

1 **Cell detoxification of secondary metabolites by P4-ATPase mediated
2 vesicle transport**

3 Yujie Li^{1†}, Hui Ren^{1†}, Fanlong Wang¹, Jianjun Chen¹, Lian Ma¹, Yang Chen¹, Xianbi
4 Li¹, Yanhua Fan¹, Dan Jin¹, Lei Hou¹, Yonghong Zhou¹, Nemat O. Keyhani², and Yan
5 Pei^{1*}

6 ¹Biotechnology Research Center, Southwest University, Beibei, Chongqing 400715,
7 China; ²Department of Microbiology and Cell Science, Institute of Food and
8 Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.

9 [†]Yujie Li and Hui Ren contributed equally to this work

10 *For correspondence: peiyan3@swu.edu.cn

11 **Abstract**

12 Mechanisms for cellular detoxification of drug compounds are of significant interest
13 in human health. Cyclosporine A (CsA) and tacrolimus (FK506) are widely known
14 antifungal and immunosuppressive microbial natural products. However, both
15 compounds can result in significant side effects when used as immunosuppressants.
16 The insect pathogenic fungus *Beauveria bassiana* shows resistance to CsA and FK506.
17 However, the mechanisms underlying the resistance have remained unknown. Here,
18 we identify a P4-ATPase gene, *BbCRPA*, from the fungus, which confers resistance
19 via a unique vesicle mediated transport pathway that targets the compounds into
20 detoxifying vacuoles. Interestingly, the expression of *BbCRPA* in plants promotes
21 resistance to the phytopathogenic fungus *Verticillium dahliae* via detoxification of the
22 mycotoxin cinnamyl acetate using a similar pathway. Our data reveal a new function
23 for a subclass of P4-ATPases in cell detoxification. The P4-ATPases conferred

24 cross-species resistance can be exploited for plant disease control and human health
25 protection.

26 **Keywords**

27 *Beauveria bassiana*; P4-ATPase; vesicle transport pathway; vacuole; plant protection

28 Introduction

29 The mining of bioactive molecules known as secondary metabolites or natural
30 products is of significant interest relevant to almost all aspects of human activity from
31 food security to health and well-being. Microbes are known reservoirs for the
32 production of such natural products, that has included the discovery of the world's
33 first broad spectrum antibiotic from *Penicillium notatum* to a range of diverse
34 chemical compounds that continue to be characterized from fungi today (Brakhage,
35 2013; Chanda et al., 2009; Fleming, 1944; Keller et al., 2005). Two of the most
36 widely known microbial products of human health relevance are cyclosporine A
37 (CsA), a neutral lipophilic cyclic polypeptide originally isolated from the
38 entomopathogenic fungus *Beauveria nivea* (*Tolypocladium inflatum*) and FK506
39 (tacrolimus), a macrolide lactone isolated from *Streptomyces tsukubaensis* (Gupta et
40 al., 1989; Odom et al., 1997; Tanaka et al., 1987). Although both of these molecules
41 were originally isolated due to their antifungal properties, their functioning as
42 immunosuppressive agents has revolutionized aspects of medicine (Borel et al., 1976;
43 Beauchesne et al., 2007; Dreyfuss et al., 1976; Guada et al., 2016; Margaritis and
44 Chahal, 1989; Odom et al., 1997; Tanaka et al., 1987). The major mechanism
45 mediating the antimicrobial activities of both CsA and FK506 appear to be *via*
46 inhibition of calcium signaling by targeting of calcineurin (CaN) through cyclophilin
47 A-CsA and FKBP-FK506 complexes, respectively (Liu et al., 1991; Sharma et al.,
48 1994). In terms of human health relevance, however, CsA and FK506 are highly used
49 immunosuppressants that have been applied in a wide variety of therapeutic
50 applications from facilitating human organ transplants to autoimmune-disease
51 therapies, hypertension, and even ocular diseases (Borel and Gunn, 1986; Thomson et
52 al., 1993; Tory et al., 2008). However, both compounds can also result in significant

53 side effects that can include nephro- and hepatotoxicities, central nervous system
54 (CNS) disturbances, hirsutism, and gingival hyperplasia (DiMartini et al., 1996;
55 Kaeberlein, 2013). Little, however, is known concerning mechanisms for
56 detoxification of these drugs, and to date no pathways have been identified for
57 mediating (microbial or other) resistance (s) to these compounds. Resistance can be of
58 further importance due to the effects of similar fungal secondary metabolite toxins
59 produced by phytopathogens that cause significant agricultural damage and decreased
60 productivity. Within this context the phytopathogenic fungi, *Verticillium dahliae*
61 *Kleb* and *Fusarium graminearum*, causing Verticillium wilt corn ear rot and wheat
62 head blight disease, respectively, are two of the most destructive diseases of many
63 important crops (Subbarao et al., 1995; Sutton, 1982; Veronese et al., 2003), and
64 mycotoxins, such as trichothecenes produced by *F. graminearum*, present in foods and
65 forages cause serious risks to the health of animals and human beings (Berthiller, et
66 al., 2013; D'Mello, et al., 1999).

67 Most organisms are endowed with two major mechanisms for detoxification of
68 small molecular weight chemical compounds: (i) chemical modification (s) resulting
69 in inactivation, which can include hydrolysis and/or oxidation, and conjugation, (ii)
70 compartmentation, and eventual degradation (Berthiller et al., 2013; Coleman et al.,
71 1997). In compartmental detoxification, molecules (toxins) are transported into
72 structures (organelles) where they are sequestered and degraded. As part of these
73 processes, it had been demonstrated that vesicle-mediated transport can contribute to
74 secondary metabolite sequestering in order to protect the host cell (or resistant
75 organisms) from self-toxicity (Sirikantaramas et al., 2008). In fungi and plants, the
76 primary subcellular compartment for detoxification is the vacuole, while in animals it
77 is the lysosome. It is well known that ATP-binding cassette (ABC) transporters can

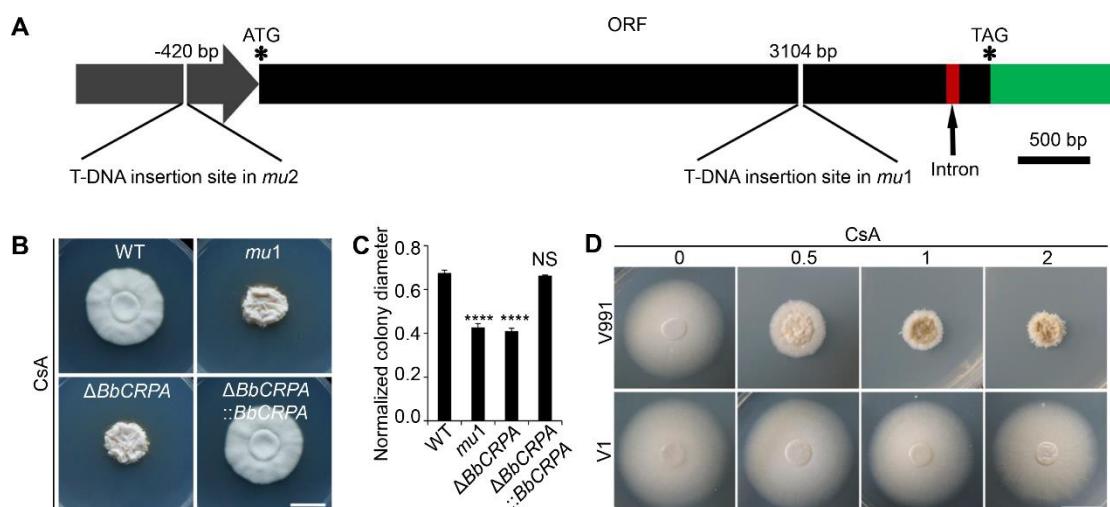
78 catalyze drug/toxin efflux across membranes out of cells and/or into specialized
79 compartments as part of mechanisms involved in drug resistance and detoxification
80 (Coleman et al., 1997; Theodoulou, 2000; Sipos and Kuchler, 2006; Wolfger et al.,
81 2001). Most ABC transporters are floppases mediating the movement of
82 phospholipids from the cytosolic surface to the extracellular leaflet (Coleman et al.,
83 2013; Perez et al., 2015; van Meer et al., 2006; Zhou and Graham, 2009). Unlike ABC
84 transporters, type IV P-type ATPases (P4-ATPases) have been proposed to function as
85 phospholipid flippases that pump specific phospholipid substrates in the reverse
86 direction: from the exofacial to the cytosolic leaflet of membranes (Coleman et al.,
87 2013; Hankins et al., 2015; Zhou and Graham, 2009). P4-ATPases, identified only in
88 eukaryotic cells, constitute the largest subfamily of P-type ATPase, and have
89 important roles in the initiation of the vesicle formation and membrane trafficking by
90 the generation of phospholipid asymmetry in biological membranes, which are
91 involved in a variety of physiological processes, including cell surface growth, the
92 biogenesis of cellular organelles, endocytosis, and protein storage and protein sorting
93 (De Matteis et al., 2013; Hara-nishimura et al., 1998; Lopez-Marques et al., 2014;
94 McMahon and Gallop, 2005; Rothman and Wieland, 1996; van der Mark et al., 2013).
95 However, to date the functioning of P4-ATPases in cell detoxification of small
96 peptides and/or secondary metabolites has not been reported.

97 The insect pathogenic fungus *B. bassiana* is resistant to CsA (Zhou et al., 2016). In
98 this study, from a screen of a fungal random insertion mutant library, a *B. bassiana*
99 CsA susceptible mutant was identified. The mutation insertion site was mapped to an
100 open reading frame coding for a P4-ATPase and designated as BbCrpa (cyclosporine
101 A resistance P4-ATPase). The mechanism for BbCrpa functioning is shown to be *via*
102 delivery of the toxins into vacuoles through a P4-ATPase mediated vesicle transport

103 pathway. Interestingly, the expression of *BbCRPA* in *Arabidopsis thaliana* and
104 *Gossypium hirsutum Linn.* (cotton) significantly increased the resistance of transgenic
105 plants against *V. dahliae* toxin, and reduced the severity of Verticillium wilt disease,
106 indicating the utilization of the P4-ATPase endowed detoxification in other species.

107 **Results**

108 **BbCrpa is a member of the P4-ATPase subfamily and contributes to CsA and**
109 **FK506 resistance**


110 CsA is toxic to a number of filamentous fungi, however, some fungi, including the
111 insect pathogen, *B. bassiana*, possesses intrinsic resistance to CsA (Dreyfuss et al.,
112 1976; Traber and Dreyfuss, 1996; Zhou et al., 2016; *Figure 1-figure supplement 1A*).
113 Although structurally different from CsA, the secondary metabolite, FK506, produced
114 by *S. tsukubaensis*, also displays antifungal activity. Likewise, *B. bassiana* shows
115 resistance to the drug (*Figure 1-figure supplement 1B*).

116 To uncover the underlying mechanism of the CsA resistance in *B. bassiana*, a
117 random T-DNA insertion mutagenesis library was screened for sensitivity to CsA.
118 From a screen of ~20, 000 mutant colonies, two CsA-sensitive mutants, named *mu1*
119 and *mu2* were isolated (*Figure 1-Figure supplement 1C,D*). Mapping of the T-DNA
120 insertion sites by Y-shaped adapter-dependent extension (YADE) revealed that both
121 mutants had insertions in the same gene, but at different positions (*Figure 1A, Figure*
122 *1-figure supplement 1E*). The mutant *mu1* contained an insertion in the coding region
123 (at 3104 bp from the translation start site), whereas the insertion site in *mu2* occurred
124 in the upstream promoter sequences (at -420 bp) (*Figure 1A*). Bioinformatic analyses
125 of the open reading frame (ORF) indicated that it encoded for a predicted protein with
126 1359 amino acids. Cluster analysis indicated that the protein belongs to the Type IV

127 P-type ATPase subfamily (P4-ATPases) (*Figure 1-figure supplement 1F,G*). The
128 predicted topological model showed that the protein contains an A-domain (actuator
129 domain), a N-domain (nucleotide binding domain), a P-domain (phosphorylation
130 domain) and ten predicted transmembrane-spanning segments, which a typical P-type
131 ATPase has (*Figure 1-figure supplement 1H*). Thus the protein was named as BbCrpA
132 (cyclosporine A resistance P4-ATPase). In order to recapitulate the phenotype, a
133 targeted *BbCRPA* gene-knockout strain was constructed as detailed in the methods
134 section (*Figure 1-figure supplement 2A-C*). The $\Delta BbCRPA$ strain was sensitive to CsA,
135 and the CsA-resistance defect could be complemented by the ectopic expression of
136 *BbCRPA* in the $\Delta BbCRPA$ background (*Figure 1B,C*). The $\Delta BbCRPA$ strain also
137 became sensitive to FK506, and the FK506-resistance defect could be complemented
138 by the ectopic expression of *BbCRPA* in the $\Delta BbCRPA$ background too (*Figure*
139 *1-figure supplement 2D,E*). The $\Delta BbCRPA$ strain showed an approximate $4.73 \pm 0.04\%$
140 reduction in growth on CZP medium and a decrease in virulence using *Galleria*
141 *mellonella* larvae as the target host in topical insect bioassays: LT₅₀ values for the
142 wild-type = 93.13 ± 2.49 h and $\Delta BbCRPA = 103.59 \pm 1.28$ h (*Figure 1-figure*
143 *supplement 2F-G,J*). However, the mutation had no significant impact on sporulation
144 (*Figure 1-figure supplement 2H,I*). To further confirm the function of BbCrpA in CsA
145 resistance, we expressed *BbCRPA* in *V. dahliae* (the naturally CsA sensitive fungus
146 compared to *B. bassiana*). The ectopic expression of *BbCRPA* in *V. dahliae*
147 significantly increased fungal resistance to CsA (*Figure 1D*).

148 The phosphorylation of aspartic acid (D) 614 in the identified conserved P-domain
149 DKTG sequence is crucial for ATPase activity of P-type ATPases ([Palmgren and](#)
150 [Nissen, 2011](#)). In order to examine whether ATPase activity was required for the
151 phenotype of CsA resistance, aspartic acid (D) 614 was replaced with arginine (R).

152 The D614R mutant was no longer able to confer resistance to CsA (*Figure 1-figure*
153 *supplement 2K,L*). In addition, site directed mutagenesis of a conserved isoleucine (I)
154 located in transmembrane segment M4 of P4-ATPases, to a glutamic acid (as found in
155 Na^+/K^+ pumps) resulted in loss of ability of the protein to confer CsA resistance
156 (*Panatala et al., 2015; Figure 1-figure supplement 2K,L*). Furthermore, although
157 BbCrpa showed about 60% identity to Drs2p, a well-investigated P4-ATPase in
158 *Saccharomyces cerevisiae* (NCBI Gen_locus ID: NP_009376), ectopic expression of
159 *DRS2* in the $\Delta BbCRPA$ strain did not restore the resistance to CsA (*Figure 1-figure*
160 *supplement 2M,N*), suggesting that BbCrpa is functionally different with Drs2p in
161 terms of toxin resistance.

162 **Figure 1.** BbCrpa confers the resistance of *B. bassiana* and *V. dahliae* to CsA. **(A)**
163 Schematic diagram of T-DNA insertion in *mu1* and *mu2*. The two T-DNA insertions
164 took place in same gene at different regions: in *mu1*, the insertion site located in the
165 coding region (3104 bp); in *mu2*, the site was in the promoter region (-420 bp). The
166 gene codes for a putative phospholipid-translocating P-type ATPase (P4-ATPase),
167 named BbCrpa (cyclosporine resistance P4-ATPase) that has a 4080 bp ORF and an
168 intron (73 bp) near its 3' end. **(B and C)** Disruption of *BbCRPA* makes *B. bassiana*
169 sensitive to CsA. The wild-type, *mu1*, *BbCRPA* gene-knockout ($\Delta BbCRPA$), and

170 complemented ($\Delta BbCRPA::BbCRPA$) strains were grown on CZP + CsA (20 μ g/ml).

171 **(D)** Ectopic expression of *BbCRPA* in *V. dahliae* increases the resistance of CsA.

172 Wild-type *V. dahliae* (V991) and V1 (expressing *BbCRPA* in *V. dahliae*) were grown

173 on PDA and PDA + CsA (0.5 μ g/ml, 1 μ g/ml, and 2 μ g/ml). For CsA sensitivity

174 analysis, plates were spot inoculated with 3 μ l conidial suspensions (1×10^7

175 conidia/ml) and incubated at 26 °C for about 10 days. The variation in growth rates

176 was shown as [colony diameter CZP supplemented with CsA]/[colony diameter CZP].

177 All experiments were performed in triplicate. Data are represented as mean \pm SD.

178 ****p < 0.0001 from Student's *t* test. NS, not significant. Scale bars, 1 cm for **(B and**

179 **D**).

180 The following source data and figure supplements are for figure 1:

181 **Source data 1.** Growth of target strains at CZP supplemented with CsA normalized to

182 growth at CZP.

183 **Figure supplement 1.** *B. bassiana* shows resistance to CsA and FK506 and

184 identification of CsA-sensitivity mutants, *mu1* and *mu2*.

185 **Figure supplement 2.** Construction and identification of *BbCRPA* disruption strain.

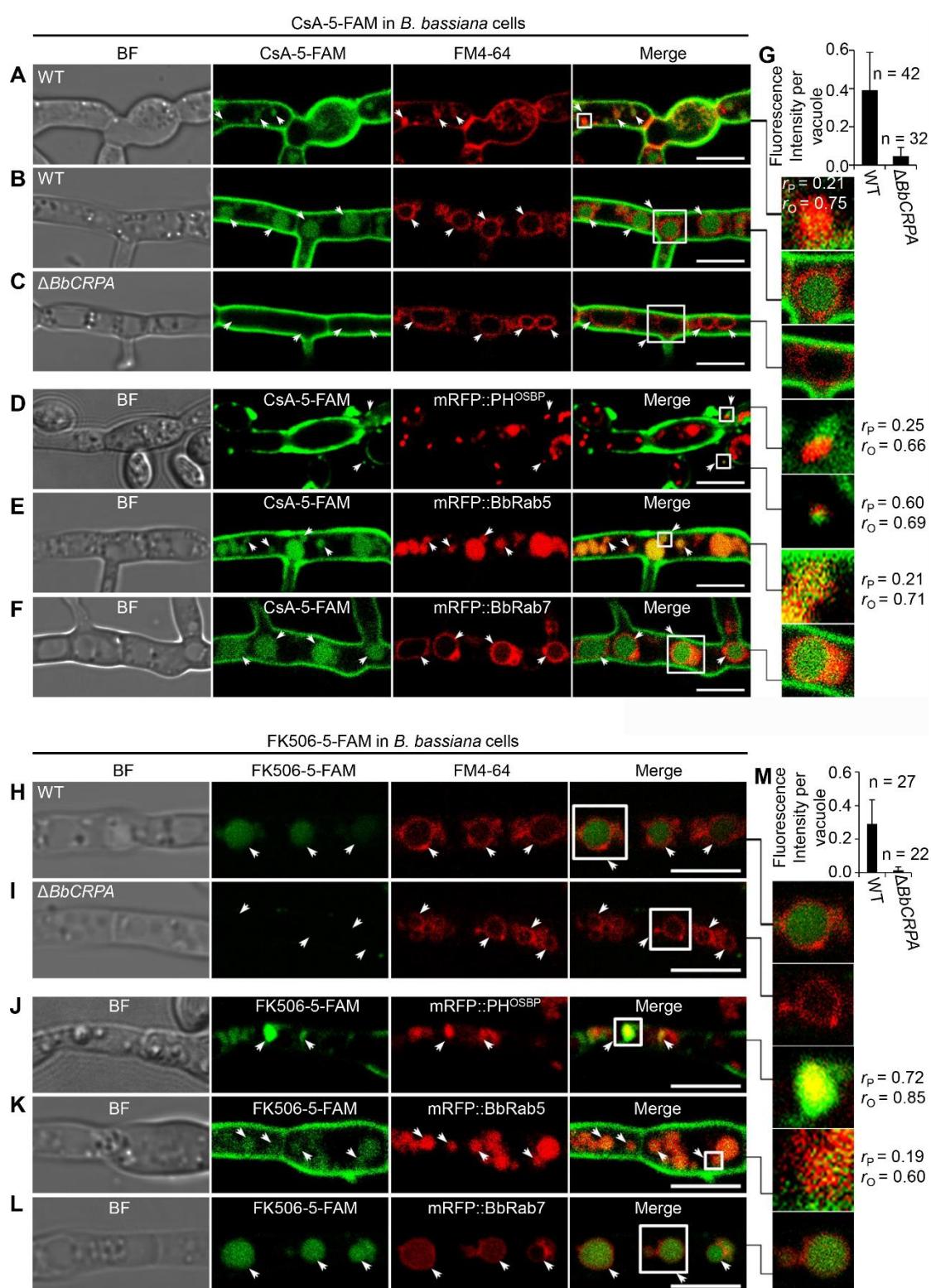
186 **CsA/FK506 is transported from TGN-EE-LE to vacuoles**

187 As P4-ATPases have been implicated in vesicle formation and trafficking ([Hua et al.,](#)

188 [2002; Pomorski et al., 2003; Poulsen et al., 2008; Zhou and Graham, 2009](#)), we

189 sought to test the hypothesis that CsA/FK506 detoxification may be mediated through

190 a P4-ATPase-mediated vesicle transport process. To this end, a dual labeling system


191 using CsA and FK506 labeled with 5-carboxyfluorescein (the labeling did not

192 significantly affect the toxic activity of the drugs, [Figure 2-figure supplement 1A-D](#)),

193 and cells harboring red fluorescent fusion proteins of either the Rab5 or Rab7 GTPase,

194 or the pleckstrin homology domain of the human oxysterol binding protein (PH^{OSBP})

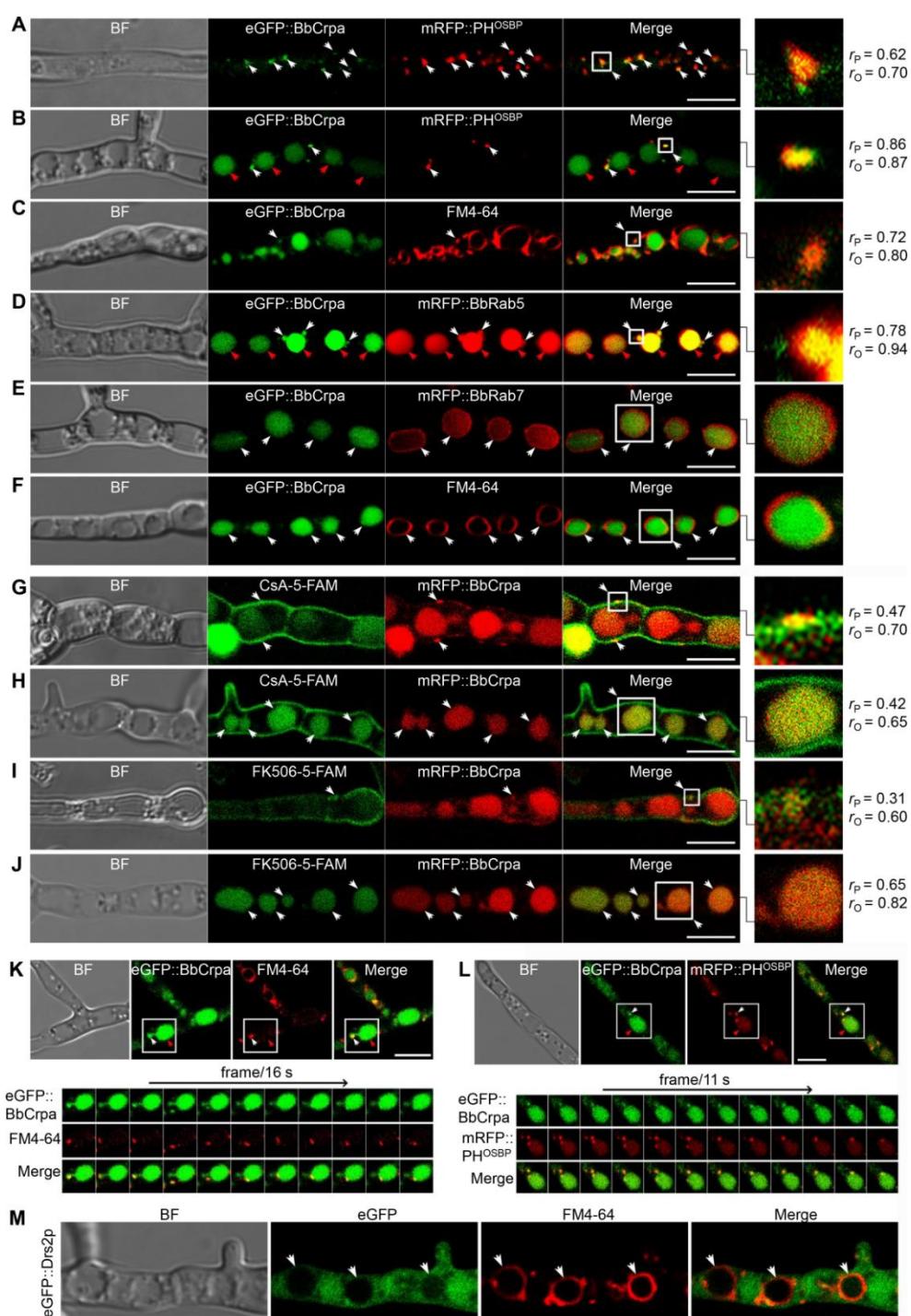
195 were used. The mRFP::PH^{OSBP}, mRFP::Rab5, and mRFP::Rab7 fluorescent proteins
196 were used as markers to visualize the *trans*-Golgi network (TGN), early endosomes
197 (EEs), and late endosomes (LEs), respectively (Molinari et al., 1997; Pantazopoulou
198 and Peñalva, 2009; Sugimoto et al., 2001). In separate experiments, cells treated with
199 CsA-5-FAM or FK506-5-FAM were co-stained with the membrane-binding
200 fluorescent dye FM4-64 used to label vesicles/vacuoles (Lewis et al., 2009).
201 CsA-5-FAM treated wild-type cells showed membrane staining and subsequent
202 accumulation of labeled compound in vesicles (*Figure 2A*) and vacuoles (*Figure*
203 *2B,G*), as identified by the FM4-64 co-staining. In contrast to the wild-type cell,
204 almost no CsA-5-FAM signal could be seen inside vacuoles of the $\Delta BbCRPA$ mutant
205 (*Figure 2C,G*). In the wild-type cells, CsA-5-FAM also co-localized to mRFP::PH^{OSBP}
206 labeled *trans*-Golgi regions, as well as mRFP::Rab5 and mRFP::Rab7 labeled
207 endosomes (*Figure 2D-F*). Similarly, FK506-5-FAM was seen in vacuoles, *via*
208 *trans*-Golgi/endosome localizations (*Figure 2H-M*).

209 **Figure 2.** Distribution of fluorescein-labeled CsA and FK506 in the wild-type and
 210 $\Delta BbCRPA$ cells. **(A-G)** Distribution of fluorescein-labeled CsA. In the wild-type cells,
 211 fluorescein-labeled CsA (CsA-5-FAM) appeared in vesicles/endosomes (EEs) (arrows,
 212 stained by FM4-64) **(A)**, TGN (arrows, marked by mRFP::PH^{OSBP}) **(D)**, early

213 endosomes (EEs, arrows, marked by mRFP::BbRab5) (**E**), and late endosomes (LEs,
214 arrows, marked by mRFP::BbRab7) (**F**), and accumulated in vacuoles (arrows,
215 stained by FM4-64) (**B**); while in $\Delta BbCRPA$ cells, the fluorescein signal is nearly
216 undetectable in the vacuoles (arrows) (**C**). The fluorescent intensity within the
217 wild-type (**B**) and $\Delta BbCRPA$ (**C**) cells was measured by ImageJ (**G**). (**H-M**)
218 Distribution of fluorescein-labeled FK506. In the wild-type cells, FK506-5-FAM
219 appeared in TGN (**J**, arrows), EEs (**K**, arrows), and LEs (**L**, arrows), and accumulated
220 in vacuoles (**H**, arrows); while in $\Delta BbCRPA$ cells, the fluorescein signal was nearly
221 undetectable in the vacuoles (**I**, arrows). The fluorescent intensity within the
222 wide-type and $\Delta BbCRPA$ cells was measured by ImageJ (**M**). The value of Pearson (r_P)
223 and Overlap (r_O) correlation coefficient shows the extent of colocalization between
224 the two target molecules. The values range between +1 (positive correlation) and -1
225 (negative correlation). Data are represented as mean \pm SD. Scale bars, 5 μ m for (**A-F**,
226 **H-L**).

227 The following source data and figure supplement are for figure 2:

228 **Source data 1.** CsA-5-FAM/FK506-5-FAM fluorescent intensity within the wild-type
229 and $\Delta BbCRPA$ cells.


230 **Figure supplement 1.** Fluorescent-labeled CsA and FK506 maintain their toxic
231 activity.

232 **BbCrpa acts as a component involved in vesicle trafficking through the**
233 ***trans*-Golgi-endosomes to vacuoles**

234 A series of ten different eGFP-BbCrpa fusion proteins were constructed to observe the
235 subcellular localization of BbCrpa. By testing for complementation of the $\Delta BbCRPA$
236 phenotype, BbCrpa bearing eGFP at the N- or C-terminus, or at the regions between
237 transmembrane segments 4-5, 8-9, and 9-10, remained capable of mediating CsA

238 detoxification (*Figure 3-figure supplement 1A-G*). The eGFP-BbCrpa N-terminal
239 fusion protein (eGFP::BbCrpa) was used for further study. In conjunction with
240 FM4-64 staining, fluorescent signal derived from eGFP::BbCrpa could be seen in the
241 apical plasma membrane and cytosolic structures in germinating conidia and the eGFP
242 signal also emerged in the subapical region called the Spitzenkörper in germ tubes
243 (*Figure 3-figure supplement 1H,I*). In hypha, dual labeling with eGFP::BbCrpa and
244 mRFP::PH^{OSBP} revealed the co-localization of both signals in *trans*-Golgi (*Figure 3A*),
245 with continued co-localization at discrete spots as well as accumulation of the eGFP
246 signal in vacuoles (*Figure 3B*). A similar pattern could be seen with co-staining
247 experiments using FM4-64, which also allowed for staining of the vesicle/vacuole
248 membranes containing the eGFP::BbCrpa signal (*Figure 3C*). Dual labeling with
249 eGFP::BbCrpa and mRFP::BbRab5 (*Figure 3D*), and eGFP::BbCrpa and
250 mRFP::BbRab7 (*Figure 3E*) revealed the localization of BbCrpa in EEs and LEs,
251 respectively. eGFP::BbCrpa and FM4-64 staining showed the localization of BbCrpa
252 in vesicles (*Figure 3C*) or vacuoles (*Figure 3F*). FM1-43 is another membrane probe
253 that has been widely used for monitoring recycling of vesicles (Hansen et al., 2009).
254 The staining of FM1-43 revealed that both mRFP::BbRab5 and mRFP::BbRab7 were
255 co-localized with FM1-43 (*Figure 3-figure supplement 1J,K*), and BbCrpa exhibited
256 vesicular and vacuolar localization (*Figure 3-figure supplement 1L*). Feeding
257 5-FAM-labeled CsA or FK506 to cells expressing an mRFP tagged version of BbCrpa
258 (mRFP::BbCrpa), the two signals were colocalized in some puncta on the plasma
259 membrane, and the signals were ultimately converged in vacuoles (*Figure 3G-J*).
260 Time-lapse dual-label microscopy combining either eGFP::BbCrpa and FM4-64 or
261 eGFP::BbCrpa and mRFP::PH^{OSBP} indicated the dynamic trafficking through the
262 described pathway from the vesicles to early/late endosome, and to vacuoles (*Figure*

263 **3K-L, Supplementary files 1,2).** Whereas the eGFP::BbCrpa and FM4-64 staining
264 showing vacuolar localization of the *B. bassiana* P4-ATPase (*Figure 3F*), the
265 heterologous expression of an eGFP-tagged version of the yeast homolog,
266 eGFP::Drs2p, showed cytoplasmic localization of this protein (*Figure 3M*).

267 **Figure 3.** Subcellular localization and dynamic trafficking of BbCrpa. (A and B)

268 eGFP::BbCrpa colocalizes with mRFP::PH^{OSBP} at TGN (white arrows) and
269 accumulates in vacuoles (red arrows, see also that in (F, white arrows)). (C)
270 eGFP::BbCrpa accumulates in vesicle (arrows) that is stained by FM4-64. (D)
271 eGFP::BbCrpa colocalizes with mRFP::BbRab5 in early endosomes (EEs, white
272 arrows) and then accumulates in vacuoles (red arrow, also see in (f, white arrows)). (E)
273 eGFP::BbCrpa colocalizes with mRFP::BbRab7 in late endosomes (LEs, arrows). (F)
274 eGFP::BbCrpa accumulates in mature vacuoles (arrows) which are stained by FM4-64.
275 (G) mRFP::BbCrpa colocalizes with CsA-5-FAM in puncta on the plasma membrane
276 (arrows). (H) mRFP::BbCrpa colocalizes with CsA-5-FAM in vacuoles (arrows). (I)
277 mRFP::BbCrpa colocalizes with FK506-5-FAM in puncta on the plasma membrane
278 (arrows). (J) mRFP::BbCrpa colocalizes with FK506-5-FAM in vacuoles (arrows). (K)
279 eGFP::BbCrpa appears in vesicles (white arrows) and moves into vacuoles (red
280 arrows). Time to acquire one image pair was 16 s. (L) eGFP::BbCrpa colocalizes with
281 vesicle from TGN which was labeled by mRFP::PH^{OSBP} (white arrows) and transports
282 into vacuole (red arrows). Time to acquire one image pair was 11 s. (M) Localization
283 of eGFP::Drs2p in *B. bassiana* cells. eGFP::Drs2p does not accumulate in vacuoles
284 (arrows) which were stained by FM4-64. Scale bars, 5 μ m for (A-M). The value of
285 Pearson (r_P) and Overlap (r_O) correlation coefficient shows the extent of
286 colocalization between the two target molecules. The values range between +1
287 (positive correlation) and -1 (negative correlation).

288 The following figure supplement and supplementary files are for figure 3:

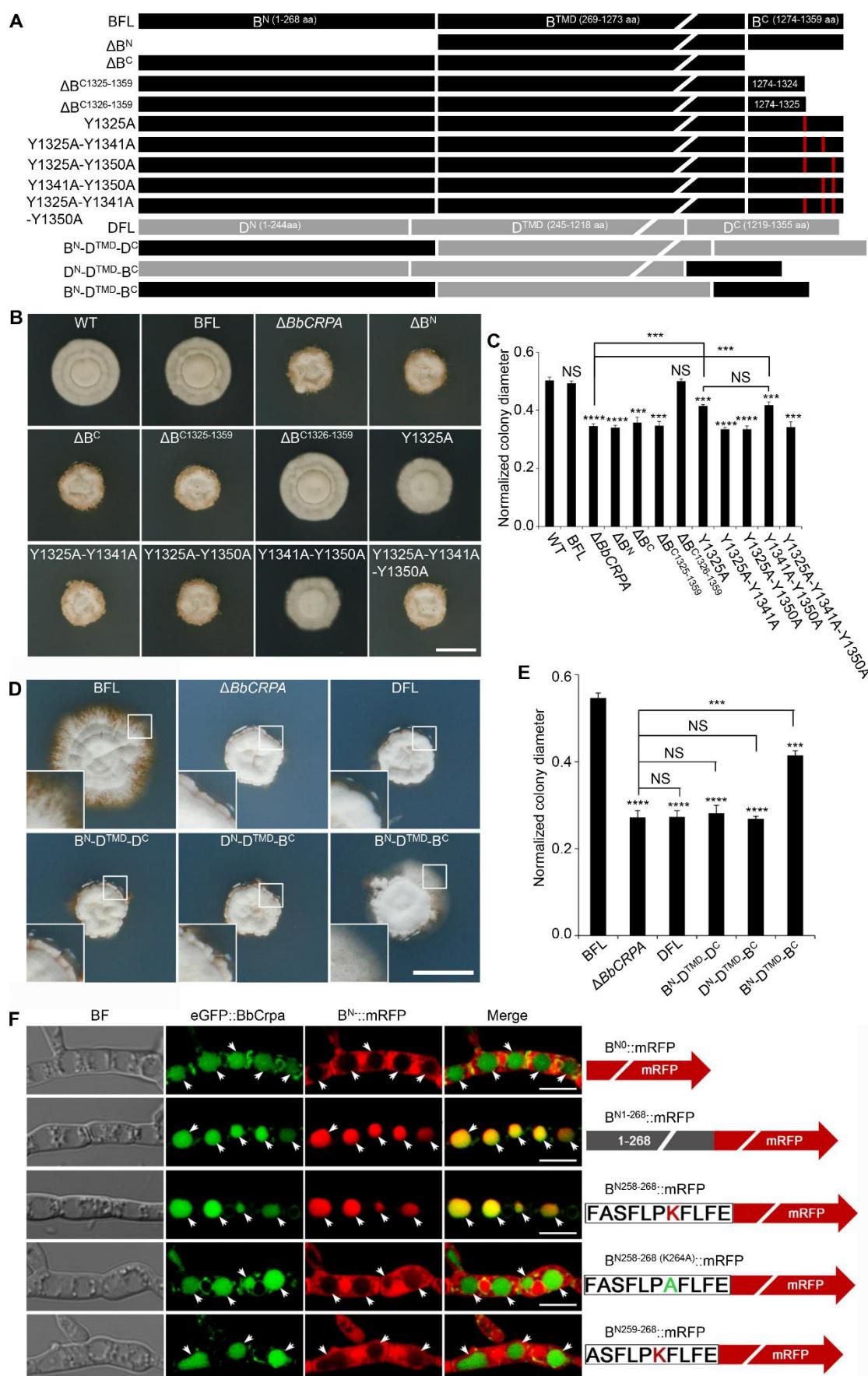
289 **Figure supplement 1.** BbCrpa N-terminally tagged with eGFP maintains its original
290 function and is localized to the apical plasma membrane and Spitzenkörper of *B.*
291 *bassiana*.

292 **Supplementary file 1.** Time-lapse imaging of the trajectory of eGFP::BbCrpa (green)

293 and vesicle (red) labeled by FM4-64. Time to acquire one image pair was 1 s. Scale
294 bar, 5 μ m.

295 **Supplementary file 2.** Time-lapse imaging of the trajectory of eGFP::BbCrpa (green)
296 and vesicle (red) derived from TGN which was labeled by mRFP::PH^{OSBP} (red). Time
297 to acquire one image pair was 1 s. Scale bar, 5 μ m.

298 **Contributions of BbCrpa N- and C-terminal tails to CsA/FK506 detoxification**


299 BbCrpa has a 268 amino acid cytosolic N-terminal tail before the first transmembrane
300 segment and an 86 amino acid cytosolic C-terminal tail after the last membrane
301 segment (*Figure 1-figure supplement 1H*). Deletion of either the N- (1-268 aa) or the
302 C-terminus (1274-1359 aa) eliminated the detoxification activity of BbCrpa (*Figure*
303 *4A-C, Figure 4-figure supplement 1A-B*). Microscopic visualization of N-terminal
304 eGFP fusion constructs to the N- and C-terminal deletion mutants (eGFP::dB^N and
305 eGFP::dB^C) revealed that loss of the N terminus (eGFP::dB^N) eliminated vacuolar
306 localization of the protein, whereas the eGFP::dB^C protein was still able to traffic to
307 vacuoles (*Figure 4-figure supplement 1E*).

308 In order to further probe the contributions of the N- and C-terminal domains of
309 BbCrpa in mediating CsA/FK506 detoxification, we substituted the homologous N-
310 and C-terminal domains of the yeast Drs2p (that does not complement the
311 CsA/FK506 susceptibility phenotype of the *BbCRPA* mutant strain) (*Figure 4A*). The
312 resulting chimeric proteins with either C-terminus or N-terminus from BbCrpa alone
313 unable to restore CsA-/FK506-tolerance to the cell (*Figure 4D-E, Figure 4-figure*
314 *supplement 1C-D*). However, the simultaneous substitution of the BbCrpa N- and
315 C-terminal domains into the yeast protein led to a chimera that showed a significant
316 increase in resistance to CsA/FK506 compared to the natural Drs2p (*Figure 4D-E,*
317 *Figure 4-figure supplement 1C-D*).

318 To identify the key motif (s) in the N-terminus responsible for vacuolar targeting, a
319 series of N-terminal deletion mutants fused with mRFP were generated. These
320 included: (1) $B^{N1-268}::mRFP$, (2) $B^{N151-268}::mRFP$, (3) $B^{N216-268}::mRFP$, (4)
321 $B^{N226-268}::mRFP$, (5) $B^{N236-268}::mRFP$, (6) $B^{N246-268}::mRFP$, (7) $B^{N256-268}::mRFP$, (8)
322 $B^{N257-268}::mRFP$, (9) $B^{N258-268}::mRFP$, (10) $B^{N259-268}::mRFP$ (*Figure 4F, Figure*
323 *4-figure supplement 1F*). All the mutants retained the wild-type vacuolar localization
324 except $B^{N259-268}::mRFP$ (*Figure 4F, Figure 4-figure supplement 1F*). These data
325 indicated that the N-terminal sequence, $F^{258}ASFLPKFLFE^{268}$, is critical for vacuolar
326 targeting of BbCrpa. The amino acid residue, K (lysine) was identified as a putative
327 mono-ubiquitination site (Baxter et al., 2005; MacGurn et al., 2012). In order to probe
328 whether K264 residue was required for vacuolar targeting, a site directed mutant,
329 $F^{258}ASFLPAFLFE^{268}$ (K264A), was generated. Microscopic visualization revealed
330 that K264 function as a critical residue for proper targeting of $B^{N258-268}(K264A)::mRFP$
331 (*Figure 4F*). Western blot analysis further showed that K264 is responsible for the
332 ubiquitination of $B^{N258-268}(K264A)::mRFP$ (*Figure 4-figure supplement 1G*).

333 A C-terminal deletion mutant, $\Delta B^{C1326-1359}$ (deletion of 1326-1359 aa of BbCrpa),
334 did not affect CsA/FK506 resistance (*Figure 4A-C, Figure 4-figure supplement 1A,B*).
335 However, removal of one additional amino acid, Y1325 (tyrosine), resulting in the
336 mutated protein, $\Delta B^{C1325-1359}$, led to a significant decrease in resistance to CsA/FK506
337 (*Figure 4A-C, Figure 4-figure supplement 1A,B*). For further investigation of this
338 tyrosine function, we conducted site directed mutagenesis of Y1325 to A (alanine).
339 The mutation led to a significant decrease in CsA/FK506 resistance (*Figure 4A-C,*
340 *Figure 4-figure supplement 1A,B*). Sequence analysis indicated the presence of two
341 additional nearby (in the C-terminus) tyrosine residues: Y1341 and Y1350 (*Figure*
342 *4A*). Site directed mutants bearing double substitution mutations of (1)

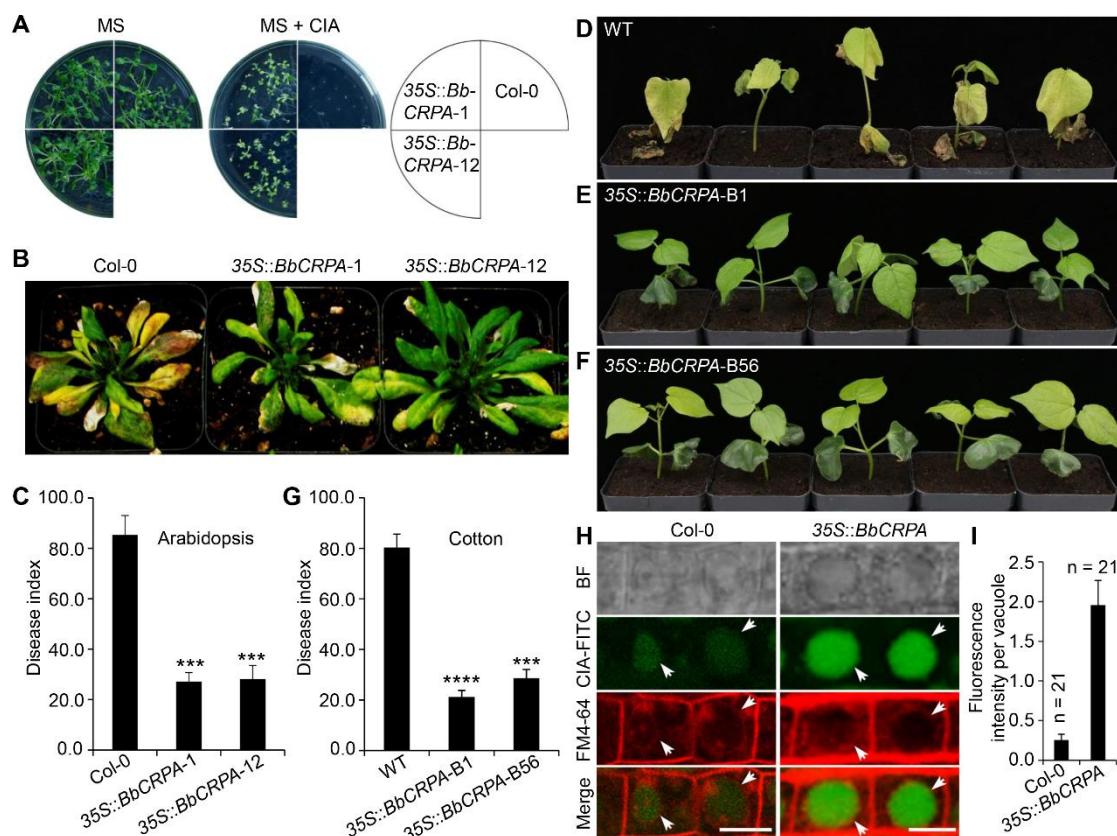
343 Y1325A-Y1341A, and (2) Y1325A-Y1350A, and a triple substitution mutation: (3)
344 Y1325A-Y1341A-Y1350A resulted in significant decreases in CsA/FK506 resistance
345 as compared to the wild-type protein and as compared to the Y1325A single mutant
346 (*Figure 4A-C, Figure 4-figure supplement 1A,B*). These results suggest a key role of
347 these tyrosine residues, in particular, Y1325, for the detoxification activity of BbCrpa.

348 **Figure 4.** Y1325 (Tyr) in C-terminus is critical for detoxification, and the N-terminus

349 is essential for vacuolar targeting. **(A)** Schematic model of N- and C-terminal deletion
350 of BbCrpa and the graft of the N- and C-terminus of BbCrpa with Drs2p. BFL,
351 BbCrpa full length; B^N, BbCrpa N-terminus; B^{TMD}, BbCrpa transmembrane-domain;
352 B^C, BbCrpa C-terminus; DFL, Drs2p full length; D^N, Drs2p N-terminus; D^{TMD}, Drs2p
353 transmembrane-domain; D^C, Drs2p C-terminus. **(B and C)** BbCrpa C-terminus Y1325
354 is critical for the detoxification of CsA. All strains were incubated in CZP + CsA (20
355 µg/ml). **(D and E)** BbCrpa N- and C-terminus are crucial for Drs2p detoxification
356 activity. All strains were incubated in CZA + CsA (20 µg/ml). **(F)** The last 11 amino
357 acid residues of BbCrpa N-terminus contains vacuolar localization signal. BbCrpa
358 N-terminus (B^{N1-268}, B^{N258-268}) fused with mRFP are obviously colocalized with
359 BbCrpa in vacuoles. When the K264 (Lys) was replaced by Ala **(A)**, the guiding
360 function was disappeared. B^N::mRFP, mRFP fused with different length of
361 N-terminus of BbCrpa. For CsA sensitivity analysis, plates were spot inoculated with
362 3 µl conidial suspensions (1×10^7 conidia/ml) and incubated at 26 °C for about 10
363 (CZP/CZP + CsA) or 14 (CZA/CZA + CsA) days. The variation in growth rates was
364 shown as [colony diameter CZP/CZA supplemented with CsA]/[colony diameter
365 CZP/CZA]. All experiments were performed in triplicate. Data are represented as
366 mean \pm SD. ***p < 0.001; ****p < 0.0001 from Student's t test. NS, not significant.
367 Scale bars, 1 cm for **(B and D)** and 5 µm for **(F)**.

368 The following source data and figure supplement are for figure 4:

369 **Source data 1.** Growth of target strains at CZP/CZA supplemented with CsA
370 normalized to growth at CZP/CZA.


371 **Figure supplement 1.** Y1325 (Tyr) in C-terminus is critical for detoxification of
372 FK506 and the N-terminus is essential for vacuolar targeting.

373 **Exogenous overexpression of *BbCRPA* in *A. thaliana* and *G. hirsutum* increases**

374 the resistance to *Verticillium* wilt disease

375 The phytopathogenic fungus, *V. dahliae* Kleb is responsible for causing a
376 devastating wilt disease infecting many important trees and crops including elm,
377 cotton, potato, pepper, watermelon, mint, and lettuce (Subbarao et al., 1995; Veronese
378 et al., 2003). Toxins (*V. dahliae* toxins, VD-toxins) produced by the fungus contribute
379 to wilt symptoms (Fradin and Thomma, 2006; Keen et al., 1972; Meyer et al., 1994).
380 Cinnamyl acetate (CIA) is one of the major lipophilic VD-toxins identified (Laouane
381 et al., 2011). Detoxification of such mycotoxins might represent an effective way to
382 decrease the damage causing by phytopathogens (Wang et al., 2020). Expression of
383 *BbCRPA* in *V. dahliae* significantly increased the resistance of the fungus to CsA
384 (Figure 1D). The cross-species resistance endowed by BbCrpa to the toxin promotes
385 us to test whether BbCrpa could be broadly exploited for detoxification of the fungal
386 mycotoxin CIA in plants. To this end, we generated transgenic *A. thaliana* and *G.*
387 *hirsutum* in which *BbCRPA* was under control of a constitutive promoter CaMV35S.
388 Southern blot results validated *BbCRPA* insertion in *Arabidopsis* and cotton, and
389 qRT-PCR confirmed the transcription of the gene in transgenic plants (Figure 5-
390 figure supplement 1A-F). The expression of *BbCRPA* in *A. thaliana* increased
391 resistance to CIA (Figure 5A). With little or no growth was seen in control plants in
392 the presence of 50 µg/ml CIA, under the condition in which plants expressing
393 *BbCRPA* were able to grow (Figure 5A). Plant bioassays, infecting either *A. thaliana*
394 or *G. hirsutum* with *V. dahliae*, revealed a significant reduction in symptom severity
395 (Figure 5B-G). In order to probe the potential mechanism mediating the detoxification

396 of CIA, FITC labeled CIA was fed to plants with sections counterstained with
397 FM4-64 (*Figure 5H,I*). These data showed the promoted accumulation of CIA in
398 vacuoles in *BbCRPA* transformed plant cells, and not in the wild-type parent.

399 **Figure 5.** Exogenous overexpression of *BbCRPA* in Arabidopsis and cotton increases
400 the resistance to *V. dahliae*. **(A)** Exogenous overexpression of *BbCRPA* increases the
401 resistance of Arabidopsis to CIA. The wild-type (Columbia, Col-0) and 35S::*BbCRPA*
402 seedlings were grown for 14 days on MS medium containing either 0.5% DMSO
403 (control) or 50 µg/ml CIA. **(B and C)** Exogenous overexpression of *BbCRPA*
404 increases the resistance of Arabidopsis to *V. dahliae*. Each Arabidopsis plant (4-5
405 leaves) was inoculated with 3 ml *V. dahliae* spore suspension (2×10^8 spores/ml), and
406 the disease index of T₃ transgenic plants and the wild-type plants to *V. dahliae* was
407 evaluated 21 days after inoculation. **(D-G)** Exogenous overexpression of *BbCRPA* in
408 cotton increases the resistance to *V. dahliae*. 10-day-old cotton seedling roots were

409 infected by *V. dahliae* spore suspension (1×10^7 spores/ml), and the disease index of
410 T2 transgenic cottons to *V. dahliae* was evaluated 14 days after inoculation. **(H and I)**
411 Exogenous overexpression of *BbCRPA* in Arabidopsis promotes the accumulation of
412 cinnamyl acetate (CIA) in vacuoles of root cells. Strong fluorescein-labeled CIA
413 (CIA-FITC) signal was observed in vacuoles of transgenic Arabidopsis cells
414 ($35S::BbCRPA$), while only very weak signal was observed in the vacuoles of
415 wild-type Arabidopsis cells (arrows) **(H)**. Vacuoles (arrows) were indicated by
416 FM4-64 and plants were treated with 5 μ g/ml CIA-FITC. The comparison of
417 fluorescent intensity in vacuoles between the wild-type and $35S::BbCRPA$ transgenic
418 Arabidopsis was measured by ImageJ **(I)**. Scale bars, 10 μ m. The resistance of plants
419 to *V. dahliae* was estimated by disease index (DI). Data are representative of three
420 independent experiments with at least 15 plants per replication for Arabidopsis, and
421 30 plants per replication for cotton. Data are represented as mean \pm SD. ***p < 0.001;
422 ****p < 0.0001 from Student's *t* test.

423 The following source data and figure supplement are for figure 5:

424 **Source data 1.** Disease index and fluorescent intensity.

425 **Figure supplement 1.** Validation of transgenic *BbCRPA* plants.

426 **Discussion**

427 Mounting reports have documented that P4-ATPases display important roles in vesicle
428 biogenesis, membrane trafficking or remodeling, signal transduction,
429 biotic-/abiotic-stress response, and polarized growth. Nevertheless, little is known
430 about their function in cell detoxification. In the present study, we identify a
431 P4-ATPase gene, *BbCRPA*, from insect disease fungus *B. bassiana* that displays
432 resistance to CsA and FK506. The colocalization of CsA/FK506 and BbCrpa to the
433 puncta on plasma membrane (*Figure 3G,I*) suggests that the toxins are wrapped into

434 vesicles there. Then, the toxins are delivered into vacuoles for compartmentation,
435 which confers the resistance of CsA and FK506 to the fungus.

436 In eukaryotic cells, another catabolic pathway that sequesters undesired materials is
437 autophagy (Kaufmann et al., 2014). In autophagy pathway, the membrane of
438 autophagosome is newly formed (Barz et al., 2020). In P4-ATPases-mediated vesicle
439 formation, however, the membrane of the vesicle is from where the P4-ATPase is
440 located on. The P4-ATPases catalyze the translocation of phospholipids from the
441 exoplasmic to the cytosolic membrane leaflet to establish phospholipid asymmetry in
442 biological membranes, and thus to promote budding of transport vesicles. Knocked
443 out *ATG1*, a crucial factor for regulating of autophagosome-vacuole fusion, we found
444 the disruption does not affect the resistance to CsA, as well as the formation of
445 autophagosome in *B. bassiana* (Supplementary file 3A-C), suggesting that
446 BbCrpA-mediated detoxification is independent of autophagy pathway.

447 *B. bassiana* can be dormant in soil for years. As a pathogen, the fungus can infect
448 insects; as an endophyte, it can reside in plants., it can reside in plants (Ownley, et al.,
449 2008; Xiao, et al., 2012). To survive, *B. bassiana* evolves mechanisms to protect it
450 from harmful materials produced by microorganisms, insects, or plants. CsA is a
451 secondary metabolite produced by *B. nivea*, another entomopathogenic fungus of
452 *Beauveria* (Margaritis and Chahal, 1989). This small lipophilic polypeptide can freely
453 cross the plasma membrane (Hunt and Morshead, 2010). The lipophilic macrolide
454 FK506 is produced by the soil borne streptomycete, *S. tsukubaensis* (Barreiro et al.,
455 2012). Both CsA and FK506 bind to their cognate immunophilins, Cyps and FKBP_s,
456 to form binary complexes which then block the phosphatase activity of calcineurin, or
457 inhibit the peptidyl-prolyl *cis-trans* isomerase (PPIase) activity of Cyps and FKBP_s

458 and thus impair Cyps-/FKBPs-mediated protein folding (Kang et al., 2008; Wang and
459 Heitman, 2005). Interestingly, although *B. bassiana* and *B. nivea* belong to same
460 genus, no cyclosporin synthetase genes was found in *B. bassiana* genome
461 (<https://fungismash.secondarymetabolites.org/#!/start>), while no BbCrpa homologue
462 was detected in *B. nivea* (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>). Therefore, it is
463 acceptable that for competition and survival, *B. bassiana* has developed a unique
464 vesicle-mediated detoxification mechanism against CsA; while *B. nivea*, the toxin
465 producer, has its own orchestrated delivery and timing system, as well as subcellular
466 containment system, to avoid self-harm from the toxin (Keller, 2015).

467 Although the closest homologue among five yeast P4-ATPases to BbCrpa is Drs2p,
468 functions of BbCrpa are quite different from those of Drs2p. Strong BbCrpa signal
469 was observed in vacuoles, but no Drs2p signal was detected in the vacuoles (Figure
470 3F,M). It has been known that Drs2p is required for AP-1/Clathrin-coated vesicle
471 formation (Liu et al., 2008). However, BbCrpa-mediated resistance to CsA is
472 independent with AP-1 and Clathrin (Supplementary file 3D,E). NPFXD motifs can
473 interact with the Sla1p homology domain 1 (SHD1) of Sla1p that serves as the
474 targeting signal recognition factor for NPFX_(1,2)D-mediated endocytosis (Howard et
475 al., 2002; Liu et al., 2007). Drs2p has two NPFXD motifs in its C-terminal tail. In
476 contrast, no NPFXD motif is found in the C-terminus of BbCrpa, suggesting that this
477 P4-ATPase may be not involved in NPFXD/Sla1p endocytosis pathway. In addition,
478 our N-terminal serial deletion and mRFP tagging results reveal that the last
479 eleven-amino acid residues (F²⁵⁸ASFLPKFLFE²⁶⁸) are capable of guiding protein into
480 the vacuole (Figure 4F). When the Lys residue was replaced by Ala, the residues loses
481 the vacuole-target function, implying that the process is associated with ubiquitination
482 modification (Figure 4F, Figure 4-figure supplement 1G). For Drs2p, no

483 FASFLPKFLFE homologous sequence is present in its N-terminal tail, supporting the
484 previous studies that Drs2p-mediated vesicle transport pathway is between TGN and
485 EE or plasma membrane and TGN, but not including the journey to the vacuole (Liu
486 et al., 2007). In N-terminal tail of Drs2p there are two potential PEST motifs and one
487 poor PEST motif (Liu et al., 2007). PEST motif is considered as a signature of
488 proteins that would be degraded through the ubiquitin pathway (Roth et al., 1998).
489 However, no typical PEST motif was found in BbCrpa N-terminus. This suggests that
490 Drs2p is the target for ubiquitin-mediated degradation in proteasome while BbCrpa
491 may be involved in the turnover of the membrane protein in TGN membrane or
492 vacuole membrane (Ciechanover, 1998; Rotin et al., 2000). Most importantly, BbCrpa
493 can confer resistance of CsA/FK506 to the cell while Drs2p cannot (*Figure 4A,D-E*,
494 *Figure 4-figure supplement 1C,D*).

495 Protein tyrosine phosphorylation/dephosphorylation is an important mechanism for
496 regulating of many cellular processes (Ghelis, 2011; Rosenblum et al., 1995;
497 Schlessinger and Ullrich, 1992). It was reported that CsA/Cyps and FK506/FKBP12
498 participated in the regulation of protein tyrosine phosphorylation/dephosphorylation
499 (Bauer et al., 2009; Lopez-Illasaca et al., 1998). For example, interleukin-2 tyrosine
500 kinase (Itk) is a protein tyrosine kinase of the Tec family. The tyrosine kinase activity
501 of Itk is inhibited by CypA *via* forming a stable complex, and CsA can increase the
502 phosphorylation levels of Itk thus relieving the inhibition of CypA on it (Brazin et al.,
503 2002). We show a possible role of Y1325 phosphorylation in detoxification activity of
504 BbCrpa (*Figure 4A-C*). The common target of CsA/Cyp and FK506/FKBP12 is
505 calcineurin, also a PP2B enzyme. Typically, calcineurin is a serine/threonine protein
506 phosphatase. Although it had been reported that calcineurin can also dephosphorylate
507 phosphotyrosine containing proteins (Carrera et al., 1996; Chan et al., 1986; Faure et

508 al., 2007), no PXIXIT nor LXVP motif, the binding motifs of calcineurin (Shi, 2009),
509 was found in BbCrpa sequence, suggesting that the
510 phosphorylation/dephosphorylation of Y1325 may not be regulated directly by
511 calcineurin. Does (or how does) CsA/FK506 stimulate the tyrosine phosphorylation of
512 BbCrpa awaits further investigation.

513 Toxins produced by pathogens are recognized as a pathogenic factor in many plant
514 diseases (Tsuge *et al*, 2013). For plant disease control, cell detoxification strategy can
515 prevent plants from the toxicity, thus ensuring hosts exhibit their innate immunity
516 against the pathogens (Wang *et al.*, 2020). In this study, the ectopic expression of
517 *BbCRPA* in *V. dahliae* significantly increases the resistance of the fungus against CsA,
518 demonstrating that this P4-ATPase can display its detoxification ability in other
519 species. We then exogenously overexpressed the gene in cotton and *Arabidopsis*. The
520 transgenic plants exhibit significantly increased resistance to the *Verticillium* wilt
521 disease (*Figure 5A-G*). Meanwhile, the vacuole-targeted transport of the toxic
522 material (i.e., cinnamyl acetate, CIA) produced by the wilt-disease fungus *V. dahliae*
523 was significantly promoted, indicating that CIA is also the cargo of BbCrpa-mediated
524 vesicle transport in plant cells. Details about what properties the compounds should
525 have and how the P4-ATPases recognize their cargoes await further investigations.
526 Nevertheless, the method described here allows us to identify other P4-ATPases that
527 are able to detoxify various mycotoxins, such as voitoxin, trichothecenes, fumonisins,
528 and ochratoxin A, which are not only involved in the virulence of the phytopathogenic
529 fungi but also extremely harmful for human and animal health.

530 The P4-ATPase-conferred resistance to CsA/FK506 also suggests a strategy
531 through the vesicle transport associated detoxification to reduce the side effects of the
532 drugs in human organ transplant operation and autoimmune-diseases therapy. Besides,

533 using the fluorescein-labeled compounds and proteins as probes allows us to observe
534 the real time process of cargo delivering as well as dynamic alteration of vesicles, EEs,
535 LEs, and vacuoles *in vivo*, thus providing a simple and effective platform to study the
536 subcellular processes of P4-ATPase mediated vesicle transport and the important
537 aspects of the compartmental detoxification in living cells.

538 In conclusion, our study reveals the molecular mechanism of the intrinsic resistance
539 possessed by *B. bassiana* to the CsA and FK506, and shows a new role of P4-ATPases
540 in cell detoxification. The cross-species resistance endowed by the P4-ATPase to
541 toxins can be exploited for plant disease control and human health protection.

542 **Materials and methods**

543 **Strains and culture conditions**

544 *Beauveria bassiana* wild-type (CGMCC7.34, China General Microbiological Culture
545 Collection Center, CGMCC) and mutant strains were grown on Czapek-Dox broth
546 (CZB) or agar (CZA) (233810, BD-Difco, USA), or CZB or CZA supplemented with
547 0.25% (wt/vol) tryptone (CZP). *Verticillium dahliae* strain V991 (kindly gifted by
548 Prof. Guiliang Jian) was grown on Potato Dextrose broth (PDB) or agar (PDA)
549 (254920, BD-Difco). *Escherichia coli* DH5 α (9057, Takara) and *Agrobacterium*
550 *tumefaciens* AGL-1 (Lab stock) were used for routine DNA manipulations and fungal
551 transformations, respectively. *Agrobacterium tumefaciens* GV3101 (Lab stock) and
552 LBA4404 (Lab stock) were used for Arabidopsis (Col-0, CS60000, Arabidopsis
553 Biological Resource) and cotton (cv. Jimian 14, kindly donated by Prof. Zhiying Ma)
554 transformation, respectively.

555 **Inhibition ring assay**

556 Filamentous fungi used in inhibition ring assay include *Beauveria bassiana*,
557 *Metarhizium anisopliae* (kindly gifted by Prof. Weiguo Fang), *Botrytis cinerea*
558 (3.4584, CGMCC), *Alternaria brassicae* (3.7804, CGMCC), *Alternaria brassicicola*
559 (3.7805, CGMCC), *Aspergillus nidulans* (3.15737, CGMCC), *Alternaria solani* (Lab
560 stock). The fungi were inoculated into PDA medium except *Botrytis cinerea*
561 (regeneration medium: 0.1% yeast extract, 24% sucrose) and *Aspergillus nidulans*
562 (modified PDA medium containing 0.11% uracil and 0.12% uridine) at 26 °C for
563 about 10-14 days for conidia harvested. Then, for each strain, 300 µl of fungal
564 conidial suspensions (1×10^7 conidia/ml in 0.05% Tween-80, A600562, Sangon
565 Biotech, China) was added into 60 ml PDA (approximately 45 °C, *A. nidulans*
566 conidial suspension was added into the modified PDA medium) medium, mixed
567 evenly and poured into three Petri Dishes (diameter = 90 mm), averagely. After the
568 media completely solidified, punch four holes of 5-mm diameter equally distant apart
569 in Petri Dishe. Each well was added with 5 µl different concentrations of CsA (B1922,
570 APEXBIO) or FK506 (B2143, APEXBIO), and the dishes were incubated at 26 °C for
571 about 4-7 days.

572 **Screening of CsA-Sensitive mutants and isolation of the target gene**

573 *B. bassiana* random insertion (T-DNA) library was constructed as described
574 previously (Fang et al., 2004). Plasmid pK2 was used as frame vector. *Bar::Gus*
575 fusion reporter gene was placed into pK2 between the *A. nidulans gpdA* promoter and

576 *trpC* terminator. CZP medium containing CsA (20 µg/ml) was used to screen
577 CsA-sensitive mutants. The desired genomic sequence was isolated by PCR walking
578 using the YADE method as described previously (Fang et al., 2005).

579 **Construction of $\Delta BbCRPA$ and complementation strains**

580 A list of primers used in the nucleic acid manipulations was given in [Supplementary](#)
581 [file 4](#). LA Taq (RR002A, TaKaRa) or PrimeSTAR MAX Premix (R045, TaKaRa) was
582 used for the generation of PCR products. The resultant products were cloned into
583 target vectors using T4 DNA ligase (CV0701, Aidlab).

584 The construct of *BbCRPA* gene disruption was generated by homologous
585 recombination. Plasmid pK2-*Bar* containing herbicide (phosphinothricin, P679,
586 PhytoTech) resistance gene (*Bar*) that was sandwiched between *A. nidulans* *trpC*
587 promoter and *trpC* terminator was used as backbone to construct the transformation
588 vector. The vector was constructed as follows: a 5' end 1.294-kb sequence (1053-2346
589 bp) and a 3' end 1.214-kb (2897-4110 bp) of *BbCRPA* were amplified by PCR (LA
590 Taq) using *B. bassiana* genomic DNA as template with primer pairs
591 *BbCRPALB-F/BbCRPALB-R* and *BbCRPARB-F/BbCRPARB-R*, respectively. The 3'
592 end PCR product flanking with *Xba*I and *Hind*III restriction sites was digested with
593 *Xba*I (FD0684, Thermo Scientific) and *Hind*III (FD0504, Thermo Scientific), and
594 then linked with *Bar* cassette to form *Bar-BbCRPA3'*. Similarly, *BbCRPA* 5' end PCR
595 product that contains *Eco*RI (FD0274, Thermo Scientific) sites was fused with
596 *Bar-BbCRPA3'* to generate pK2-*BbCRPA5'-Bar-BbCRPA3'*. The resulting vector was
597 transformed into *A. tumefaciens* AGL-1, which was then used to transform wild-type

598 *B. bassiana* as described previously (Fang et al., 2004). Mutant colonies were single
599 spore isolated and the correct integration event was verified by PCR using 2 × Taq
600 Master Mix (E005-2b, Novoprotein) with primers *MCS-F/MCS-R* and qRT-PCR with
601 primer pair *BbCRPAex-F/BbCRPAex-F*.

602 The selection marker gene, *Sur*, conferring sulfonylurea (chlorimuron-ethyl,
603 J66605, Alfa Aesar, USA) resistance was used for complementation vector
604 construction. The gene was amplified from pCB1536 with primer pair *Sur-F/Sur-R*
605 (Zhang et al., 2010). The PCR product was digested with *NotI* (FD0594, Thermo
606 Scientific) and *BamHI* (FD0055, Thermo Scientific), and then inserted into modified
607 PUC-T vector (D2006, Beyotime) between *A. nidulans trpC* promoter and *A. nidulans*
608 *trpC* terminator. The vector was digested with *EcoRI* and *HindIII* and inserted into the
609 corresponding sites of pK2-*Bar*, replacing the *Bar* gene, to generate pK2-*Sur*. The
610 complementation vector, pK2-*Sur-BbCRPA*, was constructed using a 5998 bp
611 fragment that contains the entire ORF (4153 bp including a 73 bp intron), 1072 bp of
612 upstream, and 773 bp of downstream sequences. The fragment was amplified *via* PCR
613 (PrimeSTAR MAX Premix) with primers *Com-F* and *Com-R* using *B. bassiana*
614 genomic DNA as template. The PCR product was digested with *SpeI* (FD1254,
615 Thermo Scientific) and *XbaI* and then inserted into pK2-*Sur* to form
616 pK2-*Sur-BbCRPA*. The resulting vector was used for Δ *BbCRPA* transformation.

617 **Site-directed mutagenesis of BbCrpa and N/C-terminal tail exchange between**
618 **BbCrpa and Drs2p**

619 For the change of Ile (562) to Glu (I562E), and Asp (614) to Arg (D614R) of BbCrpa,

620 the fragments (1st and 2nd of I562E and D614R) were cloned using paired primers
621 *BbCRPA-F/Bb* (*I562E*)-first-R (*I562E-1st*), *Bb* (*I562E*)-second-F/*BbCRPAN-R*
622 (*I562E-2nd*), *BbCRPA-F/Bb* (*D614R*)-first-R (*D614R-1st*), *Bb*
623 (*D614R*)-second-F/*BbCRPAN-R* (*D614R-2nd*) *via* PCR (PrimeSTAR MAX Premix).
624 The full-length fragments (1st + 2nd) of I562E and D614R were integrated by overlap
625 extension PCR. For BbCrpa N/C-terminus deletion and C-terminus site-directed
626 mutagenesis, the target fragments were cloned with primer pairs *Bb*
627 (ΔN)-F/*BbCRPAN-R* (ΔB^N), *BbCRPA-F/Bb* (ΔC)-R (ΔB^C), *BbCRPA-F/Bb*
628 ($\Delta C1325-1359$)-R ($\Delta B^{C1325-1359}$), *BbCRPA-F/Bb* ($\Delta C1326-1359$)-R ($\Delta B^{C1326-1359}$),
629 *BbCRPA-F/Bb* (1325)-R ($Y1325A$), *BbCRPA-F/Bb* ($1325-1341$)-R
630 ($Y1325A-Y1341A$), *BbCRPA-F/Bb* ($1325-1350$)-R ($Y1325A-Y1350A$),
631 *BbCRPA-F/Bb* ($1341-1350$)-R ($Y1341A-Y1350A$), *BbCRPA-F/Bb*
632 ($1325-1341-1350$)-R ($Y1325A-Y1341A-Y1350A$). All the PCR products were
633 digested with *NotI* and *BamHI* and then inserted into the modified PUC-T vector,
634 making it sandwiched by *B. bassiana* *gpdB¹¹⁵³* promoter and *A. nidulans* *trpC*
635 terminator, respectively. Then, all vectors were digested with *XbaI* and *SpeI*, and then
636 inserted into pK2-*Sur*. The resulting vectors were transformed into *A. tumefaciens*
637 AGL-1 and subsequently used to transform $\Delta BbCRPA$.
638 For the N/C-terminal tail exchange between BbCrpa and Drs2p, BbCrpa full length
639 sequence (BFL), BbCrpa N-terminus (B^N), transmembrane domains (B^{TMD}),
640 C-terminus (B^C) were cloned using paired primers *BbCRPAN-F/BbCRPAN-R*,
641 *BbCRPA-F/BbN-R*, *BbTMD-F/BbTMD-R*, *BbC-F/BbCRPA-R*, respectively. Drs2p full

642 length sequence (DFL), Drs2p N-terminus (D^N), transmembrane domains (D^{TMD}),
643 C-terminus (D^C) were cloned from *Saccharomyces cerevisiae* cDNA using paired
644 primers *DRS2-F/DRS2-R*, *DRS2-F/DRS2N-R*, *DRS2TMD-F/DRS2TMD-R*, *DRS2C*
645 -F/*DRS2-R*, respectively. Overlap extension PCR was performed for the assemblage
646 of different fragments (B^N - D^{TMD} - D^C , D^N - D^{TMD} - B^C , B^N - D^{TMD} - B^C). All the PCR
647 products were digested by *NotI*-*BamHI* or *NotI*, and then inserted into modified
648 pUC-T vector, making it sandwiched with *B. bassiana* *gpdB¹¹⁵³* promoter, and *A.*
649 *nidulans* *trpC* terminator, respectively. All the integrate expression elements were
650 cloned with primers *P2-F/T2-R* and the products were digested with *SpeI* and inserted
651 into pK2-*Sur*. The resulting vectors were used for $\Delta BbCRPA$ transformation.

652 **Construction of eGFP/mRFP fusion proteins**

653 For N-terminal tagging with eGFP, the coding sequence of BbCrpa was cloned from *B.*
654 *bassiana* cDNA using primer pair *BbCRPAN-F/BbCRPAN-R* and digested with *NotI*
655 and *BamHI*, and then inserted into the modified PUC-T vector to form PUC-*BbCRPA*.
656 The coding sequence of enhanced green fluorescent protein (eGFP) was amplified
657 from plasmid eGFP-C1 (6084-1, Clontech) using primers *eGFPN-F/eGFPN-R*. The
658 resultant fragment was treated with *NotI*, and then cloned into the accomplished
659 vector PUC-*BbCRPA* to generate PUC-*eGFP::BbCRPA*, in which the expression of
660 *eGFP::BbCRPA* is driven by *B. bassiana* *gpdB¹¹⁵³* promoter and stopped by *A.*
661 *nidulans* *trpC* terminator. Treated the vector with *XbaI* and *SpeI*, and the resultant
662 fragment was inserted into pK2-*Sur* and pK2-*Bar*, respectively. The resulting vectors
663 were transformed into $\Delta BbCRPA$ and wild-type *B. bassiana*, respectively. For

664 N-terminal tagging with mRFP (monomeric red fluorescent protein), the coding
665 sequences of mRFP was cloned from plasmid p1793 (Pantazopoulou and Peñalva,
666 2009) with primer pair *mRFPN-F/mRFPN-R* and *BbCRPA* was cloned using *B.*
667 *bassiana* cDNA as template with primer pair *BbCRPA (mF)-F/BbCRPAN-R*. The PCR
668 products were fused by overlap extension PCR to link *mFRP* and *BbCRPA* together.
669 The fusing fragment was digested with *NotI* and *BamHI*, and then inserted into the
670 modified PUC-T to form PUC-*mRFP::BbCRPA*, the expression of which is driven by
671 *B. bassiana* *gpdB*^{II53} promoter and stopped by *A. nidulans* *trpC* terminator. Then, the
672 vector was digested with *XbaI* and *SpeI*, and inserted into pK2-*Sur*. The resulting
673 vector was used for the transformation of $\Delta BbCRPA$.

674 For labeling late Golgi, *gpdA*^{mini}::*mRFP::PH^{OSBP}* was amplified from plasmid
675 p1793 using primers *mPH-F* and *mPH-R*. The product was digested with *XbaI*, and
676 then inserted into pK2-*Sur*. The resulting vector was transformed into the wild-type
677 and *eGFP::BbCRPA* strains, respectively.

678 For labeling EE (early endosome) and LE (late endosome), *B. bassiana* endogenous
679 small GTPases *BbRab5* and *BbRab7* were cloned using the primer pairs
680 *BbRab5-F/BbRab5-R* and *BbRab7-F/BbRab7-R*, respectively. The coding sequence of
681 mRFP was amplified from plasmid p1793 using primers *mRFPN-F/mRFPN-R*. The
682 fragment of mRFP was fused with *BbRab5/BbRab7* by overlap extension PCR. The
683 resulting fusion sequences were cloned into modified PUC-T vector to form
684 PUC-*mRFP::BbRab5* and PUC-*mRFP::BbRab7*, respectively. PUC-*mRFP::BbRab5*
685 was digested with *XbaI* and *SpeI*, and then inserted into pK2-*Sur*. The fragment of

686 *gpdB¹¹⁵³::mRFP::BbRab7::trpC* was cloned from PUC-*mRFP::BbRab7* using primers
687 *P1-F/T1-R*. The resulting PCR product was digested with *Xba*I, and then inserted into
688 *pK2-Sur*. All the resulting vectors were transformed into *eGFP::BbCRPA* strain and
689 wild-type *B. bassiana*.

690 For Drs2p localization observation, the coding sequences of eGFP and Drs2p were
691 amplified from plasmid eGFP-C1 and *Saccharomyces cerevisiae* cDNA using primer
692 pairs *eGFPN-F/eGFP (NF)-R* and *DRS2 (Fu)-F/DRS2-R*, respectively. eGFP and
693 Drs2p were fused by overlap extension PCR. The resulting product, *eGFP::DRS2*,
694 was digested with *Not*I, and then inserted into the modified PUC-T. The fragment of
695 *gpdB¹¹⁵³::eGFP::DRS2::trpC* was cloned from PUC-*eGFP::DRS2* using primers
696 *P2-F/T2-R*. The resulting product was digested with *Spe*I, and then inserted into
697 *pK2-Sur*. The resulting vector was transformed into $\Delta BbCRPA$.

698 For BbCrpa full length N-terminus (B^{N1-268}) tagging with mRFP, the coding
699 sequences of B^{N1-268} and mRFP were generated by PCR with primer pairs
700 *BbCRPAN-F/N268-R*, *mRFP-F/mRFP-R*, respectively. The products were fused by
701 overlap extension PCR. The fusion sequence was then digested with *Not*I and *Bam*HI,
702 and inserted into the modified PUC-T to form PUC- $B^{N1-268}::mRFP$ between *B.*
703 *bassiana* *gpdB¹¹⁵³* promoter and *A. nidulans* *trpC* terminator. For tagging B^{N0} ,
704 $B^{N258-268}$, $B^{N258-268 (K264A)}$, and $B^{N259-268}$ with mRFP, the coding sequences of them
705 were cloned by PCR with primer pairs *mRFPN-F/mRFP-R*, *N258-268-F/mRFP-R*,
706 *N258-268 (K-A)-F/mRFP-R*, *N259-268-F/mRFP-R* using plasmid
707 PUC- $B^{N1-268}::mRFP$ as template. All the PCR products were digested with *Not*I and

708 *BamHI*, and then inserted into the modified PUC-T. These modified PUC-T vectors
709 were digested with *XbaI* and *SpeI*, and then inserted into pK2-*Sur*. Finally, the
710 resulting vectors were transformed into eGFP::BbCrpa strain.

711 **Ectopic expression of *BbCRPA* in *V. dahliae***

712 For *V. dahliae* transformation, BbCrpa coding sequence was cloned with primer pair
713 *BbCRPAN-F/BbCRPAN-R* and digested with *NotI* and *BamHI*. The resultant fragment
714 was inserted into the modified PUC-T vector. Then, the vector was digested with *XbaI*
715 and *SpeI*. The resulting fragment was inserted into pK2-*Hyg*, a vector with
716 hygromycin B (10687010, Thermo Scientific)-resistance-encoding gene as a selection
717 marker. The resulting vector was transformed into *A. tumefaciens* AGL-1 and
718 subsequently used to transform the wild-type *V. dahliae* as described previously (Zhou
719 et al., 2013).

720 **Ectopic expression of *BbCRPA* in *Arabidopsis* and cotton**

721 For *Arabidopsis* and cotton transformation, BbCrpa coding sequence was cloned by
722 PCR with primer pair *pBbCRPA-F/pBbCRPA-R*. The product was digested with
723 *BamHI/SpeI*, and inserted into modified pCAMBIA2300 (VT1383, YouBio) (PLGN)
724 between cauliflower mosaic virus 35S promoter and *A. tumefaciens* *Nos* terminator.
725 The resulting vector was transformed into *A. tumefaciens* GV3101 and LBA4404 for
726 *Arabidopsis* (Col-0) and cotton transformation, respectively.

727 **Phenotypic assays**

728 Fungi were grown on CZP (agar) (*B. bassiana*) or CZA (*B. bassiana*) or PDA (*V.*

729 *dahliae*) supplemented with CsA or FK506 typically by inoculation of 3 μ l of conidial
730 suspensions (1×10^7 conidia/ml in 0.05% tween-80) onto the center of agar plates.
731 Plates were incubated at 26 °C for about 10-14 days. For growth inhibition rates
732 assays of different strains, the data were shown as [colony diameter CZP/CZA
733 supplemented with CsA/FK506]/[colony diameter CZP/CZA].

734 **Gene expression analysis**

735 For *BbCRPA* expression analysis, 1 μ g total RNA was reverse-transcribed using
736 PrimeScript RT reagent Kit (RR047A, TaKaRa). Quantitative RT-PCR (qRT-PCR)
737 was performed using a CFX96 Real-Time System (Bio-Rad). PCR reactions were
738 performed in 96-well plates as follows: 10 μ l iQSYBR Green Supermix (1708882,
739 Bio-Rad), 500 nM forward and reverse primers, and 1 μ l 1:7 diluted cDNA template.
740 All experiments were performed thrice. γ -*actin* (for *B. bassiana*), *AtActin2* (for
741 *Arabidopsis*) and *GhHis3* (for cotton) were used as the internal reference. The regular
742 PCR cycling conditions were as follows: 3 min at 95 °C, followed by 40 cycles of 10 s
743 at 95 °C, 30 s at 56 °C and 30 s at 72 °C. In order to verify the specificity of the
744 primers, a melt curve analysis was performed for quality assurance. Relative
745 expression of the target gene was normalized to the quantity of the reference gene
746 (normalized fold expression) and processed in CFX Manager 3.1 software (BioRad).
747 Primers used for qRT-PCR analysis are given in Supplemental Information Table
748 supplement 1.

749 **Fluorescence labeling of CsA, FK506, and CIA**

750 CsA and FK506 were labeled with 5-Carboxyfluorescein (5-FAM, HY-66022, MCE).
751 Cinnamyl acetate (CIA, 166170, Sigma-Aldrich) was labeled with fluorescein
752 isothiocyanate (FITC, HY-66019, MCE). The labeled molecules were produced by
753 Fanbo Biochemicals Co. Ltd.. (Haidian HighTech Business Park, Beijing, China).

754 **Sample preparation for imaging**

755 All experiments for imaging of *B. bassiana* were performed in CZB medium, with
756 external supplements added as needed. All the fluorescent strains were precultured in
757 CZB (200 rpm, 26 °C), 48-72 h aged hyphae were harvested from CZB medium (10,
758 000 rpm, 5 min, 4 °C) and resuspended in PBS (NaCl 8 g/l, KCl 0.2 g/l, Na₂HPO₄·12
759 H₂O 3.63 g/l, KH₂PO₄ 0.24 g/l, pH 7.4, typically 0.1 ml). For video acquisition, 48-72
760 h aged hyphae were harvested and observed second by second. FM4-64 (F34653,
761 Thermo Scientific) was used to stain the membrane of vacuole, prevacuolar
762 (PVC)/multivesicular body (MVB) and vesicle, and the protocol was as described
763 previously (Lewis et al., 2009) with slight modification. Briefly, samples were
764 resuspended into HBSS (Hank's balanced salt solution, NaCl 8 g/l, KCl 0.4 g/l,
765 KH₂PO₄ 0.06 g/l, Na₂HPO₄·12H₂O 0.121 g/l, Glucose 1 g/l, pH 7.2) containing a final
766 concentration of 8 μM FM4-64 and then incubated at 4 °C for 40-60 min. For FM1-43
767 (T35356, Thermo Scientific) staining, samples were resuspended into HBSS
768 containing a final concentration of 20 μM and then incubated at 4 °C for 60 min. For
769 the observation of 5-FAM labeled CsA and FK506 in the fungus, the labeled
770 molecules were added to the CZB medium to a final concentration of 7.5 μg /ml (CsA)
771 and 6 μg/ml (FK506), respectively, and incubated with fungal cells for 48-72 hours.

772 Finally, the samples were washed with PBS twice for imaging. For the observation of
773 FITC labeled CIA in the plant, Arabidopsis seedlings were incubated in liquid
774 Murashige and Skoog medium (MS, M519, Phytotech) (1.5% [w/v] Sucrose, pH 5.8)
775 containing FITC-CIA (5 μ g/ml) and FM4-64 (4 μ M) at 22 °C for 8 hours and the
776 samples were washed with ddH₂O 3-4 times for imaging.

777 **Image acquisition**

778 For confocal microscopy, an inverted confocal laser scanning microscope (FV1000,
779 Olympus) was used. For the observation of fluorescent signals of eGFP, 5-FAM, and
780 FITC, an argon ion laser (Ex = 488 nm, Em = 515-530 nm) was used. For the
781 observation of mRFP and FM4-64, fluorescent signals were acquired using a He-Ne
782 laser (Ex = 559 nm, Em = 570-670 nm). Finally, all the confocal images were
783 captured with FV10-ASW 3.0 Viewer software (Olympus).

784 **Insect bioassays**

785 Fourth-instar larvae of *Galleria mellonella* were used as target insects for bioassays.
786 Larvae were immersed into suspensions (2×10^7 conidia/ml in 0.05% tween-80)
787 derived from $\Delta BbCRPA$ and the wild-type for 15 s. Excess solution was removed by
788 treating with paper towel. All treated larvae were transferred into growth chamber at
789 26 °C for 15 h:9 h (light:dark cycle) with 70% relative humidity. The mortality was
790 recorded every 12 h. Each treatment was performed in triplicate with 30-40 insects
791 with at least two independent batches on conidia. Kaplan-Meyer curves were used for
792 analyzing the survival data and a log rank test was used to analyze the difference

793 between $\Delta BbCRPA$ and the wild-type.

794 **Western blot and immunoprecipitation**

795 For the immunoprecipitation (IP) and immunoblot assays, the total protein was
796 extracted according to the extraction kit (BB-3136, BestBio). IP was performed
797 according to the manufacturer's protocol (SA079001, Smart-lifesciences) with slight
798 modification. Briefly, the protein complexes were isolated by binding to the anti-RFP
799 affinity beads 4FF, followed by two washes with balanced solution (50 mM Tris, 0.15
800 M NaCl, pH 7.4). Finally, 200 μ l PBS with 5 \times SDS-PAGE loading buffer was added
801 to the complexes and incubated at 95 °C for 10 minutes and the affinity beads were
802 collected by centrifugation (5,000 g, 1 min). The supernatants that contain the eluted
803 targets were analyzed by immunoblotting with anti-Ub (ubiquitin, PTM-1107,
804 PTM-BIO) and anti-RFP antibodies (MA5-15257, Thermo Scientific).

805 **Southern blot**

806 Southern blot was performed according to DIG High Prime DNA Labelling and
807 Detection Starter Kit II (11585614910, Roche). Briefly, 30 μ g DNA from the leaves of
808 wild-type and transgenic plants were digested with *Hind*III and subjected to DNA
809 electrophoresis with 0.8% agarose gel. Probe was prepared from the purified PCR
810 product of the *BbCRPA* gene. The labelling of probe, hybridization and detection were
811 performed according to the manufacturer's instructions. The primer pair used for
812 southern blot is given in [Supplementary file 4](#).

813 **Plant transformation and resistance assays for disease or CIA**

814 Genetic transformation of Arabidopsis and identification of the transformants were
815 performed as described previously (Clough and Bent, 2010; Harrison et al., 2006).
816 The transformation of cotton (cv. Jimian 14) was performed according to the method
817 as described previously (Luo et al., 2007). For disease resistance assays of
818 Arabidopsis, each Arabidopsis plant (4-5 leaves) was inoculated with 3 ml *V. dahliae*
819 spore suspension (2×10^8 spores/ml, V991 strain) and then all Arabidopsis plants
820 were transferred into growth chamber at 22 °C for 16 h:8 h (light:dark cycle) with 70%
821 relative humidity. The resistance of the plants to *V. dahliae* was evaluated 21 days
822 later after inoculation. For disease resistance assays of cotton, 10-day-old cotton
823 seedlings were treated with *V. dahliae* (10^7 spores/ml, V991 strain) according to the
824 method as described previously (Fradin et al., 2009) and then the cotton plants were
825 transferred into growth chamber at 26 °C for 16 h:8 h (light:dark cycle) with 70%
826 relative humidity. The disease index of the plants to *V. dahliae* was evaluated 14 days
827 after inoculation. The symptom of infected plants was evaluated by different grades of
828 disease: 0, health plant; 1, 0-25% chlorotic or necrotic leaves; 2, 25-50% chlorotic or
829 necrotic leaves; 3, 50-75% chlorotic or necrotic leaves; 4, 75-100% chlorotic or
830 necrotic leaves or no leaf left or dead plant. The disease index (DI) was calculated
831 according to the following formula: $DI = [\sum(\text{disease grades} \times \text{number of infected})$
832 $plants]/(\text{total checked plants} \times 4)] \times 100$ (Zhang et al., 2012). The disease resistance
833 experiments were performed three times with more than 15 plants for Arabidopsis and
834 30 plants for cotton each time. For CIA resistance assays of Arabidopsis, Arabidopsis
835 seeds were incubated on MS plates supplemented with either 0.5% DMSO (control)

836 or CIA (50 µg/ml) for 14 days.

837 **Statistical analyses**

838 Statistical analyses were performed with a Student's *t* test or a log rank test.

839 Significance was defined as ***p* < 0.01; ****p* < 0.001; *****p* < 0.0001. Differences with
840 a *P* value of 0.05 or less were considered significant. For insect survival study,
841 Kaplan-Meier survival curve was generated and analyzed for statistical significance
842 with GraphPad 5.0. Statistical details for each experiment can be found in the Figure
843 Legends.

844 **Acknowledgments**

845 This work was supported by the Chinese Ministry of Science and Technology of
846 China (Grant 2016YFD0100505), National Transgenic New Species Breeding Major
847 Project of China (2016ZX08005-003-004 to Y.P), and National Major Project of
848 Breeding of China (2018YFD0100403 to X.L). We thank Prof. Qixiang Guo (School
849 of Chemistry and Chemical Engineering, Southwest University, Chongqing, China)
850 for his help in CsA/FK506 labeling, and Dr. Zhibing Luo (Biotechnology Research
851 Center, Southwest University, Chongqing, China) for his assistance in the
852 construction of T-DNA insertion mutant pool in *B. bassiana*. We are grateful to Dr.
853 Miguel A. Peñalva (Department of Physical and Chemical Biology, Centro de
854 Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro
855 de Maeztu 9, 28040 Madrid, Spain) for providing plasmid p1793, Prof. Weiguo Fang
856 (Institute of Microbiology, Zhejiang University, Hangzhou, China) for the gift of *M.*
857 *anisopliae* strain, Guiliang Jian (Institute of Plant Protection, Chinese Academy of

858 Agricultural Sciences, Beijing, China) for the gift of *V. dahliae* strain V991, and Prof.
859 Zhiying Ma (State Key Laboratory of North China Crop Improvement and Regulation,
860 North China Key Laboratory for Crop Germplasm Resources of Education Ministry,
861 Hebei Agricultural University, Hebei, China) for the gift of *Gossypium hirsutum*, cv.
862 Jimian 14.

863 **Additional information**

864 **Funding**

Funder	Grant reference number	Author
Chinese Ministry of Science and Technology of China	2016YFD0100505	Yan Pei
National Transgenic New Species Breeding Project of China	2016ZX08005-003-004	Yan Pei
National Major Project of Breeding of China	2018YFD0100403	Xianbi Li
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.		

865 **Author contributions**

866 Yujie Li, Hui Ren, Conceptualization, Data curation, Software, Formal analysis,
867 Validation, Investigation, Visualization, Writing-original draft, Writing-review and
868 editing; Fanlong Wang, Resources, Data curation, Software, Formal analysis,

869 Investigation, Visualization, Methodology; Jianjun Chen, Lian Ma, Yang Chen, Data
870 curation, Software, Formal analysis, Validation, Methodology; Xianbi Li, Data
871 curation, Software, Validation, Investigation, Funding acquisition; Yanhua Fan, Dan
872 Jin, Data curation, Software, Validation, Investigation, Methodology; Lei Hou,
873 Yonghong Zhou, Software, Validation, Investigation, Methodology; Nemat O.
874 Keyhani, Conceptualization, Resources, Validation, Writing-review and editing; Yan
875 Pei, Conceptualization, Resources, Formal analysis, Supervision, Funding acquisition,
876 Investigation, Project administration, Writing-review and editing

877 **Additional files**

878 **Supplementary files**

- 879 • Supplementary file 1. Time-lapse imaging of the trajectory of eGFP::BbCrpa (green)
880 and vesicle (red) labeled by FM4-64. Time to acquire one image pair was 1 s. Scale
881 bar, 5 μ m.
- 882 • Supplementary file 2. Time-lapse imaging of the trajectory of eGFP::BbCrpa (green)
883 and vesicle (red) derived from TGN which was labeled by mRFP::PH^{OSBP} (red). Time
884 to acquire one image pair was 1 s. Scale bar, 5 μ m.
- 885 • Supplementary file 3. Loss of autophagy-related protein BbAtg1, adaptor protein
886 BbAP-1, or coat protein clathrin does not affect CsA resistance.
- 887 • Supplementary file 4. Primers used in this study.
- 888 • Supplementary file 5. Key resources table.

889 **Competing interests**

890 The authors declare that no competing interests exist.

891 **References**

- 892 **Barreiro C**, Prieto C, Sola-Landa A, Solera E, Martinez-Castro M, Perez-Redondo R,
893 Garcia-Estrada C, Aparicio JF, Fernandez-Martinez LT, Santos-Aberturas J,
894 Salehi-Najafabadi Z, Rodriguez-Garcia A, Tauch A, Martin JF. 2012. Draft
895 genome of *Streptomyces tsukubaensis* NRRL 18488, the producer of the
896 clinically important immunosuppressant tacrolimus (FK506). *Journal of*
897 *Bacteriology* **194**:3756-3757. DOI: <https://doi.org/10.1128/JB.00692-12>,
898 PMID: 22740677
- 899 **Barz S**, Kriegenburg F, Henning A, Bhattacharya A, Mancilla H, Sanchez-Martin P,
900 Kraft C. 2020. Atg1 kinase regulates autophagosome-vacuole fusion by
901 controlling SNARE bundling. *EMBO Reports*. **21**:e51869. DOI:
902 <https://doi.org/10.15252/embr.202051869>, PMID: 33274589
- 903 **Bauer K**, Kretzschmar AK, Cvijic H, Blumert C, Loffler D, Brocke-Heidrich K,
904 Schiene-Fischer C, Fischer G, Sinz A, Clevenger CV, and Horn F. 2009.
905 Cyclophilins contribute to Stat3 signaling and survival of multiple myeloma
906 cells. *Oncogene*. **28**:2784-2795. DOI: <https://doi.org/10.1038/onc.2009.142>,
907 PMID: 19503092
- 908 **Baxter BK**, Abeliovich H, Zhang X, Stirling AG, Burlingame AL and Goldfarb DS.
909 2005. Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway
910 in yeast. *Journal of Biological Chemistry* **280**:39067-39076. DOI:
911 <https://doi.org/10.1074/jbc.M508064200>, PMID: 16186126
- 912 **Beauchesne PR**, Chung NS, Wasan KM. 2007. Cyclosporine A: a review of current

- 913 oral and intravenous delivery systems. *Drug Development and Industrial*
914 *Pharmacy* **33**:211-220. DOI: <https://doi.org/10.1080/03639040601155665>,
915 PMID: 17454054
- 916 **Berthiller F**, Crews C, Dall'Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP,
917 Seefelder W, Speijers G, Stroka J. 2013. Masked mycotoxins: a review.
918 *Molecular Nutrition & Food Research* **57**:165-186. DOI: <https://doi.org/10.1002/mnfr.201100764>, PMID: 23047235
- 920 **Borel JF**, Feurer C, Gubler HU, and Stähelin H. 1976. Biological effects of
921 cyclosporin A: a new antilymphocytic agent. *Agents and Actions* **6**:468-475.
922 DOI: <https://doi.org/10.1007/bf01973261>, PMID: 8969
- 923 **Borel JF**, Gunn HC. 1986. Cyclosporine as a New Approach to Therapy of
924 Autoimmune Diseases. *Annals of the New York Academy of Sciences*
925 **475**:307-319. DOI: <https://doi.org/10.1111/j.1749-6632.1986.tb20879.x>,
926 PMID: 3538973
- 927 **Brakhage, AA.** 2013. Regulation of fungal secondary metabolism. *Nature Reviews*
928 *Microbiology* **11**:21-32. DOI: <https://doi.org/10.1038/nrmicro2916>, PMID:
929 23178386
- 930 **Brazin KN**, Mallis RJ, Fulton DB, Andreotti AH. 2002. Regulation of the *tyrosine*
931 *kinase Itk by the peptidyl-prolyl isomerase cyclophilin A*. *PNAS* **99**:1899-1904.
932 DOI: <https://doi.org/10.1073/pnas.042529199>, PMID: 11830645
- 933 **Carrera A**, Moos J, Ning XP, Gerton GL, Tesarik J, Kopf GS, Moss SB. 1996.
934 Regulation of protein tyrosine phosphorylation in human sperm by a
935 calcium/calmodulin-dependent mechanism: identification of A kinase anchor
936 proteins as major substrates for tyrosine phosphorylation. *Developmental*

937 *Biology* **180**:284-296. DOI: <https://doi.org/10.1006/dbio.1996.0301>, PMID:

938 8948591

939 Chan CP, Gallis B, Blumenthal DK, Pallen CJ, Wang JH, Krebs EG. 1986.

940 Characterization of the phosphotyrosyl protein phosphatase activity of
941 calmodulin-dependent protein phosphatase. *Journal of Biological Chemistry*
942 261:9890-9895 DOI: <https://doi.org/10.1007/BF00004214> PMID: 2426255

943 Chanda A, Roze LV, Kang S, Artymovich KA, Hicks GR, Raikhel NV, Calvo AM,
944 Linz JE. 2009. A key role for vesicles in fungal secondary metabolism. *PNAS*
945 106:19533-19538. DOI: <https://doi.org/10.1073/pnas.0907416106>, PMID:
946 19889978

947 Ciechanover A. 1998. The ubiquitin-proteasome pathway: on protein death and cell
948 life. *EMBO Journal* 17:7151-7160. DOI: <https://doi.org/10.1093/emboj/17.24.7151>, PMID: 9857172
949

950 Clough SJ, Bent AF. Bent. 2010. Floral dip: a simplified method for
951 *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *The Plant*.
952 *Journal*. **16**:735-743. DOI: <https://doi.org/10.1046/j.1365-313x.1998.00343.x>,
953 PMID: 10069079

954 **Coleman J**, Blake-Kalff M, Davies E. 1997. Detoxification of xenobiotics by plants:
955 chemical modification and vacuolar compartmentation. *Trends in Plant
956 Science* 2:144-151. DOI: [https://doi.org/10.1016/S1360-1385\(97\)01019-4](https://doi.org/10.1016/S1360-1385(97)01019-4)

957 **Coleman JA, Quazi F, Molday RS.** 2013. Mammalian P4-ATPases and ABC
958 transporters and their role in phospholipid transport. *Biochimica et Biophysica
959 Acta* **1831**:555-574. DOI: <https://doi.org/10.1016/j.bbapap.2012.10.006>, PMID:

- 960 23103747
- 961 **De Matteis MA**, Vicinanza M, Venditti R, Wilson C. 2013. Cellular assays for drug
962 discovery in genetic disorders of intracellular trafficking. *Annual Review of
963 Genomics and Human Genetics* **14**:159-190. DOI: <https://doi.org/10.1146/annurev-genom-091212-153415>, PMID: 23662666
- 964
- 965 **D'Mello JPF**, Placinta CM, Macdonald AMC. 1999. *Fusarium* mycotoxins: a review
966 of global implications for animal health, welfare and productivity. *Animal
967 Feed Science and Technology* **80**:183-205. DOI:
968 [https://doi.org/10.1016/s0377-8401\(99\)00059-0](https://doi.org/10.1016/s0377-8401(99)00059-0)
- 969 **Dimartini A**, Trzepacz PT, Daviss SR. 1996. Prospective study of FK506 side effects:
970 Anxiety or akathisia? *Biological Psychiatry* **40**:407-411. DOI:
971 [https://doi.org/10.1016/0006-3223\(95\)00395-9](https://doi.org/10.1016/0006-3223(95)00395-9), PMID: 8874843
- 972 **Dreyfuss M**, Härr E, Hofmann H, Kobel H, Pache W, Tscherter H. 1976.
973 Cyclosporin A and C. *European Journal of Applied Microbiology* **3**:125-133.
974 DOI: <https://doi.org/10.1007/BF00928431>
- 975 **Fang WG**, Leng B, Xiao YH, Jin K, Ma JC, Fan YH, Feng J, Yang XY, Zhang YJ, Pei
976 Y. 2005. Cloning of *Beauveria bassiana* chitinase gene Bbchit1 and its
977 application to improve fungal strain virulence. *Applied and Environmental
978 Microbiology* **71**:363-370. DOI:
979 <https://doi.org/10.1128/AEM.71.1.363-370.2005>, PMID: 15640210
- 980 **Fang WG**, Zhang YJ, Yang XY, Zheng XL, Duan H, Li Y, Pei Y. 2004.
981 *Agrobacterium tumefaciens*-mediated transformation of *Beauveria bassiana*
982 using an herbicide resistance gene as a selection marker. *Journal of*

- 983 *Invertebrate Pathology* **85**:18-24. DOI:
984 <https://doi.org/10.1016/j.jip.2003.12.003>, PMID: 14992856
- 985 **Faure C**, Corvol JC, Toutant M, Valjent E, Hvalby O, Jensen V, El Messari S, Corsi
986 JM, Kadare G, Girault JA. 2007. Calcineurin is essential for
987 depolarization-induced nuclear translocation and tyrosine phosphorylation of
988 PYK2 in neurons. *Journal of Cell Science* **120**:3034-3044. DOI:
989 <https://doi.org/10.1242/jcs.009613>, PMID: 17684059
- 990 **Fleming, A.** 1944. The discovery of penicillin. *British Medical Journal*. **2**:792-792.
991 DOI: <https://doi.org/10.1093/oxfordjournals.bmb.a071032>
- 992 **Fradin EF**, Thomma BP. 2006. Physiology and molecular aspects of *Verticillium* wilt
993 diseases caused by *V. dahliae* and *V. albo-atrum*. *Molecular Plant Pathology*
994 **7**:71-86. DOI: <https://doi.org/10.1111/j.1364-3703.2006.00323.x>, PMID:
995 20507429
- 996 **Fradin EF**, Zhang Z, Juarez Ayala JC, Castroverde CD, Nazar RN, Robb J, Liu CM,
997 Thomma BP. 2009. Genetic dissection of *Verticillium* wilt resistance mediated
998 by tomato Ve1. *Plant Physiology* **150**:320-332. DOI:
999 <https://doi.org/10.1104/pp.109.136762>, PMID: 19321708
- 1000 **Ghelis, T.** 2011. Signal processing by protein tyrosine phosphorylation in plants.
1001 *Plant Signaling & Behavior* **6**:942-951. DOI:
1002 <https://doi.org/10.4161/psb.6.7.15261>, PMID: 21628997
- 1003 **Guada M**, Beloqui A, Kumar MN, Preat V, Dios-Vieitez Mdel C, Blanco-Prieto MJ.
1004 2016. Reformulating cyclosporine A (CsA): More than just a life cycle
1005 management strategy. *Journal of Controlled Release* **225**:269-282. DOI:
1006 <https://doi.org/10.1016/j.jconrel.2016.01.056>, PMID: 26829101

- 1007 **Gupta AK**, Ellis CN, Goldfarb MT, Cooper KD, Rocher L, Brown MD, Baadsgaard
1008 O, Voorhees JJ. 1989. Cyclosporine A. *Clinics in Dermatology* **7**:98-110.
1009 DOI: [https://doi.org/10.1016/0738-081x\(89\)90011-4](https://doi.org/10.1016/0738-081x(89)90011-4), PMID: 2680025
- 1010 **Hankins HM**, Baldridge RD, Xu P, Graham TR. 2015. Role of flippases, scramblases
1011 and transfer proteins in phosphatidylserine subcellular distribution. *Traffic*.
1012 **16**:35-47. DOI: <https://doi.org/10.1111/tra.12233>, PMID: 25284293
- 1013 **Hansen GH**, Rasmussen K, Niels-Christiansen LL, Danielsen EM. 2009. Endocytic
1014 trafficking from the small intestinal brush border probed with FM dye.
1015 *American Journal of Physiology-Gastrointestinal and Liver Physiology*
1016 **297**:G708-715. DOI: <https://doi.org/10.1152/ajpgi.00192.2009>, PMID:
1017 [19679822](https://doi.org/10.1152/ajpgi.00192.2009)
- 1018 **Haranishimura I**, Shimada T, Hatano K, Takeuchi Y, Nishimura M. 1998. Transport
1019 of storage proteins to protein storage vacuoles is mediated by large
1020 precursor-accumulating vesicles. *Plant Cell*. **10**:825-836. DOI:
1021 <https://doi.org/10.1105/tpc.10.5.825>, PMID: 9596640
- 1022 **Harrison SJ**, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A. 2006. A rapid and
1023 robust method of identifying transformed *Arabidopsis thaliana* seedlings
1024 following floral dip transformation. *Plant Methods* **2**:19. DOI:
1025 <https://doi.org/10.1186/1746-4811-2-19>, PMID: 17087829
- 1026 **Howard JP**, Hutton JL, Olson JM, Payne GS. 2002. Sla1p serves as the targeting
1027 signal recognition factor for NPFX(1,2)D-mediated endocytosis. *Journal of*
1028 *Cell Biology* **157**:315-326. DOI: <https://doi.org/10.1083/jcb.200110027>,
1029 PMID: 11940605
- 1030 **Hua Z**, Fatheddin P, Graham TR. 2002. An essential subfamily of Drs2p-related

- 1031 P-type ATPases is required for protein trafficking between Golgi complex and
1032 endosomal/vacuolar system. *Molecular Biology of the Cell* **13**:3162-3177.
1033 DOI: <https://doi.org/10.1091/mbc.e02-03-0172>, PMID: 12221123
- 1034 **Hunt J**, Morshead CM. 2010. Cyclosporin A Enhances Cell Survival in Neural
1035 Precursor Populations in the Adult Central Nervous System. *Molecular and*
1036 *Cellular Pharmacology* **2**:81-88. DOI:
1037 <https://doi.org/10.4255/mepharmacol.10.11>
- 1038 **Kaeverlein M**. 2013. mTOR Inhibition: From Aging to Autism and Beyond.
1039 *Scientifica (Cairo)*. **2013**:849186. DOI: <https://doi.org/10.1155/2013/849186>,
1040 PMID: 24379984
- 1041 **Kang CB**, Hong Y, Dhe-Paganon S, Yoon HS. 2008. FKBP family proteins:
1042 immunophilins with versatile biological functions. *Neurosignals*. **16**:318-325.
1043 DOI: <https://doi.org/10.1159/000123041>, PMID: 18635947
- 1044 **Kaufmann A**, Beier V, Franquelim HG, Wollert T. 2014. Molecular mechanism of
1045 autophagic membrane-scaffold assembly and disassembly. *Cell*. **156**:469-481.
1046 DOI: <https://doi.org/10.1016/j.cell.2013.12.022>, PMID: 24485455
- 1047 **Keen NT**, Long M, Erwin DC. 1972. Possible involvement of a pathogen-produced
1048 protein-lipopolysaccharide complex in *Verticillium* wilt of cotton.
1049 *Physiological Plant Pathology* **2**:317-333. DOI:
1050 [https://doi.org/10.1016/S0048-4059\(72\)80006-7](https://doi.org/10.1016/S0048-4059(72)80006-7)
- 1051 **Keller NP**. 2015. Translating biosynthetic gene clusters into fungal armor and
1052 weaponry. *Nature Chemical Biology* **11**:671-677. DOI:
1053 <https://doi.org/10.1038/nchembio.1897>, PMID: 26284674

- 1054 **Keller NP**, Turner G, Bennett JW. 2005. Fungal secondary metabolism-from
1055 biochemistry to genomics. *Nature Reviews Microbiology* **3**:937-947. DOI:
1056 <https://doi.org/10.1038/nrmicro1286>, PMID: 16322742

1057 **Laouane H**, Lazrek HB, Sedra MH. 2011. Synthesis and toxicity evaluation of
1058 cinnamyl acetate: a new phytotoxin produced by a strain of *Verticillium*
1059 *dahliae* pathogenic on olive tree. *International Journal of Agriculture and*
1060 *Biology* **13**:444-446. DOI: <https://doi.org/10.1111/j.1744-7348.2010.00451.x>

1061 **Lewis MW**, Robalino IV, Keyhani NO. 2009. Uptake of the fluorescent probe
1062 FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the
1063 entomopathogenic fungus *Beauveria bassiana*. *Microbiology*. **155**:3110-3120.
1064 DOI: <https://doi.org/10.1099/mic.0.029165-0>, PMID: 19542008

1065 **Liu JS**, Farmer JD, Lane WS, Friedman JS, Weissman IL, Schreiber SL. 1991.
1066 Calcineurin is a common target of cyclophilin-cyclosporin A and
1067 FKBP-FK506 complexes. *Cell*. **66**:807-815. DOI:
1068 [https://doi.org/10.1016/0092-8674\(91\)90124-h](https://doi.org/10.1016/0092-8674(91)90124-h), PMID: 1715244

1069 **Liu K**, Hua Z, Nepute JA, Graham TR. 2007. Yeast P4-ATPases Drs2p and Dnf1p are
1070 essential cargos of the NPFXD/Sla1p endocytic pathway. *Molecular Biology*
1071 *of the Cell*. **18**:487-500. DOI: <https://doi.org/10.1091/mbc.e06-07-0592>,
1072 PMID: 17122361

1073 **Liu K**, Surendhran K, Nothwehr SF, Graham TR. 2008. P4-ATPase requirement for
1074 AP-1/clathrin function in protein transport from the trans-Golgi network and
1075 early endosomes. *Molecular Biology of the Cell* **19**:3526-3535. DOI:
1076 <https://doi.org/10.1091/mbc.e08-01-0025>, PMID: 18508916

- 1077 **Lopez-Ilasaca M**, Schiene C, Kullertz G, Tradler T, Fischer G, Wetzker R. 1998.
- 1078 Effects of FK506-binding protein 12 and FK506 on autophosphorylation of
- 1079 epidermal growth factor receptor. *Journal of Biological Chemistry*.
- 1080 **273**:9430-9434. DOI: <https://doi.org/10.1074/jbc.273.16.9430>, PMID:
- 1081 [9545268](https://doi.org/10.1074/jbc.273.16.9430)
- 1082 **Lopez-Marques RL**, Theorin L, Palmgren MG, Pomorski TG. 2014. P4-ATPases:
- 1083 lipid flippases in cell membranes. *Pflugers Archiv-european Journal of*
- 1084 *Physiology* **466**:1227-1240. DOI: <https://doi.org/10.1007/s00424-013-1363-4>,
- 1085 PMID: [24077738](https://doi.org/10.1007/s00424-013-1363-4)
- 1086 **Luo M**, Xiao YH, Li XB, Lu XF, Deng W, Li DM, Hou L, Hu MY, Li Y, Pei Y. 2007.
- 1087 GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber
- 1088 cell initiation and elongation. *The Plant Journal* **51**:419-430. DOI:
- 1089 <https://doi.org/10.1111/j.1365-313X.2007.03144.x>, PMID: [17565582](https://doi.org/10.1111/j.1365-313X.2007.03144.x)
- 1090 **MacGurn JA**, Hsu PC, Emr SD. 2012. Ubiquitin and membrane protein turnover:
- 1091 from cradle to grave. *Annual Review of Biochemistry* **81**:231-259. DOI:
- 1092 <https://doi.org/10.1146/annurev-biochem-060210-093619>, PMID: [22404628](https://doi.org/10.1146/annurev-biochem-060210-093619)
- 1093 **Margaritis A**, Chahal P. 1989. Development of a fructose based medium for
- 1094 biosynthesis of cyclosporin-A by *Beauveria nivea*. *Biotechnology Letters*
- 1095 **11**:765-768. DOI: <https://doi.org/10.1007/BF01026093>
- 1096 **McMahon HT**, Gallop JL. 2005. Membrane curvature and mechanisms of dynamic
- 1097 cell membrane remodelling. *Nature*. **438**:590-596. DOI:
- 1098 <https://doi.org/10.1038/nature04396>, PMID: [16319878](https://doi.org/10.1038/nature04396)
- 1099 **Meyer R**, Slater V, Dubery IA. 1994. A phytotoxic protein-lipopolysaccharide
- 1100 complex produced by *Verticillium dahliae*. *Phytochemistry*. **35**:1449-1453.

- 1101 DOI: [https://doi.org/10.1016/S0031-9422\(00\)86872-7](https://doi.org/10.1016/S0031-9422(00)86872-7)
- 1102 **Molinari M**, Galli C, Norais N, Telford JL, Rappuoli R, Luzio JP, Montecucco C.
- 1103 1997. Vacuoles induced by *Helicobacter pylori* toxin contain both late
- 1104 endosomal and lysosomal markers. *Journal of Biological Chemistry*
- 1105 **272**:25339-25344. DOI: <https://doi.org/10.1074/jbc.272.40.25339>, PMID:
- 1106 [9312153](#)
- 1107 **Odom AR**, Muir S, Lim E, Toffaletti DL, Perfect JR, Heitman J. 1997. Calcineurin is
- 1108 required for virulence of *Cryptococcus neoformans*. *EMBO Journal*.
- 1109 **16**:2576-2589. DOI: <https://doi.org/10.1093/emboj/16.10.2576>, PMID:
- 1110 [9184205](#)
- 1111 **Ownley BH**, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM.
- 1112 2008. *Beauveria bassiana*: endophytic colonization and plant disease control.
- 1113 *Journal of Invertebrate Pathology* **98**:267-270. DOI:
- 1114 <https://doi.org/10.1016/j.jip.2008.01.010>, PMID: [18442830](#)
- 1115 **Palmgren MG**, Nissen P. 2011. P-type ATPases. *Annual Review of Biophysics*
- 1116 **40**:243-266. DOI: <https://doi.org/10.1146/annurev.biophys.093008.131331>,
- 1117 PMID: [21351879](#)
- 1118 **Panatala R**, Hennrich H, Holthuis JC. 2015. Inner workings and biological impact of
- 1119 phospholipid flippases. *Journal of Cell Science* **128**:2021-2032. DOI:
- 1120 <https://doi.org/10.1242/jcs.102715>, PMID: [25918123](#)
- 1121 **Pantazopoulou A**, Peñalva MA. 2009. Organization and dynamics of the *Aspergillus*
- 1122 *nidulans* Golgi during apical extension and mitosis. *Molecular Biology of the*
- 1123 *Cell*. **20**:4335-4347. DOI: <https://doi.org/10.1091/mbc.e09-03-0254>, PMID:
- 1124 [19692566](#)

- 1125 **Perez C**, Gerber S, Boilevin J, Bucher M, Darbre T, Aebi M, Reymond JL, Locher KP.
- 1126 2015. Structure and mechanism of an active lipid-linked oligosaccharide
- 1127 flippase. *Nature*. **524**:433-438. DOI: <https://doi.org/10.1038/nature14953>,
- 1128 PMID: 26266984
- 1129 **Pomorski T**, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC. 2003.
- 1130 Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid
- 1131 translocation across the yeast plasma membrane and serve a role in
- 1132 endocytosis. *Molecular Biology of the Cell*. **14**:1240-1254. DOI:
- 1133 <https://doi.org/10.1091/mbc.e02-08-0501>, PMID: 12631737
- 1134 **Poulsen LR**, Lopez-Marques RL, McDowell SC, Okkeri J, Licht D, Schulz A,
- 1135 Pomorski T, Harper JF, Palmgren MG. 2008. The Arabidopsis P4-ATPase
- 1136 ALA3 localizes to the golgi and requires a beta-subunit to function in lipid
- 1137 translocation and secretory vesicle formation. *Plant Cell*. **20**:658-676. DOI:
- 1138 <https://doi.org/10.1105/tpc.107.054767>, PMID: 18344284
- 1139 **Rosenblum K**, Schul R, Meiri N, Hadari YR, Zick Y, Dudai Y. 1995. Modulation of
- 1140 protein tyrosine phosphorylation in rat insular cortex after conditioned taste
- 1141 aversion training. *PNAS* **92**:1157-1161. DOI:
- 1142 <https://doi.org/10.1073/pnas.92.4.1157>, PMID: 7862652
- 1143 **Roth AF**, Sullivan DM, Davis NG. 1998. A large PEST-like sequence directs the
- 1144 ubiquitination, endocytosis, and vacuolar degradation of the yeast a-factor
- 1145 receptor. *Journal of Cell Biology* **142**:949-961. DOI:
- 1146 <https://doi.org/10.1083/jcb.142.4.949>, PMID: 9722608
- 1147 **Rothman JE**, Wieland FT. 1996. Protein Sorting by Transport Vesicles. *Science*.
- 1148 **272**:227-234. DOI: <https://doi.org/10.1126/science.272.5259.227>, PMID:

- 1149 8602507
- 1150 1151 1152 1153 **Rotin D**, Staub O, Haguenauer-Tsapis R. 2000. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. *The Journal of Membrane Biology* **176**:1-17. DOI: <https://doi.org/10.1007/s00232001079>, PMID: 10882424
- 1154 1155 1156 **Schlessinger J**, Ullrich A. 1992. Growth factor signaling by receptor tyrosine kinases. *Neuron*. **9**:383-391. DOI: [https://doi.org/10.1016/0896-6273\(92\)90177-f](https://doi.org/10.1016/0896-6273(92)90177-f), PMID: 1326293
- 1157 1158 1159 1160 **Sharma VK**, Li B, Khanna A, Sehajpal PK, Suthanthiran M. 1994. Which way for drug-mediated immunosuppression? *Current Opinion in Immunology* **6**:784-790. DOI: [https://doi.org/10.1016/0952-7915\(94\)90085-x](https://doi.org/10.1016/0952-7915(94)90085-x), PMID: 7826535
- 1161 1162 1163 **Shi Y**. 2009. Serine/threonine phosphatases: mechanism through structure. *Cell*. **139**:468-484. DOI: <https://doi.org/10.1016/j.cell.2009.10.006>, PMID: 19879837
- 1164 1165 1166 **Sipos G**, Kuchler K. 2006. Fungal ATP-Binding Cassette (ABC) Transporters in Drug Resistance & Detoxification. *Current Drug Targets* **7**:471-481. DOI: <https://doi.org/10.2174/138945006776359403>, PMID: 16611035
- 1167 1168 1169 **Sirikantaramas S**, Yamazaki M, Saito K. 2007. Mechanisms of resistance to self-produced toxic secondary metabolites in plants. *Phytochemistry Reviews* **7**:467-477. DOI: <https://doi.org/10.1007/s11101-007-9080-2>
- 1170 1171 **Subbarao KV**, Chassot A, Gordon TR, Hubbard JC, Bonello P, Mullin R, Okamoto D, Davis RM, Koike ST. 1995. Genetic relationships and cross pathogenicities of

- 1172 *Verticillium dahliae* isolates from cauliflower and other crops. *Phytopathology*
1173 **85**:1105-1112. DOI: <https://doi.org/10.1094/Phyto-85-1105>
- 1174 **Sugimoto Y**, Ninomiya H, Ohsaki Y, Higaki K, Davies JP, Ioannou YA, Ohno K.
1175 2001. Accumulation of cholera toxin and GM1 ganglioside in the early
1176 endosome of Niemann-Pick C1-deficient cells. *PNAS* **98**:12391-12396. DOI:
1177 <https://doi.org/10.1073/pnas.221181998>, PMID: 11675488
- 1178 **Sutton JC**. 2009. Epidemiology of wheat head blight and maize ear rot caused by
1179 *Fusarium graminearum*. *Canadian Journal of Plant Pathology*. **4**:195-209.
1180 DOI: <https://doi.org/10.1080/07060668209501326>
- 1181 **Tanaka H**, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, Hashimoto M, Taga
1182 T. 1987. Structure of FK506, a novel immunosuppressant isolated from
1183 Streptomyces. *Canadian Journal of Plant Pathology*. **109**:5031-5033. DOI:
1184 <https://doi.org/10.1021/ja00250a050>
- 1185 **Theodoulou FL**. 2000. Plant ABC transporters. *Biochim. Biophys. Acta*. **1465**:79-103.
1186 DOI: [https://doi.org/10.1016/S0005-2736\(00\)00132-2](https://doi.org/10.1016/S0005-2736(00)00132-2), PMID: 10748248
- 1187 **Thomson AW**, Carroll PB, McCauley J, Woo J, Abu-Elmagd K, Starzl TE, Van Thiel
1188 DH. 1993. FK506: a novel immunosuppressant for treatment of autoimmune
1189 disease. Rationale and preliminary clinical experience at the University of
1190 Pittsburgh. *Seminars in Immunopathology* **14**:323-344. DOI:
1191 <https://doi.org/10.1007/BF00192307>, PMID: 7686690
- 1192 **Tory R**, Sachs-Barrable K, Hill JS, Wasan KM. 2008. Cyclosporine A and Rapamycin
1193 induce in vitro cholesteryl ester transfer protein activity, and suppress
1194 lipoprotein lipase activity in human plasma. *International Journal of*

- 1195 *Pharmaceutics* **358**:219-223. [DOI:](https://doi.org/10.1016/j.ijpharm.2008.03.026)
- 1196 <https://doi.org/10.1016/j.ijpharm.2008.03.026>, PMID: 18448283
- 1197 **Traber R**, Dreyfuss MM. 1996. Occurrence of cyclosporins and cyclosporin-like
1198 peptolides in fungi. *Journal of Industrial Microbiology and Biotechnology*
1199 **17**:397-401. [DOI: https://doi.org/10.1007/BF01574770](https://doi.org/10.1007/BF01574770)
- 1200 **Tsuge T**, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y, Egusa M,
1201 Yamamoto M, Otani H. 2013. Host-selective toxins produced by the plant
1202 pathogenic fungus *Alternaria alternata*. *FEMS Microbiology Reviews*
1203 **37**:44-66. [DOI: https://doi.org/10.1111/j.1574-6976.2012.00350.x](https://doi.org/10.1111/j.1574-6976.2012.00350.x), PMID:
1204 [22846083](https://doi.org/10.1111/j.1574-6976.2012.00350.x)
- 1205 **van der Mark VA**, Elferink RP, Paulusma CC. 2013. P4 ATPases: flippases in health
1206 and disease. *International Journal of Molecular Sciences* **14**:7897-7922. [DOI:](https://doi.org/10.3390/ijms14047897)
1207 <https://doi.org/10.3390/ijms14047897>, PMID: 23579954
- 1208 **van Meer G**, Halter D, Sprong H, Somerharju P, Egmond MR. 2006. ABC lipid
1209 transporters: extruders, flippases, or flopless activators? *FEBS Letters*.
1210 **580**:1171-1177. [DOI: https://doi.org/10.1016/j.febslet.2005.12.019](https://doi.org/10.1016/j.febslet.2005.12.019), PMID:
1211 [16376334](https://doi.org/10.1016/j.febslet.2005.12.019)
- 1212 **Veronese P**, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV,
1213 Bressan RA. 2003. Identification of a locus controlling *Verticillium* disease
1214 symptom response in *Arabidopsis thaliana*. *The Plant Journal*. **35**:574-587.
1215 [DOI: https://doi.org/10.1046/j.1365-313x.2003.01830.x](https://doi.org/10.1046/j.1365-313x.2003.01830.x), PMID: 12940951
- 1216 **Wang HW**, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu ZF, Chen LY, Xu SS,
1217 Guo J, Li M, Su P, Li XF, Wang GP, Bo CY, Fang XJ, Zhuang WW, Cheng XX,
1218 Wu JW, Dong LH, Chen WY, Li W, Xiao GL, Zhao JX, Hao YC, Xu Y, Gao Y,

- 1219 Liu WJ, Liu YH, Yin HY, Li JZ, Li X, Zhao Y, Wang XQ, Ni F, Ma X, Li AF,
1220 Xu SS, Bai GH, Nevo E, Gao CX, Ohm H, Kong LR. 2020. Horizontal gene
1221 transfer of *Fhb7* from fungus underlies Fusarium head blight resistance in
1222 wheat. *Science*. 368. DOI: <https://doi.org/10.1126/science.aba5435>, PMID:
1223 [32273397](https://doi.org/10.1126/science.aba5435)
- 1224 Wang P, Heitman J. 2005. The cyclophilins. *Genome Biology*. 6:226. DOI:
1225 <https://doi.org/10.1186/gb-2005-6-7-226>, PMID: 15998457
- 1226 Wolfger H, Mamnun YM, Kuchler K. 2001. Fungal ABC proteins: pleiotropic drug
1227 resistance, stress response and cellular detoxification. *Research in
1228 Microbiology* 152:375-389. DOI:
1229 [https://doi.org/10.1016/s0923-2508\(01\)01209-8](https://doi.org/10.1016/s0923-2508(01)01209-8), PMID: 11421285
- 1230 Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao
1231 GP, Wang C, Feng MG. 2012. Genomic perspectives on the evolution of
1232 fungal entomopathogenicity in *Beauveria bassiana*. *Scientific Reports* 2:483.
1233 DOI: <https://doi.org/10.1038/srep00483>, PMID: 22761991
- 1234 Zhang BL, Yang YW, Chen TZ, Yu WG, Liu TL, Li HJ, Fan XH, Ren YZ, Shen DY,
1235 Liu L, Dou DL, Chang YH. 2012. Island cotton *Gbve1* gene encoding a
1236 receptor-like protein confers resistance to both defoliating and non-defoliating
1237 isolates of *Verticillium dahliae*. *PLoS One*. 7:e51091. DOI:
1238 <https://doi.org/10.1371/journal.pone.0051091>, PMID: 23251427
- 1239 Zhang SZ, Fan YH, Xia YX, Keyhani NO. 2010. Sulfonylurea resistance as a new
1240 selectable marker for the entomopathogenic fungus *Beauveria bassiana*.
1241 *Applied Microbiology and Biotechnology* 87:1151-1156. DOI:
1242 <https://doi.org/10.1007/s00253-010-2636-x>, PMID: 20449738

- 1243 **Zhou L**, Zhao J, Guo WZ, Zhang TZ. 2013. Functional analysis of autophagy genes
1244 via *Agrobacterium-mediated* transformation in the vascular Wilt fungus
1245 *Verticillium dahliae*. *Journal of Genetics and Genomics* **40**:421-431. DOI:
1246 <https://doi.org/10.1016/j.jgg.2013.04.006>, PMID: 23969251
- 1247 **Zhou XM**, Graham TR. 2009. Reconstitution of phospholipid translocase activity
1248 with purified Drs2p, a type-IV P-type ATPase from budding yeast. *PNAS*
1249 **106**:16586-16591. DOI: <https://doi.org/10.1073/pnas.0904293106>, PMID:
1250 [19805341](https://doi.org/10.1073/pnas.0904293106)
- 1251 **Zhou YH**, Keyhani NO, Zhang YJ, Luo ZB, Fan YH, Li YJ, Zhou QS, Chen JJ, Pei Y.
1252 2016. Dissection of the contributions of cyclophilin genes to development and
1253 virulence in a fungal insect pathogen. *Environmental*
1254 *Microbiology* **18**:3812-3826. DOI: <https://doi.org/10.1111/1462-2920.13339>,
1255 PMID: [27130487](https://doi.org/10.1111/1462-2920.13339)

1256 **Supplement figure legends:**

- 1257 **Figure 1-figure supplement 1. *B. bassiana* shows resistance to CsA and FK506
1258 and identification of CsA-sensitivity mutants, *mu1* and *mu2*.**
- 1259 **(A and B)** *B. bassiana* shows resistance to CsA (A) and FK506 (B), while some other
1260 filamentous fungi tested show sensitivity to them. 1, *Beauveria bassiana*; 2,
1261 *Metarhizium anisopliae*; 3, *Botrytis cinerea*; 4, *Alternaria brassicae*; 5, *Alternaria*
1262 *brassicicola*; 6, *Aspergillus nidulans*; 7, *Alternaria solani*. CsA/FK506 was diluted
1263 with dimethyl sulfoxide (DMSO) in the concentrations of 1000 µg/ml, 100 µg/ml, 10
1264 µg/ml, 0 µg/ml. Petri-dishes (90 mm) containing PDA (20 ml) mixed with 100 µl
1265 conidial suspensions (1×10^7 conidia/ml in 0.05% Tween-80) were incubated at 26°C

1266 for 4-7 days. Each hole (5-mm diameter) was filled with 5 μ l different concentrations
1267 of CsA/FK506. All inhibition assays were performed thrice. **(C and D)** *mu1* and *mu2*
1268 show sensitivity to CsA. The wild-type, *mu1*, and *mu2* strains were grown on CZP +
1269 CsA (20 μ g/ml). Plates were spot inoculated with 3 μ l conidial suspensions (1×10^7
1270 conidia/ml) and incubated at 26 °C for about 10 days. The variation in growth rates
1271 were shown as [colony diameter CZP supplemented with CsA]/[colony diameter
1272 CZP]. All experiments were performed in triplicate. Scale bar, 1 cm. Data are
1273 represented as mean \pm SD. ****p < 0.0001 from Student's *t* test. **(E)** Sequencing of the
1274 T-DNA insertion junctions in CsA-sensitive mutant *mu1* and *mu2*. The top line shows
1275 the left and the right border sequences of T-DNA from plasmid vector pK2,
1276 respectively; the red uppercase letters denote nucleotides of T-DNA border conserved
1277 sequences; the green uppercase letters denote overlapping sequences; flanking
1278 genomic sequences are indicated by lowercase letters; “...”denotes *Bar::Gus* element
1279 in T-DNA, “*” denotes the T-DNA border imperfect sequences; sequence data for *mu1*
1280 (right border) was not obtained, and is indicated by “x”. **(F)** Cluster analysis indicates
1281 that BbCrpa belongs to P-type ATPase superfamily of P4 branch (P4-ATPases).
1282 BbCrpa orthologues were aligned with CLUSTALW (MEGA5.2) based on its amino
1283 acid sequences. Ca, *Candida albicans*; Cm, *Cordyceps militaris*; Ec, *Escherichia coli*;
1284 Fo, *Fusarium oxysporum*; Ma, *Metarhizium anisopliae*; Mo, *Magnaporthe oryzae*; Mr,
1285 *Metarhizium robertsii*; Nc, *Neurospora crassa*; Sc, *Saccharomyces cerevisiae*; Vd,
1286 *Verticillium dahliae*. **(G)** The phosphorylated Asp in BbCrpa (red) is situated in the
1287 conserved sequence DKTG as other P4-ATPases. Aa, *Acremonium chrysogenum*; Af,

1288 *Aspergillus fumigatus*; An, *Aspergillus nidulans*; Bb, *Beauveria bassiana*; Ca,

1289 *Candida albicans*; Cp, *Claviceps purpurea*; Ch, *Colletotrichum higginsianum*; Co,

1290 *Colletotrichum orbiculare*; Cm, *Cordyceps militaris*; Ff, *Fusarium fujikuroi*; Mo,

1291 *Magnaporthe oryzae*; Ma1, *Metarhizium acridum*; Ma2, *Metarhizium anisopliae*; Mr,

1292 *Metarhizium robertsii*; Nh, *Nectria haematococca*; Nc, *Neurospora crassa*; Os,

1293 *Ophiocordyceps sinensis*; Op, *Ophiostoma piceae*; Sc, *Saccharomyces cerevisiae*; Sa,

1294 *Scedosporium apiospermum*; Th, *Torrubiella hemipterigena*; Ta, *Trichoderma*

1295 *atroviride*; Uv, *Ustilaginoidea virens*; Vd, *Verticillium dahliae*. **(H)** Predicted

1296 topological model of BbCrpa. The topological map was forecasted by

1297 https://embnet.vital-it.ch/software/TMPRED_form.html and

1298 <https://services.healthtech.dtu.dk/service.php?TMHMM-2.0>. BbCrpa consists of 10

1299 transmembrane-spanning segments. A-domain, actuator domain; P-domain,

1300 phosphorylation domain; N-domain, nucleotide binding domain; aa, amino acid.

1301 The following source data is for figure 1-figure supplement 1:

1302 **Source data 1.** Growth of WT, *mu1* and *mu2* at CZP supplemented with CsA

1303 normalized to growth at CZP.

1304 **Figure 1-figure supplement 2. Construction and Identification of BbCRPA**

1305 **disruption strain.**

1306 **(A)** Schematic model of construction for *BbCRPA* gene replacement vector. **(B)** PCR

1307 analysis of *BbCRPA* disruption mutant (M, DNA Marker DL2000; 1, PCR product of

1308 plasmid vector; 2, PCR product of *BbCRPA* disruption mutant ($\Delta BbCRPA$); 3, PCR

1309 product of wide-type *B.bassiana* (WT); 4, PCR product of heterologous recombinant

1310 mutant). **(C)** The expression level of *BbCRPA* in the wild-type, $\Delta BbCRPA$ and the
1311 complementary strain ($\Delta BbCRPA::BbCRPA$). **(D and E)** Disruption of *BbCRPA* makes
1312 *B. bassiana* sensitive to FK506. **(F and G)** Disruption of *BbCRPA* renders growth
1313 defect of *B. bassiana*. **(H)** Knock out *BbCRPA* has no significant effect on the conidial
1314 germination rate of *B. bassiana*. Conidial germination was monitored *via* microscopic
1315 analysis. Conidia were considered germinated when the germ tube was equal in length
1316 to the half diameter of the conidia. About 300 conidia were examined for the
1317 wide-type and $\Delta BbCRPA$. All experiments were performed in triplicate on CZP
1318 medium. **(I)** Loss of *BbCRPA* has no significant effect on the conidial yield of
1319 *B. bassiana*. Conidia of the fungal strains on CZA medium were harvested after 14
1320 days at 26 °C. All experiments were performed in triplicate. **(J)** Knock out *BbCRPA*
1321 reduces the virulence of *B. bassiana*. Survival of *Galleria mellonella* larvae treated
1322 with suspensions (2×10^7 conidia/ml in 0.05% tween-80) derived from the wild-type,
1323 *BbCRPA* disruption mutant. Control was treated with tween-80 alone. Survival curves
1324 were plotted by using the Kaplan-Meier method and a log rank test was used to
1325 analyse the difference between $\Delta BbCRPA$ and the wild-type. **(K and L)** Converting
1326 Ile to Glu at the site of 562 and Asp to Arg at the site of 614 both disrupt the function
1327 of BbCrpa. **(M and N)** Expression *DRS2* in $\Delta BbCRPA$ was unable to recover the
1328 resistance of *B. bassiana* to CsA. For CsA/FK506 sensitivity analysis, plates were spot
1329 inoculated with 3 μ l conidial suspensions (1×10^7 conidia/ml) and incubated at 26 °C
1330 for about 10 days. The variation in growth rates were shown as [colony diameter CZP
1331 supplemented with CsA]/[colony diameter CZP]. All experiments were performed in

1332 triplicate. Scale bars, 1 cm for **(D, F, K, and M)**. Data are represented as mean \pm SD.

1333 ***p < 0.001, ****p < 0.0001 from Student's *t* test. NS, not significant.

1334 The following source data is for figure 1-figure supplement 2:

1335 **Source data 1.** qRT-PCR experiments, conidial yield, and growth of target strains at

1336 CZP supplemented with CsA normalized to growth at CZP.

1337 **Figure 2-figure supplement 1. Fluorescent-labeled CsA and FK506 maintain**

1338 **their toxic activity.**

1339 **(A and B)** The fluorescein-labeled CsA (CsA-5-FAM) maintains biological activity.

1340 The wild-type and $\Delta BbCRPA$ strains were grown on CZP, CZP + 5-FAM (32.7 μ M),

1341 CZP + CsA (32.7 μ M), CZP + CsA-5-FAM (32.7 μ M). **(C and D)** The

1342 fluorescein-labeled FK506 (FK506-5-FAM) maintains biological activity. The

1343 wild-type and $\Delta BbCRPA$ strains were grown on CZP, CZP + 5-FAM (42.4 μ M), CZP

1344 + FK506 (42.4 μ M), CZP + FK506-5-FAM (42.4 μ M). For

1345 CsA-5-FAM/FK506-5-FAM sensitivity analysis, plates were spot inoculated with 3 μ l

1346 conidial suspensions (1×10^7 conidia/ml) and incubated at 26 °C for about 10 days.

1347 Different strains showed variation in growth rates and the data were shown as [colony

1348 diameter CZP supplemented with

1349 CsA/FK506/5-FAM/CsA-5-FAM/FK506-5-FAM]/[colony diameter CZP]. Scale bars,

1350 1 cm for (A and C). Data are represented as mean \pm SD. ****p < 0.0001 from

1351 Student's *t* test.

1352 The following source data is for figure 2-figure supplement 1:

1353 **Source data 1.** Growth of target strains at CZP supplemented with

1354 5-FAM/CsA/FK506/CsA-5-FAM/FK506-5-FAM normalized to growth at CZP.

1355 **Figure 3-figure supplement 1. BbCrpa N-terminally tagged with eGFP maintains**

1356 **its original function and is localized to the apical plasma membrane and**

1357 **Spitzenkörper of *B. bassiana*.**

1358 **(A)** Schematic diagram of eGFP::BbCrpa fusion protein. **(B and C)** Expression
1359 *eGFP::BbCRPA* fusion gene in $\Delta BbCRPA$ strain could restore the resistance to CsA.
1360 **(D and E)** eGFP was fused to other 9 different sites of BbCrpa. TMD, transmembrane
1361 segments; aa, amino acid. **(F and G)** Complementary experiments (expression all the
1362 9 constructs of *eGFP-BbCRPA* fusion genes in $\Delta BbCRPA$ strain) showed that four
1363 fusions of eGFP with BbCrpa, i.e., at the sites of C-terminus (T2), and the putative
1364 outside-membrane region between transmembrane segments 4 and 5 (M2), 8 and 9
1365 (M7), and 9 and 10 (M8) did not compromise the property of BbCrpa. **(H)**
1366 eGFP::BbCrpa localizes to the apical plasma membrane (arrows) and cytosolic
1367 structures stained with FM4-64 in germinating conidia. **(I)** eGFP::BbCrpa localizes to
1368 the Spitzenkörper (arrows) stained by FM4-64 in germ tubes. **(J)** mRFP::BbRab5
1369 colocalizes with FM1-43 signal in early endosomes (LEs, white arrows) and in
1370 vacuoles (red arrows). **(K)** mRFP::BbRab7 colocalizes with FM1-43 signal in late
1371 endosomes (LEs, arrows). **(L)** mRFP::BbCrpa appears in vesicles (white arrows) and
1372 vacuoles (red arrows), the membranes of which are indicated by FM1-43. For CsA
1373 sensitivity analysis, plates were spot inoculated with 3 μ l conidial suspensions (1 \times
1374 10^7 conidia/ml) and incubated at 26 °C for about 10 days. Different strains showed
1375 variation in growth rates and the data were shown as [colony diameter CZP
1376 supplemented with CsA]/[colony diameter CZP]. Scale bars, 1 cm for (B and F) and
1377 5 μ m for (H-L). Data are represented as mean \pm SD. ****p < 0.0001 from Student's *t*
1378 test. NS, not significant.

1379 The following source data is for figure 3-figure supplement 1:

1380 **Source data 1.** Growth of target strains at CZP supplemented with CsA normalized to
1381 growth at CZP.

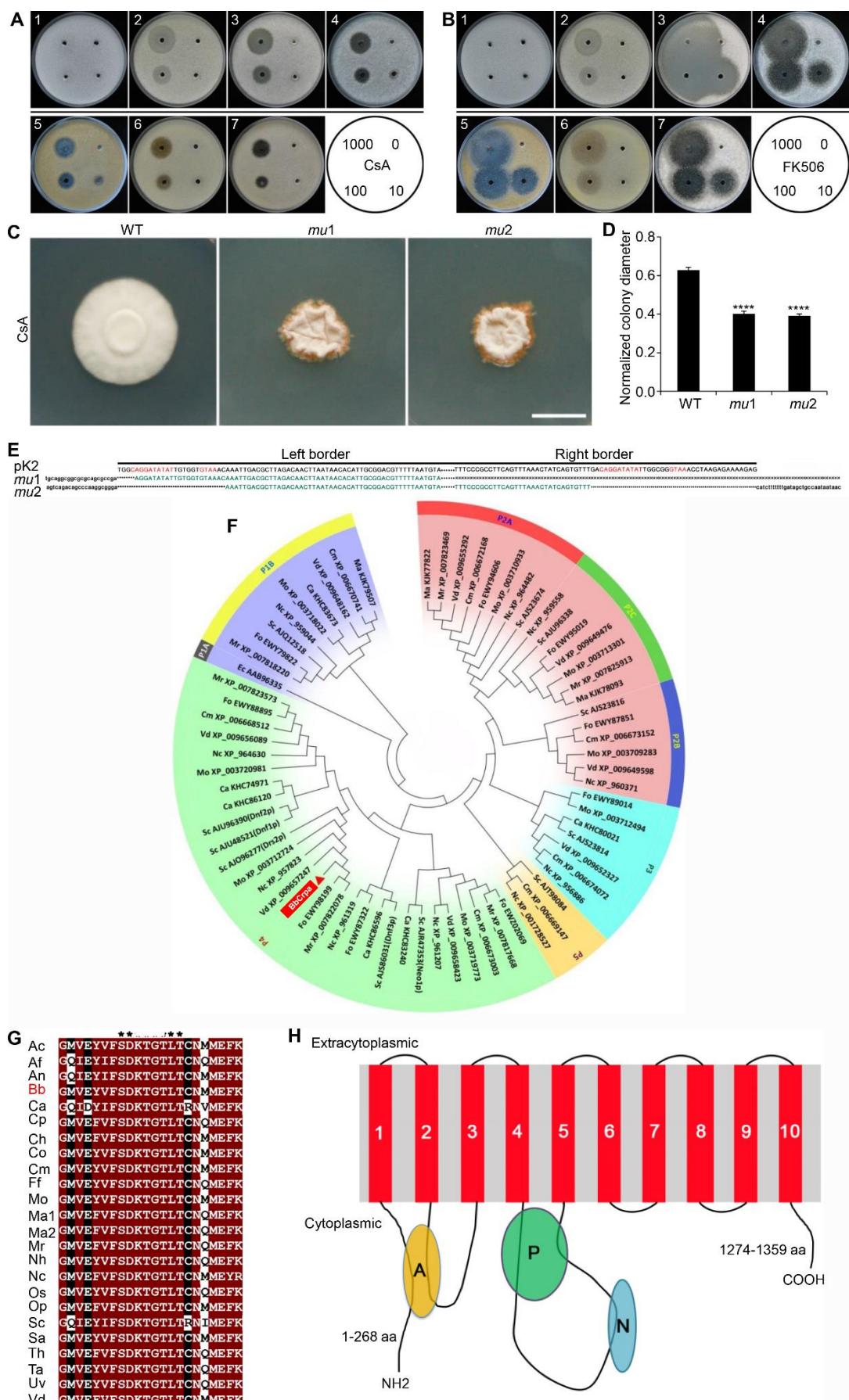
1382 **Figure 4-figure supplement 1. Y1325 (Tyr) in C-terminus is critical for**
1383 **detoxification of FK506, and the N-terminus is essential for vacuolar targeting.**

1384 **(A and B)** BbCrpa C-terminus Y1325 is critical for detoxification of FK506. All
1385 strains were incubated in CZP + FK506 (20 μ g/ml). **(C and D)** BbCrpa N- and
1386 C-terminus are crucial for its detoxification activity. All strains were incubated in
1387 CZA + FK506 (20 μ g/ml). **(E)** BbCrpa N-terminus contains vacuolar sorting signal.
1388 dB^N, Deleting N-terminus of BbCrpa; dB^C, Deleting C-terminus of BbCrpa. **(F)** The
1389 fusions of mRFP with different sizes of BbCrpa N-terminus (B^{N151-268}, B^{N216-268},
1390 B^{N226-268}, B^{N236-268}, B^{N246-268}, B^{N256-268}, and B^{N257-268}) are obviously colocalized with
1391 BbCrpa in vacuoles (arrows). **(G)** K264 is responsible for the ubiquitination of
1392 B^{N258-268 (K264A)::mRFP}. Total extracts of the strains were incubated with anti-RFP
1393 affinity beads 4FF. After intensive washing, the IP materials (anti-RFP) were
1394 subjected to immunoblot with anti-Ub (ubiquitin) and anti-RFP antibodies. The total
1395 extracts (input) were detected by immunoblot with anti-RFP antibody. +: CsA (20
1396 μ g/ml), -: DMSO. For FK506 sensitivity analysis, plates were spot inoculated with 3
1397 μ l conidial suspensions (1×10^7 conidia/ml) and incubated at 26 °C for about 10
1398 (CZP/CZP + CsA) or 14 (CZA/CZA + CsA) days. The variation in growth rates was
1399 shown as [colony diameter CZP/CZA supplemented with CsA]/[colony diameter
1400 CZP/CZA]. All experiments were performed in triplicate. Data are represented as
1401 mean \pm SD. **p < 0.01; ***p < 0.001; ****p < 0.0001 from Student's *t* test. NS, not
1402 significant. Scale bars, 1 cm for (A and C) and 5 μ m for **(E and F)**.

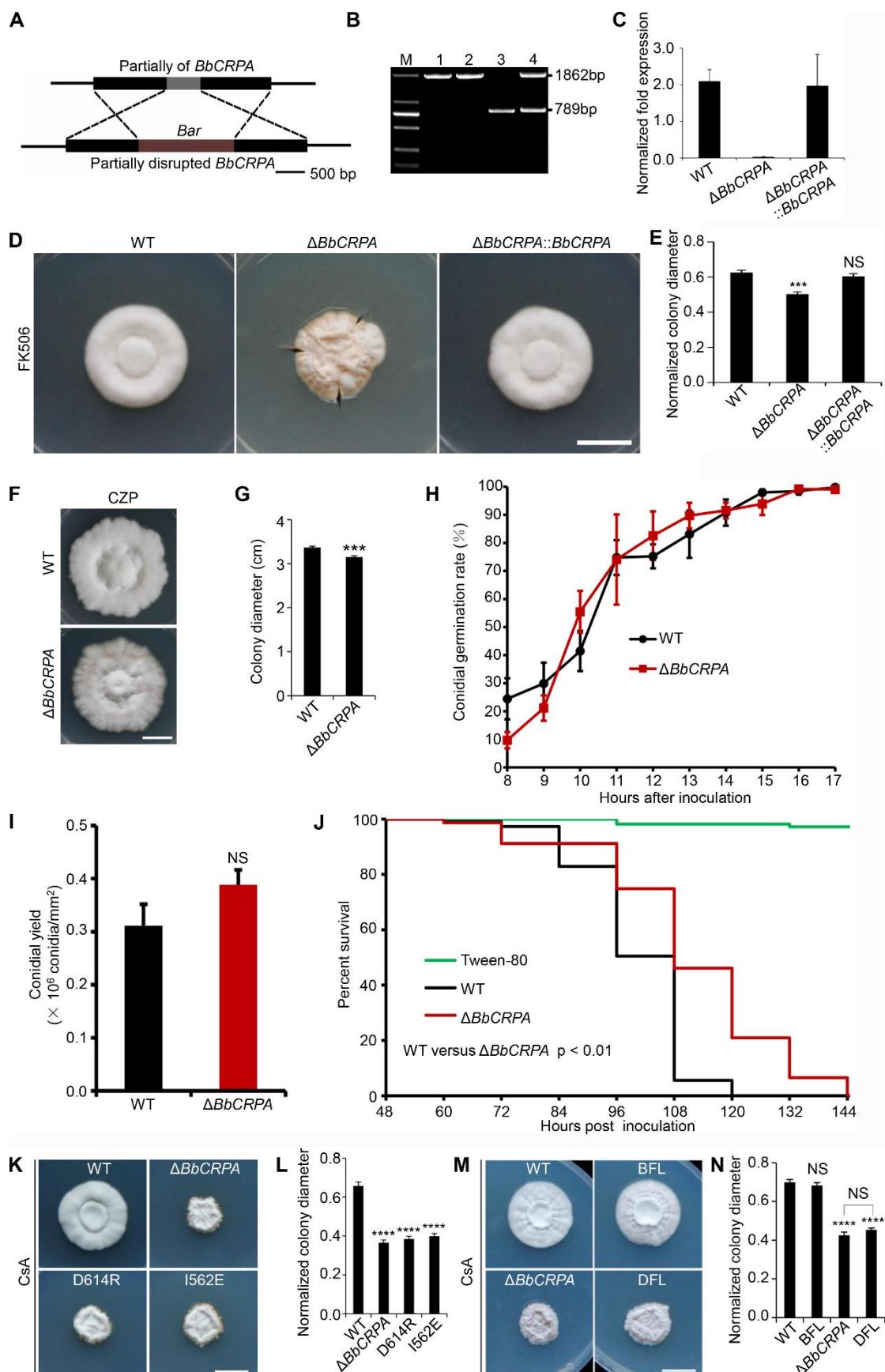
1403 The following source data are for figure 4-figure supplement 1:

1404 **Source data 1.** Growth of target strains at CZP/CZA supplemented with FK506
1405 normalized to growth at CZP/CZA.

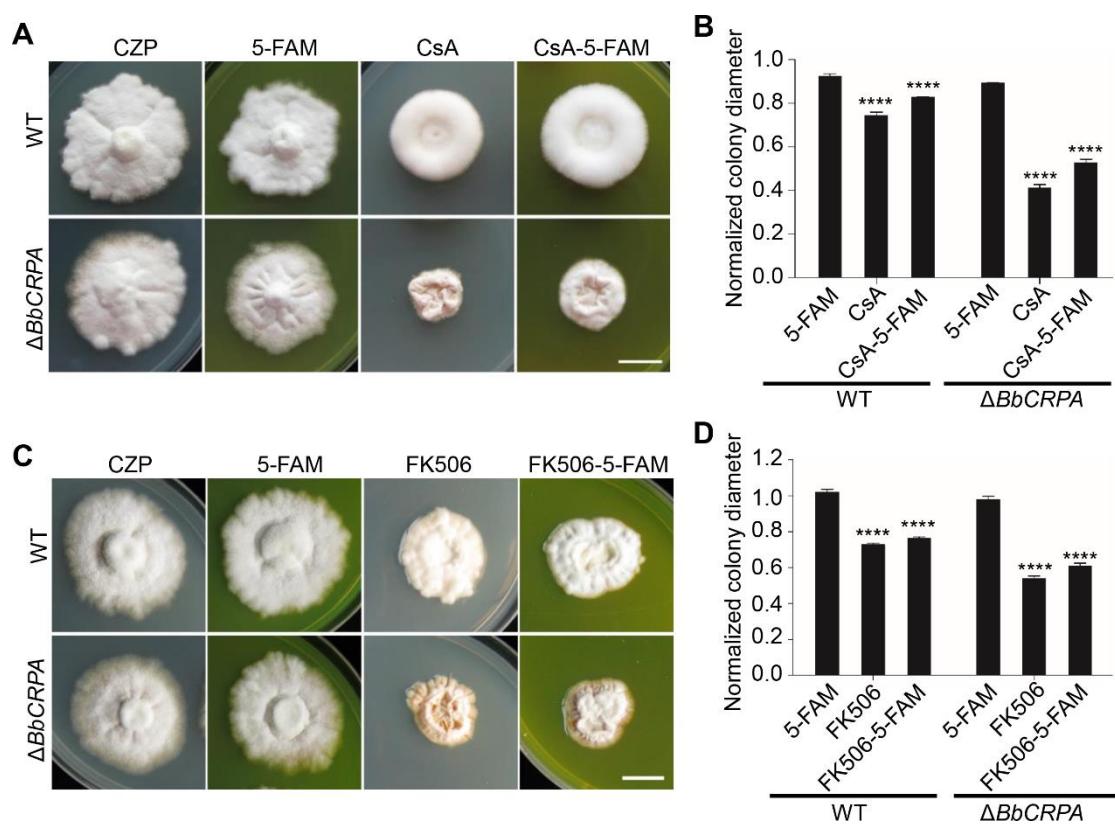
1406 **Source data 2.** Uncropped western blot.

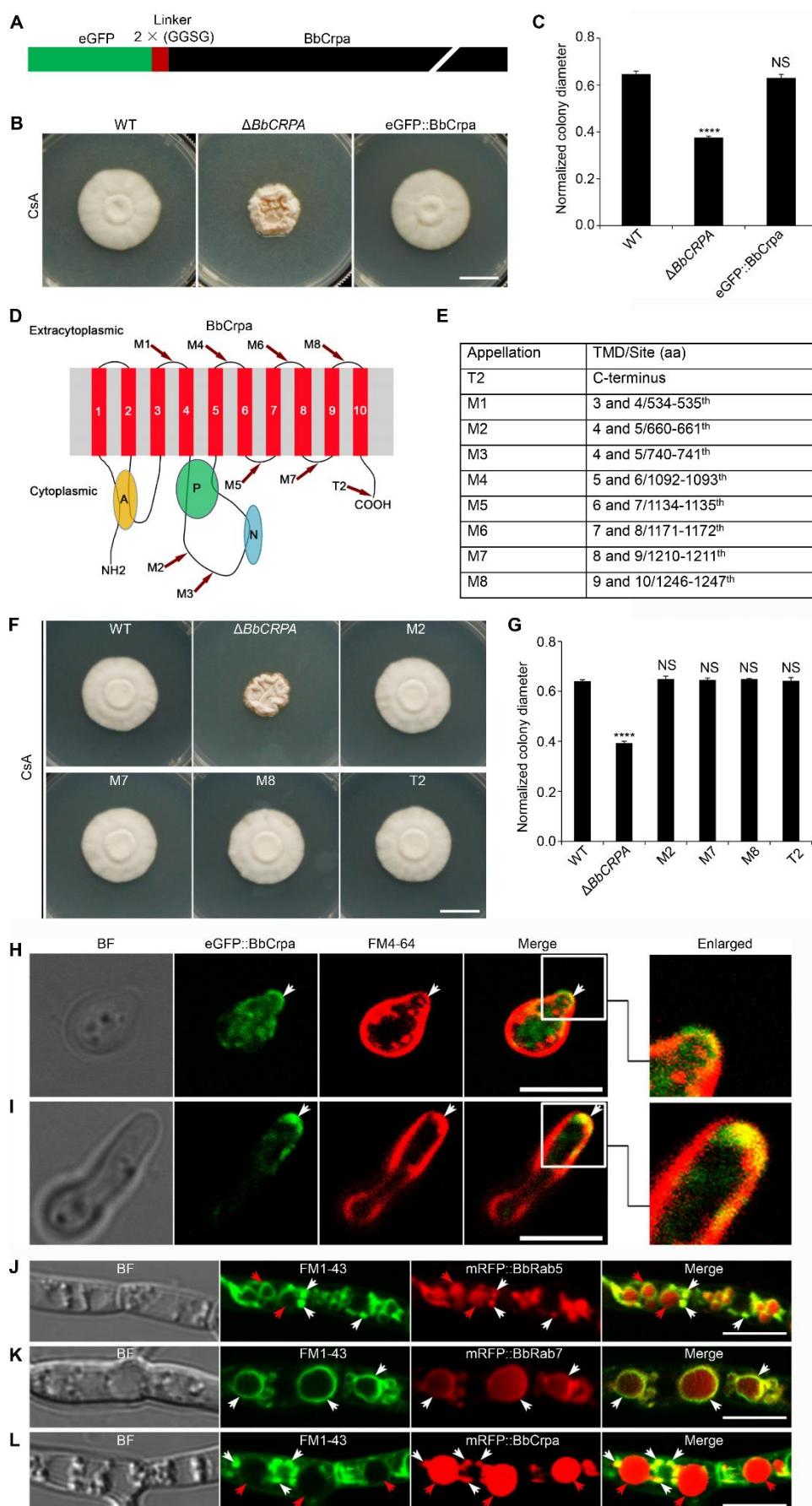

1407 **Figure 5-figure supplement 1. Validation of transgenic *BbCRPA* plants.**

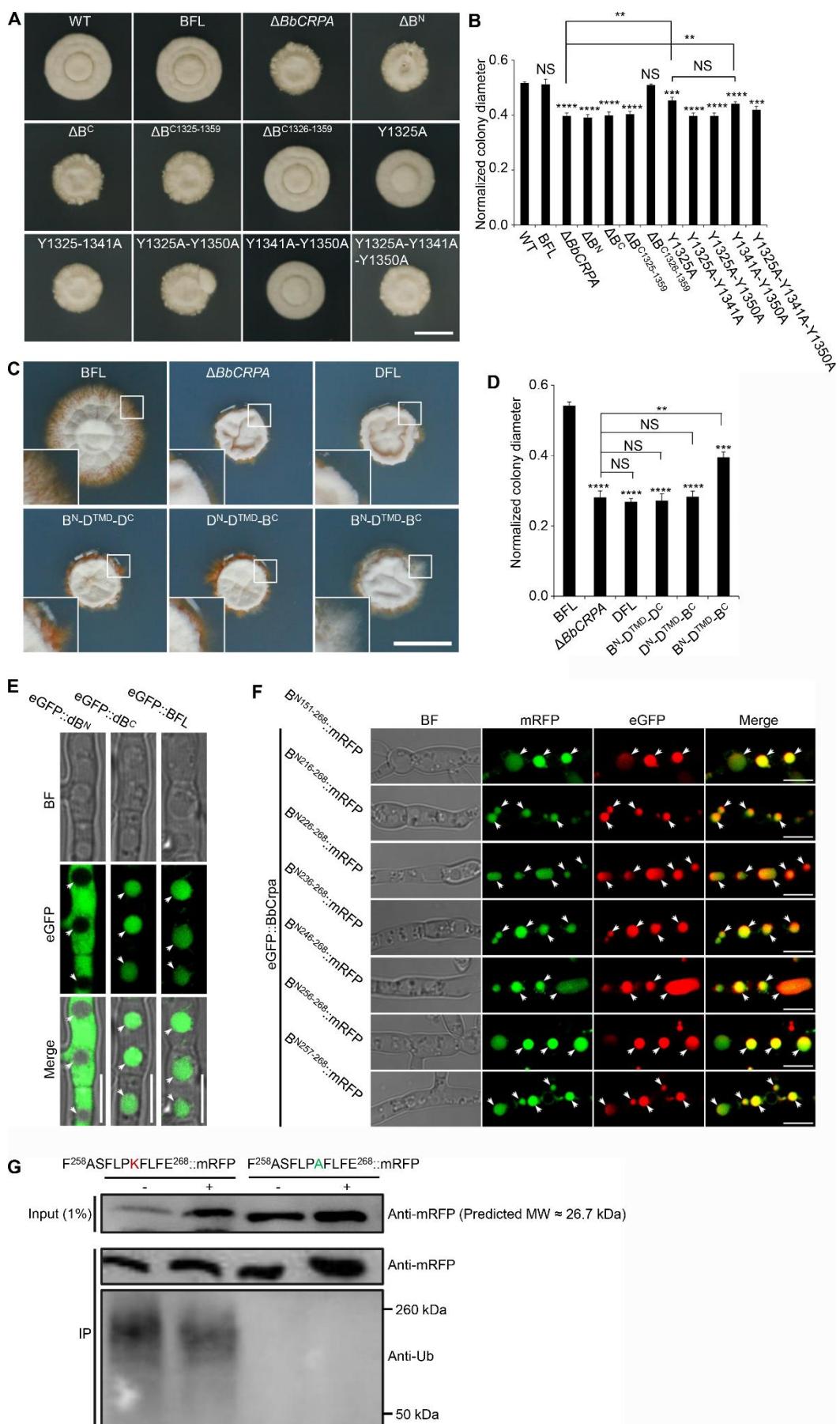
1408 **(A and D)** PCR validation of *BbCRPA* transcription in transgenic *Arabidopsis* **(A)** and
1409 cotton **(D)**. M, DNA Marker DL2000. **(B and E)** Transcriptional level detection of
1410 *BbCRPA* in transgenic *Arabidopsis* **(B)** and cotton **(E)** plants by qRT-PCR. **(C and F)**
1411 Southern blot validation of *BbCRPA* insertions in transgenic *Arabidopsis* **(C)** and
1412 cotton **(F)**. Genomic DNA was digested with *Hind*III and then hybridized with a 912
1413 bp DNA probe produced *via* PCR from *BbCRPA*. Southern blot results indicate
1414 *35S::BbCRPA-1* *Arabidopsis* line holds two copies, while *35S::BbCRPA-12* line has
1415 single copy of transgene; *35S::BbCRPA-B1* cotton line has single copy, while
1416 *35S::BbCRPA-B56* line has two copies of transgene. M, DNA Molecular Weight
1417 Marker III; plasmid, positive control fragment from modified pCAMBIA2300
1418 (PLGN).

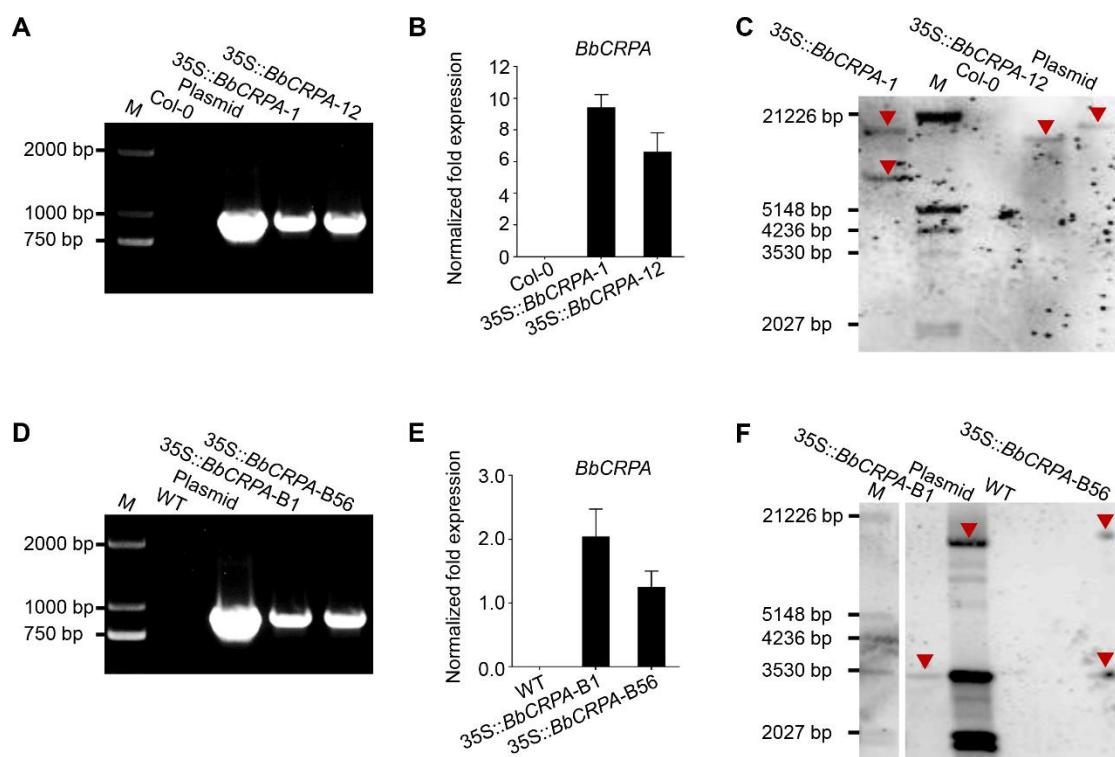

1419 The following source data are for figure 5-figure supplement 1:

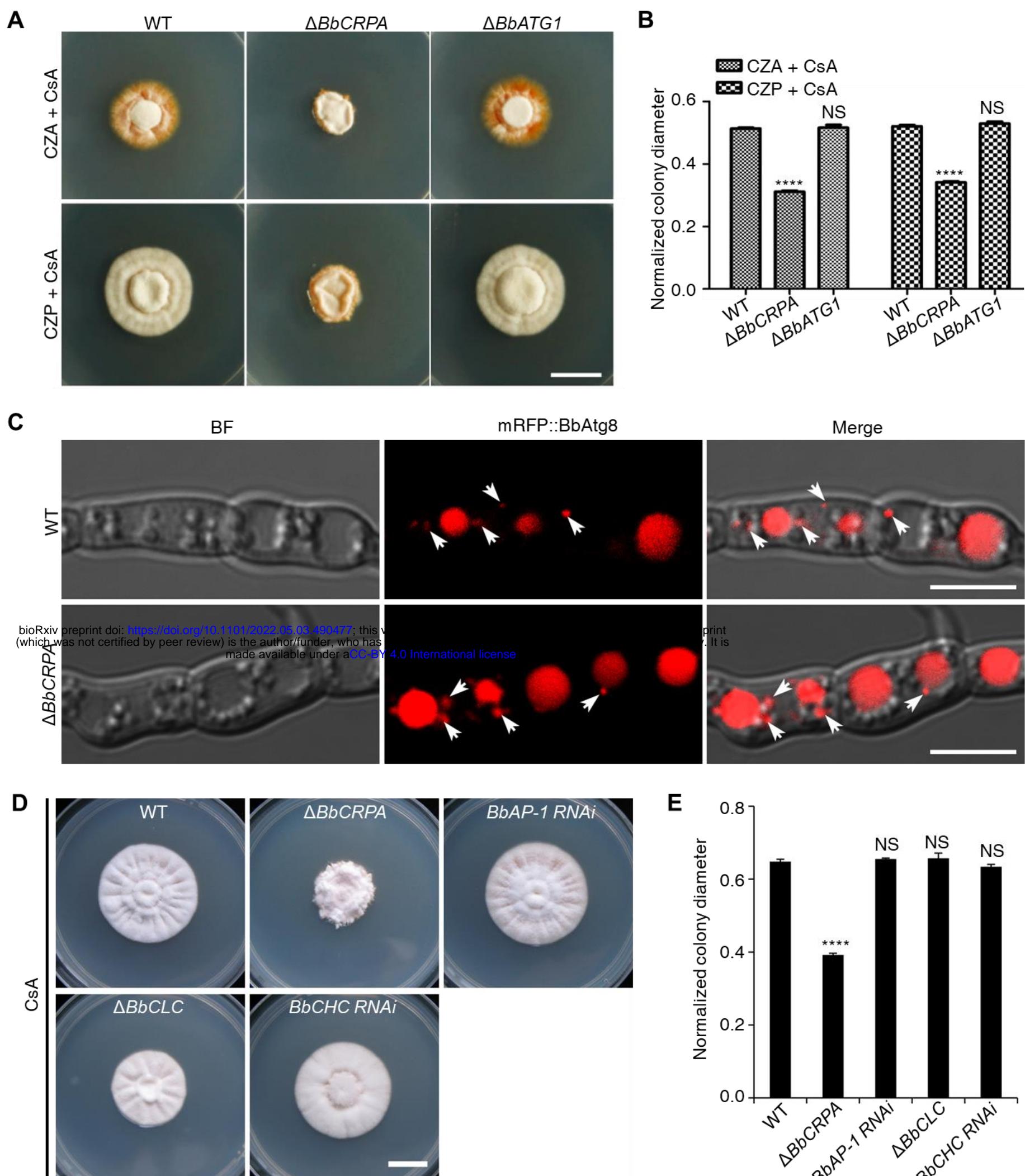
1420 **Source data 1.** qRT-PCR


1421 **Source data 2.** Southern blot.


1422 Figure 1-figure supplement 1


1423 **Figure 1-figure supplement 2**


1424 **Figure 2-figure supplement 1**


1425 **Figure 3-figure supplement 1**

1426 Figure 4-figure supplement 1

1427 **Figure 5-figure supplement 1**

Supplementary file 3. Loss of autophagy-related protein BbAtg1, adaptor protein BbAP-1, or coat protein clathrin does not affect CsA resistance. **(A and B)** Growth of the wild-type, $\Delta BbCRPA$, and $\Delta BbATG1$ strains on CZA/CZP + CsA (20 μ g/ml). **(C)** Disruption of *BbCRPA* does not affect the autophagosome formation in *B. bassiana*. Autophagosomes are marked by mRFP::BbAtg8 (arrows). **(D and E)** Growth of the wild-type, $\Delta BbCRPA$, $BbAP-1 RNAi$, $\Delta BbCLC$, and $BbCHC$ strains on CZP + CsA (20 μ g/ml). CLC, clathrin light chain; CHC, clathrin heavy chain. For CsA sensitivity analysis, plates were spot inoculated with 3 μ l conidial suspensions (1×10^7 conidia/ml) and incubated at 26 °C for about 10 days. Different strains showed variation in growth rates and the data were shown as [colony diameter CZP supplemented with CsA]/[colony diameter CZP] in **(B)**. Scale bars, 1 cm for **(A and D)** and 5 μ m for **(C)**. Data are represented as mean \pm SD. ****p < 0.0001 from Student's *t* test. NS, not significant.

The following source is for supplementary file 3:

Source data 1. Growth of target strains at CZP/CZA supplemented with CsA normalized to growth at CZP/CZA.