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Abstract

Accurate identification of genetic variants from family child-mother-father trio sequencing
data is important in genomics. However, state-of-the-art approaches treat variant calling
from trios as three independent tasks, which limits their calling accuracy for Nanopore long-
read sequencing data. For better trio variant calling, we introduce Clair3-Trio, the first
variant caller tailored for family trio data from Nanopore long-reads. Clair3-Trio employs a
Trio-to-Trio deep neural network model, which allows it to input the trio sequencing
information and output all of the trio’s predicted variants within a single model to improve
variant calling. We also present MCVLoss, a novel loss function tailor-made for variant

calling in trios, leveraging the explicit encoding of the Mendelian inheritance. Clair3-Trio
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showed comprehensive improvement in experiments. It predicted far fewer Mendelian
inheritance violation variations than current state-of-the-art methods. We also
demonstrated that our Trio-to-Trio model is more accurate than competing architectures.
Clair3-Trio is accessible as a free, open-source project at https://github.com/HKU-

BAL/Clair3-Trio.

Introduction

Accurate identification of genetic variants in family trios in the human genome is an
important task in genomics, which provides insight into precision medicine and phenotype
understanding [1]. The human genome follows the Mendelian inheritance [2], with half of
the child's genome in family trios inherited from each parent. Calling genetic variants in trios
provides a more comprehensive understanding of the inheritance pattern of genetic

variants in families [3].

Several state-of-the-art deep learning-based methods are available for calling small variants
from Oxford Nanopore Technologies (ONT) data. They are based on two main designs:
pileup and full-alignment. Clairvoyante [4], Clair [5] and Nanocaller [6] use a pileup-based
design, which summarizes the read alignments into features and counts, which are then
piped into a variant-calling network. PEPPER-Margin-DeepVariant (PEPPER) [7], on the other
hand, applies a haplotype-aware variant calling pipeline and uses full alignment-based input
to call variants via neural networks. Clair3 [8] combines the two major designs, using an
advance and cascade design, which symphonizes pileup for the best speed and full-

alignment for the best accuracy for calling variants from ONT data. Other variant-calling
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methods, including Medaka [9] and Longshot [10], are also available for ONT data. However,
all the state-of-the-art methods are designed for calling individual variants from trios and
fail to leverage Mendelian inheritance in the family for better variant-calling accuracy for

ONT data.

For calling varaints with genetic information shared in family trios, two pilot studies based
on DeepVariant [11] have been developed. dv-trio [12] provides a processing pipeline to call
variants using DeepVariant, together with GATK [13] and FamSeq [14], to reduce the
number of Mendelian inheritance violations in its variant calling. DeepTrio [15] extends
DeepVariant’s single sample input to accept the input of three samples in its deep neural
networks to call candidate sites identified by heuristic checking. Current trio variant callers
do not include Mendelian inheritance violation factors in their model architecture designs or
decisions. Furthermore, all these methods are designed for lllumina and PacBio HiFi data,
and cannot call variants from ONT data. Therefore, there is currently no trio information-

aware caller available for calling variants from ONT data.

Generally, two research gaps remain for calling variants from trios for ONT data: (1) how to
train the model to learn from the information about both individuals and that preserved in
family trios; and (2) how to train the model to predict following Mendelian inheritance, a
basic feature in family trios. Unfortunately, these two questions have never been studied in

the ONT data and remain unsolved in the community.

To fill the two main research gaps and improve variant calling from trios’ ONT data, we

propose a new model: Clair3-Trio. Clair3-Trio is the first variant caller tailored for family
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trios ONT data with a Trio-to-Trio deep neural network model design that allows it to input
the trio’s sequencing information and output all of the trio’s predicted variants. Using the
Trio-to-Trio model, Clair3-Trio can efficiently call variants based on individual and family trio
information. We also designed a loss function, MCVLoss (Mendelian Inheritance Constraint
Violation Loss), to make the model explicitly encode the priors of Mendelian inheritance in
trios to improve its variant calling (described in the Methods section). Based on our
experiment on the Genome in a Bottle (GIAB) HG002 trio data [16], Clair3-Trio showed
comprehensive improvement in experiments compared to state-of-the-art methods. It
showed an increment of over +10% in the F1-score of the child and +5% in the F1-score of
the parents compared to Clair3 and PEPPER when tested at 10x ONT data. In addition, it
showed an order of magnitude fewer Mendelian inheritance violations than other methods.
All codes and experimental settings for Clair3-Trio are publicly available at

https://github.com/HKU-BAL/Clair3-Trio.

Methods

Family trio variant calling with Clair3-Trio

Clair3-Trio consists of two main modules (Figure 1A): (1) data preprocessing, which uses the
Clair3 pileup model and WhatsHap phase, as well as the haplotag sub-module [17] function

to phase the data of each individual in a family; and (2) model calling, which calls family trio
variants with the Clair3-Trio model. The inputs for Clair3-Trio are three alignment files from

a family trio: child, mother and father. The workflow and model are discussed in the

following.
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Data preprocessing

For data preprocessing, first, we use the Clair3 pileup model to efficiently find all genetic
variants that can be easily predicted with high confidence, and then we use WhatsHap to
obtain all phase variants and haptag reads, based on the called heterozygous single
nucleotide polymorphisms (SNP) to get phased alignments for the Clair3-Trio model. With
all individuals' haptaged alignments available, we use a simple heuristic approach to identify
candidate positions that might have any genetic variants in the family, as follows: (1) the
Clair3 pileup model grasps all positions with supporting alternative allele frequency
exceeding 0.08 and outputs all individual variant and non-variant calling with confidence
scores [8]. (2) Next, all pileup variants called and 20% of low-quality pileup reference calls
are collected from each individual as the individual's potential variant candidate sites. (3)
Then we unite all the potential variants of each individual in the family as the trio's variant
candidates. Thus, any variants identified in a sample can be treated as candidates in the

Clair3-Trio model.

Clair3-Trio model: a Trio-to-Trio deep neural network model

The Clair3-Trio model is a Trio-to-Trio model that can input all alignments from the family
trio and output all variants from the same trio. The inputs for the Clair3-Trio model are
generated by merging phased full alignments from trios. For each individual, the full-
alignment information is converted into eight different feature channels, as previously
discussed for Clair3 [8]. For each channel, we aggregate the same channel from each

individual in the same family order as the input of the Clair3-Trio model (Figure 1B).
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The neural network of the Clair3-Trio model consists of multiple layers: convolutional layers
(Conv), residual convolutional layers (ResBlock), pyramid pooling layers, and dense layers

(Figure 1B). Clair3-Trio uses independent dense layers to predict each individual's genotype,
zygosity, and two insertion or deletion (INDEL) lengths in the last layer. All outputs from the

model are then combined and converted to variant records for each individual.

Training a Clair3-Trio model

To train a Clair3-Trio model in family trio data, we applied (1) a label cleaning module
(Representation Unification) to clean the training data, and (2) a trio data filtering module
(MCV filtering) to further filter Mendelian violation sites in the training data. The two
modules were established based on experiments. We use the Representation Unification
module from Clair3 to unify the true variants label with the alignment information in the
training data. The Representation Unification model may include Mendelian conflict in the
unification process. We added MCYV filtering to discard a few candidate sites (0.05% of
candidate sites) in training data that violated Mendelian inheritance constraints. After
cleaning the data, we performed random downsampling to make the model increase its
generalization at different levels of data coverage. We downsampled the data into a range
of coverage of 10x, 30x, 60x, and 80x for all samples, kept the child data at high coverage,
and downsampled only the parent samples for low coverage. After downsampling, we kept
30% of the data of each coverage combination to balance speed and performance, leading
to 33,353,000 candidates (from the GIAB HG002 family) in our training dataset. With the
training dataset available, Clair3-Trio was trained in a two-step procedure. First, we trained
an initial model of Clair3-Trio via the focus loss function, and then we fine-tuned the initial

Clair3-Trio model with the addition of multiple task MCVLoss function. We also tried other
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training techniques, but they failed to improve Clair3-Trio. This is elaborated in the

Supplementary Notes.

Differences between Clair3-Trio and the Clair3 full-alignment model

Our approach differs from Clair3 mainly in the following ways:

(1) Targeted for best accuracy, Clair3-Trio can call variants in all potential variant
sites in a family, while Clair3 calls them in individuals. Clair3-Trio has much more
relaxed candidate selection criteria for variant candidate selection than Clair3.
Claire3-Trio has 100% of variants and 20% of reference sites, compared to 30%
and 10%, respectively, in Clair3, so Clair3-Trio ends up with 2.2 times more
candidates. On the other hand, the variant candidates in the Clair3-Trio model
are the union of all trio members, resulting in 1.9 times more candidates than
individual variants. Typically, Clair3-Trio calls 4.2 times more candidates, on
average, than the default Clair3 for each sample.

(2) Clair3-Trio is a Trio-to-Trio model, which uses all data in the trio to predict all of
the trio members’ variants directly and consistently, while Clair3 is a powerful
individual variant caller, which can be treated as a One-to-One model. More
information about the Trio-to-Trio and the One-to-One model is provided in the
Results section.

(3) The Clair3-Trio model uses the MCVLoss function for fine-tuning, adding
penalties to the trio's variant predictions that violate the Mendelian constraints,
giving Clair3-Trio a comprehensive understanding of the family trio’s variant

calling.
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With the Trio-to-Trio model's architecture and MCVLoss function, our model is well-tailored
for calling variants in a family, resulting in a substantial improvement in all the benchmark

experiments (see the Results section) using the same training data as in Clair3.

Modeling Mendelian inheritance with MCVLoss in deep neural networks

The Trio-to-Trio model can predict the trio's variants with trio’s information, but how to
explicitly add the Mendelian inheritance information to the model remains an open
guestion. In the following subsections, we discuss the MCVLoss function, which is designed
to control the Mendelian inheritance violation rate in the model. We briefly describe the

original loss function in Clair3 and then introduce the MCVLoss function.

Loss function for a single sample

First, we detail the original loss function for an individual, inherited from Clair3, to better
illustrate the basic components in the Clair3-Trio loss function. The output of Clair3 includes
four variant tasks — genotype, zygosity and two INDEL length tasks — as previously described
in Clair3 [8]. The most important task in Clair3 is to predict the genotypes, which are
classified into 21 genotypes. If X denotes the alignment from a single sample, the probability
of each possible genotype from the 21 genotypes for each sample is:

pi = softmax(th(F’(X)), i €{gty, gty ...,gt1} (1)
where Fj; represents the Clair3 model's last layer — the 21-genotype outputting layer — and
F' represents all the other Clair3 layers, other than the last Fy; layer, as in Figure 1B. Based
on the probability of 21 genotypes, the loss function of Clair3 can be simplified as:

Loss(F) = FocalLoss(Ygt,Pgt) + L,(F) 2)
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where Y;; denotes the true 21-genotype label, P;; denotes the predicted probability of each
21-genotype label, and L, denotes the L2 regularization terms of the model. We ignore the
zygosity and INDEL length terms in this simplified formula for simplicity (their formulas are
identical to the 21 genotypes task). For applications, the complete loss functions, including
21 genotypes, zygosity, INDEL length 1 and INDEL length 2, are described in the Clair3 paper

[8].

The output of Clair3-Trio and the computation of the trio probability

We extended the model output in Clair3 from the individual to compute trio genotypes in

Clair3-Trio. The probability of the trio members is represented as:

Dei = softmax(th,C(F’(X)),

Dp,j = softmax(th,pl(F’(X)), 3)

Dp,; = softmax(Fy, (F'(X))
where the F' represents all layers of Clair3-Trio except for the last layer, and
Fytcr Fytp,r Egtp, represents the last three fully connected layers for computing the 21
corresponding child, parent-1 and parent-2 genotypes. Parent-1 can be the mother or father
in the trio, and parent-2 is the remaining parent. The probability of each trio genotype in the
family is computed as:

Ptrio(i,jk) = Pc,i " Ppy,j " Ppyk (4)

For each individual’s probability, we simply have the property that:

D bei=1.) py=1.) Ppa=1 5)
i 7 k

Combining formulas (4) and (5) for the trio genotype, we have a similar property for the

trio’s probability:
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Z Ptrio(i,jk) = 1 (6)

iL,jk

The Mendelian constraint violation loss function: MCVLoss

MCVLloss is based on the idea of penalizing the trio genotype that violates the Mendelian
inheritance. For each trio genotype, we define a parameter 3, representing the valid degree

of the genotype:

(1—p)?, if it follows the Mendelian inheritance (no MCV)
Berioijio) = § W if MCV,and child has one allele mismatch, (7)
Uz, if MCV,and child has two alleles mismatch

where u is the mutation rate per generation, set as 1e-8 by default [18]. Combining the
probability of each trio genotype in the family and the corresponding valid degree, the

predicted overall valid degree for trio prediction becomes:

Virio = Z ﬁm’o(i,j,k) *Ptrio(i,jk) = Z ,Btrio(i,j,k) *Pci " Ppy,j* Pp,k (8)

i)k i),k
Based on formulas (6), (7) and (8), we know that V;,.;, € (0,1). With all this information, the
MCVLoss is defined as:
MCVLosS(Pirip) = —a - 10g€(Vipio + €)
= —a-log Z BtrioGijk) “ Pei* Ppyj Ppyk T € )
i)k
where a controls the importance of the Mendelian inheritance penalty in the model, and €
is a small number (1e-9 by default) to cap the log function to avoid reaching infinity. a is set

as 1 by default, which was decided experimentally.

With the MCVLoss available, the final Clair3-trio loss function is:

10
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Loss(F) = FocalLoss(Ygt,c,Pgt'C) + FocalLoss(l(qt,pl,Pgt,pl) + FocalLoss(Ygt,pz,Pgt,pz)
+ MCVLoss(Pspip) + Lo (F) (10)

where Y;; denotes the true 21-genotype ground truth and P, denotes the predicted

probability of each 21-genotype label.

In this manner, MCVLoss introduced the Mendelian inheritance prior to model training. The

detailed results of using MCVLoss are presented in the Results section.

Benchmarking methods and metrics

We use Precision, Recall, and F1-score metrics to evaluate the family trio variant-calling
performance in different configurations. The Precision, Recall and F1-score are computed
via hap.py (v0.3.12) [19]. We computed the number of Mendelian violation variants in trios
using the following steps: (1) merging all trio variants results using BCFtools (v1.12) [20] with
the flag "-f PASS -0 -m all", and (2) computing the number of Mendelian violations via RTG
tools (v3.12.1) [21]. We also computed the number of de novo variants in the model's
prediction, where the de novo variants [15] are defined as variants confidently genotyped as
0/1 in the child and as 0/0 or unknown in the parents. Note that the metrics of Precision,
Recall, F1-score, and number of de novo variants are constrained in the confidence region,

while the number of the Mendelian violations is computed in all sites.

11
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Results

Data description

We conducted our experiments on the dataset collected in the Genome in a Bottle (GIAB)
[16] Ashkenazi Jewish trio (HG002-child, HGO0O3-father, HGO0O4-mother). We obtained the
ONT sequencing data from the Human Pangenome Reference Consortium (HPRC) [22], with
high coverage in three samples, HG002 (~432x), HG0OO03 (~85x), and HG004 (~88x), which
were base-called via Guppy4.2.2. We trained models on the ONT data while holding out
chromosome 20 in all training stages and preserving it for testing. The truth variants for the
trio were obtained from GIAB's v4.2.1 small variant benchmark [16]. We compared Clair3-
Trio with Clair3 (v0.1-r6) and PEPPER-Margin-DeepVariant (r0.4) (PEPPER). For individual
evaluation, the benchmark was constrained in the individual region provided in GIAB's
v4.2.1 small variant benchmark, while the computation of de novo variants was constrained

in the trio’s overlapped high-confident bed regions.

Assessing variant-calling accuracy in individuals

We compared the Clair3-Trio variant-calling performance against Clair3 and PEPPER at
different coverage in individuals from the GIAB trio. The overall benchmark results are
shown in Figure 2 (SNP+INDEL), with SNP and INDEL breakdowns in Supplementary Figure 1
(SNP) and Supplementary Figure 2 (INDEL). For all variants, we observed that Clair3-Trio had
a better performance in the F1-score than Clair3 and PEPPER. The performance gain was
especially profound in the lower coverage data. Clair3-Trio achieved an F1l-score of 92.85%
and 92.12% at 10x data from HG002 (child) and HG003 (parent), compared to 82.78% and

86.77% in Clair3, and 54.77% and 65.70% in PEPPER, respectively. Clair3-Trio was

12
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significantly better than Clair3 (p-value < 0.01, two-tailed t-test) and PEPPER (p-value <
0.001, two-tailed t-test) at 10x coverage. In high coverage data, at 70x to 90x, the Clair3-Trio
performance improvement over Clair3 and PEPPER was less significant. More details are

provided in Supplementary Table 1.

The SNP and INDEL performance breakdowns are shown in Supplementary Figure 1 and 2.
We found that Clair3-Trio had higher performance in both SNP and INDEL than Clair3 and
PEPPER. For SNP, Clair3-Trio performed better than Clair3 and PEPPER, especially below 40x
coverage. For INDEL, Clair3-Trio showed consistently better results than Clair3 and PEPPER.
For INDEL, Clair3-Trio achieved an F1-score of 78.07% and 77.40% at 60x HG002 (child) and
HGO0O03 (parent) data, respectively. This is much higher than 72.45%, 75.02% in Clair3 (p-
value < 0.05, two-tailed t-test) and 66.94%, 68.91% in PEPPER (p-value < 0.001, two-tailed t-

test). These results verify the effectiveness of the Clair3-Trio model.

Comparing performance gain among members of the family trio, we found that the
performance gain in the child (HG002) was much more profound than that in the parents
(HG003 and HG0O04). For INDEL, Clair3-Trio achieved a +5.62% increment in the F1-score in
the child compared to Clair3 at 60x, while the improvement dropped to +2.38% in the
parents (Supplementary Table 1). The rationale is that for calling variants, the family trio
provided more information about the child, which shares two haplotypes with parents,

while each parent shares only one haplotype with the child.

13
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Assessing variant-calling accuracy in a family trio

Comprehensively evaluating variants across all family members using metrics like the
number of Mendelian violations is important when calling variants in a family trio. In
Mendelian inheritance violations, Clair3-Trio showed an order of magnitude fewer violations
than Clair3 and PEPPER at 10x to 30x coverage. As shown in Figure 3 and Supplementary
Table 1, at 10x coverage, there were 7,072 Mendelian violations called from Clair3-Trio,
while the number was 48,345 and 131,509 in Clair3 and PEPPER, respectively. At 60x, in
contrast, there arewere 8,429 Mendelian violations called from Clair3-Trio, and 30,725 and
20,559 in Clair3 and PEPPER, respectively. Regarding the number of Mendelian violations
found in Clair3-Trio at 60x, 70.3% and 29.7% of the calls were SNP and INDEL, respectively,
indicating a large proportion of SNP and INDEL Mendelian violations recognised by Clair3-
Trio. In contrast, for the number of de novo variants, Clair3-Trio has fewer false-positive (FP)
de novo variants than other tools had. Clair3-Trio had 197 FPs at 60x data compared to 458
and 455 in Clair3 and PEPPER, respectively. However, Clair3-Trio found slightly fewer true-
positive (TP) de novo variants, 33, compared to 35 in both Clair3 and PEPPER. We gathered
all false-negative de novo variant cases of Clair3-Trio in Supplementary Table 2 and present
their alignment visualization in Supplementary Figure 3. More discussion about the
Mendelian violations and de novo variant calling for Clair3-Trio are presented in the

Discussion section.

Assessing the effect of varying parental coverage on variant-calling accuracy

When calling variants from trios, there are cases in which the data from the parents is only

half or less of the coverage of the children. To assess the effect of low parental coverage on

14
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variant calling, we set the child sample to coverage of 60x and downsampled the sequencing
data of parents from 60x into test ranges of 10x, 20x, 30x, 40x, 50x, and 60x. The test results
are shown in Figure 4 (SNP+INDEL), and further details are provided in Supplementary
Figure 4 (SNP), Supplementary Figure 5 (INDEL), and Supplementary Table 3. For the child
sample, the performance of Clair3-Trio is similar to that of Clair3 when the parent has very
low coverage (10x) overall, indicating that 20x or more for parents is required for trio calling
to improve the variant calling for the child. When the parents have half the child's coverage
(child 60x, parents 30x), Clair3-Trio achieved an overall F1-score of 96.92%, compared to
96.50% and 95.98% for Clair3 and PEPPER, respectively. Separating the results from SNP and
INDEL, we found that Clair3-Trio outperformed the other tools when parents had coverage
higher than 10x for SNP calling and coverage higher than 30x for INDEL calling. Further, in
Clair3-Trio, there was a large improvement in the performance of low-coverage parent data
when higher coverage for the child was provided (Figure 4). Clair3-Trio achieved a +6.02%
increment in the F1-score in HGOO3 (10x parent sample) compared to Clair3. Furthermore,
when parents had half the child's coverage (60x for child and 30x for parents), Clair3-Trio
had an F1-score of 96.54% for HGOO03, which is also higher than 95.83% in Clair3 and 95.07%
in PEPPER. The improvement of Clair3-Trio on the trio data makes it useful for population
genome projects in which better variant calling performance is expected for both parents

and children.
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Building the Clair3-Trio model

Comparison of different architectures and model shape

We first categorized different methods based on their input and output information to
generalize different methods for variant calling from family child-mother-father trio data.
The One-to-One model inputs single sample information and outputs single sample variants.
Clair3, PEPPER and Medaka are typical One-to-One models. The Trio-to-One model inputs
data from three samples into the model and outputs single sample variants. For example,
DeepTrio, which works with I[llumina and PacBio HiFi data, is a typical Trio-to-One model.
Finally, the Trio-to-Trio model inputs data from three samples into the model and outputs
the three samples’ variants simultaneously. In Clair3-Trio, we built the first Trio-to-Trio
model.

To compare the performance of different architectures, we ablated the input and output
tensors of Clair3-Trio models accordingly to test as three architectures: One-to-One, Trio-to-
One, and Trio-to-Trio models. The One-to-One model has single sample input and predicts
single sample variants, as in Clair3 and PEPPER. The Trio-to-One model has information of
three samples in its input, but predicts single sample variants in its model, as in DeepTrio.
The Trio-to-Trio model is a native version of Clair3-Trio, which has three samples input and
three samples output, but with deactivated MCVLoss and fine-tuning. We trained a single
model for all architectures on chromosome 1 64x data from the GIAB HGO0O2 trio and tested
the performance on chromosome 20. For the Trio-to-One model, which is sample order
specific, we trained two models separately to make predictions: a child model and a parent
model. The benchmark results for the child as well as the number of Mendelian violations

are in Figure 5.
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We found that including trios information in the model efficiently improves the variant
calling performance overall, especially in terms of Mendelian inheritance violations (Figure
5). Switching from One-to-One to Trio-to-One alone can boost the F1-score in the child by
about +0.23%. The performance increment is consistent with the DeepTrio results [15]. The
performance-boosting increased to +0.37% and +1.2% when the architecture was switched
to Trio-to-Trio and Clair3-Trio (with MCVLoss and fine-tuning), respectively. For the child
sample, the F1-score for Trio-to-Trio, One-to-One and Trio-to-One was 96.30%, 95.93%, and
96.16%, respectively. However, for the parent samples, Trio-to-Trio was only slightly better
than One-to-One and Trio-to-One. We also found that the Trio-to-Trio architecture
predicted many fewer Mendelian inheritance violation variants: 7,872 in the Trio-to-Trio

model, 29,753 in the One-to-One model, and 20,016 in the Trio-to-One model.

To further explore the best architecture for the Trio-to-Trio model, we also evaluated the
effect of using different model shapes. With three inputs and three outputs available, we
developed multiple candidates for model shape, as illustrated in Figure 5: (1) Model-A,
which inputs the information of all samples into Resblock and divides the last dense layer to
give three outputs; (2) Model-B, which inputs the information of all samples into Resblock
divided at all dense layers; (3) Model-C, which inputs single sample information into shared
Resblock, and divides the last dense layer to generate three outputs; and (4) Model-D,
which shares multiple Resblock from a single input and divides the last dense layer to
generate three outputs. We found that Model-A and Model-C achieved a similar F1-score
(96.30% for Model-A and 96.26% for Model-C) in the child sample to that in Model-B

(96.18%) and Model-D (96.25%), but Model-A had many fewer Mendelian violation
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predictions than the other models (7,872 compared to 11,278, 10,053 and 10,370,
respectively, in the other shapes). For this reason, we selected Model-A as the best shape

for the Trio-to-Trio architecture.

Finetuning with MCVLoss

The MCVLoss (Mendelian Inheritance Constraint Violation Loss) function is designed to
improve variant calling in trios by leveraging the explicit encoding of the priors of the
Mendelian inheritance in trios. We found that MCVLoss can effectively reduce Mendelian
violation prediction in variant calling. However, the prediction is better accompanied with
fine-tuning techniques, in which we train a Clair3-Trio model in two steps: (1) training Clair3-
Trio without MCVLoss with the default learning rate (1e-3 in our setting), and (2) fine-tuning
the trained Clair3-Trio model with MCVLoss with a lower learning rate (1e-5 in our setting).
When using the fine-tuning technique alone, the F1-score from HG002, HG003 and HG004
had a performance boost of +0.2% (Table 1). We got the best results when combining fine-
tuning and MCVLoss with the +0.2% F1-score increment and a Mendelian violations

reduction from 7,872 to 4,352.

We also evaluated the effect of using a different « rate in MCVLoss (Table 2). The a rate in
MCVLoss controls the weighting in terms of loss function, as in formula (9). We observed
that increasing the « rate efficiently decreases the number of Mendelian inheritance
violations, but slightly decreases the overall performance based on the F1-score. We found
the a rate of 1 to be the best setting for MCVLoss, which balances the F1-score and the

number of Mendelian inheritance violations metrics.
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Discussion

In this paper, we introduced Clair3-Trio, a high-performance Nanopore long-read variant
caller in family trios with a Trio-to-Trio deep neural network. Clair3-Trio is the first family
trio variant caller tailored for Nanopore long-read data with a Trio-to-Trio deep neural
network model and MCVLoss. In our experiments, Clair3-Trio significantly outperformed
current state-of-the-art methods on trio variant calling in terms of F1-score and the number
of Mendelian inheritance violations in all three samples from a trio. We also demonstrated
that the architecture of the Trio-to-Trio model is much more accurate than the One-to-One
and Trio-to-One model. The source code and the results of this study are publicly available

on GitHub.

We found that most of the Mendelian violationcases from Clair3-Trio (68.6%) for parent-1,
parent-2 and child, respectively, are: (0/0, 1/1, 0/0), (0/0, 1/1, 1/1), (0/0, 0/0, 0/1), (0/0,
0/0, 1/1) (Figure 3B). All these violations are prone to be found when there is a switch
between heterozygosity and homozygosity in a single trio sample at a site. For example, in
the case of Mendelian violations (0/0, 1/1, 0/0), the switch between heterozygous and
homozygous in any member's calling changes the variant calling to a non-Mendelian
inheritance violation call. As all members have a chance of being miscalled, these cases

remain a challenge even when trio data is available.

Clair3-Trio has high performance overall, but it has fewer de novo variants predicted than
Clair3 and PEPPER. The drop in TP of de novo variants is expected, as Clair3-Trio is designed

to predict variants by leveraging information from family trios that favor having fewer
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Mendelian violations in their prediction. For detecting de novo variants that do not follow
Mendelian inheritance, One-to-One model-based methods such as Clair3 and PEPPER can be

used to supplement Clair3-Trio.

There are some challenges and future works needed regarding trio variant calling from ONT
data. Experiments show that Clair3-Trio's improvement over state-of-the-art methods is
profound when the trio data has similar coverage among family members, but it only
marginally improves with calling variants from different data coverage (such as child
coverage of 60x and parent coverage of 10x). These results leave room for further
improvement in trio calling in diverse coverage applications. The current model is trained
with multiple coverage down-sampled from the full coverage, but only with the coverage of
the child kept equal to or larger than that of the parents, and not the cartesian product of
the down-sampled coverage of the three samples. This is a practical decision to reduce the
amount of training data and since the coverage of the child in a trio is usually higher than
that of the parents. However, this may also challenge Clair3-Trio when the coverage of
parents exceeds that of the child. An improved training scheme is expected to handle the
large amount of training data when all coverage combinations are used. On the other hand,
there is a research gap in applying variant calling in the human sex chromosome region. The
current training and testing was constrained to the autosome region, which assumes that
the variants are diplotypes and inherited from one of the parents. However, on the sex
chromosome, the assumption is unheld when calling variants in the child’s Y chromosome,
which is a haplotype and is obtained only from the father's side. Currently, there are no
tools available for calling variants in the sex chromosome region with the family information

from ONT data. We need a new design for calling variants from the sex chromosome region
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to fill this research gap. In the future, we would like to design a heuristic approach to solve
the question: if the child is female, use Clair3-Trio directly at the sex chromosome; if the
child is male, use Clair3-Trio to call variants in the pseudoautosomal regions (PAR1 and
PAR2) of the sex chromosome and build a tailored haplotype model to call variants in the

remaining regions.

Data availability

Clair3-Trio is open-source software (BSD 3-Clause license), hosted by GitHub at
https://github.com/HKU-BAL/Clair3-Trio. The 1) links to the reference genomes, true
variants, benchmarking materials, and ONT data, and 2) commands and parameters used in
this study are available in the Supplementary Notes. All analysis outputs, including the VCFs

and running logs, are available at http://www.bio8.cs.hku.hk/clair3_trio/analysis_result.
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Key points

Developed a Trio-to-Trio model to predict trio variants in ONT data.

Introduced a novel loss function, MCVLoss, to model Mendelian inheritance in trio data.

Demonstrated that the Clair3-Trio model trained on GIAB data improves variant calling in

trio data.

Demonstrated that Trio-to-Trio models can efficiently decrease Mendelian inheritance

violations compared to One-to-One and Trio-to-One models.
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Figure 1. Workflow of Clair3-Trio. A. The calling workflow of Clair3-Trio. The trio's
sequencing data are first phased by Clair3's pileup variant calling and WhatsHap phase sub-

modules and then fed into the Clair3-Trio model to call variants in the trio. B. The

architecture of the Clair3-Trio model.
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Figure 4. Overall benchmarking results on the GIAB trio when only the parent samples
have diverse coverage. The SNP+INDEL's F1-score, Precision and Recall of different tools at

coverage from 10x to 60x on parent samples with the child’s coverage fixed at 60x.
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Table 1 Benchmarking results from fine-tuning with MCVLoss.

All results were tested at 64x data. FT: fine-tune; “# of MCV”: number of Mendelian

inheritance violations in predicted variants.

Overall SNP INDEL i of
MCV- 0
FT Sample

P F1- F1- F1- MCV

Loss
Precision | Recall Score Precision | Recall Score Precision | Recall Score

HGO002 | 98.83% | 93.90% | 96.30% | 99.72% | 99.57% | 99.64% | 90.02% | 57.92% | 70.49%
N N | HG003 | 98.72% | 94.12% | 96.36% | 99.65% | 99.54% | 99.59% | 89.34% | 58.35% | 70.59% | 7872
HGO004 | 98.84% | 93.93% | 96.32% | 99.70% | 99.58% | 99.64% | 90.01% | 57.06% | 69.84%

HGO002 98.79% | 94.31% | 96.50% | 99.67% | 99.68% | 99.67% | 90.45% | 60.21% | 72.29%
Y N | HG003 98.83% | 94.42% | 96.58% | 99.61% | 99.64% | 99.63% | 90.99% | 59.96% | 72.29% | 4885
HG004 98.91% | 94.22% | 96.51% | 99.69% | 99.66% | 99.67% | 91.06% | 58.78% | 71.44%

HGO002 |  99.02% | 93.59% | 96.23% | 99.72% | 99.56% | 99.64% | 91.69% | 55.69% | 69.30%
N Y | HG003 | 98.87% | 93.95% | 96.34% | 99.64% | 99.61% | 99.63% | 90.64% | 56.58% | 69.67% | 4754
HGO004 | 98.83% | 93.95% | 96.32% | 99.72% | 99.61% | 99.66% | 89.64% | 57.05% | 69.72%

HGO002 98.72% | 94.37% | 96.50% | 99.67% | 99.68% | 99.68% 89.75% | 60.70% | 72.42%
Y Y | HG003 98.77% | 94.46% | 96.57% | 99.61% | 99.63% | 99.62% | 90.47% | 60.31% | 72.37% | 4352
HG004 98.88% | 94.27% | 96.52% | 99.69% | 99.66% | 99.67% | 90.83% | 59.14% | 71.64%
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Table 2 Benchmarking results of different a rate in MCVLoss.

All results were tested at 64x data. “# of MCV”: number of Mendelian inheritance violations

in predicted variants.

Overall SNP INDEL

# of
Fl- Fl- Fl- MCV
Precision | Recall Score Precision | Recall Score Precision | Recall Score

HG002 | 98.79% | 94.31% | 96.50% | 99.67% | 99.68% | 99.67% | 90.45% | 60.21% | 72.29%
0 | HG003 | 98.83% | 94.42% | 96.58% | 99.61% | 99.64% | 99.63% | 90.99% | 59.96% | 72.29% | 4885
HGO004 | 98.91% | 94.22% | 96.51% | 99.69% | 99.66% | 99.67% | 91.06% | 58.78% | 71.44%
HG002 | 98.77% | 94.33% | 96.50% | 99.67% | 99.68% | 99.68% | 90.19% | 60.38% | 72.33%
0.1 | HG003 | 98.83% | 94.42% | 96.57% | 99.62% | 99.63% | 99.63% | 90.91% | 59.97% | 72.27% | 4990
HG004 | 99.12% | 94.06% | 96.52% | 99.71% | 99.65% | 99.68% | 92.93% | 57.61% | 71.13%
HG002 | 98.72% | 94.37% | 96.50% | 99.67% | 99.68% | 99.68% | 89.75% | 60.70% | 72.42%
1| HG003 | 98.77% | 94.46% | 96.57% | 99.61% | 99.63% | 99.62% | 90.47% | 60.31% | 72.37% | 4352
HGO004 | 98.88% | 94.27% | 96.52% | 99.69% | 99.66% | 99.67% | 90.83% | 59.14% | 71.64%
HG002 | 98.87% | 94.17% | 96.46% | 99.69% | 99.64% | 99.66% | 90.90% | 59.47% | 71.90%
10 | HG003 | 98.63% | 94.49% | 96.51% | 99.59% | 99.63% | 99.61% | 89.30% | 60.53% | 72.15% | 3926
HGO004 | 98.96% | 94.19% | 96.51% | 99.68% | 99.66% | 99.67% | 91.66% | 58.47% | 71.39%

a | Sample
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