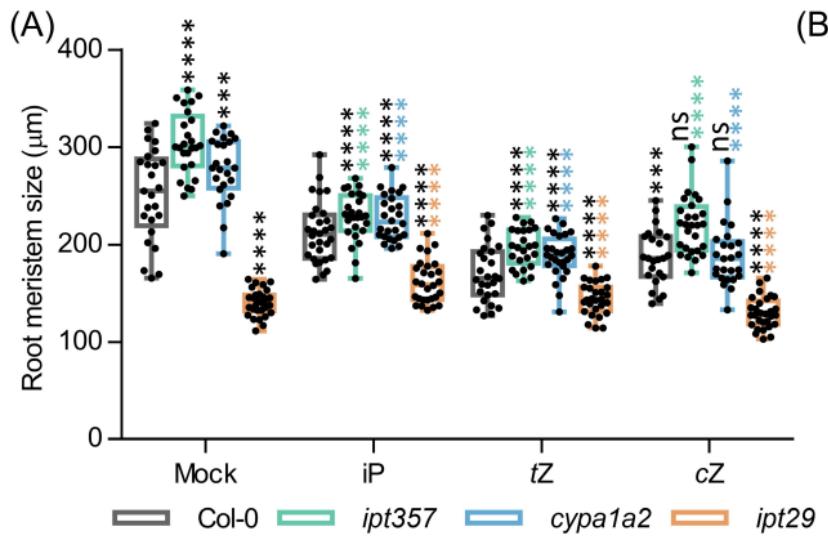
941

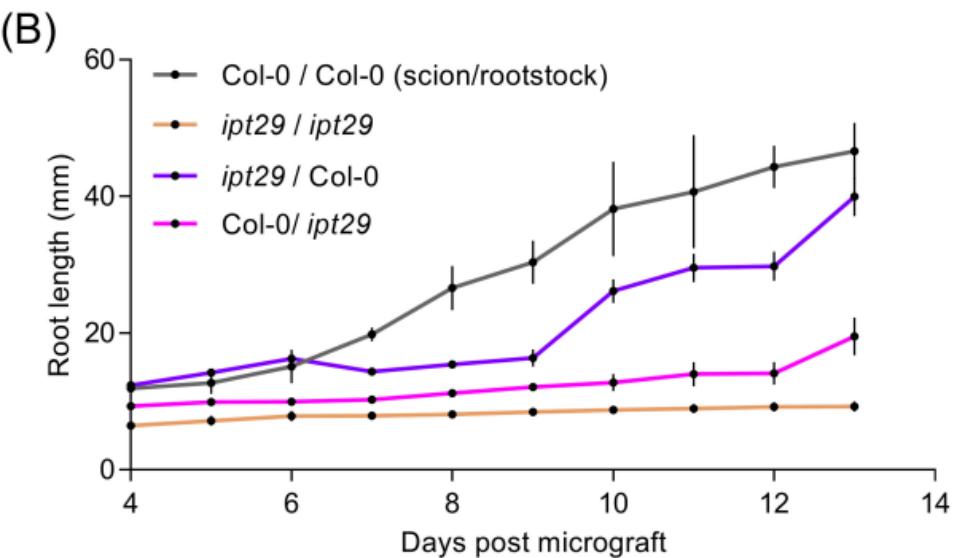
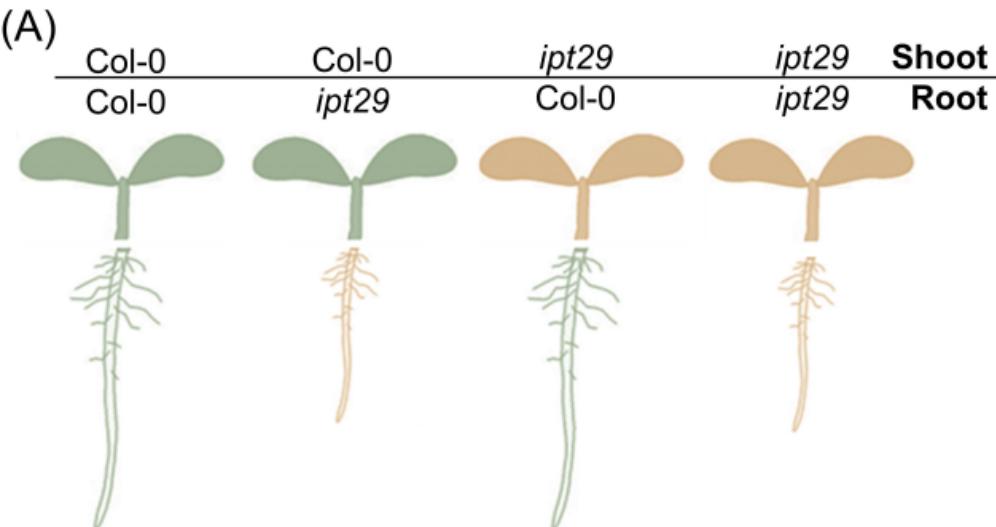
942

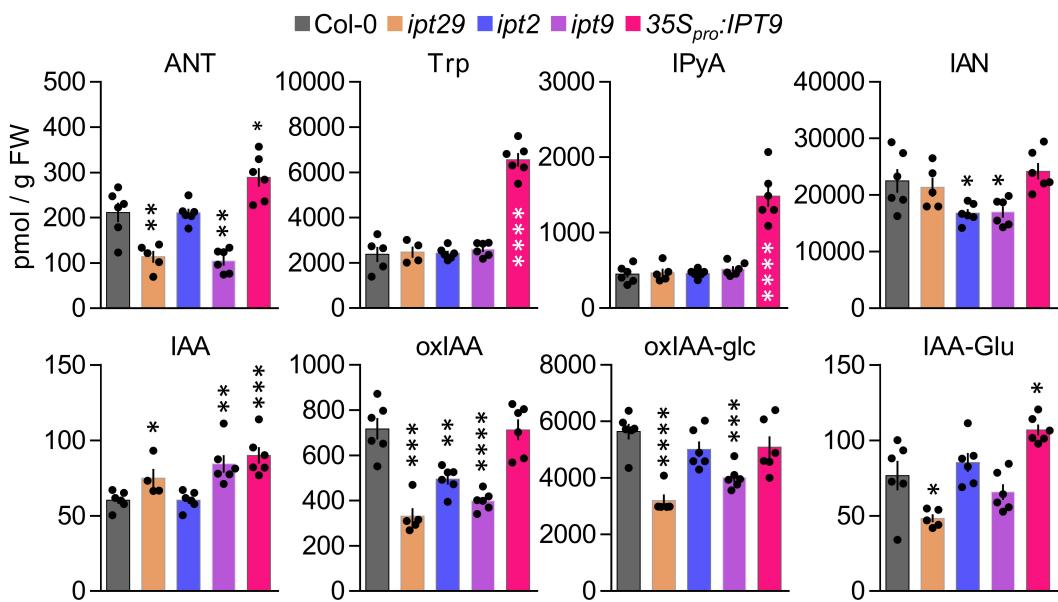
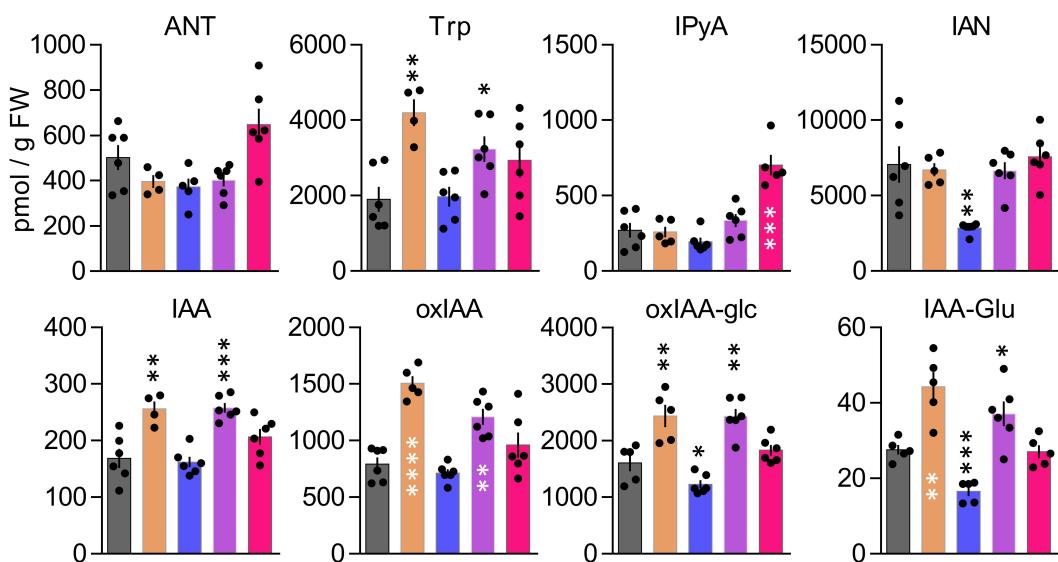
943 87. Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M. Shoot-derived cytokinins systemically regulate root nodulation. *Nat Commun* [Internet]. 2014 Sep 19 [cited 2014 Sep 19];5:4983. Available from: <http://www.nature.com/doifinder/10.1038/ncomms5983>

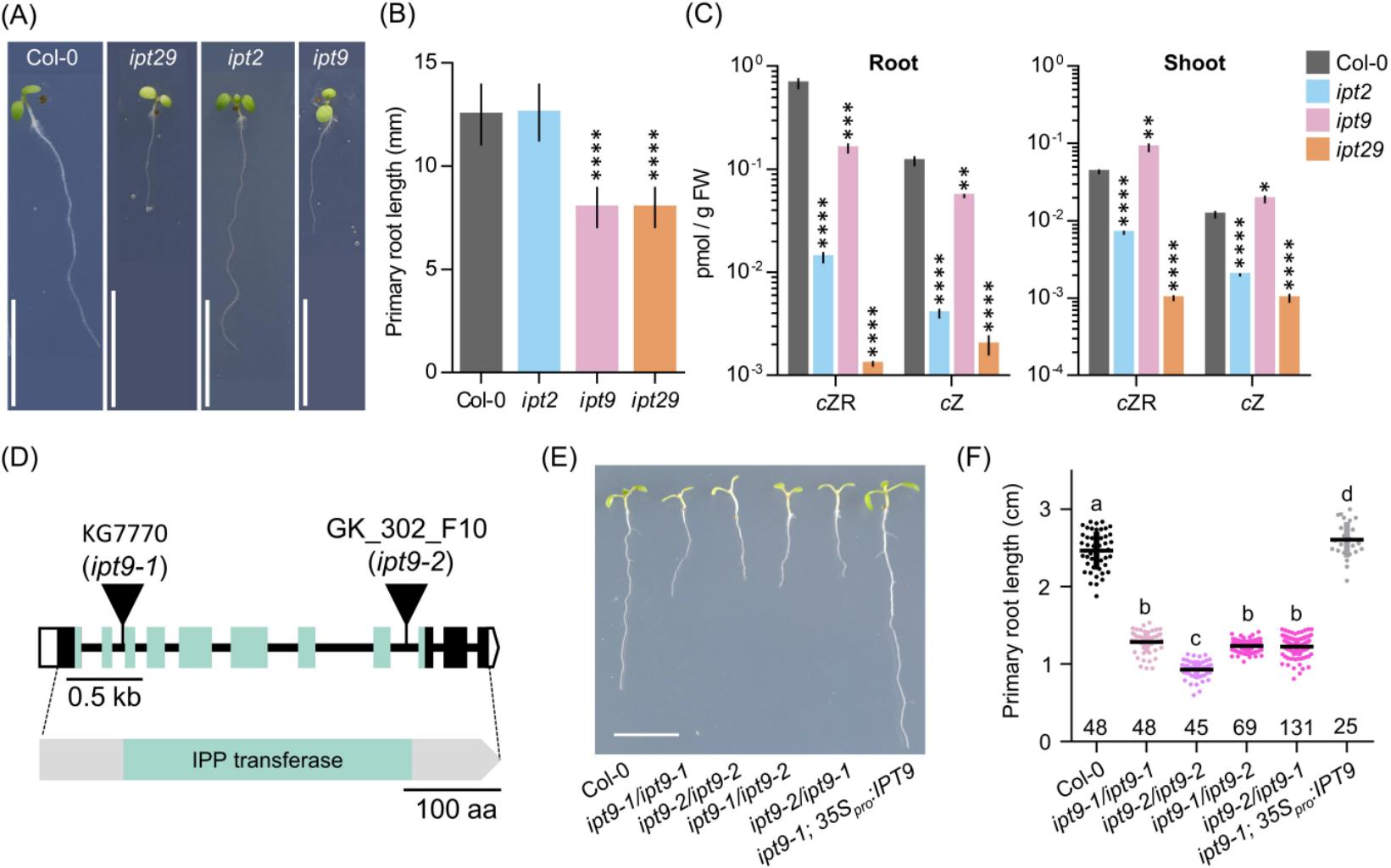
944


945






946



947 88. Bishopp A, Benková E, Helariutta Y. Sending mixed messages: Auxin-cytokinin crosstalk in roots. *Curr Opin Plant Biol.* 2011;14(1):10–6.



948


949

(A) Shoot**(B) Root**

