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Abstract  65 

Bacterioplankton communities play major roles in governing marine productivity and 66 
biogeochemical cycling, yet what drives the relative influence of the types of deterministic 67 
ecological processes which result in diversity patterns remains unclear. Here we examine 68 
how differing deterministic processes (environmental factors and biotic interactions) drive 69 
temporal dynamics of bacterioplankton diversity at three different oceanographic time-series 70 
locations, spanning 15 degrees of latitude, which are each characterized by different 71 
environmental conditions and varying degrees of seasonality. Monthly surface samples, 72 
collected over a period of 5.5 years, were analyzed using 16S rRNA amplicon sequencing. 73 
The high and mid- latitude sites of Maria Island and Port Hacking were characterized by high 74 
and intermediate levels of environmental heterogeneity respectively, with both alpha (local) 75 
diversity (72 % and 24 % of total variation) and beta diversity (32 % and 30 %) patterns 76 
within bacterioplankton assemblages primarily explained by environmental determinants, 77 
including day length, ammonium, and mixed layer depth. In contrast, at North Stradbroke 78 
Island, a sub-tropical location where environmental conditions are less seasonally variable, 79 
interspecific interactions were of increased importance in structuring bacterioplankton 80 
diversity (alpha diversity: 33 %; beta diversity: 26 %) with environment only contributing 11 81 
and 13 % to predicting diversity, respectively. Our results demonstrate that bacterioplankton 82 
diversity is the result of both deterministic environmental and biotic processes and that the 83 
importance of these different deterministic processes varies, potential in response to 84 
environmental heterogeneity. 85 

Importance 86 

Marine bacterioplankton drives important biological processes, including the cycling of key 87 
nutrients or fixing atmospheric carbon. Therefore, to predict future climate scenarios its 88 
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critical to model these communities accurately. Processes that drive bacterioplankton 89 
diversity patterns in the oceans however remain unresolved, with most studies focusing on 90 
deterministic environmental drivers, ie temperature or available inorganic nutrients. Biotic 91 
deterministic processes including interactions among individuals are also important for 92 
structuring diversity patterns, however, this is rarely included to predict bacterioplankton 93 
communities. We develop an approach for determining the relative contribution of 94 
environmental and potential biotic interactions that structure marine bacterioplankton at three 95 
series at different latitudes. Environmental factors best predicted temporal trends in 96 
bacterioplankton diversity at the two high latitude time series, while biotic influence was 97 
most apparent at the low latitude time series. Our results suggest environmental heterogeneity 98 
is an important attribute driving the contribution of varying deterministic influence of 99 
bacterioplankton diversity.  100 

Introduction 101 

Bacterial community structure influences ecosystem function in fundamental ways across all 102 
natural environments [1–3], including the ocean [4], where microorganisms represent the 103 
base of the food web and are the principal mediators of biogeochemical cycles [5]. Ecological 104 
diversity underscores community structure, therefore, elucidating the processes that govern 105 
bacterioplankton diversity is critical for predicting marine ecosystem productivity and 106 
function. There are two alternative perspectives for how bacterial diversity assembles [6, 7]. 107 
One view is of determinism, where species are regulated by niche processes such as 108 
environmental filtering [8] stemming from physico-chemical factors such as inorganic 109 
nutrients availability and temperature [9, 10], as well as biotic interactions including 110 
competition, predator-prey or facultative interactions [11–13]. The other view is one of 111 
neutrality, where species are considered ecologically equivalent and therefore diversity 112 
consequently arise from stochastic birth, death, colonization, immigration and speciation  113 
[14–19]. The relative contribution of environmental, biotic interactions and stochastic 114 
processes, and how their importance changes over space and time is currently unresolved 115 
[20], meaning that the ability to interpret and predict marine bacterioplankton diversity is 116 
currently restricted.  117 

In the ocean, both environmental factors and trophic interactions fundamentally govern 118 
bacterioplankton diversity [21, 22], in terms of both the number of co-occurring species 119 
(alpha diversity) and the commonality of species among environments or sampling points 120 
(beta diversity)  [23, 24]. For instance, bacterioplankton community richness in the English 121 
channel, was highest during the winter months and strongly predicted by day length [25]. 122 
Landau et al., (2013) similarly found day length to strongly associate with marine 123 
bacterioplankton richness from temperate regions. In contrast, bacterioplankton community 124 
richness from the Antarctic region was negatively correlated with seasonal increases in 125 
chlorophyll-a (Chl-a), signaling potential interactions with algal blooms [26]. Community 126 
beta diversity patterns have also been shown to have environmental and biotic links. For 127 
instance, global samplings of surface bacterioplankton from the TARA dataset showed the 128 
strong effect of temperature and oxygen in driving community composition [27]. The San 129 
Pedro oceanographic time-series (SPOTS) in the California Bight, surface layer (0-5 m) 130 
bacterioplankton community beta diversity across 10 years was best predicted by abiotic 131 
factors including nitrate and day length change as well as Chl-a [28]. From a high-resolution 132 
coastal time-series, Needham et al. (2018) demonstrated with networks that bacterial 133 
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abundance patterns were more strongly coupled to phytoplankton dynamics than other 134 
environmental factors, highlighting the role of biotic processes in structuring 135 
bacterioplankton community patterns. This study also noted the high correlated among 136 
groups of bacteria, indicating biotic interactions are not limited to vertical trophic 137 
interactions, but can occur horizontally through cross-feeding and antagonism, which are 138 
hypothesized to also fundamentally governing bacterioplankton diversity[22, 29, 30]. 139 
Similarly, bacteria-bacteria interactions were shown to be important for the maintenance of 140 
bacterioplankton diversity in the English Channel evidenced by bacterial OTUs having 141 
stronger correlation with other bacterial OTUs than with phytoplankton OTU’s and 142 
environmental factors [25]. Similarly, at SPOTS, network analysis demonstrated that 143 
bacteria, archaea, and eukaryotes had stronger correlation with one another than with any 144 
physico-chemical factors [31]. More recently, Lima-Mendez (2015), incorporated the 145 
abundance of eukaryotic and viral groups alongside environmental factors to demonstrate that 146 
abiotic factors explained a limited amount of direct variation in marine bacterioplankton 147 
diversity and that trophic and symbiotic interactions were significant contributors to overall 148 
diversity [32]. Collectively, these results underscore that while environmental factors are 149 
important regulators of bacterioplankton diversity, biotic interaction are apparent and 150 
potentially influence bacterioplankton more strongly at times, but the relative contribution of 151 
each deterministic type is yet to be resolved. 152 

Marine environments are inherently dynamic in their environmental characteristics, 153 
fluctuating across scales of space (ie. micrometers to kilometers), and time (ie. microseconds 154 
to months) [21]. Therefore, distilling out specific factors responsible for diversity is 155 
particularly challenging, and may not accurately reflect the contemporary processes 156 
responsible for observed patterns [33]. Considering then the cumulative impacts of a set of 157 
environmental factors (or species interactions), and their relative contribution to diversity 158 
patterns is important because the impact magnitude of the ecological process is expected to 159 
vary in response to different ecological attributes (ie environmental heterogeneity) [20, 34, 160 
35]. In one example, Langenheder et al. (2012) [36], showed that when environmental 161 
heterogeneity among rockpools was highest, beta diversity of bacterioplankton among the 162 
same rockpools was also highest, with deterministic processes emerging as the prevailing 163 
mechanism driving beta diversity; however when environmental heterogeneity among 164 
rockpools was low, and beta-diversity among rockpools was also relatively low, dispersal 165 
mechanisms became increasingly more important in driving beta diversity patterns. 166 
Fluctuations in environmental heterogeneity have been demonstrated as important drivers of 167 
spatial beta diversity patterns in disparate ecosystems, including the Amazon river system [7] 168 
and soil bacteria communities [37, 38]. These results reveal that the relative contributions of 169 
deterministic processes in shaping spatial patterns bacterioplankton diversity can change 170 
through time in accordance with spatially distributed environmental heterogeneity [20, 39]; it 171 
remains to be shown however how deterministic influence is partitioned among 172 
environmental factors versus species interactions. In addition, marine bacterioplankton 173 
studies have focused primarily on understanding the influence of spatial environmental 174 
heterogeneity on bacterial diversity or temporal variability examined at a single location [20]. 175 
Therefore, current understanding of shifts in the relative importance of differing ecological 176 
processes on the temporal dynamics of bacterioplankton diversity at different locations is 177 
critically needed to understand if processes structing diversity patterns are universal across 178 
distinct environment or rather idiosyncratic to an environmental. 179 
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Distinguishing abiotic from biotic processes in structuring community diversity requires an 180 
effective means of identifying potential species interactions [40]. Herren and McMahon 181 
(2017)[41] developed a community complexity metric for phytoplankton microbial 182 
communities based on the product of the median correlation value of each organism in the 183 
dataset to its relative abundance value. The authors argue this value provided an index for 184 
quantifying the importance of potential interactions within the community. Indeed, their 185 
results demonstrated that characterizing the complexity of a community can improve the 186 
proportion of explained variation, but it remained unclear whether the explained variance was 187 
due to environmental and/or species interactions because the metric was based on 188 
correlations, which could arise due to multiple organisms independently tracking similar 189 
environmental factors. One potential means to overcome this limitation is by incorporating 190 
metrics that are applied to individual samples, derived from the number and strength of 191 
correlative interactions with other species in the community relative to environmental factors 192 
[32, 42]. A similar approach has been used to partition potential species interactions from 193 
environmental drivers in freshwater macro-organism communities, which highlighted the 194 
importance of species interactions in determining community structure [43].   195 

Here, we use a 5.5 year time-series, including physico-chemical and 16s microbial 196 
community data to investigate the relative importance of environmental filtering versus inter-197 
organismal interactions in influencing marine bacterioplankton structure. Three 198 
oceanographic time-series spanning 15° of latitude along the east Australian coastline 199 
allowed us to determine the relative contribution of environmental factors relative to potential 200 
biotic interactions. Bacterioplankton community structure was inferred by identifying the 201 
relative contribution of deterministic processes to shaping patterns of alpha and beta 202 
diversity. Our analysis involved the integration of a novel metric for inferring potential 203 
species interactions, defined as bacteria-bacteria and phytoplankton-bacterial interactions 204 
(biotic interactions), to discriminate among the relative importance of different deterministic 205 
processes in shaping bacterioplankton structure.  206 

Methods  207 

Reference station description and environmental data collection 208 

Monthly surface water samples were collected from three oceanographic time-series stations 209 
located on the eastern continental shelf of Australia, as part of the Integrated Marine 210 
Observing System (IMOS) National Reference Station (NRS) monitoring program. These 211 
stations span latitudes of 27 to 42° S and include Maria Island (MAI: 42°35.8 S, 148°14.0 E), 212 
Port Hacking (PHB: 34°05.0 S 151°15.0 E), and North Stradbroke Island (NSI: 27°20.5 S 213 
153°33.75 E) (Figure 1). The MAI station is situated 7.4 km off Maria Island, on the 214 
Tasmania east coast (depth 90 m) and is seasonally impacted by the southerly extent of the 215 
East Australian Current (EAC), which is a strong western boundary current [44]. PHB is 216 
located at the southern extent of the EAC separation zone (Figure 1) and 5.5 km offshore 217 
(depth 100 m). NSI is located north of Brisbane (depth 50 m), and is strongly influenced by 218 
EAC waters that originate in the Coral Sea [44]. Sampling at each time-series station 219 
comprised collection of bulk seawater samples for microbial analyses from mooring sites at 220 
near-monthly intervals (median days between sampling events; MAI: 34; PHB: 33; NSI: 32), 221 
with physico-chemical and Chl-a data (collectively termed environmental from here on) 222 
collected simultaneously for approximately 5.5 years (2012 – 2017), totaling 157 samples 223 
(MAI: 58; PHB: 47; NSI: 52; SI Table 1). Environmental variables measured at each site 224 
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included temperature (°C), day length (hours), salinity (PSU), turbidity (NTU), Secchi disk 225 
depth (m), thermocline depth (m), dissolved silicate (umol/L), NOx (umol/L), phosphate 226 
(umol/L), ammonium (umol/L), and Chl-a concentration (mg/m3). Data were collected and 227 
analysed by IMOS [45, 46] (SI Table 1). Mixed layer depth (MLD) was estimated from 228 
temperature depth profiles (Australian National Mooring Network temperature and salinity 229 
data product at htt://aodn.com) based on Condie and Dunn (2006) [47], and defined as the 230 
depth at which temperature decreased by 0.4 °C from the surface temperature (0-2 m depth).  231 
 232 

Sample collection, DNA extraction and amplicon sequencing  233 

Sample collection and DNA extraction 234 

Two liters of surface seawater were collected using Niskin bottles and transported on ice back 235 
to the lab. Samples were filtered through a 0.22 um pore Sterivex GP filter (Millipore, 236 
Massachusetts. Cat. # SVGPL10RC), which were then stored at -80 °C until processing. 237 
Filters were sent (on dry ice or in liquid nitrogen dewars) to the Commonwealth Scientific 238 
and Industrial Research Organisation Oceans & Atmosphere (CSIRO O&A) laboratories in 239 
Hobart, Tasmania for DNA extractions. Microbial DNA was extracted using standardized 240 
procedures as part of the Marine Microbes Program 241 
(https://data.bioplatforms.com/organization/pages/bpa-marine-microbes/methods) using a 242 
modified PowerWater Sterivex DNA Isolation Kit (MOBIO Laboratories) protocol. DNA 243 
isolation included incubating Sterivex filters for 1 hour on a horizontal vortex with 1.875 ml 244 
lysis buffer followed by a phenol:chloroform extraction.  245 

Amplicon sequencing 246 

The V1 – V3 regions of the 16S rRNA gene were PCR amplified using the bacteria-specific 247 
primers 27F (5’-AGRGTTTGATCMTGGCTCAG-3’) and 519R (5’-248 
GWATTACCGCGGCKGCTG-3’) [49] with the following cycling conditions: 1-step using 249 
KAPA HiFi HotStart ReadyMix (Roche) comprised steps including 95 °C initial denaturation 250 
(3 min), with 35 cycles of 95 °C (30 s), 5 °C (10 s) and 72 °C 45 s), and a final elongation 251 
step at 72 °C (5 min). Amplicons were then purified using Ampure XP beads (Agencourt 252 
Bioscience Corporation) and sequenced on the Illumina MiSeq platform (Illumina, Inc., San 253 
Diego, USA) at the Ramaciotti Center for Genomics (UNSW, Sydney, Australia), with 300 254 
bp paired reads.  255 

Bioinformatic processing 256 

Raw fastq files were downloaded from BioPlatforms Australia 257 
(https://data.bioplatforms.com). Amplicon quality control and analysis was performed using 258 
DaDa2 [50]. In brief, primers were truncated using cutadapt  [51] and reads were trimmed, 259 
denoised, merged, and chimeras removed using function removeBimeraDenovo 260 
(minFoldParentOverAbundance = 4) (full code provided 261 
https://github.com/martinostrowski/marinemicrobes/tree/master/dada2). Taxonomic 262 
classification of bacterial 16s rRNA ASVs was performed using a naïve Bayes classifier 263 
based on SILVA 138.1 and a bootstrap cut-off >50 % [52]. All ASVs which had a DaDa2 264 
bootstrapped value < 50 at the taxonomic level were assigned to Kingdom unclassified. 265 

The final bacterioplankton dataset analyzed in this study resulted from removing all 266 
sequences assigned to Kingdom unclassified, Archaea, Eukaryota, Chloroplast, and 267 
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Mitochondria. The final step included filtering out low abundant ASVs with a total 268 
abundance across the entire dataset of less than 0.005 %.  The plastid dataset containing all 269 
the Chloroplast sequences was used to assess the potential importance of phytoplankton on 270 
bacteria community assembly, and taxonomic assignment was made in a similar way as 271 
bacterioplankton ASVs with bootstrapped value  < 50 % were trimmed and taxonomic 272 
identity called with naïve Bayes classifier using PhytoRef database [53].  273 

 274 

Statistical analysis  275 

Datasets used in analysis included 1) environmental variables, 2) bacterial amplicon relative 276 
abundance, and 3) plastid amplicon relative abundance to represent the eukaryotic 277 
phytoplankton. In cases of missing environmental observations, values were imputed with 278 
rfImpute () from the randomForest package (version 4.6.14) [54]. Imputation was performed 279 
for each time-series independently. Environmental variables were mean centered unit 280 
variance standardized to reduce outlier influence. All analyses were performed using R 281 
version 3.6.1. 282 

Temporal variability in environmental conditions 283 

Temporal variability in environmental conditions was estimated by determining the mean 284 
dissimilarity within each time-series [37] based on the 11 environmental variables described 285 
above. Dissimilarity among samples based on environmental variables was calculated on 286 
Euclidian distance. Heterogeneity (Ed) was derived for each pair of samples within a time-287 
series as follows:  288 𝐸𝑑 = ൬ 𝐸𝑢𝑐𝐸𝑢𝑐௠௔௫൰ + 0.001 

where Euc is the Euclidian distance between two samples within a time-series, Eucmax is the 289 
maximum distance observed across the entire dataset, and 0.001 is added to account for zero 290 
similarity among two samples. Mean Ed was then calculated within each time-series and 291 
heterogeneity compared using a Kruskal-Walls χ2 and dunn-post hoc pairwise tests across the 292 
three time-series. 293 

Calculation of the biological interaction indices 294 

Building on a framework introduced by Musters et al., (2019), we developed a metric to 295 
quantify the relative contribution of potential interactions among bacteria and phytoplankton 296 
in structuring patterns of bacterioplankton diversity. Our approach regresses biological 297 
predictors (bacterial and phytoplankton ASVs) against individual bacterial ASVs (response 298 
ASV). In the case of the bacterial interaction metric, the response ASV is removed from the 299 
predictor ASV dataset. There is no reason to expect species interactions will be linear or that 300 
ASV patterns are the result of a single predictor, therefore we extend the co-occurrence 301 
definition beyond simple pairwise co-occurrence to include more than a single bacterial ASV 302 
(or phytoplankton ASV) using a machine learning approach. In this way, we can identify 303 
non-linear abundance relationships of an individual ASV which may be due to the abundance 304 
of multiple organisms. We additionally identified the relationship of each bacterial ASV to a 305 
combination of environmental data (e.g, temperature). Therefore, we generated three datasets 306 
including bacteria-environment, phytoplankton-environment, and environment only in a 307 
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series of steps (SI Figure 1) described below. The gradient forest [55] method was used to 308 
regress the large number of predictors to individual bacterial ASVs . Gradient forest is a 309 
modification of regression forest, which calculates an explained variation (𝑅௙ଶ) for each 310 
response ASV (SI Figure 1a,b). The approach then uses an out-of-bag prediction (OOB) 311 
similar to regression forest, but differs by defining the explained variation of each response 312 
and is calculated as follows: 313 𝑅௙ଶ = 1 − ෍൫𝑌௙௜ − 𝑌௙ప෢൯ଶ / ௜ ෍൫𝑌௙௜ − 𝑌௙పതതത൯ଶ௜  

𝑌௙௜ is the abundance of the ith occurrence of ASV f, 𝑌௙ప෢  is the OOB prediction for the 314 
abundance of ASV f at the ith position, and 𝑌௙పതതത is the mean abundance of ASV f. Calculations 315 
were conducted using the gradientForest package (version 0.1.17) in R [56].  For each 316 
response variable we removed all predictor variables that did not significantly explain the 317 
abundance of the response ASV (SI Figure 1c). Significance of predictor variables in 318 
explaining proportional distribution of the response was calculated with rfpermute (version 319 
2.1.81). Regression forest produces partial R2 values for each predictor of a response ASV. 320 
All partial R2 values for a response variable are summed to produce the total R2 of that 321 
response variable; therefore, we could sum the remaining significant predictor partial R2 322 
values to determine the response R2 value (SI Figure 1d).  323 

Next, we removed all bacterial response ASVs with an R2 value less than 0.3 (thus retaining 324 
>= 0.3) and summed the relative abundance of each retained ASV for each sample (i.e., 325 
sample 1 from NSI, sample 2 from MAI) (SI Figure 1e). Finally, the bacteria-bacteria metric 326 
was calculated as the abundance difference between the bacteria-environment and 327 
environment only relative abundance for each sample. The bacteria-phytoplankton metric 328 
was calculated as the difference between the phytoplankton-environment and environment 329 
only relative abundance (SI Figure 1f). The resulting value is the bacterial or phytoplankton 330 
interaction metric (SI Figure 1g).  Our approach is similar to that described by Muster et al., 331 
(2019) with the addition of the significance calculation for partial R2 values and the 332 
identification of the relative abundance of ASVs from the dataset which are described by 333 
other bacterial or phytoplankton ASVs. Before the calculation of the metric, we performed a 334 
Hellinger transformation on predictors to reduce potential bias from highly abundant 335 
predictor ASVs. Also, to reduce computational time, we limited our analysis to include only 336 
ASVs which occurred in > 25 % of samples within a time-series.  337 

 Recurrent diversity patterns and environmental drivers 338 

Alpha diversity was calculated as the effective number of ASVs [57] per sample, which is a 339 
measure of the number of equally common ASVs among samples and calculated as e H`, 340 
where H` is Shannon entropy. Beta-diversity was calculated using abundance-based Bray-341 
Curtis dissimilarity for pairs of samples within time-series. Abundance based beta-diversity 342 
was calculated on Hellinger transformed data (square root of standardized species 343 
abundances). Bray-curtis similarity was used throughout and calculated as 1- dissimilarity 344 
score. To test for differences in intra-seasonal and inter-seasonal beta-diversity, samples were 345 
classified as intra-seasonal if sample pairs were from the same astronomical season; 346 
otherwise, samples were classified as inter-seasonal. A Kruskal-Wallis χ2 test was performed 347 
to test the null hypothesis of no difference among the means of time-series groups.  348 
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We then modeled predictor variables that best explained observed diversity (alpha and beta) 349 
across the three time-series. For these analyses, we included the biotic interaction metrics, as 350 
described above, to account for possible interspecific interactions and/or unobserved 351 
environmental factors. Multiple regression was run on alpha diversity using lm () and step () 352 
with the direction set to ‘both’, from the ‘stats’ package (version 3.6.1). Model selection was 353 
performed using AIC decrease. Distance-based modeling was performed to identify 354 
explanatory variables that best explained the distribution of beta-diversity [58], using a 355 
stepwise procedure. Model selection was based on the increase in adjusted R-squared with 356 
procedure ordiR2step () from the vegan package (version 2.5.6) [59] with direction = ‘both’ 357 
and permutations = 1000. We then performed variance partitioning [60], to identify the 358 
relative importance of the variables selected by the distance-based step procedure using the 359 
function varpart().  360 

Results and Discussion 361 

Environmental characteristics of the three oceanographic time-series sites 362 

Environmental heterogeneity exhibited a latitudinally-defined gradient (Kruskal-Wallis χ2
 df = 363 

2
 = 701.4, p < 0.01; Figure 2a, b, SI Figure 2a, b, c) across the three time-series stations, 364 

whereby Maria Island (MAI) had greater environmental heterogeneity than Pt Hacking 365 
(PHB) (Figure 2a; Dunn-test: p < 0.01) and PHB greater than North Stradbroke Is (NSI) 366 
(Figure 2a; Dunn-test: P < 0.01). At MAI (Figure 1; Lat 42°35.8 S; Lon 148°14.0 E) autumn 367 
and winter were characterized by a greater mixed layer depth (MLD; mean ± sd; 63.3 m ± 368 
20.6), higher inorganic nutrient concentrations (SI Table 1; SI Figure 2b; NOx: 1.52 umol/L 369 
± 1.42; phosphate: 0.216 umol/L ± 0/109) and lower temperature (SI Figure 2a; 15.1 °C ± 370 
2.14), while spring and summer samples had higher Chl-a concentrations (SI Figure 2c; 0.572 371 
mg/m3 ± 0.333). At PHB (Figure 1; Lat 34°05.0 S; Lon°151 15.0 E) spring and summer 372 
temperatures (SI Table 1; 20.2 °C ± 2.07) more closely track that of NSI than MAI (SI Figure 373 
2a), while MLD (32.0 m ± 17.0), inorganic nutrient concentrations (SI Figure 2b; NOx: 1.00 374 
umol/L ± 1.33; phosphate: 0.174 umol/L ± 0.10; silicate: 0.864 umol/L ± 0.749), and  Chl-a 375 
concentration (SI Figure 2c; 0.67 mg/m3 ± 0.30) during winter were more similar to MAI. 376 
NSI (Figure 1; Lat 27°20.5 S; Lon 153°33.75 E) was distinguished by relatively high-water 377 
temperatures (SI Figure 2a; SI Table 1; 23.6°C ± 2.03), and relatively low concentrations of 378 
inorganic nutrients including phosphate (SI Table 1; 0.09 umol/L ± 0.04) and NOx (SI Figure 379 
2a; 0.07 umol/L ± 0.13) concentrations. Winter samples at NSI were characterized by 380 
relatively high Secchi disk depth (20.0 m ± 5.33) while samples from the other three seasons 381 
were most distinguished by temperature. Thus, the three time-series exhibited distinct 382 
environmental conditions that range from MAI having the greatest environmental 383 
heterogeneity compared to other stations, PHB with relatively intermediate nutrient 384 
concentrations and high physical environmental heterogeneity and NSI having the least 385 
environmental heterogeneity. (324) 386 

Contrasting drivers of bacterioplankton alpha diversity patterns across time-series 387 

The bacterioplankton datasets from the three reference stations had a varying number of 388 
observed ASVs (richness). Maria Island had the greatest number of total ASVs with 7608 389 
(mean per sample 490.8 ± se 26.0), then Port Hacking with 7020 (414.1 ± 20.7) and North 390 
Stradbroke Island with 4843 (431.8 ±19.7). Richness of dataset ASVs corresponded with the 391 
total diversity of ASVs at each site where MI had the greatest alpha diversity (mean 122.14 ± 392 
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se 7. 64), followed by PHB (116.68 ± 6.36) then NSI with the least (107.27 ± 4.07). The 393 
distribution of alpha diversity was, however, not significantly different among time-series (SI 394 
Figure 3; Kruskal-Wallis χ2 = 2.10, df = 2, p = NS). Temporal patterns in bacterioplankton 395 
diversity across the time-series sites provided evidence however, for varying degrees of 396 
seasonality among locations. Consistent yearly diversity patterns were observed at MAI, and 397 
this was less apparent or absent at PHB and NSI (Figure 3a). At MAI, bacterioplankton alpha 398 
diversity consistently peaked in the winter months and was lowest during spring, while at 399 
PHB, diversity peaked inconsistently across years. For instance, in 2012, the highest observed 400 
diversity at PHB was in winter, whereas in 2013, diversity peaked in autumn. At NSI, 401 
diversity peaks were not consistent across years. Collectively, these patterns infer that at MAI 402 
the principal factors regulating bacterioplankton alpha diversity are repeatable at seasonal 403 
scales, while at PHB and NSI, factors regulating bacterioplankton alpha diversity lack 404 
seasonal influences.  405 

Environmental heterogeneity has been shown in other systems to be an important driver of 406 
bacterial diversity patterns [7, 61], therefore, given the different levels of environmental 407 
heterogeneity observed between locations, we predicted that the influence of environmental 408 
factors would become less apparent with decreasing environmental heterogeneity. At MAI, 409 
diversity patterns were predominately predicted by environmental factors (Figure 3b; Table 410 
2; F df = 4,53 = 57.06, p < 0.001, Adj. R2 = 0.80). Day length had a strong inverse relationship 411 
with alpha diversity (Relative Importance = 0.62). Similar results have been reported for 412 
bacterioplankton richness patterns in the English channel time-series [25] which was also 413 
sampled at near monthly intervals. Therefore, day length may generally be an important 414 
predictor of high latitude bacterioplankton diversity. In addition, Chl-a was weakly associated 415 
with bacterioplankton alpha diversity suggesting a potential trophic mediation by 416 
phytoplankton (RI = 0.09). Similar trends were observed in the Antarctic where 417 
bacterioplankton alpha diversity was inversely related to Chl-a [26]. 418 

At PHB, where there were lower levels of seasonal heterogeneity in environmental conditions 419 
(Figure 2a), bacterioplankton diversity was influenced by mixed layer depth, but total 420 
explained variation for alpha diversity was quite low (Figure 3b; Table 2; F df = 5, 46 = 4.29, 421 
p = 0.003, Adj. R2 = 0.24). The dominate environmental factors included day length (RI = 422 
0.12) which was inversely correlated with alpha diversity patterns while MLD depth (RI = 423 
0.10) was positively correlated. The high amount of unexplained variation may suggest other 424 
unmeasured environmental factors (e.g., dissolved organic carbon) more strongly influence 425 
alpha diversity. Alternatively, EAC driven dispersal processes, which have been shown to 426 
influence bacterioplankton occurrences at PHB [48], may also be a dominant contributor to 427 
alpha diversity at the monthly time-scale interval. Dispersal is a fundamental ecological 428 
process [62] and can become important in structuring bacterioplankton diversity when 429 
environmental heterogeneity is low or when dispersal rates are high enough to over-shadow 430 
the effects of other ecological processes [7].  431 

For NSI temporal bacterioplankton alpha diversity was not consistent with astronomical 432 
seasons, but total variation could be explained to a relatively high level (Figure 3b; Table 2; F 433 
df = 3,43 = 11.18, p < 0.001, Adj. R2 = 0.40). Interestingly, and in contrast to the other two 434 
locations, biotic interactions were the main predictors of alpha diversity at this location. 435 
Bacteria-bacteria interactions specifically, were positively correlated with alpha diversity 436 
patterns and contributed a large portion of the total predicted variation (Figure 3b; partial R2 437 
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= 0.33). Ammonium was also important in predicting alpha diversity and was inversely 438 
correlated (RI = 0.06) with diversity patterns. Therefore, potential interspecific interactions 439 
may be important drivers of alpha diversity patterns at this sub-tropical time-series [33].  440 

Across the three time-series the amount of variance that could be explained by environmental 441 
factors corresponded with trends in environmental heterogeneity. The largest contribution of 442 
environmental variables to explaining alpha diversity distribution was at MAI (80 %), while 443 
an intermediate amount could be explained at PHB (22 %) and the least at NSI (10 %) 444 
(Figure 3b). However, the total explained variation did not correspond with trends in 445 
environmental heterogeneity. The lowest latitude site NSI which had the lowest 446 
environmental heterogeneity, had the second largest total explained variance, driven by a 447 
large contribution of biotic predictors (24 %). This location had the warmest temperatures 448 
and the lowest inorganic nutrient concentrations of our study locations (Figure 2b), and under 449 
these conditions trophic mediation, such as facilitation by Prochlorococcus and 450 
Synechococcus groups can drive bacterioplankton succession through primary productivity 451 
[63]. Biotic interactions at MAI or PHB were not important predictors of alpha diversity 452 
across the temporal scale analyzed here (median 34 days), however is likely an important 453 
contributor when higher resolution time-series are considered [64]. For instance, Luria et al 454 
(2016) monitored bacterioplankton diversity in Antarctic waters across 1-2-week intervals 455 
and found richness was driven phytoplankton blooms; therefore, potentially demonstrating 456 
importance of scales in distinguishing among dominate ecological drivers of diversity 457 
patterns.  458 

Contrasting drivers of recurrent beta diversity patterns across time-series 459 

Bacterioplankton beta diversity (ratio of regional: local diversity) at each of the three 460 
reference stations exhibited seasonal trends, where intra-seasonal samples (samples from the 461 
same season) had greater observed similarity (ie. lower beta diversity; 0: dissimilar; 1: highly 462 
similar) than inter-seasonal samples (Figure 4a, Supplemental Figure 4). At MAI, the mean 463 
intra-seasonal Bray-Curtis (BC) score of 0.50 (± 0.005 SE) was significantly greater than the 464 
inter-seasonal score (0.59 ± 0.13; t-test df = 749.45 = 16.00; p < 0.001). Similarly, at PHB the 465 
intra-seasonal similarity (0.56 ± 0.006) was significantly greater than the inter-seasonal 466 
similarity (BC = 0.63 ± 0.003; Supplemental Figure 4; t-test df = 528.48 = 10.32; p < 0001). NSI 467 
had the lowest intra-seasonal mean BC among the time-series at 0.47 ± 0.005 which was also 468 
significantly different than the inter-seasonal mean BC of 0.51 ± 0.003 (Supplemental Figure 469 
4a; t-test df = 473.94 = 6.00; p < 0.001). Therefore, at all locations bacterioplankton communities 470 
from a given season were more similar to those from the same season in different years, than 471 
to those that were closer in time, but different in season. These results suggest ecological 472 
processes that structure bacterioplankton communities are recurrent at a given time of across 473 
years, and this occurs across despite.  474 

Like alpha diversity, beta diversity is also expected to increase with increasing environmental 475 
heterogeneity [65, 66] under the assumption that greater variability in environmental factors 476 
will result in an increased number of niches for organisms to occupy [67]. We therefore 477 
predicted beta diversity would be greatest at MAI and lowest at NSI. This pattern, however, 478 
was not observed and rather the greatest mean beta diversity was observed at PHB 479 
(Supplemental Figure 4b; mean ± SD; 0.61 ± 0.11), followed by MAI (0.57 ± 0.12) and NSI 480 
(0.50 ± 0.09; Kruskal-Wallis χ2 df = 2 = 690.3, p < 0.05). These results suggest that 481 
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environmental variability is not entirely responsible for bacterioplankton composition, 482 
suggesting other ecological processes, such as biotic processes are important for structuring 483 
beta diversity.  484 

Therefore, we investigated the key variables driving beta diversity patterns and determined 485 
their relative contributions to these patterns. Our results indicate that different deterministic 486 
processes govern patterns of beta diversity across the three locations (Figure 4b). Variables 487 
that best modelled beta diversity at MAI included day length, temperature, bacterial 488 
abundance, phytoplankton abundance, turbidity, and Secchi disk depth (Adj. R2 = 0.20, 0.13, 489 
0.06, 0.04, 0.02, < 0.01, respectively; Table 3; F= 11.35, df = 6, 51, p = 0.001). Variance 490 
partitioning showed environmental variables had the greatest effect (32 % of partitioned 491 
variation; Figure 4b) influencing beta diversity patterns at MAI followed by bacterial 492 
interactions (7 %), while phytoplankton contributed 4 %. Together, the biotic interactions 493 
explained approximately 11 % of the total partitioned variation. There was 4 % of variance 494 
contributed by bacteria-environment overlap, suggesting a potential role of environmentally 495 
mediated bacterial influence. These results match with alpha diversity patterns where 496 
environment was the key drivers, demonstrating the importance of environment fluctuation in 497 
structuring bacterioplankton diversity. Beta diversity however had some influence by biotic 498 
factors, while alpha diversity was only predicted by environmental factors, potentially 499 
suggesting that biotic processes may facilitate the presence or absence of particular 500 
bacterioplankton groups, rather than diversity at a particular time point. 501 

At PHB, environmental factors also had the largest contribution to beta diversity. Important 502 
variables included day length and temperature (Adj R2 = 0.18, 0.14, respectively; Table 3; F= 503 
6.8, p = 0.001). Collectively, the environmental factors accounted for 30 % of the total 504 
partitioned variation (Figure 4b) while biotic interaction (bacteria and phytoplankton) only 505 
accounted for 5 % of the total variation. Environmental overlap with bacteria (4%) and 506 
phytoplankton (1 %) accounted for 5 % of the variation. These results are similar to alpha 507 
diversity in that environment was a key contributor to observed patterns. Interestingly, 508 
environmental contribution was similar to the amount contributed at MAI, however total 509 
explained variance was lower due to the lower contribution of biotic influence at PHB.  510 

A key finding in this study was that at NSI, biotic predictors played a much greater role in 511 
defining beta diversity relative to the other two locations. Phytoplankton abundance was 512 
found to be the most important factor contributing to bacterioplankton beta diversity variation 513 
(R2 = 0.21; Table 3; F= 7.32, df = 5, 41, p = 0.001). Biotic factors accounted for the largest 514 
amount of partitioned variation at 15 % (Figure 4b; phytoplankton-bacteria: 6 %; 515 
phytoplankton only: 5 %; bacteria only: 4 %) while environmental factors only accounted for 516 
13 % of the variation. There was a large amount of variation accounted for due to 517 
overlapping components, including phytoplankton-environment (11 %) and bacteria-518 
environment (2 %) (Figure 4b; green segment). Based on the high observed influence of 519 
phytoplankton abundance at NSI and high overlapping variance between phytoplankton and 520 
the environment, we posit that the environment may indirectly drive bacterioplankton beta 521 
diversity through influencing the phytoplankton. These results are similar to those observed 522 
for alpha diversity patterns, where biotic predictors were also the most important contributor. 523 
Interestingly, the main biotic contributor varied across the two diversity measures, where 524 
phytoplankton was the most importance for beta diversity while for alpha diversity, bacteria 525 
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was the predominate drivers. Thus, trophic links are important to structuring bacterioplankton 526 
diversity in a dynamic manor at NSI. 527 

Together these results show that patterns of beta diversity are not shaped by environment 528 
alone, but rather a combination of environment and potential biotic interactions and that the 529 
relative importance of these can vary across locations. Interestingly, the importance of biotic 530 
interactions negatively corresponded with beta-diversity, such that the total contribution by 531 
biotic factors was greatest at NSI where beta-diversity was lowest, while PHB had the highest 532 
beta diversity and was least influenced by biotic predictors. These results potentially signal a 533 
stabilizing effect on the community against environmental fluctuation that biotic interactions 534 
can promote [68]. Also, in contrast to predictions, the relative contribution of deterministic 535 
processes did not entirely correspond with changes with environmental heterogeneity, as the 536 
relative contribution of environmental factors were similar at MAI and PHB, however at NSI 537 
where the lowest level of environmental heterogeneity occurred, biotic processes were the 538 
predominate deterministic driver. Interestingly, biotic influence on bacterioplankton diversity 539 
was found at all locations, suggesting previously overlooked factors driving temporal 540 
succession of bacterioplankton.  541 

Concluding remarks 542 

Here, we demonstrate that temporal patterns in marine bacterioplankton diversity are 543 
structured by different inherent deterministic processes according to location, which tracks 544 
latitudinal differences that may be the result of variation in environmental heterogeneity. The 545 
most ‘environmentally stable’ site, which was characterized by the least seasonality displayed 546 
patterns in bacterioplankton alpha and beta diversity which were in contrasted to the site with 547 
highest levels of seasonality in environmental conditions. Bacterioplankton diversity is the 548 
consequence of multiple interacting processes including filtering by environmental factors 549 
and biotic interactions [8, 69]. Partitioning the effects of environmental versus potential biotic 550 
influence is an important distinction as ecological theory predicts ecosystem function is 551 
linked to the processes that structure community diversity patterns [2, 70, 71]. Therefore, to 552 
accurately forecast ecosystem function, it is necessary to 1) distinguish among processes that 553 
give rise to bacterioplankton diversity and 2) identify how these processes change through 554 
space and time. This is heightened as climatic conditions are changing rapidly which can alter 555 
the balance between biotic and environmental deterministic processes [72]. However, until 556 
now no framework has been applied to bacterioplankton to identify the importance of 557 
potential biotic interactions relative to environmental factors driving total diversity patterns. 558 
Patterns of seasonality for both alpha and beta diversity observed in our study are consistent 559 
with diversity patterns from three well studied time-series, where the high latitude English 560 
Channel exhibited the highest degree of seasonality in diversity patterns, the mid-latitude 561 
SPOTS with intermediate diversity patterns and the low latitude HOTS with absent seasonal 562 
diversity patterns [73]. Therefore, processes driving diversity patterns along the latitudinal 563 
gradient may be general, and this study provides insight on potential drivers of this trend. 564 
Importantly, results shed insight on why some studies have identified environmental factors 565 
as having significant influence over bacterioplankton diversity [26], while others have 566 
concluded biotic processes play a stronger role in driving bacterioplankton diversity patterns 567 
[25, 69]. Predicting how biogeochemical processes will respond under future climate change 568 
scenarios requires insight to the microbial composition present, and therefore microbial 569 
diversity patterns.  570 
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 779 

Figure and Table Captions 780 

Figure 1: Map of sampling location. Inset figure shows the relative location of each reference 781 
station to the Australian continent. 782 

Figure 2: Environmental variability of each time-series. a) PCA biplot of first two 783 
dimensions discriminating samples to demonstrate environmental heterogeneity and is based 784 
on measured environmental variables. b) Distribution of environmental heterogeneity across 785 
time-series. c) Heatmap visualizing the relative heterogeneity, measured as standard deviation 786 
of environmental variables across time-series. 787 

Figure 3: Patterns and drivers of alpha diversity across time-series. a) Scatterplot of alpha 788 
diversity through time for each time-series. X-axis is time from the start of the time-series 789 
and y-axis is effective diversity. Colors represent seasonal classification based on 790 
astronomical calendar. b) Contribution of environmental variables and the biological metric 791 
to explaining variation of alpha diversity through time at each time-series. The x axis displays 792 
the three time-series, and the y axis is the adjusted R2 score. Blue is the adjusted R2 from a 793 
multiple regression model of environmental variables only while red is the improved R2 794 
when the biological metric is included in the model. 795 

Figure 4: Beta diversity patterns and contribution of deterministic drivers. a) Time (in days) 796 
between sampling points along X-axis and Bray-Curtis dissimilarity (BC) scores along the Y-797 
axis. BC = 0, entirely the same; BC = 1 entirely different. Colors represent the category of 798 
sample; blue = inter-seasonal (two samples from different seasons), red = intra-seasonal (two 799 
samples from the same season). Dotted vertical line breaks spaced at 365 days to show length 800 
of time series. b) Contribution of environmental and the biological metric to explaining 801 
variation of beta diversity through time across each time-series. Colors correspond to the 802 
amount of variation attributed to several ecological processes derived from variance 803 
partitioning procedure.   804 

Table 1: Summary of imputed environmental variables. N is the number of samples in each 805 
time-series or the whole entire dataset. Min and max are the minimum and maximum 806 
observed values in the dataset. Mixed layer depth is estimated thermocline based on Condie 807 
and Dunn (2006). 808 

Table 2: Linear model results for predictor variables that showed the best relationship with 809 
patterns of bacteria alpha diversity through time. The full model is the results of all variables. 810 
Individual variables are the result of step regression. The (+) and (-) indicate the direction of 811 
relationship between variables and alpha diversity. The biological metric is the interspecific 812 
interaction metric. The explained variation (Exp.var) is the result of partitioning the variable 813 
sums of squares. DF = degrees of freedom; Sum Sq = Sums of square; Rel. Imp = Relative 814 
importance based on CAR variance partitioning; Mean Sq = Means of the square. 815 
Significance represented by bold font if p < 0.05.  816 
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Table 3: Distance-based linear model results for predictor variables that showed the strongest 817 
relationship to patterns of beta diversity through time. The biological metric is the 818 
interspecific interaction metric. Phyto is in reference to the phytoplankton biological metric. 819 
The full model informs on the global test for all selected variance and the step model shows 820 
the results for individual chosen variables. All variables are the model results when all 821 
variables are included. Df = degrees of freedom; SS = sums of squares; AIC = Aikaike 822 
information criteria. 823 

Supplemental Figure 1: Biotic interaction index diagram. Each dataset is comprised of 824 
samples and corresponding ASVs as proportional abundance and standardized environmental 825 
variables (A). One ASV is separated (response variable) from other ASVs and environmental 826 
data (predictor variables) (B). Only ASV were included as response variables. A predictor by 827 
response matrix is returned with the partial R2 contributed to each response ASV (C) and the 828 
total R2 was calculated by summing partial R2 that were identified as significant (D). ASV’s 829 
with a total R2 less than 0.3 were removed from each sample and the relative proportion of 830 
each ASV was summed to get sample total (E). Random forest was run three times to obtain 831 
the sample total across a Bacteria-Environment dataset, Phytoplankton-Environment dataset 832 
and Environmental only dataset. Sample totals from biotic-environment (bacteria or 833 
phytoplankton) and sample totals from Environmental were subtracted (F) to obtain Biotic 834 
only dataset (Bacterial or Phytoplankton) indices (G). 835 

Supplemental Figure 2: a) Temperature through time at each reference station. b) NOx 836 
concentration through time at each reference station. c) Average Chl-a concentration for each 837 
month for the three time-series.   838 

Supplemental Figure 3: Alpha diversity plotted across each time-series. Boxplots represent 839 
the distribution of effective diversity scores at each time-series. Line indicates median score 840 
with either side representing the 2nd and 3rd quantile score distributions.  841 

Supplemental Figure 4: a) The X-axis is the seasonal category, and the Y-axis is 842 
distribution of BC dissimilarity scores (0 = completely dissimilar, 1 = highly similar). 843 
Boxplot comparisons are partitioned into the three time-series. b) Boxplot of beta-diversity 844 
variation at each site.   845 

 846 
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Table 1: Summary of imputed environmental variables. N is the number of samples in each time-series or the whole entire dataset. Min and max 
are the minimum and maximum observed values in the dataset. Mixed layer depth is estimated thermocline based on Condie and Dunn (2006). 

  
Maria Island Port Hacking North Stradbroke 

Island 
(N=58) (N=52) (N=47) 

Temperature (°C)       
Mean (SD) 15.1 (2.14) 20.2 (2.07) 23.6 (2.03) 
Median [Min, Max] 14.5 [11.9, 20.3] 20.1 [16.8, 24.5] 23.4 [20.4, 27.6] 
Missing  9 (15.5 %) 3 (5.8 %) 6 (12.8%) 

Day length (hr)       
Mean (SD) 11.7 (2.06) 11.9 (1.53) 11.8 (1.14) 
Median [Min, Max] 11.5 [9.04, 15.3] 11.8 [9.89, 14.4] 11.5 [10.4, 13.9] 
Missing 0 (0%) 0 (0%) 0 (0%) 

Salinity (PSU)       
Mean (SD) 35.2 (0.801) 35.5 (0.193) 35.5 (0.234) 
Median [Min, Max] 35.3 [29.3, 35.7] 35.5 [34.7, 35.7] 35.5 [34.3, 35.8] 
Missing  9 (15.5%) 3 (5.8%) 6 (12.8%) 

Turbidity (NTU)       
Mean (SD) 0.388 (0.214) 0.115 (0.0640) 0.131 (0.139) 

Median [Min, Max] 0.285 [0.146, 1.10] 0.102 [0.0582, 
0.450] 

0.0878 [0.0108, 
0.705] 

Missing  9 (15.5%) 8(15.4%) 8 (17.0%) 
Secchi disk depth (m)       

Mean (SD) 16.5 (3.40) 15.2 (3.44) 20.0 (5.33) 
Median [Min, Max] 16.5 [9.00, 24.0] 16.0 [9.00, 24.0] 19.0 [9.00, 34.0] 
Missing 1(1.7%) 3(5.8%) 0(0% 

Silicate (umol/L)       
Mean (SD) 0.660 (0.487) 0.865 (0.749) 0.586 (0.414) 
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Median [Min, Max] 0.600 [0, 2.00] 0.800 [0, 3.90] 0.500 [0, 2.10] 
Missing 7(12.1%) 7(13.5%) 5(10.6% 

NOx (umol/L)       
Mean (SD) 1.52 (1.42) 1.00 (1.33) 0.0679 (0.125) 
Median [Min, Max] 1.85 [0, 5.20] 0.500 [0, 7.00] 0 [0, 0.500] 
Missing 7(12.1%) 8(15.4%) 5(10.6%) 

Phosphate (umol/L)       
Mean (SD) 0.216 (0.109) 0.174 (0.0975) 0.0934 (0.0365) 

Median [Min, Max] 0.210 [0.0200, 
0.480] 

0.158 [0.0300, 
0.650] 0.0903 [0, 0.190] 

Missing 7(12.1%) 7(13.5%) 5(10.6%) 
Ammonium (umol/L)       

Mean (SD) 0.164 (0.336) 0.350 (0.412) 0.293 (0.468) 

Median [Min, Max] 0.0772 [0, 2.40] 0.231 [0.0300, 
2.24] 0.125 [0, 2.60] 

Missing 7(12.1%) 10(19.2%) 6(12.8%) 
Chl-a (mg/m3)       

Mean (SD) 0.572 (0.333) 0.669 (0.298) 0.300 (0.111) 

Median [Min, Max] 0.526 [0, 1.62] 0.617 [0.201, 1.41] 0.293 [0.0810, 
0.637] 

Missing 6(10.3%) 14(26.9%) 9(19.1%) 
Mixed-layer depth (m)       

Mean (SD) 63.3 (20.6) 32.0 (17.0) 31.4 (9.92) 
Median [Min, Max] 74.0 [21.0, 86.0] 27.3 [11.0, 81.0] 31.0 [13.0, 57.0] 
Missing 8(13.8%) 4(7.7%) 3(6.4%) 
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Table 2: Linear model results for predictor variables that showed the best relationship with patterns of bacteria alpha diversity through time. The 
full model is the results of all variables. Individual variables are the result of step regression. The (+) and (-) indicate the direction of relationship 
between variables and alpha diversity. The biological metric is the interspecific interaction metric. The explained variation (Exp.var) is the result 
of partitioning the variable sums of squares. DF = degrees of freedom; Sum Sq = Sums of square; Rel. Imp = Relative importance based on CAR 
variance partitioning; Mean Sq = Means of the square. Significance represented by bold font if p < 0.05.  

 

  Full model   Step Regression 
Comparison Variables Df Sum Sq Rel. Imp Mean Sq F value Pr(>F)

Maria 
Island 

Adj 
Rsq 0.8   day length (-) 1 30020.9 0.61 30020.89 117.871 0.00 

F-stat 56.8 ammonium (-) 1 12203.7 0.10 12203.75 47.9157 0.00 
P-value < 0.001 Chl-a (-) 1 15120.8 0.09 15120.81 59.369 0.00 

DF1 4 turbidity (-) 1 546.075 0.01 546.07 2.14406 0.15 
DF2 53 Residuals 53 13498.7 0.81  254.69 

Port 
Hacking 

Adj. 
Rsq 0.22   day length (-) 1 4874.45 0.12 4874.45 10.7948 0.00 

F-stat 4.67552886 mixed-layer depth (+) 1 1825.19 0.10 1825.19 4.04201 0.05 
P-value 0.003 silicate (+) 1 1742.86 0.04 1742.86 3.85967 0.06 

DF1 4 temperature (+) 1 2.54951 0.03 2.55 0.00565 0.94 
DF2 47 Residuals 47 21223.1 0.28  451.56 

North 
Stradbroke 

Island 

Adj. 
Rsq 0.4   biotic - bac (+) 1 4800.89 0.33 4800.89 23.6068 0.00 

F-stat 11.3996033 ammonium (-) 1 730.21 0.06 730.21 3.59056 0.01 
P-value  < 0.001 Chl-a (-) 1 1423.87 0.05 1423.87 7.00143 0.08 

DF1 3 Residuals 39 8744.87 0.44 203.36899 
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DF2 43 
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Table 3: Distance-based linear model results for predictor variables that showed the strongest relationship to patterns of beta diversity through 
time. The biological metric is the interspecific interaction metric. Phyto is in reference to the phytoplankton biological metric. The full model 
informs on the global test for all selected variance and the step model shows the results for individual chosen variables. All variables are the 
model results when all variables are included. Df = degrees of freedom; SS = sums of squares; AIC = Aikaike information criteria.  

  Full Model with selected variables Step model
    DF SS F P(>F) terms R2.adj Df AIC F Pr..F.

Maria 
Island 

Model 6 3.346 11.345 0.001 day length 0.20 1 140.11 15.20 < 0.001 
Residual 51 2.507 temperature 0.33 1 130.44 12.25 < 0.001 

   biotic - bacteria 0.40 1 125.50 6.87 < 0.001
   biotic - phyto 0.44 1 122.40 4.87 < 0.001
   turbidity 0.46 1 121.44 2.72 < 0.001
   secchi depth 0.47 1 121.30 1.92 < 0.001
      All variables 0.48

Port 
Hacking 

Model 7 2.93 6.8 0.001 day length 0.18 1 129.59 12.19 < 0.001 
Residual 44 2.7 temperature 0.32 1 121.10 10.95 < 0.001 

   biotic - phyto 0.35 1 119.37 3.57 < 0.001 
   biotic - bacteria 0.37 1 118.36 2.80 0.002
   secchi depth 0.39 1 117.61 2.50 0.002
   salinity 0.40 1 117.46 1.90 0.020
   NOx 0.42 1 117.34 1.83 0.030
      All variables 0.42

North 
Stradbroke 

Island 

Model 5 1.47 7.32 0.001 biotic - phyto 0.21 1 90.62 13.03 < 0.001 
Residual 41 1.65 day length 0.29 1 86.69 5.92 < 0.001 

   biotic - bacteria 0.35 1 83.34 5.19 < 0.001 
   temperature 0.38 1 81.75 3.33 < 0.001
   silicate 0.40 1 81.36 2.14 < 0.001
      All variables 0.42
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