

1 Chromosomal inversions can limit adaptation to new

2 environments

3

4 **Marius Roesti¹, Kimberly J. Gilbert², Kieran Samuk³**

5 ¹Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern,
6 Bern, Switzerland; marius.roesti@iee.unibe.ch

7 ²Department of Biology, University of Fribourg, Fribourg, Switzerland;
8 kimberly.gilbert@unifr.ch

9 ³Department of Evolution, Ecology, and Organismal Biology, University of California,
10 Riverside, Riverside, California; ksamuk@ucr.edu

11

12 **Abstract**

13 Chromosomal inversions are often thought to facilitate local adaptation and population
14 divergence because they can link multiple adaptive alleles into non-recombinant genomic
15 blocks. Selection should thus be more efficient in driving inversion-linked adaptive alleles
16 to high frequency in a population, particularly in the face of maladaptive gene flow. But,
17 what if ecological conditions and hence selection on inversion-linked alleles change?
18 Reduced recombination within inversions could then constrain the formation of optimal
19 combinations of pre-existing alleles under these new ecological conditions. Here, we
20 outline this idea of inversions limiting adaptation and divergence when ecological
21 conditions change across time or space. We reason that the benefit of inversions for local
22 adaptation and divergence under one set of ecological conditions can come with a
23 concomitant constraint for adaptation to novel sets of ecological conditions. This limitation
24 of inversions to adaptation may also provide one possible explanation for why inversions
25 are often maintained as polymorphisms within species.

26

27 **Keywords**

28 adaptive constraints, haplotypes, linkage, population divergence, recombination,
29 supergenes

30 **Background**

31 In evolutionary biology, there is a common notion that chromosomal inversions facilitate
32 adaptation and divergence. Inversions create different physical arrangements of a
33 genomic region, which often leads to non-viable gametes when recombination between
34 these arrangements occurs (Sturtevant et al. 1936; Navarro et al. 1997). As a result,
35 realized recombination between different inversion arrangement types is strongly reduced
36 at the population level, and alleles within one arrangement type become strongly linked
37 and can behave similarly to a single allele of large selective effect. Selection should thus
38 be more efficient in maintaining sets of inversion-linked alleles if they are adaptive and
39 driving them to high frequency in a population, particularly in the face of maladaptive gene
40 flow (Rieseberg 2001). Indeed, theory suggests that local adaptation of a population can
41 be achieved more readily when multiple, locally adaptive alleles are contained within the
42 same inversion arrangement type (Kirkpatrick & Barton 2006; Feder & Nosil 2009;
43 Charlesworth & Barton 2018).

44 Consistent with the idea of inversions facilitating local adaptation and divergence,
45 one inversion arrangement type is often found at a relatively high frequency within
46 populations, and populations from different habitats often differ strongly in their frequency
47 of arrangement types (e.g., Wellenreuther & Bernatchez 2018; Faria et al. 2019).
48 However, recent work has highlighted that reduced recombination between inversion
49 arrangement types can hinder the purging of unconditionally (i.e., environment-
50 independent) deleterious mutations, such as premature stop codons or recessive lethals
51 (Berdan et al. 2021; Jay et al. 2021). The accumulation of such deleterious mutations may
52 thus counteract the adaptive potential of inversions for local adaptation. For recessive
53 deleterious variants, the reduction in recombination resulting from inversions may also
54 lead to patterns of associative overdominance, where there is an apparent heterozygous
55 advantage due to masked deleterious variants (Gilbert et al. 2020). This type of balancing
56 selection or the combination of both beneficial and unconditionally deleterious variants
57 within a single inversion provide possible explanations for why inversions may often be
58 maintained as polymorphisms within species (Berdan et al. 2021; Jay et al. 2021).

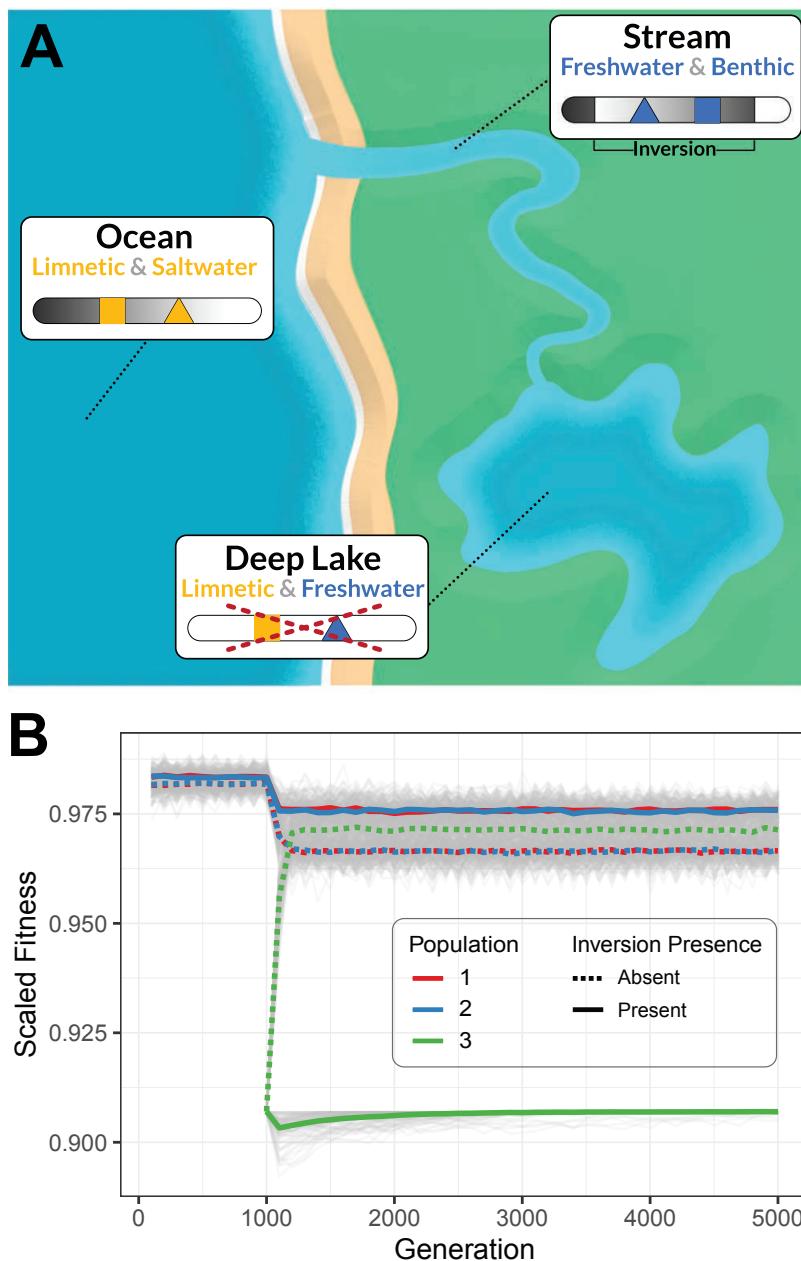
59 Another limitation to adaptation from inversions could occur when selection favors
60 new combinations of existing inversion-linked alleles. This can happen due to temporally
61 or spatially varying selection. When selection changes in direction, pre-existing inversion
62 arrangements could pose a constraint to further adaptation because recombination
63 cannot build optimal combinations from pre-existing alleles bound within inversions. The

64 idea that inversions could constrain selection from favoring optimal allele combinations at
65 inversion-linked adaptive loci is distinct from the accumulation of unconditionally
66 deleterious mutations and could represent an important explanation for the evolution and
67 maintenance of chromosomal inversions among natural populations.

68

69 **The adaptive limitation hypothesis of inversions**

70 Mounting empirical evidence suggests that standing genetic variation is the main source
71 of genetic variation for the early phases of adaptation in nature (e.g., Renaut et al. 2011;
72 Jones et al. 2012; Lescak et al. 2015; Haenel et al. 2019; Lai et al. 2019; Chaturvedi et
73 al. 2021; Louis et al. 2021; Owens et al. 2021; Whiting et al. 2021; see also Barrett &
74 Schluter 2008; Messer & Petrov 2012; De Lafontaine et al. 2018). Whether and how
75 rapidly a population can adapt to a new ecological challenge therefore depends on how
76 efficiently selection can reshape pre-existing alleles into new optimal combinations.
77 Inversions may limit such genetic reshaping.


78 Imagine a scenario where each of two different inversion arrangements contains
79 alleles that are beneficial in one habitat type and maladaptive in another habitat type.
80 Then, a new third habitat type becomes available favoring a novel combination of these
81 alleles from the two arrangements. The lack of recombination between the arrangement
82 types will hinder reshaping of optimal allele combinations and hence can limit rapid
83 adaptation into the new habitat (**Figure 1A**). Similarly, if ecological conditions and thus
84 selection changes for one or both of the initial populations, the lack of recombination of
85 pre-existing alleles between arrangement types could impede adaptation compared to
86 when adaptive alleles are not inversion-linked and thus free to recombine. Both of these
87 scenarios, a novel habitat appearing or an existing habitat changing, are representative
88 of multitudes of real-world scenarios, which can drastically alter the direction of natural
89 selection.

90 To illustrate this idea, we explored whether inversions limit adaptation in forward-
91 time individual-based simulations mimicking these two scenarios. Simulations begin with
92 a two-deme model in which each of two populations adapts to a distinct environment.
93 Individuals are diploid and possess a genome with two loci, each with two alleles
94 conferring adaptation to either one of the two environments, respectively (i.e., these loci
95 are under divergent selection between the populations). Populations exchange migrants
96 and thus alleles throughout the duration of the simulation. In one scenario, we then

97 introduce a new third habitat which can be colonized (**Figure 1B, Fig. S1**). Alternatively,
98 in a second scenario, we change the environment for one of the existing populations (**Fig.**
99 **S2**). In both cases, novel selective pressure now favors a new combination of alleles at
100 the two loci: selection favors the allele adaptive in population 1 at one locus, and the allele
101 adaptive in population 2 at the other locus. We ran these simulations both with and without
102 an inversion that captured one of the two sets of alleles adaptive in either one of the two
103 initial populations as an arrangement. Overall, these simulations confirm our intuition that
104 an inversion can limit adaptation to a new adaptive optimum compared to simulations
105 without inversions where optimal combinations of pre-existing alleles can be created
106 easily via recombination (**Figure 1B, Figs. S1 and S2**).

107 These simulations are intentionally simplified and do not explore the full range of
108 conditions under which an inversion can limit adaptation to changing adaptive optima. Yet
109 these results do demonstrate that, in principle, inversions can limit rapid local adaptation
110 and hence adaptive divergence between populations. Although we placed reciprocally
111 adaptive/maladaptive alleles within alternative inversion arrangements, a similar (albeit
112 weaker) effect could be generated by an inversion that was polymorphic but unrelated to
113 the change in selection (e.g., because it contains a recessive lethal allele). In this case, a
114 reduction in average recombination in the inverted region would result in the limitation of
115 adaptation via standard Hill-Robertson interference (Hill & Robertson 1966).

116 Our described constraint of reduced recombination at inversions for adaptation is
117 conceptually related to the long-standing idea for why asexual reproduction is particularly
118 disadvantageous when environments change frequently over time or space. That is,
119 maladaptive genetic associations built by past selection or brought to a different
120 environment through migration cannot be rebuilt into favorable combinations in the
121 absence of recombination as it is the case in asexually reproducing organisms (Maynard
122 Smith 1978; Otto 2009). Another conceptual parallel can be drawn to the constraint
123 described previously for pleiotropy, where a single gene affects multiple traits and may
124 therefore hinder the evolution of optimal trait combinations under varying ecological
125 conditions (Cheverud 1984; Pavlicev & Cheverud 2015). These conceptual parallels
126 between asexual reproduction, pleiotropy, and inversions can help explain how the
127 absence of recombination can constrain adaptive evolution, yet the dynamics of

Figure 1. Exemplary scenario and simulation of how inversions can limit adaptation to new environments. (A) In this exemplary scenario, inversion-linked alleles at two biallelic loci confer adaptation to two different original habitats in an aquatic organism: saltwater and limnetic alleles (ocean habitat) vs. freshwater and benthic alleles (stream habitat). Such an inversion will limit optimal adaptation into a novel third habitat (deep lake) that requires the combination of freshwater and limnetic alleles. **(B)** Results from forward-in-time simulations using SLiM (Haller & Messer 2019), based on the scenario outlined in (A). Population 3 forms at generation 1000 and represents the novel deep lake habitat, which in the absence of an inversion can be successfully colonized, reaching relatively high population fitness in the face of migration-selection balance (dashed lines). In the presence of the inversion (solid lines), however, fitness is reduced in the novel habitat as optimal adaptation is prevented from the alleles locked within the inversion. In these simulations, each allele has an equal selective and thus fitness effect, being beneficial in one of the two original habitats and detrimental in the other, with $s = +/-0.1$. In population 3, the allele favored ($+s$) in population 1 at the first locus and the allele favored in population 2 at the second locus are favored. Adaptation of each population is expressed as the mean population relative fitness scaled against the maximum possible relative fitness based on the known optimal genotypes (i.e., a scaled fitness of 1 represents optimal adaptation of a population). Thick lines in color indicate the mean scaled fitness of 100 replicate simulations (gray lines). De novo mutation or double-crossovers were not considered in these simulations. See the Supplementary Materials for further details on the simulations as well as alternative scenarios and parameter combinations tested, including a polygenic model.

129 inversions are unique and worth special consideration since recombination is only
130 reduced in individuals carrying both arrangement types (heterozygotes).

131

132 **Outcomes and future investigations**

133 There are several ways by which the adaptive limitation of inversions could resolve itself
134 genetically. Gene conversion or double-crossovers could allow for rare genetic exchange
135 (gene flux) between inversion arrangement types, thereby allowing for the build-up of the
136 combinations of pre-existing alleles that are favorable under changed ecological
137 conditions. *De novo* mutations in pre-existing inversion arrangements as well as in other
138 regions of the genome could also build newly favored allele combinations. While both of
139 these routes could resolve the limitation that inversions can pose to adaptation, they will
140 necessitate longer wait times than a normally recombining genomic region. Moreover,
141 these considerations emphasize the need for a greater appreciation of the genetic
142 variation within – and not only between – inversion arrangement types.

143 The here-described idea of how inversions may limit rapid adaptation to changing
144 ecological conditions seems compatible with observations in nature. For instance, QTL
145 underlying trait variation that is important for adaptive divergence across a major habitat
146 transition have been mapped to chromosomal inversions in populations of threespine
147 stickleback fish and littorina snails (stickleback: Peichel & Marques 2017; Liu et al. 2021;
148 littorina: Koch et al. 2021). However, both of these species have recently been exposed
149 to new niches imposing novel selection pressures, possibly favoring novel combinations
150 of these inversion-linked QTL (stickleback: e.g., Bell & Foster 1994; Reid et al. 2021;
151 littorina: Morales et al. 2019).

152 Direct tests of how frequently inversions pose a limit to adaptation in nature will be
153 challenging, especially because genetic variants within inversions are in strong linkage
154 and therefore difficult to assay individually. A promising yet challenging approach would
155 be to unlock inversion-linked genetic variants by flipping one arrangement using
156 Crispr/Cas9-induced double strand breaks, thereby restoring collinearity and thus
157 recombination between different inversion arrangement types (Schmidt et al. 2020). This
158 would subsequently allow for estimating how selection targets individual alleles that were
159 previously inversion-linked. An adaptive constraint of inversions would be implicated if
160 selection targeted some of the previously linked alleles within an arrangement type in the
161 opposite direction within the given ecological context. Another less direct test of the

162 adaptive limitation hypothesis of inversions could use QTL mapping of ecologically-
163 important trait variation (analogous to a QTL sign test; Orr 1998). An adaptive constraint
164 of an inversion may be implicated if the trait effects of some within-inversion QTL were
165 reversed to what would be expected under optimal adaptation. Finally, if inversions are
166 indeed hotspots of adaptive loci, one might expect that the genetic variation unique to the
167 distinct arrangements of a (single) large inversion is unlikely to play a key role in the rapid
168 diversification of a taxon into many niches, and may even pose a constraint for such
169 adaptive radiations. This constraint could be counteracted by the existence of several
170 inversions if each inversion captures a combination of alleles that allows successful
171 adaptation in the face of gene flow across independent environmental axes.

172

173 **Conclusion**

174 While an inversion can link unique adaptive allele combinations into non-recombinant
175 genomic blocks (haplotypes) and thereby favor local adaptation under one set of
176 ecological conditions, this benefit may come with a concomitant constraint in adaptation
177 to a novel set of ecological circumstances. Indeed, inversions linking unique allele
178 combinations into distinct haplotypes may also be prone to be maintained as
179 polymorphisms within species under spatially and/or temporally varying selection. While
180 searching for evidence of such adaptive limitations imposed by inversions in nature will
181 be challenging, further investigation of this phenomenon will broaden our understanding
182 of the processes shaping diversity across variable environments and during rapid
183 adaptive radiations.

184

185

186 **Acknowledgements**

187 We would like to thank Gregory Owens, Stephan Peischl, Sam Yeaman, and members of
188 the Peichel lab for stimulating and helpful discussions. MR was funded by the University
189 of Bern. KJG was funded by a Swiss National Science Foundation Ambizione grant
190 (PZ00P3_185952).

191 **References**

- 192 Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing genetic variation. *Trends in
193 Ecology & Evolution*, 23(1), 38-44. doi:10.1016/j.tree.2007.09.008
- 194 Bell, M. A., & Foster, S. A. (1994). *The evolutionary biology of the threespine stickleback*.
195 Oxford: Oxford University.
- 196 Berdan, E. L., Blanckaert, A., Butlin, R. K., & Bank, C. (2021). Deleterious mutation
197 accumulation and the long-term fate of chromosomal inversions. *PLoS Genetics*, 17(3),
198 e1009411. doi:10.1371/journal.pgen.1009411
- 199 Charlesworth, B., & Barton, N. H. (2018). The Spread of an Inversion with Migration and
200 Selection. *Genetics*, 208(1), 377-382. doi:10.1534/genetics.117.300426
- 201 Chaturvedi, A., Zhou, J., Raeymaekers, J. A. M., Czypionka, T., Orsini, L., Jackson, C. E., . . .
202 De Meester, L. (2021). Extensive standing genetic variation from a small number of
203 founders enables rapid adaptation in Daphnia. *Nature Communications*, 12(1), 4306.
204 doi:10.1038/s41467-021-24581-z
- 205 Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by
206 selection. *Journal of Theoretical Biology*, 110(2), 155-171. doi:10.1016/s0022-
207 5193(84)80050-8
- 208 De Lafontaine, G., Napier, J. D., Petit, R. J., & Hu, F. S. (2018). Invoking adaptation to
209 decipher the genetic legacy of past climate change. *Ecology*, 99(7), 1530-1546.
210 doi:10.1002/ecy.2382
- 211 Faria, R., Johannesson, K., Butlin, R. K., & Westram, A. M. (2019). Evolving Inversions. *Trends
212 in Ecology & Evolution*, 34(3), 239-248. doi:10.1016/j.tree.2018.12.005
- 213 Feder, J. L., & Nosil, P. (2009). Chromosomal inversions and species differences: when are
214 genes affecting adaptive divergence and reproductive isolation expected to reside within
215 inversions? *Evolution*, 63(12), 3061-3075. doi:10.1111/j.1558-5646.2009.00786.x
- 216 Gilbert, K. J., Pouyet, F., Excoffier, L., & Peischl, S. (2020). Transition from Background
217 Selection to Associative Overdominance Promotes Diversity in Regions of Low
218 Recombination. *Current Biology*, 30(1), 101-107.e103. doi:10.1016/j.cub.2019.11.063
- 219 Haenel, Q., Roesti, M., Moser, D., MacColl, A. D. C., & Berner, D. (2019). Predictable genome-
220 wide sorting of standing genetic variation during parallel adaptation to basic versus
221 acidic environments in stickleback fish. *Evolution Letters*, 3(1), 28-42.
222 doi:<https://doi.org/10.1002/evl3.99>
- 223 Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward genetic simulations beyond the Wright-
224 Fisher model. *Molecular Biology and Evolution*, 36(3), 632-637.
225 doi:10.1093/molbev/msy228
- 226 Hill, W., & Robertson, A. (1966). The effect of linkage on limits to artificial selection.
227 *Genetical Research*, 8(3), 269-294. doi:10.1017/S0016672300010156
- 228 Jay, P., Chouteau, M., Whibley, A., Bastide, H., Parrinello, H., Llaurens, V., & Joron, M. (2021).
229 Mutation load at a mimicry supergene sheds new light on the evolution of inversion
230 polymorphisms. *Nature Genetics*, 53(3), 288-293. doi:10.1038/s41588-020-00771-1
- 231 Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., . . . Kingsley,
232 D. M. (2012). The genomic basis of adaptive evolution in threespine sticklebacks.
233 *Nature*, 484(7392), 55-61. doi:10.1038/nature10944
- 234 Kirkpatrick, M., & Barton, N. (2006). Chromosome inversions, local adaptation and speciation.
235 *Genetics*, 173(1), 419-434. doi:10.1534/genetics.105.047985
- 236 Koch, E. L., Morales, H. E., Larsson, J., Westram, A. M., Faria, R., Lemmon, A. R., . . . Butlin,
237 R. K. (2021). Genetic variation for adaptive traits is associated with polymorphic
238 inversions in *Littorina saxatilis*. *Evolution Letters*, 5(3), 196-213.
239 doi:<https://doi.org/10.1002/evl3.227>

- 240 Lai, Y.-T., Yeung, C. K. L., Omland, K. E., Pang, E.-L., Hao, Y., Liao, B.-Y., . . . Li, S.-H.
241 (2019). Standing genetic variation as the predominant source for adaptation of a
242 songbird. *Proceedings of the National Academy of Sciences*, 116(6), 2152-2157.
243 doi:doi:10.1073/pnas.1813597116
- 244 Liu, Z., Roesti, M., Marques, D., Hiltbrunner, M., Saladin, V., & Peichel, C. L. (2021).
245 Chromosomal fusions facilitate adaptation to divergent environments in threespine
246 stickleback. *Molecular Biology and Evolution*, 39(2). doi:10.1093/molbev/msab358
- 247 Louis, M., Galimberti, M., Archer, F., Berrow, S., Brownlow, A., Fallon, R., . . . Gaggiotti, O. E.
248 (2021). Selection on ancestral genetic variation fuels repeated ecotype formation in
249 bottlenose dolphins. *Science Advances*, 7(44), eabg1245.
250 doi:doi:10.1126/sciadv.abg1245
- 251 Lescak, E. A., Bassham, S. L., Catchen, J., Gelmond, O., Sherbick, M. L., Hippel, F. A. v., &
252 Cresko, W. A. (2015). Evolution of stickleback in 50 years on earthquake-uplifted
253 islands. *Proceedings of the National Academy of Sciences*, 112(52), E7204-E7212.
254 doi:doi:10.1073/pnas.1512020112
- 255 Maynard Smith, J. (1978). *The evolution of sex*. Cambridge: Cambridge University Press.
- 256 Morales, H. E., Faria, R., Johannesson, K., Larsson, T., Panova, M., Westram, A. M., & Butlin,
257 R. K. (2019). Genomic architecture of parallel ecological divergence: Beyond a single
258 environmental contrast. *Science Advances*, 5(12), eaav9963.
259 doi:doi:10.1126/sciadv.aav9963
- 260 Messer, P. W., & Petrov, D. A. (2013). Population genomics of rapid adaptation by soft
261 selective sweeps. *Trends in Ecology & Evolution*, 28(11), 659-669.
262 doi:10.1016/j.tree.2013.08.003
- 263 Navarro, A., Betrán, E., Barbadilla, A., & Ruiz, A. (1997). Recombination and gene flux caused
264 by gene conversion and crossing over in inversion heterokaryotypes. *Genetics*, 146(2),
265 695-709. doi:10.1093/genetics/146.2.695
- 266 Orr, H. A. (1998). Testing natural selection vs. genetic drift in phenotypic evolution using
267 quantitative trait locus data. *Genetics*, 149(4), 2099-2104.
268 doi:10.1093/genetics/149.4.2099
- 269 Otto, Sarah P. (2009). The evolutionary enigma of sex. *The American Naturalist*, 174(S1), S1-
270 S14. doi:10.1086/599084
- 271 Owens, G. L., Todesco, M., Bercovich, N., Légaré, J.-S., Mitchell, N., Whitney, K. D., &
272 Rieseberg, L. H. (2021). Standing variation rather than recent adaptive introgression
273 probably underlies differentiation of the texanus subspecies of *Helianthus annuus*.
274 *Molecular Ecology*, 30(23), 6229-6245. doi:https://doi.org/10.1111/mec.16008
- 275 Pavličev, M., & Cheverud, J. M. (2015). Constraints evolve: context dependency of gene
276 effects allows evolution of pleiotropy. *Annual Review of Ecology, Evolution, and
277 Systematics*, 46(1), 413-434. doi:10.1146/annurev-ecolsys-120213-091721
- 278 Peichel, C. L., & Marques, D. A. (2017). The genetic and molecular architecture of phenotypic
279 diversity in sticklebacks. *Philosophical Transactions of the Royal Society B: Biological
280 Sciences*, 372(1713). doi:10.1098/rstb.2015.0486
- 281 Reid, K., Bell, M. A., & Veeramah, K. R. (2021). Threespine stickleback: a model system for
282 evolutionary genomics. *Annual Review of Genomics and Human Genetics*, 22(1), 357-
283 383. doi:10.1146/annurev-genom-111720-081402
- 284 Renaut, S., Nolte, A. W., Rogers, S. M., Derome, N., & Bernatchez, L. (2011). SNP signatures
285 of selection on standing genetic variation and their association with adaptive phenotypes
286 along gradients of ecological speciation in lake whitefish species pairs (*Coregonus*
287 spp.). *Molecular Ecology*, 20(3), 545-559. doi:10.1111/j.1365-294X.2010.04952.x
- 288 Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. *Trends in Ecology &
289 Evolution*, 16(7), 351-358. doi:10.1016/s0169-5347(01)02187-5

- 290 Schmidt, C., Fransz, P., Rönspies, M., Dreissig, S., Fuchs, J., Heckmann, S., . . . Puchta, H.
291 (2020). Changing local recombination patterns in *Arabidopsis* by CRISPR/Cas mediated
292 chromosome engineering. *Nature Communications*, 11(1), 4418. doi:10.1038/s41467-
293 020-18277-z
- 294 Sturtevant, A. H., & Beadle, G. W. (1936). The relations of inversions in the X chromosome of
295 *Drosophila melanogaster* to crossing over and disjunction. *Genetics*, 21(5), 554-604.
296 doi:10.1093/genetics/21.5.554
- 297 Wellenreuther, M., & Bernatchez, L. (2018). Eco-Evolutionary Genomics of Chromosomal
298 Inversions. *Trends in Ecology & Evolution*, 33(6), 427-440.
299 doi:10.1016/j.tree.2018.04.002
- 300 Whiting, J. R., Paris, J. R., van der Zee, M. J., Parsons, P. J., Weigel, D., & Fraser, B. A.
301 (2021). Drainage-structuring of ancestral variation and a common functional pathway
302 shape limited genomic convergence in natural high- and low-predation guppies. *PLoS
303 Genetics*, 17(5), e1009566. doi:10.1371/journal.pgen.1009566
- 304
- 305

306 **Supplementary Materials**

307 **Supplementary Methods**

310 *Description of simulations*

311 Our illustrative simulations were performed using SLiM version 3.7.1 (Haller and Messer
312 2019). The code to produce all the simulation results as well as to create the plots shown
313 in the manuscript is available at https://github.com/ksamuk/inversion_constraint. A brief
314 description of the simulation follows.

315 *General simulation structure*

316 Each simulation had the following basic structure. Two populations, population 1 and
317 population 2 (hereafter p1 and p2), are initialized in the first generation. Each population
318 is composed of 2500 hermaphroditic individuals, with each individual having a diploid
319 “genome” composed of three loci: two fitness-related loci, and one “inversion” locus. Each
320 of the two fitness loci have two alleles: the “m1” allele and the “m2” allele, each favored
321 in p1 and p2 respectively. Each allele has a selection coefficient of $s = 0.05$ in its home
322 population, and a coefficient of $-s$ (i.e., -0.05) in the alternate population (i.e., symmetrical
323 divergent selection). All alleles had dominance coefficients of $h = 0.5$ (i.e., pure additivity).
324 The inversion locus similarly had two alleles, “m3” and “m4”, corresponding to the
325 genomic rearrangements in p1 or p2 respectively. No other mutations were possible in
326 the simulation (i.e., all adaptation occurred from standing variation).

327 Because of the simplified genomic architecture, we set baseline recombination rates at a
328 value of $1e-2$ (SLiM units) in order to observe sufficient recombination over the course of
329 the simulation. We modelled recombination suppression by the inversion after the
330 example in SLiM manual, i.e., if an individual is heterozygous at the inversion locus,
331 recombination is suppressed at all three loci (the fitness loci and the inversion locus).
332 Otherwise, recombination proceeds at the baseline rate.

333 The two populations exchanged migrants at a rate of $m = 0.01$ (symmetrical gene flow).
334 The simulations were run for 5000 generations. At each generation, we output the mean
335 relative fitness of each population, scaled against the maximum possible fitness based on
336 the known optimal genotypes. To examine the effect of the inversion, we ran simulations
337 with and without the inversion active. We ran 100 replicates of each simulation, and then
338 processed and plotted the output from SLiM using R version 4.1.2 (R Core Team, 2021)
339 and the tidyverse package (Wickham et al. 2019).

340 Using this core structure, we simulated three different scenarios:

341 (i) “Novel environment” scenario

342 In this scenario, the simulation proceeds as before, but at $t = 1000$ generations, a third
343 population, population 3 (hereafter p3), is founded with half its individuals sourced from
344 p1 and the other half from p2. In p3, at the first fitness locus, m1 allele has a selection
345 coefficient of $s = 0.05$ and m2 has a selection coefficient of $s = -0.05$. At the second fitness
346 locus, the m2 allele has a selection coefficient of $s = 0.05$ and m1 has a selection
347 coefficient of $s = -0.05$. As such, the optimal genotype in p3 is m1/m1 at the first locus,
348 and m2/m2 at the second locus, i.e., an intermediate between p1 and p2. After the initial
349 founding event, gene flow between all populations continued at the rate of $m = 0.01$.

355

356 *(ii) "Environmental change" scenario*

357 This scenario is similar to the novel environment scenario above, but instead of a new
358 population being founded at $t = 1000$, only two populations still exist and instead the
359 selection coefficients in p2 shift to those described for p3 above (i.e., the optimal genotype
360 is intermediate between the original p1 and p2). All other parameters, including migration
361 rate, remain unchanged.

362

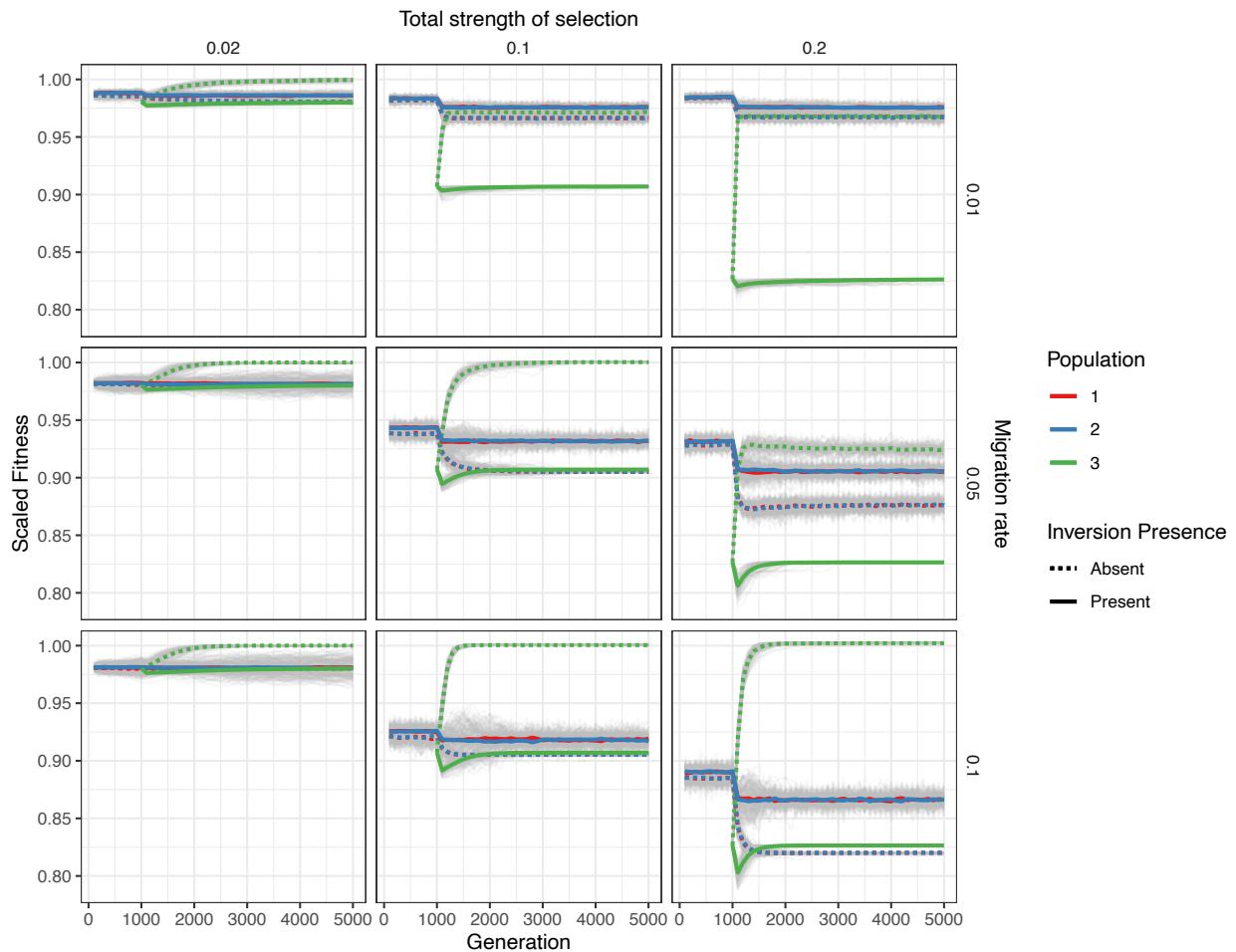
363 *(iii) Polygenic scenario*

364 To explore the effect of a more complex genetic architecture, we simulated the novel
365 environment scenario with a genome containing 101 loci: 100 fitness-related loci and one
366 inversion locus, or 40 fitness-related loci, 60 neutral loci, and one inversion locus. The
367 simulations were otherwise identical.

368

369 *Basic exploration of parameter space*

370 While not our primary goal, we explored the robustness of our results by varying the
371 strength of selection (s) and migration rate (m) at 0.01, 0.05, and 0.1 in the novel
372 environment scenario. All simulations had qualitative similar results, i.e., the inversion
373 acts as a constraint on adaptation.


374

375 **Supplemental Figures**

376

377 **Figure S1**

378

379

380

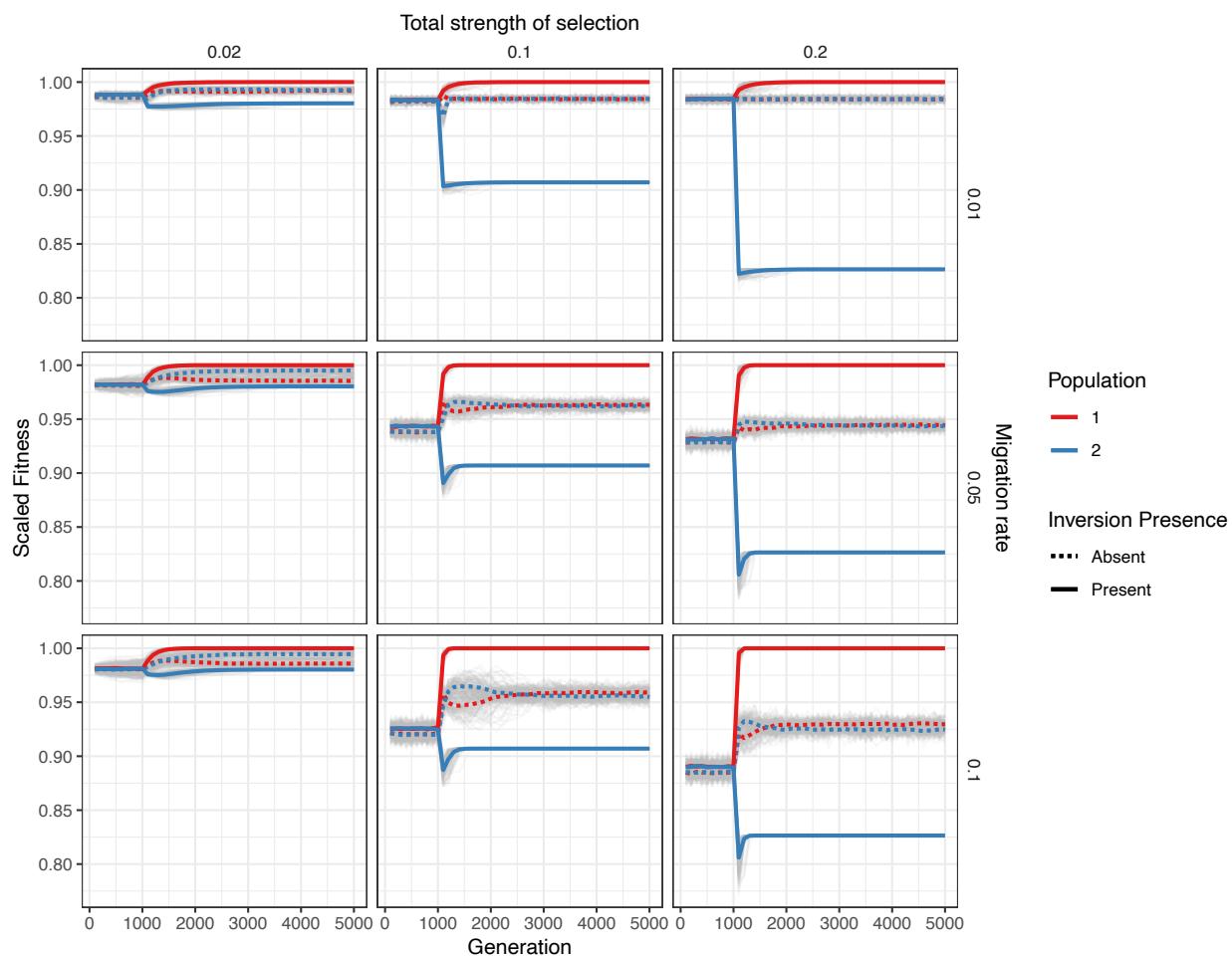
381 **Figure S1. Simulation results for the three populations in the “novel environment” scenario across**
382 **nine parameter combinations.** Each panel depicts the change in scaled mean fitness of a simulated
383 population (colors) over time in the presence or absence of a chromosomal inversion (solid and dashed
384 lines, respectively) under a single parameter combination. Each column depicts simulations performed at
385 different total strengths of selection (the sum of the magnitude of all selection coefficients across all loci in
386 any of the given environments). Each row depicts simulations performed at different migration rates. Note
387 that under each parameter combination, the presence of an inversion limits adaptation of population 3 into
388 the novel habitat (i.e., the dashed green line is always above the solid green line). It is also interesting to
389 note that in both population 1 and population 2, fitness is reduced less in the presence of the inversion as
390 compared to the absence of the inversion. This is because when the inversion is present, population 3
391 cannot reach its optimal genotype, so the genotypes adaptive in both population 1 and population 2 are at
392 a higher prevalence and thus cause less maladaptive gene flow back into population 1 and population 2.
393 For further details on the simulations, see Supplementary Materials and the caption of Fig.1B.

394

395

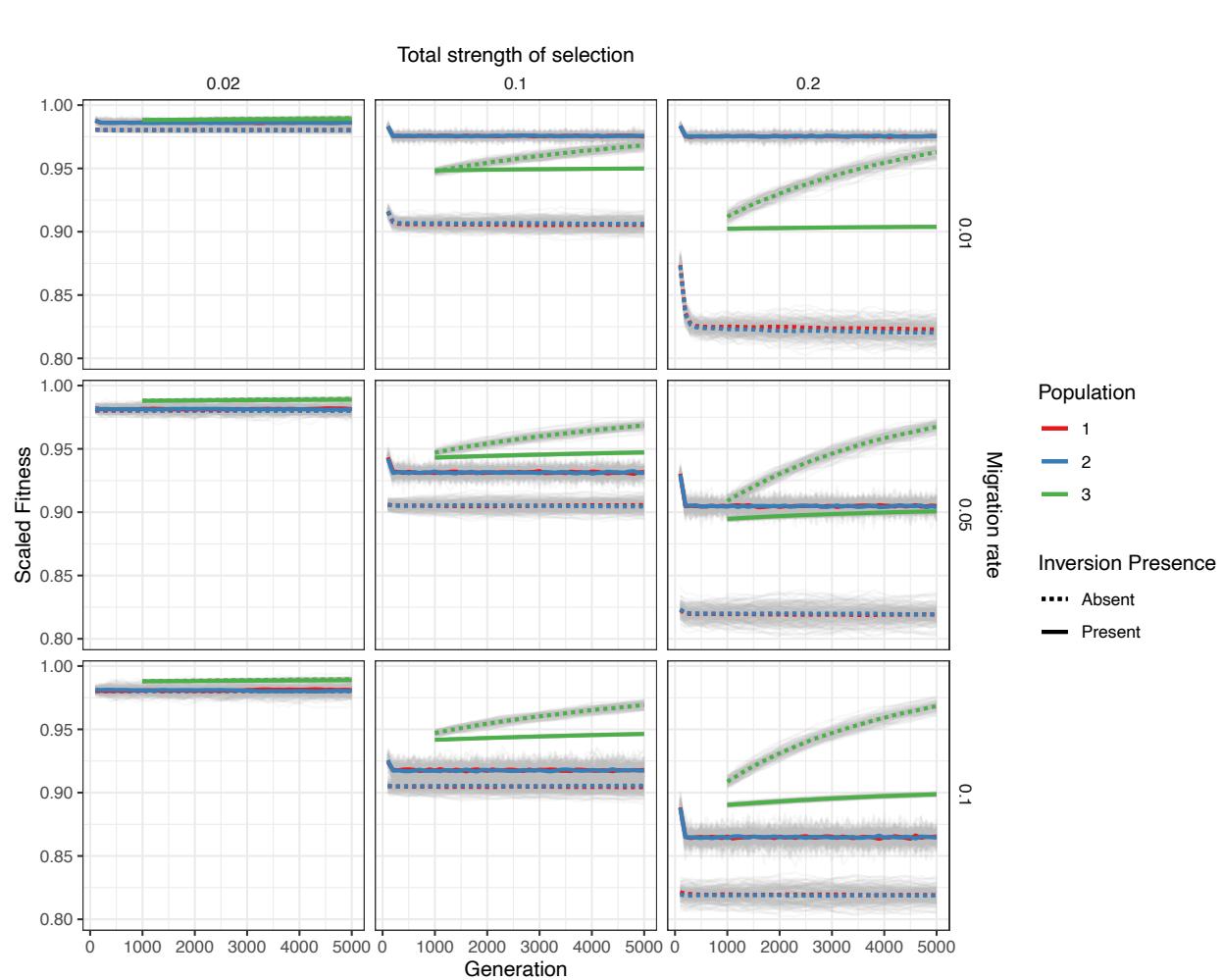
396

397


398

399

400


401 **Figure S2**

402

428
429

Figure S3

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

Figure S3. Simulation results for the polygenic scenario (100 loci) across nine parameter combinations. This scenario is identical to the “novel environment” scenario described in the text, except fitness is determined by 100 loci instead of two. Each panel depicts the change in scaled mean fitness of a simulated population (colors) over time in the presence or absence of a chromosomal inversion (solid and dashed lines respectively) under a single parameter combination. Each column depicts simulations performed at different total strengths of selection (the sum of the magnitude of all selection coefficients across all loci in any of the given environments). Each row depicts simulations performed at different migration rates. Note that under all parameter combinations except when the total strength of selection is very weak compared to migration (left panels), the presence of an inversion limits adaptation of population 3 into the novel habitat (i.e., the dashed green line is above the solid green line). We further note that identical simulations but with 40 instead of 100 loci under selection produced highly similar results and are thus not shown.

445 **Supplementary References**

- 446 Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward genetic simulations beyond the Wright–
447 Fisher model. *Molecular Biology and Evolution*, 36(3), 632–637.
448 doi:10.1093/molbev/msy228
- 449 R Development Core Team (2021). R: A language and environment for statistical computing.
450 Vienna, Austria: R Foundation for Statistical Computing.
- 451 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., . . . Yutani, H.
452 (2019). Welcome to the Tidyverse. *Journal of Open Source Software*, 4(43).
453 doi:10.21105/joss.016