

1 **A molecular plugin rescues GroEL/ES substrates from pre-folding oxidation**

2

3 Emile Dupuy^{1,2,§}, Sander E. Van der Verren^{3,4,§}, Jiusheng Lin⁵, Mark A. Wilson⁵, Alix
4 Dachsbeck^{1,2}, Felipe Viela⁶, Emmanuelle Latour^{1,2}, Alexandra Gennaris^{1,2}, Didier
5 Vertommen², Yves F. Dufrêne⁶, Bogdan I. Iorga^{1,2,7}, Camille V. Goemans^{1,2,8,*}, Han
6 Remaut^{3,4,*}, Jean-François Collet^{1,2,*}

7

8 ¹WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium

9 ²de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75,
10 1200 Brussels, Belgium

11 ³Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium

12 ⁴Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050
13 Brussels, Belgium

14 ⁵Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln,
15 NE 68588, USA

16 ⁶Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain
17 (UCLouvain), Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium

18 ⁷Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles,
19 91198 Gif-sur-Yvette, France

20 ⁸European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany

21

22 [§]These authors contributed equally

23 *Address for correspondence: Jean-François Collet (jfcollet@uclouvain.be), Camille

24 Goemans (camille.goemans@embl.de), Han Remaut (han.remaut@vub.be)

25 **SUMMARY**

26 Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells,
27 constituting the paradigmatic example of molecular chaperones. Despite extensive
28 investigations of their structure and mechanism, crucial questions regarding how these
29 chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60
30 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX,
31 a protein combining a chaperone and a redox function. Binding of GroES (Hsp10) to GroEL
32 induces CnoX release. Cryo-electron microscopy provided crucial structural information on
33 the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site
34 via a highly conserved C-terminal α -helix. Furthermore, the identification of complexes in
35 which CnoX, bound to GroEL, forms mixed-disulfides with GroEL substrates indicates that
36 CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural
37 features with CnoX exist in eukaryotes, which suggests that Hsp60 molecular plugins have
38 been conserved through evolution.

39

40 **INTRODUCTION**

41 Following synthesis as linear amino acid chains, proteins need to fold to unique three-
42 dimensional (3D) structures to become functional. Seminal work from Anfinsen
43 demonstrated that the information required for a polypeptide to reach its native
44 conformation is contained in its primary sequence (Anfinsen, 1973). For most small proteins,
45 folding to the native state is a spontaneous process that takes less than a few milliseconds
46 (Jahn and Radford, 2005). For larger proteins with multiple domains, however, the path to
47 the native conformation is more tortuous and potentially hazardous. For these proteins,
48 stable intermediates can form, slowing the folding process and potentially leading to
49 aggregation and/or degradation (Ellis, 2001). To deal with this problem, living cells express a
50 network of chaperones that help complex proteins to fold efficiently (Hartl *et al.*, 2011).

51

52 The Hsp60 chaperonins are a unique class of chaperones that are essential in all domains of
53 life and prevent unproductive interactions within and between polypeptides using
54 adenosine triphosphate (ATP)-regulated cycles (Hayer-Hartl *et al.*, 2016; Horwich and
55 Fenton, 2020). Chaperonins stand out in the proteostasis network as they form a complex
56 tetradecameric structure encompassing a large cylindrical cage consisting of two seven-
57 membered rings stacked back-to-back (**Figure S1A**) (Hendrix, 1979; Hohn *et al.*, 1979). Each
58 Hsp60 subunit consists of an ATP-binding equatorial domain, an intermediate domain, and
59 an apical substrate-binding domain (**Figure S1A**) (Braig *et al.*, 1994). Hsp60 cooperates with
60 Hsp10 (Chandrasekhar *et al.*, 1986), which forms a heptameric dome-like structure (**Figure**
61 **S1A**) (Hunt *et al.*, 1996). In the presence of nucleotides, Hsp10 associates with the apical
62 domain of Hsp60, binding as a lid covering the ends of the ring and forming a folding
63 chamber (Xu *et al.*, 1997) referred to as the “Anfinsen cage”. Binding of Hsp10 to a

64 substrate-loaded Hsp60 results in displacement of the substrate into the chamber, where it
65 can fold protected from outside interactions (Clare et al., 2012).

66

67 The mechanism by which chaperonins assist substrate proteins to navigate the folding
68 landscape to their native state is relatively well understood. Although this is particularly true
69 for *Escherichia coli* GroEL and GroES, its Hsp10 cofactor, several crucial questions remain
70 unsolved. For instance, whether the GroEL-GroES nanomachine actively promotes folding or
71 serves only as a passive folding cage remains controversial (Hayer-Hartl *et al.*, 2016). It also
72 remains unknown why some polypeptides are highly dependent on GroEL-GroES for folding
73 whereas homologous proteins with a similar structure fold independently of the chaperonin
74 (Hayer-Hartl *et al.*, 2016); thus, further investigation is required to elucidate the sorting
75 signals that recruit substrate proteins to the Hsp60 folding cage. Excitingly, recent results
76 have indicated that the integration of GroEL-GroES in the cellular proteostasis network also
77 needs further exploration. Indeed, whereas GroEL-GroES was thought to largely function in
78 isolation, the identification of CnoX as the first chaperone capable of transferring its
79 substrates to GroEL-GroES for active refolding (Goemans *et al.*, 2018a; Goemans *et al.*,
80 2018b) suggests that functional links between GroEL-GroES and accessory folding factors
81 remain to be discovered. The extreme complexity of the GroEL-GroES molecular machine, its
82 essential role in cell survival, as well as redundancy in the bacterial proteostasis system have
83 slowed progress in the field, highlighting the need for new investigation approaches and
84 experimental strategies.

85

86 Here, we sought to explore the details of the newly reported CnoX-GroEL functional
87 relationship (Goemans *et al.*, 2018a; Goemans *et al.*, 2018b), with the aim of revealing

88 unsuspected features of the GroEL-GroES system. CnoX consists of a redox-active N-terminal
89 thioredoxin domain and a C-terminal tetratricopeptide (TPR) domain (**Figure S1B**) (Lin and
90 Wilson, 2011), a fold often involved in protein–protein interactions. CnoX is a
91 “chaperedoxin,” meaning that it combines a redox-protective function, by which it prevents
92 irreversible oxidation of its substrates, and a holdase chaperone activity, by which it
93 maintains its substrates in a folding-competent state before transferring them to GroEL-
94 GroES for refolding (Goemans *et al.*, 2018b). We reasoned that finding the molecular
95 attributes that uniquely allow CnoX to work in concert with GroEL-GroES should lead to new
96 insights into the properties of the GroEL-GroES system.

97

98

99 **RESULTS**

100 **CnoX and GroEL form a stable complex**

101 To start our investigation, we pulled-down CnoX from *E. coli* cellular extracts using specific a-
102 CnoX antibodies. We found that CnoX co-eluted with only one partner (**Figure 1A**), a ~60-kDa
103 protein identified as GroEL by mass spectrometry (MS), confirming previous results
104 suggesting a direct interaction between the two proteins (Lin and Wilson, 2011). In this
105 experiment, we expressed both CnoX and GroEL from their native locus in cells grown under
106 normal conditions. Exposing the cells to heat shock (42°C) did not lead to an increase in the
107 amount of GroEL that co-eluted with CnoX (**Figure S1C**). We then examined whether the
108 CnoX-GroEL interaction could be reconstituted *in vitro* using purified proteins. *E. coli* CnoX
109 and GroEL were independently overexpressed and purified to near homogeneity (**Figure**
110 **S1D**). We mixed GroEL and CnoX in a 1:1 molar ratio and found that they co-eluted from
111 both a streptavidin affinity column (**Figure 1B**; a Strep-tag was fused to the N-terminus of
112 CnoX) and a size-exclusion chromatography column (**Figure 1C**). The latter showed the co-
113 eluting GroEL-CnoX complex in an approximately 14:1 molar ratio compared with the 1:1
114 input ratio. Notably, we also observed that CnoX formed a complex with a GroEL mutant
115 (GroEL_{R452A/E461A/S463A/V464A}) known to form a single heptameric ring (**Figure S1E**) (Weissman et al.,
116 1995). Finally, we determined the affinity between the two proteins using fluorescence
117 spectroscopy and fluorescence anisotropy and found that fluorescein-labeled CnoX (FM-
118 CnoX) binds GroEL with a dissociation constant (K_d) of 310±10 nM (**Figures 1D and S1F**).
119 Using atomic force microscopy (AFM), we measured a specific binding force of 175±75 pN
120 between the two proteins (**Figures S1G and S1H**). Thus, we conclude that CnoX physically
121 interacts with GroEL and that the two proteins form a stable complex both *in vitro* and *in*
122 *vivo*.

123

124 **GroES binding triggers the release of CnoX from GroEL**

125 We next aimed to unravel the interrelationship among CnoX, GroEL, and GroES. GroES
126 reversibly binds GroEL in the presence of nucleotides (Hayer-Hartl *et al.*, 2016). The addition
127 of adenosine diphosphate (ADP), which triggers conformational changes in GroEL and primes
128 the ring for GroES binding, had no impact on the GroEL-CnoX complex (purified proteins
129 were mixed in a 14:1 molar ratio) (**Figure 1E**), although the affinity of CnoX for GroEL
130 decreased slightly (K_d of ~350 nM) (**Figure S2A**). Strikingly, however, the subsequent addition
131 of GroES (14[GroEL]:14[GroES]:1[CnoX] molar ratio) triggered the release of CnoX from
132 GroEL (**Figure 1E**), thus indicating a direct or allosteric competition between CnoX and GroES
133 for GroEL binding. We obtained similar results with a non-hydrolysable ATP analogue (**Figure**
134 **S2B**). Next, titration of a complex between GroEL and FM-CnoX with increasing amounts of
135 GroES resulted in a dose-dependent loss of FM-CnoX, confirming that GroES dissociates
136 CnoX from GroEL (**Figure S2C**). Using a single-site competitive binding model, we calculated a
137 fitted inhibitory constant (K_i) of 47 nM. Altogether, these results clearly distinguish CnoX
138 from typical GroEL substrates. Indeed, GroEL does not release substrate proteins such as
139 unfolded citrate synthase (CS) upon GroES addition (**Figure 1E**); rather, these proteins
140 become encapsulated inside the GroEL-GroES folding chamber for refolding (Hayer-Hartl *et*
141 *al.*, 2016; Horwich and Fenton, 2020). In the same line, we found that the presence of CnoX
142 does not prevent GroEL from recruiting unfolded CS (**Figure S2D**). Thus, CnoX does not
143 restrict access to the substrate-binding site of GroEL.

144

145 **The C-terminal α -helix of CnoX binds GroEL near the site of substrate entry into the cage**

146 Intrigued by these results, we sought to obtain structural information on the CnoX-GroEL
147 interaction using cryoEM. We reconstituted the CnoX-GroEL complex by mixing purified
148 GroEL and CnoX_{N-Strep} (10:1 molar ratio) in the absence of nucleotides. The complex was then
149 affinity-purified (**Figure S3A**) and imaged for single-particle cryoEM analysis (**Figure S3B, S3C**
150 and **Table S1**). Analysis of the two-dimensional (2D) class averages showed the two rings of
151 GroEL stacked back-to-back and revealed the presence of a protruding density on top of the
152 two GroEL rings (**Figures 2A, 2B** and **S3D**). A c7-symmetrical 3D reconstruction resulted in a
153 3.4-Å electron potential map (**Figure S3E**) showing a density on the GroEL apical domain
154 corresponding to at least five α -helices and allowing an unambiguous rigid body docking
155 with the TPR domain of CnoX (**Figures 2C, 2D, S3F** and **S3G**). The absence of a clearly
156 resolved thioredoxin domain in the CnoX-GroEL complex is consistent with the prior
157 observation of extensive mobility of this domain in the X-ray crystal structure of CnoX alone
158 (Lin and Wilson, 2011). This finding suggests that the thioredoxin domain is highly dynamic,
159 which may be relevant for our proposed model (see below).

160
161 Although the N-terminal thioredoxin domain of CnoX is not visible, the structure provides
162 crucial molecular details regarding the CnoX-GroEL interaction. First, the structure reveals
163 that CnoX binds GroEL via its C-terminal α -helix (**Figure 3A**); accordingly, a CnoX mutant
164 lacking the last 10 C-terminal residues (CnoX_{ΔCter}) is unable to bind GroEL, both *in vivo*
165 (**Figure 3D**) and *in vitro* (**Figure S4A**). Furthermore, the addition of a His-tag to the C-
166 terminus of CnoX (CnoX_{C-His}) prevented CnoX binding to GroEL (**Figures 3D** and **S4A**). Thus,
167 the C-terminal helix of the TPR domain of CnoX functions as a specific GroEL affinity tag that
168 is required for GroEL binding. Interestingly, while the sequence of the TPR domain is diverse
169 among species, the last C-terminal helix is highly conserved (**Figure S4B**) and is structurally

170 and electrostatically distinct from the remainder of the TPR domain (Lin and Wilson, 2011),
171 suggesting that the ability to bind GroEL is widespread and central to CnoX activity. The
172 structure also reveals where CnoX binds to GroEL; the interaction zone, which has a buried
173 surface area of 472 Å² (-4.6 kcal/mol; PDBePISA (Brinker et al.)) and encompasses residues
174 D224, K286–M307, K311, D316, R345, and Q348 (**Figures 3B and 3C**), corresponds to a
175 shallow surface cleft formed by helices J and K in the apical domain of GroEL. This region
176 does not overlap with the substrate-binding site of GroEL in helices H and I (Hayer-Hartl *et*
177 *al.*, 2016; Horwich and Fenton, 2020), as also corroborated by the above results (**Figure**
178 **S2D**). At least five potential H-bond or electrostatic interactions stabilize the contacts
179 between CnoX and GroEL (R255–E304, R277–G298, R277–T299, Y284–E304, and Y284–R345,
180 listed as CnoX–GroEL), as well as a hydrophobic interaction by CnoX residues L279, Y280, and
181 L283 and GroEL residues V300, I305, and M307 (**Figures 3B and 3C**). Accordingly, introducing
182 a set of mutations in the interaction interface disrupted the GroEL-CnoX interaction (**Figure**
183 **3E**). GroEL is a highly dynamic protein that undergoes substantial conformational
184 rearrangements depending on the binding of a nucleotide, position in the folding pathway,
185 or binding of GroES (Clare *et al.*, 2012). Comparison of our structure with the different
186 conformational states of GroEL shows that the rings of GroEL are in a conformation
187 corresponding to that of the nucleotide-free protein (**Figure S5**), as expected. Our findings
188 also indicate that the CnoX-binding paratope remains fully accessible in all conformations,
189 except when GroES is bound (**Figure S5**). The persistence of the CnoX-binding site in various
190 conformations of GroEL is consistent with the ability of CnoX to bind to GroEL irrespective of
191 the presence of a nucleotide (**Figures 1B, 1C, 1E and S2B**). Available structures also show a
192 large conformational rotation of the GroEL apical domain in the GroEL-GroES complex.
193 Although the GroES-binding site does not directly overlap with that of CnoX, the

194 conformation of the apical domain results in a steric occlusion of the CnoX-binding paratope
195 (**Figure S5**), providing a molecular explanation to our finding that GroES docking onto GroEL
196 is incompatible with CnoX binding (**Figure 1E** and **S2B**).

197

198 **CnoX forms mixed-disulfides with obligate GroEL substrates when bound to GroEL**

199 We next aimed to gain insight into the physiological relevance of the CnoX-GroEL complex *in*
200 *vivo*. GroEL-GroES substrates often need minutes to fold after leaving the ribosome (Ewalt et
201 al., 1997), which raises a question regarding how their amino acids are protected from
202 oxidative damage before reaching their native state. This question is particularly relevant for
203 cysteine residues, which are highly sensitive to oxidation by the molecular oxidants that are
204 present in cells even in the absence of stress (Ezraty et al., 2017; Imlay, 2008). Indeed, the
205 thiol side chain of a cysteine is readily oxidized to a sulfenic acid (-SOH), an unstable
206 derivative that can react with another cysteine in the vicinity to form a disulfide or that can
207 be irreversibly oxidized to sulfinic and sulfonic acids. Similar to Anfinsen's experiments
208 showing that noncanonical disulfide pairing thwarts *in vitro* protein folding, one can expect
209 the GroEL chaperonin to require its substrates' cysteines to be reduced for proper folding.

210 CnoX stands out in the proteostasis network in that it combines a chaperone and a redox-
211 protective function (Goemans et al., 2018b); therefore, CnoX may bind GroEL to function as
212 a redox rescue mechanism for slow-folding GroEL-GroES substrates.

213

214 By performing additional pull-down experiments, we obtained a crucial result shedding light
215 onto the function of CnoX. When GroEL is pulled-down from cellular extracts, it co-elutes
216 with CnoX, as expected. Intriguingly, we found that high-molecular-weight complexes
217 involving CnoX are also pulled-down (**Figure 4A**). When a reducing agent was added, these

218 complexes disappeared, indicating that they correspond to mixed disulfides comprising CnoX
219 and unknown proteins. Accordingly, we did not detect high-molecular-weight complexes
220 when the experiment was repeated with a CnoX mutant lacking the two cysteine residues
221 (CnoX_{no_cys}; **Figure 4A**). We identified the proteins involved in the mixed disulfides using MS
222 (**Table S2**); excitingly, we found that these proteins include several obligate GroEL substrates
223 (**Figure 4B** and **Table S2**). Thus, we conclude that CnoX forms mixed disulfides with obligate
224 GroEL substrates when bound to GroEL in the cell.

225

226 **CnoX functions as a molecular plugin providing redox quality-control for GroEL substrates**

227 Altogether, our results suggest the following model (**Figure 4C**). Regardless of stress, CnoX
228 binds GroEL via its highly conserved C-terminal α -helix in a nucleotide-independent manner.
229 The CnoX-binding interface on GroEL does not overlap with the substrate-binding site. If the
230 substrate that reaches GroEL for folding presents oxidized cysteine residues (to a sulfenic
231 acid or in a disulfide bond), CnoX reacts with the substrate via the cysteines of its
232 thioredoxin domain, resulting in the formation of a mixed disulfide. Cytoplasmic reducing
233 pathways then reduce the mixed disulfide, releasing the substrate in a reduced, folding-
234 competent state. The binding of GroES to GroEL induces conformational changes in the
235 chaperonin and occludes the CnoX-binding site, triggering CnoX release from GroEL and
236 encapsulation of the substrate within the folding cage for folding. Thus, we propose that
237 CnoX functions as a molecular plugin that provides redox quality-control for GroEL
238 substrates. Our model is compatible with both the binding of CnoX to unfolded oxidized
239 client proteins in solution followed by delivery to the GroEL chaperonin and the surveillance
240 performed by CnoX to identify erroneously oxidized client proteins that may become stuck
241 at the substrate entrance to the Anfinsen cage of GroEL.

242 **DISCUSSION**

243 Investigations of Hsp60 chaperonins started in the 1970s (Horwich and Fenton, 2020), when
244 researchers described mutations that blocked phage head assembly in *groE* and discovered
245 the tetradecameric structure of GroEL, the archetypical member of the Hsp60 family, using
246 electron microscopy (EM). Since then, a large body of studies has examined the mechanistic
247 and structural properties of Hsp60 proteins and their Hsp10 co-chaperones, not only in
248 bacteria but also in chloroplasts and mitochondria (Horwich and Fenton, 2020). This
249 impressive amount of work has rendered chaperonins a textbook example of folding
250 systems. In the current study, the identification of CnoX as a quality-control protein that
251 physically interacts with GroEL-GroES for optimal folding further widens this field of
252 investigation by uncovering a novel, unsuspected feature of Hsp60s. Additional questions
253 remain unsolved and will be the subject of future research. For instance, the biologically
254 active stoichiometry of the CnoX-GroEL complex warrants careful investigation, as well as
255 the specific role of the cytoplasmic reducing pathways in the reduction and release of mixed
256 disulfides. Future work must also establish the location of the N-terminal thioredoxin
257 domain when CnoX is bound to GroEL. Our results show that CnoX forms mixed disulfides
258 with GroEL substrates while being bound to GroEL, but future research will elucidate
259 whether CnoX also functions as a tugboat to locate endangered GroEL substrates in the
260 cytoplasm and escort them to the chaperonin. Finally, it will be important to determine
261 whether similar proteins with a redox quality-control function exist in other organisms,
262 including eukaryotes. The facts that *E. coli* CnoX stably interacts with human mitochondrial
263 Hsp60 (**Figure S6A**) and that proteins sharing structural features with CnoX exist in
264 eukaryotes (**Figure S6B, S6C and S6D**) support this idea. Along the same line, it is tempting to

265 speculate that living cells could also contain Hsp60 molecular “plugins” with specific, redox-
266 independent functions yet to be discovered.

267

268 **SUPPLEMENTAL INFORMATION**

269

270 Supplemental information (Methods, Figures S1 to S6, Tables S1 to S5) can be found online
271 at ...

272

273 **ACKNOWLEDGEMENTS**

274 We thank Asma Boujtat and Gaetan Herinckx for technical help. We are indebted to Dr.
275 Michael Deghelt, Dr. Seung-Hyun Cho, and Dr. Pauline Leverrier for helpful suggestions and
276 discussions and for providing comments on the manuscript. M.A.W. is supported by National
277 Institutes of Health grant R01GM139978. We thank Dr. Tommi White and Dr. Javier Seravalli
278 for assistance with the GroEL-CnoX quantitative interaction studies and Dr. Aron Fenton for
279 discussions about cooperative protein binding. We thank staff at VIB-VUB facility for Bio
280 Electron Cryogenic Microscopy (BECM) for assistance in data collection. This work was
281 funded by the Fonds de la Recherche Scientifique (FNRS) grant agreements WELBIO-CR-
282 2015A-03 and WELBIO-CR-2019C-03, the EOS Excellence in Research Program of the FWO
283 and FRS-FNRS (G0G0818N), the Fédération Wallonie-Bruxelles (ARC 17/22-087), the
284 GENCI-IDRIS (2021-A0100711524), the Flanders Research Foundation Hercules grant
285 (G0H5916N), the Flanders Research Foundation PhD fellowship programme, and the
286 Flanders Institute for Biotechnology – VIB.

287

288 **DATA AVAILABILITY**

289 Coordinates and the electron potential maps for the GroEL:CnoX cryoEM structure have
290 been deposited in the PDB and EMDB under accession codes 7YWY and EMD-14352,
291 respectively. All other data generated or analyzed during this study are included in this
292 published article and its supplementary information file.

293

294 **DECLARATION OF INTERESTS**

295 The authors declare no competing interests.

296

297 **AUTHOR CONTRIBUTIONS**

298 Writing: JFC, SVdV, ED, HR, and CVG. Conceptualization: CVG, ED, HR, and JFC. Investigation,
299 strain construction, construct cloning: ED, CVG, AD, AG, SVdV, JL, MAW, EL, YFD, and FV.
300 Interactive molecular-dynamics flexible fitting of the cryoEM model: BII. Mass spectrometry:
301 DV. Data analysis and interpretation: ED, SVdV, CVG, HR, JL, MAW, YFD, FV and JFC. All
302 authors discussed the results and commented on the manuscript.

303

304 **REFERENCES**

305 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,
306 G., and Isard, M. (2016). {TensorFlow}: A System for {Large-Scale} Machine Learning. pp.
307 265-283.

308 Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A., and
309 Adams, P.D. (2018). Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta
310 Crystallographica Section D: Structural Biology* **74**, 531-544.

311 Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. *Science* **181**, 223-
312 230.

313 Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M.,
314 Wanner, B.L., and Mori, H. (2006). Construction of *Escherichia coli* K-12 in-frame, single-gene
315 knockout mutants: the Keio collection. *Mol Syst Biol* **2**, 2006 0008. msb4100050 [pii]
316 10.1038/msb4100050.

317 Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D.C., Joachimiak, A., Horwich, A.L., and Sigler,
318 P.B. (1994). The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. *Nature* **371**,
319 578-586.

320 Brinker, A., Scheufler, C., Von Der Mulbe, F., Fleckenstein, B., Herrmann, C., Jung, G.,
321 Moarefi, I., and Hartl, F.U. (2002). Ligand discrimination by TPR domains. Relevance and
322 selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. *J Biol Chem* 277, 19265-
323 19275. 10.1074/jbc.M109002200.

324 Burnley, T., Palmer, C.M., and Winn, M. (2017). Recent developments in the CCP-EM
325 software suite. *Acta Crystallographica Section D: Structural Biology* 73, 469-477.

326 Chandrasekhar, G.N., Tilly, K., Woolford, C., Hendrix, R., and Georgopoulos, C. (1986).
327 Purification and properties of the groES morphogenetic protein of *Escherichia coli*. *Journal of*
328 *Biological Chemistry* 261, 12414-12419.

329 Chaudhry, C., Horwich, A.L., Brunger, A.T., and Adams, P.D. (2004). Exploring the structural
330 dynamics of the *E. coli* chaperonin GroEL using translation-libration-screw crystallographic
331 refinement of intermediate states. *Journal of molecular biology* 342, 229-245.

332 Cherepanov, P.P., and Wackernagel, W. (1995). Gene disruption in *Escherichia coli*: TcR and
333 KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance
334 determinant. *Gene* 158, 9-14.

335 Clare, D.K., Vasishtan, D., Stagg, S., Quispe, J., Farr, G.W., Topf, M., Horwich, A.L., and Saibil,
336 H.R. (2012). ATP-triggered conformational changes delineate substrate-binding and-folding
337 mechanics of the GroEL chaperonin. *Cell* 149, 113-123.

338 Consortium, U. (2021). Bateman A., Martin M. J., Orchard S., Magrane M., Agivetova R.,
339 Ahmad S., Alpi E., Bowler-Barnett EH, Britto R., et al. UniProt: The universal protein
340 knowledgebase in.

341 Ellis, R.J. (2001). Macromolecular crowding: obvious but underappreciated. *Trends in*
342 *biochemical sciences* 26, 597-604.

343 Emsley, P., and Cowtan, K. (2004). *Acta Crystallographica, Section D: Biological*
344 *Crystallography. Acta Crystallographica, Section D: Biological Crystallography* 60, 2126-2132.

345 Ewalt, K.L., Hendrick, J.P., Houry, W.A., and Hartl, F.U. (1997). *In vivo* observation of
346 polypeptide flux through the bacterial chaperonin system. *Cell* 90, 491-500.

347 Ezraty, B., Gennaris, A., Barras, F., and Collet, J.F. (2017). Oxidative stress, protein damage
348 and repair in bacteria. *Nat Rev Microbiol* 15, 385-396. 10.1038/nrmicro.2017.26.

349 Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T., and Taguchi, H. (2010). A systematic
350 survey of *in vivo* obligate chaperonin-dependent substrates. *EMBO J* 29, 1552-1564.
351 10.1038/embj.2010.52.

352 Goemans, C.V., Beaufay, F., Arts, I.S., Agrebi, R., Vertommen, D., and Collet, J.-F. (2018a).
353 The chaperone and redox properties of CnoX chaperedoxins are tailored to the proteostatic
354 needs of bacterial species. *mBio* 9, e01541-01518.

355 Goemans, C.V., Vertommen, D., Agrebi, R., and Collet, J.-F. (2018b). CnoX is a chaperedoxin:
356 a holdase that protects its substrates from irreversible oxidation. *Molecular cell* 70, 614-627.
357 e617.

358 Hartl, F.U., Bracher, A., and Hayer-Hartl, M. (2011). Molecular chaperones in protein folding
359 and proteostasis. *Nature* 475, 324-332. 10.1038/nature10317.

360 Hayer-Hartl, M., Bracher, A., and Hartl, F.U. (2016). The GroEL-GroES chaperonin machine: a
361 nano-cage for protein folding. *Trends in biochemical sciences* 41, 62-76.

362 Hendrix, R.W. (1979). Purification and properties of groE, a host protein involved in
363 bacteriophage assembly. *Journal of molecular biology* 129, 375-392.

364 Hohn, T., Hohn, B., Engel, A., Wurtz, M., and Smith, P.R. (1979). Isolation and
365 characterization of the host protein groE involved in bacteriophage lambda assembly.
366 *Journal of molecular biology* 129, 359-373.

367 Horwich, A.L., and Fenton, W.A. (2020). Chaperonin-assisted protein folding: a chronologue.
368 *Quarterly reviews of biophysics* 53.

369 Hunt, J.F., Weaver, A.J., Landry, S.J., Giersch, L., and Deisenhofer, J. (1996). The crystal
370 structure of the GroES co-chaperonin at 2.8 Å resolution. *Nature* 379, 37-45.

371 Imlay, J.A. (2008). Cellular defenses against superoxide and hydrogen peroxide. *Annu. Rev.*
372 *Biochem.* 77, 755-776.

373 Jahn, T.R., and Radford, S.E. (2005). The Yin and Yang of protein folding. *The FEBS journal*
374 272, 5962-5970.

375 Jakobi, A.J., Wilmanns, M., and Sachse, C. (2017). Model-based local density sharpening of
376 cryo-EM maps. *Elife* 6, e27131.

377 Kerner, M.J., Naylor, D.J., Ishihama, Y., Maier, T., Chang, H.-C., Stines, A.P., Georgopoulos, C.,
378 Frishman, D., Hayer-Hartl, M., and Mann, M. (2005). Proteome-wide analysis of chaperonin-
379 dependent protein folding in *Escherichia coli*. *Cell* 122, 209-220.

380 Liebschner, D., Afonine, P.V., Baker, M.L., Bunkóczki, G., Chen, V.B., Croll, T.I., Hintze, B.,
381 Hung, L.-W., Jain, S., and McCoy, A.J. (2019). Macromolecular structure determination using
382 X-rays, neutrons and electrons: recent developments in Phenix. *Acta Crystallographica*
383 Section D: Structural Biology 75, 861-877.

384 Lin, J., and Wilson, M.A. (2011). *Escherichia coli* thioredoxin-like protein YbbN contains an
385 atypical tetratricopeptide repeat motif and is a negative regulator of GroEL. *Journal of*
386 *Biological Chemistry* 286, 19459-19469.

387 Moriya, T., Saur, M., Stabrin, M., Merino, F., Voicu, H., Huang, Z., Penczek, P.A., Raunser, S.,
388 and Gatsogiannis, C. (2017). High-resolution single particle analysis from electron cryo-
389 microscopy images using SPHIRE. *JoVE (Journal of Visualized Experiments)*, e55448.

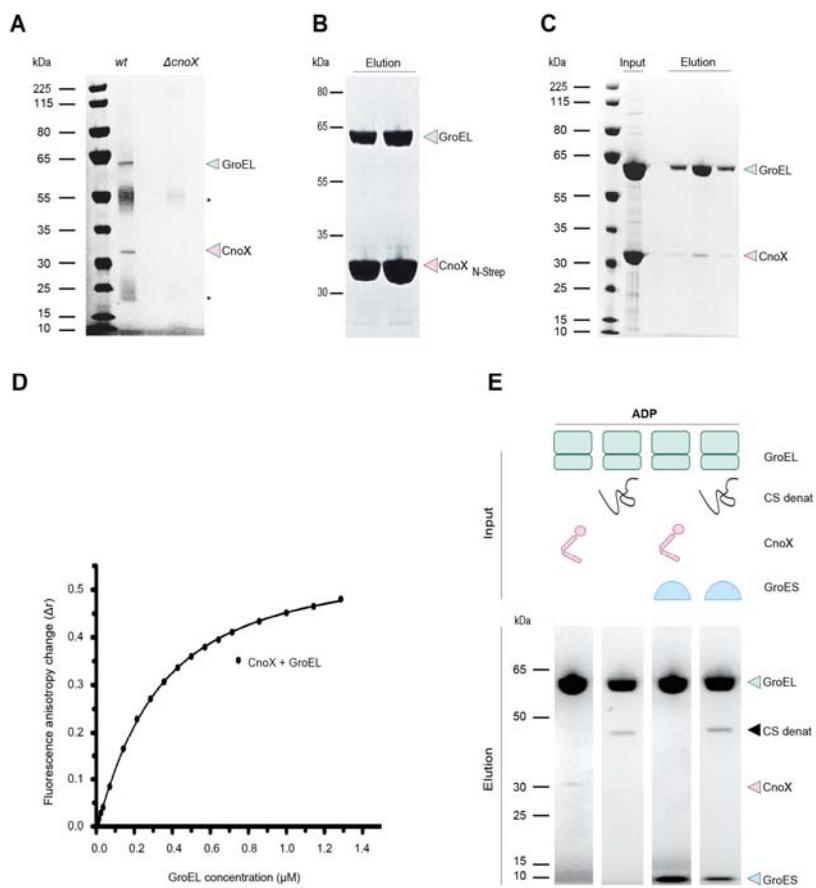
390 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and
391 Ferrin, T.E. (2004). UCSF Chimera—a visualization system for exploratory research and
392 analysis. *Journal of computational chemistry* 25, 1605-1612.

393 Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from
394 electron micrographs. *Journal of structural biology* 192, 216-221.

395 Terwilliger, T.C., Lutcke, S.J., Read, R.J., Adams, P.D., and Afonine, P.V. (2020). Improvement
396 of cryo-EM maps by density modification. *Nature Methods* 17, 923-927.

397 Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., Hagel, P., Sitsel, O.,
398 Raisch, T., and Prumbaum, D. (2019). SPHIRE-crYOLO is a fast and accurate fully automated
399 particle picker for cryo-EM. *Commun. Biol.* 2. Nature Publishing Group.

400 Weissman, J.S., Hohl, C.M., Kovalenko, O., Kashi, Y., Chen, S., Braig, K., Saibil, H.R., Fenton,
401 W.A., and Norwich, A.L. (1995). Mechanism of GroEL action: productive release of
402 polypeptide from a sequestered position under GroES. *Cell* 83, 577-587.


403 Xu, Z., Horwich, A.L., and Sigler, P.B. (1997). The crystal structure of the asymmetric GroEL-
404 GroES-(ADP) 7 chaperonin complex. *Nature* 388, 741-750.

405 Yang, Z., Fang, J., Chittuluru, J., Asturias, F.J., and Penczek, P.A. (2012). Iterative stable
406 alignment and clustering of 2D transmission electron microscope images. *Structure* 20, 237-
407 247.

408 Zheng, S.Q., Palovcak, E., Armache, J.-P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017).
409 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
410 microscopy. *Nature methods* 14, 331-332.

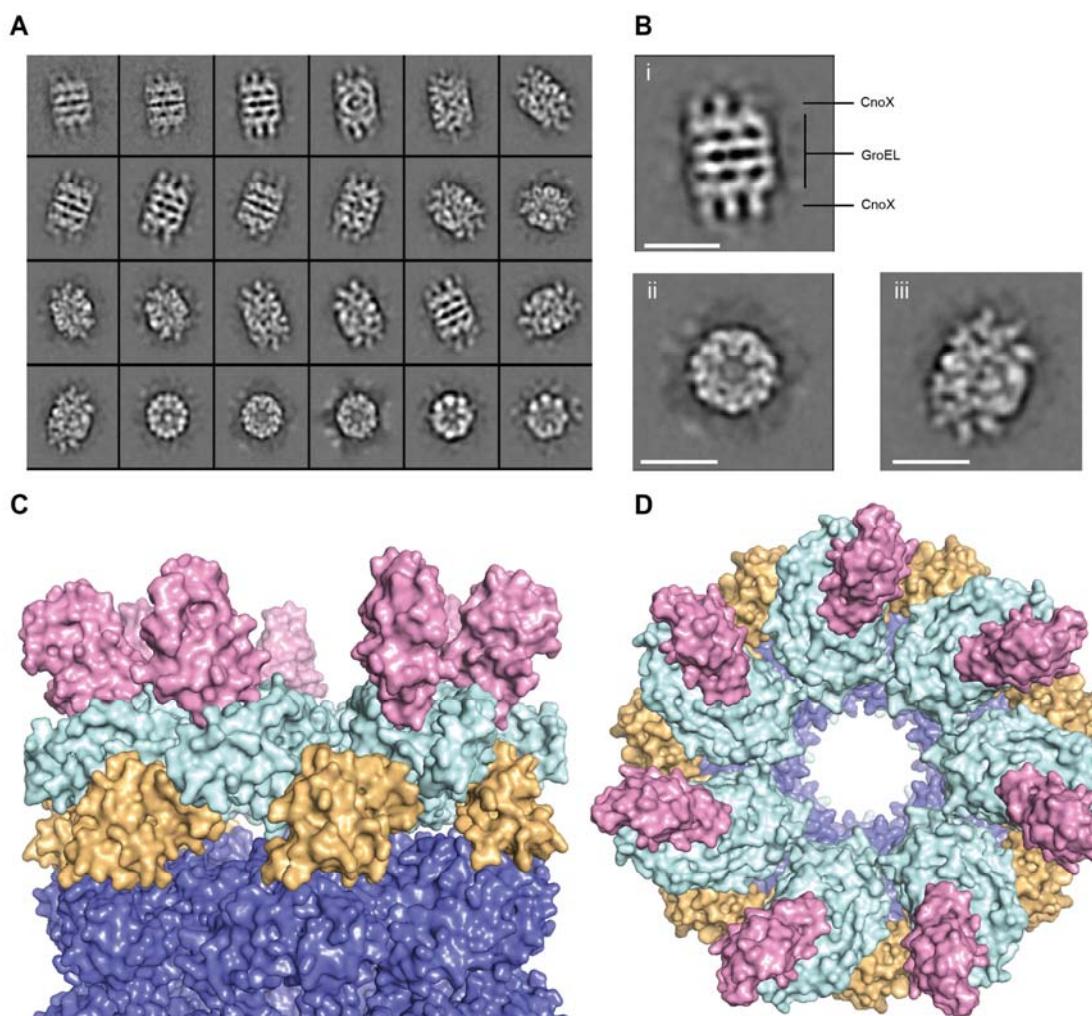
411

412

413

414 **Figure 1. CnoX interacts stably with GroEL.**

415 **(A)** GroEL co-elutes with CnoX when CnoX is pulled-down from wild-type cell extracts using
416 α -CnoX antibodies. Both proteins are absent when the experiment is repeated with extracts
417 prepared from the Δ cnoX mutant. The image of sodium dodecyl sulphate–polyacrylamide gel
418 electrophoresis (SDS-PAGE), stained with Coomassie blue, is representative of >3 replicates.


419 * indicates the light and heavy chains of the antibodies.

420 **(B)** Purified CnoX_{N-Strep} and GroEL form a complex that can be isolated using streptavidin
421 affinity purification. Two fractions are shown.

422 **(C)** Purified CnoX and GroEL form a complex that can be isolated using size-exclusion
423 chromatography.

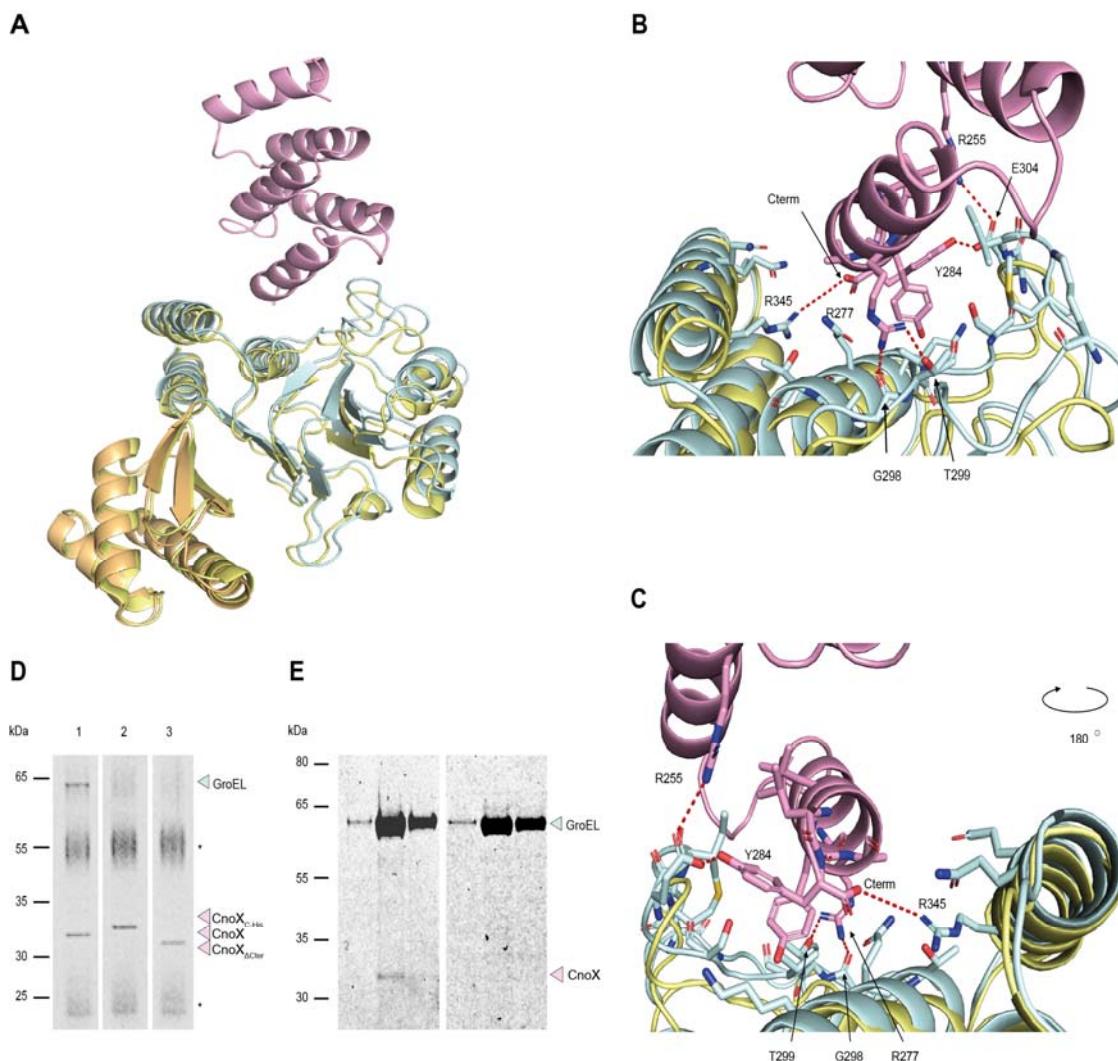
424 (D) Formation of a complex between FM-CnoX and GroEL can be monitored using
425 fluorescence anisotropy. The non-cooperative model gives an adequate fit to these data,
426 with a K_d of $310 \text{ nM} \pm 10 \text{ nM}$.

427 (E) CnoX and unfolded CS co-elute with GroEL from a gel filtration column. Addition of GroES
428 triggers the release of CnoX from GroEL, while CS remains bound to GroEL. Size-exclusion
429 chromatography was performed in the presence of ADP (50 μM), and fractions were
430 analyzed by SDS-PAGE. The results are representative of >3 experiments.

431

432 **Figure 2. CryoEM shows that the TPR domain of CnoX binds GroEL.**

433 **(A-B)** CryoEM 2D class averages of the GroEL-CnoX complex reconstituted *in vitro* at a 10:1
434 molar ratio (scale bar: 100 Å).

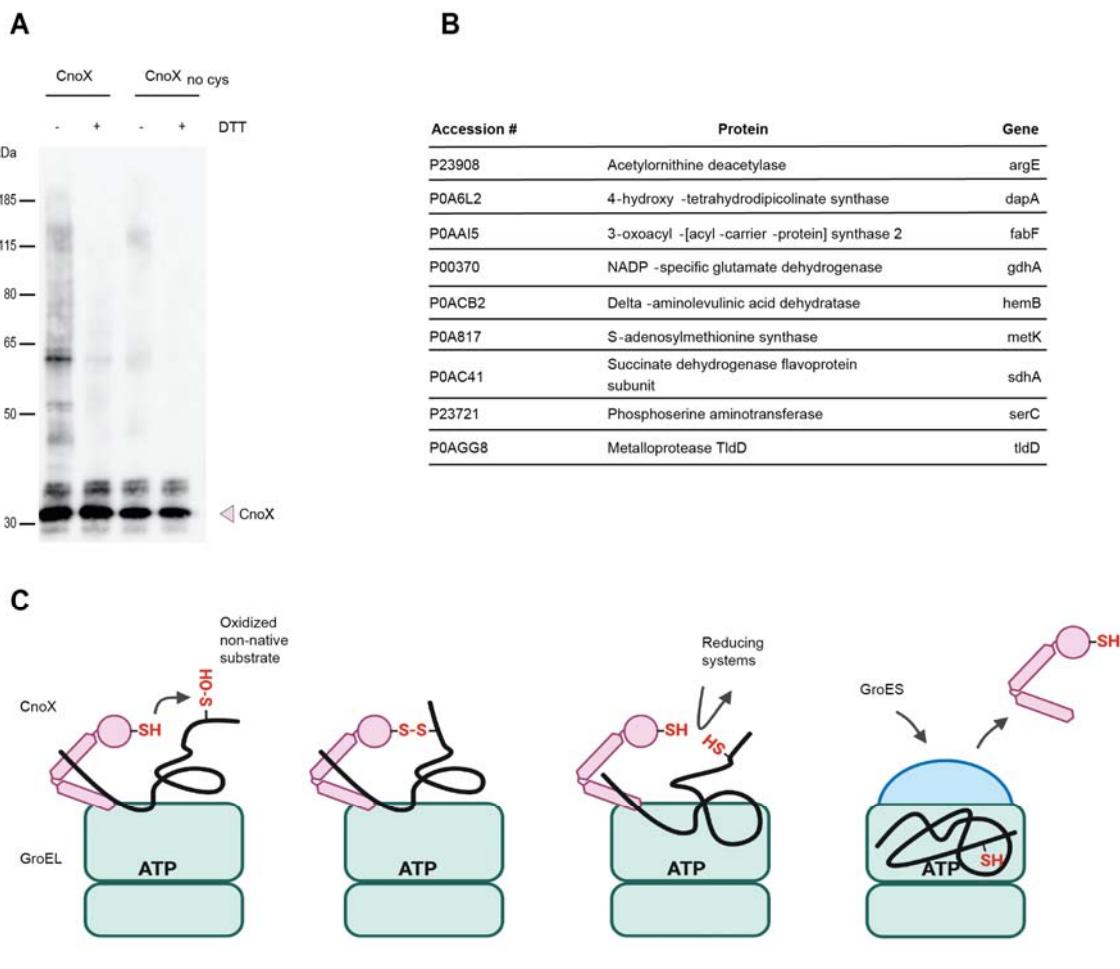

435 **(C-D)** Side and top view of the structure of the GroEL-CnoX complex shown as a solvent-
436 accessible surface. The equatorial, intermediate, and apical domains of GroEL are shown in
437 slate, orange, and light cyan, respectively, and CnoX is shown in pink.

438

439

440

441


442

443 **Figure 3. The C-terminal α -helix of CnoX binds a shallow cleft in the apical domain of**

444 **GroEL.**

445 **(A)** Ribbon representation of a single GroEL-CnoX protomer. CnoX binds GroEL via its C-
446 terminal α -helix. The intermediate and apical domains of GroEL are shown in orange and
447 light cyan, respectively. CnoX is shown in pink. For comparison, the GroEL-CnoX structure is
448 shown superimposed on the structure of T state GroEL (yellow; PDB: 1grl).

449 **(B-C)** Close-up views of the GroEL-CnoX binding interface. CnoX binds GroEL through the
450 following H-bond and electrostatic interactions (CnoX–GroEL): R255–E304, R277–G298,
451 R277–T299, Y284–E304, and Y284 C-term–R345. For comparison, the GroEL-CnoX structure
452 is shown superimposed on the structure of T state GroEL (yellow; PDB: 1grl).
453 **(D)** GroEL co-elutes with CnoX (lane 1) but not with CnoX_{C-His} (lane 2) or CnoX_{ΔC-ter} (lane 3)
454 when CnoX is pulled-down from cell extracts using α -CnoX antibodies. In these experiments,
455 CnoX, CnoX_{ΔC-ter}, and CnoX_{C-His} were expressed in Δ cnoX cells. The SDS-PAGE gel, stained with
456 Coomassie blue, is representative of >3 replicates. * indicates the light and heavy chains of
457 the antibodies.
458 **(E)** GroEL[§], a GroEL variant with mutations in the CnoX-binding site
459 (G298A/T299L/V300K/E304L/I305K/M307K/R345L), does not elute together with CnoX from
460 a size-exclusion chromatography column (right), in contrast to wild-type GroEL (left). Three
461 consecutive elution fractions are shown for each chromatography.

466 **(A)** CnoX co-elutes with GroEL when the chaperonin is pulled-down from wild-type cell
467 extracts using specific antibodies. High-molecular-weight complexes corresponding to
468 dithiothreitol (DTT)-sensitive mixed disulfides are detected by α -CnoX antibodies. These
469 complexes are not detected when the experiment is repeated using extracts from cells
470 expressing a CnoX mutant lacking the two cysteine residues, CnoX_{no_cys}.
471 **(B)** Obligate GroEL substrates trapped in mixed-disulfide complexes with CnoX and pulled-
472 down using α -GroEL antibodies were identified using liquid chromatography with tandem
473 MS (LC-MS/MS).

474 (C) Model: 1. CnoX forms a stable complex with GroEL via its C-terminal α -helix in a
475 nucleotide-independent manner. Positioned on the apical domain of GroEL, CnoX interacts
476 with incoming substrates for GroEL, acting as a redox quality-control plugin. 2. If the
477 substrate that reaches GroEL for folding presents oxidized cysteine residues (to a sulfenic
478 acid or in a disulfide bond), CnoX reacts with the substrate via the cysteines of its
479 thioredoxin domain, and a mixed disulfide is formed. 3. Cytoplasmic reducing pathways then
480 reduce the mixed disulfide, releasing the substrate in a reduced, folding-competent state. 4.
481 GroES binding then triggers CnoX release from GroEL and encapsulation of the substrate
482 within the folding cage for folding.