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Abstract

The concept of RNA velocity has been recently developed that allowed to look
at the otherwise static single-cell RNA sequencing data in a dynamic way, which
permitted inferences about cell fates. However, the more precise parameters,
such as the number of exons/introns, can also be determined using long-read
methods. Comparing the numbers of exons and introns allows including more

genes for downstream velocity analysis and resolves the precise cell fate.
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The recently developed concept of “RNA velocity” concerns with dynamic
changes in mMRNA expression and complements single-cell RNA sequencing
(scRNA-seq) data, which are static snapshots of a certain cell state taken at a
given time pointl. RNA velocity measures the change in mRNA abundance by
differentiating the newly transcribed unspliced pre-mRNAs from mature spliced
MRNAs. The rapidly developing long-read sequencing technology lends itself for
RNA velocity analysis of scRNA-seq data, which was previously performed

primarily using second-generation sequencing.

Third-generation sequencing is limited by the low throughput and lack of
accuracy. Our groups developed two high-throughput third-generation
sequencing methods for different single cell platforms. The high-throughput
single-cell full-length isoform sequencing method (HIT-scIlSOseq) ligated
multiple reads (10X Genomics) into a single molecule, which quadrupled the
throughput on the Pacific BioSciences (PacBio) platform?. In current research,
we have developed a three-barcode technology, high-throughput single-cell Oxford
Nanopore full-length RNA sequencing (HISOFA-seq), which is accessible to most
researchers. The ultralong three barcode is discriminated by the nanopore
technology with 70% de-barcoding efficiency, generating 70 million reads (BD

Rhapsody) per lane (Extended Data Fig. 1).

HIT-scISOseq/HISOFA-seq enables measurement of the key RNA velocity

parameters, counts of unspliced and spliced mRNAs, which are mainly
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determined by the presence or absence of introns3. Given that second-
generation sequencing has short read length, attributing all short reads without
introns to spliced mRNA may be inaccurate. Although spliced and unspliced
MRNA counts strongly correlate in both the second-generation (NGS) and third-
generation (PacBio) scRNA-seq data, the slopes of the relationships between
spliced and unspliced counts significantly differed in these two datasets (Fig.
1b). In the NGS data, the fraction of unspliced counts was 8.0%, whereas that
in the PacBio data comprised 24.1% (Fig. 1b). The apparently underestimated
ratio of unspliced counts may complicate RNA velocity analysis. We explored
this hypothesis in the well characterized biological model of spermatogenic
development* (Extended Data Figs. 2, 3). The original framework of RNA velocity
was applied to obtain the vector fields projected onto the t-distributed stochastic
neighbor embedding (tSNE) plot with observed and extrapolated velocity values
of sperm cells from the 10x scRNA-seq data and HIT-sclSOseq data,
respectively, which showed their differences in the tSNE dimension of cell
clustering and cell fate indicated by vector fields (Fig. 1f; Extended Data Fig.

4a).

Besides spliced and unspliced counts, HIT-scISOseq/HISOFA-seq generate
more detailed information, which can be used to further develop the RNA velocity
concept. HIT-scISOseq/HISOFA-seq detects full-scale mRNAs (from nascent to
degrading), the lengths of which are suitable for RNA velocity calculations.

According to RNA velocity modeling dynamics, mRNA length also varies over
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time in the process of transcription, splicing, and degradation. The vector fields
projected onto the tSNE plot of the RNA velocity length model with mRNA length
can be drawn, which is similar to the output of the original model using unspliced
and spliced counts, except the vector fields are larger (Fig. 1f; Extended Data
Fig. 4a, b). The similarity may be caused by the relatively low influence of mMRNA
length compared to that of RNA abundance. Both models did not produce expected

sequence of spermiogenesis biological development.

As HIT-sclSOseq/HISOFA-seq generates a substantial amount of data, we
extended the RNA velocity model from the original framework using more robust
parameters. HIT-scISOseq/HISOFA-seq also determines the numbers of introns
and exons of each gene or isoform, which can substitute the spliced/unspliced
counts and generate a more precise steady-state model, as a wide range of
intron counts might produce different velocity estimates, whereas unspliced
counts attribute genes with a different number of introns to the same unspliced
count (Extended Data Fig. 5a, b). During transcription, the numbers of both
introns and exons in nascent mMRNA increase, whereas splicing and degradation
decrease the numbers of introns and exons, respectively (Fig. 1a). Therefore,
the determination model of this basic kinetic reaction is described as follows for
each gene independently:
di

dt
de

dt

= Oa — Bi(t),

=1 —-8)a—vye®),
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where 6 is the proportion of introns in the transcription process; e and i are the
numbers of exons and introns; g and y are the splicing and degradation rates. As the
state of the cell in the whole process is deduced by the time derivatives of the
numbers of intragenic and transcribed regions, we termed this state change

process as “Region Velocity”.

Region velocity is primarily observed through the spindle-shaped relationship
between the number of exons and introns in different genes, representing a
steady-state model of the original RNA velocity parameter, and their correlation
level varies in different genes3. Data simulation showed that the levels of introns
above or below the identity line may indicate the active state of transcription or
splicing and degradation, respectively (Fig. 1c). To infer the unknown
parameters (a, B, y, and 6), we built a basic steady-state model and exploited
the accurate inference by the dynamic model (see online Methods). Compared
to RNA velocity, region velocity is more stable and better suited for steady-state
modeling. Mathematically, the higher correlation between spliced/exon counts
and unspliced/intron counts in different cells means shorter distance to the
steady-state line (fitted line), indicating more reasonable projection of cells to
the state of the next time point obtained using steady-state model parameters.
The coefficients of correlation between unspliced and spliced counts in different
cells were much lower than those of intron/exon counts, and 55.9% of genes had
the intron/exon correlation coefficient >0.4 (Fig. 1d, e). Comparing the numbers

of exons and introns allowed including more genes for downstream velocity
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analysis, as abundant zero values of spliced counts prevented calculation of
their correlation with unspliced counts (Extended Data Fig. 5c, d). The dynamic
model of RNA velocity using the expectation—maximization (EM) algorithm was
designed to optimize steady-state modeling, because some genes have a short
steady-state stage®. However, as more genes closer to the steady-state
condition could be observed using region velocity calculation from exon and
intron counts, the EM algorithm was not as fundamental for region velocity as
for RNA velocity (Extended Data Fig. 6). In contrast, a steady-state model of
region velocity had a satisfactory performance. Figure 1f shows vector fields
projected onto the tSNE embedding plot of the steady-state model of the HIT-
sclSOseq data from sperm cells. Compared to RNA velocity calculations based
on mMRNA abundance or length, the direction of flow of region velocity was more
aligned with expected spermatogenic waves: a streamlined flow from
spermatocytes to elongating spermatids was evident*. As could be inferred from
the length of the velocity field, RNA velocity accelerated at the beginning and
decelerated at the end of the process of transformation of spermatocytes into
round spermatids. This is consistent with increased RNA transcription at the
beginning and during long periods of the two-step meiosis*. In spermatids cluster,
the speed was increased at the round stage and decreased between the round
stage and the start of elongation, suggesting that the elongation period lasted
longer. Therefore, region velocity calculations indicated that meiosis and
elongation are the speed bottlenecks of spermatogenesis, and their effects were

similar based on the size of velocity field lengths. In addition, HIT-scISOseq data
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from the injured corneal epitheliums of cynomolgus monkeys were also analyzed
using region velocity (Extended Data Fig. 8). Vector fields projected onto UMAP
embedding plot for this dataset are illustrated in Fig. 1g. The direction flows of
RNA velocity and region velocity both demonstrated transformation of limbal
stem cells (LSCs) into terminally differentiated cells, including corneal epithelial
and stroma cells®. However, region velocity identified LSCs as the differentiation
center more precisely than RNA velocity. The arrows in the center of LSCs were
clearly directed to the periphery, from a point to circles. Additionally, RNA
velocity indicated conjunctival epithelium and corneal epithelial cells as origin,
which contradicted known biological characteristics (Fig. 1g). Therefore, region
velocity had better performance than RNA velocity in the monkey limbal wound

model.

The third-generation HISOFA-seq platform is based on nanopore sequencing,
whereas HIT-scISOseq uses PacBio sequencing. Region velocity is more
applicable to HISOFA-seq data than RNA velocity. As nanopore sequencing has
a higher error rate, gene counts obtained after isoform clustering yielded better
performance for region velocity calculations than original gene counts. The
vector fields projected onto the tSNE embedding plot indicated a consistent
streamlined flow of spermatogenic waves in region velocity (Extended Data Fig.

7).
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Therefore, region velocity is a multi-platform and multi-model parameter to
project cell state, which is based on long-read scRNA-seq. In the future, HIT-
sclSOseq/HISOFA-seq may provide more data to discover new kinetic models of RNA

dynamics, enabling better cell fate prediction for various species and different cell types.
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Method
The experimental protocols (HISOFA-seq) could be found on

https://www.protocols.io/private/ CE43BD78C53111EC97780A58A9FEACQO2. The HIT-

sclSOseq protocol could be found on

https://www.protocols.io/private/7472E845C4A5C11EC97780A58A9FEACO?2.

The bioinformatic script could be found on
https://www.protocols.io/private/17764990CA1611EC89580A58A9FEACO2 and
available data could be found on

https://github.com/Dekayzc/Regionvelocity/tree/main/data.

Demultiplexing barcodes

Reference construction

BD cell label is roughly composed of five sections, including three separated barcodes of
9bp and two known linkers. Each barcode is randomly selected from a pool of 96 pre-
defined sequences which allowed us labeling up to 962 cells. The minimum Hamming
distance of three barcodes was 4 bp and the mean distance was 6.6 bp. If taking insertion,
deletion and substitution events into account, their minimum Levenshtein distance was 2
bp and the mean was 5.7 bp. In comparison to 10X barcode, BD barcode takes the
advantage of its longer design and therefore has a greater edit distance.

We constructed the cell label reference by generating 96 combinations of 9bp barcodes
joined by two known linker sequences, so at this stage, the reference should begin with
the first barcode and end with the third barcode. However, problems would arise with this

type of reference because its flanking regions of may be clipped off during alignment. In
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order to avoid this happening, we elongated the reference with more sequences to act as
the anchor, including binding site, UMI and oligo-dTs. Therefore, the final version of
reference had a length of 98 bases, and we added more Ns to both ends to ensure the

reference is longer than reads.

First round of demultiplexing

We took a subset of sequencing data and had a rough inspection of the library. Based on
the positions of oligo dT, around 47% of the reads were classified as forward strands and
40% reads were reverse strands. Nearly 60% reads could be fully aligned to 5’ and 3’

binding site, indicating most of the reads possessed a complete library structure.

In order to find the most appropriate method to assign barcodes, we examined the
performance of various aligners including minimap2, bwa-mem, bowtie2 and BLASTN.
Although minimap2 was usually recommended for long read alignment, only less than 25%
reads could be successfully demultiplexed. Similarly, many reads with the correct cell
label were either wrongly assigned or unmapped in bwa-mem algorithm. As such, they
were less recommended to use in this case where the length of query sequence was
much longer than the reference. In comparison, the local alignment mode of bowtie2 and
BLASTN outperformed other tools by having a mapping rate of 57.87% and 76.92%,
respectively. BLASTN alignment generated less gaps, mismatches and had a longer
mean aligned length than bowtie2, suggesting a better accuracy. However, bowtie2 was
superior due to its ultrafast and memory-saving features. The speed of demultiplexing

was further boosted when the read was trimmed into 300bp based on theoretical positions
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of barcodes. For example, bowtie2 and BLASTN could demultiplex 400,000 and 4,000
reads respectively under the same clock time. All these results suggested that bowtie2
was much more efficient than BLASTN in this case, thus the local alignment mode of

bowtie2 became the optimal choice for the first round of demultiplexing.

Validation and optimization of the first round of demultiplexing

Our demultiplexing strategy was further validated using simulated data, which was
created for the purpose of mimicking the real condition by introducing sequencing errors
and PCR errors [1]. As table xxx shows, the true positive rate (TPR), false positive rate
(FPR) and false negative rate (FNR) of BLASTN were 72.5%, 6.4% and 21.1%,
respectively. The high precision value (0.919) also indicated the result was reliable
enough for downstream analysis. In comparison, bowtie2 had a much worse precision of
0.719 due to its high FPR (27.9%), which would affect the accuracy of our demultiplexing
result and subsequent analyses. Therefore, we carried out more attempts on improving
and optimizing on bowtie2 parameters in order to reduce its false positive to the minimal
level. The optimized alignment had a TPR of 70.7% and its FPR was dramatically reduced
to 2.4%, which was even lower than BLASTN. Due to its high TPR and low FPR, bowtie2
with optimized parameters turned out to be the best strategy for the first round of

demultiplexing.

Second round of demultiplexing (Optional)
During the first round of demultiplexing, the procedure of trimming the reads into 300bp

was strict and harsh, and those reads with barcode outside the proposed positions might
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be lost. In addition, it could not tolerate the cases when three barcodes were linked by
defective linkers. Therefore, it was necessary to rescue those reads with another round

of demultiplexing.

In contrast to the previous step where reads were aligned to the cell label, we did not use
cell label as the reference for the second step. Three barcodes were individually aligned
to the reference, which was constructed by all unassigned reads from the first round of
demultiplexing. If a read was aligned to all three barcodes and they were separated by
an interval of similar length to the linker sequence, it will be assigned to the corresponding
cell label. Using the test dataset, this procedure could further rescue 13.7% reads, which
increased the demultiplexing rate from 57.87% into 71.58%. All unmapped reads will be

discarded for downstream analysis.

Single-cell short read analysis
single-cell expression matrix was generated by standard 10X Genomics CellRanger

pipeline (version 3.1.0).

Single-cell long read analysis

Pacbio Single-cell isoform sequencing analysis

Generation of Circular Consensus Sequencing Reads, generation of Single Cell Full-
Length Non-Concatemer (FLNC) Reads, genome alignment of FLNC reads, Cell Barcode
correction and UMI correction, collapsing redundant isoforms, were performed according

to HIT-scISOseq (Zheng et al., 2020).
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Nanopore Single-cell isoform sequencing analysis

Genome alignment

The Full length of reads from the previous steps are mapped to a supplied reference

genome (GCF_000364345.1 Macaca_fascicularis_5.0, mm10 (GENCODE
vM23/Ensembl 98)) using minimap2 (v2.17-r954-dirty) (H. Li, 2018) with the following

parameters: -ax splice -uf --secondary=no -C5. samtools (v1.9) (Heng Li et al., 2009) was

used to compress sam files into bam, sort and index.

Generate gene-barcode matrix

spliced_bam2gff  (https://github.com/nanoporetech/spliced _bam2gff) with  default
parameter was used to convert spliced bam alignments into GFF2 format, The GFF2 file
was then compared with the reference comments using the gffCompare(v0.11.6) (Pertea
& Pertea, 2020) tool. Besides the exon related class code :"=ckmnje o ", intron related
class_code “i,y” was selected for further analysis. Then gene-barcode matrix was
generated by Barcode file, UMI file read and gene mapping file through our custom script.

Collapsing redundant isoforms

We used cDNA_Cupcake python scripts (https://github.com/Magdoll/cDNA_Cupcake)
python script collapse_isoforms_by sam.py to collapse redundant isoforms, the
parameters were set: as -c 0.95 -i 0.95 --max_fuzzy junction 5 --max_5_diff 1000 --

max_3_diff 30.
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Generate exon and intron matrices
In order to know whether reads are from spliced transcripts or unspliced transcripts, we

need to see if reads contain intronic sequences.

For short reads RNA single cell sequencing, exon and intron count matrices were

peformed by velocyto (v0.6) (La Manno et al., 2018).

For long reads RNA single cell sequencing, the known genomic exon and intron
coordinates were extracted from the GTF annotation file, and the overlapping coordinates
of exon and intron coordinates were merged using BedTools merge respectively. Then
we extracted the coordinates of splice alignment of observation data and compared them
with known exon and intron annotation through BedTools intersect. Some researchers
believe that the intron length is greater than 50bp (Piovesan et al., 2015), while others
believe that the minimum intron length is 20bp (Jon et al., 2008). Therefore, an
intersection with known intron with a length greater than 20bp was considered as an intron,
where the count of intron with the length of 20bp-50bp accounts for only 0.5% of the

known genomic intron annotation file.

Generate spliced and unspliced matrices
A long read with intronic sequences were considered as unspliced transcripts and cell-
gene-unspliced/unspliced matrices was generated by our custom python script.

cell-calling using gene-barcode matrix
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R package Matrix (v1.4) was used to load data as sparse Matrix, and barcodeRanks

from DropletUtils(v1.2.2) (Lun et al., 2019) was used to calculate the Inflection and Knee
of barcode rank and UMI distribution plot. And then the identification of cells from empty

droplets was performed by emptyDrops function (Lun et al., 2019) , threshold of gene
counts (less than 20) for barcodes were specified as background. FDR (0.01) for

testing whether a barcode is a empty cell.

Cells calling according to the number of UMIs associated with each barcode performed
by defaultDrops function (Lun et al., 2019). Finally, Estimated Number of Cells, Total
Genes Detected, Mean Genes per Cell, Median Genes per Cell, Mean UMI Counts per
Cell, Median UMI Counts per Cell, Mean Reads per Cell, Median Reads per Cell and
Fraction Reads in Cells, as implemented in CellRanger, were calculated by customed R

script.

In addition, the h5 could be reanalyzed by Cellranger by handing the output of droputils

Processing scRNA-seq data for velocity analysis

Expression matrices generated above were imported to Seurat 4.1.0(Hao et al., 2021) or
MUDAN 0.1.0(Purroy et al., 2018), which were first log normalized and scaled. The
number of principal component analysis (PCA) was mainly determined by the elbow
graph, which guided the unsupervised clustering. The number of clusters were

determined by multi-resolution through clustree 0.4.4(Zappia & Oshlack, 2018). The
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clustering results were mainly displayed and analyzed by tSNE and UMAP. Cell
populations were mainly determined by marker genes (Spermary cells see supplementary

note table S1, limbal cells see supplementary table S2).

Theory of Region velocity and length velocity

The model is shown in Fig. 1a. The theory of length velocity is almost the same as RNA
velocity and the theory of Region velocity is inspired and inferred by RNA velocity. Region
velocity includes steady-state model and dynamical model using EM algorithm. The
detailed inference and computational framework are elaborated in supplementary notes.
Simulation of exons and introns using Region velocity is completed by computation
framework of EM algorithm excluded iteration step (step 4 in supplementary notes) to
solve the switch time from transcription process to splicing and degradation process. With
switch time, equation 11 and 12 in supplementary notes using parameters from steady-

state model are used to simulate the expected exons and introns counts.

Velocity analysis pipeline

RNA velocity is implemented in R package (velocyto.R)(La Manno et al., 2018) of original
framework. All greedy balanced KNN algorithm in two samples used the default
parameters. The velocity is estimated using gene.relative.velocity.estimates function with
parameters ‘fit.quantile = 0.05, min.nmat.emat.correlation = 0.2, min.nmat.emat.slope =
0.2, kCells = 10’ from expression matrices of unspliced and spliced counts. The projection
plot is drawn using show.velocity.on.embedding.cor function with parameters

‘show.grid.flow = TRUE'. Pipeline of length velocity is similar as that of RNA velocity
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except the input matrices from total length of unspliced and spliced mMRNA. Region
velocity IS implemented in new R package - Regionvelocity
(https://github.com/Dekayzc/Regionvelocity) which contained steady state model and
dynamics model from matrices of exons and introns counts. Detailed pipelines can be

found in protocol.io.
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Figure 1. Principles and performance of Region velocity. (a) The change of exons and
introns in the model of RNA transcription dynamics, capturing ratio of introns (6),
transcription (a), splicing (), degradation (y) rates. (b) The difference of spliced
counts and unspliced counts between NGS and Pacbio data including their distribution
and ratio. Blue indicates Pacbio data while red indicates NGS data. The histogram is
the ratio of introns in NGS and PB data. (c) The simulation of exons and introns using
Region velocity. The time of exons and introns of simulation is predicted from 0 to four
times of transcription change time (ts) using parameters from Region velocity. The
exons and introns are determined by the analytical formula in which the parameters are
obtained from steady state models. Each point means each cell. Blue indicates cells are
in transcription process and red indicates cells are in splicing or degradation process.
(d) The difference of correlation between exons : introns and spliced counts : unspliced
counts. Blue indicates the correlation between exons and introns while red indicates the
correlation between spliced counts and unspliced counts. The lines were drawn based
on the order of correlation values from highest to lowest. (e) The specific genes further
demonstrated the difference in figure 1d. Three genes in the left represented three
guantile of their correlation values of exons and introns and in the right the
corresponding genes of unspliced counts and spliced counts are chosen. (f) Velocity
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filed projected onto tSNE plot of RNA velocity and Region velocity from full-scale scRNA
data of mouse spermary cells (n=3,001 cells) using HIT-scISOseq. Arrows means the
average speed on a defined grid (number of grids=20). Blue points represent
spermatocytes, green points represent round spermatids and red points represent
elongating spermatids (Cell population shown in Extended Data Fig. 3). (g) Velocity filed
projected onto tSNE plot of RNA velocity and Region velocity from full-scale sSCRNA
data of cynomolgus monkeys’ limbal cells (n=1,417 cells) using HIT-scISOseq. Cell
population, CEC, Corneal epithelial cells; LPC, Limbal progenitor cells; CJE,
Conjunctival epithelium; LSC, Limbal stem cells; CSC, Corneal stromal cells; TAC,
Transient amplifying cells; Immune, T cells or immune cells. See also Extended Data
Fig. 8.


https://doi.org/10.1101/2022.05.02.490352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.02.490352; this version posted May 2, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a HTscisoseq HISOFA-seq b Reverse tascription 020 wxb‘a\r\:ode
/,r ] e T — / | BD_barcode
| e i 8 015 [
= z [
| caee l o1 [ A
i £
hort insert fong insei 005 [\ \
e primer dimer f 4: \
000 ———k S
i 0 10 20
Barcode distance
Reverse tasciption
c o[ e | T | Pt | | | | e |
2D~ s EL) mer | ome | st ase | orrs | am
w2 o ) wi om0 |ow
l Exal bi2_opmizs | 20060 64 2%6¢ 0088 728
Template switching g
4 o F10o
§
§ *
g
d i
5
oy E
&
H
015202530 354045 5055606570 75
pencing oron 1
h
ﬂ? 150000 -
o= et 2
g
4
o to— 100000
[ oa | e
i
Ve 50000
0 L

0 50009 100000 150000
iLman rea

Extended Data Fig.1 The principle of the HIT-scisoseq and HISOFA-seq. (a) In our
previous research !, we developed the first 20million reads full-length single cell
platform HIT-scisoseq, by using the 10x Genomics Chromium Controller
(10xGCC) and Pacbio sequel Il. The cells were captured in droplets 1 and
labeled by the 1million GEMs (Gel Bead-In EMulsions) with 9bp barcode
sequence. Then the reverse transcription tagged the other adaptor on the 5’ end
by the template switching activity. PCR amplification incorporated the specific
uracil containing primers. The sticky end PCR fragments, generated by USER,
were linked together as the head-to-tail ligation. The head-to-tail ligation
produced 5-4 fold (16million) than the conventional Pacbio sequel Il (4million).
The more details could be found on our previous research?. In this research, we
planned to take advantage of the nanopore high-throughput sequencing to
generate the 100 million cDNA reads at low cost. We developed another
customer accessible platform HISOFA-seq, combining the BD Rhapsody system
and the nanopore sequencing. The single cells were captured in microarray and
labeled by beads with 52bp mega barcodes, the large Levenshtein distance
among which literately could compensate for the accuracy deficiency (70%~90%
accuracy) of nanopore sequencing. In the following reverse transcription, our
previous HIT-scISOseq and other researches?® tagged the same sequence on
the 5’ end, inhibiting the dimmer/short fragments (<500bp) amplification with the
stem-loop structure(b).(c) To sequence the full-scale RNAs (nascent, stable,
short degrading RNAs) and avoid the dimmer amplification, we used the
exonuclease | (Exol) to remove excess primers on beads after reverse
transcription and then tagged the other 5’ adaptor on recycled beads. The PCR
efficiently amplified the full-scale cDNAs, offering the holographic view of the
natural transcriptomic landscape. (d) Schematic representation of the barcode
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demultiplexing process. A two-step pipeline was designed for BD barcodes
sequenced with Oxford Nanopore platform. The first step is done by aligning
reads to the BD cell label whitelist. The result was then validated by the presence
of oligo dT in forward aligned reads and oligo dA in reverse aligned reads. Any
unaligned reads were collected and aligned to three barcodes separately. Only
reads aligned to all three barcodes were regarded as successfully recovered
reads(2NP round is optional for many users). (e) The density plot of BD barcode and
10X barcode edit distances. BD_barocode (HSOFA-seq) have 2x larger distance
than the 10x barcode system. (f) Performance of the first round of demultiplexing
with different algorithms. HISOFA-seq were based on the bt2_optimized
algorithm, which have the comparable specificity and sensitivity with blastn. (g)
Simulated data showing the percentage of demultiplexed reads while increasing
sequencing error rate. 10,000 reads with a variety of error rates were simulated
with ART software followed by out demultiplexing pipeline. Percentage of
recovered breads were calculated for different error rates. (h) Dot plot of human-
mouse collision. A mixture of human and mouse cells was used to estimate
barcode collision.
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Extend Data Fig.2 The performance of HISOFA-seq from mouse spermary cells. (a)
Elbow plot to determine cell numbers. (b) The density of gene numbers and gene
counts in each cell. Percent.mt represents the percentage of mitochondrial genes. (c)
Cell clusters onto UMAP plot. (n=3,001 cells). (d) Dot plot of marker genes-Piwill
(spermatocytes), Tex21 (round spermatids), Tnpl (elongating spermatids), Cldn11l
(Sertoli cells) and Fabp3 (Leydig cells). (e) Feature plots onto UMAP of marker genes.
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Supplementary figure 3. The performance of HIT-scISOseq from mouse spermary cells.
(a) Elbow plot to determine cell numbers. (b) The density of gene numbers and gene
counts in each cell. Percent.mt represents the percentage of mitochondrial genes. (c)
Cell clusters onto UMAP plot. (n=3,001 cells). (d) Dot plot of marker genes- Dmrtl
(spermatogonia), Piwill (spermatocytes), Tex21 (round spermatids), Tnpl (elongating
spermatids), Cldnl1 (Sertoli cells) and Fabp3 (Leydig cells). (e) Feature plots onto
UMAP of marker genes.
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Extended Data Fig.4. Velocity filed projected onto tSNE plot of RNA velocity and length
velocity from scRNA data of the same mouse spermary cells (n=3,001 cells) using (a)
10x NGS. Arrows means the average speed on a defined grid (number of grids=20).
Blue points represent spermatocytes, green points represent round spermatids and red
points represent elongating spermatids. Cell populations are also determined by same
marker genes as Extended Data Fig. 3. (b) HIT-scISOseq. The length for one gene in a
cell is calculated as total length of all counts of a gene which are divided to spliced
counts and unspliced counts in advance.
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Extend Data Fig.5 Relationship among introns, unspliced counts, exons and spliced
counts. (a) The correlation between Exons and spliced counts. (b) The correlation
between introns and unspliced counts. (c) The distribution of introns corresponding to
their speed of introns change. The speed above 0 means increased trend of introns and
below 0 means decreased trend of introns. (d) Comparison between correlation of
unspliced counts and spliced counts and that of introns and exons. Top left insert is
Venn plot of two correlation profiles. Top right insert is the scatter plot of a specific gene
in different cells existed in both correlation profiles. Bottom left insert is the scatter plot
of all gene in different cells only existed in correlation of exons and introns.
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Extended Data Fig.6 Velocity filed projected onto tSNE plot of Region velocity with
dynamics model (EM algorithm) from full-scale scRNA data of the mouse spermary cells
(n=3,001 cells) using (a) HIT-scISOseq in gene level. Arrows means the average speed
on a defined grid (number of grids=20). Blue points represent spermatocytes, green
points represent round spermatids and red points represent elongating spermatids. Cell
populations are identified with marker genes (Extended Data Fig. 3). (b) HIT-scISOseq
in isoform level in which reads are clustered to isoforms. (c) HISOFA-seq in gene level.
Cell populations are identified with same marker genes (Extended Data Fig. 2). (d)
HISOFA-seq in isoform level.
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Extended Data Fig. 7 Velocity filed projected onto tSNE plot from full-scale scRNA data
of the mouse spermary cells (n=3,001 cells) using HISOFA-seq with (a) RNA velocity
model in gene level using spliced counts and unspliced counts as observations. Arrows
means the average speed on a defined grid (number of grids=20). Gene level means
the gene counts are determined by original alignment to reference without isoform
calling. Blue points represent spermatocytes, green points represent round spermatids
and red points represent elongating spermatids. Cell populations are identified with
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marker genes (Extended Data Fig. 2). (b) Region velocity model in gene level using
exons and introns as observations. (c) RNA velocity model in isoform level in which
reads are clustered to isoforms. The isoform clustering method might reduce the
influcence of error rate of ONT sequencing. The gene counts are determined by the
sum of all isoforms belonged to the gene. The main difference between gene level and
isoform levels are the difference of gene counts method. (d) Region velocity model in
isoform level.
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Extended Data Fig. 8 Identification of cell population for cynomolgus monkeys’ limbal
cells (n=1,417 cells) using HIT-sclISOseq. (a) Heatmap of marker genes including
KRT24, KRT12, PPP1R3C (Corneal epithelial cells), CDH13, S100A2 (Limbal
progenitor cells), KRT13 (Conjunctival epithelium), DCN, KERA, LUM (Corneal stromal
cells), KRT15, CD63 (Limbal stem cells), BIRC5, RRM2 (Amplifying cells), CCL3
(Immune cells). Cluster 0,5 expressed high in gene KRT24, KRT12, PPP1R3C,
indicating them as corneal epithelial cells. Cluster 1,4 expressed high in gene CDH13,
S100A2, indicating them as limbal progenitor cells. Cluster 2,3 expressed high in gene
KRT13, indicating them as conjunctival epithelium. Cluster 6 expressed high in gene
DCN, KERA, LUM, indicating it as corneal stromal cells. Cluster 7,8 expressed high in
serveral limbal cells related genes including KRT15, CD63, indicating their potential as
stem cells. Cluster 9 expressed high in limbal cells related gene especially related with
limbal progenitor and limbal stem cells. However, cluster 9 showed a high expression in
gene BIRC5, RRM2, indicating amplification process existed in cluster 9. Therefore,
cluster 9 showed potential as transient amplifying cells. Cluster 10 expressed high in
gene CCL3, indicating it as immune cells. (b) Distribution of clusters in UMAP plot. (c)
Dot plot of marker genes.
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