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Abstract

Structural variants (SV) are a major driver of genetic diversity and disease in the human genome and their
discovery is imperative to advances in precision medicine and our understanding of human genetics. Existing
SV callers rely on hand-engineered features and heuristics to model SVs, which cannot easily scale to the vast
diversity of SV types nor fully harness all the information available in sequencing datasets. Since deep neural
networks can learn complex abstractions directly from the data, they offer a promising approach for general SV
discovery. Here we propose an extensible deep learning framework, Cue, to call and genotype SVs. At a high
level, Cue converts sequence alignments to multi-channel images that capture multiple SV-informative signals
and uses a stacked hourglass convolutional neural network to predict the type, genotype, and genomic locus of
the SVs captured in each image. We show that Cue outperforms the state of the art in the detection of five classes
of SVs (including two types of complex SVs and subclonal SVs) on synthetic and real short-read data and that
it can be easily extended to other sequencing platforms, such as long and linked read sequencing technologies,
while achieving competitive performance. By design, Cue can also be automatically extended to support new
SV classes: this versatility is crucial as novel SV types are discovered in ongoing population-scale sequencing
initiatives.

Introduction

Structural variants (SVs) are the exceptionally diverse set of all genome alterations larger than 50 base pairs. SVs
encompass mutations, such as deletions, insertions, inversions, duplications, translocations, and any complex
combination thereof, that can reach megabases in size. As a result, SVs account for more base-pair differences
across individuals than all other variant types combined [1] and are a key driver of the genetic diversity and
disease of the human genome. To date, SVs have been linked to a wide spectrum of disorders, such as cancer,
autism, Huntington’s disease, Alzheimer’s, and schizophrenia [2, 3]. Although fundamental to our understanding
of human genetics and advances in precision medicine, general SV discovery still remains a largely unsolved
problem. This is due both to the limitations of current sequencing technologies, and, more importantly, to the
challenges of effectively leveraging all the information available in the data to model and predict SVs in software,
while at the same time generalizing to the wide range of SV types and sizes.

Numerous tools have been developed to date to call SVs [4, 5, 6, 7, 8, 9, 10, 11]. These methods typically
extract hand-crafted features from the alignment of sequencing data to the reference genome to model both the
properties of the sequencing platforms (e.g. molecule lengths, types of sequencing error, coverage statistics) and
the types of SV events (e.g. mapping patterns associated with each type of SV). In whole-genome short-read
sequencing, read alignment signals that are commonly used to model SVs include: read depth (the number of
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reads that map to a genome region), discordant read pairs (pairs of reads from the same fragment whose mapping
deviates in distance or orientation from how a contiguous fragment should map), and split reads (reads that have
several partial alignments to the reference) [12]. In long-read sequencing, within-read discordance and split-read
information are typically used to detect SVs [11, 9, 10]. These signals are usually combined into a sophisticated
statistical model or a heuristic rule-based pipeline to predict different SV classes and SV breakpoints. As a
result, existing tools heavily rely on developer expertise and are usually tightly coupled to the properties of the
sequencing data and the artifacts of preceding analysis steps (e.g. the alignment algorithm). However, given the
sheer vastness of the SV landscape and the complexity of SV-informative signals, expert-driven SV detection is
inherently intractable, especially for balanced SVs such as inversions and complex nested SV types, rendering
us blind to major classes of genetic drivers of disease.

Deep learning offers the ability to learn complex abstractions directly from large labeled datasets without
expert guidance and is hence a promising avenue for general SV discovery. Recently, DeepVariant [13] pioneered
the use of deep learning for SNP and small indel calling in whole-genome sequencing (WGS) datasets. At its
core, DeepVariant uses a convolutional neural network (CNN) to classify read pileup images constructed around
candidate variant sites into three possible diploid genotypes and was shown to outperform all state-of-the-art
variant callers and generalize well across datasets. This strategy has also been recently applied to the analysis
of SVs, primarily using CNNs for SV genotyping [14, 15] and deletion detection [16]. However, while a great
fit for capturing small local events (whose signature can fully fit into a single image of some standardized size),
read pileup images are not well suited to capture the complex types and larger sizes of SVs. In particular, since
larger SVs would not fit into one image, the following challenges arise: the joint cross-breakpoint context and
signals would be lost; images that don’t overlap SV breakpoints but are internal to an SV would be challenging
to classify without loss of generality; and significant complexity would be added to reconstruct one SV call from
multiple separate images processed by the model. Moreover, since SVs are often nested or tightly clustered,
and hence multiple SVs can appear in the same image, SV detection cannot be robustly formulated as an image
classification task. This motivates the need to develop a new methodology to apply deep learning to the problem
of SV calling in its full generality.

In this work, we propose a novel generalizable framework, Cue, for SV calling and genotyping, which can
effectively leverage deep learning to automatically discover the underlying salient features of different SV types
and sizes, including complex and somatic subclonal SVs. In particular, we formulate SV discovery as a multi-
class keypoint localization task, where keypoints correspond to breakpoints of different SV type in multi-channel
images. We generate input images for this task by juxtaposing two genome intervals, which can capture both
SV breakpoints regardless of SV size, and simultaneously represent multiple read alignment signals as separate
image channels. To perform keypoint localization, our approach employs confidence map regression using a
stacked hourglass network [17, 18], trained to predict Gaussian response maps encoding the probability of each
pixel being an SV breakpoint, allowing for multiple SVs of any type to be present in the same image, which enables
our model to easily handle nested or clustered SVs. To classify SV breakpoints by type and genotype, our model
outputs a confidence map for each supported SV type-genotype combination. This formulation allows Cue to be
easily generalizable by design to different sequencing technologies and new SV types. In particular, to support
different sequencing platforms, alignment signals encoded in each input image channel can be customized to a
specific sequencing technology without requiring a change to the SV detection framework. Similarly, Cue can
learn to detect new SV types directly from additional training examples that capture such SVs also without any
updates to the framework. Hence, shifting to data-driven SV discovery allows Cue to keep up with and leverage
numerous ongoing population-scale sequencing initiatives and sequencing technology advances.

To date, we have trained Cue to detect and genotype deletions (DEL), tandem duplications (DUP), inversions
(INV), inverted duplications (INVDUP), and inversions flanked by deletions (INVDEL) larger than 5kbp; the latter
two are examples of complex SVs, which have been linked to several genomic disorders [9]. To investigate
the feasibility of our approach for the analysis of cancer datasets, we have also trained Cue to detect lower-
frequency subclonal DELs, DUPs, and INVs. Since high-quality labeled SV callsets in real genomes are still
scarce, we have trained our current models entirely on SVs modeled in silico. We have evaluated Cue using
synthetic and real short-read whole-genome sequencing datasets. We show that Cue outperforms state-of-the-
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art methods, including Manta[4], DELLY[5], LUMPY [6], and SvABA [8], on benchmarks where ground-truth or
high-confidence SV calls are available (namely, in simulation and in the HG002 GIAB Tier1 DEL benchmark[19]).
To further analyze Cue’s performance on real data given the absence of additional truthsets, we have used
several long-read callers (including Sniffles [9] and PBSV [10]) to orthogonally validate the results of the short-
read tools. In particular, we compared the performance of short-read and long-read methods on the CHM1
and CHM13 genome mix using short-read Illumina[20] and long-read PacBio [21] datasets. We show that Cue
achieves the highest relative concordance with long-read methods for CHM1 and CHM13 DELs, while lower
concordance is generally observed across these technologies for the INV and DUP callsets. We analyze several
examples of SVs detected by Cue and missed by other short-read tools in these benchmarks. Finally, we show
a proof-of-concept extension of Cue to long-read and linked-read sequencing platforms and its performance
gains, especially in complex SV discovery, as compared to several state-of-the-art long-read and linked-read SV
callers. We remark that the variant types, sequencing technologies, and training data we worked with to date
are just an initial set: our framework can naturally be extended to support more complex variants, additional
technologies, and even combinations of technologies, which we will pursue in subsequent framework releases.
The implementation of the Cue platform and the pretrained models are freely available under the MIT license at
https://github.com/PopicLab/cue.

Results

Overview of the Cue framework. At a high-level, Cue operates in three steps: (1) read alignments are con-
verted into images that capture multiple alignment signals across two genome intervals, (2) a trained neural
network is used to generate Gaussian response confidence maps for each image, which encode the location,
type, and genotype of the SVs in this image, and (3) the high-confidence SV predictions are refined and mapped
back from image to genome coordinates.

To encode multiple alignment properties, we construct an n-channel image from alignments to two genome
intervals, where n is the number of extracted alignment signal types. The x-axis and y-axis of this image cor-
respond to the two genome intervals, such that a pixel maps to some range of base pairs (a locus) in each
interval, and the pixel value in each channel encodes the corresponding signal extracted from the reads that map
to both pixel loci (see Figure 1A). Such images capture both the local and long-range genome structure infor-
mation and can uniquely characterize the type, genotype, and genomic breakpoints of an SV. Note that the pixel
corresponding to the start of the SV on the x-axis and the end of the SV on the y-axis simultaneously encodes
both breakpoints (we refer to such pixels as breakpoint keypoints). Therefore, by juxtaposing intervals that are
close-by and distant on the genome, we can depict breakpoints of both small and large SVs in the same image.
Using a streaming sliding-window approach to scan the genome, we produce candidate genome interval pairs
and the corresponding images on the fly.

We encode the following alignment signals from short reads: read-depth, split-read, read-pairs, and the dis-
cordant read-pair orientations – right-left (RL), left-left (LL) and right-right (RR) – where LL and RR pairs are
indicative of an inversion and RL pairs signal a duplication. We use different functions to represent these signals
(or their combination) in each corresponding channel as described in the Methods section. For example, read-
depth signal is computed as the difference in depth between two loci. Figure 1B shows several image channels,
visualized as heatmaps, generated from read alignments to a 150kbp synthetic genome interval. Briefly, in addi-
tion to read-depth: the split-read/read-pair channel shows the number of split reads or read pairs mapping to both
loci; the LL+RR read-pair channel shows the number of read pairs that map to both loci in the same orientation
(such as a forward-forward or reverse-reverse mapping), and the RL read-pair channel shows the number of read
pairs that map to both loci in the RL orientation (where the second read in the pair maps to an earlier position
on the reverse strand and the first read of the pair maps to a later position on the forward strand). We stack the
resulting heatmaps into an n-channel image and use this image as input to our deep learning model. In order to
support new sequencing platforms, we can reuse and extend the library of alignment signals and functions used
to generate the input channels. Furthermore, by combining channels generated for multiple sequencing platforms
into the same input image, we can also automatically train our framework on inputs derived jointly from multiple
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Figure 1: Overview of the Cue framework. A. Conversion of sequence alignments to images. Alignments from a genome
interval (visualized in IGV[22]) are shown on the x-axis and y-axis of the resulting image (displaying the overlay of several
signal channels), annotated with four different SVs in this interval. The four highlighted pixels (keypoints) in the image
correspond to the breakpoints of each SV (given by their start coordinate on the x-axis and their end coordinate on the
y-axis). B. SV image channels representing different signals. C. SV breakpoint confidence maps (predicted by the network
for the image in A) for the following SV types and genotypes: homozygous (HOM) and heterozygous (HET) deletions (DEL),
inversions (INV), and tandem duplications (DUP). For simplicity only the read-depth channel is shown as the background.
The bright kernels in each map represent a high confidence that the breakpoints of an SV of that specific type occur at
that location, e.g. each pixel in the DEL-HOM map encodes its probability to be a homozygous deletion keypoint. D. The
architecture of the stacked hourglass network used in Cue. It takes an n-channel image as input and generates a confidence
map for each supported SV type. The predicted confidence maps are then post-processed to produce the final SV callset.
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platforms. Finally, given the well-known association between SVs and repeats (see e.g. [23]), we could design
additional channels to make our calls more robust in highly repetitive regions (e.g. by encoding all the known
repeats in the reference). These extensions will be addressed in future work.

The resulting images can contain multiple SVs of different type and size, as well as partially visible SVs
(captured when the genome intervals overlap but do not fully include an SV). Moreover, unlike physical real-
world objects, which are self-contained and separable from each other and their background (having explicit
boundaries), SVs form patterns, which interact in intricate ways and don’t have a well-defined boundary. To
address these challenges, we formulate SV detection in these images as a multi-class keypoint localization task,
wherein the objective is to detect the image coordinates corresponding to the two breakpoints of each SV in the
image (i.e. the breakpoint keypoints), categorized by SV type and genotype. We solve this task using confidence
map regression by training our network to predict a set of (Gaussian response) confidence maps for each image,
such that each map corresponds to a zygosity-aware SV type supported by the model (e.g. heterozygous deletion
or homozygous inversion) and encodes the location of the breakpoints of all SVs of this type in the input image.
Figure 1C shows the set of six predicted confidence maps, used to detect deletions, inversions, and duplications
(split by genotype). To create ground-truth confidence maps for an image (given a ground-truth BED or VCF file),
we place an unnormalized 2D Gaussian kernel centered at each breakpoint keypoint in the confidence map given
by the type and genotype of each SV represented in the image. Given this approach, we can easily generalize
our framework to detect a new SV type by configuring it to predict two additional confidence maps (for both
genotypes) and just feeding it new examples labeled with this SV type.

To generate accurate confidence maps, our neural network needs to leverage features at both local and
global scale to learn the structural complexity of SV signatures and multi-SV interplay patterns. To this end,
Cue uses a fourth-order stacked hourglass convolutional neural network (HN) based on [17, 18], which can
consolidate information at multiple scales by repeated bottom-up (pooling) and top-down (upsampling) processing
and intermediate supervision. Figure 1D depicts the high-level network architecture of the HN model used by Cue.
The network takes an n-channel image as input and outputs a set of confidence maps, encoding the breakpoint
keypoints of all SVs in the image (split by type). The mean squared error or L2 loss is commonly used to measure
the distance between the predicted and the ground truth confidence maps. However, confidence maps encoding
a few keypoints using Gaussian kernels mostly consist of background pixels (of value zero), which creates a
severe imbalance between foreground and background classes. To address this imbalance, we use focal L2 loss
adapted from [24], which allows us to scale down the contribution of easy background and easy foreground pixels
when training Cue (see Methods).

Finally, given the confidence maps regressed by the network, we produce the set of final SV calls as follows:
(1) we detect all local peaks in each confidence map, (2) refine the keypoint positions using high-resolution
images, and (3) convert the refined keypoints to genome space to obtain the genome SV breakpoint coordinates.
Note that the type and genotype of each SV are directly given by the respective confidence map indices. In
addition, non-maximum suppression (NMS) filtering of lower-confidence conflicting calls is performed in both
image (2D) and genome (1D) space. Details about each step of the Cue framework are provided in the Methods
section.

DEL, DUP, and INV discovery from short-read synthetic data. To benchmark Cue in single event detection,
we simulated a human genome using SURVIVOR[25] based on the GRCh38 reference with a total of 13,504
SVs of size 5kbp – 250kbp, with the following breakdown by type: 4,500 DELs, 4,461 DUPs (tandem), and 4,543
INVs. We simulated a large number of SV events to create a more challenging benchmark, which guarantees that
some SVs are placed in difficult regions of the genome (e.g. segmental duplications) and clustered near each
other. To evaluate the effect of the genome sequence context on SV calling, we categorized the simulated SVs
based on their position into the following four types (defined in [26]) using the RepeatMasker[27] and segmental
duplication tracks from the UCSC genome browser[28]: (1) segmental duplication (SD), (2) simple repeat (SR),
(3) repeat masked (RM; all other repeats excluding SD and SR), and (4) unique. The resulting breakdown of
the simulated SVs by context type is as follows: SD=1,131(8.3%), SR=786 (5.8%), RM=8,722 (64.6%), and
unique=2,865 (21.2%). We then simulated a 60x paired-end Illumina short-read WGS dataset using DWGSIM
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Figure 2: Performance evaluation on synthetic data. A. Recall, precision, and F1 in SV calling and genotyping on 60x paired-end
short-read WGS data. B. FN calls broken down by size, SV type, and genome context. C. Recall of two complex SV types (INVDUP and
INVDEL). Bottom: examples of each event type found only by Cue. D. Recall of subclonal somatic SVs broken down by type.
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[29] from this genome and mapped the reads with BWA-MEM[30] to obtain the input to the methods evaluated in
this benchmark.

We compare the performance of Cue in calling and genotyping the simulated events above to four popular
state-of-the-art SV callers, namely: Manta [4], LUMPY [6], DELLY [5], and SvABA [8]. Figure 2A shows the
precision, recall, and F1 score of each method in calling and genotyping SVs computed using the benchmarking
tool Truvari[31] (see Methods for more details on evaluation metrics and the Supplementary Note for tool execution
details). As shown in Figure 2A and Supplementary Figure A1, Cue consistently achieves the highest scores in
the three reported metrics when calling SVs, leading by 1-15% in F1 score and 2-12% in recall. Manta and
LUMPY achieve equally high precision across all SV types, with a 2-6% loss in recall depending on the SV type.
When genotyping SVs, Cue achieves the highest scores in all the metrics on average across all SV types, with a
gain in F1 of 5-54%. The biggest increase in F1 score is seen for genotyping DUPs, where Cue leads by 12-36%.
On the other hand, Manta and LUMPY outperform Cue by 1% in F1 when genotyping INVs. The performance
profile (i.e. the precision vs recall trade off) of DELLY and SvABA varies most considerably in this benchmark
both in calling and genotyping SVs of different types, although slight variation can be observed for most tools.
To further examine the effect of SV type, size, and genome context on the performance of each tool, Figure 2B
shows each method’s false negative (FN) calls broken down by size, type and genome context. We can see that
method performance can vary significantly depending on these features. For example, most tools miss events of
smaller size that fall into SD and SR regions of the genome. Cue misses the fewest events in such repeat regions
– namely, 171 SD events and 172 SR events. LUMPY achieves the second highest recall, missing 408 SD events
and 258 SR events.

Complex SV discovery from short-read synthetic data. Since our deep learning framework is designed to
detect the breakpoints of any number of SVs in the same image, it can be naturally leveraged to detect clustered
and complex SVs. To that end, we trained Cue to additionally detect the following two complex SV types: deletion-
flanked inversions (INVDEL) and inverted duplications (INVDUP). We represented INVDUPs in Cue as a separate
SV type, while detecting INVDELs as three separate SVs (two DELs and one INV). For this benchmark, we
simulated a human genome using SURVIVOR with 7,240 SVs of size 5kbp – 250kbp in total, of which 1,048 were
INVDELs and 704 were INVDUPs. We configured Truvari to count a variant as a true positive regardless of its
reported type so as not to penalize tools that do not specifically detect or label complex subtypes. Figure 2C
shows the recall of complex SVs of each tool broken down by type, as well as an example of how each event type
is captured across several image channels constructed by Cue. Cue discovered a significantly higher number of
complex events in this benchmark; in particular, it found 88% of INVDELs, which is >55% greater than the next
best result (32% found by DELLY), and 95% of INVDUPs. Of the discovered INVDUPs, Cue labeled over 99.6%
events correctly as INVDUPs (with only 3 events called as DUPs). Manta and SvABA reported all recovered
INVDUPs as INVs; DELLY reported INVDUPs as INV events; and LUMPY detected only 4 INVDUP events
reported as a DEL, INV, and two breakends (BNDs). For INVDELs, Manta, SvABA, and DELLY did not call any
flanking deletions, while LUMPY called all matching events as BNDs. Supplementary Table A1 additionally shows
the percentage of recalled variants with a correct genotype for each tool. Cue assigned the correct genotype to
>98% of all discovered events. It significantly outperformed other tools in genotyping INVDUPs, where SvABA
achieved the largest percentage of correctly genotyped discovered INVDUPs of 68%. Finally, since Cue reports
INVDUPs directly, we could evaluate its precision as well and found that Cue does not report any false positive
INVDUPs, achieving 100% precision for calling INVDUPs in this benchmark.

Subclonal somatic SV discovery from short-read synthetic data. Somatic SV discovery in cancer genomes
is complicated by tumor heterogeneity, wherein some SVs may be present only in certain tumor subclones corre-
sponding to a fraction of the reads in the dataset. As a result, such SVs will have lower variant frequencies (VAFs)
and can be challenging to distinguish from noise using manually-designed heuristics. Here we investigate the
ability of our method to automatically learn to detect lower VAF subclonal SVs, which will produce fainter signals
in our images, using synthetic data.

In order to generate WGS data with subclonal SVs, we first simulated two human genome haplotypes (A and
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Figure 3: Performance evaluation on HG002 GIAB deletion benchmark. A. Recall, precision, and F1 in DEL calling. B. FN, FP, and
TP calls broken down by size and genome context. (1)-(3) are FN and FP SV calls analyzed in panel C and Supplementary Figure A3.
C. IGV plots and Cue image channels for a TP and FP call: (1) TP LINE-1 deletion event detected only by Cue and (2) FP deletion call
made by DELLY, LUMPY, and Manta (involving a diverging repeat in the reference illustrated in Supplementary Figure A2). IGV shows RL
read-pair alignments in green and read pairs with a discordantly large insert size in red.

B) using SURVIVOR based on the GRCh38 reference. We then created a FASTA file with one copy of haplotype
B and four copies of haplotype A, and simulated a paired-end short-read dataset with a total coverage of 60x from
this FASTA file as before using DWGSIM. This resulted in an effective 20% VAF for SVs of haplotype B. We used
half of the chromosomes of this genome to train Cue, and the other half for evaluation. The resulting evaluation
SV callset had a total of 6,266 SVs (heterozygous and homozygous events across both haplotypes) and 2,068
subclonal SVs from haplotype B. Figure 2D shows subclonal SV recall results broken down by SV type, as well
as the F1 score achieved by each method of the full evaluation dataset. Cue recovered 97% of all subclonal
SVs (96% of deletions, 96% of duplications, and 98% of inversions) while maintaining the highest F1 score, and
outperformed other methods in subclonal INV discovery. While DELLY recovered the most DEL and DUP events,
it also achieved the lowest F1 score (12% lower than Cue) in this benchmark.

HG002 GIAB DEL benchmark. To evaluate Cue on real data, we used the HG002/NA24385 sample and its
hg19 GIAB NIST Tier1 v.06 benchmarking callset [19] available from the Genome in a Bottle (GIAB) Consortium.
This callset contains curated deletion and insertion calls obtained by consensus calling with multiple sequencing
technologies; we used only calls from the high-confidence regions defined in this release. We obtained the 60x
Illumina HiSeq short-read BAM from GIAB (and re-mapped the reads using BWA-MEM) and evaluated Cue and
other tools using this dataset. Figure 3A shows the performance in SV calling obtained by the five methods
computed using Truvari for deletions greater than 5kbp. In this benchmark, Cue outperformed other methods
by 4-23% in F1 score. Manta achieves the highest precision (2% greater than Cue); however, its recall is 11%
lower than Cue. On the other hand, LUMPY achieves the highest recall (1% greater than Cue) with a precision
drop of 6% compared to Cue. Figure 3B shows the false negative (FN), false positive (FP), and true positive
(TP) DEL calls broken down by size and genome context with several highlighted events, for which IGV plots and
Cue-generated image channels are shown in Figure 3B and Supplementary Figure A2. In particular: (1) is a TP
LINE-1 (L1HS) deletion event detected only by Cue, (2) is a FP event called by DELLY, LUMPY, and Manta, and
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Figure 4: Performance evaluation of DEL calling on the CHM1+CHM13 cell-line mix. A. Upset plot depicting DEL callset overlaps
of five short-read and three long-read callers (only sets larger than 5 events are displayed for conciseness). B. Result breakdown by
consensus with long-read and other short-read callers. C. IGV plots of (1) a DEL event reported by DELLY, LUMPY, and SvABA and (2)
a LINE-1 DEL detected by Cue and long-read callers only.

not called by Cue, and (3) is a FP event called by DELLY, LUMPY, Manta, and SvABA, and not called by Cue.
As we can see in the Cue-generated channels, the LINE-1 deletion signature of event (1) is well-captured in the
high-MAPQ read-depth channel (which shows the drop in coverage consistent with a deletion or a repeat) and
the split-read/read-pair channel (which shows the novel adjacency formed by discordant reads-pair mappings).
The signatures in these two channels jointly, along with the absence of signal in the remaining channels, can
uniquely characterize a deletion of a repeat element. On the other hand, while the split-read/read-pair channel
alone at the site of FP event (2) can be consistent with a deletion, the presence of the RL signal and the absence
of read-depth signal are not jointly consistent with a deletion. We found that the mapping signature observed for
the FP event (2), along with several variations, is commonly reported as a DEL event by short-read SV callers,
or sometimes as two separate DUP and DEL events. While, theoretically, a precisely overlapping DEL and DUP
event on each haplotype can produce a similar mapping pattern, additional properties of this mapping signature
reveal that they are often the result of either a dispersed DUP or a divergent reference repeat (defined as the
presence of two inexact copies of a locus in the reference sequence) as illustrated in Supplementary Figure A3.
In particular, we performed an in-depth analysis of the loci at the breakpoints reported for event (2) using PacBio
CCS reads, which revealed it to be a divergent repeat in the reference. More specifically, from the joint de Bruijn
graph of the reference region and of the CCS reads that were mapped to the region, we found that there are two
copies of a short sequence in the donor genome (approximately 500bp around the two breakpoints), where one
copy (on the right) matches the reference, and the other copy involves several mismatches with the reference (on
the left). A pairwise global alignment of the two sequences in the reference (computed using the Needleman-
Wunsch implementation in EMBOSS Needle [32]) revealed a 92% identity, while the corresponding sequences
extracted from CCS reads from the donor had a 99% identity. The short-read mapping patterns further support
this hypothesis, with a consistent gain and loss of coverage observed at the two breakpoints and a discrepancy
in the span of the RL and large-insert read pairs (green and red pairs shown in the IGV plot) consistent with
the schematic in Figure A3. Finally, similar to event (2), the FP event (3) displays no drop in read depth, and
a complex pattern of discordant read pairs that cannot be explained by a single DEL. Validation with PacBio
CCS reads shows that this signature is induced by two dispersed DUPs and one inverted dispersed DUP (see
Figure A2 for details). Directly learning from labeled positive and negative examples, Cue is able to leverage the
information across all the channels jointly to make accurate predictions for these events, and in this instance it
can correctly learn that read pairs with a discordantly large insert size are not enough evidence by themselves
for calling a DEL.
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CHM1 and CHM13 diploid mix benchmark. We further evaluated Cue using the haploid hydatidiform mole
CHM1 and CHM3 cell line samples. We obtained the Illumina WGS reads for each sample (at 40x coverage
each), merged the reads to create a diploid 80x coverage mix in silico, and mapped the resulting mix against the
GRCh38 reference using BWA-MEM. Since a high-confidence truthset is not available for these two genomes,
we used three callsets derived from PacBio CLR long reads to orthogonally validate the results of the short-read
SV callers. In particular, we used the published Huddleston et al. callset[21] and generated calls from two other
long-read SV callers, Sniffles[9] and PBSV[10], on the PacBio CHM1 and CHM13 long reads published by [21].
Figure 4A is an upset plot depicting the agreement across all evaluated callsets for DEL events larger than 5kbp.
Tool callset overlaps were computed using SURVIVOR (see the Methods section for details). All long and short
read callers discovered the same 82 DEL events, with an additional 34 events found by everyone except SvABA.
Of the short-read callers, DELLY and LUMPY have produced the largest set of unique calls (i.e. calls that were
not reported by any other tool), 264 and 105, respectively. Cue has produced 49 unique calls and Manta has
produced the fewest unique calls (only 9). Since these events are likely to be FPs, we can estimate that DELLY
and Manta achieved the lowest and highest precision, respectively, on this dataset, which is consistent with the
HG002 benchmark. In order to estimate recall, we looked at how many short-read calls were validated by at
least one long-read caller. As seen in Figure 4B, Manta and SvABA had the lowest number of reported calls
also discovered using long reads, while LUMPY and DELLY had the highest, which is also consistent with their
performance profile on the HG002 benchmark. We can see here that the significant majority of Cue calls (186 out
of 244) were found by at least one long-read method – the largest fraction of calls of all short-read methods. Of
these calls, 7 were found only by Cue, Sniffles, and Huddleston et al. Next we manually examined several groups
of events that were found by multiple short-read callers only (i.e. they lacked long-read validation). For example,
68 DELs were reported by DELLY, LUMPY, and SvABA, while 42 events were reported by all short-read callers
except Cue. Even though tool consensus is high for these sets of events, we found that a large fraction of them
appear to be likely false positive calls caused by a dispersed DUP event or a divergent repeat in the reference,
similar to false positive DEL call signatures reported for HG002. For example, 12 of the 42 events had a DUP
call reported by at least one of the four methods at the same locus. Figure 4C shows the IGV plot of such a DEL
call found by DELLY, LUMPY, and SvABA, while Supplementary Figure A4A shows such a DEL call found by all
four short-read methods except Cue. Figure 4C also shows an example of a true LINE-1 DEL event found only
by Cue and two long-read methods and Figure A4B shows a similar LINE-1 DEL event found only by Cue and all
the long-read methods. Consistently with HG002 results, Cue is able to detect some LINE-1 DEL events missed
by all other short-read callers and validated by long-read callers in this benchmark as well.

We performed a similar analysis for DUP and INV events reported in Supplementary Figure A5. As opposed
to the DEL benchmark, the consensus across callers is considerably smaller for these event types. In particular,
only one DUP and zero INV events were consistently reported by all of the short and long-read callers. As can
be seen in Supplementary Figure A5A-B, all short-read methods agreed on 10 DUP events (with no long-read
support) and 7 DUP events were consistent with Sniffles alone. A considerable number of events were reported
by multiple short-read callers except Cue. In particular, 32 DUPs were found by Manta, LUMPY, DELLY, and
SvABA. Since consensus for these calls was high, we manually examined each call individually. We found that
18 out of the 32 events were found within centromeric satellite repeat regions of multiple chromosomes. Since
these regions are dominated by repeats, they are notoriously difficult to analyze using short reads. As can be
seen in Supplementary Figure A6, RL signatures are heavily present in these regions and can potentially lead
to FP DUP calls by methods that rely only on such mappings to identify DUP events. For example, we can see
that the methods produce numerous (overlapping and inconsistent) DUP calls for the displayed genome region
on chr12. Of the remaining 14 calls, we found that 8 were also reported as DEL events by some of the tools
and were consistent with either the dispersed DUP or the divergent reference repeat signature discussed above.
As seen in Supplementary Figure A5C-D, the overlap of INV callsets is substantially smaller across sequencing
technologies. In particular, all short-read methods except LUMPY agreed on only 13 INV events (with no long-
read support) and another 13 INV events were found only with long-read methods. Overall these results point to
the difficulty of calling DUPs and INVs using existing methods, and using orthogonal technologies for validation.
More importantly, they reveal the need for a benchmarking dataset for such events (and especially complex SVs)
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that can be used to evaluate existing and future tools.

Extending Cue to long and linked read sequencing platforms. To demonstrate that our approach gener-
alizes to different sequencing platforms, we have also performed a preliminary evaluation of Cue on long-read
and linked-read data. To leverage longer read lengths, we have added a new alignment signal channel, the
split-molecule channel, which captures the number of long molecules spanning two given loci. In linked reads,
the split-molecule signal can be readily extracted by counting the number of barcodes shared by reads aligned
to each locus. In order to extract the split-molecule signal (and the read-depth signal) from long reads, we first
generate a short-read coverage profile for each long read (wherein short reads are extracted from the long read,
barcoded uniquely with their long read name, and remapped to the long read alignment window). The short-read
coverage profile allows us to easily capture within-read SV events (e.g. duplications and inversions) without sacri-
ficing long-read mappability. Supplementary Figure A7A shows the image channels generated from PacBio CLR
long reads and 10x Genomics linked reads, respectively, for the genome interval in Figure 1A. For long reads,
we have also included the clipped-read signal computed as the difference in clipped-read coverage at two loci,
along with the split-read and read-depth channels. For linked reads, we have directly leveraged all the read-pair
channels developed for short-read paired-end sequencing. We have simulated long reads at 30x coverage us-
ing PBSIM2 [33] (aligned with minimap2 [34]) and linked reads at 60x coverage using LRSIM [35] (aligned with
Longranger [36]) from the synthetic training and evaluation genomes used in our short-read benchmarks.

We compared the performance of Cue (i.e. of the models trained only on linked reads and only on long reads,
respectively) to two state-of-the-art long-read SV callers, PBSV [10] and Sniffles [9], and to two linked-read SV
callers, Longranger [36] and LinkedSV [37]. We performed the evaluation on the two synthetic benchmarks
described above for single-event (DEL, INV, and DUP) and complex-event (INVDUP and INVDEL) discovery. As
shown in Figure A7B, Cue achieves the highest scores in DEL, INV, and DUP calling with these sequencing
technologies. We see the biggest performance gap in comparison to linked-read methods, where Cue leads
by 15% in F1 score. Note that state-of-the-art linked-read callers are also outperformed by existing short-read
callers: this suggests that developing expert-driven software that fully leverages linked-read signals is particularly
difficult, making this data type an ideal application domain for deep learning methods. Cue achieves significantly
higher genotyping accuracy with both long and linked reads as well.

Figure A7C shows the recall of complex SVs of each tool, broken down by type. As with short reads, Cue
discovered a significantly higher number of complex events in this benchmark than existing approaches. In
particular, it found 98% and 97% of INVDUPs using long reads and linked reads, respectively, while only 56%
and 64% of these events were found by the leading tools, PBSV and Longranger, respectively. Cue labeled 100%
of the detected events correctly as INVDUPs using long reads and 98% using linked reads. Existing methods
reported most of the recovered INVDUPs as INVs. Of the existing tools, only Sniffles was designed to detect
INVDUPs specifically; however, of the recalled 382 (54%) SVs, it reported only 7 as actual INVDUPs, and the
majority as INVs. Furthermore, Cue found 83% (with long reads) and 84% (with linked reads) of INVDELs,
respectively, which is significantly greater than the next best result of 34% found by Sniffles. For INVDELs,
existing methods missed most of the flanking deletions and discovered only a fraction of the inversions.

In conclusion, by just applying minimal modifications to the image channels, our approach can be extended
to other, completely different sequencing platforms, while matching or surpassing state-of-the-art methods that
were manually tailored to those platforms. This combination of power and simplicity of deployment allows Cue to
keep up with the rapid advances in sequencing technology and to deliver optimal performance on each platform.

Discussion

In this work we motivate the use of deep learning for structural variant discovery, which allows us to shift method
development away from ad hoc hand-engineered models and heuristics-based pipelines to scalable and sus-
tainable models that can learn complex patterns of variation automatically from the data. We lay out how SV
detection can be formulated as a deep learning computer vision task and propose a novel framework, Cue, to
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call and genotype SVs of diverse size and type. We demonstrate state-of-the-art results in calling several SV
classes, including complex and subclonal SVs, from synthetic and real short-read datasets. To date, our model
was trained to detect both simple germline and subclonal deletions, inversions, and tandem duplications, as well
as complex deletion-flanked inversions and inverted duplications, larger than 5kbp. By design, Cue can be easily
generalized to other sequencing technologies (such as PacBio, Oxford Nanopore, stLFR, and Hi-C), and com-
binations thereof, by adapting or expanding the set of alignment signals used to generate the images, without
requiring any other updates to the framework. For a proof of concept, we have adapted our framework to PacBio
CLR long reads and 10x Genomics linked reads and show that Cue can outperform existing methods on these
platforms, especially in complex SV discovery. Even more crucially, since Cue learns directly from the data, it can
be easily trained to detect overlapping SVs from different haplotypes, as well as new complex SV types as they
are discovered by the genetics community, provided that we have enough labeled examples at hand. However,
since it relies on read alignment signals, Cue can detect just the breakpoints of novel insertions, and needs to be
integrated with a local assembler to reconstruct the inserted sequence itself. We will expand the framework in fu-
ture work with support for additional sequencing platforms, smaller SV sizes (which can be achieved by changing
the basepair-to-pixel resolution of our images), and more SV types (such as translocations, insertions, and other
complex SVs).

A major requirement and challenge for data-driven SV discovery is the availability of large and well-balanced
training datasets. While numerous callsets are available in publicly-available repositories, such as GIAB and
HGSVC [38], high-confidence calls that can be used reliably for training are currently very scarce and are mostly
composed only of simple deletion and insertion events (e.g. the GIAB HG002 truthset used here for benchmark-
ing). Note that using high-confidence calls of just a subset of event types is challenging for training without manual
validation, since such calls may fall in the proximity of undetected SVs of a different type and would effectively
label such events as negative examples. To compensate for the current lack of available real-genome training
data, we have used in silico SV modeling for training. This approach can produce arbitrarily large well-balanced
datasets; however, extensive modeling and parameter sweeps are required to capture the full repertoire of se-
quencing technology characteristics, SV types, and genome contexts that we expect to see in real data. While
training on synthetic data produced encouraging results, we expect the model to struggle with event types it has
never seen during training; therefore, including real data into the training dataset is critical both for performance
and generalizability. Importantly, we can keep up with the rapid growth of available sequencing datasets and our
understanding of structural variants, by retraining our model on new data as our SV truthsets grow over time,
while leaving our core framework untouched.

Methods

Multi-channel image generation. Given a set of read alignments A from an input BAM file, a set of candidate
genome interval pairs G (with intervals of size S), and a set of n predefined alignment signal scalar valued
functions F = {f1, f2, ..., fn} (where fk : A × R2 → R) mapping alignments extracted from two regions of the
genome to a single value, we create an n-channel w × h image for each interval pair (gx, gy) ∈ G, where the kth
image channel is obtained as follows. First we use the function fk ∈ F to compute a square matrix Mk, such that
Mk

ij = fk(A, i, j). The dimension of Mk is S
B × S

B , where B represents the matrix resolution (or the number of
genome base pairs that correspond to one entry in M). The ith row in Mk corresponds to the genome region (or
bin) gy[iB...(i + 1)B), the jth column corresponds to the genome region gx[jB...(j + 1)B), and the value Mk

ij is
given by applying fk to alignments in regions i and j (denoted as the alignment subsets Ai and Aj , respectively).
We assign an alignment to a region if its midpoint position falls into the region. Post-construction, each matrix is
down-sampled (using block summation) or up-sampled (using nearest neighbours) to size w × h, depending on
the configured values of S, B, w, and h, and its values are normalized to fall in the range [0, 1]. In the resulting
image, genome positions from the interval gx are on the x-axis and those from gy are on the y-axis, respectively.
Presented results were obtained with images of size 256 × 256 pixels, B of 750bp for SV discovery and B of
200bp for SV refinement, and S of 150kbp.

We define the following alignment signal functions (note: we denote the sets of a specific property taken from
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all elements in a given alignment set using subscript notation. For example, the set of all read names taken from
the alignments in a subset Ai is given by Ai

name.):

• The read-depth function ∣∣Ai
∣∣− ∣∣Aj

∣∣
computes the difference in coverage in regions i and j normalized such that negative values fall in the range
[0, 0.5), and positive values fall in the range (0.5, 1] (to distinguish between deletion and duplication events);
we compute two channels using this function with (1) only MAPQ>0 alignments and (2) all alignments
(including MAPQ=0).

• The split-read and read-pair function ∣∣Ai
name ∩Aj

name

∣∣
computes the number of reads or read pairs mapping to both bin i and j, where read pairs and split-read
alignments are given the same name.

• The read-pair LL and RR orientation function∣∣∣Ai
name,{LL,RR} ∩Aj

name,{LL,RR}

∣∣∣
computes the number of read pairs that map to both bin i and j in the same orientation, such as a forward-
forward or reverse-reverse mapping; these mappings are common with inversions.

• The read-pair RL orientation function ∣∣∣Ai
name,RL ∩Aj

name,RL

∣∣∣
computes the number of read pairs that map to both bin i and j in the RL orientation, where the second
read in the pair maps to an earlier position on the reverse strand and the first read of the pair maps to a
later position on the forward strand; these mappings are common with duplications.

• The read-pair orientation function

avg
(∣∣∣Ai

name,{LL,RR}

∣∣∣ , ∣∣∣Aj
name,{LL,RR}

∣∣∣)
avg

(
|Ai

name| ,
∣∣∣Aj

name

∣∣∣)
computes the ratio in average coverage by LL and RR read pairs versus all pairs, which is indicative of the
inversion genotype.

In order to boost the signal from discordant mappings, the normalized output of the read-pair orientation
functions is also passed through a dilating maximum filter and a Gaussian filter.

To speed up computation, we construct an index of the input BAM file that allows us to quickly query several
properties of the alignments mapped to individual genome bins. More specifically, we partition each chromosome
into B-sized bins, and store the following sets of values extracted from the reads assigned to each bin: (1) number
of MAPQ>0 reads, (2) number of all reads, (3) read names, (4) read names of the LL and RR read-pairs, (5) reads
names of the RL read-pairs. Each function can then be easily computed via index lookups (e.g. the split-read
and read-pair function can be computed as the intersection of the read names stored in the corresponding two
bins of the index).

Interval pair selection. We use the following sliding-window strategy to generate G, the set of candidate interval
pairs (for which images are constructed) that capture both small and large SV events on each chromosome. Let
L be the length of a chromosome sequence and K be the step size of the sliding window, then for a given interval
size S, we produce the set of interval pairs gX × gY = G, where

gX = {[x, x+ S) | x = Kp, ∀p ∈ [0, (L− S)/K]}
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is the set of all x-axis image intervals (i.e. the intervals of size S at every Kth position on the genome) and

gY = {[y, y + S) | y = gstartx + δ, ∀δ ∈ ∆ , gx ∈ gX}

is the set of all y-axis image intervals, obtained by shifting the x-axis intervals by some δ (with gstartx representing
the location of the first base pair in gx and ∆ a user-specified set of possible shift values). We use δ to find large
events, where the end of the SV is further than S positions from the start of the x-axis interval. We can find
smaller events by reducing the size of the intervals, S, to enlarge them in the image. In our experiments, we set
K = 50kbp, S = 150kbp, and ∆ = {0, 75kbp, 150kbp}. Note that to detect events at any distance, including on
different chromosomes, we can select interval pairs based on alignment information, e.g. by considering every
pair of intervals that has a sufficient number of reads or read pairs that align to both. This optimization will be
implemented in future work.

SV confidence map regression. Given an n-channel image I generated for the genome interval pair (gx, gy),
our neural network outputs a set of confidence maps H = {h1, h2, ..., hT } corresponding to the T zygosity-aware
SV types supported by the model. Each confidence map encodes the predicted location of the breakpoints of all
the SVs of a particular type in the input. More specifically, let (bx, by) be the coordinates of a given SV’s breakpoints
in the genome (i.e. its start and end positions). If bx ∈ gx and by ∈ gy, we can map these breakpoints to a keypoint

p =

(
(bx−gstartx )

B ,
(gend

y −by)
B

)
in I. If detected, this keypoint is sufficient to infer the genome coordinates of this

SV within B base pairs by mapping its pixel coordinates back to genome space. Visually, the SV keypoint
corresponds to the top-left corner of the square defined by the start and end coordinates of the SV on each axis
of I.

We generate ground-truth confidence maps of size wH × hH to train the network as follows. For each SV, v
(provided as a ground-truth BED or VCF file), overlapping gx and gy with a visible keypoint pv (i.e. bvx ∈ gx and
bvy ∈ gy), we add an unnormalized 2D Gaussian distribution peak centered around pv to ht, where t represents
the type of the SV. As a result, for each SV type t ∈ {1...T}, the values at x ∈ RwH×hH

in ht are given by

ht(x) =
∑
v∈Vt

exp

(
−||x− pv||22

2σ2

)
where Vt is the set of all SVs in I of type t. The hyperparameter σ of the Gaussian kernel determines the spread
of each keypoint peak and can be used to balance the ratio of foreground and background pixels. The confidence
map size is determined by the stride hyperparameter s, which controls the ratio between the input image size and
the confidence map size. In our experiments we generate confidence maps of size 64 × 64, given by s = 4 (with
σ = 10).

Network structure and training. Our deep learning model is a fourth-order stacked hourglass network based
on the human pose estimation model proposed in [17, 18]. The network starts with a convolutional backbone
module through which the image is fed prior to the four hourglass modules. The backbone consists of a 7x7
convolutional layer, a residual module, a max-pooling layer, and two additional residual modules. For input
images of size 256x256, the backbone reduces the resolution down to 64x64 (our confidence map size). Each
hourglass module consists of residual modules and max pooling layers to process the input features down to a
low resolution, followed by nearest neighbor upsampling layers and skip connections to get back up to the output
resolution. We perform intermediate supervision after each hourglass module, resulting in each hourglass module
generating its own set of intermediate confidence map predictions from which we compute a loss. Stacking and
intermediate supervision allow the network to repeatedly reassess its estimates and features at every scale. For
more details on the HN architecture, please see [17, 18].

Our network was implemented in Pytorch. To train the network we used the Adam optimizer [39], a learning
rate of 1e−4, and a batch size of 16.
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Focal loss. We use focal L2 loss adapted from [24] to compute the distance between the predicted and the
ground truth confidence maps. Let hkt be the predicted confidence map of size wH×hH for SV type t by hourglass
module k and let hGt be the ground truth confidence map for this SV type, the focal L2 loss between these two
confidence maps is defined as follows:

FLk
t =

∑
p∈RwH×hH

||hkt (p)− hGt (p)||22 · ||1−Dk
t (p)||22, where Dk

t (p) =

{
hkt (p)− α, hGt (p) > θ

1− hkt (p)− β, otherwise

The hyperparameter θ is the threshold used to separate background and foreground pixels, while α and β

are used to scale down the contribution of easy background and easy foreground pixels. The total loss for the
stacked HN, summed over the four stacked hourglass modules and SV types, is then computed as:

FL =
4∑

k=1

T∑
t=1

FLk
t

Converting regressed confidence maps to final SV calls. Since the input images can contain multiple SVs
of the same type, we detect all local maxima in each regressed confidence map using a maximum filter and
thresholding (i.e. only values above a certain threshold are kept as candidates; we use 0.4 as the threshold in
our experiments). Given the resulting set of peak keypoints, we perform 2D non-maximum suppression (NMS)
by finding the SV breakpoint bounding boxes defined by each keypoint and filtering keypoints with conflicting
or redundant bounding boxes. More specifically, let (x, y) be the coordinates of a candidate SV keypoint. The
bounding box defined by this SV’s breakpoints is given by the following confidence map coordinates: [xmin =

x, ymin = y, xmax = w − x, ymax = h − x]. For each pair of resulting bounding boxes (M,N), we compute the
intersection over union, IoU = |M ∩N |/|M ∪N | and intersection over minimum, IoM = |M ∩N |/min(|M |, |N |),
metrics and remove the keypoint with the lower score if the IoU or IoM values are above a specified threshold
(i.e. the boxes have substantial overlap).

In order to increase the accuracy of Cue’s breakpoint positions, we refine the location of the remaining key-
points using higher resolution images "zoomed-in" around SV keypoints. During refinement, we extract a small
patch of the initial image around each predicted keypoint and pass the patch through our model to obtain a
higher resolution keypoint. To minimize the number of base pairs represented by each pixel, the input images are
constructed using a smaller genome bin size (B), resulting in higher resolution.

Each refined SV keypoint coordinate (x, y) is then converted to genome breakpoint coordinates, with the x

coordinate giving the start position of the SV and the y coordinate giving its end position (as previously described).
Since each confidence map encodes only keypoints of SVs with a specific type (and genotype), we can directly
determine the type and genotype of each SV call based on the index of the confidence map in which it was
detected.

The above process produces a set of SV calls for each image, which are then collected and filtered using 1D
NMS, wherein we compute the IoU and IoM metrics for the SV intervals on the genome to find and filter out
near-duplicate or conflicting SVs. Since multiple images can capture the same part of the genome, and hence
call the same SV, we need this step to remove such duplicate calls. Finally, our method can also be configured to
filter out SVs falling into blacklisted regions of the genome (e.g. assembly gaps); however, this is not enabled by
default.

The SV calling module was implemented to run in parallel on multiple CPUs or GPUs (by splitting the workload
across chromosomes).

Training data generation. To generate training data for our model, we simulated a human genome using
SURVIVOR with 13,864 SVs of size 5kbp – 250kbp, consisting of homozygous and heterozygous deletions,
tandem duplications, inversions, deletion-flanked inversions, inverted duplications, insertions, and translocations
(note: insertions and translocations were included in the simulated genome but not labeled for training in the
images). We have augmented SURVIVOR to also model specifically LINE-1 deletions, dispersed duplications,
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and inverted dispersed duplications (the latter two were not labeled as new event types in the images and instead
served as negative examples). Additionally, we added small insertion and deletion events (of size 50bp - 1kbp)
into this genome. We generated a paired-end Illumina short-read WGS dataset from this genome using DWGSIM
and mapped the reads with BWA-MEM to obtain a BAM file with read alignments.

Given the generated BAM file and the ground-truth SV BED file produced by SURVIVOR, we generated an
annotated training image dataset by: (1) scanning the genome using a sliding-window approach to produce
genome interval pairs (we used intervals of size 150kbp for training and evaluation), (2) generating images from
the alignments to each interval pair, and (3) annotating the resulting images with information that includes the
SV type and breakpoint coordinates of each visible (or partially visible) SV, as well as genome intervals used to
generate the image. This scheme resulted in 175,310 images with up to 6 SVs fully visible in the same image. In
addition to this image dataset, we also generated 48,073 negative image examples using reads simulated directly
from reference genome and 10,400 images with divergent read alignments (to model divergence, we simply down-
sampled reference-read alignments at random loci of the genome). Supplementary Figure A8 shows a high-level
diagram of the in-silico training data generation process and a sample of produced annotated images.

Evaluation metrics. In benchmarks where truthsets were available (i.e. synthetic and HG002 genomes), the
SV calls and genotypes were evaluated using the benchmarking tool Truvari [31] to report the precision, recall,
and F1 score as compared to the ground-truth SV callset. An SV call was considered a true positive (TP)
if it had at least 50% reciprocal overlap and size similarity with an event in the ground-truth callset and was
within 500bp of this event (Truvari parameters: -pctovl 0.5 -pctsize 0.5 -refdist 500); otherwise it
was considered a false positive (FP). In order to evaluate performance in genotyping, we used the Truvari flag
-gtcomp, which additionally compares the genotype of matching calls, such that TPs are considered only the
calls defined above with matching genotypes, and FPs include the calls that either failed to match the genotype
or the other constraints. Only SVs that passed all filters were considered (configured using the -passonly flag).
When comparing SVs in a particular size range (configured using the -sizemin and -sizemax parameters
in Truvari), we run Truvari twice to find the actual set of FPs as follows: (1) we match the evaluated callset
against the ground-truth callset using the desired -sizemin and -sizemax thresholds and (2) we match the
FPs obtained in (1) against all the calls in the ground-truth callset. This procedure allows us to find ground-truth
matches that slightly fall outside the SV size thresholds (and are filtered by Truvari) – e.g. a 1000bp call that
matches a ground-truth 999bp call would be considered a FP by Truvari with a -sizemin 1000 threshold.

For the CHM benchmark, the overlap between callsets was found using SURVIVOR[25], which merges SVs
based on criteria such as the difference in SV breakpoint positions, event length, and event type. In our case,
SURVIVOR was parameterized to merge calls within a breakpoint difference of 5kbp and with reported lengths
of at least 1kbp. When identifying event overlaps across SV types (e.g. overlapping DEL and DUP calls), we
considered two events as overlapping if the size of the overlap region was at least 80% the length of both of SVs.

Data availability

The 60x HG002 Illumina WGS short reads, the 28x HG002 PacBio CCS reads, and the HG002 v0.06 truthset
are available through the GIAB FTP data repository. In particular, short reads can be downloaded from ftp:
//ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/N
IST_HiSeq_HG002_Homogeneity10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/
HG002.hs37d5.60X.1.bam, the PacBio CCS reads can be downloaded from https://ftp-trace.nc
bi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/
alignment/HG002.Sequel.15kb.pbmm2.hs37d5.whatshap.haplotag.RTG.10x.trio.bam, and
the v0.06 truthset can be downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data
/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz.
The CHM1 and CHM13 40x coverage Illumina WGS short reads can be downloaded from the ENA short read
archive (ENA accessions ERR1341794 and ERR1341795, respectively). The CHM1 and CHM13 PacBio long
reads can be obtained from the NCBI sequence read archive under accession numbers SRP044331 (CHM1)
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and SRR11292120-SRR11292123 (CHM13). The Huddleston et al. [21] CHM1 and CHM13 truthsets can be
downloaded from http://eichlerlab.gs.washington.edu/publications/Huddleston2016/str
uctural_variants. To obtain a single truthset, we merged the CHM1 and CHM13 VCFs using SURVIVOR
and genotyped the calls accordingly (i.e. such that records reported in both CHM1 and CHM13 were labeled as
homozygous, and records only reported in one of the two were labeled as heterozygous). To label duplications,
we cross-referenced insertion calls with Supplementary Table 11 of [21], which separately reports which published
insertion calls are duplications. All other data is available upon request.
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Supplementary Tables

INVDUP [704] INVDEL [3078]
BP match GT match BP match GT match

Cue 672 (95%) 661 (94%) 2707 (88%) 2667 (87%)
Manta 616 (88%) 414 (59%) 988 (32%) 988 (32%)
LUMPY 4 (0.5%) 1 (0.1%) 977 (32%) 974 (32%)
DELLY 647 (92%) 429 (61%) 998 (32%) 991 (32%)
SvABA 517 (73%) 352 (50%) 960 (31%) 380 (12%)

Table A1: Recall of complex INVDEL and INVDUP events. Matches were computed using Truvari by comparing only breakpoints (BP
match) and both breakpoints and genotype (GT match). The total number of matches is reported along with the percentage shown in
parentheses.
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Supplementary Figures

Figure A1: Performance evaluation of DEL, DUP, and INV calling and genotyping broken down by SV type on synthetic data.
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Figure A2: Analysis of a false positive HG002 deletion call generated by all short-read callers except Cue, using short and long reads.
A. IGV plot showing short-read alignments around the call locus. Discordant read pairs mapped to the same strand (LL and RR mappings)
are shown in light and dark blue (indicative of inversion), RL mappings are shown in green, and read pairs with a discordantly large insert
size are shown in red. B. Cue-generated image channels depicting short-read signals; can be easily seen to be inconsistent with a valid
DEL signature (see e.g. Figure 3C). C. One of the two haplotypes of HG002, reconstructed by de novo assembly of PacBio CCS reads,
explains the main patterns of discordant pairs in panel A with two dispersed DUPs, one inverted dispersed DUP, and no DEL (the other
haplotype is identical to the reference). Colored blocks labeled with letters are distinct short repeats. Gray blocks broken by diagonal lines
are long sequences. rc(A) is the reverse-complement of A. Haplotypes were reconstructed and compared to the reference as follows.
Let W be the sequence of the reference that covers the main patterns of discordant pairs in panel A. We built a joint de Bruijn graph
(k = 87) on W and on the 190 CCS reads that have some alignment to W , we removed k-mers with frequency one, and we translated W

and every read into a walk (which may contain cycles) in the graph.
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Figure A3: Schematic of a small dispersed DUP and a divergent reference repeat short-read mapping signature. Locus "A" is
duplicated in the donor genome. Some read-pair fragments map discordantly in the RL orientation (green) or with a large insert size
(red). Fragments internal to each copy of the donor map to the single copy of "A" in the reference genome, doubling its coverage. If the
reference has a divergent copy of "A" (denoted as "a"), a gap in coverage will be observed at "a".

Figure A4: IGV plots of likely FP and TP calls in the CHM1+CHM13 benchmark. A. A DEL call reported by all short-read callers except
Cue. B. A LINE-1 DEL event detected by Cue and all long-read callers.
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Figure A5: Performance evaluation of DUP and INV calling on the CHM1+CHM13 cell-line mix. A. Upset plot depicting DUP callset
overlaps of short-read and long-read callers (only sets larger than 5 events are displayed for conciseness). B. Result breakdown of DUP
calls by consensus with long-read and other short-read callers.C. Upset plot depicting INV callset overlaps of short-read and long-read
callers. D. Result breakdown of INV calls by consensus with long-read and other short-read callers.

Figure A6: Manta, SvABA, LUMPY, and DELLY DUP calls in the chr12 centromere region of the CHM1+CHM13 cell-line genome mix.
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Figure A7: Extending Cue to long and linked read sequencing platforms. A. Image channels generated from synthetic PacBio CLR
long reads and 10x Genomics linked reads, computed for an interval of the genome containing four different SVs (labeled along the x-axis;
the same interval is assigned to both axes). B. Recall, precision, and F1 in DEL, DUP, and INV calling and genotyping. LinkedSV does
not output SV genotypes and is omitted. C. Recall of two complex SV types (INVDUP and INVDEL) using long and linked reads.

Figure A8: Training data generation. A. High-level overview of the in-silico sequencing and image data generation process. B.
Annotated training examples (images are displayed for the figure using standard image visualization software based on only three of the
constructed channels, including the read-depth channel).
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Supplementary Notes

Software versions

The following versions of software tools were used in our benchmarks: BWA-MEM 0.7.15, SURVIVOR 1.0.3,
Manta 1.6.0, LUMPY 0.3.1, svtyper 0.7.1, extractSplitReads_BwaMem 0.1.0, DELLY 0.9.1, SvABA, Sniffles
1.0.12, NGMLR 0.2.7, PBSV 2.6.0, pbmm2 1.3.0, IGV, samtools 1.9, bcftools 1.14, RCK, Longranger 2.2.1,
LinkedSV commit 15259248d6f, and Truvari 2.1.

Execution parameters

Manta

We followed the recommended steps to execute Manta by running the scripts configManta.py, runWorkflow.py,
and convertInversion.py with default parameters.

LUMPY

We executed the following recommended workflow: (1) we extracted discordant reads using samtools view
-b -F 1294, (2) we extracted split reads using the extractSplitReads_BwaMem tool, (3) we ran lumpyexpress
with default parameters given the resulting files, and (4) we ran svtyper to produce a genotyped final VCF. We
found that the LUMPY output often included numerous homozygous reference calls. We filtered such calls to
improve LUMPY’s performance in the benchmarks (filtering consistently resulted in higher F1 scores).

DELLY

We ran the delly executable with recommended default parameters to call and genotype SVs and used bcftools
to convert their output BCF files into VCFs.

SvABA

We ran the svaba executable with recommended default parameters and the -germline flag to call and geno-
type SVs (the flag was skipped in the subclonal benchmark). Since SvABA does not directly label the discovered
events by their type, we used the tool RCK (namely, the rck-adj-x2rck and the rck-adj-rck2x scripts),
which provides support to convert SvABA outputs to a standardized VCF that includes SV types.

Sniffles

On the CHM benchmark, we ran Sniffles with default parameters using the NGMLR alignments of the CHM
PacBio reads as input (NGMLR was similarly executed with default parameters). For the synthetic benchmarks,
we obtained results using both minimap2 and NGMLR inputs and reported the best of the two (namely, NGMLR
for the complex SV benchmark and minimap2 for the basic SV benchmark). When computing the complex SV
recall, we also allowed even the filtered SV calls made by Sniffles to match the ground truth events in order to
increase its performance (since in this benchmark most of the reported Sniffles events were not annotated with
PASS).

PBSV

We ran PBSV with default parameters using the recommended PBMM2 alignments as input (PBMM2 was simi-
larly executed with default parameters and the -median-filter flag).
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Longranger

We ran the longranger wgs pipeline with default parameters and -vcmode=freebayes. We combined the
output dels.vcf.gz and large_svs.vcf.gz files. In order to correctly compare genotypes with ground truth
using Truvari, all 1/0 entries were replaced with 0/1 entries.

LinkedSV

We ran the linkedsv.py script with default parameters and the -germline_mode flag. We found that LinkedSV
outputs numerous near-duplicate calls, which can significantly lower its precision when benchmarking with Tru-
vari. In order not to penalize these calls, we added the -multimatch flag in Truvari when evaluating LinkedSV,
which allows for multiple reported calls to match the same ground truth call.
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