
Improving the RNA velocity approach using long-read single cell sequencing 
Chen Zhang1,*, Weitian Chen1,2,*, Yitong Fang1,*, Zhichao Chen1,*, Yeming Xie1, Wenfang 
Chen1, Zhe Xie1,3, Mei Guo1, Juan Wang1, Chen Tan1, Hongqi Wang1, and Chong Tang1 

 
1BGI Shenzhen, China, 518000 
2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 
100049, China 
3Department of Biology, Cell Biology and Physiology, University of Copenhagen 13, 
2100 Copenhagen, Denmark 
*These authors contributed equally to this work. 
 
Keywords: single-cell, ONT full-length sequencing, three-barcode technology, single cell 
maps, RNA velocity 
 
 

Correspondence:  

Chong Tang 

Director of Technology, BGI Shenzhen, China 

Phone: 8618025420976 

Email: tangchong@bgi.com  

 
Abstract 

The concept of RNA velocity has been recently developed that allowed to look 

at the otherwise static single-cell RNA sequencing data in a dynamic way, which 

permitted inferences about cell fates. However, the more precise parameters, 

such as the number of exons/introns, can also be determined using long-read 

methods. Comparing the numbers of exons and introns allows including more 

genes for downstream velocity analysis and resolves the precise cell fate. 
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The recently developed concept of “RNA velocity” concerns with dynamic 

changes in mRNA expression and complements single-cell RNA sequencing 

(scRNA-seq) data, which are static snapshots of a certain cell state taken at a 

given time point1. RNA velocity measures the change in mRNA abundance by 

differentiating the newly transcribed unspliced pre-mRNAs from mature spliced 

mRNAs. The rapidly developing long-read sequencing technology lends itself for 

RNA velocity analysis of scRNA-seq data, which was previously performed 

primarily using second-generation sequencing. 

 

Third-generation sequencing is limited by the low throughput and lack of 

accuracy. Our groups developed two high-throughput third-generation 

sequencing methods for different single cell platforms. The high-throughput 

single-cell full-length isoform sequencing method (HIT-scISOseq) ligated 

multiple reads (10X Genomics) into a single molecule, which quadrupled the 

throughput on the Pacific BioSciences (PacBio) platform2. In current research, 

we have developed a three-barcode technology, high-throughput single-cell Oxford 

Nanopore full-length RNA sequencing (HISOFA-seq), which is accessible to most 

researchers. The ultralong three barcode is discriminated by the nanopore 

technology with 70% de-barcoding efficiency, generating 70 million reads (BD 

Rhapsody) per lane (Extended Data Fig. 1).  

 

HIT-scISOseq/HISOFA-seq enables measurement of the key RNA velocity 

parameters, counts of unspliced and spliced mRNAs, which are mainly 
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determined by the presence or absence of introns3. Given that second-

generation sequencing has short read length, attributing all short reads without 

introns to spliced mRNA may be inaccurate. Although spliced and unspliced 

mRNA counts strongly correlate in both the second-generation (NGS) and third-

generation (PacBio) scRNA-seq data, the slopes of the relationships between 

spliced and unspliced counts significantly differed in these two datasets (Fig. 

1b). In the NGS data, the fraction of unspliced counts was 8.0%, whereas that 

in the PacBio data comprised 24.1% (Fig. 1b). The apparently underestimated 

ratio of unspliced counts may complicate RNA velocity analysis. We explored 

this hypothesis in the well characterized biological model of spermatogenic 

development4 (Extended Data Figs. 2, 3). The original framework of RNA velocity 

was applied to obtain the vector fields projected onto the t-distributed stochastic 

neighbor embedding (tSNE) plot with observed and extrapolated velocity values 

of sperm cells from the 10x scRNA-seq data and HIT-scISOseq data, 

respectively, which showed their differences in the tSNE dimension of cell 

clustering and cell fate indicated by vector fields (Fig. 1f; Extended Data Fig. 

4a). 

 

Besides spliced and unspliced counts, HIT-scISOseq/HISOFA-seq generate 

more detailed information, which can be used to further develop the RNA velocity 

concept. HIT-scISOseq/HISOFA-seq detects full-scale mRNAs (from nascent to 

degrading), the lengths of which are suitable for RNA velocity calculations. 

According to RNA velocity modeling dynamics, mRNA length also varies over 
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time in the process of transcription, splicing, and degradation. The vector fields 

projected onto the tSNE plot of the RNA velocity length model with mRNA length 

can be drawn, which is similar to the output of the original model using unspliced 

and spliced counts, except the vector fields are larger (Fig. 1f; Extended Data 

Fig. 4a, b). The similarity may be caused by the relatively low influence of mRNA 

length compared to that of RNA abundance. Both models did not produce expected 

sequence of spermiogenesis biological development. 

 

As HIT-scISOseq/HISOFA-seq generates a substantial amount of data, we 

extended the RNA velocity model from the original framework using more robust 

parameters. HIT-scISOseq/HISOFA-seq also determines the numbers of introns 

and exons of each gene or isoform, which can substitute the spliced/unspliced 

counts and generate a more precise steady-state model, as a wide range of 

intron counts might produce different velocity estimates, whereas unspliced 

counts attribute genes with a different number of introns to the same unspliced 

count (Extended Data Fig. 5a, b). During transcription, the numbers of both 

introns and exons in nascent mRNA increase, whereas splicing and degradation 

decrease the numbers of introns and exons, respectively (Fig. 1a). Therefore, 

the determination model of this basic kinetic reaction is described as follows for 

each gene independently: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜃𝜃𝜃𝜃 − 𝛽𝛽𝛽𝛽(𝑡𝑡), 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝜃𝜃)𝛼𝛼 − 𝛾𝛾𝛾𝛾(𝑡𝑡), 
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where θ is the proportion of introns in the transcription process; e and i are the 

numbers of exons and introns; 𝛽𝛽 and 𝛾𝛾 are the splicing and degradation rates. As the 

state of the cell in the whole process is deduced by the time derivatives of the 

numbers of intragenic and transcribed regions, we termed this state change 

process as “Region Velocity”. 

 

Region velocity is primarily observed through the spindle-shaped relationship 

between the number of exons and introns in different genes, representing a 

steady-state model of the original RNA velocity parameter, and their correlation 

level varies in different genes3. Data simulation showed that the levels of introns 

above or below the identity line may indicate the active state of transcription or 

splicing and degradation, respectively (Fig. 1c). To infer the unknown 

parameters (α, β, γ, and θ), we built a basic steady-state model and exploited 

the accurate inference by the dynamic model (see online Methods). Compared 

to RNA velocity, region velocity is more stable and better suited for steady-state 

modeling. Mathematically, the higher correlation between spliced/exon counts 

and unspliced/intron counts in different cells means shorter distance to the 

steady-state line (fitted line), indicating more reasonable projection of cells to 

the state of the next time point obtained using steady-state model parameters. 

The coefficients of correlation between unspliced and spliced counts in different 

cells were much lower than those of intron/exon counts, and 55.9% of genes had 

the intron/exon correlation coefficient >0.4 (Fig. 1d, e). Comparing the numbers 

of exons and introns allowed including more genes for downstream velocity 
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analysis, as abundant zero values of spliced counts prevented calculation of 

their correlation with unspliced counts (Extended Data Fig. 5c, d). The dynamic 

model of RNA velocity using the expectation–maximization (EM) algorithm was 

designed to optimize steady-state modeling, because some genes have a short 

steady-state stage5. However, as more genes closer to the steady-state 

condition could be observed using region velocity calculation from exon and 

intron counts, the EM algorithm was not as fundamental for region velocity as 

for RNA velocity (Extended Data Fig. 6). In contrast, a steady-state model of 

region velocity had a satisfactory performance. Figure 1f shows vector fields 

projected onto the tSNE embedding plot of the steady-state model of the HIT-

scISOseq data from sperm cells. Compared to RNA velocity calculations based 

on mRNA abundance or length, the direction of flow of region velocity was more 

aligned with expected spermatogenic waves: a streamlined flow from 

spermatocytes to elongating spermatids was evident4. As could be inferred from 

the length of the velocity field, RNA velocity accelerated at the beginning and 

decelerated at the end of the process of transformation of spermatocytes into 

round spermatids. This is consistent with increased RNA transcription at the 

beginning and during long periods of the two-step meiosis4. In spermatids cluster, 

the speed was increased at the round stage and decreased between the round 

stage and the start of elongation, suggesting that the elongation period lasted 

longer. Therefore, region velocity calculations indicated that meiosis and 

elongation are the speed bottlenecks of spermatogenesis, and their effects were 

similar based on the size of velocity field lengths. In addition, HIT-scISOseq data 
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from the injured corneal epitheliums of cynomolgus monkeys were also analyzed 

using region velocity (Extended Data Fig. 8). Vector fields projected onto UMAP 

embedding plot for this dataset are illustrated in Fig. 1g. The direction flows of 

RNA velocity and region velocity both demonstrated transformation of limbal 

stem cells (LSCs) into terminally differentiated cells, including corneal epithelial 

and stroma cells6. However, region velocity identified LSCs as the differentiation 

center more precisely than RNA velocity. The arrows in the center of LSCs were 

clearly directed to the periphery, from a point to circles. Additionally, RNA 

velocity indicated conjunctival epithelium and corneal epithelial cells as origin, 

which contradicted known biological characteristics (Fig. 1g). Therefore, region 

velocity had better performance than RNA velocity in the monkey limbal wound 

model.  

 

The third-generation HISOFA-seq platform is based on nanopore sequencing, 

whereas HIT-scISOseq uses PacBio sequencing. Region velocity is more 

applicable to HISOFA-seq data than RNA velocity. As nanopore sequencing has 

a higher error rate, gene counts obtained after isoform clustering yielded better 

performance for region velocity calculations than original gene counts. The 

vector fields projected onto the tSNE embedding plot indicated a consistent 

streamlined flow of spermatogenic waves in region velocity (Extended Data Fig. 

7). 
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Therefore, region velocity is a multi-platform and multi-model parameter to 

project cell state, which is based on long-read scRNA-seq. In the future, HIT-

scISOseq/HISOFA-seq may provide more data to discover new kinetic models of RNA 

dynamics, enabling better cell fate prediction for various species and different cell types. 
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Method 

The experimental protocols (HISOFA-seq) could be found on 

https://www.protocols.io/private/CE43BD78C53111EC97780A58A9FEAC02.  The HIT-

scISOseq protocol could be found on 

https://www.protocols.io/private/7472E845C45C11EC97780A58A9FEAC02. 

The bioinformatic script could be found on 

https://www.protocols.io/private/17764990CA1611EC89580A58A9FEAC02 and 

available data could be found on 

https://github.com/Dekayzc/Regionvelocity/tree/main/data.  

 

Demultiplexing barcodes 

Reference construction 

BD cell label is roughly composed of five sections, including three separated barcodes of 

9bp and two known linkers. Each barcode is randomly selected from a pool of 96 pre-

defined sequences which allowed us labeling up to 963 cells. The minimum Hamming 

distance of three barcodes was 4 bp and the mean distance was 6.6 bp. If taking insertion, 

deletion and substitution events into account, their minimum Levenshtein distance was 2 

bp and the mean was 5.7 bp. In comparison to 10X barcode, BD barcode takes the 

advantage of its longer design and therefore has a greater edit distance.  

We constructed the cell label reference by generating 963 combinations of 9bp barcodes 

joined by two known linker sequences, so at this stage, the reference should begin with 

the first barcode and end with the third barcode. However, problems would arise with this 

type of reference because its flanking regions of may be clipped off during alignment. In 
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order to avoid this happening, we elongated the reference with more sequences to act as 

the anchor, including binding site, UMI and oligo-dTs. Therefore, the final version of 

reference had a length of 98 bases, and we added more Ns to both ends to ensure the 

reference is longer than reads. 

 

First round of demultiplexing 

We took a subset of sequencing data and had a rough inspection of the library. Based on 

the positions of oligo dT, around 47% of the reads were classified as forward strands and 

40% reads were reverse strands. Nearly 60% reads could be fully aligned to 5’ and 3’ 

binding site, indicating most of the reads possessed a complete library structure.  

 

In order to find the most appropriate method to assign barcodes, we examined the 

performance of various aligners including minimap2, bwa-mem, bowtie2 and BLASTN. 

Although minimap2 was usually recommended for long read alignment, only less than 25% 

reads could be successfully demultiplexed. Similarly, many reads with the correct cell 

label were either wrongly assigned or unmapped in bwa-mem algorithm. As such, they 

were less recommended to use in this case where the length of query sequence was 

much longer than the reference. In comparison, the local alignment mode of bowtie2 and 

BLASTN outperformed other tools by having a mapping rate of 57.87% and 76.92%, 

respectively. BLASTN alignment generated less gaps, mismatches and had a longer 

mean aligned length than bowtie2, suggesting a better accuracy. However, bowtie2 was 

superior due to its ultrafast and memory-saving features. The speed of demultiplexing 

was further boosted when the read was trimmed into 300bp based on theoretical positions 
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of barcodes. For example, bowtie2 and BLASTN could demultiplex 400,000 and 4,000 

reads respectively under the same clock time. All these results suggested that bowtie2 

was much more efficient than BLASTN in this case, thus the local alignment mode of 

bowtie2 became the optimal choice for the first round of demultiplexing.   

 

Validation and optimization of the first round of demultiplexing 

Our demultiplexing strategy was further validated using simulated data, which was 

created for the purpose of mimicking the real condition by introducing sequencing errors 

and PCR errors [1]. As table xxx shows, the true positive rate (TPR), false positive rate 

(FPR) and false negative rate (FNR) of BLASTN were 72.5%, 6.4% and 21.1%, 

respectively. The high precision value (0.919) also indicated the result was reliable 

enough for downstream analysis. In comparison, bowtie2 had a much worse precision of 

0.719 due to its high FPR (27.9%), which would affect the accuracy of our demultiplexing 

result and subsequent analyses. Therefore, we carried out more attempts on improving 

and optimizing on bowtie2 parameters in order to reduce its false positive to the minimal 

level. The optimized alignment had a TPR of 70.7% and its FPR was dramatically reduced 

to 2.4%, which was even lower than BLASTN. Due to its high TPR and low FPR, bowtie2 

with optimized parameters turned out to be the best strategy for the first round of 

demultiplexing. 

 

Second round of demultiplexing (Optional) 

During the first round of demultiplexing, the procedure of trimming the reads into 300bp 

was strict and harsh, and those reads with barcode outside the proposed positions might 
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be lost. In addition, it could not tolerate the cases when three barcodes were linked by 

defective linkers. Therefore, it was necessary to rescue those reads with another round 

of demultiplexing.  

 

In contrast to the previous step where reads were aligned to the cell label, we did not use 

cell label as the reference for the second step. Three barcodes were individually aligned 

to the reference, which was constructed by all unassigned reads from the first round of 

demultiplexing. If a read was aligned to all three barcodes and they were separated by 

an interval of similar length to the linker sequence, it will be assigned to the corresponding 

cell label. Using the test dataset, this procedure could further rescue 13.7% reads, which 

increased the demultiplexing rate from 57.87% into 71.58%. All unmapped reads will be 

discarded for downstream analysis.  

 

Single-cell short read analysis 

single-cell expression matrix was generated by standard 10X Genomics CellRanger 

pipeline (version 3.1.0). 

 

Single-cell long read analysis 

Pacbio Single-cell isoform sequencing analysis 

Generation of Circular Consensus Sequencing Reads, generation of Single Cell Full-

Length Non-Concatemer (FLNC) Reads, genome alignment of FLNC reads, Cell Barcode 

correction and UMI correction, collapsing redundant isoforms, were performed according 

to HIT-scISOseq (Zheng et al., 2020). 
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Nanopore Single-cell isoform sequencing analysis 

Genome alignment 

 

The Full length of reads from the previous steps are mapped to a supplied reference 

genome（GCF_000364345.1_Macaca_fascicularis_5.0, mm10 (GENCODE 

vM23/Ensembl 98)）using minimap2（v2.17-r954-dirty）(H. Li, 2018) with the following 

parameters: -ax splice -uf --secondary=no -C5. samtools (v1.9) (Heng Li et al., 2009) was 

used to compress sam files into bam, sort and index.  

 

Generate gene-barcode matrix 

spliced_bam2gff (https://github.com/nanoporetech/spliced_bam2gff) with default 

parameter was used to convert spliced bam alignments into GFF2 format, The GFF2 file 

was then compared with the reference comments using the gffCompare(v0.11.6) (Pertea 

& Pertea, 2020) tool. Besides the exon related class code :" = c k m n j e o ", intron related 

class_code “i,y” was selected for further analysis. Then gene-barcode matrix was 

generated by Barcode file, UMI file read and gene mapping file through our custom script. 

Collapsing redundant isoforms 

 

We used cDNA_Cupcake python scripts (https://github.com/Magdoll/cDNA_Cupcake) 

python script collapse_isoforms_by_sam.py to collapse redundant isoforms, the 

parameters were set: as -c 0.95 -i 0.95 --max_fuzzy_junction 5 --max_5_diff 1000 --

max_3_diff 30. 
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Generate exon and intron matrices 

In order to know whether reads are from spliced transcripts or unspliced transcripts, we 

need to see if reads contain intronic sequences. 

 

For short reads RNA single cell sequencing, exon and intron count matrices were 

peformed by velocyto (v0.6) (La Manno et al., 2018). 

 

For long reads RNA single cell sequencing, the known genomic exon and intron 

coordinates were extracted from the GTF annotation file, and the overlapping coordinates 

of exon and intron coordinates were merged using BedTools merge respectively. Then 

we extracted the coordinates of splice alignment of observation data and compared them 

with known exon and intron annotation through BedTools intersect. Some researchers 

believe that the intron length is greater than 50bp (Piovesan et al., 2015), while others 

believe that the minimum intron length is 20bp (Jon et al., 2008). Therefore, an 

intersection with known intron with a length greater than 20bp was considered as an intron, 

where the count of intron with the length of 20bp-50bp accounts for only 0.5% of the 

known genomic intron annotation file. 

 

Generate spliced and unspliced matrices 

A long read with intronic sequences were considered as unspliced transcripts and cell-

gene-unspliced/unspliced matrices was generated by our custom python script. 

cell-calling using gene-barcode matrix 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2022.05.02.490352doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.02.490352
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

R package Matrix （v1.4） was used to load data as sparse Matrix，and barcodeRanks 

from DropletUtils(v1.2.2) (Lun et al., 2019) was used to calculate the Inflection and Knee 

of barcode rank and UMI distribution plot. And then the identification of cells from empty 

droplets was performed by emptyDrops function (Lun et al., 2019) ，threshold of gene 

counts （less than 20）for barcodes were specified as background. FDR （0.01）for 

testing whether a barcode is a empty cell.  

 

Cells calling according to the number of UMIs associated with each barcode performed 

by defaultDrops function (Lun et al., 2019). Finally, Estimated Number of Cells, Total 

Genes Detected, Mean Genes per Cell, Median Genes per Cell, Mean UMI Counts per 

Cell, Median UMI Counts per Cell, Mean Reads per Cell, Median Reads per Cell and 

Fraction Reads in Cells, as implemented in CellRanger, were calculated by customed R 

script. 

 

In addition, the h5 could be reanalyzed by Cellranger by handing the output of droputils  

 

Processing scRNA-seq data for velocity analysis 

Expression matrices generated above were imported to Seurat 4.1.0(Hao et al., 2021) or 

MUDAN 0.1.0(Purroy et al., 2018), which were first log normalized and scaled. The 

number of principal component analysis (PCA) was mainly determined by the elbow 

graph, which guided the unsupervised clustering. The number of clusters were 

determined by multi-resolution through clustree 0.4.4(Zappia & Oshlack, 2018). The 
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clustering results were mainly displayed and analyzed by tSNE and UMAP. Cell 

populations were mainly determined by marker genes (Spermary cells see supplementary 

note table S1, limbal cells see supplementary table S2). 

 

Theory of Region velocity and length velocity 

The model is shown in Fig. 1a. The theory of length velocity is almost the same as RNA 

velocity and the theory of Region velocity is inspired and inferred by RNA velocity. Region 

velocity includes steady-state model and dynamical model using EM algorithm. The 

detailed inference and computational framework are elaborated in supplementary notes. 

Simulation of exons and introns using Region velocity is completed by computation 

framework of EM algorithm excluded iteration step (step 4 in supplementary notes) to 

solve the switch time from transcription process to splicing and degradation process. With 

switch time, equation 11 and 12 in supplementary notes using parameters from steady-

state model are used to simulate the expected exons and introns counts.  

 

Velocity analysis pipeline 

RNA velocity is implemented in R package (velocyto.R)(La Manno et al., 2018) of original 

framework. All greedy balanced KNN algorithm in two samples used the default 

parameters. The velocity is estimated using gene.relative.velocity.estimates function with 

parameters ‘fit.quantile = 0.05, min.nmat.emat.correlation = 0.2, min.nmat.emat.slope = 

0.2, kCells = 10’ from expression matrices of unspliced and spliced counts. The projection 

plot is drawn using show.velocity.on.embedding.cor function with parameters 

‘show.grid.flow = TRUE’. Pipeline of length velocity is similar as that of RNA velocity 
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except the input matrices from total length of unspliced and spliced mRNA. Region 

velocity is implemented in new R package – Regionvelocity 

(https://github.com/Dekayzc/Regionvelocity) which contained steady state model and 

dynamics model from matrices of exons and introns counts. Detailed pipelines can be 

found in protocol.io.  
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Figure 1. Principles and performance of Region velocity. (a) The change of exons and 
introns in the model of RNA transcription dynamics, capturing ratio of introns (θ), 
transcription (α), splicing (β)， degradation (γ) rates. (b) The difference of spliced 
counts and unspliced counts between NGS and Pacbio data including their distribution 
and ratio. Blue indicates Pacbio data while red indicates NGS data. The histogram is 
the ratio of introns in NGS and PB data. (c) The simulation of exons and introns using 
Region velocity. The time of exons and introns of simulation is predicted from 0 to four 
times of transcription change time (ts) using parameters from Region velocity. The 
exons and introns are determined by the analytical formula in which the parameters are 
obtained from steady state models. Each point means each cell. Blue indicates cells are 
in transcription process and red indicates cells are in splicing or degradation process. 
(d) The difference of correlation between exons : introns and spliced counts : unspliced 
counts. Blue indicates the correlation between exons and introns while red indicates the 
correlation between spliced counts and unspliced counts. The lines were drawn based 
on the order of correlation values from highest to lowest. (e) The specific genes further 
demonstrated the difference in figure 1d. Three genes in the left represented three 
quantile of their correlation values of exons and introns and in the right the 
corresponding genes of unspliced counts and spliced counts are chosen. (f) Velocity 
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filed projected onto tSNE plot of RNA velocity and Region velocity from full-scale scRNA 
data of mouse spermary cells (n=3,001 cells) using HIT-scISOseq. Arrows means the 
average speed on a defined grid (number of grids=20). Blue points represent 
spermatocytes, green points represent round spermatids and red points represent 
elongating spermatids (Cell population shown in Extended Data Fig. 3). (g) Velocity filed 
projected onto tSNE plot of RNA velocity and Region velocity from full-scale scRNA 
data of cynomolgus monkeys’ limbal cells (n=1,417 cells) using HIT-scISOseq. Cell 
population, CEC, Corneal epithelial cells; LPC, Limbal progenitor cells; CjE, 
Conjunctival epithelium; LSC, Limbal stem cells; CSC, Corneal stromal cells; TAC, 
Transient amplifying cells; Immune, T cells or immune cells. See also Extended Data 
Fig. 8.  
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Extended Data Fig.1 The principle of the HIT-scisoseq and HISOFA-seq. (a) In our 
previous research 1, we developed the first 20million reads full-length single cell 
platform HIT-scisoseq, by using the 10x Genomics Chromium Controller 
(10xGCC) and Pacbio sequel II. The cells were captured in droplets 1 and 
labeled by the 1million GEMs (Gel Bead-In EMulsions) with 9bp barcode 
sequence. Then the reverse transcription tagged the other adaptor on the 5’ end 
by the template switching activity. PCR amplification incorporated the specific 
uracil containing primers. The sticky end PCR fragments, generated by USER, 
were linked together as the head-to-tail ligation. The head-to-tail ligation 
produced 5-4 fold (16million) than the conventional Pacbio sequel II (4million). 
The more details could be found on our previous research1. In this research, we 
planned to take advantage of the nanopore high-throughput sequencing to 
generate the 100 million cDNA reads at low cost. We developed another 
customer accessible platform HISOFA-seq, combining the BD Rhapsody system 
and the nanopore sequencing. The single cells were captured in microarray and 
labeled by beads with 52bp mega barcodes, the large Levenshtein distance 
among which literately could compensate for the accuracy deficiency (70%~90% 
accuracy) of nanopore sequencing. In the following reverse transcription, our 
previous HIT-scISOseq and other researches2-5 tagged the same sequence on 
the 5’ end, inhibiting the dimmer/short fragments (<500bp) amplification with the 
stem-loop structure(b).(c) To sequence the full-scale RNAs (nascent, stable, 
short degrading RNAs) and avoid the dimmer amplification, we used the 
exonuclease I (ExoI) to remove excess primers on beads after reverse 
transcription and then tagged the other 5’ adaptor on recycled beads. The PCR 
efficiently amplified the full-scale cDNAs, offering the holographic view of the 
natural transcriptomic landscape. (d) Schematic representation of the barcode 
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demultiplexing process. A two-step pipeline was designed for BD barcodes 
sequenced with Oxford Nanopore platform. The first step is done by aligning 
reads to the BD cell label whitelist. The result was then validated by the presence 
of oligo dT in forward aligned reads and oligo dA in reverse aligned reads. Any 
unaligned reads were collected and aligned to three barcodes separately. Only 
reads aligned to all three barcodes were regarded as successfully recovered 
reads(2ND round is optional for many users). (e) The density plot of BD barcode and 
10X barcode edit distances. BD_barocode (HSOFA-seq) have 2x larger distance 
than the 10x barcode system. (f) Performance of the first round of demultiplexing 
with different algorithms. HISOFA-seq were based on the bt2_optimized 
algorithm, which have the comparable specificity and sensitivity with blastn. (g) 
Simulated data showing the percentage of demultiplexed reads while increasing 
sequencing error rate. 10,000 reads with a variety of error rates were simulated 
with ART software followed by out demultiplexing pipeline. Percentage of 
recovered breads were calculated for different error rates. (h) Dot plot of human-
mouse collision. A mixture of human and mouse cells was used to estimate 
barcode collision. 
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Extend Data Fig.2 The performance of HISOFA-seq from mouse spermary cells. (a) 
Elbow plot to determine cell numbers. (b) The density of gene numbers and gene 
counts in each cell. Percent.mt represents the percentage of mitochondrial genes. (c) 
Cell clusters onto UMAP plot. (n=3,001 cells). (d) Dot plot of marker genes-Piwil1 
(spermatocytes), Tex21 (round spermatids), Tnp1 (elongating spermatids), Cldn11 
(Sertoli cells) and Fabp3 (Leydig cells). (e) Feature plots onto UMAP of marker genes.  
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Supplementary figure 3. The performance of HIT-scISOseq from mouse spermary cells. 
(a) Elbow plot to determine cell numbers. (b) The density of gene numbers and gene 
counts in each cell. Percent.mt represents the percentage of mitochondrial genes. (c) 
Cell clusters onto UMAP plot. (n=3,001 cells). (d) Dot plot of marker genes- Dmrt1 
(spermatogonia), Piwil1 (spermatocytes), Tex21 (round spermatids), Tnp1 (elongating 
spermatids), Cldn11 (Sertoli cells) and Fabp3 (Leydig cells). (e) Feature plots onto 
UMAP of marker genes.  
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Extended Data Fig.4. Velocity filed projected onto tSNE plot of RNA velocity and length 
velocity from scRNA data of the same mouse spermary cells (n=3,001 cells) using (a) 
10x NGS. Arrows means the average speed on a defined grid (number of grids=20). 
Blue points represent spermatocytes, green points represent round spermatids and red 
points represent elongating spermatids. Cell populations are also determined by same 
marker genes as Extended Data Fig. 3. (b) HIT-scISOseq. The length for one gene in a 
cell is calculated as total length of all counts of a gene which are divided to spliced 
counts and unspliced counts in advance.  
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Extend Data Fig.5 Relationship among introns, unspliced counts, exons and spliced 
counts. (a) The correlation between Exons and spliced counts. (b) The correlation 
between introns and unspliced counts. (c) The distribution of introns corresponding to 
their speed of introns change. The speed above 0 means increased trend of introns and 
below 0 means decreased trend of introns. (d) Comparison between correlation of 
unspliced counts and spliced counts and that of introns and exons. Top left insert is 
Venn plot of two correlation profiles. Top right insert is the scatter plot of a specific gene 
in different cells existed in both correlation profiles. Bottom left insert is the scatter plot 
of all gene in different cells only existed in correlation of exons and introns.  
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Extended Data Fig.6 Velocity filed projected onto tSNE plot of Region velocity with 
dynamics model (EM algorithm) from full-scale scRNA data of the mouse spermary cells 
(n=3,001 cells) using (a) HIT-scISOseq in gene level. Arrows means the average speed 
on a defined grid (number of grids=20). Blue points represent spermatocytes, green 
points represent round spermatids and red points represent elongating spermatids. Cell 
populations are identified with marker genes (Extended Data Fig. 3). (b) HIT-scISOseq 
in isoform level in which reads are clustered to isoforms. (c) HISOFA-seq in gene level. 
Cell populations are identified with same marker genes (Extended Data Fig. 2). (d) 
HISOFA-seq in isoform level.  
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Extended Data Fig. 7 Velocity filed projected onto tSNE plot from full-scale scRNA data 
of the mouse spermary cells (n=3,001 cells) using HISOFA-seq with (a) RNA velocity 
model in gene level using spliced counts and unspliced counts as observations. Arrows 
means the average speed on a defined grid (number of grids=20). Gene level means 
the gene counts are determined by original alignment to reference without isoform 
calling. Blue points represent spermatocytes, green points represent round spermatids 
and red points represent elongating spermatids. Cell populations are identified with 
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marker genes (Extended Data Fig. 2). (b) Region velocity model in gene level using 
exons and introns as observations. (c) RNA velocity model in isoform level in which 
reads are clustered to isoforms. The isoform clustering method might reduce the 
influcence of error rate of ONT sequencing. The gene counts are determined by the 
sum of all isoforms belonged to the gene. The main difference between gene level and 
isoform levels are the difference of gene counts method. (d) Region velocity model in 
isoform level.  
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Extended Data Fig. 8 Identification of cell population for cynomolgus monkeys’ limbal 
cells (n=1,417 cells) using HIT-scISOseq. (a) Heatmap of marker genes including 
KRT24, KRT12, PPP1R3C (Corneal epithelial cells), CDH13, S100A2 (Limbal 
progenitor cells), KRT13 (Conjunctival epithelium), DCN, KERA, LUM (Corneal stromal 
cells), KRT15, CD63 (Limbal stem cells), BIRC5, RRM2 (Amplifying cells), CCL3 
(Immune cells). Cluster 0,5 expressed high in gene KRT24, KRT12, PPP1R3C, 
indicating them as corneal epithelial cells. Cluster 1,4 expressed high in gene CDH13, 
S100A2, indicating them as limbal progenitor cells. Cluster 2,3 expressed high in gene 
KRT13, indicating them as conjunctival epithelium. Cluster 6 expressed high in gene 
DCN, KERA, LUM, indicating it as corneal stromal cells. Cluster 7,8 expressed high in 
serveral limbal cells related genes including KRT15, CD63, indicating their potential as 
stem cells. Cluster 9 expressed high in limbal cells related gene especially related with 
limbal progenitor and limbal stem cells. However, cluster 9 showed a high expression in 
gene BIRC5, RRM2, indicating amplification process existed in cluster 9. Therefore, 
cluster 9 showed potential as transient amplifying cells. Cluster 10 expressed high in 
gene CCL3, indicating it as immune cells. (b) Distribution of clusters in UMAP plot. (c) 
Dot plot of marker genes.  
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