

A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes

Authors: Jessica A. Buttress¹, Manuel Halte², J. Derk te Winkel¹, Marc Erhardt^{2,3}, Philipp F. Popp², and Henrik Strahl¹

Affiliations:

¹Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

²Institute for Biology - Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany

³Max Planck Unit for the Science of Pathogens, Berlin, Germany.

Corresponding authors: Philipp F. Popp (poppphil@hu-berlin.de) and Henrik Strahl (h.strahl@ncl.ac.uk)

1 **ABSTRACT**

2

3 Transmembrane potential is one of the main bioenergetic parameters of bacterial cells, and is
4 directly involved in energising key cellular processes such as transport, ATP synthesis, and
5 motility. The most common approach to measure membrane potential levels is through use of
6 voltage-sensitive fluorescent dyes. Such dyes either accumulate or are excluded from the cell
7 in a voltage-dependent manner, which can be followed by means of fluorescence microscopy,
8 flow cytometry, or fluorometry. Since the cell's ability to maintain transmembrane potential
9 relies upon low membrane ion conductivity, voltage-sensitive dyes are also highly sensitive
10 reporters for the activity of membrane-targeting antibacterials. However, the presence of an
11 additional membrane layer in Gram-negative (diderm) bacteria significantly complicates their
12 use. In this manuscript, we provide guidance on how membrane potential and its changes can
13 be reliably monitored in Gram-negatives using the voltage-sensitive dye DiSC₃(5). We also
14 discuss the confounding effects caused by the presence of the outer membrane, or by
15 measurements performed in buffers rather than growth medium. We hope that the discussed
16 methods and protocols provide an easily accessible basis for the use of voltage-sensitive dyes
17 in Gram-negative organisms, and raise awareness of potential experimental pitfalls associated
18 with their use.

19

20

21 **Keywords:** membrane potential, voltage-sensitive dyes, depolarisation, *Escherichia coli*,
22 *Salmonella enterica*

23

24 **Abbreviations:** DiSC₃(5), 3,3'-Dipropylthiadicarbocyanine iodide; DiOC₂(3), 3,3'-
25 Diethyloxacarbocyanine Iodide; EDTA, Ethylenediaminetetraacetic acid; MIC, Minimal
26 inhibitory concentration; ThT, Thioflavin T; PMB, Polymyxin B; PMBN, Polymyxin B
27 nonapeptide. PBS, Phosphate-buffered saline; DMSO, Dimethyl sulfoxide

28 **INTRODUCTION**

29

30 Due to their misuse and overuse in both clinical and agricultural settings, antibiotic resistance
31 is one of the biggest threats to global health today. This crisis is exacerbated by a deficit in
32 antibiotic innovation, as demonstrated by the linear decline in discovery of new antibacterial
33 molecules over the past 30 years [1]. There is, therefore, an urgent need for compounds with
34 novel targets and modes of action. One emerging strategy is targeting bacterial membranes
35 [2].

36 The bacterial cytoplasmic membrane is an essential macromolecular structure that
37 harbours critical cellular processes such as nutrient and waste transport, respiration and ATP
38 synthesis, protein secretion, motility, cell division, and cell wall synthesis [3]. Hence,
39 maintaining the cytoplasmic membrane in an intact, biologically functional, and selectively
40 permeable state is critical for the viability of bacterial cells. One of the essential features of the
41 bacterial cytoplasmic membrane is its ability to maintain an electrical potential
42 (transmembrane potential) which, alongside ATP, is a key cellular energy reserve used to
43 drive important energy-demanding processes such as ion homeostasis, nutrient, protein and
44 lipid transport, ATP synthesis, and motility.

45 The suitability of bacterial membranes as a vulnerable drug-target is perhaps best
46 demonstrated by eukaryotic host defence peptides, which act by disrupting bacterial
47 membranes and play a critical role in our innate immune system [4–6]. Despite a long history
48 of co-evolution, bacteria have failed to evolve resistance mechanisms that fully protect
49 themselves against membrane-targeting host defence peptides. More recently, the clinical
50 efficacy of membrane-active antimicrobials has been demonstrated by the success of
51 polymyxin B, daptomycin and colistin as last resort antibiotics used to treat life-threatening
52 infections caused by multi-drug resistant pathogens [7–10]. Whilst the Gram-negative outer
53 membrane and the associated lipopolysaccharide (LPS) layer are formidable barriers against
54 many agents that target the cytoplasmic membrane, polymyxin B and colistin show selective
55 activity against Gram-negative bacteria. Additionally, host defence peptides of the Cathelicidin

56 type are capable of disturbing the Gram-negative outer membrane as part of their antibacterial
57 mode of action [4]. Hence, targeting the cytoplasmic membrane is a reasonable drug-
58 development strategy, even against more challenging Gram-negative pathogens.

59 Membrane-targeting antibiotics commonly perturb membrane integrity by increasing
60 permeability to ions or larger molecules, or by inducing more subtle changes such as forming
61 or disturbing lipid domains, altering membrane fluidity, or delocalising membrane-associated
62 proteins [11–15]. Large membrane-impermeable fluorescent dyes such as Propidium Iodide
63 and Sytox Green are most frequently used to investigate antibiotic-induced changes in
64 membrane permeability *in vivo*. These probes are DNA-intercalating and stain the nucleoid
65 when large pores are formed in the cytoplasmic membrane, or when cell lysis is induced [4,
66 16, 17]. However, these assays are unable to detect smaller-sized channels, increased ion
67 permeability, or inhibition of respiration; all of which can still be lethal to the cell through
68 dissipation of the transmembrane potential and associated cellular consequences [11, 18–21].
69 Membrane depolarisation can be followed more directly using a number of voltage-sensitive
70 fluorescent probes including 3,3'-Dipropylthiadicarbocyanine iodide DiSC₃(5). Due to its
71 hydrophobic and cationic nature, DiSC₃(5) can penetrate the lipid bilayer and accumulate to
72 high levels in polarized cells; a process which is associated with self-quenching of
73 fluorescence. Upon membrane depolarisation, the dye is rapidly released from the cells
74 resulting in a dequenching which can be followed fluorometrically, microscopically, and using
75 flow cytometry [22, 23]. Whilst DiSC₃(5), and a closely related voltage-sensitive dye 3,3'-
76 Diethyloxacarbocyanine Iodide (DiOC₂(3)), are frequently used in antibiotic mechanism-of-
77 action studies in Gram-negative bacteria [24–26], the used protocols are relatively inconsistent
78 and frequently include incubations in buffers of various compositions, presence of chelating
79 agents such as EDTA, or in strains with hyperpermeable outer membranes. Accordingly,
80 robust protocols for using these voltage-sensitive dyes to measure perturbations of the
81 transmembrane potential in Gram-negative bacteria are missing.

82 Reliable and reproducible assays to follow changes in bacterial membrane potential
83 are not only important in the context of antibiotic research. The use of DiSC₃(5) as proxy for

84 the polarisation state of cells could be applied to study distinct cellular processes such as the
85 energetic burden of flagellar formation and rotation. The assembly of the bacterial flagellum,
86 as well as the flagellar-mediated swimming motility both rely on the proton motive force [27,
87 28]. Recently, proton leakage via the stator units of the flagellar motor has been associated
88 with a reduced growth rate in *Salmonella* [29]. Thus, voltage-sensitive dyes, such as DiSC₃(5),
89 could be used to monitor the effects of such energy-consuming processes on the polarisation
90 state of individual cells and their current physiological condition.

91 In this manuscript, we will discuss and provide guidance on fluorescence-based
92 techniques to measure membrane potential in the Gram-negative model organisms
93 *Escherichia coli* and *Salmonella enterica*. We hope to raise awareness regarding the various
94 confounding parameters and factors that can have a significant effect on the voltage-
95 dependent behaviour of dyes in the context of Gram-negative bacteria. The discussed
96 methods and protocols should provide a useful starting point for colleagues interested in
97 identifying and characterising the antibacterial mode-of-action of membrane-targeting
98 compounds against Gram-negative bacteria, or for analysing Gram-negative membrane
99 potential levels in a more physiological context.

100

101

102 METHODS

103

104 Strains, media and growth conditions

105 Strains and genotypes are listed in Table 1. *E. coli* was grown in Lysogeny Broth (Miller) [10
106 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl] and *S. enterica* in Lysogeny Broth (Lennox) [10
107 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl]. For experiments performed in buffer, cells were
108 collected by 3 min centrifugation at 6000×g, washed, and resuspended to an OD₆₀₀ of 0.3 in
109 phosphate-buffered saline (PBS) [8 g/l NaCl, 0.2 g/l KCl, 1.15 g/l Na₂HPO₄, 0.2 g/l KH₂PO₄,
110 pH 7.3]. If indicated, PBS was supplemented with 0.2% glucose and 1 mM CaCl₂.

111 **Minimal inhibitory concentration (MIC) determination**

112 *E. coli* overnight cultures were diluted 1:100 in appropriate growth medium and grown to mid-
113 logarithmic phase. Cells were then diluted to give a final concentration of 5×10^5 cells per well
114 in a pre-warmed 96-well microtiter plate. This plate was prepared with an initial high
115 concentration of the desired compound followed by a serial 2-fold dilution. After addition of the
116 cells, the plate was incubated at 37°C for 16 hours with shaking at 700 rpm. MIC was defined
117 as the lowest compound concentration able to inhibit visible bacteria growth.

118

119 **Fluorescence microscopy**

120 *E. coli* overnight cultures were diluted 1:100 in LB and incubated at 37°C upon shaking until
121 an OD₆₀₀ of 0.3. 100-200 µl culture aliquots were transferred to 2 ml Eppendorf tubes with
122 perforated lids followed by addition of 7 µM (10 µg/ml) polymyxin B (Sigma-Aldrich) or 31 µM
123 (30 µg/ml) polymyxin B nonapeptide (Sigma-Aldrich) and incubation at 37°C upon shaking
124 using a thermomixer. If applicable for the specific experiment, 200 nM of the membrane
125 permeability indicator Sytox Green solved in H₂O (ThermoFisher) was added alongside the
126 antimicrobial compound, whilst 1 µM of the membrane potential-sensitive dye DiSC₃(5)
127 (Sigma-Aldrich) was added 5 min prior to imaging. The DMSO concentration of the final cell
128 suspension was kept at 1-2%, which is critical for good DiSC₃(5) solubility and staining while
129 not affecting growth itself. Samples were immobilised on Teflon-coated multi-spot microscope
130 slides (ThermoFisher) covered with a thin layer of H₂O/1.2% agarose and imaged
131 immediately. In case of data shown in Fig. 1, agarose was additionally supplemented with
132 10% LB. For further details about this type of slide preparation, see te Winkel *et al.* [23].
133 Microscopy was performed using a Nikon Eclipse Ti equipped with Nikon Plan Apo 100x/1.40
134 Oil Ph3 objective, CoolLED pE-4000 light source, Photometrics BSI sCMOS camera, and
135 Chroma 49002 (EX470/40, DM495lpxr, EM525/50) and Semrock Cy5-4040C (EX 628/40,
136 DM660lp, EM 692/40) filter sets. Images were acquired with Metamorph 7.7
137 (MolecularDevices) and analysed with Fiji [30].

138 **Time-lapse microscopy**

139 *E. coli* wild type cells were grown overnight at 30°C in M9 medium supplemented with 0.4%
140 glucose, 0.2% casamino acids and 1mM thiamine, followed by a 1:10 dilution in M9 medium
141 with diluted nutrients (0.02% glucose and 0.01% casamino acids) and incubation at 30°C. The
142 time-lapse slide was prepared as described earlier [23, 31] with following modifications. For
143 the preparation of the slide, a 2x stock of carbon source-diluted M9 medium (0.02% glucose,
144 0.01% casamino acids) was preheated to 60°C and diluted 2-fold with 3% low-melting agarose
145 kept at 60°C. DiSC₃(5) solved in DMSO was added to the agarose to a final concentration of
146 2.5 μM and a DMSO concentration of 1%, followed by pouring the time-lapse slide. The cells
147 growing in nutrient arm M9 liquid medium were diluted to an OD₆₀₀ of 0.035, followed by
148 transfer to the time lapse slide. Time-lapse microscopy was carried out at 30°C using an
149 Applied Precision DeltaVision RT automated microscope equipped with a Zeiss Plan Neofluar
150 63x/1.40 Oil Ph3 objective and Photometrics CoolSnap HQ camera, and a Cy5 filter set
151 (EX632/22, DM645-700, EM 679/34). Phase contrast and fluorescence images were taken
152 every 10 minutes over the duration of the microcolony growth (19h).

153

154 **Image analysis**

155 Quantification of DiSC₃(5)-fluorescence for individual cells was performed in a semi-
156 automated manner using Fiji [30]. To eliminate bias, the individual cells were identified and
157 converted to regions of interest (ROIs) by thresholding of corresponding phase contrast
158 images. If individual cells adhered to each other in a clearly identifiable manner, they were
159 manually separated prior to automated cell detection. Larger cell aggregates were omitted
160 from the analysis. The fluorescence intensity values for individual cells across the population
161 were obtained from background-subtracted fluorescence images by using the phase contrast
162 imaging-derived ROIs. To further eliminate bias, only multiples of full fields of view were
163 analysed.

164 **Fluorometric determination of membrane potential levels**

165 *E. coli*:

166 Cultures were grown to logarithmic growth phase and, if needed, diluted to an OD₆₀₀ of 0.5 in
167 growth medium supplemented with 0.5 mg/ml fatty acid free BSA (Sigma-Aldrich). Addition of
168 BSA is critical to suppress DiSC₃(5) binding to microtiter plate plastic surface. Immediately prior
169 to measurement, the cells were transferred to black polystyrene 96-well plates (Porvair
170 Sciences) and the autofluorescence of *E. coli* was measured for up to 5 min. DiSC₃(5)
171 dissolved in DMSO was then added to a final concentration of 0.5 μ M (1% DMSO) and the
172 fluorescence quenching was monitored until a stable baseline was obtained, followed by
173 addition of 7 μ M (10 μ g/ml) polymyxin B (Sigma-Aldrich) or 31 μ M (30 μ g/ml) polymyxin B
174 nonapeptide (Sigma-Aldrich). Fluorometric measurements were taken every minute, with
175 vigorous shaking in between readouts, using a BMG Clariostar multimode plate reader upon
176 610 nm (\pm 10) excitation, and 660 nm (\pm 10) emission settings. All media, plates and
177 instruments were warmed to 37°C prior to use. To investigate whether compounds of interest
178 interfered with DiSC₃(5) fluorescence at used concentrations, this assay was repeated, in the
179 absence of cells, in PBS supplemented with BSA.

180

181 *S. enterica*:

182 For determination of membrane potential of stationary phase cells, the OD₆₀₀ of overnight
183 cultures was determined and subsequently 2 ml were harvested by centrifugation for 3 min at
184 21,000 \times g to obtain cell free spent medium. To prevent re-energisation through resuspension
185 in fresh medium, the cells were diluted to an OD₆₀₀ of 0.2 in spent medium, mixed with 0.5
186 mg/ml fatty acid free BSA (Sigma-Aldrich) and incubated in a thermomixer for 15 min at 850
187 rpm and 37°C with open lids. To pre-treat samples, polymyxin B nonapeptide (Merck) solved
188 in H₂O was added to a final concentration of 31 μ M (30 μ g/ml). After that, cell suspension was
189 transferred into black 96-well polystyrene plates (Greiner Bio-One) and the autofluorescence
190 of *S. enterica* was recorded at 610 nm (\pm 9) excitation and 660 nm (\pm 20) emission every
191 minute for 3 min using a Tecan Infinite M200 plate reader with continuous shaking between

192 the measurements. Subsequently, DiSC₃(5) (Eurogentech) was added to a final concentration
193 of 1 μ M while maintaining 1% DMSO, and fluorescence measurement was continued for
194 another 17 min in one minute intervals. For pre-treated samples, polymyxin B (Merck) was
195 added to a final concentration of 14 μ M (20 μ g/ml), whilst water was added for untreated
196 controls. For non-pre-treated samples, either polymyxin B nonapeptide or polymyxin B were
197 added to final concentrations of 31 μ M (30 μ g/ml) or 14 μ M (20 μ g/ml), respectively. Membrane
198 potential was followed for another 30 min in the plate reader with readings every minute. For
199 measuring membrane potential of exponential growth phase growing cells, a fresh sub-culture
200 was inoculated 1:100 from an overnight culture and incubated until an OD₆₀₀ between 0.3 and
201 0.7 was reached. Subsequently, cells were diluted in fresh medium to an OD₆₀₀ of 0.2 and the
202 protocol was performed as described above.

203

204 **Statistical analyses**

205 The data presented here are representatives of at least two independent experiments. The
206 minimal inhibitory concentration (MIC) and fluorometric assays were carried out as technical
207 triplicates. The statistical significance was calculated as one-way, unpaired ANOVA with
208 Tukey's post hoc test. Significance was depicted as **** for $p < 0.0001$, *** for $p < 0.001$, ** for
209 $p < 0.01$, * for $p < 0.05$, ns for $p > 0.05$.

210

211

212 **RESULTS AND DISCUSSION**

213

214 **Inhibitory effects of used dyes and compounds**

215 A valid concern when using voltage-sensitive and other cell dyes is their potential to alter the
216 cellular properties they are intended to monitor. Indeed, the amyloid [32], RNA [33, 34], and
217 voltage-sensitive dye [35, 36] thioflavin T (ThT) was recently shown to dissipate the membrane
218 potential itself if used in too high concentrations [37]. To test the growth inhibitory potential of
219 DiSC₃(5), and of the antimicrobial peptides used throughout this study, standard minimum

220 inhibitory concentration (MIC) assays were carried out with *E. coli* MG1655 and *S. enterica*
221 LT2, used here as wild type strains. As shown in table 2, Polymyxin B (PMB) displayed strong
222 antibacterial activity against both species. This, along with its well-documented ability to
223 permeabilise both the outer and the cytoplasmic membranes [7, 38], confirmed its validity as
224 a suitable positive control for this study. Crucially, PMB does not exhibit dye-interactions with
225 DiSC₃(5) (Fig. S1); a problematic phenomenon that frequently occurs between hydrophobic
226 dyes and antimicrobials; which we recommend to always test and rule out [23]. As expected,
227 a nonapeptide derivative of Polymyxin B (PMBN), which retains the ability to disrupt the Gram-
228 negative outer membrane but is unable to form the depolarising cytoplasmic membrane pores
229 [38], did not inhibit growth at any concentration tested (Table 2).

230 Previously, we have reported that DiSC₃(5) is growth-inhibitory in the Gram-positive
231 model organism *Bacillus subtilis* through a mechanism that is currently unknown but that does
232 not involve membrane depolarisation [23]. However, it appeared that this inhibitory effect is a
233 peculiarity of *B. subtilis* and does not occur in the close relative *Staphylococcus aureus*, or the
234 Gram-negative species used in the present study (Table 2). When combined with the outer
235 membrane permeabilising compound PMBN, an increased sensitivity of DiSC₃(5) was
236 observed with a MIC of 10 µM (Table 2), which is higher than the concentrations applied in
237 subsequent experiments. We verified this by applying 1 µM of DiSC₃(5) to *E. coli* cells in
238 logarithmic phase and observed no effect on growth even in the presence of PMBN (Fig. S2).

239

240 **DiSC₃(5) staining is influenced by both (inner) membrane potential and outer membrane
241 permeabilisation**

242 As shown previously, single-cell DiSC₃(5) fluorescence microscopy provides a simple and
243 rapid method to measure membrane potential in the Gram-positive model organism *B. subtilis*
244 [23]. To test whether this approach is also feasible in Gram-negative bacteria, we analysed
245 the staining of wild type *E. coli* cells in the absence and presence of polymyxins (PMB and
246 PMBN). For this aim, we included DiSC₃(5) and the respective peptides in agarose pads,
247 additionally supplemented with 10% LB, followed by addition of *E. coli* cells and rapid

248 microscopy. This was to observe the coarse kinetics of membrane depolarisation upon the
249 imaging process. In untreated cells, DiSC₃(5) fluorescence signals remained stable over 14
250 min (Fig. 1). Surprisingly, an immediate increase in DiSC₃(5) fluorescence intensity for approx.
251 10 min was observed upon incubation with PMB, which was then followed by a loss of
252 DiSC₃(5) signal indicating membrane depolarisation. This increase was even more apparent
253 upon PMBN-treatment where the cells remained highly stained for the duration of the
254 experiment (approx. 15 min). This demonstrates that whilst DiSC₃(5) staining is sensitive to
255 (inner) membrane potential levels and exhibits the expected loss of staining upon
256 depolarisation, the staining is also strongly influenced by outer membrane permeabilisation.
257 In conclusion, DiSC₃(5) is indeed well-suited for detection of cytoplasmic membrane potential
258 levels in wild type *E. coli* cells directly in growth medium. However, care should be taken when
259 interpreting the results if used under conditions that compromise the integrity of the outer
260 membrane, or when comparing strains that have outer membranes of different composition or
261 structure.

262

263 **Membrane potential measurements in buffer are possible but problematic**

264 Whilst DiSC₃(5) has been previously used by our groups and others in the context of Gram-
265 negative cells, the measurements are frequently carried out in cells washed with buffers of
266 varying composition [25, 39, 40]. To investigate how washing and resuspending cells in buffer
267 influences DiSC₃(5) staining, we compared the DiSC₃(5) signal levels between cells washed
268 in phosphate-buffered saline (PBS) and cells stained directly in the growth medium. One
269 important but frequently overlooked parameter when analysing membrane potential levels in
270 buffer-suspended cells is the necessity to maintain a metabolisable carbon source. To test its
271 effect on DiSC₃(5) signal levels, we compared cells grown in LB supplemented with 0.2%
272 glucose, and cells washed and resuspended in PBS with and without 0.2% glucose, followed
273 by incubation for 15 min with shaking and staining. PMB-treatment for 15 min was used as a
274 positive control for complete membrane depolarisation. The DiSC₃(5) signal levels for cells
275 washed in PBS with glucose were higher compared to cells in the growth medium and

276 extremely heterogeneous at the single-cell level (Fig. 2a, b). In the absence of a carbon
277 source, the heterogeneity was still present. However, as shown in both the microscopy images
278 and quantification of single-cell fluorescence levels, the DiSC₃(5) staining was greatly reduced
279 upon carbon source withdrawal indicating strongly reduced membrane potential (Fig. 2a, b).
280 Whilst the higher initial DiSC₃(5) staining levels in PBS may be due to differences in solubility
281 of the dye between growth medium and buffer, we hypothesised that washing the cells could
282 also remove divalent cations that are critical for outer membrane stability [38, 41, 42]. Hence,
283 PBS may slightly permeabilise the outer membrane, thus explaining the increased DiSC₃(5)
284 staining. To test this, we repeated the experiment washing and resuspending the cells in PBS
285 additionally supplemented with 1 mM CaCl₂. Again, signals were diminished in the absence
286 of a carbon source (Fig. 2a, b). However, supplementation of PBS with both glucose and CaCl₂
287 improved the consistency of signals and gave rise to DiSC₃(5) fluorescence intensities more
288 comparable to those measured in growth medium. This demonstrates that divalent cation
289 removal, likely through destabilisation of the outer membrane, indeed affects DiSC₃(5)
290 staining.

291 At last, we performed a DiSC₃(5) fluorescence microscopy time course experiment with
292 cells washed and resuspended in PBS to investigate how long they remain energised. As
293 demonstrated by the loss of DiSC₃(5) fluorescence, *E. coli* cells gradually loose membrane
294 potential in PBS buffer even when supplemented with a carbon source and CaCl₂ (Fig. 2c, d).

295 In conclusion, whilst DiSC₃(5) can be used as a voltage-sensitive dye in buffers, assays
296 carried out directly in the growth medium should be strongly favoured. If for experimental
297 reasons measurements in buffer are essential, care must be taken to maintain both a carbon
298 source to sustain central carbon metabolism and divalent cations to maintain outer membrane
299 stability, and to carry out the assays rapidly after wash and resuspension into buffers.

300

301 **Compatibility of DiSC₃(5) with time lapse microscopy and combination with other
302 fluorophores**

303 As DiSC₃(5) is not growth inhibitory in *E. coli*, we hypothesised that it could be compatible with

304 time-lapse experiments. To test this, we performed a time-lapse microscopy experiment with
305 *E. coli* grown on DiSC₃(5)-supplemented agarose pads using a method previously described
306 in detail for other bacterial species [23, 31]. We chose to carry out this experiment in
307 M9/glucose/casamino acids medium with both glucose and casamino acids concentrations
308 reduced to 10% from normal. In this regime the growing microcolony exhausts the locally
309 available carbon sources before exceeding the camera field of view. As shown in both Fig. 3
310 and Movie S1, DiSC₃(5) fluorescence can indeed be monitored in a time-lapse microscopy
311 setting for an extended duration of time. Crucially, the cessation of growth coincides with a
312 strong reduction of DiSC₃(5) fluorescence, consistent with membrane depolarisation triggered
313 by carbon source exhaustion.

314 Another useful property of DiSC₃(5) is its far-red fluorescence emission spectrum
315 (approx. 650-700 nm). While covered by commonly used Cy5-filters, it allows DiSC₃(5) to be
316 used in combination with even relatively weak green fluorophores such as GFP. This enables
317 experiments that combine membrane potential readout with GFP-based protein localisation or
318 expression reporter. One fluorophore combination that we have found to be very informative
319 in the context of antibiotic research is co-staining with Sytox Green. Sytox Green is a
320 membrane impermeable DNA intercalating dye that can stain the bacterial DNA but only when
321 large pores are formed in the cytoplasmic membrane [16]. As shown in Fig. 4, *E. coli* can be
322 simultaneously co-stained with both DiSC₃(5) and Sytox Green. Upon treatment with the pore
323 forming PMB, DiSC₃(5) fluorescence is lost due to depolarisation whilst cells become strongly
324 stained with Sytox Green indicating that the observed depolarisation is, as expected, caused
325 by pore formation. This dual-dye technique thus enables the rapid fluorescence-based
326 identification and differentiation between membrane depolarising and membrane pore-forming
327 antimicrobial compounds or stresses *in vivo*, on a single-cell level.

328

329 **DiSC₃(5)-based membrane potential measurements using fluorometry**

330 The approaches detailed above allow *E. coli* membrane potential levels to be monitored at the
331 single-cell level using fluorescence microscopy and flow cytometry. Whilst sacrificing single-

332 cell resolution, DiSC₃(5)-based membrane potential assays using fluorometry are perhaps
333 more accessible, and provide better throughput and temporal resolution. This approach is
334 based on self-quenching of DiSC₃(5) fluorescence upon accumulation to high concentrations
335 in polarised cells. When measured fluorometrically in a cell suspension, the accumulation of
336 DiSC₃(5) is observed as a gradual decline in fluorescence signal until a Nernstian equilibrium
337 is achieved [43–45]. Upon loss of membrane potential, DiSC₃(5) is released back into the
338 medium, which leads to dequenching and an increase of overall measured fluorescence.
339 Following DiSC₃(5) fluorescence quenching behaviour, thus, enables live monitoring of mean
340 membrane potential levels of a cell suspension. In the following, we will focus on such
341 measurements for *S. enterica* cells exposed to the antimicrobials, PMB or PMBN.

342 The degree of DiSC₃(5) fluorescence quenching is highly dependent on the used dye
343 concentration and cell densities. Similar to the optimisation previously undertaken in Gram-
344 positive bacteria [23], we first determined how the outer membrane barrier of Gram-negative
345 bacteria affects the quenching of DiSC₃(5) fluorescence upon accumulation in well energised
346 cells. Upon addition of DiSC₃(5) to exponentially grown but PMBN naïve cells, we observed
347 only a slow and gradual quenching (Fig. 5a). When these cells were challenged with PMBN a
348 further decrease in DiSC₃(5) fluorescence was observed, indicating that outer membrane
349 permeabilisation induced by PMBN stimulated further DiSC₃(5) uptake, which is consistent
350 with our microscopic observations in *E. coli* (Fig. 1). This effect was more pronounced when
351 cells were exposed to PMB. Here, a sharp quenching followed by rapid dequenching was
352 observed, indicating initial outer membrane permeabilisation followed by later inner membrane
353 depolarisation. This is consistent with the two-step mode of action of PMB [46]. If the cells
354 instead were pre-treated with PMBN, faster quenching was observed upon addition of
355 DiSC₃(5) (Fig. 5c). This was also accompanied by more extensive dequenching upon
356 depolarisation induced by PMB addition.

357 It is well-established that bacterial membrane potential can differ according to the
358 growth phase or growth conditions. Whilst logarithmic growth phase cells feature well-
359 energised membranes, entry into stationary growth phase is associated with nutrient

360 limitations and other stresses that can lead to reduced membrane potential levels (also see
361 movie S1) [47]. To establish that the fluorometric DiSC₃(5) assay can also be applied for non-
362 growing cultures, we repeated the experimental procedure with stationary phase cells
363 obtained from an overnight culture. In the case of PMBN naïve cells, DiSC₃(5) incorporation
364 dynamics were similar for exponential and stationary phase cells (Fig. 5b), indicating that
365 stationary phase *S. enterica* cells grown in rich medium maintain adequate membrane
366 potential levels. Upon addition of PMB, a clear additional quenching step associated with outer
367 membrane permeabilisation was observed. However, unlike in actively growing cells (Fig. 5a)
368 this was not followed by dequenching associated with membrane depolarisation. Recently,
369 Sabnis et al. demonstrated that inner membrane pore formation induced by Colistin
370 (Polymyxin E) requires lipopolysaccharide (LPS), which is synthesised at the inner membrane
371 prior to translocation to the outer membrane [7]. Very likely, the observed lack of depolarisation
372 in non-growing cells is linked to this mechanism and caused by the absence of *de novo* LPS
373 synthesis and, thus, inner membrane LPS. PMBN pre-treated stationary cells depicted a more
374 rapid DiSC₃(5) quenching behaviour compared to naïve cells, indicating that PMBN can
375 permeabilise the outer membrane of stationary growth phase *S. enterica* to some degree (Fig.
376 5d). However, the inability of full length PMB to trigger additional dequenching in these cells,
377 and the lack of a significant response when PMBN is added to naïve stationary growth phase
378 cells (Fig. 5c) does suggest that PMBN might be less active against non-growing cells. Finally,
379 to confirm that the established fluorometric assays are robust, we repeated the measurements
380 for actively growing *E. coli* cells in a different laboratory setting and using different
381 instrumentations. Indeed, very comparable results were obtained for *E. coli* (Fig. 6).

382 Whilst the influence of both outer membrane permeabilisation and cytoplasmic
383 membrane depolarisation on DiSC₃(5) persists in the fluorometric assay, pre-incubation with
384 PMBN allows this confounding factor to be largely eliminated at least in case of actively
385 growing cells. Hence, with careful controls, DiSC₃(5) can be used to reliably monitor
386 membrane potential in a microtiter plate format using a fluorometric approach.

387 **SUMMARY**

388 Previously, we have published detailed methods and guidance on using carbocyanide-based
389 voltage-sensitive dyes for the analysis of membrane potential in Gram-positive bacteria [23].
390 Due to the additional outer membrane and its impact on dyes and membrane-active
391 compounds, translating those methods to Gram-negative bacteria is not necessarily trivial. In
392 this report, we summarise our experiences using DiSC₃(5) as a voltage-sensitive dye in Gram-
393 negative species including *E. coli* and *S. enterica*. Whilst the use of DiSC₃(5) as a reporter for
394 membrane potential in Gram-negative bacteria is not novel, the information about best
395 practices and factors that can compromise the measurements are not well documented,
396 making the use of such dyes without prior knowledge and experience challenging. The
397 methods presented here should be easy to implement using commonly available equipment
398 such as regular widefield fluorescence microscopes and fluorescence plate readers.
399 Furthermore, these assays should in principle be directly transferrable to flow cytometry
400 measurements, although not verified within this study. We hope that the included details and
401 discussions, and information regarding the effects and problems associated with outer
402 membrane permeabilisation and the use of buffers rather than growth media, will provide a
403 valuable starting point for those interested in analysing bacterial membrane potential in a
404 physiological context, or as an assay to study antimicrobial mode of action.

405

406

407 **Authors and contributors**

408 PFP and HS designed and coordinated research; JAB, MH, PFP performed the experiments;
409 JAB, PFP, and HS analysed data; JAB, PFP and HS wrote the paper; ME and HS acquired
410 the funding. All authors commented on the manuscript.

411

412 **Conflicts of interest**

413 The authors declare that there are no conflicts of interest.

414 **Funding information**

415 H.S. was supported by UKRI (UK Research and Innovation) Biotechnology and Biological
416 Sciences Research Council Grant (BB/S00257X/1) and J.A.B. by UKRI Medical Research
417 Council Grant MR/N013840/1. This work was supported in part by a project that has received
418 funding from the European Research Council (ERC) under the European Union's Horizon
419 2020 research and innovation programme (grant agreement n° 864971) (to M.E.)

420

421 **Acknowledgements**

422 We would like to acknowledge Maria Dakes Stavrakakis for preliminary work related to use of
423 DiSC₃(5) in stationary phase cells.

424 **REFERENCES**

425

426 1. **Infectious Diseases Society of America (IDSA)**. Combating antimicrobial resistance:
427 Policy recommendations to save lives. *Clin Infect Dis* 2011;52:S397–S428.

428 2. **Mingeot-Leclercq M-P, Décout J-L**. Bacterial lipid membranes as promising targets to
429 fight antimicrobial resistance, molecular foundations and illustration through the renewal
430 of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. *Med Chem
431 Commun* 2016;7:586–611.

432 3. **Silhavy TJ, Kahne D, Walker S**. The bacterial cell envelope. *Cold Spring Harb Perspect
433 Biol* 2010;2:a000414.

434 4. **Sochacki KA, Barns KJ, Bucki R, Weisshaar JC**. Real-time attack on single
435 *Escherichia coli* cells by the human antimicrobial peptide LL-37. *Proc Natl Acad Sci U S
436 A* 2011;108:E77-81.

437 5. **Henzler Wildman KA, Lee D-K, Ramamoorthy A**. Mechanism of lipid bilayer disruption
438 by the human antimicrobial peptide, LL-37. *Biochemistry* 2003;42:6545–6558.

439 6. **Riool M, de Breij A, Kwakman PHS, Schonkeren-Ravensbergen E, de Boer L, et al.**
440 Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug
441 resistant bacterial wound infections. *Biochim Biophys Acta Biomembr* 2020;1862:183282.

442 7. **Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE, et al.** Colistin kills bacteria by
443 targeting lipopolysaccharide in the cytoplasmic membrane. *Elife* 2021;10:e65836.

444 8. **Sauermann R, Rothenburger M, Graninger W, Joukhadar C**. Daptomycin: A review 4
445 years after first approval. *Pharmacology* 2008;81:79–91.

446 9. **Vaara M**. Polymyxins and their potential next generation as therapeutic antibiotics. *Front
447 Microbiol* 2019;10:1689.

448 10. **Gray DA, Wenzel M**. More than a pore: A current perspective on the *in vivo* mode of
449 action of the lipopeptide antibiotic Daptomycin. *Antibiotics (Basel)* 2020;9:17.

450 11. **Strahl H, Hamoen LW**. Membrane potential is important for bacterial cell division. *Proc
451 Natl Acad Sci U S A* 2010;107:12281–12286.

452 12. **Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV, et al.** Daptomycin inhibits cell
453 envelope synthesis by interfering with fluid membrane microdomains. *Proc Natl Acad Sci
454 U S A* 2016;113:E7077–E7086.

455 13. **Scheinpflug K, Wenzel M, Krylova O, Bandow JE, Dathe M, et al.** Antimicrobial peptide
456 cWFW kills by combining lipid phase separation with autolysis. *Sci Rep* 2017;7:44332.

457 14. **Wenzel M, Rautenbach M, Vosloo JA, Siersma T, Aisenbrey CHM, et al.** The
458 multifaceted antibacterial mechanisms of the pioneering peptide antibiotics tyrocidine and
459 gramicidin S. *MBio* 2018;9: e00802-18.

460 15. **Wiedemann I, Benz R, Sahl H-G**. Lipid II-mediated pore formation by the peptide
461 antibiotic nisin: a black lipid membrane study. *J Bacteriol* 2004;186:3259–3261.

462 16. **Roth BL, Poot M, Yue ST, Millard PJ**. Bacterial viability and antibiotic susceptibility
463 testing with SYTOX green nucleic acid stain. *Appl Environ Microbiol* 1997;63:2421–2431.

464 17. **Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q.** Critical aspects of using
465 bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. *BMC*
466 *Microbiol* 2015;15:1–9.

467 18. **Bruni GN, Kralj JM.** Membrane voltage dysregulation driven by metabolic dysfunction
468 underlies bactericidal activity of aminoglycosides. *Elife* 2020;9:e58706.

469 19. **Jolliffe LK, Doyle RJ, Streips UN.** The energized membrane and cellular autolysis in
470 *Bacillus subtilis*. *Cell* 1981;25:753–763.

471 20. **Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, et al.** Structure and function of a
472 membrane component SecDF that enhances protein export. *Nature* 2011;474:235–238.

473 21. **Gray D, Wang B, Gamba P, Strahl H, Hamoen L.** Membrane depolarization kills
474 dormant *Bacillus subtilis* cells by generating a lethal dose of ROS. *Research Square*
475 2021; doi: 10.21203/rs.3.rs-806248/v1

476 22. **Waggoner AS.** Dye indicators of membrane potential. *Annu Rev Biophys Bioeng*
477 1979;8:47–68.

478 23. **te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H.** Analysis of antimicrobial-
479 triggered membrane depolarization using voltage sensitive dyes. *Front Cell Dev Biol*
480 2016;4:29.

481 24. **French S, Farha M, Ellis MJ, Sameer Z, Côté J-P, et al.** Potentiation of antibiotics
482 against Gram-negative bacteria by Polymyxin B Analogue SPR741 from unique
483 perturbation of the outer membrane. *ACS Infect Dis* 2020;6:1405–1412.

484 25. **Silvestro L, Weiser JN, Axelsen PH.** Antibacterial and antimembrane activities of
485 cecropin A in *Escherichia coli*. *Antimicrob Agents Chemother* 2000;44:602–607.

486 26. **Wu M, Maier E, Benz R, Hancock REW.** Mechanism of interaction of different classes
487 of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane
488 of *Escherichia coli*. *Biochemistry* 1999;38:7235–7242.

489 27. **Galperin MYu, Dibrov PA, Glagolev AN.** delta mu H+ is required for flagellar growth in
490 *Escherichia coli*. *FEBS Lett* 1982;143:319–322.

491 28. **Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT.** Energy source of flagellar type III
492 secretion. *Nature* 2008;451:489–492.

493 29. **Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, et al.** Structure and function
494 of stator units of the bacterial flagellar motor. *Cell* 2020;183:244–257.e16.

495 30. **Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al.** Fiji: an open-
496 source platform for biological-image analysis. *Nat Methods* 2012;9:676–682.

497 31. **de Jong IG, Beilharz K, Kuipers OP, Veening JW.** Live cell imaging of *Bacillus subtilis*
498 and *Streptococcus pneumoniae* using automated time-lapse microscopy. *J Vis Exp*
499 2011;53:3145.

500 32. **Xue C, Lin TY, Chang D, Guo Z.** Thioflavin T as an amyloid dye: fibril quantification,
501 optimal concentration and effect on aggregation. *R Soc Open Sci* 2017;4:160696.

502 33. **Renaud de la Faverie A, Guédin A, Bedrat A, Yatsunyk LA, Mergny J-L.** Thioflavin T
503 as a fluorescence light-up probe for G4 formation. *Nucleic Acids Res* 2014;42:e65–e65.

504 34. **Sugimoto S, Arita-Morioka K-I, Mizunoe Y, Yamanaka K, Ogura T.** Thioflavin T as a
505 fluorescence probe for monitoring RNA metabolism at molecular and cellular levels.
506 *Nucleic Acids Res* 2015;43:e92.

507 35. **Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, et al.** Ion channels enable electrical
508 communication in bacterial communities. *Nature* 2015;527:59–63.

509 36. **Stratford JP, Edwards CLA, Ghanshyam MJ, Malyshov D, Delise MA, et al.**
510 Electrically induced bacterial membrane-potential dynamics correspond to cellular
511 proliferation capacity. *Proc Natl Acad Sci U S A* 2019;116:9552–9557.

512 37. **Mancini L, Terradot G, Tian T, Pu Y, Li Y, et al.** A general workflow for characterization
513 of nernstian dyes and their effects on bacterial physiology. *Biophys J* 2020;118:4–14.

514 38. **Vaara M.** Agents that increase the permeability of the outer membrane. *Microbiol Rev*
515 1992;56:395–411.

516 39. **Wu M, Maier E, Benz R, Hancock REW.** Mechanism of interaction of different classes
517 of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane
518 of *Escherichia coli*. *Biochemistry* 1999;38:7235–7242.

519 40. **Morin N, Lanneluc I, Connal N, Cottenceau M, Pons AM, et al.** Mechanism of
520 bactericidal activity of microcin L in *Escherichia coli* and *Salmonella enterica*. *Antimicrob
521 Agents Chemother* 2011;55:997.

522 41. **Clifton LA, Skoda MWA, Le Brun AP, Ciesielski F, Kuzmenko I, et al.** Effect of divalent
523 cation removal on the structure of Gram-negative bacterial outer membrane models.
524 *Langmuir* 2015;31:404–412.

525 42. **Nikaido H, Vaara M.** Molecular basis of bacterial outer membrane permeability. *Microbiol
526 Rev* 1985;49:1–32.

527 43. **Waggoner A.** Optical probes of membrane potential. *J Membr Biol* 1976;27:317–334.

528 44. **Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM.** Membrane potential can be
529 determined in individual cells from the Nernstian distribution of cationic dyes. *Biophys
530 J*;53:785–794.

531 45. **Bashford CL.** The measurement of membrane potential using optical indicators. *Biosci
532 Rep* 1981;1:183–196.

533 46. **Daugelavicius R, Bakiene E, Bamford DH.** Stages of polymyxin B interaction with the
534 *Escherichia coli* cell envelope. *Antimicrob Agents Chemother* 2000;44:2969–2978.

535 47. **Bot CT, Prodan C.** Quantifying the membrane potential during *E. coli* growth stages.
536 *Biophys Chem* 2010;146:133–137.

537 48. **Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, et al.** The complete
538 genome sequence of *Escherichia coli* K-12. *Science* 1997;277:1453–1462.

539 49. **McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, et al.** Complete
540 genome sequence of *Salmonella enterica* serovar Typhimurium LT2. *Nature*
541 2001;413:852–856.

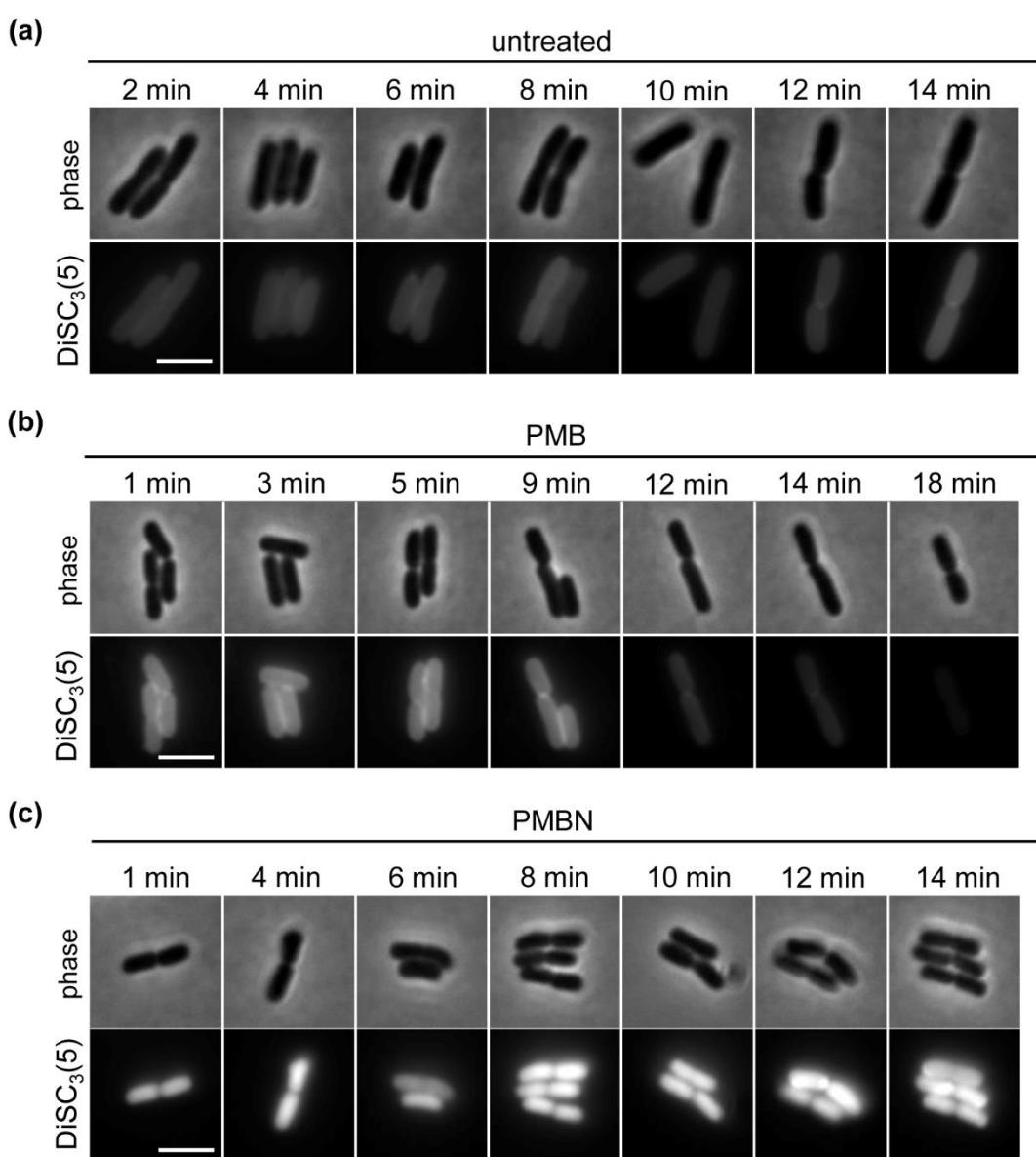
542 **FIGURES AND TABLES**

543

544 Table 1: Strains used in this study

Strain	Genotype	Reference
<i>E. coli</i> MG1655	λ^+ F- <i>ilvG</i> - <i>rfb</i> -50 <i>rph</i> -1	[48]
<i>S. enterica</i> TH437	<i>Salmonella enterica</i> serovar Typhimurium strain LT2	[49]

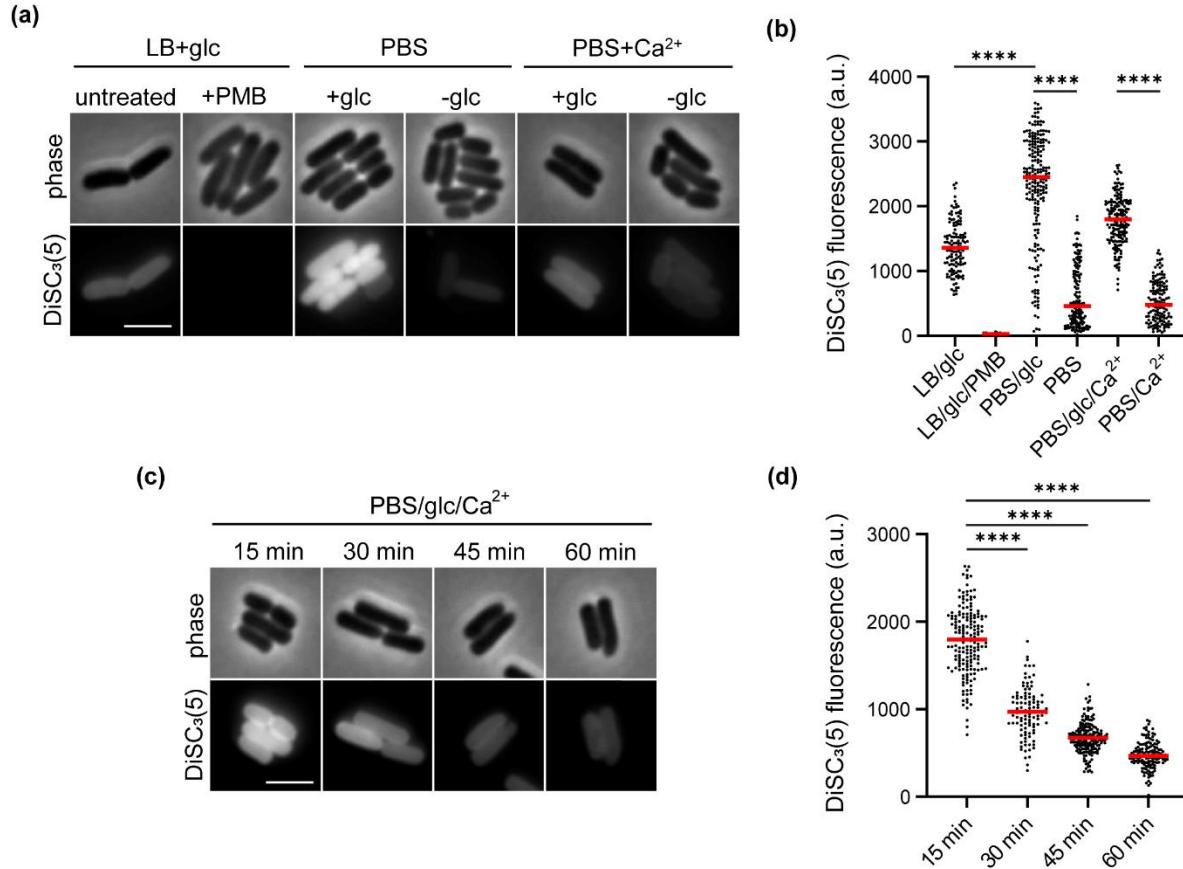
545


546

547 Table 2: Minimum inhibitory concentrations (MICs) of tested compounds and dyes for *E. coli*
548 and *S. enterica* in the presence and absence of the outer membrane permeabilising agent
549 Polymyxin B nonapeptide.

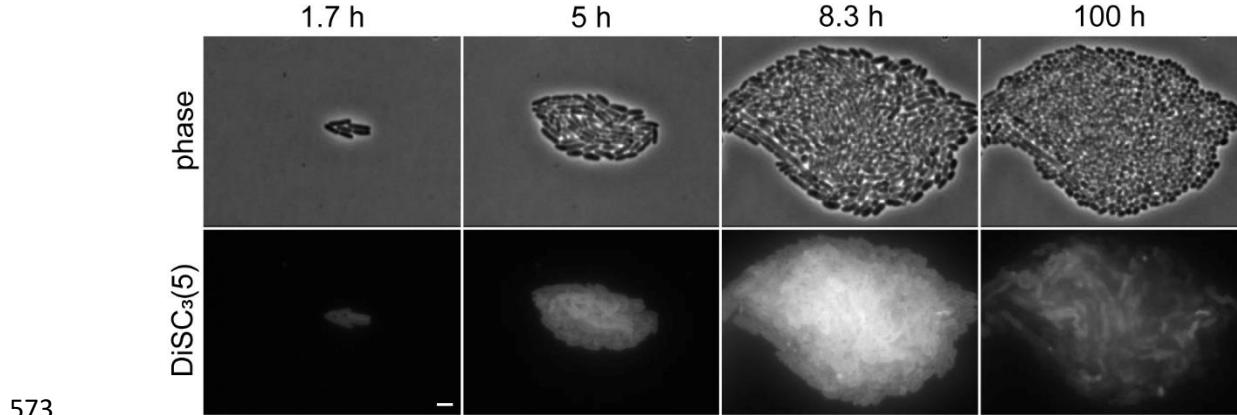
Compound	<i>E. coli</i> ^a		<i>S. enterica</i> ^a	
	MIC	MIC with PMBN	MIC	MIC with PMBN
PMB	0.25 μ M	NA	0.2 μ M	NA
PMBN	>100 μ M	NA	>100 μ M	NA
DiSC ₃ (5)	>100 μ M	10 μ M	>100 μ M	10 μ M

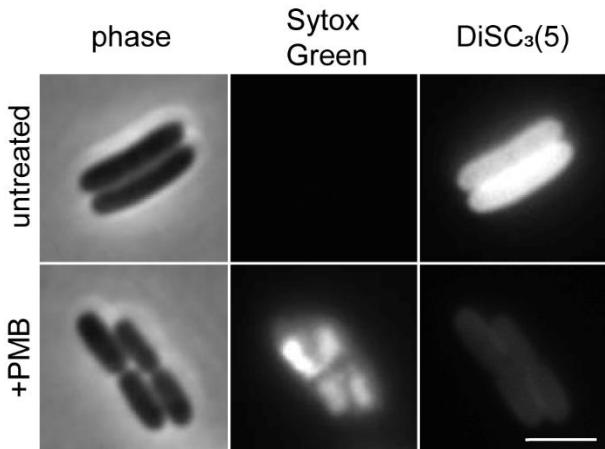
550 ^aValues obtained from two biological replicates, each with technical triplicates. PMB:


551 Polymyxin B, PMBN: Polymyxin B nonapeptide, NA: not applicable.

552

553 **Figure 1: *E. coli* DiSC₃(5) staining is influenced by both outer membrane
554 permeabilisation and (inner) membrane depolarisation.**

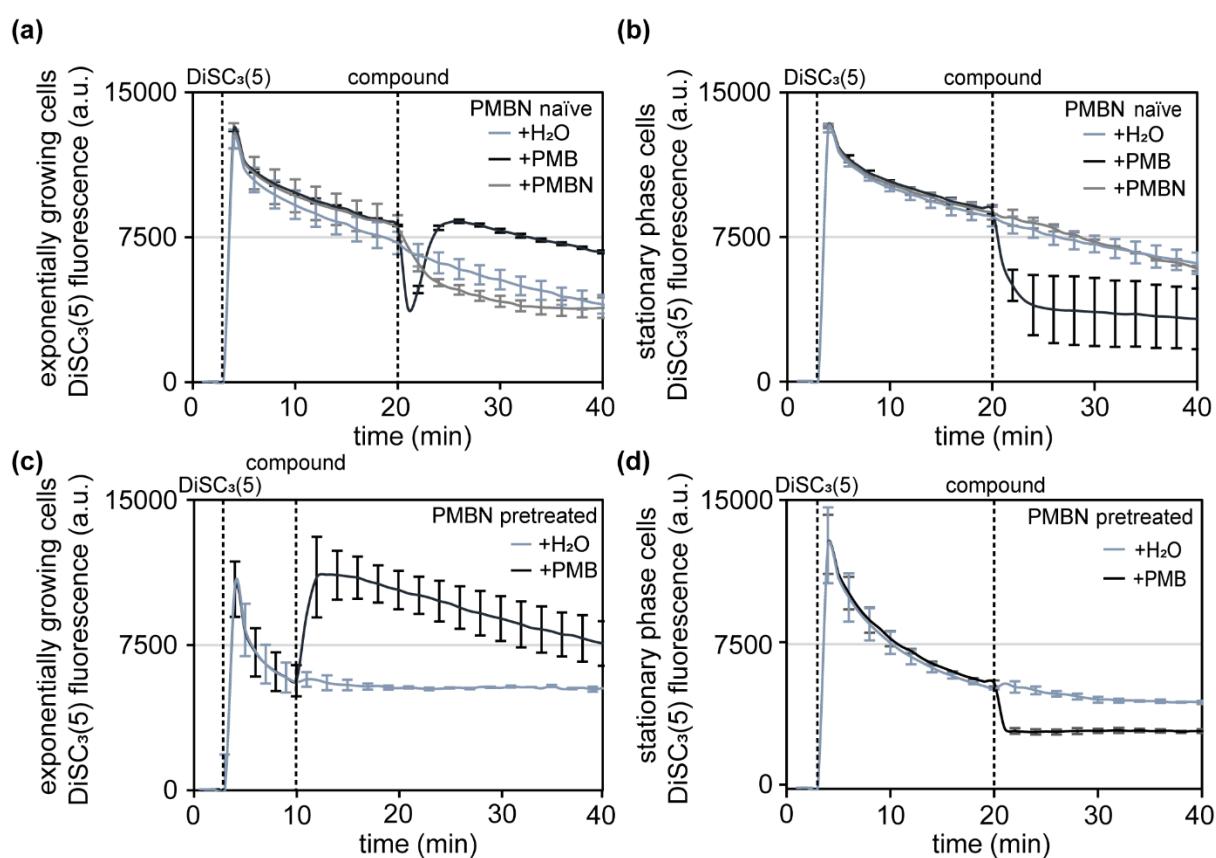

555 Phase contrast and fluorescence microscopy of *E. coli* stained with DiSC₃(5) in the (a)
556 absence and presence of (b) outer membrane permeabilising and inner membrane
557 depolarising PMB (7 μ M) or (c) outer membrane permeabilising PMNBN (30 μ M) at different
558 time points of incubation. Note that for this experiment the dye and antibiotics were added
559 directly to the agarose pad supplemented with 10% LB. The time points indicate incubation
560 after transfer of cells to the agarose pad. Scale bar: 3 μ m. Strain used: *E. coli* MG1655 (wild
561 type).



562

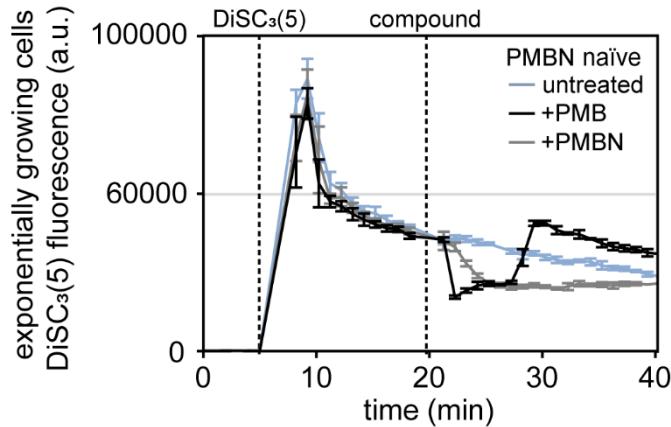
563 **Figure 2: Divalent cations, carbon source, and rapid imaging are critical for measuring**
564 ***E. coli* membrane potential in buffer.**

565 (a) Phase contrast and fluorescence microscopy images of DiSC₃(5)-stained *E. coli* in
566 LB/0.2% glucose, in PBS with and without glucose (0.2%), and in PBS/glucose (0.2%) with 1
567 mM CaCl₂. As a positive control, the transmembrane potential was disrupted by the pore
568 forming antibiotic PMB (7 μ M). (b) Quantification of DiSC₃(5)-fluorescence for individual cells
569 from the imaging dataset shown in panel a (n=128-211 cells). Median fluorescence intensity
570 is indicated with a red line, together with P values of a one-way, unpaired ANOVA with Tukey's
571 post hoc text. **** represents p < 0.0001. Scale bar: 3 μ m. Strain used: *E. coli* MG1655 (wild
572 type).



582

583 **Figure 4: Simultaneous detection of membrane potential and pore formation in *E. coli*.**


584 Phase contrast and fluorescence microscopy of *E. coli* cells co-stained with Sytox Green and
585 DiSC₃(5) in the absence or presence of PMB (7 μ M) for 15 min. Note the loss of membrane
586 potential in PMB-treated cells that coincides with ability of Sytox Green to enter the cells
587 indicating pore formation. Scale bar: 3 μ m. Strain used: *E. coli* MG1655 (wild type)

588

589 **Figure 5: DiSC₃(5)-based fluorometric measurement of membrane potential in *S.*
590 *enterica*.**

591 PMBN naïve exponential (a) and stationary growth phase (b) *S. enterica* cells were exposed
592 to either PMBN (30 µg/ml), PMB (20 µg/ml), or solvent (H₂O). Dashed vertical lines indicate
593 the addition of DiSC₃(5) and compounds, respectively. Note the quenching of the DiSC₃(5)
594 fluorescence upon accumulation in cells, and rapid further reduction upon OM
595 permeabilisation by PMB and PMBN followed by dequenching upon membrane depolarisation
596 by PMB. (c-d) Measurements were repeated in cells pre-treated with PMBN. Graphs depict
597 the means of six replicates and standard deviation from two independent experiments. Strain
598 used *S. enterica* TH437 (wild type).

599

600 **Figure 6: DiSC₃(5)-based fluorometric measurement of membrane potential in *E. coli*.**

601 PMBN naïve exponential growth phase *E. coli* cells were exposed to either PMBN (30 μ M) or
602 PMB (7 μ M). Dashed lines indicate addition of DiSC₃(5) and compounds, respectively. Note
603 the quenching of the DiSC₃(5) fluorescence upon accumulation in cells, and further reduction
604 upon OM permeabilisation triggered by PMB and PMBN, followed by dequenching upon
605 membrane depolarisation triggered by PMB. The graph depicts mean and standard deviation
606 from technical triplicates. Strain used *E. coli* MG1655 (wild type).