

1 **Defining marine bacterioplankton community assembly rules by contrasting the**
2 **importance of environmental determinants and biotic interactions**

3 **Running Title: Temporal bacterioplankton assembly rules**

4 **Authors:** Michael P. Doane^{1,2}, Martin Ostrowski^{1,2}, Mark Brown³, Anna Bramucci², Levente
5 Bodrossy⁴, Jodie van de Kamp⁴, Andrew Bissett⁴, Peter Steinberg^{1,5}, Martina A. Doblin^{1,2},
6 Justin Seymour²

7 ¹Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, New South Wales, 2088
8 Australia

9 ²Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales,
10 Australia

11 ³School of Environmental and Life Sciences, University of Newcastle Australia, Callaghan,
12 NSW, Australia

13 ⁴CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, 7004, Tasmania, Australia

14 ⁵Centre for Marine Science and Innovation, University of New South Wales, Sydney, New
15 South Wales 2052, Australia

16 **Keywords:** microbial community, ecological processes, EAC, East Australian Current,
17 community diversity, environmental heterogeneity

18

19 Michael P. Doane – michael.doane@flinders.edu.au

20 0000-0001-9820-2193

21 Martin Ostrowski – martin.Ostrowski@uts.edu.au

22 0000-0002-4357-3023

23 Mark Brown – oceanmicrobes@gmail.com

24 0000-0002-6591-2989

25 Anna Bramucci – anna.bramucci@uts.edu.au

26 0000-0002-0682-5316

27 +61 0434815157

28 Levente Bodrossy – Lev.Bodrossy@csiro.au

29 +61 3-62325456

30 0000-0001-6940-452X

31 Jodie van de Kamp - jodie.vandekamp@csiro.au

32 +61 3 6232 5331

33 0000-0003-2167-0938

34 Andrew Bissett – andrew.bissett@csiro.au
35 0000-0001-7396-1484
36 Peter Steinberg - p.steinberg@unsw.edu.au
37 0000-0002-1781-0726
38 Martina A. Doblin – martina.doblin@sims.org.au
39 0000-0001-8750-3433
40 Justin Seymour – justin.seymour@uts.edu.au
41 0000-0002-3745-6541
42
43
44
45
46
47
48

49 **Defining marine bacterioplankton community assembly rules by contrasting the**
50 **importance of environmental determinants and biotic interactions**

51 **Authors:** Michael P. Doane^{1,2†}, Martin Ostrowski^{1,2}, Mark Brown³, Anna Brumucci², Levente
52 Bodrossy⁴, Jodie van de Kamp⁴, Andrew Bissett⁴, Peter Steinberg^{1,5}, Martina A. Doblin^{1,2},
53 Justin Seymour²,

54 ¹Sydney Institute of Marine Science, Mosman, New South Wales, 2088 Australia

55 ²Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales,
56 Australia

57 ³School of Environmental and Life Sciences, University of Newcastle Australia, Callaghan,
58 NSW, Australia

59 ⁴CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

60 ⁵Centre for Marine Science and Innovation, University of New South Wales, Sydney, New
61 South Wales, Australia

62 [†]Corresponding Author

63 Keywords: microbial community, ecological processes, EAC, East Australian Current,
64 community diversity, environmental heterogeneity

65 **Abstract**

66 Bacterioplankton communities play major roles in governing marine productivity and
67 biogeochemical cycling, yet what drives the relative influence of the types of deterministic
68 ecological processes which result in diversity patterns remains unclear. Here we examine
69 how differing deterministic processes (environmental factors and biotic interactions) drive
70 temporal dynamics of bacterioplankton diversity at three different oceanographic time-series
71 locations, spanning 15 degrees of latitude, which are each characterized by different
72 environmental conditions and varying degrees of seasonality. Monthly surface samples,
73 collected over a period of 5.5 years, were analyzed using 16S rRNA amplicon sequencing.
74 The high and mid- latitude sites of Maria Island and Port Hacking were characterized by high
75 and intermediate levels of environmental heterogeneity respectively, with both alpha (local)
76 diversity (72 % and 24 % of total variation) and beta diversity (32 % and 30 %) patterns
77 within bacterioplankton assemblages primarily explained by environmental determinants,
78 including day length, ammonium, and mixed layer depth. In contrast, at North Stradbroke
79 Island, a sub-tropical location where environmental conditions are less seasonally variable,
80 interspecific interactions were of increased importance in structuring bacterioplankton
81 diversity (alpha diversity: 33 %; beta diversity: 26 %) with environment only contributing 11
82 and 13 % to predicting diversity, respectively. Our results demonstrate that bacterioplankton
83 diversity is the result of both deterministic environmental and biotic processes and that the
84 importance of these different deterministic processes varies, potential in response to
85 environmental heterogeneity.

86 **Importance**

87 Marine bacterioplankton drives important biological processes, including the cycling of key
88 nutrients or fixing atmospheric carbon. Therefore, to predict future climate scenarios its

89 critical to model these communities accurately. Processes that drive bacterioplankton
90 diversity patterns in the oceans however remain unresolved, with most studies focusing on
91 deterministic environmental drivers, ie temperature or available inorganic nutrients. Biotic
92 deterministic processes including interactions among individuals are also important for
93 structuring diversity patterns, however, this is rarely included to predict bacterioplankton
94 communities. We develop an approach for determining the relative contribution of
95 environmental and potential biotic interactions that structure marine bacterioplankton at three
96 series at different latitudes. Environmental factors best predicted temporal trends in
97 bacterioplankton diversity at the two high latitude time series, while biotic influence was
98 most apparent at the low latitude time series. Our results suggest environmental heterogeneity
99 is an important attribute driving the contribution of varying deterministic influence of
100 bacterioplankton diversity.

101 **Introduction**

102 Bacterial community structure influences ecosystem function in fundamental ways across all
103 natural environments [1–3], including the ocean [4], where microorganisms represent the
104 base of the food web and are the principal mediators of biogeochemical cycles [5]. Ecological
105 diversity underscores community structure, therefore, elucidating the processes that govern
106 bacterioplankton diversity is critical for predicting marine ecosystem productivity and
107 function. There are two alternative perspectives for how bacterial diversity assembles [6, 7].
108 One view is of determinism, where species are regulated by niche processes such as
109 environmental filtering [8] stemming from physico-chemical factors such as inorganic
110 nutrients availability and temperature [9, 10], as well as biotic interactions including
111 competition, predator-prey or facultative interactions [11–13]. The other view is one of
112 neutrality, where species are considered ecologically equivalent and therefore diversity
113 consequently arise from stochastic birth, death, colonization, immigration and speciation
114 [14–19]. The relative contribution of environmental, biotic interactions and stochastic
115 processes, and how their importance changes over space and time is currently unresolved
116 [20], meaning that the ability to interpret and predict marine bacterioplankton diversity is
117 currently restricted.

118 In the ocean, both environmental factors and trophic interactions fundamentally govern
119 bacterioplankton diversity [21, 22], in terms of both the number of co-occurring species
120 (alpha diversity) and the commonality of species among environments or sampling points
121 (beta diversity) [23, 24]. For instance, bacterioplankton community richness in the English
122 channel, was highest during the winter months and strongly predicted by day length [25].
123 Landau et al., (2013) similarly found day length to strongly associate with marine
124 bacterioplankton richness from temperate regions. In contrast, bacterioplankton community
125 richness from the Antarctic region was negatively correlated with seasonal increases in
126 chlorophyll-a (Chl-a), signaling potential interactions with algal blooms [26]. Community
127 beta diversity patterns have also been shown to have environmental and biotic links. For
128 instance, global samplings of surface bacterioplankton from the TARA dataset showed the
129 strong effect of temperature and oxygen in driving community composition [27]. The San
130 Pedro oceanographic time-series (SPOTS) in the California Bight, surface layer (0-5 m)
131 bacterioplankton community beta diversity across 10 years was best predicted by abiotic
132 factors including nitrate and day length change as well as Chl-a [28]. From a high-resolution
133 coastal time-series, Needham et al. (2018) demonstrated with networks that bacterial

134 abundance patterns were more strongly coupled to phytoplankton dynamics than other
135 environmental factors, highlighting the role of biotic processes in structuring
136 bacterioplankton community patterns. This study also noted the high correlated among
137 groups of bacteria, indicating biotic interactions are not limited to vertical trophic
138 interactions, but can occur horizontally through cross-feeding and antagonism, which are
139 hypothesized to also fundamentally governing bacterioplankton diversity[22, 29, 30].
140 Similarly, bacteria-bacteria interactions were shown to be important for the maintenance of
141 bacterioplankton diversity in the English Channel evidenced by bacterial OTUs having
142 stronger correlation with other bacterial OTUs than with phytoplankton OTU's and
143 environmental factors [25]. Similarly, at SPOTS, network analysis demonstrated that
144 bacteria, archaea, and eukaryotes had stronger correlation with one another than with any
145 physico-chemical factors [31]. More recently, Lima-Mendez (2015), incorporated the
146 abundance of eukaryotic and viral groups alongside environmental factors to demonstrate that
147 abiotic factors explained a limited amount of direct variation in marine bacterioplankton
148 diversity and that trophic and symbiotic interactions were significant contributors to overall
149 diversity [32]. Collectively, these results underscore that while environmental factors are
150 important regulators of bacterioplankton diversity, biotic interaction are apparent and
151 potentially influence bacterioplankton more strongly at times, but the relative contribution of
152 each deterministic type is yet to be resolved.

153 Marine environments are inherently dynamic in their environmental characteristics,
154 fluctuating across scales of space (ie. micrometers to kilometers), and time (ie. microseconds
155 to months) [21]. Therefore, distilling out specific factors responsible for diversity is
156 particularly challenging, and may not accurately reflect the contemporary processes
157 responsible for observed patterns [33]. Considering then the cumulative impacts of a set of
158 environmental factors (or species interactions), and their relative contribution to diversity
159 patterns is important because the impact magnitude of the ecological process is expected to
160 vary in response to different ecological attributes (ie environmental heterogeneity) [20, 34,
161 35]. In one example, Langenheder et al. (2012) [36], showed that when environmental
162 heterogeneity among rockpools was highest, beta diversity of bacterioplankton among the
163 same rockpools was also highest, with deterministic processes emerging as the prevailing
164 mechanism driving beta diversity; however when environmental heterogeneity among
165 rockpools was low, and beta-diversity among rockpools was also relatively low, dispersal
166 mechanisms became increasingly more important in driving beta diversity patterns.
167 Fluctuations in environmental heterogeneity have been demonstrated as important drivers of
168 spatial beta diversity patterns in disparate ecosystems, including the Amazon river system [7]
169 and soil bacteria communities [37, 38]. These results reveal that the relative contributions of
170 deterministic processes in shaping spatial patterns bacterioplankton diversity can change
171 through time in accordance with spatially distributed environmental heterogeneity [20, 39]; it
172 remains to be shown however how deterministic influence is partitioned among
173 environmental factors versus species interactions. In addition, marine bacterioplankton
174 studies have focused primarily on understanding the influence of spatial environmental
175 heterogeneity on bacterial diversity or temporal variability examined at a single location [20].
176 Therefore, current understanding of shifts in the relative importance of differing ecological
177 processes on the temporal dynamics of bacterioplankton diversity at different locations is
178 critically needed to understand if processes structuring diversity patterns are universal across
179 distinct environment or rather idiosyncratic to an environmental.

180 Distinguishing abiotic from biotic processes in structuring community diversity requires an
181 effective means of identifying potential species interactions [40]. Herren and McMahon
182 (2017)[41] developed a community complexity metric for phytoplankton microbial
183 communities based on the product of the median correlation value of each organism in the
184 dataset to its relative abundance value. The authors argue this value provided an index for
185 quantifying the importance of potential interactions within the community. Indeed, their
186 results demonstrated that characterizing the complexity of a community can improve the
187 proportion of explained variation, but it remained unclear whether the explained variance was
188 due to environmental and/or species interactions because the metric was based on
189 correlations, which could arise due to multiple organisms independently tracking similar
190 environmental factors. One potential means to overcome this limitation is by incorporating
191 metrics that are applied to individual samples, derived from the number and strength of
192 correlative interactions with other species in the community relative to environmental factors
193 [32, 42]. A similar approach has been used to partition potential species interactions from
194 environmental drivers in freshwater macro-organism communities, which highlighted the
195 importance of species interactions in determining community structure [43].

196 Here, we use a 5.5 year time-series, including physico-chemical and 16s microbial
197 community data to investigate the relative importance of environmental filtering versus inter-
198 organismal interactions in influencing marine bacterioplankton structure. Three
199 oceanographic time-series spanning 15° of latitude along the east Australian coastline
200 allowed us to determine the relative contribution of environmental factors relative to potential
201 biotic interactions. Bacterioplankton community structure was inferred by identifying the
202 relative contribution of deterministic processes to shaping patterns of alpha and beta
203 diversity. Our analysis involved the integration of a novel metric for inferring potential
204 species interactions, defined as bacteria-bacteria and phytoplankton-bacterial interactions
205 (biotic interactions), to discriminate among the relative importance of different deterministic
206 processes in shaping bacterioplankton structure.

207 Methods

208 *Reference station description and environmental data collection*

209 Monthly surface water samples were collected from three oceanographic time-series stations
210 located on the eastern continental shelf of Australia, as part of the Integrated Marine
211 Observing System (IMOS) National Reference Station (NRS) monitoring program. These
212 stations span latitudes of 27 to 42° S and include Maria Island (MAI: 42°35.8 S, 148°14.0 E),
213 Port Hacking (PHB: 34°05.0 S 151°15.0 E), and North Stradbroke Island (NSI: 27°20.5 S
214 153°33.75 E) (Figure 1). The MAI station is situated 7.4 km off Maria Island, on the
215 Tasmania east coast (depth 90 m) and is seasonally impacted by the southerly extent of the
216 East Australian Current (EAC), which is a strong western boundary current [44]. PHB is
217 located at the southern extent of the EAC separation zone (Figure 1) and 5.5 km offshore
218 (depth 100 m). NSI is located north of Brisbane (depth 50 m), and is strongly influenced by
219 EAC waters that originate in the Coral Sea [44]. Sampling at each time-series station
220 comprised collection of bulk seawater samples for microbial analyses from mooring sites at
221 near-monthly intervals (median days between sampling events; MAI: 34; PHB: 33; NSI: 32),
222 with physico-chemical and Chl-a data (collectively termed environmental from here on)
223 collected simultaneously for approximately 5.5 years (2012 – 2017), totaling 157 samples
224 (MAI: 58; PHB: 47; NSI: 52; SI Table 1). Environmental variables measured at each site

225 included temperature (°C), day length (hours), salinity (PSU), turbidity (NTU), Secchi disk
226 depth (m), thermocline depth (m), dissolved silicate (umol/L), NOx (umol/L), phosphate
227 (umol/L), ammonium (umol/L), and Chl-a concentration (mg/m³). Data were collected and
228 analysed by IMOS [45, 46] (SI Table 1). Mixed layer depth (MLD) was estimated from
229 temperature depth profiles (Australian National Mooring Network temperature and salinity
230 data product at [htt://aodn.com](http://aodn.com)) based on Condie and Dunn (2006) [47], and defined as the
231 depth at which temperature decreased by 0.4 °C from the surface temperature (0-2 m depth).
232

233 ***Sample collection, DNA extraction and amplicon sequencing***

234 ***Sample collection and DNA extraction***

235 Two liters of surface seawater were collected using Niskin bottles and transported on ice back
236 to the lab. Samples were filtered through a 0.22 um pore Sterivex GP filter (Millipore,
237 Massachusetts. Cat. # SVGPL10RC), which were then stored at -80 °C until processing.
238 Filters were sent (on dry ice or in liquid nitrogen dewars) to the Commonwealth Scientific
239 and Industrial Research Organisation Oceans & Atmosphere (CSIRO O&A) laboratories in
240 Hobart, Tasmania for DNA extractions. Microbial DNA was extracted using standardized
241 procedures as part of the Marine Microbes Program
<https://data.bioplatforms.com/organization/pages/bpa-marine-microbes/methods> using a
242 modified PowerWater Sterivex DNA Isolation Kit (MOBIO Laboratories) protocol. DNA
243 isolation included incubating Sterivex filters for 1 hour on a horizontal vortex with 1.875 ml
244 lysis buffer followed by a phenol:chloroform extraction.
245

246 ***Amplicon sequencing***

247 The V1 – V3 regions of the 16S rRNA gene were PCR amplified using the bacteria-specific
248 primers 27F (5'-AGRGTGATCMTGGCTCAG-3') and 519R (5'-
249 GWATTACCGCGGCKGCTG-3') [49] with the following cycling conditions: 1-step using
250 KAPA HiFi HotStart ReadyMix (Roche) comprised steps including 95 °C initial denaturation
251 (3 min), with 35 cycles of 95 °C (30 s), 5 °C (10 s) and 72 °C 45 s), and a final elongation
252 step at 72 °C (5 min). Amplicons were then purified using Ampure XP beads (Agencourt
253 Bioscience Corporation) and sequenced on the Illumina MiSeq platform (Illumina, Inc., San
254 Diego, USA) at the Ramaciotti Center for Genomics (UNSW, Sydney, Australia), with 300
255 bp paired reads.

256 ***Bioinformatic processing***

257 Raw fastq files were downloaded from BioPlatforms Australia
258 (<https://data.bioplatforms.com>). Amplicon quality control and analysis was performed using
259 DaDa2 [50]. In brief, primers were truncated using cutadapt [51] and reads were trimmed,
260 denoised, merged, and chimeras removed using function removeBimeraDenovo
261 (minFoldParentOverAbundance = 4) (full code provided
<https://github.com/martinostrowski/marinemicrobes/tree/master/dada2>). Taxonomic
263 classification of bacterial 16s rRNA ASVs was performed using a naïve Bayes classifier
264 based on SILVA 138.1 and a bootstrap cut-off >50 % [52]. All ASVs which had a DaDa2
265 bootstrapped value < 50 at the taxonomic level were assigned to Kingdom unclassified.

266 The final bacterioplankton dataset analyzed in this study resulted from removing all
267 sequences assigned to Kingdom unclassified, Archaea, Eukaryota, Chloroplast, and

268 Mitochondria. The final step included filtering out low abundant ASVs with a total
269 abundance across the entire dataset of less than 0.005 %. The plastid dataset containing all
270 the Chloroplast sequences was used to assess the potential importance of phytoplankton on
271 bacteria community assembly, and taxonomic assignment was made in a similar way as
272 bacterioplankton ASVs with bootstrapped value < 50 % were trimmed and taxonomic
273 identity called with naïve Bayes classifier using PhytoRef database [53].

274

275 ***Statistical analysis***

276 Datasets used in analysis included 1) environmental variables, 2) bacterial amplicon relative
277 abundance, and 3) plastid amplicon relative abundance to represent the eukaryotic
278 phytoplankton. In cases of missing environmental observations, values were imputed with
279 `rflImpute()` from the `randomForest` package (version 4.6.14) [54]. Imputation was performed
280 for each time-series independently. Environmental variables were mean centered unit
281 variance standardized to reduce outlier influence. All analyses were performed using R
282 version 3.6.1.

283 ***Temporal variability in environmental conditions***

284 Temporal variability in environmental conditions was estimated by determining the mean
285 dissimilarity within each time-series [37] based on the 11 environmental variables described
286 above. Dissimilarity among samples based on environmental variables was calculated on
287 Euclidian distance. Heterogeneity (*Ed*) was derived for each pair of samples within a time-
288 series as follows:

$$Ed = \left(\frac{Euc}{Euc_{max}} \right) + 0.001$$

289 where *Euc* is the Euclidian distance between two samples within a time-series, *Euc_{max}* is the
290 maximum distance observed across the entire dataset, and 0.001 is added to account for zero
291 similarity among two samples. Mean *Ed* was then calculated within each time-series and
292 heterogeneity compared using a Kruskal-Walls χ^2 and dunn-post hoc pairwise tests across the
293 three time-series.

294 ***Calculation of the biological interaction indices***

295 Building on a framework introduced by Musters et al., (2019), we developed a metric to
296 quantify the relative contribution of potential interactions among bacteria and phytoplankton
297 in structuring patterns of bacterioplankton diversity. Our approach regresses biological
298 predictors (bacterial and phytoplankton ASVs) against individual bacterial ASVs (response
299 ASV). In the case of the bacterial interaction metric, the response ASV is removed from the
300 predictor ASV dataset. There is no reason to expect species interactions will be linear or that
301 ASV patterns are the result of a single predictor, therefore we extend the co-occurrence
302 definition beyond simple pairwise co-occurrence to include more than a single bacterial ASV
303 (or phytoplankton ASV) using a machine learning approach. In this way, we can identify
304 non-linear abundance relationships of an individual ASV which may be due to the abundance
305 of multiple organisms. We additionally identified the relationship of each bacterial ASV to a
306 combination of environmental data (e.g, temperature). Therefore, we generated three datasets
307 including bacteria-environment, phytoplankton-environment, and environment only in a

308 series of steps (SI Figure 1) described below. The gradient forest [55] method was used to
309 regress the large number of predictors to individual bacterial ASVs. Gradient forest is a
310 modification of regression forest, which calculates an explained variation (R_f^2) for each
311 response ASV (SI Figure 1a,b). The approach then uses an out-of-bag prediction (OOB)
312 similar to regression forest, but differs by defining the explained variation of each response
313 and is calculated as follows:

$$R_f^2 = 1 - \sum_i (Y_{fi} - \widehat{Y}_{fi})^2 / \sum_i (Y_{fi} - \overline{Y}_{fi})^2$$

314 Y_{fi} is the abundance of the i th occurrence of ASV f , \widehat{Y}_{fi} is the OOB prediction for the
315 abundance of ASV f at the i th position, and \overline{Y}_{fi} is the mean abundance of ASV f . Calculations
316 were conducted using the gradientForest package (version 0.1.17) in R [56]. For each
317 response variable we removed all predictor variables that did not significantly explain the
318 abundance of the response ASV (SI Figure 1c). Significance of predictor variables in
319 explaining proportional distribution of the response was calculated with rfperrmu (version
320 2.1.81). Regression forest produces partial R^2 values for each predictor of a response ASV.
321 All partial R^2 values for a response variable are summed to produce the total R^2 of that
322 response variable; therefore, we could sum the remaining significant predictor partial R^2
323 values to determine the response R^2 value (SI Figure 1d).

324 Next, we removed all bacterial response ASVs with an R^2 value less than 0.3 (thus retaining
325 ≥ 0.3) and summed the relative abundance of each retained ASV for each sample (i.e.,
326 sample 1 from NSI, sample 2 from MAI) (SI Figure 1e). Finally, the bacteria-bacteria metric
327 was calculated as the abundance difference between the bacteria-environment and
328 environment only relative abundance for each sample. The bacteria-phytoplankton metric
329 was calculated as the difference between the phytoplankton-environment and environment
330 only relative abundance (SI Figure 1f). The resulting value is the bacterial or phytoplankton
331 interaction metric (SI Figure 1g). Our approach is similar to that described by Muster et al.,
332 (2019) with the addition of the significance calculation for partial R^2 values and the
333 identification of the relative abundance of ASVs from the dataset which are described by
334 other bacterial or phytoplankton ASVs. Before the calculation of the metric, we performed a
335 Hellinger transformation on predictors to reduce potential bias from highly abundant
336 predictor ASVs. Also, to reduce computational time, we limited our analysis to include only
337 ASVs which occurred in $> 25\%$ of samples within a time-series.

338 *Recurrent diversity patterns and environmental drivers*

339 Alpha diversity was calculated as the effective number of ASVs [57] per sample, which is a
340 measure of the number of equally common ASVs among samples and calculated as e^H ,
341 where H is Shannon entropy. Beta-diversity was calculated using abundance-based Bray-
342 Curtis dissimilarity for pairs of samples within time-series. Abundance based beta-diversity
343 was calculated on Hellinger transformed data (square root of standardized species
344 abundances). Bray-curtis similarity was used throughout and calculated as 1- dissimilarity
345 score. To test for differences in intra-seasonal and inter-seasonal beta-diversity, samples were
346 classified as intra-seasonal if sample pairs were from the same astronomical season;
347 otherwise, samples were classified as inter-seasonal. A Kruskal-Wallis χ^2 test was performed
348 to test the null hypothesis of no difference among the means of time-series groups.

349 We then modeled predictor variables that best explained observed diversity (alpha and beta)
350 across the three time-series. For these analyses, we included the biotic interaction metrics, as
351 described above, to account for possible interspecific interactions and/or unobserved
352 environmental factors. Multiple regression was run on alpha diversity using `lm()` and `step()`
353 with the direction set to 'both', from the 'stats' package (version 3.6.1). Model selection was
354 performed using AIC decrease. Distance-based modeling was performed to identify
355 explanatory variables that best explained the distribution of beta-diversity [58], using a
356 stepwise procedure. Model selection was based on the increase in adjusted R-squared with
357 procedure `ordiR2step()` from the vegan package (version 2.5.6) [59] with direction = 'both'
358 and permutations = 1000. We then performed variance partitioning [60], to identify the
359 relative importance of the variables selected by the distance-based step procedure using the
360 function `varpart()`.

361 **Results and Discussion**

362 *Environmental characteristics of the three oceanographic time-series sites*

363 Environmental heterogeneity exhibited a latitudinally-defined gradient (Kruskal-Wallis $\chi^2_{df=2} = 701.4$, $p < 0.01$; Figure 2a, b, SI Figure 2a, b, c) across the three time-series stations,
364 whereby Maria Island (MAI) had greater environmental heterogeneity than Pt Hacking
365 (PHB) (Figure 2a; Dunn-test: $p < 0.01$) and PHB greater than North Stradbroke Is (NSI)
366 (Figure 2a; Dunn-test: $P < 0.01$). At MAI (Figure 1; Lat 42°35.8 S; Lon 148°14.0 E) autumn
367 and winter were characterized by a greater mixed layer depth (MLD; mean \pm sd; 63.3 m \pm
368 20.6), higher inorganic nutrient concentrations (SI Table 1; SI Figure 2b; NOx: 1.52 umol/L
369 \pm 1.42; phosphate: 0.216 umol/L \pm 0/109) and lower temperature (SI Figure 2a; 15.1 °C \pm
370 2.14), while spring and summer samples had higher Chl-a concentrations (SI Figure 2c; 0.572
371 mg/m³ \pm 0.333). At PHB (Figure 1; Lat 34°05.0 S; Lon°151 15.0 E) spring and summer
372 temperatures (SI Table 1; 20.2 °C \pm 2.07) more closely track that of NSI than MAI (SI Figure
373 2a), while MLD (32.0 m \pm 17.0), inorganic nutrient concentrations (SI Figure 2b; NOx: 1.00
374 umol/L \pm 1.33; phosphate: 0.174 umol/L \pm 0.10; silicate: 0.864 umol/L \pm 0.749), and Chl-a
375 concentration (SI Figure 2c; 0.67 mg/m³ \pm 0.30) during winter were more similar to MAI.
376 NSI (Figure 1; Lat 27°20.5 S; Lon 153°33.75 E) was distinguished by relatively high-water
377 temperatures (SI Figure 2a; SI Table 1; 23.6°C \pm 2.03), and relatively low concentrations of
378 inorganic nutrients including phosphate (SI Table 1; 0.09 umol/L \pm 0.04) and NOx (SI Figure
379 2a; 0.07 umol/L \pm 0.13) concentrations. Winter samples at NSI were characterized by
380 relatively high Secchi disk depth (20.0 m \pm 5.33) while samples from the other three seasons
381 were most distinguished by temperature. Thus, the three time-series exhibited distinct
382 environmental conditions that range from MAI having the greatest environmental
383 heterogeneity compared to other stations, PHB with relatively intermediate nutrient
384 concentrations and high physical environmental heterogeneity and NSI having the least
385 environmental heterogeneity. (324)

387 *Contrasting drivers of bacterioplankton alpha diversity patterns across time-series*

388 The bacterioplankton datasets from the three reference stations had a varying number of
389 observed ASVs (richness). Maria Island had the greatest number of total ASVs with 7608
390 (mean per sample 490.8 \pm se 26.0), then Port Hacking with 7020 (414.1 \pm 20.7) and North
391 Stradbroke Island with 4843 (431.8 \pm 19.7). Richness of dataset ASVs corresponded with the
392 total diversity of ASVs at each site where MI had the greatest alpha diversity (mean 122.14 \pm

393 se 7. 64), followed by PHB (116.68 ± 6.36) then NSI with the least (107.27 ± 4.07). The
394 distribution of alpha diversity was, however, not significantly different among time-series (SI
395 Figure 3; Kruskal-Wallis $\chi^2 = 2.10$, df = 2, p = NS). Temporal patterns in bacterioplankton
396 diversity across the time-series sites provided evidence however, for varying degrees of
397 seasonality among locations. Consistent yearly diversity patterns were observed at MAI, and
398 this was less apparent or absent at PHB and NSI (Figure 3a). At MAI, bacterioplankton alpha
399 diversity consistently peaked in the winter months and was lowest during spring, while at
400 PHB, diversity peaked inconsistently across years. For instance, in 2012, the highest observed
401 diversity at PHB was in winter, whereas in 2013, diversity peaked in autumn. At NSI,
402 diversity peaks were not consistent across years. Collectively, these patterns infer that at MAI
403 the principal factors regulating bacterioplankton alpha diversity are repeatable at seasonal
404 scales, while at PHB and NSI, factors regulating bacterioplankton alpha diversity lack
405 seasonal influences.

406 Environmental heterogeneity has been shown in other systems to be an important driver of
407 bacterial diversity patterns [7, 61], therefore, given the different levels of environmental
408 heterogeneity observed between locations, we predicted that the influence of environmental
409 factors would become less apparent with decreasing environmental heterogeneity. At MAI,
410 diversity patterns were predominately predicted by environmental factors (Figure 3b; Table
411 2; $F_{df=4,53} = 57.06$, $p < 0.001$, Adj. $R^2 = 0.80$). Day length had a strong inverse relationship
412 with alpha diversity (Relative Importance = 0.62). Similar results have been reported for
413 bacterioplankton richness patterns in the English channel time-series [25] which was also
414 sampled at near monthly intervals. Therefore, day length may generally be an important
415 predictor of high latitude bacterioplankton diversity. In addition, Chl-a was weakly associated
416 with bacterioplankton alpha diversity suggesting a potential trophic mediation by
417 phytoplankton (RI = 0.09). Similar trends were observed in the Antarctic where
418 bacterioplankton alpha diversity was inversely related to Chl-a [26].

419 At PHB, where there were lower levels of seasonal heterogeneity in environmental conditions
420 (Figure 2a), bacterioplankton diversity was influenced by mixed layer depth, but total
421 explained variation for alpha diversity was quite low (Figure 3b; Table 2; $F_{df=5,46} = 4.29$,
422 $p = 0.003$, Adj. $R^2 = 0.24$). The dominate environmental factors included day length (RI =
423 0.12) which was inversely correlated with alpha diversity patterns while MLD depth (RI =
424 0.10) was positively correlated. The high amount of unexplained variation may suggest other
425 unmeasured environmental factors (e.g., dissolved organic carbon) more strongly influence
426 alpha diversity. Alternatively, EAC driven dispersal processes, which have been shown to
427 influence bacterioplankton occurrences at PHB [48], may also be a dominant contributor to
428 alpha diversity at the monthly time-scale interval. Dispersal is a fundamental ecological
429 process [62] and can become important in structuring bacterioplankton diversity when
430 environmental heterogeneity is low or when dispersal rates are high enough to over-shadow
431 the effects of other ecological processes [7].

432 For NSI temporal bacterioplankton alpha diversity was not consistent with astronomical
433 seasons, but total variation could be explained to a relatively high level (Figure 3b; Table 2; $F_{df=3,43} = 11.18$, $p < 0.001$, Adj. $R^2 = 0.40$). Interestingly, and in contrast to the other two
434 locations, biotic interactions were the main predictors of alpha diversity at this location.
435 Bacteria-bacteria interactions specifically, were positively correlated with alpha diversity
436 patterns and contributed a large portion of the total predicted variation (Figure 3b; partial R^2
437

438 = 0.33). Ammonium was also important in predicting alpha diversity and was inversely
439 correlated (RI = 0.06) with diversity patterns. Therefore, potential interspecific interactions
440 may be important drivers of alpha diversity patterns at this sub-tropical time-series [33].

441 Across the three time-series the amount of variance that could be explained by environmental
442 factors corresponded with trends in environmental heterogeneity. The largest contribution of
443 environmental variables to explaining alpha diversity distribution was at MAI (80 %), while
444 an intermediate amount could be explained at PHB (22 %) and the least at NSI (10 %)
445 (Figure 3b). However, the total explained variation did not correspond with trends in
446 environmental heterogeneity. The lowest latitude site NSI which had the lowest
447 environmental heterogeneity, had the second largest total explained variance, driven by a
448 large contribution of biotic predictors (24 %). This location had the warmest temperatures
449 and the lowest inorganic nutrient concentrations of our study locations (Figure 2b), and under
450 these conditions trophic mediation, such as facilitation by Prochlorococcus and
451 Synechococcus groups can drive bacterioplankton succession through primary productivity
452 [63]. Biotic interactions at MAI or PHB were not important predictors of alpha diversity
453 across the temporal scale analyzed here (median 34 days), however is likely an important
454 contributor when higher resolution time-series are considered [64]. For instance, Luria et al
455 (2016) monitored bacterioplankton diversity in Antarctic waters across 1-2-week intervals
456 and found richness was driven phytoplankton blooms; therefore, potentially demonstrating
457 importance of scales in distinguishing among dominate ecological drivers of diversity
458 patterns.

459 *Contrasting drivers of recurrent beta diversity patterns across time-series*

460 Bacterioplankton beta diversity (ratio of regional: local diversity) at each of the three
461 reference stations exhibited seasonal trends, where intra-seasonal samples (samples from the
462 same season) had greater observed similarity (ie. lower beta diversity; 0: dissimilar; 1: highly
463 similar) than inter-seasonal samples (Figure 4a, Supplemental Figure 4). At MAI, the mean
464 intra-seasonal Bray-Curtis (BC) score of 0.50 (± 0.005 SE) was significantly greater than the
465 inter-seasonal score (0.59 ± 0.13 ; t-test $df = 749.45 = 16.00$; $p < 0.001$). Similarly, at PHB the
466 intra-seasonal similarity (0.56 ± 0.006) was significantly greater than the inter-seasonal
467 similarity ($BC = 0.63 \pm 0.003$; Supplemental Figure 4; t-test $df = 528.48 = 10.32$; $p < 0.001$). NSI
468 had the lowest intra-seasonal mean BC among the time-series at 0.47 ± 0.005 which was also
469 significantly different than the inter-seasonal mean BC of 0.51 ± 0.003 (Supplemental Figure
470 4a; t-test $df = 473.94 = 6.00$; $p < 0.001$). Therefore, at all locations bacterioplankton communities
471 from a given season were more similar to those from the same season in different years, than
472 to those that were closer in time, but different in season. These results suggest ecological
473 processes that structure bacterioplankton communities are recurrent at a given time of across
474 years, and this occurs across despite.

475 Like alpha diversity, beta diversity is also expected to increase with increasing environmental
476 heterogeneity [65, 66] under the assumption that greater variability in environmental factors
477 will result in an increased number of niches for organisms to occupy [67]. We therefore
478 predicted beta diversity would be greatest at MAI and lowest at NSI. This pattern, however,
479 was not observed and rather the greatest mean beta diversity was observed at PHB
480 (Supplemental Figure 4b; mean \pm SD; 0.61 ± 0.11), followed by MAI (0.57 ± 0.12) and NSI
481 (0.50 ± 0.09 ; Kruskal-Wallis $\chi^2_{df=2} = 690.3$, $p < 0.05$). These results suggest that

482 environmental variability is not entirely responsible for bacterioplankton composition,
483 suggesting other ecological processes, such as biotic processes are important for structuring
484 beta diversity.

485 Therefore, we investigated the key variables driving beta diversity patterns and determined
486 their relative contributions to these patterns. Our results indicate that different deterministic
487 processes govern patterns of beta diversity across the three locations (Figure 4b). Variables
488 that best modelled beta diversity at MAI included day length, temperature, bacterial
489 abundance, phytoplankton abundance, turbidity, and Secchi disk depth (Adj. $R^2 = 0.20, 0.13,$
490 $0.06, 0.04, 0.02, < 0.01$, respectively; Table 3; $F = 11.35, df = 6, 51, p = 0.001$). Variance
491 partitioning showed environmental variables had the greatest effect (32 % of partitioned
492 variation; Figure 4b) influencing beta diversity patterns at MAI followed by bacterial
493 interactions (7 %), while phytoplankton contributed 4 %. Together, the biotic interactions
494 explained approximately 11 % of the total partitioned variation. There was 4 % of variance
495 contributed by bacteria-environment overlap, suggesting a potential role of environmentally
496 mediated bacterial influence. These results match with alpha diversity patterns where
497 environment was the key drivers, demonstrating the importance of environment fluctuation in
498 structuring bacterioplankton diversity. Beta diversity however had some influence by biotic
499 factors, while alpha diversity was only predicted by environmental factors, potentially
500 suggesting that biotic processes may facilitate the presence or absence of particular
501 bacterioplankton groups, rather than diversity at a particular time point.

502 At PHB, environmental factors also had the largest contribution to beta diversity. Important
503 variables included day length and temperature (Adj $R^2 = 0.18, 0.14$, respectively; Table 3; $F =$
504 $6.8, p = 0.001$). Collectively, the environmental factors accounted for 30 % of the total
505 partitioned variation (Figure 4b) while biotic interaction (bacteria and phytoplankton) only
506 accounted for 5 % of the total variation. Environmental overlap with bacteria (4%) and
507 phytoplankton (1 %) accounted for 5 % of the variation. These results are similar to alpha
508 diversity in that environment was a key contributor to observed patterns. Interestingly,
509 environmental contribution was similar to the amount contributed at MAI, however total
510 explained variance was lower due to the lower contribution of biotic influence at PHB.

511 A key finding in this study was that at NSI, biotic predictors played a much greater role in
512 defining beta diversity relative to the other two locations. Phytoplankton abundance was
513 found to be the most important factor contributing to bacterioplankton beta diversity variation
514 ($R^2 = 0.21$; Table 3; $F = 7.32, df = 5, 41, p = 0.001$). Biotic factors accounted for the largest
515 amount of partitioned variation at 15 % (Figure 4b; phytoplankton-bacteria: 6 %;
516 phytoplankton only: 5 %; bacteria only: 4 %) while environmental factors only accounted for
517 13 % of the variation. There was a large amount of variation accounted for due to
518 overlapping components, including phytoplankton-environment (11 %) and bacteria-
519 environment (2 %) (Figure 4b; green segment). Based on the high observed influence of
520 phytoplankton abundance at NSI and high overlapping variance between phytoplankton and
521 the environment, we posit that the environment may indirectly drive bacterioplankton beta
522 diversity through influencing the phytoplankton. These results are similar to those observed
523 for alpha diversity patterns, where biotic predictors were also the most important contributor.
524 Interestingly, the main biotic contributor varied across the two diversity measures, where
525 phytoplankton was the most importance for beta diversity while for alpha diversity, bacteria

526 was the predominate drivers. Thus, trophic links are important to structuring bacterioplankton
527 diversity in a dynamic manor at NSI.

528 Together these results show that patterns of beta diversity are not shaped by environment
529 alone, but rather a combination of environment and potential biotic interactions and that the
530 relative importance of these can vary across locations. Interestingly, the importance of biotic
531 interactions negatively corresponded with beta-diversity, such that the total contribution by
532 biotic factors was greatest at NSI where beta-diversity was lowest, while PHB had the highest
533 beta diversity and was least influenced by biotic predictors. These results potentially signal a
534 stabilizing effect on the community against environmental fluctuation that biotic interactions
535 can promote [68]. Also, in contrast to predictions, the relative contribution of deterministic
536 processes did not entirely correspond with changes with environmental heterogeneity, as the
537 relative contribution of environmental factors were similar at MAI and PHB, however at NSI
538 where the lowest level of environmental heterogeneity occurred, biotic processes were the
539 predominate deterministic driver. Interestingly, biotic influence on bacterioplankton diversity
540 was found at all locations, suggesting previously overlooked factors driving temporal
541 succession of bacterioplankton.

542 **Concluding remarks**

543 Here, we demonstrate that temporal patterns in marine bacterioplankton diversity are
544 structured by different inherent deterministic processes according to location, which tracks
545 latitudinal differences that may be the result of variation in environmental heterogeneity. The
546 most ‘environmentally stable’ site, which was characterized by the least seasonality displayed
547 patterns in bacterioplankton alpha and beta diversity which were in contrasted to the site with
548 highest levels of seasonality in environmental conditions. Bacterioplankton diversity is the
549 consequence of multiple interacting processes including filtering by environmental factors
550 and biotic interactions [8, 69]. Partitioning the effects of environmental versus potential biotic
551 influence is an important distinction as ecological theory predicts ecosystem function is
552 linked to the processes that structure community diversity patterns [2, 70, 71]. Therefore, to
553 accurately forecast ecosystem function, it is necessary to 1) distinguish among processes that
554 give rise to bacterioplankton diversity and 2) identify how these processes change through
555 space and time. This is heightened as climatic conditions are changing rapidly which can alter
556 the balance between biotic and environmental deterministic processes [72]. However, until
557 now no framework has been applied to bacterioplankton to identify the importance of
558 potential biotic interactions relative to environmental factors driving total diversity patterns.
559 Patterns of seasonality for both alpha and beta diversity observed in our study are consistent
560 with diversity patterns from three well studied time-series, where the high latitude English
561 Channel exhibited the highest degree of seasonality in diversity patterns, the mid-latitude
562 SPOTS with intermediate diversity patterns and the low latitude HOTS with absent seasonal
563 diversity patterns [73]. Therefore, processes driving diversity patterns along the latitudinal
564 gradient may be general, and this study provides insight on potential drivers of this trend.
565 Importantly, results shed insight on why some studies have identified environmental factors
566 as having significant influence over bacterioplankton diversity [26], while others have
567 concluded biotic processes play a stronger role in driving bacterioplankton diversity patterns
568 [25, 69]. Predicting how biogeochemical processes will respond under future climate change
569 scenarios requires insight to the microbial composition present, and therefore microbial
570 diversity patterns.

571 **Acknowledgements**

572 This project was supported by the New South Wales state government through the Research
573 Attraction and Acceleration Program (). For samples collected prior to mid-2015, we would
574 like to acknowledge the contribution of the Australian Marine Microbial Biodiversity
575 Initiative (AMMBI) in the generation of the data used in this publication. AMMBI was
576 funded by Australian Research Council awards DP0988002 to Brown & Fuhrman,
577 DP120102764 to Seymour, Brown & Bodrossy, DP150102326 to Brown, Ostrowski,
578 Fuhrman & Bodrossy, the Environmental Genomics Project from CSIRO Oceans and
579 Atmosphere and a CSIRO OCE Science Leader Fellowship to Bodrossy. AMMBI was also
580 supported by funding from the Integrated Marine Observing System (IMOS) through the
581 Australian Government National Collaborative Research Infrastructure Strategy (NCRIS) in
582 partnership with the Australian research community. For samples collected after mid-2015
583 we would like to acknowledge the contribution of the Marine Microbes consortium in the
584 generation of data used in this publication. The Marine Microbes project was supported by
585 funding from Bioplatforms Australia and the Integrated Marine Observing System (IMOS)
586 through the Australian Government National Collaborative Research Infrastructure Strategy
587 (NCRIS) in partnership with the Australian research community.

588 **Compliance with ethical standards**

589 Conflict of interest: The authors declare they have no conflict of interest.
590 Author contributions: MPD, JS, MAD, PS, and MO conceived and designed study; MPD,
591 MO, and AB performed data processing; MPD performed statistical analysis; JS, MAD, MB,
592 LB, JVDK assisted with sample collection; MPD wrote the manuscript with contributions
593 from JS and MAD; and all authors edited the manuscript.

594

595 **References**

- 596 1. Awasthi A, Singh M, Soni SK, Singh R, Kalra A. Biodiversity acts as insurance of
597 productivity of bacterial communities under abiotic perturbations. *Isme J* 2014; **8**:
598 2445–2452.
- 599 2. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Ecology:
600 Biodiversity and ecosystem functioning: Current knowledge and future challenges.
601 *Science* (80-) 2001; **294**: 804–808.
- 602 3. Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al.
603 Microbial diversity drives multifunctionality in terrestrial ecosystems. *Nat Commun*
604 2016; **7**: 1–8.
- 605 4. Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between
606 marine microbial community composition and function challenges the idea of
607 functional redundancy. *ISME J* 2018; **12**.
- 608 5. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological
609 role of water-column microbes in the sea. *Mar Ecol Prog Ser* 1983; **10**: 257–263.
- 610 6. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al.
611 Quantifying community assembly processes and identifying features that impose them.

612 612 *ISME J* 2013; **7**: 2069–2079.

613 613 7. Huber P, Metz S, Unrein F, Mayora G, Sarmento H, Devercelli M. Environmental
614 heterogeneity determines the ecological processes that govern bacterial
615 metacommunity assembly in a floodplain river system. *ISME J* 2020; **14**: 2951–2966.

616 616 8. Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and
617 their ecological interpretation. *Nat Rev Microbiol* 2015; **13**: 133–146.

618 618 9. Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E.
619 Vertical and Seasonal Patterns Control Bacterioplankton Communities at Two
620 Horizontally Coherent Coastal Upwelling Sites off Galicia (NW Spain). *Microb Ecol*
621 2018; **76**: 866–884.

622 622 10. Ward CS, Yung CM, Davis KM, Blinebry SK, Williams TC, Johnson ZI, et al. Annual
623 community patterns are driven by seasonal switching between closely related marine
624 bacteria. *ISME J* 2017; **11**: 1412–1422.

625 625 11. Friedman J, Higgins LM, Gore J. Community structure follows simple assembly rules
626 in microbial microcosms. *Nat Ecol Evol* 2017; **1**: 1–7.

627 627 12. Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, et al. Biotic interactions in
628 microbial communities as modulators of biogeochemical processes: Methanotrophy as
629 a model system. *Front Microbiol* 2016; **7**: 1–11.

630 630 13. Rohwer F, Thurber RV. Viruses manipulate the marine environment. *Nature* 2009;
631 **459**: 207–212.

632 632 14. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic
633 patterns: Processes shaping the microbial landscape. *Nat Rev Microbiol* 2012; **10**: 497–
634 506.

635 635 15. Lindström ES, Östman Ö. The importance of dispersal for bacterial community
636 composition and functioning. *PLoS One* 2011; **6**.

637 637 16. Hao YQ, Zhao XF, Zhang DY. Field experimental evidence that stochastic processes
638 predominate in the initial assembly of bacterial communities. *Environ Microbiol* 2016;
639 **18**: 1730–1739.

640 640 17. Evans S, Martiny JBH, Allison SD. Effects of dispersal and selection on stochastic
641 assembly in microbial communities. *ISME J* 2017; **11**: 176–185.

642 642 18. Zhou J, Ning D. Stochastic Community Assembly: Does It Matter in Microbial
643 Ecology. *Microbiol Mol Biol Rev* 2017; **81**: 1–32.

644 644 19. Hubbell SP. The unified Neutral Theory of Biodiversity and Biogeography. 2001.
645 Princeton University Press.

646 646 20. Langenheder S, Lindström ES. Factors influencing aquatic and terrestrial bacterial
647 community assembly. *Environ Microbiol Rep* 2019; **11**: 306–315.

648 648 21. Nguyen J, Lara-Gutiérrez J, Stocker R. Environmental fluctuations and their effects on
649 microbial communities, populations and individuals. *FEMS Microbiol Rev* 2021; **45**:
650 1–16.

651 651 22. Gralka M, Szabo R, Stocker R, Cordero OX. Trophic Interactions and the Drivers of
652 Microbial Community Assembly. *Curr Biol* 2020; **30**: R1176–R1188.

653 23. Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and
654 their ecological interpretation. *Nat Rev Microbiol* 2015; **13**: 133–146.

655 24. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al.
656 Substrate-controlled succession of marine bacterioplankton populations induced by a
657 phytoplankton bloom. *Science (80-)* 2012; **336**: 608–611.

658 25. Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al.
659 Defining seasonal marine microbial community dynamics. *ISME J* 2012; **6**: 298–308.

660 26. Luria CM, Amaral-Zettler LA, Ducklow HW, Rich JJ. Seasonal succession of free-
661 living bacterial communities in coastal waters of the western antarctic peninsula. *Front
662 Microbiol* 2016; **7**: 1–13.

663 27. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al.
664 Structure and function of the global ocean microbiome. *Science (80-)* 2015; **348**: 1–9.

665 28. Chow CET, Sachdeva R, Cram JA, Steele JA, Needham DM, Patel A, et al. Temporal
666 variability and coherence of euphotic zone bacterial communities over a decade in the
667 Southern California Bight. *ISME J* 2013; **7**: 2259–2273.

668 29. Fiegna F, Moreno-Letelier A, Bell T, Barraclough TG. Evolution of species
669 interactions determines microbial community productivity in new environments. *ISME
670 J* 2015; **9**: 1235–1245.

671 30. Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. Rules of
672 engagement: Interspecies interactions that regulate microbial communities. *Annu Rev
673 Microbiol* 2008; **62**: 375–401.

674 31. Steele JA, Countway PD, Xia L, Vigil PD, Beman JM, Kim DY, et al. Marine
675 bacterial, archaeal and protistan association networks reveal ecological linkages. *ISME
676 J* 2011; **5**: 1414–1425.

677 32. Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants
678 of community structure in the global plankton interactome. *Science (80-)* 2015; **348**:
679 1–10.

680 33. Chesson P. Mechanisms of maintenance of species diversity. *Annu Rev Ecol Syst* 2000;
681 **31**: 343–66.

682 34. Veech JA, Crist TO. Habitat and climate heterogeneity maintain beta-diversity of birds
683 among landscapes within ecoregions. *Glob Ecol Biogeogr* 2007; **16**: 650–656.

684 35. Horner-Devine MC, Carney KM, Bohannan BJM. An ecological perspective on
685 bacterial biodiversity. *Proc R Soc B Biol Sci* 2004; **271**: 113–122.

686 36. Langenheder S, Berga M, Östman Ö, Székely AJ. Temporal variation of B-diversity
687 and assembly mechanisms in a bacterial metacommunity. *ISME J* 2012; **6**: 1107–1114.

688 37. Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N, Thioulouse J, Saby NPA, Lelievre
689 M, et al. Turnover of soil bacterial diversity driven by wide-scale environmental
690 heterogeneity. *Nat Commun* 2013; **4**.

691 38. Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological
692 connectivity drives microbial community structure and connectivity in polar, terrestrial
693 ecosystems. *Environ Microbiol* 2016; **18**: 1834–1849.

694 39. Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic
695 assembly processes in subsurface microbial communities. *ISME J* 2012; **6**: 1653–1664.

696 40. Carrara F, Giometto A, Seymour M, Rinaldo A, Altermatt F. Inferring species
697 interactions in ecological communities: A comparison of methods at different levels of
698 complexity. *Methods Ecol Evol* 2015; **6**: 895–906.

699 41. Herren CM, McMahon KD. Cohesion: A method for quantifying the connectivity of
700 microbial communities. *ISME J* 2017; **11**: 2426–2438.

701 42. Ritchie EG, Martin JK, Johnson CN, Fox BJ. Separating the influences of environment
702 and species interactions on patterns of distribution and abundance: Competition
703 between large herbivores. *J Anim Ecol* 2009; **78**: 724–731.

704 43. Musters CJM, Ieromina O, Barmentlo SH, Hunting ER, Schrama M, Cieraad E, et al.
705 Partitioning the impact of environmental drivers and species interactions in dynamic
706 aquatic communities. *Ecosphere* 2019; **10**.

707 44. Brown M V., Van De Kamp J, Ostrowski M, Seymour JR, Ingleton T, Messer LF, et
708 al. Data Descriptor: Systematic, continental scale temporal monitoring of marine
709 pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. *Sci
710 Data* 2018; **5**: 1–10.

711 45. Lynch TP, Morello EB, Evans K, Richardson AJ, Rochester W, Steinberg CR, et al.
712 IMOS National Reference Stations: A continental-wide physical, chemical and
713 biological coastal observing system. *PLoS One* 2014; **9**.

714 46. Davies C, Sommerville E. National Reference Stations BiogDavies, Editors Claire
715 Imos, Eeochemical Operation Manual. 2017.

716 47. Condie SA, Dunn JR. Seasonal characteristics of the surface mixed layer in the
717 Australasian region: Implications for primary production regimes and biogeography.
718 *Mar Freshw Res* 2006; **57**: 569–590.

719 48. Messer LF, Ostrowski M, Doblin MA, Petrou K, Baird ME, Ingleton T, et al.
720 Microbial tropicalization driven by a strengthening western ocean boundary current.
721 *Glob Chang Biol* 2020; 1–17.

722 49. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al.
723 Ultra-high-throughput microbial community analysis on the Illumina HiSeq and
724 MiSeq platforms. *ISME J* 2012; **6**: 1621–1624.

725 50. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
726 High-resolution sample inference from Illumina amplicon data. *Nat Methods* 2016; **13**:
727 581–583.

728 51. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
729 reads. *EMBnet* 2011; **17**.

730 52. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and
731 ‘all-species Living Tree Project (LTP)’ taxonomic frameworks. *Nucleic Acids Res*
732 2014; **42**: 643–648.

733 53. Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: A
734 reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with
735 curated taxonomy. *Mol Ecol Resour* 2015; **15**: 1435–1445.

736 54. Breiman L. Statistical modeling: The two cultures. *Stat Sci* 2001; **16**: 199–215.

737 55. Ellis N, Smith SJ, Roland Pitcher C. Gradient forests: Calculating importance
738 gradients on physical predictors. *Ecology* 2012; **93**: 156–168.

739 56. Pitcher CR, Ellis N, Smith SJ, Pitcher RC, Ellis N, Smith SJ, et al. Example analysis of
740 biodiversity survey data with R package gradientForest. *R-Forge* 2011; 16.

741 57. Jost L. Entropy and Diversity. *Oikos* 2006; **2**: 363–375.

742 58. Legendre P, Anderson MJ. Distance-based redundancy analysis: Testing multispecies
743 responses in multifactorial ecological experiments. *Ecol Monogr* 1999; **69**: 1–24.

744 59. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan:
745 Community Ecology Package. *R Packag version 25-7* 2020.

746 60. Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological
747 variation. *Ecology* 1992; **73**: 1045–1055.

748 61. Curd EE, Martiny JBH, Li H, Smith TB. Bacterial diversity is positively correlated
749 with soil heterogeneity. *Ecosphere* 2018; **9**.

750 62. Vellend M. Conceptual synthesis in community ecology. *Q Rev Biol* 2010; **85**: 183–
751 206.

752 63. Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S.
753 Planktonic food web structure and trophic transfer efficiency along a productivity
754 gradient in the tropical and subtropical Atlantic Ocean. *Sci Rep* 2019; **9**: 1–19.

755 64. Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea
756 and bacteria following a spring bloom. *Nat Microbiol* 2016; **1**: 16005.

757 65. Chase JM, Leibold MA. Ecological niches: Linking classical and contemporary
758 approaches. 2003.

759 66. Heino J, Melo AS, Bini LM. Reconceptualising the beta diversity-environmental
760 heterogeneity relationship in running water systems. *Freshw Biol* 2015; **60**: 223–235.

761 67. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al.
762 The metacommunity concept: A framework for multi-scale community ecology. *Ecol
763 Lett* 2004; **7**: 601–613.

764 68. Tilman D, Downing JA. Biodiversity and stability in grasslands. *Nature* 1994; **367**:
765 363–365.

766 69. Needham DM, Fichot EB, Wang E, Berdje L, Cram JA, Fichot CG, et al. Dynamics
767 and interactions of highly resolved marine plankton via automated high-frequency
768 sampling. *ISME J* 2018; **12**: 2417–2432.

769 70. Cardinale BJ, Palmer MA, Collins SL. Species diversity enhances ecosystem
770 functioning through interspecific facilitation. *Nature* 2002; **415**: 426–429.

771 71. Weis JJ, Cardinale BJ, Forshay KJ, Ives AR. Effects of species diversity on
772 community biomass production change over the course of succession. *Ecology* 2007;
773 **88**: 929–939.

774 72. Kordas RL, Harley CDG, O'Connor MI. Community ecology in a warming world: The
775 influence of temperature on interspecific interactions in marine systems. *J Exp Mar*

776 *Bio Ecol* 2011; **400**: 218–226.

777 73. Fuhrman J a., Cram J a., Needham DM. Marine microbial community dynamics and
778 their ecological interpretation. *Nat Rev Microbiol* 2015; **13**: 133–146.

779

780 **Figure and Table Captions**

781 **Figure 1:** Map of sampling location. Inset figure shows the relative location of each reference
782 station to the Australian continent.

783 **Figure 2:** Environmental variability of each time-series. a) PCA biplot of first two
784 dimensions discriminating samples to demonstrate environmental heterogeneity and is based
785 on measured environmental variables. b) Distribution of environmental heterogeneity across
786 time-series. c) Heatmap visualizing the relative heterogeneity, measured as standard deviation
787 of environmental variables across time-series.

788 **Figure 3:** Patterns and drivers of alpha diversity across time-series. a) Scatterplot of alpha
789 diversity through time for each time-series. X-axis is time from the start of the time-series
790 and y-axis is effective diversity. Colors represent seasonal classification based on
791 astronomical calendar. b) Contribution of environmental variables and the biological metric
792 to explaining variation of alpha diversity through time at each time-series. The x axis displays
793 the three time-series, and the y axis is the adjusted R2 score. Blue is the adjusted R2 from a
794 multiple regression model of environmental variables only while red is the improved R2
795 when the biological metric is included in the model.

796 **Figure 4:** Beta diversity patterns and contribution of deterministic drivers. a) Time (in days)
797 between sampling points along X-axis and Bray-Curtis dissimilarity (BC) scores along the Y-
798 axis. BC = 0, entirely the same; BC = 1 entirely different. Colors represent the category of
799 sample; blue = inter-seasonal (two samples from different seasons), red = intra-seasonal (two
800 samples from the same season). Dotted vertical line breaks spaced at 365 days to show length
801 of time series. b) Contribution of environmental and the biological metric to explaining
802 variation of beta diversity through time across each time-series. Colors correspond to the
803 amount of variation attributed to several ecological processes derived from variance
804 partitioning procedure.

805 **Table 1:** Summary of imputed environmental variables. N is the number of samples in each
806 time-series or the whole entire dataset. Min and max are the minimum and maximum
807 observed values in the dataset. Mixed layer depth is estimated thermocline based on Condie
808 and Dunn (2006).

809 **Table 2:** Linear model results for predictor variables that showed the best relationship with
810 patterns of bacteria alpha diversity through time. The full model is the results of all variables.
811 Individual variables are the result of step regression. The (+) and (-) indicate the direction of
812 relationship between variables and alpha diversity. The biological metric is the interspecific
813 interaction metric. The explained variation (Exp.var) is the result of partitioning the variable
814 sums of squares. DF = degrees of freedom; Sum Sq = Sums of square; Rel. Imp = Relative
815 importance based on CAR variance partitioning; Mean Sq = Means of the square.
816 Significance represented by bold font if $p < 0.05$.

817 **Table 3:** Distance-based linear model results for predictor variables that showed the strongest
818 relationship to patterns of beta diversity through time. The biological metric is the
819 interspecific interaction metric. Phyto is in reference to the phytoplankton biological metric.
820 The full model informs on the global test for all selected variance and the step model shows
821 the results for individual chosen variables. All variables are the model results when all
822 variables are included. Df = degrees of freedom; SS = sums of squares; AIC = Aikaike
823 information criteria.

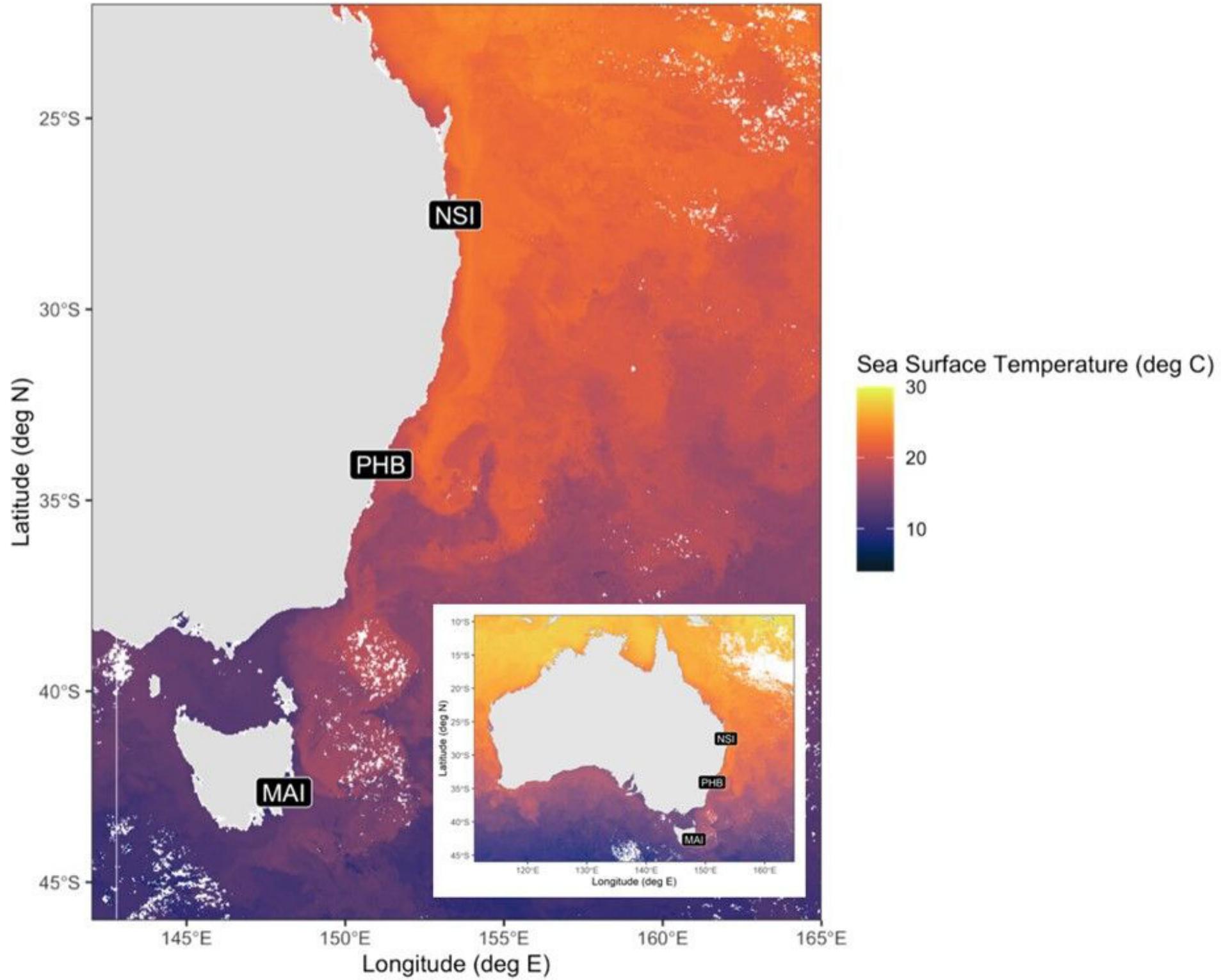
824 **Supplemental Figure 1:** Biotic interaction index diagram. Each dataset is comprised of
825 samples and corresponding ASVs as proportional abundance and standardized environmental
826 variables (A). One ASV is separated (response variable) from other ASVs and environmental
827 data (predictor variables) (B). Only ASV were included as response variables. A predictor by
828 response matrix is returned with the partial R² contributed to each response ASV (C) and the
829 total R² was calculated by summing partial R² that were identified as significant (D). ASV's
830 with a total R² less than 0.3 were removed from each sample and the relative proportion of
831 each ASV was summed to get sample total (E). Random forest was run three times to obtain
832 the sample total across a Bacteria-Environment dataset, Phytoplankton-Environment dataset
833 and Environmental only dataset. Sample totals from biotic-environment (bacteria or
834 phytoplankton) and sample totals from Environmental were subtracted (F) to obtain Biotic
835 only dataset (Bacterial or Phytoplankton) indices (G).

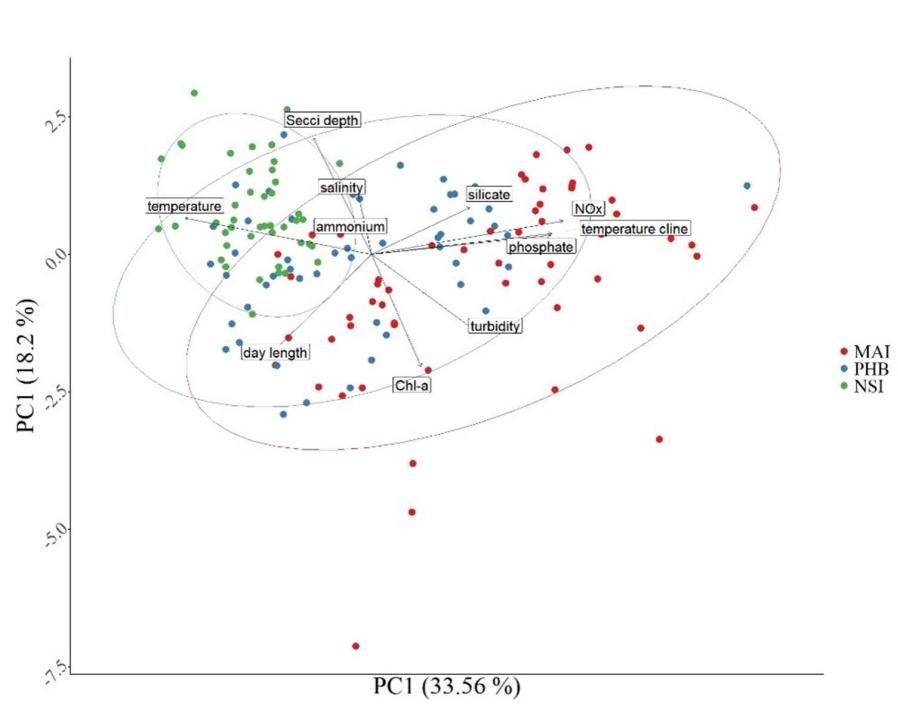
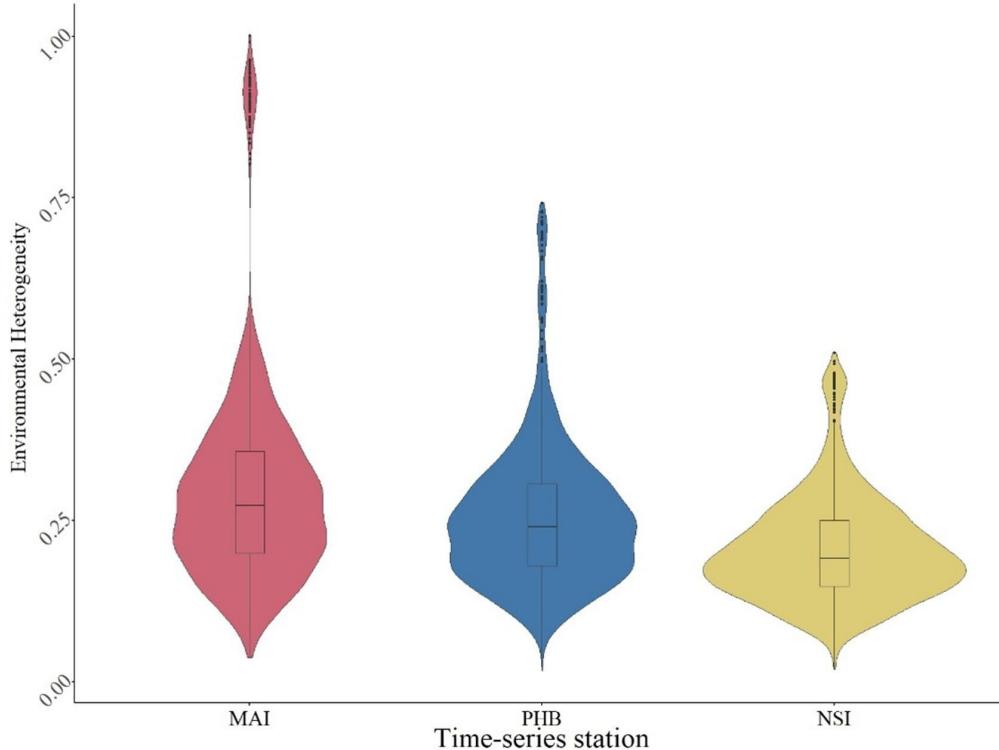
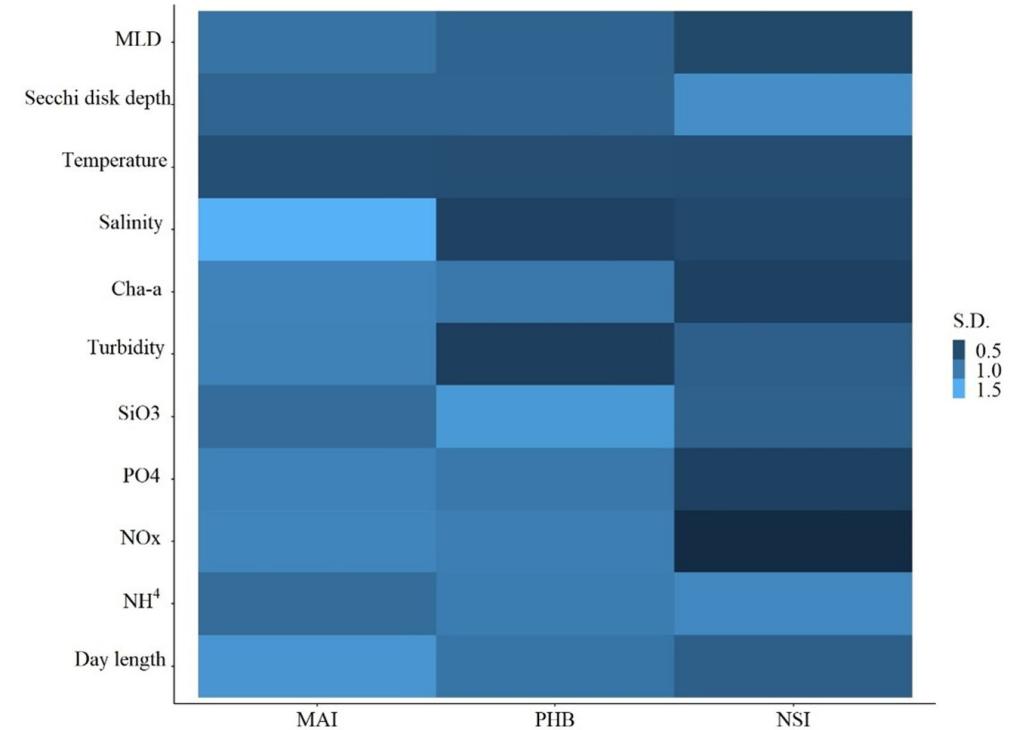
836 **Supplemental Figure 2:** a) Temperature through time at each reference station. b) NO_x
837 concentration through time at each reference station. c) Average Chl-a concentration for each
838 month for the three time-series.

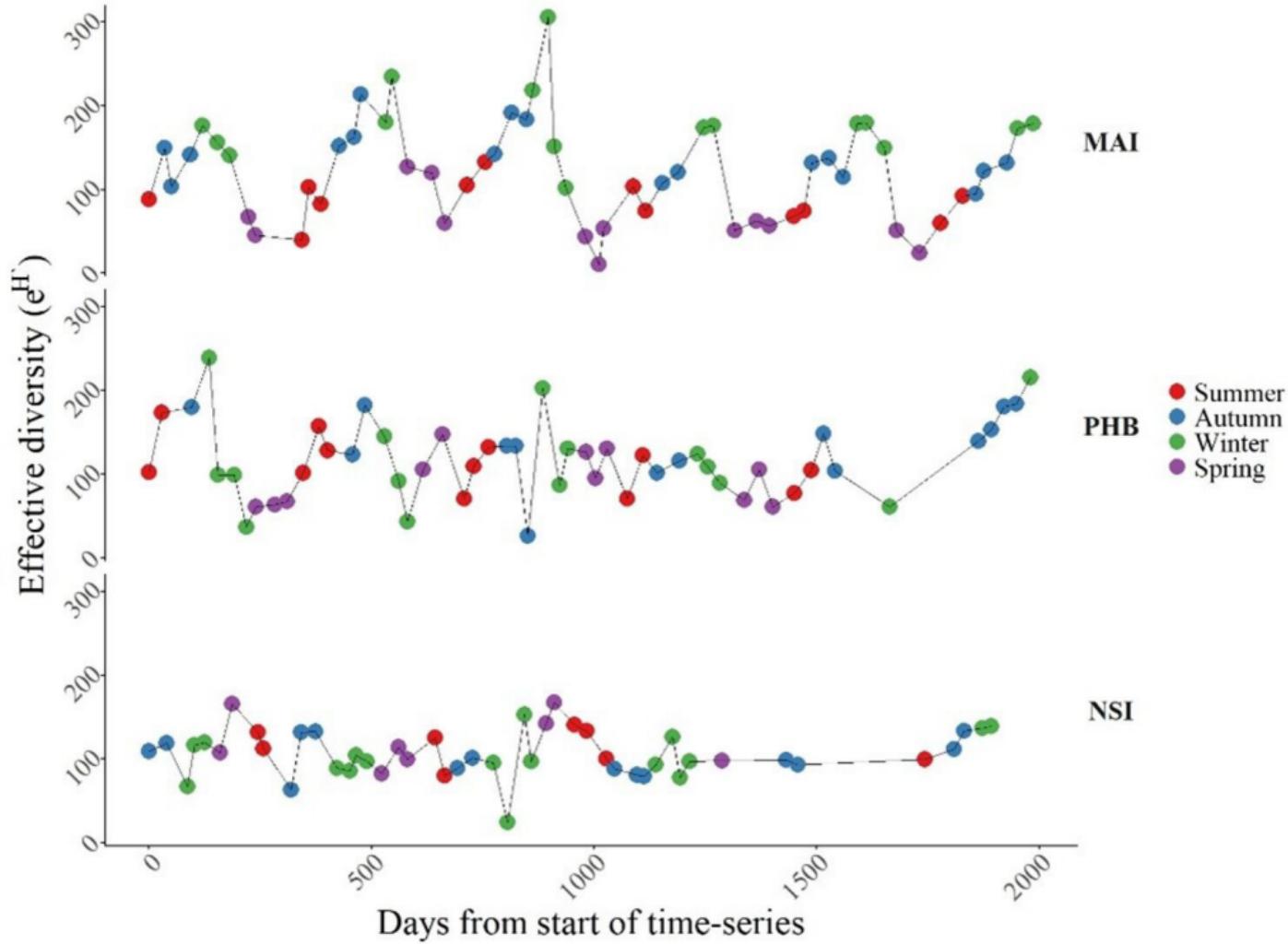
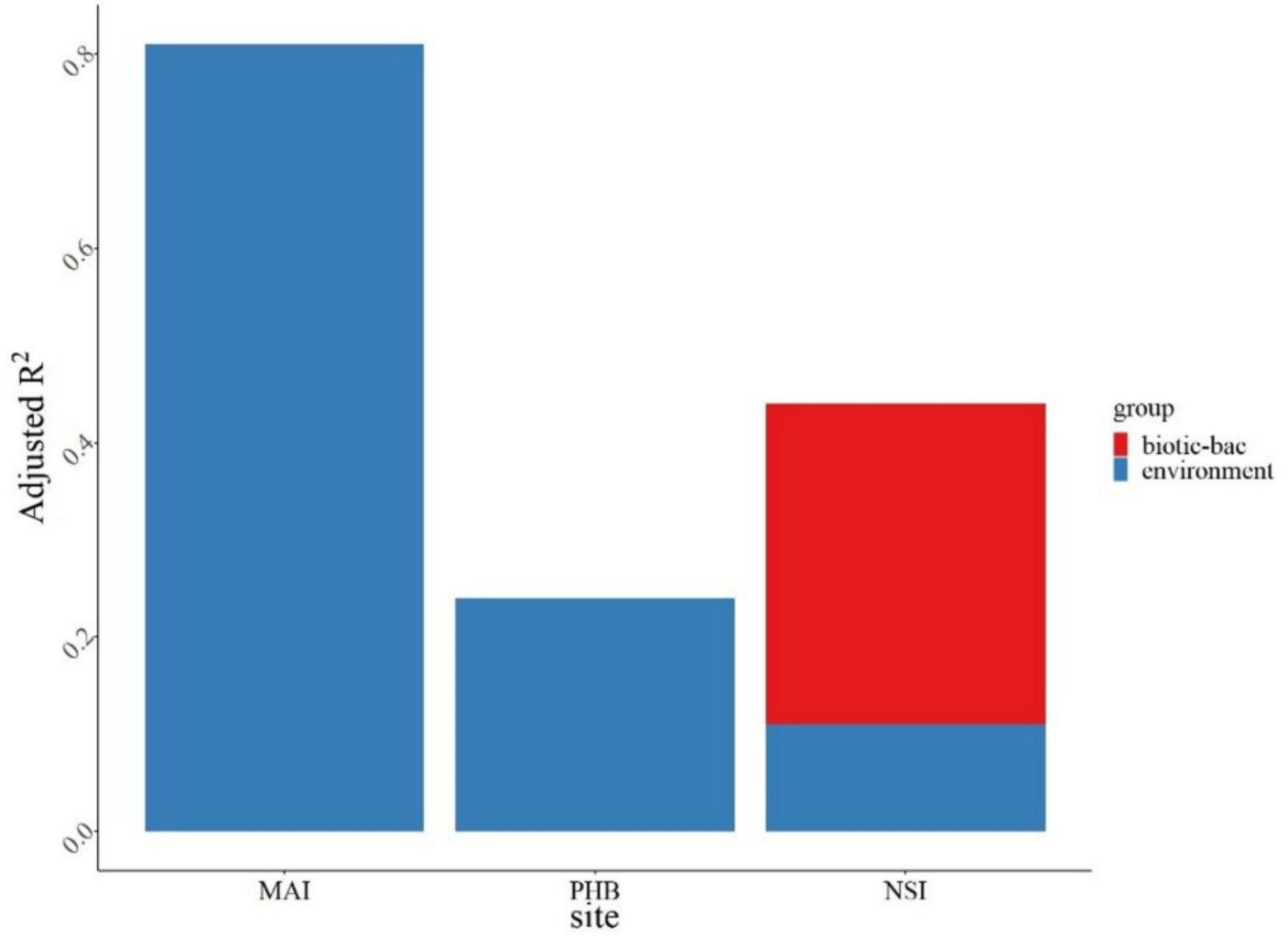
839 **Supplemental Figure 3:** Alpha diversity plotted across each time-series. Boxplots represent
840 the distribution of effective diversity scores at each time-series. Line indicates median score
841 with either side representing the 2nd and 3rd quantile score distributions.

842 **Supplemental Figure 4:** a) The X-axis is the seasonal category, and the Y-axis is
843 distribution of BC dissimilarity scores (0 = completely dissimilar, 1 = highly similar).
844 Boxplot comparisons are partitioned into the three time-series. b) Boxplot of beta-diversity
845 variation at each site.

846







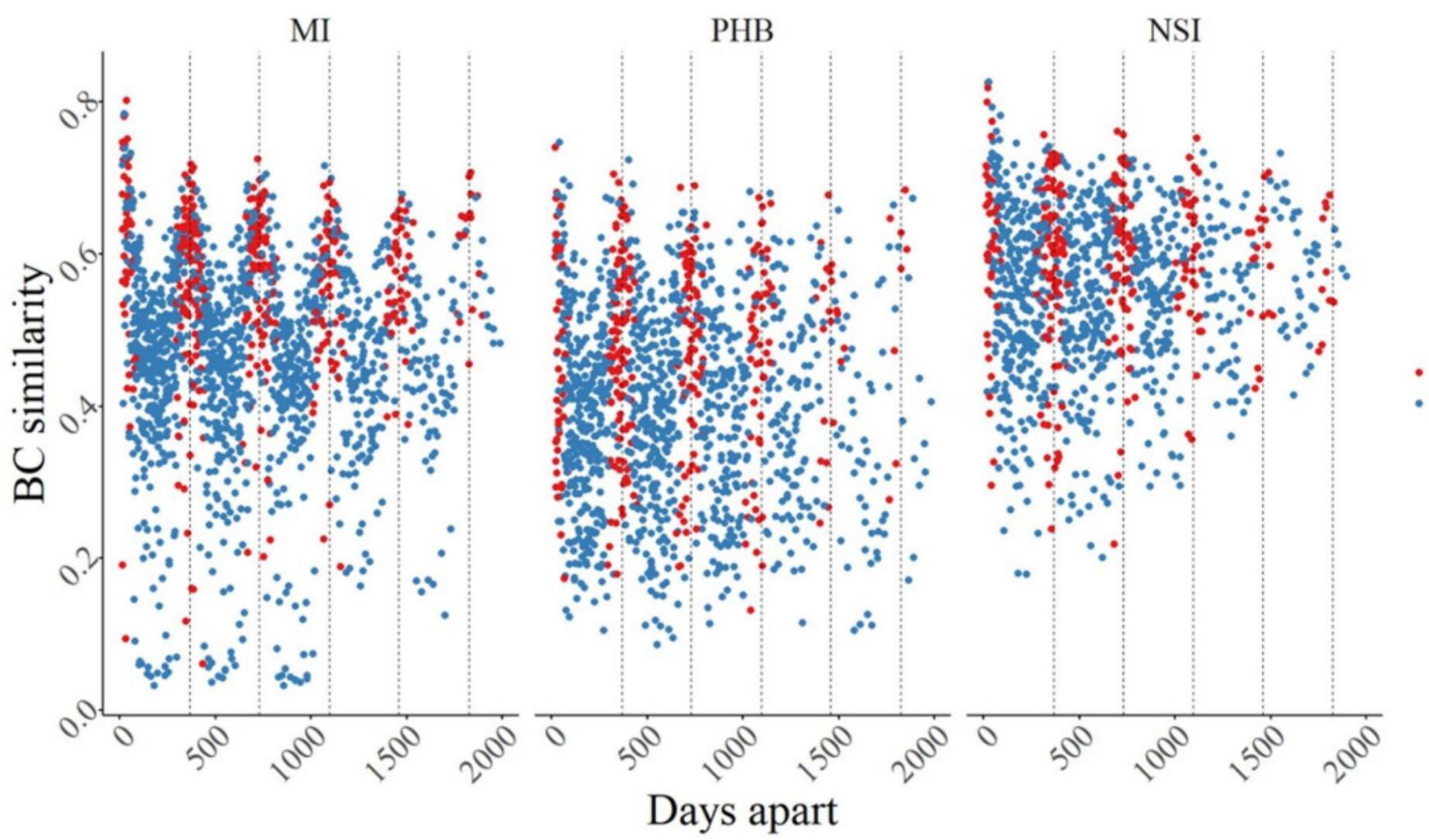
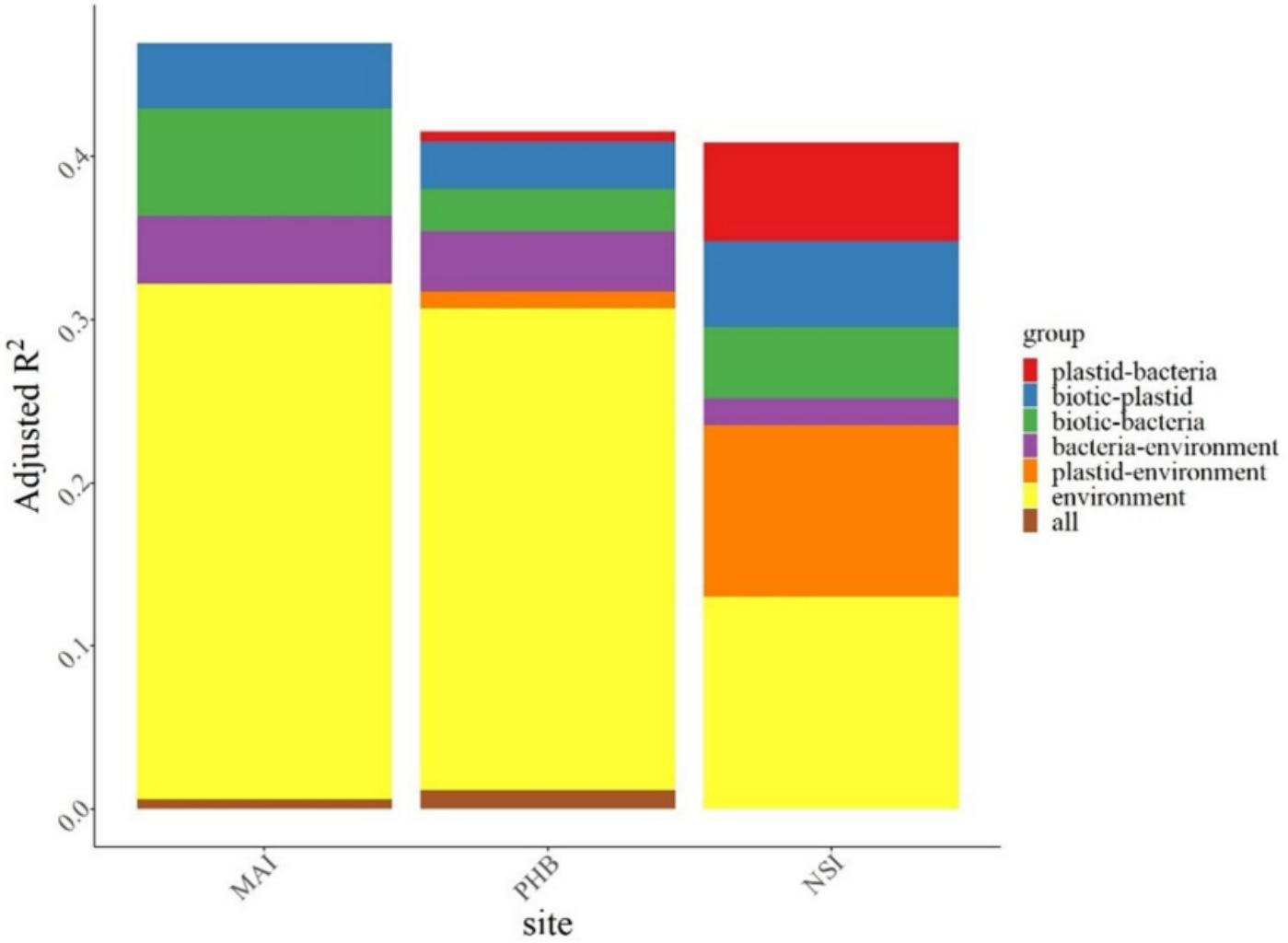


Table 1: Summary of imputed environmental variables. N is the number of samples in each time-series or the whole entire dataset. Min and max are the minimum and maximum observed values in the dataset. Mixed layer depth is estimated thermocline based on Condie and Dunn (2006).

	Maria Island (N=58)	Port Hacking (N=52)	North Stradbroke Island (N=47)
Temperature (°C)			
Mean (SD)	15.1 (2.14)	20.2 (2.07)	23.6 (2.03)
Median [Min, Max]	14.5 [11.9, 20.3]	20.1 [16.8, 24.5]	23.4 [20.4, 27.6]
Missing	9 (15.5 %)	3 (5.8 %)	6 (12.8%)
Day length (hr)			
Mean (SD)	11.7 (2.06)	11.9 (1.53)	11.8 (1.14)
Median [Min, Max]	11.5 [9.04, 15.3]	11.8 [9.89, 14.4]	11.5 [10.4, 13.9]
Missing	0 (0%)	0 (0%)	0 (0%)
Salinity (PSU)			
Mean (SD)	35.2 (0.801)	35.5 (0.193)	35.5 (0.234)
Median [Min, Max]	35.3 [29.3, 35.7]	35.5 [34.7, 35.7]	35.5 [34.3, 35.8]
Missing	9 (15.5%)	3 (5.8%)	6 (12.8%)
Turbidity (NTU)			
Mean (SD)	0.388 (0.214)	0.115 (0.0640)	0.131 (0.139)
Median [Min, Max]	0.285 [0.146, 1.10]	0.102 [0.0582, 0.450]	0.0878 [0.0108, 0.705]
Missing	9 (15.5%)	8(15.4%)	8 (17.0%)
Secchi disk depth (m)			
Mean (SD)	16.5 (3.40)	15.2 (3.44)	20.0 (5.33)
Median [Min, Max]	16.5 [9.00, 24.0]	16.0 [9.00, 24.0]	19.0 [9.00, 34.0]
Missing	1(1.7%)	3(5.8%)	0(0%)
Silicate (umol/L)			
Mean (SD)	0.660 (0.487)	0.865 (0.749)	0.586 (0.414)

Median [Min, Max]	0.600 [0, 2.00]	0.800 [0, 3.90]	0.500 [0, 2.10]
Missing	7(12.1%)	7(13.5%)	5(10.6%)
NOx (umol/L)			
Mean (SD)	1.52 (1.42)	1.00 (1.33)	0.0679 (0.125)
Median [Min, Max]	1.85 [0, 5.20]	0.500 [0, 7.00]	0 [0, 0.500]
Missing	7(12.1%)	8(15.4%)	5(10.6%)
Phosphate (umol/L)			
Mean (SD)	0.216 (0.109)	0.174 (0.0975)	0.0934 (0.0365)
Median [Min, Max]	0.210 [0.0200, 0.480]	0.158 [0.0300, 0.650]	0.0903 [0, 0.190]
Missing	7(12.1%)	7(13.5%)	5(10.6%)
Ammonium (umol/L)			
Mean (SD)	0.164 (0.336)	0.350 (0.412)	0.293 (0.468)
Median [Min, Max]	0.0772 [0, 2.40]	0.231 [0.0300, 2.24]	0.125 [0, 2.60]
Missing	7(12.1%)	10(19.2%)	6(12.8%)
Chl-a (mg/m³)			
Mean (SD)	0.572 (0.333)	0.669 (0.298)	0.300 (0.111)
Median [Min, Max]	0.526 [0, 1.62]	0.617 [0.201, 1.41]	0.293 [0.0810, 0.637]
Missing	6(10.3%)	14(26.9%)	9(19.1%)
Mixed-layer depth (m)			
Mean (SD)	63.3 (20.6)	32.0 (17.0)	31.4 (9.92)
Median [Min, Max]	74.0 [21.0, 86.0]	27.3 [11.0, 81.0]	31.0 [13.0, 57.0]
Missing	8(13.8%)	4(7.7%)	3(6.4%)

Table 2: Linear model results for predictor variables that showed the best relationship with patterns of bacteria alpha diversity through time. The full model is the results of all variables. Individual variables are the result of step regression. The (+) and (-) indicate the direction of relationship between variables and alpha diversity. The biological metric is the interspecific interaction metric. The explained variation (Exp.var) is the result of partitioning the variable sums of squares. DF = degrees of freedom; Sum Sq = Sums of square; Rel. Imp = Relative importance based on CAR variance partitioning; Mean Sq = Means of the square. Significance represented by bold font if $p < 0.05$.

Comparison	Full model		Variables	Step Regression				
	Df	Sum Sq		Rel. Imp	Mean Sq	F value	Pr(>F)	
Maria Island	Adj							
	Rsq	0.8	day length (-)	1	30020.9	0.61	30020.89	117.871 0.00
	F-stat	56.8	ammonium (-)	1	12203.7	0.10	12203.75	47.9157 0.00
	P-value	< 0.001	Chl-a (-)	1	15120.8	0.09	15120.81	59.369 0.00
	DF1	4	turbidity (-)	1	546.075	0.01	546.07	2.14406 0.15
	DF2	53	Residuals	53	13498.7	0.81	254.69	
Port Hacking	Adj.							
	Rsq	0.22	day length (-)	1	4874.45	0.12	4874.45	10.7948 0.00
	F-stat	4.67552886	mixed-layer depth (+)	1	1825.19	0.10	1825.19	4.04201 0.05
	P-value	0.003	silicate (+)	1	1742.86	0.04	1742.86	3.85967 0.06
	DF1	4	temperature (+)	1	2.54951	0.03	2.55	0.00565 0.94
	DF2	47	Residuals	47	21223.1	0.28	451.56	
North Stradbroke Island	Adj.							
	Rsq	0.4	biotic - bac (+)	1	4800.89	0.33	4800.89	23.6068 0.00
	F-stat	11.3996033	ammonium (-)	1	730.21	0.06	730.21	3.59056 0.01
	P-value	< 0.001	Chl-a (-)	1	1423.87	0.05	1423.87	7.00143 0.08
	DF1	3	Residuals	39	8744.87	0.44	203.36899	

Table 3: Distance-based linear model results for predictor variables that showed the strongest relationship to patterns of beta diversity through time. The biological metric is the interspecific interaction metric. Phyto is in reference to the phytoplankton biological metric. The full model informs on the global test for all selected variance and the step model shows the results for individual chosen variables. All variables are the model results when all variables are included. Df = degrees of freedom; SS = sums of squares; AIC = Aikaike information criteria.

Full Model with selected variables					Step model						
	DF	SS	F	P(>F)	terms	R2.adj	Df	AIC	F	Pr..F.	
Maria Island	Model	6	3.346	11.345	0.001	day length	0.20	1	140.11	15.20	< 0.001
	Residual	51	2.507			temperature	0.33	1	130.44	12.25	< 0.001
						biotic - bacteria	0.40	1	125.50	6.87	< 0.001
						biotic - phyto	0.44	1	122.40	4.87	< 0.001
						turbidity	0.46	1	121.44	2.72	< 0.001
						secchi depth	0.47	1	121.30	1.92	< 0.001
						All variables	0.48				
Port Hacking	Model	7	2.93	6.8	0.001	day length	0.18	1	129.59	12.19	< 0.001
	Residual	44	2.7			temperature	0.32	1	121.10	10.95	< 0.001
						biotic - phyto	0.35	1	119.37	3.57	< 0.001
						biotic - bacteria	0.37	1	118.36	2.80	0.002
						secchi depth	0.39	1	117.61	2.50	0.002
						salinity	0.40	1	117.46	1.90	0.020
						NOx	0.42	1	117.34	1.83	0.030
North Stradbroke Island	Model	5	1.47	7.32	0.001	All variables	0.42				
	Residual	41	1.65			biotic - phyto	0.21	1	90.62	13.03	< 0.001
						day length	0.29	1	86.69	5.92	< 0.001
						biotic - bacteria	0.35	1	83.34	5.19	< 0.001
						temperature	0.38	1	81.75	3.33	< 0.001
						silicate	0.40	1	81.36	2.14	< 0.001
						All variables	0.42				

