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Gene regulation is frequently altered in diseases in unique and
patient-specific ways. Hence, personalized strategies have been
proposed to infer patient-specific gene-regulatory networks.
However, existing methods do not scale well as they often re-
quire recomputing the entire network per sample. Moreover,
they do not account for clinically important confounding factors
such as age, sex, or treatment history. Finally, a user-friendly
implementation for the analysis and interpretation of such net-
works is missing.

We present DysRegNet, a method for inferring patient-specific
regulatory alterations (dysregulations) from bulk gene expres-
sion profiles. We compared DysRegNet to SSN, a well-known
sample-specific network approach. We demonstrate that both
SSN and DysRegNet produce interpretable and biologically
meaningful networks across various cancer types. In contrast
to SSN, DysRegNet can scale to arbitrary sample numbers and
highlights the importance of confounders in network inference,
revealing an age-specific bias in gene regulation in breast cancer.
DysRegNet is available as a Python package (https:
//github.com/biomedbigdata/DysRegNet_package),
and analysis results for eleven TCGA cancer types
are available through an interactive web interface
(https://exbio.wzw.tum.de/dysregnet).

Correspondence: markus.list@tum.de

Introduction

Gene regulatory network (GRN) inference methods model
regulatory relationships based on gene co-expression mea-
sures such as (conditional) mutual information or (partial)
correlation [1]. A directed network is typically created by
limiting the inference to transcription factors (TFs) and their
putative target genes. While methods such as GENIE3 [2]
or ARACNE [3] identify static GRNs from gene expression
data, dynamic methods compare the co-expression in differ-
ent conditions [4].

Differential expression and co-expression analysis methods
designed to compare two groups or more (e.g., disease and
control) can typically not account for disease heterogeneity,
identify disease subgroups, or describe patient-specific dys-
regulation patterns. In contrast, methods identifying patient-
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specific gene expression aberrations in a one-against-all com-
parison can report sample-specific outlier genes [5, 6]. How-
ever, these approaches cannot pinpoint the source of the dys-
regulation. For instance, a mutated TF may not change in ex-
pression but can still behave differently in regulating its target
genes, highlighting that co-expression should be considered
at the single-patient level.

A few methods for studying patient-specific regulatory pat-
terns have been proposed [7-12]. Most methods calculate
the Pearson correlation between two genes before and af-
ter adding/removing one sample. Some, such as SSN [10],
evaluate the significance of this difference using transfor-
mations to z-scores or p-values. P-SSN [11] expands upon
this technique by incorporating partial correlation to account
for indirect interactions. LIONESS [9] can be adapted to
any network inference approach returning a weighted adja-
cency matrix but does not offer any significance assessment.
SWEET [12] extends the LIONESS approach by incorpo-
rating a sample-to-sample correlation weight to account for
variations in subpopulation sizes but is limited to Pearson
correlation as a network inference strategy. Nakazawa et
al. [13] define an edge contribution value to extract sub-
networks from Bayesian networks inferred from all samples
and use this approach successfully for cancer subtyping. We
note that existing approaches can not correct for confounders
such as sex, age, and origin of the sample, which can impact
the analysis at a single sample level. Moreover, the leave-
one-sample-out approach is computationally expensive, es-
pecially for large cohorts.

These limitations motivated us to develop DysRegNet, a
method that first infers linear models from control samples,
where the TF expression is considered the explanatory vari-
able and the expression of its target gene the response vari-
able. Subsequently, we consider the residual for each patient
sample to determine if the co-expression pattern deviates
from the expected value. The linear model allows DysReg-
Net to correct for known covariates and to compute results
(including significance) considerably faster than competing
methods (Supplementary Note 1). We show that DysRegNet
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can infer biologically meaningful patient-specific networks s
and compare them to results from SSN, a state-of-the-art rep- 1s4
resentative of correlation-based methods. 135
136
137

Results

138

A. Overview of the method. DysRegNet requires a refer- '®
ence GRN and expression data of two groups as input (Fig- '
ure 1A). 14
The reference network defines feasible interactions and re- '
duces false positives. It can consist of experimentally con- '*
firmed (e.g., HTRIdb [14]) or computationally inferred in- '*
teractions (e.g., using GENIE3 [2] or ARACNE [3]). The'®
expression data have to be partitioned into two groups: pa- '*
tient and control samples. Control samples define healthy
co-expression patterns, which are then used to detect dysreg- '*®
ulations in the patient samples. Optionally, DysRegNet can '*
use confounders, such as age or sex, to refine the models fur- '*°
ther. 19
Our method fits a linear regression model for every edge in ™
the reference network using the control samples (Figure 1B). '®
Specifically, we model the expression level of the TF as an '
explanatory variable to estimate the expression level of the '
target gene. Confounding factors serve as additional explana- '*
tory variables. After estimating the model parameters using
Ordinary Least Squares, we compute the residual for every "
patient sample, i.e., the difference between the predicted ex- e
pression level of the target gene and the observed one. The "
residual is transformed into a z-score using the distribution of s
the control sample residuals for standardization. This tech- s
nique is comparable with an outlier detection task in regres- s
sion analysis. After evaluating all patients, z-scores are trans- s
formed into p-values and corrected for multiple testing (see o
Methods section J). e
The output of our method is a list of predicted dysregu-::i
lated edges for every patient, which can be integrated into .
a network with one or several connected components (Fig- o
ure 1C). It is important to note that previous studies used170
the term "patient-specific (or sample-specific) regulatory net- o
work". We prefer to call it a patient-specific dysregulated .
network since we can only identify outliers w.r.t. the original o
GRN but not learn new edges or a gain of function specific to e
one sample.

DysRegNet is available as a Python package (https:
//github.com/biomedbigdata/DysRegNet_ .
package), and analysis results for eleven TCGA cancer
types can be interactively explored through a web interface o
(https://exbio.wzw.tum.de/dysregnet).

147

4

175

176

180

181

B. Pan-cancer analysis to assess biological rele-
vance. We evaluated DysRegNet using eleven cancer types

available in TCGA (see Methods section I) and compared 1ss
the results to those obtained using SSN (see Discussion sec- 1a4
tion F for a justification for choosing SSN as the reference s
method in our benchmark). We carried out four analysis 1ss
types: patient clustering based on the computed networks, 1s7
promoter methylation of dysregulated targets, dysregulation 1ss

2 | bioRxiv

of mutated TFs, and progression of dysregulation in different
cancer stages (Figure 1D).

We used four types of reference networks for the evalua-
tion: GENIE3 individual, GENIE3 shared, experimentally
verified interactions from HTRIdb (referred to as experimen-
tal), and the STRING [15] network. The GENIE3 networks
were computationally generated using the GENIE3 method,
where the individual network was inferred separately for each
cancer type based on its specific control samples, and the
shared network comprises the edge intersection of all indi-
vidual networks. Thus, the shared network is the same for
all analyses performed, while the individual networks are
cancer-type-specific. The STRING network is not limited
to gene-regulatory interactions but considers protein-protein
interactions (PPIs). We included a PPI network in the eval-
uation for a fair comparison with the SSN method that was
evaluated using this network. We ran DysRegNet with three
additional sample-level confounders, namely sex, age, and
ethnicity, which were all previously shown to be strong con-
founders in certain types of cancers [16—18].

As outlined below, all four analyses suggest that the networks
produced by DysRegNet capture biologically relevant signals
and, in many cases, to a greater extent than those produced
by SSN.

B.1. Patient-specific networks preserve characterizing fea-
tures of the cancer type. Even though our method infers an
individual network for each patient, aiming to capture its
potentially unique dysregulations, we expect similarities be-
tween patients of the same cancer type. We assume that pa-
tients with the same cancer type have similar dysregulated
edges while patients with different cancers have fewer dys-
regulated edges in common. To investigate this, we eval-
uated the similarity between all individual patient networks
across all cancer types by computing a pairwise overlap co-
efficient for their edge sets (see Methods section L). We then
used spectral clustering to cluster the patients based on their
similarity and assigned a label (i.e., the cancer type) to each
cluster using the Hungarian algorithm, which maximizes the
F1 score of the label-cluster mapping [19]. The evalua-
tion was conducted using the shared GENIE3, HTRIdb, and
STRING networks. The individual (cancer-specific) GE-
NIE3 networks were excluded due to high tissue specificity,
making conclusions regarding the cancer specificity of the
dysregulated networks impossible.

The final F1 scores for DysRegNet and SSN are shown in
Figure 2. DysRegNet consistently performed better than SSN
in this analysis, particularly when combined with the GE-
NIE3 shared and experimental reference networks. This pro-
vides evidence that networks derived from DysRegNet can
better capture cancer-type-specific characteristics.

B.2. Target genes with methylated promoters are more likely
to be dysregulated. DNA methylation plays a crucial role in
controlling gene expression. For example, when CpG sites
undergo methylation within the promoter region, it leads
to repressed gene expression because TFs can no longer
bind [20]. Therefore, gene promoter methylation is also a di-
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Fig. 1. Overview of the method. (A) DysRegNet requires a reference network and expression data for control and patient samples as input. Additionally, multiple sample-level
confounders can be provided. For illustration purposes, we assume the reference network has only three edges, with two activating and one repressing interaction. (B)
Our method uses the control samples to infer a linear regression model for each edge in the reference network (the illustration focuses on the edge between genes A and
B), modeling the expression level of the target gene based on the expression level of the TF and additional confounders if provided. Subsequently, we apply the obtained
models to the patient samples, computing a residual for each patient sample. Based on the distribution of the control sample residuals, we assign a p-value to each patient
residual. A low p-value suggests that the co-expression pattern of the patient significantly diverges from the control model, leading us to classify the edge as dysregulated.
(C) Applying the described procedure to all patient samples and all edges in the reference network leads to the final output of DysRegNet: one network for each patient
sample comprising all its dysregulated edges. (D) We evaluated the inferred patient-specific dysregulated networks using known cancer subtypes, cancer stage annotations,

additional methylation, and mutation data. Created with BioRender.com

agnostic and prognostic cancer biomarker [21]. Even though 2o
changes in promoter methylation represent only one possible 22
cause of dysregulation, we hypothesize that promoter methy- 20
lation should be correlated with the dysregulation of a target 204
gene across many samples. 205
206
Based on this hypothesis, we benchmarked SSN and Dys- 5,
RegNet with respect to the correlation of promoter methyla- 5
tion and patient-specific dysregulation. More specifically, we »
used linear regression to model the promoter methylation of ,,,
target genes based on their overall dysregulation. To quan-
tify this overall dysregulation of a target gene in a patient, we

defined a dysregulation score as the number of its incoming 212
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edges in the patient-specific dysregulated network divided by
the number of its incoming edges in the reference network
(see Methods section M.1). The dysregulation score, there-
fore, represents the proportion of TFs associated with a target
gene that lost their ability to regulate it. Consequently, a high
dysregulation score indicates that TFs generally lost the abil-
ity to regulate the target, which is what we would expect in
cases where they can no longer bind to the promoter due to
methylation. Note that while this would not affect TFs bind-
ing to enhancer regions, it suffices to show that dysregulation
is related to changes in DNA methylation.

We built two different types of models: a local and a global
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267

268
one. While the local model tests every target gene individu-

ally, the global model tries to capture a trend across all target “
genes by including all of them in one mixed-effect model, -
adding the target gene as a random intercept (for details, see oo
Methods sections M.2, M.3). An illustration of the differ- s
ences between the two models can be found in the Supple- e
mentary Material Figure S1. s
Up to 20% of the tested target genes showed a significant link
between their promoter methylation and dysregulation score
( Figure 3) in both SSN and DysRegNet. The difference be-
tween both methods is relatively small. The results are fur-
ther corroborated by global significance tests, revealing con-

sistent patterns across all datasets except THCA, LIHC, and ,,,

KIRC, irrespective of the method or reference network used. ,,

282

B.3. Mutated TFs have more dysregulated targets. Muta- ,,,
tions in TFs are associated with different types of cancer, like ,,
lung cancer [22], prostate cancer [23], breast cancer [24], and ,q,
many others [25]. We hypothesize that some mutated TFSs .
may no longer be able to regulate their target genes, e.g., be-
cause they lost the ability to bind their motif. 088
As a measure, we defined a dysregulation score for TFs anal- 5
ogously to the dysregulation score for target genes used in the 4
methylation analysis, the only difference being that we now s,
focus on outgoing instead of incoming edges. Thus, a high
TF dysregulation score indicates that the TF lost the ability to »,
regulate many of its target genes, as expected for some mu- z,
tated TFs. For this analysis, we modeled the mutation state o
of a TF based on its dysregulation score. Also, analogously s
to the methylation analysis, we performed tests using a local g,
and a global model. However, since we treated the mutation s
state of a TF as a binary outcome, we switched from linear to s
logistic regression. 300
Figure 4 shows the results of the local- and global-scale anal- s
yses for all cancer types and reference network combinations

investigated. The percentages of significant local models ex- e
hibit considerably lower and more variable values than those

observed in the methylation tests. Nonetheless, the global s
tests reveal a correlation between mutated TFs and their dys- s

4 | bioRxiv

regulation score across numerous scenarios. Again, DysReg-
Net and SSN perform similarly.

There are multiple factors explaining the disparity in the
number of significant tests compared to the methylation anal-
ysis: A TF mutation is only one possible source of dysregu-
lation, and only some specific mutations will affect the regu-
latory ability of TFs. Furthermore, most TFs were only mu-
tated in a handful of patients, reducing the statistical power
of our analyses.

Because of this, we still see the significant relationship be-
tween mutated TFs and their dysregulation indicated by
global tests as further evidence of the biological meaning-
fulness of patient-specific networks.

B.4. Patients with advanced stages of cancer exhibit in-
creased dysregulation. Due to the accumulation of mutations
[26] and progressing epigenetic reprogramming of gene reg-
ulation in cancer [27], we expect to observe increased gene
dysregulation in the late stages of cancer compared to the
early stages.

To investigate this assumption, we divided patients into early-
stage and late-stage groups for each cancer type (see Methods
section M.6). We then applied a one-sided Mann-Whitney U
test to asses whether the dysregulation scores of TFs would
be increased in the late-stage groups.

Except for COAD and BRCA, large percentages of TFs
showed increased dysregulated in late-stage patients, exceed-
ing 80% for LIHC Figure 5. Compared to SSN, DysRegNet-
inferred networks generally contained more TFs with in-
creased dysregulation in the advanced stages.

B.5. Confounders significantly impact model inference. A
distinguishing feature of DysRegNet is the ability to correct
for sample-level confounders. To assess if including a pa-
tient’s sex, age, and ethnicity has an impact, we assessed the
covariates model coefficients Figure 6. Unsurprisingly, the
expression of the TF produced the most significant p-values.
However, the confounders noticeably impacted the regression
models in various cancer types, such as age in the breast can-
cer (BRCA) dataset, sex in liver hepatocellular carcinoma
(LIHC), and ethnicity in stomach adenocarcinoma (STAD)
and lung adenocarcinoma (LUAD). In BRCA, NOX4, the tar-
get gene most strongly positively associated with age, was
indeed observed in previous studies to increase with age [28—
30]. In LIHC, KDM5C was the target gene associated with
the most significant p-value for sex. KDM5C is encoded
on the X chromosome and is known to have higher expres-
sion in females than in males [31, 32], which was again re-
flected by the sign of the estimated coefficient. This indicates
that patient-level confounding factors influence the expres-
sion data, which DysRegNet can efficiently incorporate into
its model construction and patient-specific network inference
process.

Discussion

C. Validity of model assumptions. Since DysRegNet is
an outlier detection approach, it will be especially suscepti-

Kersting etal. | DysRegNet
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ble to technical biases. Furthermore, users should remem- sis
ber that the method is built based on the following assump- si9
tions: (1) the target gene expression can be predicted based a2
on TF expression, and (2) the residuals of the linear model 2
follow a normal distribution. The first assumption typically
does not hold for PPI networks. It will also not hold for all
TF-target gene pairs in a GRN. The activity of a TF can be
influenced by many factors, such as interactions with other **
proteins, chromatin accessibility, or post-translational modi- **
fications, which are not reflected in expression data [33, 34].*®
We thus recommend evaluating the goodness of fit of the un- *°
derlying regression model before considering an edge as po-**
tentially dysregulated. Our Python package directly supports ***

322

329
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this by setting an R? cut-off. Similarly, we implemented a
test to evaluate whether the residuals follow a normal distri-
bution [35, 36]. This allows users to focus only on regulatory
interactions that adhere to our second assumption.

D. Importance of adjusting for confounders. Our results
suggest that DysRegNet can account for typical confounders
such as age and sex. However, it should be noted that these
confounders do not seem to impact all data sets to the same
extent. Age, for example, only affected the BRCA dataset.
This finding is well-aligned with a recent study on the effect
of demographic confounders on cohort-level network infer-
ence tools where age was identified as a strong confounder
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power will yield a uniform distribution of p-values. Conversely, influential confounders are expected to generate a disproportionate number of small p-values, manifesting as
a pronounced concentration at the lower end of the p-value distribution, akin to a "belly" in the violin plot. Note that there are no p-values for sex in prostate adenocarcinoma

(PRAD) as it inherently includes only male samples.

on network inference in BRCA based on data from two in- s
dependent cohorts (TCGA and METABRIC)[37]. Given that sss
BRCA has notably more control samples (113) than other as
cancer types (see Table S1), we assume that certain effects aso
require a sufficiently large sample to be detected. The same se
principle applies to categorical confounders such as sex or s
ethnicity, where aside from the overall sample size, each cat- ss
egory must appear frequently enough to accurately estimate o4

its effect. .

&

5

3

E. Influence of different reference networks. The ini-
tial reference network is a necessary input for DysRegNet. 3
Our analysis considered three types: computationally in- 36
ferred regulatory networks from GENIE3, an experimentally 37
validated network from HTRIdb, and a PPI network from 37
STRING. We compared these networks in four different con- 372
texts: patient clustering (i), promoter methylation of dysregu- 372
lated target genes (ii), dysregulation of mutated TFs (iii), and 374
progression of dysregulation in different cancer stages (iv). 37
The choice of the network depends on the research ques-
tion. Users can expect computationally inferred networks s77
to favor false positives, while experimentally validated net- a7
works may include more false negatives. In our analyses, the a7
choice of the reference network seldom changed overall pat- ss
terns. Our analyses produced better results when DysRegNet s
and SSN were combined with the computationally inferred ss
GENIE3 networks, followed by the STRING and the exper- ss
imentally validated network. A possible explanation is that ss

3

6

376

6 | bioRxiv

the GENIE3 networks were constructed based on the same
expression data used for the subsequent patient-specific net-
work inference. Consequently, they more accurately reflect
co-expression patterns observed in the data. As shown in
Figure S2, the R? values obtained by the linear regression
models of DysRegNet were generally higher with the com-
putationally inferred networks, indicating a better model fit.

Gene regulation differs across tissues and cell types [38].
Generic GRNs such as STRING and experimentally val-
idated networks likely include regulatory interactions that
may not be relevant to the tissues and datasets under study.
In addition, these networks might encompass valid yet highly
complex or non-linear relationships, which are not easily cap-
tured by techniques such as linear regression or Pearson cor-
relation. Both scenarios can lead to edges that cannot be re-
liably modeled with DysRegNet or the available data, poten-
tially impacting the meaningfulness of the results. Because
of this, the DysRegNet Python package provides an option to
only consider edges, which can be modeled with a certain R2
value or higher.

Furthermore, it is important to note that the STRING net-
work violates some of our modeling assumptions. For Dys-
RegNet, we expect a gene regulatory reference network of
directed TF-target gene relationships. However, the edges in
the STRING network are neither directed nor are they actual
TF-target gene pairs. While the overall co-expression mod-
eling approach may still be valid, as we expect co-expression
patterns between interacting proteins, our downstream mea-
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surements, such as dysregulation scores for TFs and target s
genes, lose interpretability. a2
443
F. Evaluation. We evaluated our approach against the origi- 4,
nal single-sample GRN inference method SSN. Although we 4
compared our method only to this approach, numerous other
methods adopted a comparable procedure. Lee et al. [8] .
extended the SSN approach by integrating multi-omics data .
such as copy number variation or DNA methylation. Due .,
to the high similarity of methods and lack of public source 4,
code, a circumstance shared with Nakazawa et al. [13], we ,;
did not include those methods in the evaluation. Furthermore, ,s,
the available code of P-SSN [11] requires a special reference s,
network with a list of potentially indirectly interacting genes ,s,
for each edge. Since P-SSN does not use standard regulatory ,ss
networks as input, a proper comparison with DysRegNet was s,
impossible. While DysRegNet identifies dysregulation com- ,s;
pared to a healthy background, LIONESS [9] and SWEET s
[12] do not utilize a dedicated set of control samples but cap- 45
ture truly sample-specific interactions. The right tool choice 4,
thus depends on the question and the availability of control
samples, which are often not available at a sufficient num- 4,
ber (at least 20 samples are needed for a robust co-expression 4
analysis [39]). For studies without controls, utilizing inde- 4
pendent tissue-specific expression data of healthy individuals .
can be an alternative. Park et al. [7], for instance, employ a 4
methodology closely related to the SSN approach where they .,
leverage GTEx [40] data. However, cross-study batch effects
need to be accounted for in this case. a8
Despite recent attempts to systematically compare various e
sample-specific network inference methods [12, 41], a proper 470
evaluation remains a major challenge. We considered a va- 41
riety of cancer expression datasets and networks across dif- 47
ferent complementary scenarios. Overall, our results indicate 475
that DysRegNet and SSN produce biologically meaningful 47
results. However, our evaluation is limited by the absence of 45
ground truth and discrepancies in interpreting the networks 7
generated by different methods [42]. For example, we ex- 477
pect a higher percentage of dysregulated TFs in advanced 475
cancer stages, while the true fraction or upper limit is un- 4
known. Similarly, SSN networks generally comprise more 4z
dysregulated edges than those of DysRegNet, even though we s
used the same p-value cut-off and multiple testing correction ss»
procedures for both methods (Figure S3). While this could s
suggest that DysRegNet generates fewer false positives, We s
can not prove this without knowing the ground truth. 485

G. Outlook. A promising direction for further research is a

more in-depth investigation of the connection between dys- )
regulations and mutations. This study investigated whether 4
mutated TFs will be more frequently involved in dysregula- sss
tion. However, unlike in the promoter methylation analysis, s
the association between dysregulation and mutations was less 490
visible. We found significant associations for 7% of the tested o1
TFs at most. Our analysis did not consider that not every so- 4s
matic mutation will affect the regulatory function of a TF. sss
A more specific analysis could focus on known or patient- ss
specific mutations within the DNA binding domains of TFs in s

86
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the promoter or enhancer regions of target genes and model
their impact on expression changes [43]. Furthermore, so-
matic mutations in cancer frequently affect the splice site and
can cause isoform switches [44, 45]. Our analysis was per-
formed at the gene level, but a deeper analysis at the isoform
or transcript level would help explain a larger fraction of the
identified dysregulated edges.

Another interesting application of the method is in studying
rare and undiagnosed diseases, where the focus is often on
the unique differences of a single sample. The current rate of
genetically diagnosed rare disorders is approximately 25 to
50% [5]. Thus, DysRegNet provides a novel opportunity to
expand our knowledge of such disorders.

Single-patient network extraction is a promising research di-
rection toward precision medicine as it highlights potential
treatment targets in a personalized fashion. A plethora of
computational methods have been developed for drug tar-
get identification and drug repurposing [46]. Many of these
methods already use networks as input [47—49] and embrace
concepts of network pharmacology [50]. Typically, such
methods extract disease modules after connecting patient- or
disease-specific seed genes. Currently, seed gene selection
is typically based on literature or patient-specific mutation or
expression profiles. To our knowledge, patient-specific dys-
regulation and co-expression analysis have thus far not been
employed to identify seed genes, suggesting a promising di-
rection for further research.

H. Conclusion. Aberrant TF regulation is an important
mechanism in complex diseases such as cancer. Rather than
focusing on the aberrant expression of TFs or their target
genes, it is worthwhile to study which specific interactions
of a TF are affected to gain a more detailed insight into the
underlying pathomechanisms. Many molecular changes can
lead to the same outcome; hence, it is vital to study dysregu-
lation in a patient- or sample-specific manner. With DysReg-
Net, we present a novel approach that delineates individual
TF-regulatory changes in relation to a control cohort. In con-
trast to competing methods, DysRegNet uses linear models
to account for confounders and residual-derived z-scores to
assess significance. Due to the latter, DysRegNet scales ef-
ficiently to an arbitrary number of samples. We have shown
that DysRegNet results are robust across template networks
and produce meaningful insights into cancer biology. Dys-
RegNet may hence serve as a precision medicine tool for
identifying drug targets in oncology and beyond.

Materials and Methods

|. Data preprocessing. All data from The Cancer Genome
Atlas Program (TCGA) (comprising gene expression pro-
files based on bulk RNA-seq, methylation, mutation, and
sample metadata) were acquired from the XENA browser
(https://xena.ucsc.edu/) [51]. We included eleven
cancers with at least 30 control samples available (labeled
"Solid Tissue Normal"). We used log,(tpm + 0.001) nor-
malized counts of the PANCAN cohort as a gene expression
dataset (see Table S1 for the exact sample numbers). We re-
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tained only genes expressed in at least 80 % of the patients of su
a cancer type. Subsequently, we standardized the expression s«
data gene-wise based on the mean and standard deviation of s«
the cancer-specific control samples.

The three sample-level confounders used for DysRegNet
(sex, age, and ethnicity) were obtained from the curated clini- 7
cal data. Missing values for age were replaced with the mean e
age across all samples of a cancer type. e
Ilumina 450k DNA methylation array data was filtered for 0
CpGs associated with promoter regions (according to Illu- >
mina’s annotation). We then calculated the mean of all .
methylation 3-values associated with the same gene to ob- -
tain a methylation value for each gene in each sample. o
Somatic mutations were mapped to their genes. In our analy- s
sis, we considered mutations of 12 different effect categories: e
Missense, nonsense, intron, frameshift deletion, frameshift o
insertion, splice site, in-frame deletion, in-frame insertion, e
RNA, translation start site, nonstop mutation, and large dele- s

tion.
560

J. The statistical model behind DysRegNet. We define a ™"
reference network N = (G, T, E), where G is a set of genes,
T CGisasetof TFs,and F C T x G is a set of edges con- %
necting TFs ¢ € T to target genes g € G. The role of the *
reference network is to limit the search space for potentially
dysregulated edges and to provide prior information about ™
expected healthy regulations. We discuss possible choices !
for the template network in section K.

For every pair of connected nodes (¢;, g;), the relationship :::
between the expression profiles of a TF ¢; and a target gene o

g; can be modeled as: o

L 572

BH(gy) =B+ B (1) +> (B -CF)
1=2 574

575

where EH (t;) is the expression of a TF ¢; in a cohort of ,,

healthy controls, EH (g;) is the expected expression of a tar- .,
get gene g; in a cohort of control samples, {C4,..,CH} is
a set of available covariates such as age, ethnicity, and sex,
{BH, ..., BH} are coefficients estimated with an ordinary
least squares model. 581
An edge e;; = (t%,¢7) is dysregulated for a patient p if the ,,,
edge exists in the reference network IV, and, for patient p, the

expression of g; cannot be reliably estimated using the model 4,
from Equation 1. Formally, this means that the expected ex- 5,
pression of EP(g;) = B + B - EP(t;) + Zfzg(ﬁlH - CF) s
is significantly different from the actual value of EP(g;). sss
This difference can be defined as a residual of the model, i.e. s
rfj = EP(g;) — Ep(gj), which can be converted to a z-score sss

using the following transformation: 589
7]—[ 590
p
p_ g " 2%
5T @
U(Tij)

where rg and o(rH

ij
the control cohort residuals rg = EH(g;) — EH(g;). Thess
z-scores are converted to p-values using the standard normal ses

) are the mean and standard deviation of

8 | bioRxiv

distribution and subsequently corrected for multiple hypoth-
esis testing regarding the number of patients with the Bonfer-
roni correction procedure at a 0.01 significance level.

K. Reference networks. In our analyses, we used three
types of reference networks: computationally inferred net-
works using GENIE3 [2], an experimentally derived regula-
tory network from the Human Transcriptional Regulation In-
teractions database (HTRIdb) [14], and a PPI network from
STRING [15].

GENIE3 GENIE3 uses an ensemble of trees to estimate
the strength of the regulatory relationship between all pos-
sible TF-target gene pairs. A list of 1639 human TFs was
used from Lambert et al. [52] (http://humantfs.
ccbr.utoronto.ca/) to limit the search space. To
obtain cancer-specific reference networks, we ran the GE-
NIE3 R package (https://github.com/aertslab/
GENIES3, version 1.20.0) individually on the control samples
of each cancer type. The shared network was derived by sum-
ming up the edge importance scores of all cancer-specific net-
works. For all GENIE3-inferred networks, we retained only
the top 100,000 highest-scoring edges. We chose this cut-off
to obtain networks that fall in between the relatively small
HTRIdb and the much larger STRING network in terms of
size.

HTRIdb The Transcriptional Regulation Interactions
database (http://www.lbbc.ibb.unesp.br/htri)
is an open-access database of experimentally validated TF-
target gene interactions. The database provides information
about regulation interactions among 284 TFs and 18,302
target genes detected by 14 distinct techniques [14]. Namely,
chromatin immunoprecipitation, concatenate chromatin
immunoprecipitation, CpG chromatin immunoprecipitation,
DNA affinity chromatography, DNA affinity precipitation
assay, DNase I footprinting, electrophoretic mobility shift
assay, southwestern blotting, streptavidin chromatin im-
munoprecipitation, surface plasmon resonance and yeast
one-hybrid assay, chromatin immunoprecipitation coupled
with microarray (ChIP-chip) or chromatin immunoprecipita-
tion coupled with deep sequencing (ChIP-seq).

STRING The STRING database (http://string-db.
org/) is dedicated to protein-protein interactions. It was
included in our assessment for a fair comparison between
DysRegNet and SSN [10] (see section O), which was orig-
inally evaluated using the STRING network. Following the
described methodology, we also considered high-confidence
interactions with a combined score larger than 0.9, retaining
a total of 197,969 edges. The combined score is an aggre-
gate of 7 channels (neighborhood, fusion, co-occurrence, co-
expression, experimental, database, text mining).

L. Patient clustering. We evaluated the similarity between
patient-specific networks by computing a pairwise overlap
coefficient for the set of dysregulated edges, i.e.:

Kersting etal. | DysRegNet
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641
|Epi ﬂ EPj | ) (3) 642
min(|Epi|, |Epj |) ’ 643

o(pi,pj) =

where EP and Ep; are sets of the dysregulated edges for ::
patients ¢ and j, respectively. The resulting similarity ma-
trix was used to cluster the patients with spectral cluster- o
ing implemented in scikit-learn (https://github.com/ v
scikit—-learn/scikit—-1learn, version 1.1.3, [53].648
We assigned cancer-type labels to the clusters, maximiz-
ing the F1 score using the Hungarian algorithm [19] im- |
plemented in the munkres Python package (https://
github.com/bmc/munkres, version 1.1.4).

651

652

M. Hypothesis testing for mutation, methylation, and
cancer stage analysis.

653
M.1. Dysregulation scores.We compute dysregulation gss
scores to quantify the dysregulation of a gene (either a TF or gss
a target gene) in an individual patient. For a target gene g, ess
the dysregulation score is defined as d,,(g) = di(g)/dE (9) s
where d;” (g) is the in-degree of ¢ in the dysregulated ess
network of patient p and d’j (g) is the in-degree of g in the &
reference network. Analogously, for a transcription factor ¢, s
the dysregulation score is defined as d, (t) = vt (L) /d g (t) s
where d9*(t) is the out-degree of ¢ in the dysregulated *
network of patient p and d%"* (g) is the out-degree of ¢ in the **

reference network. o6

665
M.2. DNA methylation local model. To model the relationship ess
between promoter DNA methylation and target gene dysreg- 67
ulation, we used the following linear model:

ime(g) = By + 51" - d(g)

668
(4) 669

670
Here, me(g) = [mei(g),...,mep(g)] is the vector of the av- s
erage (across CPGs) promoter DNA methylation (see sec-
tion I) of target gene g for all P patients and d(g) =
[d1(g),...,dp(g)] is the vector of g’s dysregulation scores.
The slope coefficients 5]"¢ were tested for significance with
the null hypothesis Hy : 57*¢ = 0. The p-values were then *
corrected using the Benjamini-Hochberg method. o
The linear models were estimated using the ordinary **
least squares implementation in the statsmodels Python®®
package (https://github.com/statsmodels/ "®

statsmodels, version 0.13.5). &7

678

M.3. DNA methylation global model. While Equation 4 al- 7
lows us to test every target gene individually, we also applied e
a linear mixed-effect model to investigate the global associa- ¢
tion between promoter methylation and dysregulation across
all target genes in the reference network. For this, we built
a model with a random intercept coefficient for each target,
assuming different baseline methylation levels:

682
683
684
685

(5) 686

687

’I?%(G) — 6716* +6177,e* 'D~G+'Y;ne,

where me(G) are the average (across CPGs) pro-es
moter DNA methylation values for any ¢ C G, Dg =

Kersting etal. | DysRegNet

[d1(g1),--,dp(g1),d1(g2),..,dp(g2),...] are target gene dys-
regulation scores across all target genes and patients, and
Yg'¢ is a random intercept for each target gene. The slope
coefficient 37"°* was tested for significance with the null hy-
pothesis Hy : 7" = 0.

The linear mixed-effect models were estimated using the im-
plementation in the statsmodels Python package (https://
github.com/statsmodels/statsmodels, version

0.13.5).

M.4. Mutation local model. We tested the association be-
tween a TF’s dysregulation score and its mutation status us-
ing a logistic regression model:

logit{ P[mu(t) = 1]} = By™ + 8™ -d(t)  (6)

Here, mu(t) = [muy(t),...,mup(t)] is a binary vector in-
dicating the mutation status (1 indicates the presence of at
least one mutation, 0 means no mutation) of the TF ¢ for all
P patients and d(t) = [dy(t),...,dp(t)] is the vector of t’s
dysregulation scores.

The slope coefficient 37" was tested for significance with
the null hypothesis Ho : 57** = 0. The p-values were then
corrected using the Benjamini-Hochberg method. We only
tested TFs that were mutated in at least six patients and only
considered cancer types with a least 30 TFs fulfilling this cri-
terion.

The logistic regression models were estimated using the im-
plementation in the statsmodels Python package (https://
github.com/statsmodels/statsmodels, version
0.13.5).

M.5. Mutation global model. To evaluate the global relation-
ship between TF mutations and dysregulation, we used a lo-
gistic mixed-effect model with a random intercept coefficient
for each TF, assuming different baseline mutation loads:

logit{ P[mu(T) = 1]} = 5" + B{""* - Dr +4"", (1)

W~here ’I’?:LU(T) are binarmeutation statuses for any t C T,
DT = [d1 (tl), ..,dp(tl),dl(tQ), ..,dp(tz), ] are Tdesreg—
ulation scores, and ;™" is a random intercept for every TF.
BT* was tested for significance with the null hypothesis
Hp : p7"** = 0. We only tested TFs that were mutated in
at least six patients and only considered cancer types with a
least 30 TFs fulfilling this criterion.

The logistic mixed-effect models were estimated using the
implementation in the pymer4 Python package (https://
github.com/ejolly/pymer4, version 0.8.0)

M.6. Hypothesis testing for cancer stage analysis. We sepa-
rated the samples of each cancer into two groups: an early-
stage group (stage I) and a late-stage group (stage III or stage
IV). For better separability, we excluded stage II samples
from this analysis since they pose an intermediate setting
that can resemble either stage I or III too closely. We con-
ducted cancer stage analysis exclusively for types of can-
cer with a minimum of 30 patients in both groups to en-

bioRxiv | 9


 https://github.com/scikit-learn/scikit-learn
 https://github.com/scikit-learn/scikit-learn
 https://github.com/scikit-learn/scikit-learn
https://github.com/bmc/munkres
https://github.com/bmc/munkres
https://github.com/bmc/munkres
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/statsmodels/statsmodels
https://github.com/ejolly/pymer4
https://github.com/ejolly/pymer4
https://github.com/ejolly/pymer4
https://doi.org/10.1101/2022.04.29.490015
http://creativecommons.org/licenses/by-nc-nd/4.0/

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.29.490015; this version posted April 26, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sure the preservation of statistical power. We then per- 74
formed a one-sided Mann-Whitney U test, implemented in 74
scikit-learn (https://github.com/scikit-learn/ 7
scikit—-1learn, version 1.1.3, [53]), for every TF in the 7s
reference network to assess whether its dysregulation scores 74
are larger in the late-stage compared to the early-stage group. 747
We corrected the obtained p-values for multiple testing with 74
the Benjamini-Hochberg method. 749

750

N. Coefficient p-values. Two-tailed p-values for the coef-
ficients of DysRegNet’s linear models were obtained based ,5,
on the coefficient’s t-statistic. They can be interpreted as the ,,
probability that the coefficient is zero and thus has no pre- ,,
dictive power. Multi-label categorical confounders, such as

ethnicity, resulted in multiple (I — 1, where [ is the number of
different categories) coefficients/p-values per model, which,
for visualization purposes, were summarized in one distribu- ;5
tion. 758

759

0. SSN. SSN, described by Liu et al. [10], calculates the 260
correlation difference introduced by adding one case sample _
to a set of control samples. For each case sample and each _,

pair of genes, the following score is computed: 263

APCC, 764
(1-PCC2)/(n—1) ®) 75

766
, where APCC,, = PCC4+1 — PCC), is the difference be- +;
tween the Pearson correlation coefficients calculated on the 4
control samples (PCC),) and the control samples with one 7
case sample (PCC),11), and n is the number of control sam- ;7
ples. We further converted the Z values into p-values with ;,
a Z-test, as described by Liu et al. Next, we corrected the ;7,
p-values for multiple hypothesis testing using the Bonferroni ;7
method. We set a cut-off that defines a dysregulated edge ;7.
at a corrected p-value of 0.01 or lower, equal to the cut-off ;7
selected for DysRegNet. 778

7 =

P. Web interface. The dysregulated networks of the eleven

studied TCGA cancers can be interactively explored us-’
ing a web interface (https://exbio.wzw.tum.de/ s
dysregnet), which was built with Plotly Dash (https: 7
//plotly.com/dash/, version 2.0.0), the Cytoscape.js 7s0
[54] wrapper Dash Cytoscape (https://dash.plotly. 7t
com/cytoscape, version 0.2.0), Dash Bio (https:// 7
dash.plotly.com/dash-bio, version v0.2.0) and a7ss
Neo4j database (https://neo4j.com/, version 5.11.0). 7a
We inferred the visualized networks using the GENIE3 75
shared reference network. 786
Since the underlying network is vast and highly connected, 77
the interface is centered around individually selected query 7ss
genes. Only the regulatory connections between those genes 7ss
and their targets or sources are displayed to keep the resulting 7s0
network compact and tidy. Further query genes can be added 7o
to expand the graph in directions of interest. 792
We display the fraction of patients with a dysregulation for 7e3
each regulatory connection, which is directly depicted by 7s4
the corresponding edge in the graph network. This met- 705
ric can also be compared visually between different cancer 7s
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types. Furthermore, the web interface incorporates informa-
tion about the gene mutation frequency and mean promoter
DNA methylation. Heatmaps allow the investigation of the
DNA methylation status and the significance of a dysregula-
tion on the patient level.

To prevent the underlying graph structure from becoming too
large, the maximum number of displayed edges is capped,
and edges can be filtered by their fraction of dysregulated
patients and their type. In case a user is interested in the full,
unfiltered graph, it can be downloaded as a CSV file.

The displayed network can be directly exported to the online
systems medicine platform Drugst.One [55] to obtain drugs
targeting the dysregulated genes.

Q. Python package. An implementation of DysRegNet
as described in section J is available as an easy-to-
access Python package (https://exbio.wzw.tum.
de/dysregnet). The linear regression modeling, as well
as coefficient p-value and R? value calculation, were imple-
mented based on the ordinary least squares implementation
in the statsmodels Python package (https://github.
com/statsmodels/statsmodels).

Our package also provides some additional features, which
we did not use in this study for better comparability with
SSN. This includes a goodness of fit filter to ignore edges
with a low R? value and the normality filter [35, 36] imple-
mented in the scipy Python package (https://github.
com/scipy/scipy) to test the assumption of normally
distributed control sample residuals. Furthermore, the Python
package can distinguish between four possible scenarios of
dysregulation shown in Figure S5: suppressed activation (1),
amplified activation (2), amplified repression (3), and sup-
pressed repression (4). The Python package can be used to
only consider scenarios 1 and 4, which correspond to a re-
duced response towards the TF expression rather than an am-
plified one (scenarios 2 and 3).
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Table S1. Number of available control samples (additionally separated by sex) and patient samples for each studied cancer type.

Cancer

BRCA
COAD
HNSC
KIRC
KIRP
LIHC
LUAD
LUSC
PRAD
STAD
THCA

Control samples

Local Model

Question: how many targets show

113
41
44
72
32
50
59
50
52
36
59

significant association between

dysregulation score and promoter

methylation?

Target 1

Kersting et al.

promoter

methylation

Female control samples

Target 1

dysregulation

DysRegNet

Fig. S1. Local and global models for methylation-dysregulation association studies.
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Fig. S2. R? values representing the goodness of fit of the linear regression models built by DysRegNet for different reference networks.
A higher value indicates a better model fit.
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Fig. S3. Number of edges in the patient-specific networks inferred with DysRegNet and SSN based on different reference networks.

Supplementary Note 1: Runtime comparison

For evaluating the time complexity of DysRegNet and SSN, let n be the number of control samples, p the number of pa-
tients/case samples, g the number of genes in the expression matrix, e the number of edges in a reference network, and [ the
number of covariates used in the linear model of DysRegNet.

SSN computes a correlation matrix for every patient, including the patient and control samples. Using a naive algorithm,
calculating the correlation matrix has the computational complexity of O(n - g2). Since this procedure has to be repeated for
every patient, the total complexity of SSN is O(p-n - g2). If we do not compute the correlations between every possible gene
pair but only those in the reference network, this becomes O(p-n-e).
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Fig. S4. Coefficient p-value distributions obtained with different reference networks (rows) and cancer expression datasets. A single
violin summarizes the p-values of a coefficient across all built models (one for each edge in the reference network). The horizontal line
indicates a p-value of 0.05.

DysRegNet relies on an ordinary least squares model, the complexity of which depends on the number of control samples n
and the number of covariates /. Using again a naive algorithm, the time complexity of building a single model is O((n+1) -1?).
Additionally, we have to compute a residual for all patients p considering [ covariates increasing the complexity to O((n+1) -
12+ (p-1)). Suppose we neglect the impact of the number of covariates, which is a reasonable assumption since we would only
expect the intercept, the TF expression, and potentially a couple of others. Then, the complexity can be simplified to O(n+p).
Building the linear models for every possible gene pair or every edge in the reference network leads to a final complexity of
O(g?- (n+p)) or O(e- (n+p)), respectively.

Comparing the time complexity of DysRegNet and SSN, DysRegNet scales more favorably in terms of the number of control
samples and patients, as its effects are additive and not multiplicative, as is the case with SSN.

We also measured the actual runtime of DysRegNet and SSN on the THCA dataset (comprised of 59 control samples and 512
patients) in combination with the experimentally validated HTRIdb [14] reference network. For the benchmark, we kept 9260
genes and 14712 edges by selecting only the genes present in the THCA expression data and the reference network. All methods
for the runtime comparison were implemented in Python 3.11, and we measured the total script execution time, including 10
operations. Across ten runs, DysRegNet consistently completed in approximately 107 seconds, whereas SSN required about
4500 seconds or 1.25 hours (Figure S6).
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Fig. S5. Different scenarios of dysregulation: suppressed activation (1), amplified activation (2), amplified repression (3), and sup-
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Fig. S6. Runtime comparison box plot between DysRegNet and SSN based on ten runs, including 59 control samples, 512 patients,
9260 genes, and 12712 edges in the reference network.
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