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Gene regulation is frequently altered in diseases in unique and1

patient-specific ways. Hence, personalized strategies have been2

proposed to infer patient-specific gene-regulatory networks.3

However, existing methods do not scale well as they often re-4

quire recomputing the entire network per sample. Moreover,5

they do not account for clinically important confounding factors6

such as age, sex, or treatment history. Finally, a user-friendly7

implementation for the analysis and interpretation of such net-8

works is missing.9

We present DysRegNet, a method for inferring patient-specific10

regulatory alterations (dysregulations) from bulk gene expres-11

sion profiles. We compared DysRegNet to SSN, a well-known12

sample-specific network approach. We demonstrate that both13

SSN and DysRegNet produce interpretable and biologically14

meaningful networks across various cancer types. In contrast15

to SSN, DysRegNet can scale to arbitrary sample numbers and16

highlights the importance of confounders in network inference,17

revealing an age-specific bias in gene regulation in breast cancer.18

DysRegNet is available as a Python package (https:19

//github.com/biomedbigdata/DysRegNet_package),20

and analysis results for eleven TCGA cancer types21

are available through an interactive web interface22

(https://exbio.wzw.tum.de/dysregnet).23

Correspondence: markus.list@tum.de24

Introduction25

Gene regulatory network (GRN) inference methods model26

regulatory relationships based on gene co-expression mea-27

sures such as (conditional) mutual information or (partial)28

correlation [1]. A directed network is typically created by29

limiting the inference to transcription factors (TFs) and their30

putative target genes. While methods such as GENIE3 [2]31

or ARACNE [3] identify static GRNs from gene expression32

data, dynamic methods compare the co-expression in differ-33

ent conditions [4].34

Differential expression and co-expression analysis methods35

designed to compare two groups or more (e.g., disease and36

control) can typically not account for disease heterogeneity,37

identify disease subgroups, or describe patient-specific dys-38

regulation patterns. In contrast, methods identifying patient-39

specific gene expression aberrations in a one-against-all com-40

parison can report sample-specific outlier genes [5, 6]. How-41

ever, these approaches cannot pinpoint the source of the dys-42

regulation. For instance, a mutated TF may not change in ex-43

pression but can still behave differently in regulating its target44

genes, highlighting that co-expression should be considered45

at the single-patient level.46

A few methods for studying patient-specific regulatory pat-47

terns have been proposed [7–12]. Most methods calculate48

the Pearson correlation between two genes before and af-49

ter adding/removing one sample. Some, such as SSN [10],50

evaluate the significance of this difference using transfor-51

mations to z-scores or p-values. P-SSN [11] expands upon52

this technique by incorporating partial correlation to account53

for indirect interactions. LIONESS [9] can be adapted to54

any network inference approach returning a weighted adja-55

cency matrix but does not offer any significance assessment.56

SWEET [12] extends the LIONESS approach by incorpo-57

rating a sample-to-sample correlation weight to account for58

variations in subpopulation sizes but is limited to Pearson59

correlation as a network inference strategy. Nakazawa et60

al. [13] define an edge contribution value to extract sub-61

networks from Bayesian networks inferred from all samples62

and use this approach successfully for cancer subtyping. We63

note that existing approaches can not correct for confounders64

such as sex, age, and origin of the sample, which can impact65

the analysis at a single sample level. Moreover, the leave-66

one-sample-out approach is computationally expensive, es-67

pecially for large cohorts.68

These limitations motivated us to develop DysRegNet, a69

method that first infers linear models from control samples,70

where the TF expression is considered the explanatory vari-71

able and the expression of its target gene the response vari-72

able. Subsequently, we consider the residual for each patient73

sample to determine if the co-expression pattern deviates74

from the expected value. The linear model allows DysReg-75

Net to correct for known covariates and to compute results76

(including significance) considerably faster than competing77

methods (Supplementary Note 1). We show that DysRegNet78
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can infer biologically meaningful patient-specific networks79

and compare them to results from SSN, a state-of-the-art rep-80

resentative of correlation-based methods.81

Results82

A. Overview of the method. DysRegNet requires a refer-83

ence GRN and expression data of two groups as input (Fig-84

ure 1A).85

The reference network defines feasible interactions and re-86

duces false positives. It can consist of experimentally con-87

firmed (e.g., HTRIdb [14]) or computationally inferred in-88

teractions (e.g., using GENIE3 [2] or ARACNE [3]). The89

expression data have to be partitioned into two groups: pa-90

tient and control samples. Control samples define healthy91

co-expression patterns, which are then used to detect dysreg-92

ulations in the patient samples. Optionally, DysRegNet can93

use confounders, such as age or sex, to refine the models fur-94

ther.95

Our method fits a linear regression model for every edge in96

the reference network using the control samples (Figure 1B).97

Specifically, we model the expression level of the TF as an98

explanatory variable to estimate the expression level of the99

target gene. Confounding factors serve as additional explana-100

tory variables. After estimating the model parameters using101

Ordinary Least Squares, we compute the residual for every102

patient sample, i.e., the difference between the predicted ex-103

pression level of the target gene and the observed one. The104

residual is transformed into a z-score using the distribution of105

the control sample residuals for standardization. This tech-106

nique is comparable with an outlier detection task in regres-107

sion analysis. After evaluating all patients, z-scores are trans-108

formed into p-values and corrected for multiple testing (see109

Methods section J).110

The output of our method is a list of predicted dysregu-111

lated edges for every patient, which can be integrated into112

a network with one or several connected components (Fig-113

ure 1C). It is important to note that previous studies used114

the term "patient-specific (or sample-specific) regulatory net-115

work". We prefer to call it a patient-specific dysregulated116

network since we can only identify outliers w.r.t. the original117

GRN but not learn new edges or a gain of function specific to118

one sample.119

DysRegNet is available as a Python package (https:120

//github.com/biomedbigdata/DysRegNet_121

package), and analysis results for eleven TCGA cancer122

types can be interactively explored through a web interface123

(https://exbio.wzw.tum.de/dysregnet).124

B. Pan-cancer analysis to assess biological rele-125

vance. We evaluated DysRegNet using eleven cancer types126

available in TCGA (see Methods section I) and compared127

the results to those obtained using SSN (see Discussion sec-128

tion F for a justification for choosing SSN as the reference129

method in our benchmark). We carried out four analysis130

types: patient clustering based on the computed networks,131

promoter methylation of dysregulated targets, dysregulation132

of mutated TFs, and progression of dysregulation in different133

cancer stages (Figure 1D).134

We used four types of reference networks for the evalua-135

tion: GENIE3 individual, GENIE3 shared, experimentally136

verified interactions from HTRIdb (referred to as experimen-137

tal), and the STRING [15] network. The GENIE3 networks138

were computationally generated using the GENIE3 method,139

where the individual network was inferred separately for each140

cancer type based on its specific control samples, and the141

shared network comprises the edge intersection of all indi-142

vidual networks. Thus, the shared network is the same for143

all analyses performed, while the individual networks are144

cancer-type-specific. The STRING network is not limited145

to gene-regulatory interactions but considers protein-protein146

interactions (PPIs). We included a PPI network in the eval-147

uation for a fair comparison with the SSN method that was148

evaluated using this network. We ran DysRegNet with three149

additional sample-level confounders, namely sex, age, and150

ethnicity, which were all previously shown to be strong con-151

founders in certain types of cancers [16–18].152

As outlined below, all four analyses suggest that the networks153

produced by DysRegNet capture biologically relevant signals154

and, in many cases, to a greater extent than those produced155

by SSN.156

B.1. Patient-specific networks preserve characterizing fea-157

tures of the cancer type. Even though our method infers an158

individual network for each patient, aiming to capture its159

potentially unique dysregulations, we expect similarities be-160

tween patients of the same cancer type. We assume that pa-161

tients with the same cancer type have similar dysregulated162

edges while patients with different cancers have fewer dys-163

regulated edges in common. To investigate this, we eval-164

uated the similarity between all individual patient networks165

across all cancer types by computing a pairwise overlap co-166

efficient for their edge sets (see Methods section L). We then167

used spectral clustering to cluster the patients based on their168

similarity and assigned a label (i.e., the cancer type) to each169

cluster using the Hungarian algorithm, which maximizes the170

F1 score of the label-cluster mapping [19]. The evalua-171

tion was conducted using the shared GENIE3, HTRIdb, and172

STRING networks. The individual (cancer-specific) GE-173

NIE3 networks were excluded due to high tissue specificity,174

making conclusions regarding the cancer specificity of the175

dysregulated networks impossible.176

The final F1 scores for DysRegNet and SSN are shown in177

Figure 2. DysRegNet consistently performed better than SSN178

in this analysis, particularly when combined with the GE-179

NIE3 shared and experimental reference networks. This pro-180

vides evidence that networks derived from DysRegNet can181

better capture cancer-type-specific characteristics.182

B.2. Target genes with methylated promoters are more likely183

to be dysregulated. DNA methylation plays a crucial role in184

controlling gene expression. For example, when CpG sites185

undergo methylation within the promoter region, it leads186

to repressed gene expression because TFs can no longer187

bind [20]. Therefore, gene promoter methylation is also a di-188
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Fig. 1. Overview of the method. (A) DysRegNet requires a reference network and expression data for control and patient samples as input. Additionally, multiple sample-level
confounders can be provided. For illustration purposes, we assume the reference network has only three edges, with two activating and one repressing interaction. (B)
Our method uses the control samples to infer a linear regression model for each edge in the reference network (the illustration focuses on the edge between genes A and
B), modeling the expression level of the target gene based on the expression level of the TF and additional confounders if provided. Subsequently, we apply the obtained
models to the patient samples, computing a residual for each patient sample. Based on the distribution of the control sample residuals, we assign a p-value to each patient
residual. A low p-value suggests that the co-expression pattern of the patient significantly diverges from the control model, leading us to classify the edge as dysregulated.
(C) Applying the described procedure to all patient samples and all edges in the reference network leads to the final output of DysRegNet: one network for each patient
sample comprising all its dysregulated edges. (D) We evaluated the inferred patient-specific dysregulated networks using known cancer subtypes, cancer stage annotations,
additional methylation, and mutation data. Created with BioRender.com

agnostic and prognostic cancer biomarker [21]. Even though189

changes in promoter methylation represent only one possible190

cause of dysregulation, we hypothesize that promoter methy-191

lation should be correlated with the dysregulation of a target192

gene across many samples.193

Based on this hypothesis, we benchmarked SSN and Dys-194

RegNet with respect to the correlation of promoter methyla-195

tion and patient-specific dysregulation. More specifically, we196

used linear regression to model the promoter methylation of197

target genes based on their overall dysregulation. To quan-198

tify this overall dysregulation of a target gene in a patient, we199

defined a dysregulation score as the number of its incoming200

edges in the patient-specific dysregulated network divided by201

the number of its incoming edges in the reference network202

(see Methods section M.1). The dysregulation score, there-203

fore, represents the proportion of TFs associated with a target204

gene that lost their ability to regulate it. Consequently, a high205

dysregulation score indicates that TFs generally lost the abil-206

ity to regulate the target, which is what we would expect in207

cases where they can no longer bind to the promoter due to208

methylation. Note that while this would not affect TFs bind-209

ing to enhancer regions, it suffices to show that dysregulation210

is related to changes in DNA methylation.211

We built two different types of models: a local and a global212
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Fig. 2. F1 scores assessing the agreement between the patients’ cancer types and
their assigned clusters. Higher is better.

one. While the local model tests every target gene individu-213

ally, the global model tries to capture a trend across all target214

genes by including all of them in one mixed-effect model,215

adding the target gene as a random intercept (for details, see216

Methods sections M.2, M.3). An illustration of the differ-217

ences between the two models can be found in the Supple-218

mentary Material Figure S1.219

Up to 20% of the tested target genes showed a significant link220

between their promoter methylation and dysregulation score221

( Figure 3) in both SSN and DysRegNet. The difference be-222

tween both methods is relatively small. The results are fur-223

ther corroborated by global significance tests, revealing con-224

sistent patterns across all datasets except THCA, LIHC, and225

KIRC, irrespective of the method or reference network used.226

B.3. Mutated TFs have more dysregulated targets. Muta-227

tions in TFs are associated with different types of cancer, like228

lung cancer [22], prostate cancer [23], breast cancer [24], and229

many others [25]. We hypothesize that some mutated TFs230

may no longer be able to regulate their target genes, e.g., be-231

cause they lost the ability to bind their motif.232

As a measure, we defined a dysregulation score for TFs anal-233

ogously to the dysregulation score for target genes used in the234

methylation analysis, the only difference being that we now235

focus on outgoing instead of incoming edges. Thus, a high236

TF dysregulation score indicates that the TF lost the ability to237

regulate many of its target genes, as expected for some mu-238

tated TFs. For this analysis, we modeled the mutation state239

of a TF based on its dysregulation score. Also, analogously240

to the methylation analysis, we performed tests using a local241

and a global model. However, since we treated the mutation242

state of a TF as a binary outcome, we switched from linear to243

logistic regression.244

Figure 4 shows the results of the local- and global-scale anal-245

yses for all cancer types and reference network combinations246

investigated. The percentages of significant local models ex-247

hibit considerably lower and more variable values than those248

observed in the methylation tests. Nonetheless, the global249

tests reveal a correlation between mutated TFs and their dys-250

regulation score across numerous scenarios. Again, DysReg-251

Net and SSN perform similarly.252

There are multiple factors explaining the disparity in the253

number of significant tests compared to the methylation anal-254

ysis: A TF mutation is only one possible source of dysregu-255

lation, and only some specific mutations will affect the regu-256

latory ability of TFs. Furthermore, most TFs were only mu-257

tated in a handful of patients, reducing the statistical power258

of our analyses.259

Because of this, we still see the significant relationship be-260

tween mutated TFs and their dysregulation indicated by261

global tests as further evidence of the biological meaning-262

fulness of patient-specific networks.263

B.4. Patients with advanced stages of cancer exhibit in-264

creased dysregulation. Due to the accumulation of mutations265

[26] and progressing epigenetic reprogramming of gene reg-266

ulation in cancer [27], we expect to observe increased gene267

dysregulation in the late stages of cancer compared to the268

early stages.269

To investigate this assumption, we divided patients into early-270

stage and late-stage groups for each cancer type (see Methods271

section M.6). We then applied a one-sided Mann-Whitney U272

test to asses whether the dysregulation scores of TFs would273

be increased in the late-stage groups.274

Except for COAD and BRCA, large percentages of TFs275

showed increased dysregulated in late-stage patients, exceed-276

ing 80% for LIHC Figure 5. Compared to SSN, DysRegNet-277

inferred networks generally contained more TFs with in-278

creased dysregulation in the advanced stages.279

B.5. Confounders significantly impact model inference. A280

distinguishing feature of DysRegNet is the ability to correct281

for sample-level confounders. To assess if including a pa-282

tient’s sex, age, and ethnicity has an impact, we assessed the283

covariates model coefficients Figure 6. Unsurprisingly, the284

expression of the TF produced the most significant p-values.285

However, the confounders noticeably impacted the regression286

models in various cancer types, such as age in the breast can-287

cer (BRCA) dataset, sex in liver hepatocellular carcinoma288

(LIHC), and ethnicity in stomach adenocarcinoma (STAD)289

and lung adenocarcinoma (LUAD). In BRCA, NOX4, the tar-290

get gene most strongly positively associated with age, was291

indeed observed in previous studies to increase with age [28–292

30]. In LIHC, KDM5C was the target gene associated with293

the most significant p-value for sex. KDM5C is encoded294

on the X chromosome and is known to have higher expres-295

sion in females than in males [31, 32], which was again re-296

flected by the sign of the estimated coefficient. This indicates297

that patient-level confounding factors influence the expres-298

sion data, which DysRegNet can efficiently incorporate into299

its model construction and patient-specific network inference300

process.301

Discussion302

C. Validity of model assumptions. Since DysRegNet is303

an outlier detection approach, it will be especially suscepti-304

4 | bioRχiv Kersting et al. | DysRegNet

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2024. ; https://doi.org/10.1101/2022.04.29.490015doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.29.490015
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 5 10 15 20
% of significant associations

BRCA

COAD

HNSC

KIRC

KIRP

LIHC

LUAD

LUSC

PRAD

STAD

THCA

Ca
nc

er
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

experimental

0 5 10 15 20
% of significant associations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STRING

0 5 10 15 20
% of significant associations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENIE3 shared

0 5 10 15 20
% of significant associations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENIE3 individual

Method
DysRegNet
SSN

Fig. 3. Percentages of target genes with a significant association (Benjamini-Hochberg adjusted p-value ≤ 0.05) between their promoter methylation and target gene
dysregulation based on the local models. Bars with a star indicate that the global model (including all target genes) showed a significant association between promoter
methylation and target dysregulation.

COAD HNSC LUAD LUSC STAD
0

2

4

6

%
 o

f s
ig

ni
fic

an
t a

ss
oc

ia
tio

ns

 
 

 

experimental

BRCA COAD HNSC KIRC KIRP LIHC LUAD LUSC PRAD STAD

   

 

 
 

 

 

   
 

 

 

   

 

 

STRING

BRCA COAD HNSC LIHC LUAD LUSC STAD
Cancer

0

2

4

6

%
 o

f s
ig

ni
fic

an
t a

ss
oc

ia
tio

ns

 
 

 
 

 
 

 
 

 

 

 
  

GENIE3 shared

BRCA COAD HNSC LIHC LUAD LUSC STAD
Cancer

 

  

 

 
  

 
 

 

 

   

GENIE3 individual
Method

DysRegNet
SSN

Fig. 4. Percentages of TFs with a significant association (Benjamini-Hochberg adjusted p-value ≤ 0.05) between their mutation status and dysregulation. Bars with a star
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ble to technical biases. Furthermore, users should remem-305

ber that the method is built based on the following assump-306

tions: (1) the target gene expression can be predicted based307

on TF expression, and (2) the residuals of the linear model308

follow a normal distribution. The first assumption typically309

does not hold for PPI networks. It will also not hold for all310

TF-target gene pairs in a GRN. The activity of a TF can be311

influenced by many factors, such as interactions with other312

proteins, chromatin accessibility, or post-translational modi-313

fications, which are not reflected in expression data [33, 34].314

We thus recommend evaluating the goodness of fit of the un-315

derlying regression model before considering an edge as po-316

tentially dysregulated. Our Python package directly supports317

this by setting an R2 cut-off. Similarly, we implemented a318

test to evaluate whether the residuals follow a normal distri-319

bution [35, 36]. This allows users to focus only on regulatory320

interactions that adhere to our second assumption.321

D. Importance of adjusting for confounders. Our results322

suggest that DysRegNet can account for typical confounders323

such as age and sex. However, it should be noted that these324

confounders do not seem to impact all data sets to the same325

extent. Age, for example, only affected the BRCA dataset.326

This finding is well-aligned with a recent study on the effect327

of demographic confounders on cohort-level network infer-328

ence tools where age was identified as a strong confounder329
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on network inference in BRCA based on data from two in-330

dependent cohorts (TCGA and METABRIC)[37]. Given that331

BRCA has notably more control samples (113) than other332

cancer types (see Table S1), we assume that certain effects333

require a sufficiently large sample to be detected. The same334

principle applies to categorical confounders such as sex or335

ethnicity, where aside from the overall sample size, each cat-336

egory must appear frequently enough to accurately estimate337

its effect.338

E. Influence of different reference networks. The ini-339

tial reference network is a necessary input for DysRegNet.340

Our analysis considered three types: computationally in-341

ferred regulatory networks from GENIE3, an experimentally342

validated network from HTRIdb, and a PPI network from343

STRING. We compared these networks in four different con-344

texts: patient clustering (i), promoter methylation of dysregu-345

lated target genes (ii), dysregulation of mutated TFs (iii), and346

progression of dysregulation in different cancer stages (iv).347

The choice of the network depends on the research ques-348

tion. Users can expect computationally inferred networks349

to favor false positives, while experimentally validated net-350

works may include more false negatives. In our analyses, the351

choice of the reference network seldom changed overall pat-352

terns. Our analyses produced better results when DysRegNet353

and SSN were combined with the computationally inferred354

GENIE3 networks, followed by the STRING and the exper-355

imentally validated network. A possible explanation is that356

the GENIE3 networks were constructed based on the same357

expression data used for the subsequent patient-specific net-358

work inference. Consequently, they more accurately reflect359

co-expression patterns observed in the data. As shown in360

Figure S2, the R2 values obtained by the linear regression361

models of DysRegNet were generally higher with the com-362

putationally inferred networks, indicating a better model fit.363

Gene regulation differs across tissues and cell types [38].364

Generic GRNs such as STRING and experimentally val-365

idated networks likely include regulatory interactions that366

may not be relevant to the tissues and datasets under study.367

In addition, these networks might encompass valid yet highly368

complex or non-linear relationships, which are not easily cap-369

tured by techniques such as linear regression or Pearson cor-370

relation. Both scenarios can lead to edges that cannot be re-371

liably modeled with DysRegNet or the available data, poten-372

tially impacting the meaningfulness of the results. Because373

of this, the DysRegNet Python package provides an option to374

only consider edges, which can be modeled with a certainR2
375

value or higher.376

Furthermore, it is important to note that the STRING net-377

work violates some of our modeling assumptions. For Dys-378

RegNet, we expect a gene regulatory reference network of379

directed TF-target gene relationships. However, the edges in380

the STRING network are neither directed nor are they actual381

TF-target gene pairs. While the overall co-expression mod-382

eling approach may still be valid, as we expect co-expression383

patterns between interacting proteins, our downstream mea-384
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surements, such as dysregulation scores for TFs and target385

genes, lose interpretability.386

F. Evaluation. We evaluated our approach against the origi-387

nal single-sample GRN inference method SSN. Although we388

compared our method only to this approach, numerous other389

methods adopted a comparable procedure. Lee et al. [8]390

extended the SSN approach by integrating multi-omics data391

such as copy number variation or DNA methylation. Due392

to the high similarity of methods and lack of public source393

code, a circumstance shared with Nakazawa et al. [13], we394

did not include those methods in the evaluation. Furthermore,395

the available code of P-SSN [11] requires a special reference396

network with a list of potentially indirectly interacting genes397

for each edge. Since P-SSN does not use standard regulatory398

networks as input, a proper comparison with DysRegNet was399

impossible. While DysRegNet identifies dysregulation com-400

pared to a healthy background, LIONESS [9] and SWEET401

[12] do not utilize a dedicated set of control samples but cap-402

ture truly sample-specific interactions. The right tool choice403

thus depends on the question and the availability of control404

samples, which are often not available at a sufficient num-405

ber (at least 20 samples are needed for a robust co-expression406

analysis [39]). For studies without controls, utilizing inde-407

pendent tissue-specific expression data of healthy individuals408

can be an alternative. Park et al. [7], for instance, employ a409

methodology closely related to the SSN approach where they410

leverage GTEx [40] data. However, cross-study batch effects411

need to be accounted for in this case.412

Despite recent attempts to systematically compare various413

sample-specific network inference methods [12, 41], a proper414

evaluation remains a major challenge. We considered a va-415

riety of cancer expression datasets and networks across dif-416

ferent complementary scenarios. Overall, our results indicate417

that DysRegNet and SSN produce biologically meaningful418

results. However, our evaluation is limited by the absence of419

ground truth and discrepancies in interpreting the networks420

generated by different methods [42]. For example, we ex-421

pect a higher percentage of dysregulated TFs in advanced422

cancer stages, while the true fraction or upper limit is un-423

known. Similarly, SSN networks generally comprise more424

dysregulated edges than those of DysRegNet, even though we425

used the same p-value cut-off and multiple testing correction426

procedures for both methods (Figure S3). While this could427

suggest that DysRegNet generates fewer false positives, we428

can not prove this without knowing the ground truth.429

G. Outlook. A promising direction for further research is a430

more in-depth investigation of the connection between dys-431

regulations and mutations. This study investigated whether432

mutated TFs will be more frequently involved in dysregula-433

tion. However, unlike in the promoter methylation analysis,434

the association between dysregulation and mutations was less435

visible. We found significant associations for 7% of the tested436

TFs at most. Our analysis did not consider that not every so-437

matic mutation will affect the regulatory function of a TF.438

A more specific analysis could focus on known or patient-439

specific mutations within the DNA binding domains of TFs in440

the promoter or enhancer regions of target genes and model441

their impact on expression changes [43]. Furthermore, so-442

matic mutations in cancer frequently affect the splice site and443

can cause isoform switches [44, 45]. Our analysis was per-444

formed at the gene level, but a deeper analysis at the isoform445

or transcript level would help explain a larger fraction of the446

identified dysregulated edges.447

Another interesting application of the method is in studying448

rare and undiagnosed diseases, where the focus is often on449

the unique differences of a single sample. The current rate of450

genetically diagnosed rare disorders is approximately 25 to451

50% [5]. Thus, DysRegNet provides a novel opportunity to452

expand our knowledge of such disorders.453

Single-patient network extraction is a promising research di-454

rection toward precision medicine as it highlights potential455

treatment targets in a personalized fashion. A plethora of456

computational methods have been developed for drug tar-457

get identification and drug repurposing [46]. Many of these458

methods already use networks as input [47–49] and embrace459

concepts of network pharmacology [50]. Typically, such460

methods extract disease modules after connecting patient- or461

disease-specific seed genes. Currently, seed gene selection462

is typically based on literature or patient-specific mutation or463

expression profiles. To our knowledge, patient-specific dys-464

regulation and co-expression analysis have thus far not been465

employed to identify seed genes, suggesting a promising di-466

rection for further research.467

H. Conclusion. Aberrant TF regulation is an important468

mechanism in complex diseases such as cancer. Rather than469

focusing on the aberrant expression of TFs or their target470

genes, it is worthwhile to study which specific interactions471

of a TF are affected to gain a more detailed insight into the472

underlying pathomechanisms. Many molecular changes can473

lead to the same outcome; hence, it is vital to study dysregu-474

lation in a patient- or sample-specific manner. With DysReg-475

Net, we present a novel approach that delineates individual476

TF-regulatory changes in relation to a control cohort. In con-477

trast to competing methods, DysRegNet uses linear models478

to account for confounders and residual-derived z-scores to479

assess significance. Due to the latter, DysRegNet scales ef-480

ficiently to an arbitrary number of samples. We have shown481

that DysRegNet results are robust across template networks482

and produce meaningful insights into cancer biology. Dys-483

RegNet may hence serve as a precision medicine tool for484

identifying drug targets in oncology and beyond.485

Materials and Methods486

I. Data preprocessing. All data from The Cancer Genome487

Atlas Program (TCGA) (comprising gene expression pro-488

files based on bulk RNA-seq, methylation, mutation, and489

sample metadata) were acquired from the XENA browser490

(https://xena.ucsc.edu/) [51]. We included eleven491

cancers with at least 30 control samples available (labeled492

"Solid Tissue Normal"). We used log2(tpm+ 0.001) nor-493

malized counts of the PANCAN cohort as a gene expression494

dataset (see Table S1 for the exact sample numbers). We re-495
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tained only genes expressed in at least 80 % of the patients of496

a cancer type. Subsequently, we standardized the expression497

data gene-wise based on the mean and standard deviation of498

the cancer-specific control samples.499

The three sample-level confounders used for DysRegNet500

(sex, age, and ethnicity) were obtained from the curated clini-501

cal data. Missing values for age were replaced with the mean502

age across all samples of a cancer type.503

Illumina 450k DNA methylation array data was filtered for504

CpGs associated with promoter regions (according to Illu-505

mina’s annotation). We then calculated the mean of all506

methylation β-values associated with the same gene to ob-507

tain a methylation value for each gene in each sample.508

Somatic mutations were mapped to their genes. In our analy-509

sis, we considered mutations of 12 different effect categories:510

Missense, nonsense, intron, frameshift deletion, frameshift511

insertion, splice site, in-frame deletion, in-frame insertion,512

RNA, translation start site, nonstop mutation, and large dele-513

tion.514

J. The statistical model behind DysRegNet. We define a515

reference network N = (G,T,E), where G is a set of genes,516

T ⊆G is a set of TFs, and E ⊆ T ×G is a set of edges con-517

necting TFs t ∈ T to target genes g ∈ G. The role of the518

reference network is to limit the search space for potentially519

dysregulated edges and to provide prior information about520

expected healthy regulations. We discuss possible choices521

for the template network in section K.522

For every pair of connected nodes (ti, gj), the relationship523

between the expression profiles of a TF ti and a target gene524

gj can be modeled as:525

ÊH(gj) = βH0 +βH1 ·EH(ti) +
L∑
l=2

(βHl ·CHl ) (1)

where EH(ti) is the expression of a TF ti in a cohort of526

healthy controls, ÊH(gj) is the expected expression of a tar-527

get gene gj in a cohort of control samples, {CH2 , ..,CHL } is528

a set of available covariates such as age, ethnicity, and sex,529

{βH0 , ..., βHL } are coefficients estimated with an ordinary530

least squares model.531

An edge eij = (ti,gj) is dysregulated for a patient p if the532

edge exists in the reference networkN , and, for patient p, the533

expression of gj cannot be reliably estimated using the model534

from Equation 1. Formally, this means that the expected ex-535

pression of Êp(gj) = βH0 + βH1 ·Ep(ti) +
∑L
l=2(βHl ·C

p
l )536

is significantly different from the actual value of Ep(gj).537

This difference can be defined as a residual of the model, i.e.538

rpij = Ep(gj)− Êp(gj), which can be converted to a z-score539

using the following transformation:540

zpij =
rpij− rHij
σ(rHij )

(2)

where rHij and σ(rHij ) are the mean and standard deviation of541

the control cohort residuals rHij = EH(gj)− ÊH(gj). The542

z-scores are converted to p-values using the standard normal543

distribution and subsequently corrected for multiple hypoth-544

esis testing regarding the number of patients with the Bonfer-545

roni correction procedure at a 0.01 significance level.546

K. Reference networks. In our analyses, we used three547

types of reference networks: computationally inferred net-548

works using GENIE3 [2], an experimentally derived regula-549

tory network from the Human Transcriptional Regulation In-550

teractions database (HTRIdb) [14], and a PPI network from551

STRING [15].552

GENIE3 GENIE3 uses an ensemble of trees to estimate553

the strength of the regulatory relationship between all pos-554

sible TF-target gene pairs. A list of 1639 human TFs was555

used from Lambert et al. [52] (http://humantfs.556

ccbr.utoronto.ca/) to limit the search space. To557

obtain cancer-specific reference networks, we ran the GE-558

NIE3 R package (https://github.com/aertslab/559

GENIE3, version 1.20.0) individually on the control samples560

of each cancer type. The shared network was derived by sum-561

ming up the edge importance scores of all cancer-specific net-562

works. For all GENIE3-inferred networks, we retained only563

the top 100,000 highest-scoring edges. We chose this cut-off564

to obtain networks that fall in between the relatively small565

HTRIdb and the much larger STRING network in terms of566

size.567

HTRIdb The Transcriptional Regulation Interactions568

database (http://www.lbbc.ibb.unesp.br/htri)569

is an open-access database of experimentally validated TF-570

target gene interactions. The database provides information571

about regulation interactions among 284 TFs and 18,302572

target genes detected by 14 distinct techniques [14]. Namely,573

chromatin immunoprecipitation, concatenate chromatin574

immunoprecipitation, CpG chromatin immunoprecipitation,575

DNA affinity chromatography, DNA affinity precipitation576

assay, DNase I footprinting, electrophoretic mobility shift577

assay, southwestern blotting, streptavidin chromatin im-578

munoprecipitation, surface plasmon resonance and yeast579

one-hybrid assay, chromatin immunoprecipitation coupled580

with microarray (ChIP-chip) or chromatin immunoprecipita-581

tion coupled with deep sequencing (ChIP-seq).582

STRING The STRING database (http://string-db.583

org/) is dedicated to protein-protein interactions. It was584

included in our assessment for a fair comparison between585

DysRegNet and SSN [10] (see section O), which was orig-586

inally evaluated using the STRING network. Following the587

described methodology, we also considered high-confidence588

interactions with a combined score larger than 0.9, retaining589

a total of 197,969 edges. The combined score is an aggre-590

gate of 7 channels (neighborhood, fusion, co-occurrence, co-591

expression, experimental, database, text mining).592

L. Patient clustering. We evaluated the similarity between593

patient-specific networks by computing a pairwise overlap594

coefficient for the set of dysregulated edges, i.e.:595

8 | bioRχiv Kersting et al. | DysRegNet

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2024. ; https://doi.org/10.1101/2022.04.29.490015doi: bioRxiv preprint 

http://humantfs.ccbr.utoronto.ca/
http://humantfs.ccbr.utoronto.ca/
http://humantfs.ccbr.utoronto.ca/
https://github.com/aertslab/GENIE3
https://github.com/aertslab/GENIE3
https://github.com/aertslab/GENIE3
http://www.lbbc.ibb.unesp.br/htri
http://string-db.org/
http://string-db.org/
http://string-db.org/
https://doi.org/10.1101/2022.04.29.490015
http://creativecommons.org/licenses/by-nc-nd/4.0/


o(pi,pj) =
|Epi

⋂
Epj |

min(|Epi |, |Epj |)
), (3)

where Epi and Epj are sets of the dysregulated edges for596

patients i and j, respectively. The resulting similarity ma-597

trix was used to cluster the patients with spectral cluster-598

ing implemented in scikit-learn (https://github.com/599

scikit-learn/scikit-learn, version 1.1.3, [53].600

We assigned cancer-type labels to the clusters, maximiz-601

ing the F1 score using the Hungarian algorithm [19] im-602

plemented in the munkres Python package (https://603

github.com/bmc/munkres, version 1.1.4).604

M. Hypothesis testing for mutation, methylation, and605

cancer stage analysis.606

M.1. Dysregulation scores. We compute dysregulation607

scores to quantify the dysregulation of a gene (either a TF or608

a target gene) in an individual patient. For a target gene g,609

the dysregulation score is defined as d̃p(g) = dinp (g)/dinR (g)610

where dinp (g) is the in-degree of g in the dysregulated611

network of patient p and dinR (g) is the in-degree of g in the612

reference network. Analogously, for a transcription factor t,613

the dysregulation score is defined as d̃p(t) = doutp (t)/doutR (t)614

where doutp (t) is the out-degree of t in the dysregulated615

network of patient p and doutR (g) is the out-degree of t in the616

reference network.617

M.2. DNA methylation local model. To model the relationship618

between promoter DNA methylation and target gene dysreg-619

ulation, we used the following linear model:620

m̂e(g) = βme0 +βme1 · d̃(g) (4)

Here, me(g) = [me1(g), . . . ,meP (g)] is the vector of the av-621

erage (across CPGs) promoter DNA methylation (see sec-622

tion I) of target gene g for all P patients and d̃(g) =623

[d̃1(g), . . . , d̃P (g)] is the vector of g’s dysregulation scores.624

The slope coefficients βme1 were tested for significance with625

the null hypothesis H0 : βme1 = 0. The p-values were then626

corrected using the Benjamini-Hochberg method.627

The linear models were estimated using the ordinary628

least squares implementation in the statsmodels Python629

package (https://github.com/statsmodels/630

statsmodels, version 0.13.5).631

M.3. DNA methylation global model. While Equation 4 al-632

lows us to test every target gene individually, we also applied633

a linear mixed-effect model to investigate the global associa-634

tion between promoter methylation and dysregulation across635

all target genes in the reference network. For this, we built636

a model with a random intercept coefficient for each target,637

assuming different baseline methylation levels:638

m̂e(G) = βme∗
0 +βme∗

1 · D̃G+γmeg , (5)

where me(G) are the average (across CPGs) pro-639

moter DNA methylation values for any g ⊆ G, D̃G =640

[d̃1(g1), .., d̃P (g1), d̃1(g2), .., d̃P (g2), ...] are target gene dys-641

regulation scores across all target genes and patients, and642

γmeg is a random intercept for each target gene. The slope643

coefficient βme∗
1 was tested for significance with the null hy-644

pothesis H0 : βme∗
1 = 0.645

The linear mixed-effect models were estimated using the im-646

plementation in the statsmodels Python package (https://647

github.com/statsmodels/statsmodels, version648

0.13.5).649

M.4. Mutation local model. We tested the association be-650

tween a TF’s dysregulation score and its mutation status us-651

ing a logistic regression model:652

logit{P [mu(t) = 1]}= βmu0 +βmu1 · d̃(t) (6)

Here, mu(t) = [mu1(t), . . . ,muP (t)] is a binary vector in-653

dicating the mutation status (1 indicates the presence of at654

least one mutation, 0 means no mutation) of the TF t for all655

P patients and d̃(t) = [d̃1(t), . . . , d̃P (t)] is the vector of t’s656

dysregulation scores.657

The slope coefficient βmu1 was tested for significance with658

the null hypothesis H0 : βmu1 = 0. The p-values were then659

corrected using the Benjamini-Hochberg method. We only660

tested TFs that were mutated in at least six patients and only661

considered cancer types with a least 30 TFs fulfilling this cri-662

terion.663

The logistic regression models were estimated using the im-664

plementation in the statsmodels Python package (https://665

github.com/statsmodels/statsmodels, version666

0.13.5).667

M.5. Mutation global model. To evaluate the global relation-668

ship between TF mutations and dysregulation, we used a lo-669

gistic mixed-effect model with a random intercept coefficient670

for each TF, assuming different baseline mutation loads:671

logit{P [mu(T ) = 1]}= βmu∗
0 +βmu∗

1 · D̃T +γmut , (7)

where mu(T ) are binary mutation statuses for any t ⊆ T ,672

D̃T = [d̃1(t1), .., d̃P (t1), d̃1(t2), .., d̃P (t2), ...] are TF dysreg-673

ulation scores, and γmut is a random intercept for every TF.674

βmu∗
1 was tested for significance with the null hypothesis675

H0 : βmu∗
1 = 0. We only tested TFs that were mutated in676

at least six patients and only considered cancer types with a677

least 30 TFs fulfilling this criterion.678

The logistic mixed-effect models were estimated using the679

implementation in the pymer4 Python package (https://680

github.com/ejolly/pymer4, version 0.8.0)681

M.6. Hypothesis testing for cancer stage analysis. We sepa-682

rated the samples of each cancer into two groups: an early-683

stage group (stage I) and a late-stage group (stage III or stage684

IV). For better separability, we excluded stage II samples685

from this analysis since they pose an intermediate setting686

that can resemble either stage I or III too closely. We con-687

ducted cancer stage analysis exclusively for types of can-688

cer with a minimum of 30 patients in both groups to en-689
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sure the preservation of statistical power. We then per-690

formed a one-sided Mann-Whitney U test, implemented in691

scikit-learn (https://github.com/scikit-learn/692

scikit-learn, version 1.1.3, [53]), for every TF in the693

reference network to assess whether its dysregulation scores694

are larger in the late-stage compared to the early-stage group.695

We corrected the obtained p-values for multiple testing with696

the Benjamini-Hochberg method.697

N. Coefficient p-values. Two-tailed p-values for the coef-698

ficients of DysRegNet’s linear models were obtained based699

on the coefficient’s t-statistic. They can be interpreted as the700

probability that the coefficient is zero and thus has no pre-701

dictive power. Multi-label categorical confounders, such as702

ethnicity, resulted in multiple (l−1, where l is the number of703

different categories) coefficients/p-values per model, which,704

for visualization purposes, were summarized in one distribu-705

tion.706

O. SSN. SSN, described by Liu et al. [10], calculates the707

correlation difference introduced by adding one case sample708

to a set of control samples. For each case sample and each709

pair of genes, the following score is computed:710

Z = ∆PCCn
(1−PCC2

n)/(n−1) (8)

, where ∆PCCn = PCCn+1−PCCn is the difference be-711

tween the Pearson correlation coefficients calculated on the712

control samples (PCCn) and the control samples with one713

case sample (PCCn+1), and n is the number of control sam-714

ples. We further converted the Z values into p-values with715

a Z-test, as described by Liu et al. Next, we corrected the716

p-values for multiple hypothesis testing using the Bonferroni717

method. We set a cut-off that defines a dysregulated edge718

at a corrected p-value of 0.01 or lower, equal to the cut-off719

selected for DysRegNet.720

P. Web interface. The dysregulated networks of the eleven721

studied TCGA cancers can be interactively explored us-722

ing a web interface (https://exbio.wzw.tum.de/723

dysregnet), which was built with Plotly Dash (https:724

//plotly.com/dash/, version 2.0.0), the Cytoscape.js725

[54] wrapper Dash Cytoscape (https://dash.plotly.726

com/cytoscape, version 0.2.0), Dash Bio (https://727

dash.plotly.com/dash-bio, version v0.2.0) and a728

Neo4j database (https://neo4j.com/, version 5.11.0).729

We inferred the visualized networks using the GENIE3730

shared reference network.731

Since the underlying network is vast and highly connected,732

the interface is centered around individually selected query733

genes. Only the regulatory connections between those genes734

and their targets or sources are displayed to keep the resulting735

network compact and tidy. Further query genes can be added736

to expand the graph in directions of interest.737

We display the fraction of patients with a dysregulation for738

each regulatory connection, which is directly depicted by739

the corresponding edge in the graph network. This met-740

ric can also be compared visually between different cancer741

types. Furthermore, the web interface incorporates informa-742

tion about the gene mutation frequency and mean promoter743

DNA methylation. Heatmaps allow the investigation of the744

DNA methylation status and the significance of a dysregula-745

tion on the patient level.746

To prevent the underlying graph structure from becoming too747

large, the maximum number of displayed edges is capped,748

and edges can be filtered by their fraction of dysregulated749

patients and their type. In case a user is interested in the full,750

unfiltered graph, it can be downloaded as a CSV file.751

The displayed network can be directly exported to the online752

systems medicine platform Drugst.One [55] to obtain drugs753

targeting the dysregulated genes.754

Q. Python package. An implementation of DysRegNet755

as described in section J is available as an easy-to-756

access Python package (https://exbio.wzw.tum.757

de/dysregnet). The linear regression modeling, as well758

as coefficient p-value and R2 value calculation, were imple-759

mented based on the ordinary least squares implementation760

in the statsmodels Python package (https://github.761

com/statsmodels/statsmodels).762

Our package also provides some additional features, which763

we did not use in this study for better comparability with764

SSN. This includes a goodness of fit filter to ignore edges765

with a low R2 value and the normality filter [35, 36] imple-766

mented in the scipy Python package (https://github.767

com/scipy/scipy) to test the assumption of normally768

distributed control sample residuals. Furthermore, the Python769

package can distinguish between four possible scenarios of770

dysregulation shown in Figure S5: suppressed activation (1),771

amplified activation (2), amplified repression (3), and sup-772

pressed repression (4). The Python package can be used to773

only consider scenarios 1 and 4, which correspond to a re-774

duced response towards the TF expression rather than an am-775

plified one (scenarios 2 and 3).776
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Table S1. Number of available control samples (additionally separated by sex) and patient samples for each studied cancer type.

Cancer Control samples Female control samples Male control samples Patient samples
BRCA 113 112 1 1098
COAD 41 21 20 288
HNSC 44 14 30 520
KIRC 72 20 52 531
KIRP 32 10 22 289
LIHC 50 22 28 371
LUAD 59 34 25 515
LUSC 50 14 36 498
PRAD 52 0 52 496
STAD 36 13 23 414
THCA 59 42 17 512
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Fig. S1. Local and global models for methylation-dysregulation association studies.
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Fig. S3. Number of edges in the patient-specific networks inferred with DysRegNet and SSN based on different reference networks.

Supplementary Note 1: Runtime comparison1006

For evaluating the time complexity of DysRegNet and SSN, let n be the number of control samples, p the number of pa-1007

tients/case samples, g the number of genes in the expression matrix, e the number of edges in a reference network, and l the1008

number of covariates used in the linear model of DysRegNet.1009

SSN computes a correlation matrix for every patient, including the patient and control samples. Using a naive algorithm,1010

calculating the correlation matrix has the computational complexity of O(n · g2). Since this procedure has to be repeated for1011

every patient, the total complexity of SSN is O(p ·n · g2). If we do not compute the correlations between every possible gene1012

pair but only those in the reference network, this becomes O(p ·n ·e).1013
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Fig. S4. Coefficient p-value distributions obtained with different reference networks (rows) and cancer expression datasets. A single
violin summarizes the p-values of a coefficient across all built models (one for each edge in the reference network). The horizontal line
indicates a p-value of 0.05.

DysRegNet relies on an ordinary least squares model, the complexity of which depends on the number of control samples n1014

and the number of covariates l. Using again a naive algorithm, the time complexity of building a single model isO((n+ l) · l2).1015

Additionally, we have to compute a residual for all patients p considering l covariates increasing the complexity to O((n+ l) ·1016

l2 +(p · l)). Suppose we neglect the impact of the number of covariates, which is a reasonable assumption since we would only1017

expect the intercept, the TF expression, and potentially a couple of others. Then, the complexity can be simplified toO(n+p).1018

Building the linear models for every possible gene pair or every edge in the reference network leads to a final complexity of1019

O(g2 · (n+p)) or O(e · (n+p)), respectively.1020

Comparing the time complexity of DysRegNet and SSN, DysRegNet scales more favorably in terms of the number of control1021

samples and patients, as its effects are additive and not multiplicative, as is the case with SSN.1022

We also measured the actual runtime of DysRegNet and SSN on the THCA dataset (comprised of 59 control samples and 5121023

patients) in combination with the experimentally validated HTRIdb [14] reference network. For the benchmark, we kept 92601024

genes and 14712 edges by selecting only the genes present in the THCA expression data and the reference network. All methods1025

for the runtime comparison were implemented in Python 3.11, and we measured the total script execution time, including IO1026

operations. Across ten runs, DysRegNet consistently completed in approximately 107 seconds, whereas SSN required about1027

4500 seconds or 1.25 hours (Figure S6).1028
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Fig. S6. Runtime comparison box plot between DysRegNet and SSN based on ten runs, including 59 control samples, 512 patients,
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