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Abstract

Bacterioplankton communities play major roles in governing marine productivity and
biogeochemical cycling, yet what drives the relative influence of the types of deterministic
ecological processes which result in diversity patterns remains unclear. Here we examine
how differing deterministic processes (environmental factors and biotic interactions) drive
temporal dynamics of bacterioplankton diversity at three different oceanographic time-series
locations, spanning 15 degrees of latitude, which are each characterized by different
environmental conditions and varying degrees of seasonality. Monthly surface samples,
collected over a period of 5.5 years, were analyzed using 16S rRNA amplicon sequencing.
The high and mid- latitude sites of Maria Island and Port Hacking were characterized by high
and intermediate levels of environmental heterogeneity respectively, with both alpha (local)
diversity (72 % and 24 % of total variation) and beta diversity (32 % and 30 %) patterns
within bacterioplankton assemblages primarily explained by environmental determinants,
including day length, ammonium, and mixed layer depth. In contrast, at North Stradbroke
Island, a sub-tropical location where environmental conditions are less seasonally variable,
interspecific interactions were of increased importance in structuring bacterioplankton
diversity (alpha diversity: 33 %; beta diversity: 26 %) with environment only contributing 11
and 13 % to predicting diversity, respectively. Our results demonstrate that bacterioplankton
diversity is the result of both deterministic environmental and biotic processes and that the
importance of these different deterministic processes varies, potential in response to
environmental heterogeneity.

Importance

Marine bacterioplankton drives important biological processes, including the cycling of key
nutrients or fixing atmospheric carbon. Therefore, to predict future climate scenarios its
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89  critical to model these communities accurately. Processes that drive bacterioplankton
90 diversity patterns in the oceans however remain unresolved, with most studies focusing on
91  deterministic environmental drivers, ie temperature or available inorganic nutrients. Biotic
92  deterministic processes including interactions among individuals are also important for
93  structuring diversity patterns, however, this is rarely included to predict bacterioplankton
94  communities. We develop an approach for determining the relative contribution of
95  environmental and potential biotic interactions that structure marine bacterioplankton at three
96 series at different latitudes. Environmental factors best predicted temporal trends in
97  Dbacterioplankton diversity at the two high latitude time series, while biotic influence was
98  most apparent at the low latitude time series. Our results suggest environmental heterogeneity
99  is an important attribute driving the contribution of varying deterministic influence of
100  bacterioplankton diversity.

101  Introduction

102  Bacterial community structure influences ecosystem function in fundamental ways across all
103  natural environments [1-3], including the ocean [4], where microorganisms represent the
104  base of the food web and are the principal mediators of biogeochemical cycles [5]. Ecological
105  diversity underscores community structure, therefore, elucidating the processes that govern
106  bacterioplankton diversity is critical for predicting marine ecosystem productivity and

107  function. There are two alternative perspectives for how bacterial diversity assembles [6, 7].
108  One view is of determinism, where species are regulated by niche processes such as

109  environmental filtering [8] stemming from physico-chemical factors such as inorganic

110  nutrients availability and temperature [9, 10], as well as biotic interactions including

111  competition, predator-prey or facultative interactions [11-13]. The other view is one of

112 neutrality, where species are considered ecologically equivalent and therefore diversity

113 consequently arise from stochastic birth, death, colonization, immigration and speciation
114 [14-19]. The relative contribution of environmental, biotic interactions and stochastic

115  processes, and how their importance changes over space and time is currently unresolved
116  [20], meaning that the ability to interpret and predict marine bacterioplankton diversity is
117  currently restricted.

118  In the ocean, both environmental factors and trophic interactions fundamentally govern

119  bacterioplankton diversity [21, 22], in terms of both the number of co-occurring species
120  (alpha diversity) and the commonality of species among environments or sampling points
121 (beta diversity) [23, 24]. For instance, bacterioplankton community richness in the English
122 channel, was highest during the winter months and strongly predicted by day length [25].
123 Landau et al., (2013) similarly found day length to strongly associate with marine

124  bacterioplankton richness from temperate regions. In contrast, bacterioplankton community
125  richness from the Antarctic region was negatively correlated with seasonal increases in

126  chlorophyll-a (Chl-a), signaling potential interactions with algal blooms [26]. Community
127  beta diversity patterns have also been shown to have environmental and biotic links. For
128  instance, global samplings of surface bacterioplankton from the TARA dataset showed the
129  strong effect of temperature and oxygen in driving community composition [27]. The San
130  Pedro oceanographic time-series (SPOTS) in the California Bight, surface layer (0-5 m)
131  bacterioplankton community beta diversity across 10 years was best predicted by abiotic
132 factors including nitrate and day length change as well as Chl-a [28]. From a high-resolution
133 coastal time-series, Needham et al. (2018) demonstrated with networks that bacterial
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abundance patterns were more strongly coupled to phytoplankton dynamics than other
environmental factors, highlighting the role of biotic processes in structuring
bacterioplankton community patterns. This study also noted the high correlated among
groups of bacteria, indicating biotic interactions are not limited to vertical trophic
interactions, but can occur horizontally through cross-feeding and antagonism, which are
hypothesized to also fundamentally governing bacterioplankton diversity[22, 29, 30].
Similarly, bacteria-bacteria interactions were shown to be important for the maintenance of
bacterioplankton diversity in the English Channel evidenced by bacterial OTUs having
stronger correlation with other bacterial OTUs than with phytoplankton OTU’s and
environmental factors [25]. Similarly, at SPOTS, network analysis demonstrated that
bacteria, archaea, and eukaryotes had stronger correlation with one another than with any
physico-chemical factors [31]. More recently, Lima-Mendez (2015), incorporated the
abundance of eukaryotic and viral groups alongside environmental factors to demonstrate that
abiotic factors explained a limited amount of direct variation in marine bacterioplankton
diversity and that trophic and symbiotic interactions were significant contributors to overall
diversity [32]. Collectively, these results underscore that while environmental factors are
important regulators of bacterioplankton diversity, biotic interaction are apparent and
potentially influence bacterioplankton more strongly at times, but the relative contribution of
each deterministic type is yet to be resolved.

Marine environments are inherently dynamic in their environmental characteristics,
fluctuating across scales of space (ie. micrometers to kilometers), and time (ie. microseconds
to months) [21]. Therefore, distilling out specific factors responsible for diversity is
particularly challenging, and may not accurately reflect the contemporary processes
responsible for observed patterns [33]. Considering then the cumulative impacts of a set of
environmental factors (or species interactions), and their relative contribution to diversity
patterns is important because the impact magnitude of the ecological process is expected to
vary in response to different ecological attributes (ie environmental heterogeneity) [20, 34,
35]. In one example, Langenheder et al. (2012) [36], showed that when environmental
heterogeneity among rockpools was highest, beta diversity of bacterioplankton among the
same rockpools was also highest, with deterministic processes emerging as the prevailing
mechanism driving beta diversity; however when environmental heterogeneity among
rockpools was low, and beta-diversity among rockpools was also relatively low, dispersal
mechanisms became increasingly more important in driving beta diversity patterns.
Fluctuations in environmental heterogeneity have been demonstrated as important drivers of
spatial beta diversity patterns in disparate ecosystems, including the Amazon river system [7]
and soil bacteria communities [37, 38]. These results reveal that the relative contributions of
deterministic processes in shaping spatial patterns bacterioplankton diversity can change
through time in accordance with spatially distributed environmental heterogeneity [20, 39]; it
remains to be shown however how deterministic influence is partitioned among
environmental factors versus species interactions. In addition, marine bacterioplankton
studies have focused primarily on understanding the influence of spatial environmental
heterogeneity on bacterial diversity or temporal variability examined at a single location [20].
Therefore, current understanding of shifts in the relative importance of differing ecological
processes on the temporal dynamics of bacterioplankton diversity at different locations is
critically needed to understand if processes structing diversity patterns are universal across
distinct environment or rather idiosyncratic to an environmental.
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180  Distinguishing abiotic from biotic processes in structuring community diversity requires an
181  effective means of identifying potential species interactions [40]. Herren and McMahon

182  (2017)[41] developed a community complexity metric for phytoplankton microbial

183  communities based on the product of the median correlation value of each organism in the
184  dataset to its relative abundance value. The authors argue this value provided an index for
185  quantifying the importance of potential interactions within the community. Indeed, their

186  results demonstrated that characterizing the complexity of a community can improve the

187  proportion of explained variation, but it remained unclear whether the explained variance was
188  due to environmental and/or species interactions because the metric was based on

189  correlations, which could arise due to multiple organisms independently tracking similar

190  environmental factors. One potential means to overcome this limitation is by incorporating
191  metrics that are applied to individual samples, derived from the number and strength of

192  correlative interactions with other species in the community relative to environmental factors
193  [32, 42]. A similar approach has been used to partition potential species interactions from
194  environmental drivers in freshwater macro-organism communities, which highlighted the
195  importance of species interactions in determining community structure [43].

196  Here, we use a 5.5 year time-series, including physico-chemical and 16s microbial

197 community data to investigate the relative importance of environmental filtering versus inter-
198  organismal interactions in influencing marine bacterioplankton structure. Three

199  oceanographic time-series spanning 15° of latitude along the east Australian coastline

200 allowed us to determine the relative contribution of environmental factors relative to potential
201  biotic interactions. Bacterioplankton community structure was inferred by identifying the

202  relative contribution of deterministic processes to shaping patterns of alpha and beta

203  diversity. Our analysis involved the integration of a novel metric for inferring potential

204  species interactions, defined as bacteria-bacteria and phytoplankton-bacterial interactions

205 (biotic interactions), to discriminate among the relative importance of different deterministic
206  processes in shaping bacterioplankton structure.

207 Methods
208  Reference station description and environmental data collection

209  Monthly surface water samples were collected from three oceanographic time-series stations
210 located on the eastern continental shelf of Australia, as part of the Integrated Marine

211 Observing System (IMOS) National Reference Station (NRS) monitoring program. These
212 stations span latitudes of 27 to 42° S and include Maria Island (MAI: 42°35.8 S, 148°14.0 E),
213 Port Hacking (PHB: 34°05.0 S 151°15.0 E), and North Stradbroke Island (NSI: 27°20.5 S
214 153°33.75 E) (Figure 1). The MALI station is situated 7.4 km off Maria Island, on the

215  Tasmania east coast (depth 90 m) and is seasonally impacted by the southerly extent of the
216  East Australian Current (EAC), which is a strong western boundary current [44]. PHB is

217  located at the southern extent of the EAC separation zone (Figure 1) and 5.5 km offshore

218  (depth 100 m). NSI is located north of Brisbane (depth 50 m), and is strongly influenced by
219  EAC waters that originate in the Coral Sea [44]. Sampling at each time-series station

220  comprised collection of bulk seawater samples for microbial analyses from mooring sites at
221  near-monthly intervals (median days between sampling events; MAI: 34; PHB: 33; NSI: 32),
222 with physico-chemical and Chl-a data (collectively termed environmental from here on)

223 collected simultaneously for approximately 5.5 years (2012 — 2017), totaling 157 samples
224  (MALI: 58; PHB: 47; NSI: 52; SI Table 1). Environmental variables measured at each site


https://doi.org/10.1101/2022.05.02.490371
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.02.490371,; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

225  included temperature (°C), day length (hours), salinity (PSU), turbidity (NTU), Secchi disk
226 depth (m), thermocline depth (m), dissolved silicate (umol/L), NOx (umol/L), phosphate
227 (umol/L), ammonium (umol/L), and Chl-a concentration (mg/m"). Data were collected and
228  analysed by IMOS [45, 46] (SI Table 1). Mixed layer depth (MLD) was estimated from

229  temperature depth profiles (Australian National Mooring Network temperature and salinity
230  data product at htt://aodn.com) based on Condie and Dunn (2006) [47], and defined as the
231 depth at which temperature decreased by 0.4 °C from the surface temperature (0-2 m depth).
232

233  Sample collection, DNA extraction and amplicon sequencing
234  Sample collection and DNA extraction

235  Two liters of surface seawater were collected using Niskin bottles and transported on ice back
236  to the lab. Samples were filtered through a 0.22 um pore Sterivex GP filter (Millipore,

237  Massachusetts. Cat. # SVGPL10RC), which were then stored at -80 °C until processing.

238  Filters were sent (on dry ice or in liquid nitrogen dewars) to the Commonwealth Scientific
239  and Industrial Research Organisation Oceans & Atmosphere (CSIRO O&A) laboratories in
240  Hobart, Tasmania for DNA extractions. Microbial DNA was extracted using standardized
241  procedures as part of the Marine Microbes Program

242 (https://data.bioplatforms.com/organization/pages/bpa-marine-microbes/methods) using a
243 modified PowerWater Sterivex DNA Isolation Kit (MOBIO Laboratories) protocol. DNA
244 isolation included incubating Sterivex filters for 1 hour on a horizontal vortex with 1.875 ml
245  lysis buffer followed by a phenol:chloroform extraction.

246 Amplicon sequencing

247  The V1 — V3 regions of the 16S rRNA gene were PCR amplified using the bacteria-specific
248  primers 27F (5’-AGRGTTTGATCMTGGCTCAG-3") and 519R (5°-

249  GWATTACCGCGGCKGCTG-3’) [49] with the following cycling conditions: 1-step using
250 KAPA HiFi HotStart ReadyMix (Roche) comprised steps including 95 °C initial denaturation
251 (3 min), with 35 cycles 0of 95 °C (30 s), 5 °C (10 s) and 72 °C 45 s), and a final elongation
252 step at 72 °C (5 min). Amplicons were then purified using Ampure XP beads (Agencourt

253  Bioscience Corporation) and sequenced on the [llumina MiSeq platform (Illumina, Inc., San
254  Diego, USA) at the Ramaciotti Center for Genomics (UNSW, Sydney, Australia), with 300
255  bp paired reads.

256  Bioinformatic processing

257  Raw fastq files were downloaded from BioPlatforms Australia

258  (https://data.bioplatforms.com). Amplicon quality control and analysis was performed using
259  DaDa2 [50]. In brief, primers were truncated using cutadapt [51] and reads were trimmed,
260  denoised, merged, and chimeras removed using function removeBimeraDenovo

261  (minFoldParentOverAbundance = 4) (full code provided

262 https://github.com/martinostrowski/marinemicrobes/tree/master/dada2). Taxonomic

263  classification of bacterial 16s rRNA ASVs was performed using a naive Bayes classifier
264  based on SILVA 138.1 and a bootstrap cut-off >50 % [52]. All ASVs which had a DaDa2
265  bootstrapped value < 50 at the taxonomic level were assigned to Kingdom unclassified.

266  The final bacterioplankton dataset analyzed in this study resulted from removing all
267  sequences assigned to Kingdom unclassified, Archaea, Eukaryota, Chloroplast, and
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Mitochondria. The final step included filtering out low abundant ASVs with a total
abundance across the entire dataset of less than 0.005 %. The plastid dataset containing all
the Chloroplast sequences was used to assess the potential importance of phytoplankton on
bacteria community assembly, and taxonomic assignment was made in a similar way as
bacterioplankton ASVs with bootstrapped value < 50 % were trimmed and taxonomic
identity called with naive Bayes classifier using PhytoRef database [53].

Statistical analysis

Datasets used in analysis included 1) environmental variables, 2) bacterial amplicon relative
abundance, and 3) plastid amplicon relative abundance to represent the eukaryotic
phytoplankton. In cases of missing environmental observations, values were imputed with
rflmpute () from the randomForest package (version 4.6.14) [54]. Imputation was performed
for each time-series independently. Environmental variables were mean centered unit
variance standardized to reduce outlier influence. All analyses were performed using R
version 3.6.1.

Temporal variability in environmental conditions

Temporal variability in environmental conditions was estimated by determining the mean
dissimilarity within each time-series [37] based on the 11 environmental variables described
above. Dissimilarity among samples based on environmental variables was calculated on
Euclidian distance. Heterogeneity (Ed) was derived for each pair of samples within a time-
series as follows:

Ed = ( ) +0.001

Eucpay
where Euc is the Euclidian distance between two samples within a time-series, EUCnx is the
maximum distance observed across the entire dataset, and 0.001 is added to account for zero
similarity among two samples. Mean Ed was then calculated within each time-series and
heterogeneity compared using a Kruskal-Walls 5> and dunn-post hoc pairwise tests across the
three time-series.

Calculation of the biological interaction indices

Building on a framework introduced by Musters et al., (2019), we developed a metric to
quantify the relative contribution of potential interactions among bacteria and phytoplankton
in structuring patterns of bacterioplankton diversity. Our approach regresses biological
predictors (bacterial and phytoplankton ASVs) against individual bacterial ASVs (response
ASV). In the case of the bacterial interaction metric, the response ASV is removed from the
predictor ASV dataset. There is no reason to expect species interactions will be linear or that
ASV patterns are the result of a single predictor, therefore we extend the co-occurrence
definition beyond simple pairwise co-occurrence to include more than a single bacterial ASV
(or phytoplankton ASV) using a machine learning approach. In this way, we can identify
non-linear abundance relationships of an individual ASV which may be due to the abundance
of multiple organisms. We additionally identified the relationship of each bacterial ASV to a
combination of environmental data (e.g, temperature). Therefore, we generated three datasets
including bacteria-environment, phytoplankton-environment, and environment only in a
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series of steps (SI Figure 1) described below. The gradient forest [55] method was used to
regress the large number of predictors to individual bacterial ASVs . Gradient forest is a
modification of regression forest, which calculates an explained variation (R)?) for each

response ASV (SI Figure 1a,b). The approach then uses an out-of-bag prediction (OOB)
similar to regression forest, but differs by defining the explained variation of each response
and is calculated as follows:

RE=1- (= 7)/ ) (h - )’
L L
Yy, is the abundance of the ith occurrence of ASV f, 17; is the OOB prediction for the
abundance of ASV f at the ith position, and ﬁ is the mean abundance of ASV f. Calculations
were conducted using the gradientForest package (version 0.1.17) in R [56]. For each
response variable we removed all predictor variables that did not significantly explain the
abundance of the response ASV (SI Figure 1¢). Significance of predictor variables in
explaining proportional distribution of the response was calculated with rfpermute (version
2.1.81). Regression forest produces partial R values for each predictor of a response ASV.
All partial R values for a response variable are summed to produce the total R* of that
response variable; therefore, we could sum the remaining significant predictor partial R
values to determine the response R” value (SI Figure 1d).

Next, we removed all bacterial response ASVs with an R” value less than 0.3 (thus retaining
>=().3) and summed the relative abundance of each retained ASV for each sample (i.e.,
sample 1 from NSI, sample 2 from MAI) (SI Figure le). Finally, the bacteria-bacteria metric
was calculated as the abundance difference between the bacteria-environment and
environment only relative abundance for each sample. The bacteria-phytoplankton metric
was calculated as the difference between the phytoplankton-environment and environment
only relative abundance (SI Figure 1f). The resulting value is the bacterial or phytoplankton
interaction metric (SI Figure 1g). Our approach is similar to that described by Muster et al.,
(2019) with the addition of the significance calculation for partial R* values and the
identification of the relative abundance of ASVs from the dataset which are described by
other bacterial or phytoplankton ASVs. Before the calculation of the metric, we performed a
Hellinger transformation on predictors to reduce potential bias from highly abundant
predictor ASVs. Also, to reduce computational time, we limited our analysis to include only
ASVs which occurred in > 25 % of samples within a time-series.

Recurrent diversity patterns and environmental drivers

Alpha diversity was calculated as the effective number of ASVs [57] per sample, which is a
measure of the number of equally common ASVs among samples and calculated as e H
where H' is Shannon entropy. Beta-diversity was calculated using abundance-based Bray-
Curtis dissimilarity for pairs of samples within time-series. Abundance based beta-diversity
was calculated on Hellinger transformed data (square root of standardized species
abundances). Bray-curtis similarity was used throughout and calculated as 1- dissimilarity
score. To test for differences in intra-seasonal and inter-seasonal beta-diversity, samples were
classified as intra-seasonal if sample pairs were from the same astronomical season;
otherwise, samples were classified as inter-seasonal. A Kruskal-Wallis 5 test was performed
to test the null hypothesis of no difference among the means of time-series groups.
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349  We then modeled predictor variables that best explained observed diversity (alpha and beta)
350 across the three time-series. For these analyses, we included the biotic interaction metrics, as
351  described above, to account for possible interspecific interactions and/or unobserved

352  environmental factors. Multiple regression was run on alpha diversity using Im () and step ()
353  with the direction set to ‘both’, from the ‘stats’ package (version 3.6.1). Model selection was
354  performed using AIC decrease. Distance-based modeling was performed to identify

355  explanatory variables that best explained the distribution of beta-diversity [58], using a

356  stepwise procedure. Model selection was based on the increase in adjusted R-squared with
357  procedure ordiR2step () from the vegan package (version 2.5.6) [59] with direction = ‘both’
358  and permutations = 1000. We then performed variance partitioning [60], to identify the

359 relative importance of the variables selected by the distance-based step procedure using the
360  function varpart().

361  Results and Discussion
362  Environmental characteristics of the three oceanographic time-series sites

363  Environmental heterogeneity exhibited a latitudinally-defined gradient (Kruskal-Wallis * 4
364 ,=701.4,p <0.01; Figure 2a, b, SI Figure 2a, b, ¢) across the three time-series stations,

365  whereby Maria Island (MAI) had greater environmental heterogeneity than Pt Hacking

366 (PHB) (Figure 2a; Dunn-test: p < 0.01) and PHB greater than North Stradbroke Is (NSI)

367  (Figure 2a; Dunn-test: P < 0.01). At MAI (Figure 1; Lat 42°35.8 S; Lon 148°14.0 E) autumn
368 and winter were characterized by a greater mixed layer depth (MLD; mean + sd; 63.3 m +
369  20.6), higher inorganic nutrient concentrations (SI Table 1; SI Figure 2b; NOx: 1.52 umol/L
370 =+ 1.42; phosphate: 0.216 umol/L + 0/109) and lower temperature (SI Figure 2a; 15.1 °C +
371  2.14), while spring and summer samples had higher Chl-a concentrations (SI Figure 2c; 0.572
372 mg/m’+0.333). At PHB (Figure 1; Lat 34°05.0 S; Lon®151 15.0 E) spring and summer

373  temperatures (SI Table 1; 20.2 °C £ 2.07) more closely track that of NSI than MAI (SI Figure
374  2a), while MLD (32.0 m + 17.0), inorganic nutrient concentrations (SI Figure 2b; NOx: 1.00
375 umol/L £ 1.33; phosphate: 0.174 umol/L £ 0.10; silicate: 0.864 umol/L + 0.749), and Chl-a
376  concentration (SI Figure 2¢; 0.67 mg/m3 + 0.30) during winter were more similar to MAI.
377  NSI (Figure 1; Lat 27°20.5 S; Lon 153°33.75 E) was distinguished by relatively high-water
378  temperatures (SI Figure 2a; SI Table 1; 23.6°C £ 2.03), and relatively low concentrations of
379  inorganic nutrients including phosphate (SI Table 1; 0.09 umol/L + 0.04) and NOx (SI Figure
380  2a; 0.07 umol/L + 0.13) concentrations. Winter samples at NSI were characterized by

381 relatively high Secchi disk depth (20.0 m + 5.33) while samples from the other three seasons
382  were most distinguished by temperature. Thus, the three time-series exhibited distinct

383  environmental conditions that range from MAI having the greatest environmental

384  heterogeneity compared to other stations, PHB with relatively intermediate nutrient

385  concentrations and high physical environmental heterogeneity and NSI having the least

386  environmental heterogeneity. (324)

387  Contrasting drivers of bacterioplankton alpha diversity patterns across time-series

388  The bacterioplankton datasets from the three reference stations had a varying number of

389  observed ASVs (richness). Maria Island had the greatest number of total ASVs with 7608
390 (mean per sample 490.8 £ se 26.0), then Port Hacking with 7020 (414.1 + 20.7) and North
391  Stradbroke Island with 4843 (431.8 £19.7). Richness of dataset ASVs corresponded with the
392  total diversity of ASVs at each site where MI had the greatest alpha diversity (mean 122.14 +
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se 7. 64), followed by PHB (116.68 + 6.36) then NSI with the least (107.27 = 4.07). The
distribution of alpha diversity was, however, not significantly different among time-series (SI
Figure 3; Kruskal-Wallis x*= 2.10, df = 2, p = NS). Temporal patterns in bacterioplankton
diversity across the time-series sites provided evidence however, for varying degrees of
seasonality among locations. Consistent yearly diversity patterns were observed at MAI, and
this was less apparent or absent at PHB and NSI (Figure 3a). At MAI, bacterioplankton alpha
diversity consistently peaked in the winter months and was lowest during spring, while at
PHB, diversity peaked inconsistently across years. For instance, in 2012, the highest observed
diversity at PHB was in winter, whereas in 2013, diversity peaked in autumn. At NSI,
diversity peaks were not consistent across years. Collectively, these patterns infer that at MAI
the principal factors regulating bacterioplankton alpha diversity are repeatable at seasonal
scales, while at PHB and NSI, factors regulating bacterioplankton alpha diversity lack
seasonal influences.

Environmental heterogeneity has been shown in other systems to be an important driver of
bacterial diversity patterns [7, 61], therefore, given the different levels of environmental
heterogeneity observed between locations, we predicted that the influence of environmental
factors would become less apparent with decreasing environmental heterogeneity. At MAI,
diversity patterns were predominately predicted by environmental factors (Figure 3b; Table
2; F 4p=453=57.06, p <0.001, Adj. R’ = 0.80). Day length had a strong inverse relationship
with alpha diversity (Relative Importance = 0.62). Similar results have been reported for
bacterioplankton richness patterns in the English channel time-series [25] which was also
sampled at near monthly intervals. Therefore, day length may generally be an important
predictor of high latitude bacterioplankton diversity. In addition, Chl-a was weakly associated
with bacterioplankton alpha diversity suggesting a potential trophic mediation by
phytoplankton (RI = 0.09). Similar trends were observed in the Antarctic where
bacterioplankton alpha diversity was inversely related to Chl-a [26].

At PHB, where there were lower levels of seasonal heterogeneity in environmental conditions
(Figure 2a), bacterioplankton diversity was influenced by mixed layer depth, but total
explained variation for alpha diversity was quite low (Figure 3b; Table 2; F df =5, 46 = 4.29,
p=0.003, Adj. R* = 0.24). The dominate environmental factors included day length (RI =
0.12) which was inversely correlated with alpha diversity patterns while MLD depth (RI =
0.10) was positively correlated. The high amount of unexplained variation may suggest other
unmeasured environmental factors (e.g., dissolved organic carbon) more strongly influence
alpha diversity. Alternatively, EAC driven dispersal processes, which have been shown to
influence bacterioplankton occurrences at PHB [48], may also be a dominant contributor to
alpha diversity at the monthly time-scale interval. Dispersal is a fundamental ecological
process [62] and can become important in structuring bacterioplankton diversity when
environmental heterogeneity is low or when dispersal rates are high enough to over-shadow
the effects of other ecological processes [7].

For NSI temporal bacterioplankton alpha diversity was not consistent with astronomical
seasons, but total variation could be explained to a relatively high level (Figure 3b; Table 2; F
df=3,43=11.18,p <0.001, Adj. R2 = 0.40). Interestingly, and in contrast to the other two
locations, biotic interactions were the main predictors of alpha diversity at this location.
Bacteria-bacteria interactions specifically, were positively correlated with alpha diversity
patterns and contributed a large portion of the total predicted variation (Figure 3b; partial R*
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=0.33). Ammonium was also important in predicting alpha diversity and was inversely
correlated (RI = 0.06) with diversity patterns. Therefore, potential interspecific interactions
may be important drivers of alpha diversity patterns at this sub-tropical time-series [33].

Across the three time-series the amount of variance that could be explained by environmental
factors corresponded with trends in environmental heterogeneity. The largest contribution of
environmental variables to explaining alpha diversity distribution was at MAI (80 %), while
an intermediate amount could be explained at PHB (22 %) and the least at NSI (10 %)
(Figure 3b). However, the total explained variation did not correspond with trends in
environmental heterogeneity. The lowest latitude site NSI which had the lowest
environmental heterogeneity, had the second largest total explained variance, driven by a
large contribution of biotic predictors (24 %). This location had the warmest temperatures
and the lowest inorganic nutrient concentrations of our study locations (Figure 2b), and under
these conditions trophic mediation, such as facilitation by Prochlorococcus and
Synechococcus groups can drive bacterioplankton succession through primary productivity
[63]. Biotic interactions at MAI or PHB were not important predictors of alpha diversity
across the temporal scale analyzed here (median 34 days), however is likely an important
contributor when higher resolution time-series are considered [64]. For instance, Luria et al
(2016) monitored bacterioplankton diversity in Antarctic waters across 1-2-week intervals
and found richness was driven phytoplankton blooms; therefore, potentially demonstrating
importance of scales in distinguishing among dominate ecological drivers of diversity
patterns.

Contrasting drivers of recurrent beta diversity patterns across time-series

Bacterioplankton beta diversity (ratio of regional: local diversity) at each of the three
reference stations exhibited seasonal trends, where intra-seasonal samples (samples from the
same season) had greater observed similarity (ie. lower beta diversity; 0: dissimilar; 1: highly
similar) than inter-seasonal samples (Figure 4a, Supplemental Figure 4). At MAI, the mean
intra-seasonal Bray-Curtis (BC) score of 0.50 (£ 0.005 SE) was significantly greater than the
inter-seasonal score (0.59 = 0.13; t-test 4r=749.45 = 16.00; p < 0.001). Similarly, at PHB the
intra-seasonal similarity (0.56 = 0.006) was significantly greater than the inter-seasonal
similarity (BC = 0.63 + 0.003; Supplemental Figure 4; t-test 4¢= 52848 = 10.32; p < 0001). NSI
had the lowest intra-seasonal mean BC among the time-series at 0.47 £+ 0.005 which was also
significantly different than the inter-seasonal mean BC of 0.51 = 0.003 (Supplemental Figure
4a; t-test 4r=473.94 = 6.00; p < 0.001). Therefore, at all locations bacterioplankton communities
from a given season were more similar to those from the same season in different years, than
to those that were closer in time, but different in season. These results suggest ecological
processes that structure bacterioplankton communities are recurrent at a given time of across
years, and this occurs across despite.

Like alpha diversity, beta diversity is also expected to increase with increasing environmental
heterogeneity [65, 66] under the assumption that greater variability in environmental factors
will result in an increased number of niches for organisms to occupy [67]. We therefore
predicted beta diversity would be greatest at MAI and lowest at NSI. This pattern, however,
was not observed and rather the greatest mean beta diversity was observed at PHB
(Supplemental Figure 4b; mean £ SD; 0.61 £ 0.11), followed by MAI (0.57 &+ 0.12) and NSI
(0.50 + 0.09; Kruskal-Wallis y* ar=2 = 690.3, p < 0.05). These results suggest that
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environmental variability is not entirely responsible for bacterioplankton composition,
suggesting other ecological processes, such as biotic processes are important for structuring
beta diversity.

Therefore, we investigated the key variables driving beta diversity patterns and determined
their relative contributions to these patterns. Our results indicate that different deterministic
processes govern patterns of beta diversity across the three locations (Figure 4b). Variables
that best modelled beta diversity at MAI included day length, temperature, bacterial
abundance, phytoplankton abundance, turbidity, and Secchi disk depth (Adj. R* = 0.20, 0.13,
0.06, 0.04, 0.02, < 0.01, respectively; Table 3; F=11.35, df =6, 51, p=0.001). Variance
partitioning showed environmental variables had the greatest effect (32 % of partitioned
variation; Figure 4b) influencing beta diversity patterns at MAI followed by bacterial
interactions (7 %), while phytoplankton contributed 4 %. Together, the biotic interactions
explained approximately 11 % of the total partitioned variation. There was 4 % of variance
contributed by bacteria-environment overlap, suggesting a potential role of environmentally
mediated bacterial influence. These results match with alpha diversity patterns where
environment was the key drivers, demonstrating the importance of environment fluctuation in
structuring bacterioplankton diversity. Beta diversity however had some influence by biotic
factors, while alpha diversity was only predicted by environmental factors, potentially
suggesting that biotic processes may facilitate the presence or absence of particular
bacterioplankton groups, rather than diversity at a particular time point.

At PHB, environmental factors also had the largest contribution to beta diversity. Important
variables included day length and temperature (Adj R* = 0.18, 0.14, respectively; Table 3; F=
6.8, p=0.001). Collectively, the environmental factors accounted for 30 % of the total
partitioned variation (Figure 4b) while biotic interaction (bacteria and phytoplankton) only
accounted for 5 % of the total variation. Environmental overlap with bacteria (4%) and
phytoplankton (1 %) accounted for 5 % of the variation. These results are similar to alpha
diversity in that environment was a key contributor to observed patterns. Interestingly,
environmental contribution was similar to the amount contributed at MAI, however total
explained variance was lower due to the lower contribution of biotic influence at PHB.

A key finding in this study was that at NSI, biotic predictors played a much greater role in
defining beta diversity relative to the other two locations. Phytoplankton abundance was
found to be the most important factor contributing to bacterioplankton beta diversity variation
(R2 =(.21; Table 3; F=7.32, df =5, 41, p = 0.001). Biotic factors accounted for the largest
amount of partitioned variation at 15 % (Figure 4b; phytoplankton-bacteria: 6 %;
phytoplankton only: 5 %; bacteria only: 4 %) while environmental factors only accounted for
13 % of the variation. There was a large amount of variation accounted for due to
overlapping components, including phytoplankton-environment (11 %) and bacteria-
environment (2 %) (Figure 4b; green segment). Based on the high observed influence of
phytoplankton abundance at NSI and high overlapping variance between phytoplankton and
the environment, we posit that the environment may indirectly drive bacterioplankton beta
diversity through influencing the phytoplankton. These results are similar to those observed
for alpha diversity patterns, where biotic predictors were also the most important contributor.
Interestingly, the main biotic contributor varied across the two diversity measures, where
phytoplankton was the most importance for beta diversity while for alpha diversity, bacteria
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was the predominate drivers. Thus, trophic links are important to structuring bacterioplankton
diversity in a dynamic manor at NSI.

Together these results show that patterns of beta diversity are not shaped by environment
alone, but rather a combination of environment and potential biotic interactions and that the
relative importance of these can vary across locations. Interestingly, the importance of biotic
interactions negatively corresponded with beta-diversity, such that the total contribution by
biotic factors was greatest at NSI where beta-diversity was lowest, while PHB had the highest
beta diversity and was least influenced by biotic predictors. These results potentially signal a
stabilizing effect on the community against environmental fluctuation that biotic interactions
can promote [68]. Also, in contrast to predictions, the relative contribution of deterministic
processes did not entirely correspond with changes with environmental heterogeneity, as the
relative contribution of environmental factors were similar at MAI and PHB, however at NSI
where the lowest level of environmental heterogeneity occurred, biotic processes were the
predominate deterministic driver. Interestingly, biotic influence on bacterioplankton diversity
was found at all locations, suggesting previously overlooked factors driving temporal
succession of bacterioplankton.

Concluding remarks

Here, we demonstrate that temporal patterns in marine bacterioplankton diversity are
structured by different inherent deterministic processes according to location, which tracks
latitudinal differences that may be the result of variation in environmental heterogeneity. The
most ‘environmentally stable’ site, which was characterized by the least seasonality displayed
patterns in bacterioplankton alpha and beta diversity which were in contrasted to the site with
highest levels of seasonality in environmental conditions. Bacterioplankton diversity is the
consequence of multiple interacting processes including filtering by environmental factors
and biotic interactions [8, 69]. Partitioning the effects of environmental versus potential biotic
influence is an important distinction as ecological theory predicts ecosystem function is
linked to the processes that structure community diversity patterns [2, 70, 71]. Therefore, to
accurately forecast ecosystem function, it is necessary to 1) distinguish among processes that
give rise to bacterioplankton diversity and 2) identify how these processes change through
space and time. This is heightened as climatic conditions are changing rapidly which can alter
the balance between biotic and environmental deterministic processes [72]. However, until
now no framework has been applied to bacterioplankton to identify the importance of
potential biotic interactions relative to environmental factors driving total diversity patterns.
Patterns of seasonality for both alpha and beta diversity observed in our study are consistent
with diversity patterns from three well studied time-series, where the high latitude English
Channel exhibited the highest degree of seasonality in diversity patterns, the mid-latitude
SPOTS with intermediate diversity patterns and the low latitude HOTS with absent seasonal
diversity patterns [73]. Therefore, processes driving diversity patterns along the latitudinal
gradient may be general, and this study provides insight on potential drivers of this trend.
Importantly, results shed insight on why some studies have identified environmental factors
as having significant influence over bacterioplankton diversity [26], while others have
concluded biotic processes play a stronger role in driving bacterioplankton diversity patterns
[25, 69]. Predicting how biogeochemical processes will respond under future climate change
scenarios requires insight to the microbial composition present, and therefore microbial
diversity patterns.
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779

780  Figure and Table Captions

781  Figure 1: Map of sampling location. Inset figure shows the relative location of each reference
782  station to the Australian continent.

783  Figure 2: Environmental variability of each time-series. a) PCA biplot of first two

784  dimensions discriminating samples to demonstrate environmental heterogeneity and is based
785  on measured environmental variables. b) Distribution of environmental heterogeneity across
786  time-series. c) Heatmap visualizing the relative heterogeneity, measured as standard deviation
787  of environmental variables across time-series.

788  Figure 3: Patterns and drivers of alpha diversity across time-series. a) Scatterplot of alpha
789  diversity through time for each time-series. X-axis is time from the start of the time-series
790 and y-axis is effective diversity. Colors represent seasonal classification based on

791  astronomical calendar. b) Contribution of environmental variables and the biological metric
792  to explaining variation of alpha diversity through time at each time-series. The x axis displays
793  the three time-series, and the y axis is the adjusted R2 score. Blue is the adjusted R2 from a
794  multiple regression model of environmental variables only while red is the improved R2

795  when the biological metric is included in the model.

796  Figure 4: Beta diversity patterns and contribution of deterministic drivers. a) Time (in days)
797  between sampling points along X-axis and Bray-Curtis dissimilarity (BC) scores along the Y-
798 axis. BC =0, entirely the same; BC = 1 entirely different. Colors represent the category of
799  sample; blue = inter-seasonal (two samples from different seasons), red = intra-seasonal (two
800 samples from the same season). Dotted vertical line breaks spaced at 365 days to show length
801  of time series. b) Contribution of environmental and the biological metric to explaining

802  variation of beta diversity through time across each time-series. Colors correspond to the

803 amount of variation attributed to several ecological processes derived from variance

804  partitioning procedure.

805  Table 1: Summary of imputed environmental variables. N is the number of samples in each
806 time-series or the whole entire dataset. Min and max are the minimum and maximum

807  observed values in the dataset. Mixed layer depth is estimated thermocline based on Condie
808  and Dunn (2006).

809  Table 2: Linear model results for predictor variables that showed the best relationship with
810 patterns of bacteria alpha diversity through time. The full model is the results of all variables.
811 Individual variables are the result of step regression. The (+) and (-) indicate the direction of
812  relationship between variables and alpha diversity. The biological metric is the interspecific
813  interaction metric. The explained variation (Exp.var) is the result of partitioning the variable
814  sums of squares. DF = degrees of freedom; Sum Sq = Sums of square; Rel. Imp = Relative
815 importance based on CAR variance partitioning; Mean Sq = Means of the square.

816  Significance represented by bold font if p < 0.05.
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Table 3: Distance-based linear model results for predictor variables that showed the strongest
relationship to patterns of beta diversity through time. The biological metric is the
interspecific interaction metric. Phyto is in reference to the phytoplankton biological metric.
The full model informs on the global test for all selected variance and the step model shows
the results for individual chosen variables. All variables are the model results when all
variables are included. Df = degrees of freedom; SS = sums of squares; AIC = Aikaike
information criteria.

Supplemental Figure 1: Biotic interaction index diagram. Each dataset is comprised of
samples and corresponding ASVs as proportional abundance and standardized environmental
variables (A). One ASV is separated (response variable) from other ASVs and environmental
data (predictor variables) (B). Only ASV were included as response variables. A predictor by
response matrix is returned with the partial R2 contributed to each response ASV (C) and the
total R2 was calculated by summing partial R2 that were identified as significant (D). ASV’s
with a total R2 less than 0.3 were removed from each sample and the relative proportion of
each ASV was summed to get sample total (E). Random forest was run three times to obtain
the sample total across a Bacteria-Environment dataset, Phytoplankton-Environment dataset
and Environmental only dataset. Sample totals from biotic-environment (bacteria or
phytoplankton) and sample totals from Environmental were subtracted (F) to obtain Biotic
only dataset (Bacterial or Phytoplankton) indices (G).

Supplemental Figure 2: a) Temperature through time at each reference station. b) NOx
concentration through time at each reference station. ¢) Average Chl-a concentration for each
month for the three time-series.

Supplemental Figure 3: Alpha diversity plotted across each time-series. Boxplots represent
the distribution of effective diversity scores at each time-series. Line indicates median score
with either side representing the 2nd and 3rd quantile score distributions.

Supplemental Figure 4: a) The X-axis is the seasonal category, and the Y-axis is
distribution of BC dissimilarity scores (0 = completely dissimilar, 1 = highly similar).
Boxplot comparisons are partitioned into the three time-series. b) Boxplot of beta-diversity
variation at each site.
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Table 1: Summary of imputed environmental variables. N is the number of samples in each time-series or the whole entire dataset. Min and max
are the minimum and maximum observed values in the dataset. Mixed layer depth is estimated thermocline based on Condie and Dunn (2006).

North Stradbroke

Maria Island Port Hacking Island
(N=58) (N=52) (N=47)
Temperature (°C)
Mean (SD) 15.1 (2.14) 20.2 (2.07) 23.6 (2.03)
Median [Min, Max] 14.5711.9, 20.3] 20.1[16.8,24.5] 23.4[20.4, 27.6]
Missing 9 (15.5 %) 3 (5.8 %) 6 (12.8%)
Day length (hr)
Mean (SD) 11.7 (2.06) 11.9 (1.53) 11.8 (1.14)
Median [Min, Max] 11.59.04, 15.3] 11.8[9.89, 14.4] 11.5[10.4, 13.9]
Missing 0 (0%) 0 (0%) 0 (0%)
Salinity (PSU)
Mean (SD) 35.2(0.801) 35.5(0.193) 35.5(0.234)
Median [Min, Max] 35.3[29.3, 35.7] 35.5[34.7,35.7] 35.5[34.3, 35.8]
Missing 9 (15.5%) 3 (5.8%) 6 (12.8%)
Turbidity (NTU)
Mean (SD) 0.388 (0.214) 0.115 (0.0640) 0.131 (0.139)
Median [Min, Max]  0.285 [0.146, 1.10] 0'103.52'(%582’ 0'083)?7[85'?108’
Missing 9 (15.5%) 8(15.4%) 8 (17.0%)
Secchi disk depth (m)
Mean (SD) 16.5 (3.40) 15.2 (3.44) 20.0 (5.33)
Median [Min, Max] 16.519.00, 24.0] 16.0 [9.00, 24.0] 19.0[9.00, 34.0]
Missing 1(1.7%) 3(5.8%) 0(0%
Silicate (umol/L)
Mean (SD) 0.660 (0.487) 0.865 (0.749) 0.586 (0.414)
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Median [Min, Max]
Missing
NOx (umol/L)
Mean (SD)
Median [Min, Max]
Missing
Phosphate (umol/L)
Mean (SD)

Median [Min, Max]
Missing

Ammonium (umol/L)
Mean (SD)

Median [Min, Max]
Missing
Chl-a (mg/m’)
Mean (SD)
Median [Min, Max]
Missing
Mixed-layer depth (m)
Mean (SD)
Median [Min, Max]
Missing

0.600 [0, 2.00]
7(12.1%)

1.52 (1.42)
1.85 [0, 5.20]
7(12.1%)

0.216 (0.109)
0.210 [0.0200,
0.480]
7(12.1%)
0.164 (0.336)
0.0772 [0, 2.40]

7(12.1%)

0.572 (0.333)
0.526 [0, 1.62]
6(10.3%)

63.3 (20.6)
74.0 [21.0, 86.0]
8(13.8%)

0.800 [0, 3.90]
7(13.5%)

1.00 (1.33)
0.500 [0, 7.00]
8(15.4%)

0.174 (0.0975)
0.158 [0.0300,
0.650]
7(13.5%)

0.350 (0.412)
0.231 [0.0300,
2.24]
10(19.2%)

0.669 (0.298)

0.617 [0.201, 1.41]

14(26.9%)

32.0 (17.0)
27.3[11.0, 81.0]
4(7.7%)

0.500 [0, 2.10]
5(10.6%

0.0679 (0.125)
0 [0, 0.500]
5(10.6%)

0.0934 (0.0365)
0.0903 [0, 0.190]
5(10.6%)

0.293 (0.468)
0.125 [0, 2.60]
6(12.8%)

0.300 (0.111)
0.293 [0.0810,
0.637]
9(19.1%)

31.4(9.92)
31.0 [13.0, 57.0]
3(6.4%)
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Table 2: Linear model results for predictor variables that showed the best relationship with patterns of bacteria alpha diversity through time. The
full model is the results of all variables. Individual variables are the result of step regression. The (+) and (-) indicate the direction of relationship
between variables and alpha diversity. The biological metric is the interspecific interaction metric. The explained variation (Exp.var) is the result
of partitioning the variable sums of squares. DF = degrees of freedom; Sum Sq = Sums of square; Rel. Imp = Relative importance based on CAR
variance partitioning; Mean Sq = Means of the square. Significance represented by bold font if p < 0.05.

Full model Step Regression
Comparison Variables Df SumSq Rel. Imp Mean Sq F value Pr(>F)
Adj
Rstl 0.8 day length (-) 1 30020.9 0.61 30020.89 117.871  0.00
Maria F-stat 56.8 ammonium (-) 1 12203.7 0.10 12203.75  47.9157  0.00
Island P-value  <0.001 Chl-a (-) 1 15120.8 0.09 15120.81 59.369  0.00
DF1 4 turbidity (-) 1 546.075 0.01 546.07 2.14406  0.15
DF2 53 Residuals 53 13498.7 0.81 254.69
Adj.
Rsq 0.22 day length (-) 1 4874.45 0.12 4874.45 10.7948  0.00
F-stat  4.67552886 mixed-layer depth (+) 1 1825.19 0.10 1825.19 4.04201  0.05
Hei:cl)gtng P-value 0.003 silicate (+) 1 1742.86 0.04 1742.86 3.85967  0.06
DF1 4 temperature (+) 1 2.54951 0.03 2.55 0.00565 0.94
DF2 47 Residuals 47 21223.1 0.28 451.56
Adj.
North Rsq 0.4 biotic - bac (+) 1 4800.89 0.33 4800.89 23.6068  0.00
Stradbroke  F-stat  11.3996033 ammonium (-) 1 730.21 0.06 730.21 3.59056  0.01
Island P-value <0.001 Chl-a (-) 1 1423.87 0.05 1423.87 7.00143  0.08

DF1 3 Residuals 39 8744.87 0.44 203.36899
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Table 3: Distance-based linear model results for predictor variables that showed the strongest relationship to patterns of beta diversity through
time. The biological metric is the interspecific interaction metric. Phyto is in reference to the phytoplankton biological metric. The full model
informs on the global test for all selected variance and the step model shows the results for individual chosen variables. All variables are the
model results when all variables are included. Df = degrees of freedom; SS = sums of squares; AIC = Aikaike information criteria.

Full Model with selected variables Step model
DF SS F P(>F) terms R2.adj Df AIC F Pr..F.
Model 6 3346 11345  0.001 day length 0.20 1 140.11 1520 <0.001
Residual 51 2.507 temperature 0.33 1 13044 1225 <0.001
Maria biotic - bacteria 0.40 1 12550 6.87 <0.001
Island biotic - phyto 0.44 1 12240 487 <0.001
turbidity 0.46 1 12144 272 <0.001
secchi depth 0.47 1 121.30 1.92 <0.001
All variables 0.48
Model 7 2.93 6.8 0.001 day length 0.18 1 129.59 12.19 <0.001
Residual 44 2.7 temperature 0.32 1 121.10 1095 <0.001
biotic - phyto 0.35 1 11937 357 <0.001
Port biotic - bacteria 0.37 1 11836 2.80 0.002
Hacking secchi depth 039 1 117.61 250  0.002
salinity 0.40 1 117.46 1.90 0.020
NOx 0.42 1 11734 1.83 0.030
All variables 0.42
Model 5 1.47 7.32 0.001 biotic - phyto 0.21 I 90.62 13.03 <0.001
Residual 41 1.65 day length 0.29 1 86.69 5.92 <0.001
North biotic - bacteria 0.35 1 83.34 519  <0.001
Stradbroke
Island temperature 0.38 1 81.75 333  <0.001
silicate 0.40 1 81.36  2.14 <0.001
All variables 0.42
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