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Abstract11

Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a12

relatively small “core” network of transcription factors and post-translational modifiers, working in concerted13

mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics14

of gene expression can be used to identify core regulators. We introduce an approach of iterative network15

hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression16

of individual, pairs, and entire collections of genes are used to infer functional network models that can17

produce the observed transcriptional program. The culmination of our work is a computational pipeline,18

Iterative Network Hypothesis Reduction from Temporal Dynamics (Inherent Dynamics Pipeline), that19

provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We20

demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data.21

Keywords: dynamical systems, gene regulatory networks, network inference, cell cycle, transcription22

Author Summary: In this work we discuss a method for identifying promising experimental targets for23

genetic network inference by leveraging different features of time series gene expression data along a chained24

set of previously published software tools. We aim to locate small networks that control oscillations in the25

genome-wide expression profile in biological functions such as the circadian rhythm and the cell cycle. We infer26

the most promising targets for further experimentation, emphasizing that modeling and experimentation are an27
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essential feedback loop for confident predictions of core network structure. Our major offering is the reduction28

of experimental time and expense by providing targeted guidance from computational methods for the inference29

of oscillating core networks, particularly in novel organisms.30

1 Introduction31

Systems biologists aim to understand molecular systems comprised of gene/protein interactions. The challenge32

of understanding the mechanistic properties of the system stem from high-dimensional and often nonlinear33

interactions between genes and proteins in a network. The complexity of interactions leads to an intractably large34

hypothesis space that cannot be exhaustively explored by experimental approaches. Thus, there is a need for35

constructing computational approaches for prioritizing models that can then be interrogated by experimentalists.36

Experimentally, networks have been inferred from high-throughput genomic and proteomic approaches that37

identify protein-protein [1–3], protein-DNA [4] or gene by gene interactions [5, 6]. Although these approaches38

can map interactions, they don’t indicate whether the interaction is spurious or performs a specific function, and39

don’t reveal the sign of the interaction (e.g. activation or repression). Alternatively, experimental approaches40

utilizing genetic manipulations such as gene knockouts or over-expression coupled with ‘omics analyses of the41

resulting cellular responses have been used to infer functional network connections. For example, if the gene42

for transcription factor A is knocked out and the expression of gene B goes down, it can be inferred that A43

activates B [6, 7]. This inference is functional and has been used to identify clusters of co-regulated genes,44

but the approach lacks the capability to infer whether the regulation is direct. Although physical interaction45

experiments and genetic experiments have been used successfully in genetically tractable model systems with46

well-annotated genomes, they are expensive and time consuming. These approaches are also largely intractable47

for non-model systems of interest. Thus, the development of computational approaches for network inference is48

important.49

From a computational perspective, the generic approach has been to infer local network interactions that50

are then assembled into the global network of interest, and then construct the models and estimate associated51

parameters that describe the nonlinear relationships between nodes in the networks. Ideally, these approaches52

utilize data that describe the entire system and is relatively easy to collect. For Gene Regulatory Networks53

(GRNs) that control programs of gene expression, transcriptomics measurements have been used to infer un-54

derlying network topology [8, 9]. For GRNs that control gene expression dynamics, time-series transcriptomic55

measurements have been used to infer both network topology and the type of interactions (activation or re-56

pression) enabling the construction of directed network graphs, e.g. [10–14]. Some methods explicitly leverage57

prior biological knowledge in the form of experimental evidence of interactions to improve inferences [11,15–17].58

Others refine inferences by improving coarse, global network properties of very large interaction networks such59

as node degrees, hierarchical structure, clustering coefficients, synchronizability, etc. The methods in [18, 19]60

are general and do not incorporate dynamic models of particular systems or study the ability of the proposed61

networks to reproduce the observed dynamics of the system they are meant to describe. Among the many GRN62
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inference methods, very few use both prior biological knowledge and relevant dynamic models built from the63

topological (network) description of interactions. One such method [20] does incorporate both prior knowledge64

and dynamics of the inferred networks, but assumes a linear relationship between the expression of each gene65

and the remaining genes, requires a choice of a “known” reference network built from experimental evidence66

in pathway databases, and parameter sampling from a parameter space whose dimension grows quadratically67

with the number of nodes in the network.68

Each of these different approaches have enjoyed some limited successes, yet challenges remain. It might be69

expected that the different approaches could be synergistic, and compensate for the unique challenges of each70

method. Interestingly, it has been discovered that aggregating models leads to better predictive value than71

individual models alone. This concept was reported as an outcome of the DREAM challenge [21]. A similar72

conclusion was reached when the outputs from epidemiological models aimed at predicting the dynamics of73

influenza [22] and COVID-19 [23] infections were used in an ensemble forecast. The average of the outputs of74

multiple models has been the best predictor of true dynamics throughout the pandemic. The challenge of this75

approach for network inference lies in the method used to combine and weight the outputs of different methods.76

Despite the capacity of current high throughput methods to produce large quantities of gene expression data,77

the problem of recovering an underlying GRN from experimental measurements remains under-determined,78

because the size of potential networks far outstrips the abundance of available data. This imbalance results79

in a nonidentifiability problem, in which multiple models, which may differ in both their structure and their80

parameterizations, can explain the observed data.81

Here we describe a method for network inference that serially combines the output from computational82

tools into a pipeline for network inference. This pipeline is called the Inherent Dynamics Pipeline (Iterative83

Network Hypothesis Reduction from Temporal Dynamics) [24] and is appropriate for the identification of key84

regulatory elements and interactions in small “core” networks that drive genome-wide oscillatory gene expression85

activity. As a testbed, we utilize in silico networks that have oscillating properties as well as experimentally86

verified regulatory interactions in the budding yeast cell cycle that control a large program of phase-specific87

gene expression as cells progress through the cell cycle. The Inherent Dynamics Pipeline is composed of tools88

that infer the set of nodes that function in the control network, the local arrangement of edges that connect the89

nodes, and finally the global structure and function of the network.90

Rather than a mechanism for identifying the “correct” network model, we regard the Inherent Dynamics91

Pipeline as an iterative hypothesis reduction machine that transforms what would be an intractable problem,92

given the enormity of possible genetic controls, into a manageable set of testable hypotheses even in the absence93

of prior biological knowledge. Our pipeline leverages dynamic content contained in time series gene expression94

data in multiple ways at different stages to iteratively prune hypothesis space and ultimately produces a set95

of candidate networks. The dominant regulatory elements in this set of networks provide a prioritized list of96

experimental interventions and the dominant edges provide predictions of the impact of the interventions. We97

show that the Inherent Dynamics Pipeline is capable of providing experimental guidance for the discovery of98

core oscillators from gene expression time series data.99
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2 Results100

2.1 Inherent Dynamics Pipeline101

In principle every gene and every pairwise positive or negative regulatory interaction may be an important102

element in the network responsible for the oscillatory expression. This leads to an intractably large collection103

of hypothetical core oscillating networks. To address this challenge, our procedure is a three step framework104

for identifying GRNs that function as biological oscillators. An underlying assumption is that time-series gene105

expression data contain sufficient information so that different features of the data may be used to reduce (1)106

the number of regulatory elements involved in producing the observed gene expression program (node finding),107

(2) the number of possible pairwise interactions between those regulatory elements (edge finding), and (3) the108

type of complex regulation occurring at each element (network finding). A schematic of the Inherent Dynamics109

Pipeline is shown in Fig 1. The focus is on identifying key regulatory components of the GRN that form a110

relatively small, strongly connected core network exhibiting the observed dynamics, and not on the numerous111

connections needed regulate all of the periodic outputs of this network.112

Gene Expression Data

Top Nodes

N
ode Finding

Top Edges  Top Networks

Edge Finding Network Finding

Edge Finding

N
etw

ork Finding

Gene Expression Data

Node Finding

Figure 1: Schematic of the three stages of the Inherent Dynamics Pipeline. Different features of the expression
level time series are used at each step.

2.1.1 Node Finding113

Node finding is perhaps the most critical step to uncovering the gene regulatory network (GRN) that is respon-114

sible for producing the transcriptional dynamics underpinning the biological process in question, since errors115

made during this step will focus attention on irrelevant genes. This is a difficult task as it requires identifying the116

core set of genes from perhaps tens of thousands of transcribed genes. Experimental approaches to accomplish117
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this identification task are largely intractable.118

The current implementation of the Inherent Dynamics Pipeline focuses on discovering GRNs that produce119

oscillatory dynamics, such as those in cell-cycle and circadian systems. The node finding step in the Inherent120

Dynamics Pipeline employs the periodicity detection algorithm DL×JTK [25]. DL×JTK uses JTK CYCLE [26]121

and the de Lichtenberg algorithm [27] to quantify periodicity and amplitude as key features of gene expression122

profiles, see Methods Section 4.2.1. These two features have been shown to be characteristic gene expression123

features of core genes in GRNs that produce oscillatory dynamics [25,28]. DL×JTK combines the quantification124

of periodicity and amplitude into one score, providing a ranked list of genes where the top of the list is enriched125

for core regulatory elements most critical to controlling oscillatory dynamics. This ranked list will be referred126

to as the DL×JTK node ranking (Table 2.1). In a general framework of node finding, features besides127

periodicity and amplitude can be used (e.g. annotation or orthology to known nodes) to provide a ranking of128

the functional importance of transcribed gene products. However it is accomplished, the output of the node129

finding step—a small set of candidate core genes—is passed on to the edge finding step to evaluate regulatory130

relationships in a pairwise manner.131

2.1.2 Edge Finding132

Ideally, node finding will have produced a list of candidate core genes, which are essential to produce the133

dynamic expression program of interest with high sensitivity and specificity. It has been shown [11], and134

our results confirmed that the dynamics of pairs of gene expression profiles of core regulatory elements at135

moderate temporal resolution contain enough information to meaningfully rank all potential interaction edges.136

In particular, by considering only local models of single-edge regulation of each node/target separately, it is137

possible with high sensitivity and specificity to identify true target/regulator pairs by ranking true edges above138

incorrect edges [11].139

We adopt the Local Edge Machine (LEM) [11], as our method of ranking all allowable edges over a fixed node140

set, see Methods Section 4.2.2. In our particular case, this is the collection of nodes from the DL×JTK node141

ranking. LEM uses a Bayesian framework to infer a posterior probability distribution on the space of possible142

single-edge regulation models separately for each target node. LEM’s original intent was to infer the most likely143

regulator and form of regulation (activation or repression) of a given target from a list of potential regulators.144

However, by considering each of N nodes as a potential target with all N nodes as potential regulators with145

either an activating or repressing effect, LEM estimates 2N2 probabilities for each potential edge, and thereby146

provides a local edge ranking (Table 2.1). In this way, edge ranking can be used to reduce hypothesis space147

to the most promising region(s) of network space by effectively eliminating certain target/regulator pairs from148

the space of possible networks. The nodes in the top ranked LEM edges can be scored to form a rank-ordered149

list of regulatory elements called a local node ranking in which a subset of the nodes from the DL×JTK node150

ranking has been reordered to reflect the node participation in top-ranked edges (Table 2.1).151
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2.1.3 Network Finding152

The network finding step accepts a ranked list of gene interactions that are ideally enriched by regulatory153

connections critical to the molecular process under consideration. Although DL×JTK and LEM have a strong154

tendency to highly rank ground truth nodes [25] and edges [11] respectively, false positives and false negatives155

do exist within the lists of top-ranked nodes and edges. Furthermore, even when both tools work perfectly,156

there is no guarantee that the top pairwise LEM interactions will produce a network of complex interactions157

that faithfully reproduces the observed data. The challenge of network finding is two-fold: (1) to quantify the158

ability of complex GRNs built from highly ranked edges to exhibit the experimental data and (2) to correct for159

over-ranked and under-ranked edges.160

The Inherent Dynamics Pipeline incorporates a network finding tool set based on the software DSGRN [29,161

30]. Given a network we use DSGRN to provide two numerical scores. The oscillation score (Table 2.1)162

indicates the proportion (with respect to parameters) of network model behavior that exhibits stable oscillations.163

The pattern match score (Table 2.1) indicates the proportion of the stable oscillations identified from the164

network model that exhibit a pattern match, i.e., the stable oscillation reproduces the periodic order of the165

maxima and minima seen in the gene expression time series data (discussed in Methods Section 4.2.3). The166

collection of top-ranked DSGRN networks according to these scores provides experimental guidance for the most167

promising intervention targets in the form of revised local node and edge rankings called global node and168

edge rankings determined by a global node participation score and an edge prevalence score (see Table 2.1 and169

Methods Section 4.3). The global node and edge rankings are subsets of the local node and edge rankings that170

have been reordered to reflect their participation in networks that exhibit the desired dynamical phenotype.171

2.2 Applications172

Because it is hard to establish ground truth in biological systems, we first examined synthetic data in which173

the regulatory interactions of a core oscillator are known. We show that the Inherent Dynamics Pipeline can174

prioritize edges as targets for further investigation under conditions that mimic distinct experimental regimes,175

as well as identifying nodes that are not part of the core oscillator.176

We then examined the well-studied cell cycle of the budding yeast Saccharomyces cerevisiae. Using YEAS-177

TRACT [7], we leveraged the years of compiled experimental evidence to identify well-substantiated regulatory178

relationships between yeast cell-cycle genes. We demonstrated the performance of the Inherent Dynamics179

Pipeline under ideal conditions and then under conditions with decreased information availability.180

In Table 2.1, we list important terminology for evaluating the output of the Inherent Dynamics Pipeline,181

see Methods Section 4.3 for details. Importantly, every term that is listed as a rank or median rank means182

that lower numerical scores indicate better performance. Those that are listed as proportions indicate that183

a higher numerical score is associated to better performance. The local and global edge and node rankings184

together are the primary metrics prioritizing experiments.185
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Step Term Definition
Node

finding
DL×JTK node ranking ranking of genes according to the most periodic

gene expression

Edge
finding

local edge ranking ranking of activating and repressing interactions
according to LEM simulation

top-ranked LEM edges the top N edges in the local edge ranking, a user
choice

local node participation score (for gene g) the median rank of all edges in the top-ranked
LEM edges that involve g

local node ranking rank ordering of genes according to their local node
participation score

Network
finding

oscillation score (for a network) the proportion of network behavior that permits a
stable oscillation according to DSGRN

pattern match score (for a network) the proportion of stable oscillations that exhibit a
DSGRN pattern match

top-ranked DSGRN networks networks with the desired oscillation and pattern
match scores

edge prevalence score (for edge g → g′) the proportion of top-ranked DSGRN networks
that include g → g′

global edge ranking rank ordering of edges according to their edge
prevalence score

global node participation score (for gene g) the median rank of all edges in the global edge
ranking that involve g

global node ranking rank ordering of genes according to their global
node participation score

Table 2.1: Metrics Table: Key terminology for scoring and ranking nodes, edges, and networks in the Inherent
Dynamics Pipeline in order of computation.

2.2.1 Synthetic network186

We studied the performance of the Inherent Dynamics Pipeline on a synthetic, strongly connected regulatory187

network with nodes A, B, C, D, E, and F called the ground truth network shown in Fig 2 (a). A strongly188

connected network is one in which there exists a path connecting each node to every other node, and thus189

there is at least one feedback loop between each pair of nodes in the network. This ground truth network was190

designed to achieve high oscillation and pattern match scores (Table 2.1) to mimic robust clock-like behavior.191

Three synthetically-generated time series, shown in Fig 2 (b)-(d), were simulated with Hill models under widely192

separated parameterizations in order to produce disparate dynamical behavior, see Methods Section 4.4.1 for193

details. We added an additional spurious time series, a shifted and stretched sine wave denoted G, see Fig 7194

in Methods Section 4.4, which represents a node that does not participate in the simulated network. This false195

node G provides a negative control of the algorithm in the sense of being a “true negative.” Because all of the196

nodes in the synthetic networks are strongly connected, the node finding step was not needed for the synthetic197

data and the Inherent Dynamics Pipeline was run on the edge and network finding steps only.198

We ran the Inherent Dynamics Pipeline beginning with the edge finding step for each of the three synthetically-199

generated time-series datasets under the hyperparameters given in Methods Section 4.4.2. Since the Inherent200

Dynamics Pipeline is stochastic, we ran five independent computations for every condition and report mean201

outcomes plus/minus one standard deviation in Appendix Tables A.1 and A.2. For each dataset and each run202

of the Inherent Dynamics Pipeline, the edge finding step ranks 98 edges, which are the positive and negative203
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Figure 2: (a) Ground truth regulatory network, where sharp arrows indicate activation (or positive regulation)
and blunt arrows indicate repression (or negative regulation). (b)-(d) Synthetic time series from 3 different
parameterizations of a single Hill model (see Methods Section 4.4.1). (e) The subnetwork formed from (a) by
removing the node D. (f)-(h) Synthetic time series from the same parameters as (b)-(d), but excluding node D.
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edges for each pair of target/source nodes taken from A-G. As seen previously, the top of the local edge ranking204

is enriched with true positives (Appendix Tables A.3-A.5), consistent with the high accuracy of LEM reported205

in [11].206

Local inference informs building functional global network models. Network space in this case is207

intractably large, so we were forced to use a sampling technique in network finding, rather than an exhaustive208

technique as in node finding and edge finding. Due to the high AUC scores of LEM’s ranking of edges [11], we209

hypothesized that sampling in the neighborhood of top LEM edges put us in a region of network space that had210

high oscillation and pattern match scores. This claim is empirically backed by Fig 3 in which sampling networks211

at top-ranked LEM edges shows higher oscillation and pattern match scores (Left panel) as opposed to sampling212

networks from bottom-ranked LEM edges (Right panel). In fact, approximately half of the sampled networks, of213

which there are 2000 in total, exhibited a DSGRN pattern match to the observed data (see Appendix Table A.2214

column 2) and therefore could not be excluded as potentially accurate models. The large number of consistent215

networks is a manifestation of an identifiability problem, wherein many networks of differing topologies were216

capable of producing the observed transcriptional oscillations. The ability of a network model to reproduce a217

particular dataset was not rare in the set of networks constructed from high ranking LEM edges.218

Figure 3: Histograms of the oscillation and pattern match scores of collections of 2000 networks using the (Left)
top-ranked LEM edges of a simulation using the parameterization in Fig 2 (b) and (Right) bottom-ranked LEM
edges using the results of the same edge finding step.

Pattern matching can provide a large reduction in hypothesized network models. There is un-219

certainty in the decay rates, binding affinities, etc. associated with a parametric network model. Therefore,220

networks that exhibit the desired dynamical behavior across many such parameterizations are said to exhibit221

the behavior more robustly. The pattern match score is a proxy for the robustness of a network model’s consis-222

tency with the data by measuring the ordering of peaks and valleys in the transcriptional traces of individual223

genes. We reduce the stochastic sample of network hypothesis space consisting of 2000 networks when we ap-224

ply oscillation and pattern match scores to assign a rank based on robustness to choose top-ranked DSGRN225

networks. For the synthetic data, we define top-ranked DSGRN networks as those with an oscillation score of226

100% and a pattern match score of at least 50%, because the network was designed to be a robust oscillator227
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with a fair amount of pattern matching. We acknowledge the correct optimization function is unknown, and228

this will affect our choices analyzing experimental data from the yeast cell cycle. Most of the 15 runs of the229

Inherent Dynamics Pipeline showed less than 100 networks fulfilling the criteria of a top-ranked network (see230

Appendix Table A.2 column 3), indicating a hypothesis reduction of an order of magnitude from the initial231

sample of 2000.232

Global dynamic behaviors can improve local regulatory inferences. When removed from the context233

of a global network in the local inference step, a single regulatory interaction between two genes may appear234

highly likely due simply to spurious correlations in their transcriptional profiles. This improper inference is a235

universal problem with any inference method based on pairwise comparisons of genes. By analyzing the most236

likely regulatory interactions in the context of a global network model, the network finding step was able to237

identify false positives in the top-ranked LEM edges. The majority of the false positives involved the true238

negative node G (see Figure 7). LEM ranked these false positives highly because all of the nodes A-F were able239

to effectively reproduce the sine wave G under a Hill model. On the other hand, LEM correctly identified that240

G does not regulate any of A-F (see Appendix Tables A.3-A.5 and notice that there are no edges with G as a241

regulator of A-F with one very low-ranked exception). The network finding step then identified that G was not242

able to participate in any feedback systems (also see Appendix Tables A.3-A.5). This is a clear case where an243

analysis of the global dynamics supported by a functional network model can remove false positives that appear244

to be viable without the broader context of the entire network.245

The functional core oscillator may be condition-specific. The influence a particular node has on the246

dynamic output of a GRN may depend on the cellular condition in which the network operates. Thus, what247

constitutes a core oscillator may depend on the conditions under which data were collected. We hypothesize248

that the different parameterizations of the ODE system that generated the data in Fig 2 are a reasonable proxy249

for different cellular conditions, and observe that these varying conditions can change which nodes may be250

justifiably called participants in a core oscillator.251

A careful analysis of the results of the synthetic network shown in Fig 2 (d) showcases how the edge rankings252

can identify true positive edges that do not strongly influence the global dynamics of the observed oscillations.253

In the analysis of the data shown in Fig 2 (d), the edge C repressed by D never appears in the top-ranked LEM254

edges due to a low LEM likelihood score, unlike the results for (b) and (c) in the same figure. Moreover, the255

edge D repressed by E has a zero edge prevalence score; i.e., it participates in no top-ranked DSGRN networks.256

This is circumstantial evidence that the node D might play a less important role in the dataset Fig 2 (d). We257

explored this phenomenon by examining the five-node subnetwork of the ground truth network shown in Fig 2258

(e) that is formed by removing the node D.259

We simulated datasets at the same parameters as in Fig 2 (b)-(d) excluding node D. The results are shown260

in Fig 2 (f)-(h). It is apparent that D is a critical node for oscillations in parameter set (b), as the removal of261

node D causes all oscillations to cease as shown in Fig 2 (f). This effect is attenuated for parameter set (c),262
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which shows damped oscillations after the removal of D. However, the removal of node D from parameter set (d)263

does not halt strong oscillatory behavior, seen by comparing Fig 2 (d) and (h), although the quantitative values264

of the individual nodes are different. This presents strong evidence that the five-node subnetwork in Fig 2 (e)265

can operate as the true core oscillator of the synthetic network under some conditions. This is an example of266

a case where a strongly connected network is not necessarily a core oscillator and illustrates the crucial role267

parameters can play in determining the true core.268

Careful consideration of the formulation and parameterizations of the ODE models that produced the time269

traces in Fig 2 suggests why D is a core node required for sustained oscillations in Fig 2 (b), but serves a270

diminished role in the other two parameterizations. Briefly, in the parameterization that produced Fig 2 (b)271

the regulation from D to C strongly outweighs the input from nodes A and E to node C, and this distribution272

of relative strength of regulation does not occur to the same degree in the parameterizations for Fig 2 (c) or273

Fig 2 (d). See the discussion in Methods Section 4.4.1 for more detail.274

Figure 4: Local versus Global Node Participation Scores. Mean ± standard deviation node participation
scores for the simulations shown in Left: Fig 2 (b); Middle: Fig 2 (c); Right: Fig 2 (d). Each synthetic dataset
was run through the edge and network finding steps five times. The mean (blue dots) and standard deviation
(blue bars) of the local node participation scores across the five runs is plotted against the mean and standard
deviation of the global node participation scores. The node participation score for each simulation is computed
only over the edges in the intersection of the top-ranked LEM edges of all five simulations. This excludes edges
that do not have sufficiently high local edge ranks in all five simulations. Nodes located above the red diagonal
line indicate an improved global ranking in their node participation score versus their local node rankings.
Notice that the node G is noticeably downranked in all three panels.

Global dynamic behaviors can improve core variable inferences. Our primary goal is to use the275

Inherent Dynamics Pipeline in an experiment-simulation-experiment loop that ultimately guides the discovery276

of core oscillator genes in non-model organisms. It is easier to perturb the expression of a gene, thereby impacting277

all regulatory interactions associated to the gene, than it is to disrupt a single regulatory interaction. For this278

reason, we prioritize GRN nodes rather than edges as experimental targets by comparing the local and global279

node rankings from Table 2.1. This comparison yields a prioritized list of potential experimental interventions280

based on node participation in networks that robustly support the observed dynamic behavior.281

The node participation scores for the local versus the global node rankings are seen in Fig 4. Points above282
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the diagonal indicate nodes that are upranked in the global node ranking, while those below the diagonal are283

downranked. Points in the lower left corner of the diagonal are highly ranked by both LEM and DSGRN, and284

those in the upper right are poorly ranked by both methods.285

In terms of experimental prioritization, nodes at the lower left of the diagonal should be viewed as having286

the greatest confidence in their participation in a core oscillator, since they rank highly at both the local and287

the global level. Next to be prioritized are those highest above the diagonal; i.e. those that are upranked288

consistently in the global node ranking. We suggest that downranked nodes be disregarded. The downranked289

nodes may contain false negatives; however, we observe that the true negative G is correctly identified and that290

the area above the diagonal is enriched with true positives, making it a more promising area of investigation.291

We remark that node D is not downranked on average in Fig 4 (Right) despite our finding that node D is not292

necessary for oscillatory behavior in the parameterized Hill model in Fig 2 (d)/(h). However, the wide standard293

deviation shows that D is downranked in some of the computational trials and, in addition, D is upranked for294

the simulation in Fig 2 (b) where we know it to be very important. In Fig 4, the most highly prioritized nodes295

for experimental investigation are B, E for Fig 2 (b); C, E for Fig 2 (c); and C, B, A for Fig 2 (d).296

2.2.2 S. cerevisiae cell cycle297

To further validate the inference pipeline, and examine its utility in the context of real data, we applied the298

Inherent Dynamics Pipeline to transcript expression time series collected from a S. cerevisiae population that299

was synchronized in the cell cycle. Evidence suggests that the control of periodic cell cycle transcription is300

largely controlled by a core GRN [31–37], and although the cell cycle of the yeast S. cerevisiae is very well301

studied, the exact topology of the core transcriptional oscillator controlling the large transcriptional program302

during cell division is still under investigation. However, there are experimentally substantiated interactions303

between known cell-cycle genes. We chose nine genes that have strong experimental evidence implicating them304

in the yeast cell-cycle transcriptional control, along with 24 regulatory interactions gleaned from YEASTRACT,305

a database that compiles experimental evidence for regulatory interactions in the yeast genome [7], along with306

three more edges from the cell cycle network model in [32]. See Tables 4.4-4.5 for the lists of genes and307

interactions. We will refer to these as substantiated nodes and edges. All other nodes and edges will be308

referred to as unsubstantiated.309

In the yeast cell cycle, and even more so for non-model organisms, the collection of core oscillator genes is310

uncertain, and many non-core genes exhibit oscillatory transcriptional dynamics. To assess the performance311

of the Inherent Dynamics Pipeline, we included two “true negative” or unsubstantiated gene products, RIF1312

and EDS1, that are highly oscillatory according to DL×JTK [25], but do not participate in any regulatory313

interaction with substantiated nodes according to YEASTRACT.314

Prior biological knowledge, e.g. the identity of a core regulator, or the functional activity of a regulator as315

only a repressor or only an activator, could be used in principle to make a priori hypothesis reductions. The316

Inherent Dynamics Pipeline incorporates this information using gene annotations that record whether a given317

gene product acts as an activator, a repressor, or only as a target. The least constraining choice is to allow318
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a gene product to take any of these roles. If a gene is marked as not a target, then its corresponding node319

in a regulatory network will have no in-edges. Likewise, if a gene product may be neither an activator nor a320

repressor, then it will have no out-edges. The most interesting case is when a gene is both a regulator and a321

target, but is allowed to be only an activator or only a repressor. This allows the gene to be evaluated as a322

potential member of the core oscillator, but restricts the type of interactions that LEM will model. We call323

such a restriction a nontrivial annotation; see the caption of Table 4.5 for the nontrivial annotations of the324

substantiated nodes.325

Scenario
Has only

substantiated nodes
Has nontrivial
annotations

S+A+ Y Y
S+A− Y N
S−A+ N Y
S−A− N N

Figure 5: (Left): The amount of information provided in each scenario. (Right): Summary of Yeast
Cell Cycle Rank Changes for Substantiated Edges in Global Edge Ranking. Box plots showing the
distributions of the median local (blue) and global (orange) edge rankings for the subset of substantiated edges
with nonzero edge prevalence scores. A lower median indicates a better ranking and therefore a better result.
In both S− scenarios, the global edge ranking outperforms the local edge ranking.

We explored four scenarios representing four levels of prior biological knowledge using the Inherent Dynamics326

Pipeline, see the table in Fig 5 (Left). S+ stands for perfect knowledge of the substantiated nodes, with S−327

indicating that the unsubstantiated nodes EDS1 and RIF1 are assessed for participation in the core network.328

Similarly, A+ indicates the presence of nontrivial annotations and A− indicates their absence. Taken together,329

S+A+ indicates the most a priori knowledge and S−A− indicates the least. We ran the Inherent Dynamics330

Pipeline five times for each scenario under the hyperparameters given in Methods Section 4.4.3, with two331

replicate microarray datasets of S. cerevisiae wild-type transcriptomics of the yeast cell cycle [36]. Similar to332

the synthetic data case study, we see that LEM exhibits enrichment of its top ranks with substantiated edges333

and that generally more than half of the sampled networks are consistent with the data (Appendix Table B.2334

first column).335

The scoring criteria that we use to assess top network performance is different than for the synthetic network,336

because a biological core oscillator does not necessarily oscillate robustly across parameter space. The cell cycle337

exhibits controllability in that transcriptional oscillations can be shut off at various checkpoints [31]. These338

non-oscillatory states of the network are present for different choices of parameters, and therefore oscillations339

cannot occupy the entire parameter space. For this reason, we opted for an oscillation score of 10% to 40%,340

with the remaining percentage of dynamical behaviors ideally including stable fixed points, imitating checkpoint341

behavior. We also require very robust pattern matching via a pattern match score of 100% and a requirement342
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that both replicates must exhibit pattern matches. We emphasize that this is a user-defined choice that is based343

on a biological phenotype.344

Figure 6: Local versus Global Node Participation Scores for the Yeast Cell Cycle Network. Mean ±
standard deviation node participation scores for the scenario S+A+ (top left); S+A− (top right); S−A+ (bottom
left); S−A− (bottom right). Each scenario was run through the edge and network finding steps five times. The
mean (blue dots) and standard deviation (blue bars) of the local node participation scores across the five runs is
plotted against the mean and standard deviation of the global node participation scores. The node participation
score for each simulation is computed only over the edges in the intersection of the top-ranked LEM edges of all
five simulations. This excludes edges that do not have sufficiently high local edge ranks in all five simulations.
Nodes located above the red diagonal line indicate an improved global ranking in their node participation score
versus their local node ranking.

Global dynamic behaviors most improve local inference when the least prior information is avail-345

able. Nontrivial annotations and high confidence core oscillator node identification are possible with model346

organisms, but are limited or absent for non-model organisms. We examined the performance of the Inherent347

Dynamics Pipeline with and without these two pieces of information to model several levels of prior knowledge348
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about a core oscillator. The goal was to examine how global dynamic information affected the ranking of edges349

from the local inference.350

We compared the performance of local and global edge rankings in Fig 5 (Right) on the subset of sub-351

stantiated edges with a nonzero prevalence score for each scenario. For each simulation, the median rank of all352

substantiated edges that participated in at least one top-ranked DSGRN network is computed for both the local353

and global edge rankings. This is a measure of rank change provided that the substantiated edge was deemed354

important according to global dynamical behavior. Lower medians indicate upranking, or a better result. The355

global edge ranking upranks substantiated edges in the scenarios that include unsubstantiated nodes, enrich-356

ing the top of the global edge ranking with substantiated edges. This is particularly true when we have the357

least information (non-trivial annotations or high confidence nodes), the S−A− scenario, making this technique358

especially applicable to novel organisms or novel core oscillators.359

Global dynamics can identify unsubstantiated nodes. Ideally, nodes identified as promising experimen-360

tal targets do not include false positives, as experimental interrogation of false positives is time-consuming and361

costly. We show in Fig 6 that unsubstantiated or “true negative” nodes are downranked, indicating that the362

Inherent Dynamics Pipeline does not identify them as potential core oscillator nodes. In scenarios S−A+ and363

S−A−, the unsubstantiated nodes EDS1 and RIF1 are present. They are downranked in the global node rank-364

ing except for RIF1 in S−A+, which is poorly ranked by both LEM and DSGRN. This finding is an indication365

that the network finding step improved upon the edge finding step by depressing the ranks of nodes that are366

unimportant to the core oscillator. Note the impact that losing nontrivial annotations can have in producing367

false negatives. In particular, YOX1 is downranked substantially by the global node participation score in the368

S−A− scenario, but upranked in S−A+.369

Global dynamics can provide hypotheses for the functional roles of substantiated nodes. An370

interesting observation from Fig 6 is that the node CLN3 is downranked in the global node ranking in all four371

scenarios, usually strongly, and sometimes is also poorly ranked in the local node ranking. We remark that CLN3372

is the only substantiated node that is not a transcription factor. CLN3 is a cyclin that activates cyclin-dependent373

kinase (CDK), which in turn regulates the activity or stability of other proteins via phosphorylation.374

There are two potential explanations for the strong down ranking of CLN3. One is that CLN3 does not375

play a very important role in the core oscillator. Consistent with this possibility, CLN3 is dispensable for376

cell-cycle progression and transcriptional oscillations [38, 39] as dilution of Whi5 by cell growth is sufficient for377

activating the transcriptional wave at START [40]. The other explanation is that DSGRN is most effective for378

transcriptional regulation rather than protein activity regulation. The work to extend DSGRN to model various379

types of post-transcriptional regulation such as phosphorylation is underway [41].380
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3 Discussion381

When inferring GRNs from data, the space of potential core nodes, core interactions, and core networks is too382

large to exhaustively explore, even computationally, much less through experimentation. We demonstrate that383

high-throughput experimental data can be leveraged by using the software tool Inherent Dynamics Pipeline [24]384

to iteratively reduce these spaces and provide experimental guidance. We show the efficacy of this method on a385

synthetic network designed to exhibit robust oscillations and on yeast cell cycle data that displays controllable386

oscillations and a large body of experimental evidence for a particular network topology.387

The Inherent Dynamics Pipeline network discovery tool consists of a node finding step implemented with388

DL×JTK [25], an edge finding step implemented with the Local Edge Machine (LEM) [11], and a network389

finding step dependent on the Python package Dynamic Signatures Generated by Regulatory Networks (DS-390

GRN) [42]. The software is an iterative hypothesis reduction machine to identify core oscillators driving large391

scale oscillations in gene expression.392

A notable feature of the Inherent Dynamics Pipeline is the synergism between the local edge finding and393

global network finding steps. Inference based on pairwise interactions provides an essential step to begin the394

search of networks by positioning the network sampler in a region of network space where networks tend395

to robustly reproduce the observed data. However pairwise interactions alone are insufficient to identify the396

dynamic function of the core regulatory network. The network finding step applies a corrective factor to the397

output of the edge finding step by successfully identifying false positive nodes and edges that do not participate398

in the core oscillator (Figure 4 and Figure 6).399

For the synthetic data, top-ranked networks were required to have an oscillation score of 100% to represent400

robustness, while for the yeast data, the oscillation score was limited to the range 10-40% to account for401

phenotypic plasticity of the cell cycle network. The fact that in addition to oscillatory behavior the network402

exhibits steady state behavior in the conditions that trigger one of its checkpoints highlights a difficulty in403

optimization of any kind for discovering networks. The mixture of cell plasticity in phenotype versus robust404

expression of a behavior is unknown, and therefore the classification of networks as “top performers” is uncertain.405

Moreover, evolution dictates that a cell only requires a sufficiently good solution, not the best solution, that is406

achievable under unknown developmental constraints. These constraints impact the collection of networks over407

which evolutionary optimization can occur, which will be highly limited with respect to all of network space.408

These uncertainties speak to the necessity of incorporating as much biological knowledge as possible in addition409

to time series data in order to increase the chances of discovering the true molecular interaction network.410

The fact that the greatest gains in edge ranking by the Inherent Dynamics Pipeline come in situations411

where annotation information is the most sparse (Figure 5) suggest that the Inherent Dynamics Pipeline is412

especially applicable to non-model organisms. However, without annotations errors may be introduced in the413

node finding step that will be propagated through the rest of the pipeline. Thus, improving the accuracy of414

the node-finding step will be a focus of future research. It has been shown that identifying core regulators can415

be greatly improved if genes are accurately identified as transcription factors or not [25], so improvements to416
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computational methods, including machine learning models, for inferring gene function from readily available417

data (e.g., protein sequence) are desirable.418

The Inherent Dynamics Pipeline is not proposed as a method to correctly infer as many known regulatory419

relationships as possible, which is the goal of many DREAM challenges [17], and the goal of many inference420

methods [14–16]. Rather, the approach presented here aims to identify the ostensibly small collection of core421

regulatory elements driving the dynamics of the much larger program. Moreover, we do not view the top ranked422

network or networks as the ultimate outcome of our software because of the identifiability problem wherein many423

models are capable of producing the same results under different parameterizations; experimental evidence is424

required to distinguish between the possibilities. We suggest that statistics of the top ranked networks be used425

to provide a prioritization of experimental interventions. We demonstrate that the Inherent Dynamics Pipeline426

downranks true negative and unsubstantiated nodes in synthetic data and yeast cell-cycle data, respectively.427

Thus the Inherent Dynamics Pipeline is an appropriate tool for identifying promising experimental targets for428

elucidating the gene regulatory networks behind clock-like cellular phenotypes.429

Inferring causation requires perturbation experiments and thus the Inherent Dynamics Pipeline can be430

utilized iteratively with experimentation. The identifiability problem means that it is hard to predict the431

outcome of a perturbation experiment, given that there are many network/parameter combinations that would432

reproduce the data. Importantly, the Inherent Dynamics Pipeline can be iteratively deployed after the next433

round of experiments; i.e. edges that are known to exist can be enforced, new annotations can be added,434

and different behaviors under distinct experimental conditions can be used to further constrain the dynamic435

phenotype.436

4 Methods437

4.1 Parameters438

There are several levels of parameterizations that occur in the Inherent Dynamics Pipeline. At one level,439

there is the traditional parameterization of ordinary differential equation (ODE) models with real values. The440

parameters for these ODE models will simply be referred to as “parameters.” The parameter space for a441

switching system ODE is decomposed by DSGRN into a finite number of regions [42] and DSGRN computations442

are performed over these regions rather than over individual real values. Each such region is called a DSGRN443

parameter in previous publications, but we will use the term “DSGRN parameter region” in this work for clarity.444

Lastly, there are user choices for controlling the behavior of the numerical methods DL×JTK, LEM, and DSGRN445

pattern matching in the Inherent Dynamics Pipeline. These will be referred to as “hyperparameters.”446

4.2 Pipeline Components447

The Inherent Dynamics Pipeline [24] is a unified collection of time-series analysis algorithms tied together448

by data processing routines. The input to the Inherent Dynamics Pipeline is one or more replicate time449
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series datasets along with a hyperparameter specification file documented in the Inherent Dynamics Pipeline450

README. To maximize platform compatibility and to ensure broad usability of the individual pieces as well as451

the Inherent Dynamics Pipeline as a whole, we have modified or entirely rewritten each component algorithm452

in the Python programming language [43] and created a single Python module for installing and running453

the pipeline components. In addition, there is an Inherent Dynamics Visualizer (IDV) [44] that uses web-based454

technologies for easier interaction with Inherent Dynamics Pipeline output. The IDV allows the user to visualize455

and explore the intermediate output of each of the node, edge, and network finding steps to infer the impact456

of various hyperparameter choices. This facilities the incorporation of domain-specific knowledge and permits457

intuitive decision-making based on visual information.458

4.2.1 DL×JTK459

The DL×JTK algorithm [25] adopts the same formulation for scoring genes as was originally defined in [27]460

but by combining the periodicity measure of the JTK CYCLE algorithm [26] with the regulator measure of461

the de Lichtenburg algorithm defined in [27]. In particular, for each gene expression profile, an empirical and462

an analytical p-value, which respectively estimate probabilities that the observed amplitude variability and the463

observed periodicity of the expression profile occurred at random, are first computed and then combined in464

a manner which accentuates expression profiles that are simultaneously highly periodic and highly variable in465

amplitude. Explicitly, let G ∈ G be the gene expression profile corresponding to gene G in the set of all measured466

gene expression profiles, G and let nr be a positive integer. Then467

DL×JTK(G,nr) := preg(G,nr)pper(G)

[
1 +

(
preg(G,nr)

0.001

)2
][

1 +

(
pper(G)

0.001

)2
]
. (1)

First to each gene is associated its so-called “regulator score”, which is taken to be the standard deviation of the468

base 10 logarithm of the mean-normalized expression profile. In this way, the regulator score of a gene captures469

the deviation of the time series about its mean with a small value indicating little variation in expression from470

the mean expression over time. The empirical p-value preg(G,nr) is then defined to be the fraction of nr random471

curves whose regulator score exceeds the regulator score of G where random curves are generated by selecting472

at each time point the expression at that time of a curve selected uniformly from G.473

The analytic p-value pper(G) is taken to be the p-value determined by the JTK-CYCLE periodicity scoring474

algorithm [26]. First, sinusoidal template curves are generated with user-specified periods and at various phase475

shifts determined by the sampling times of the expression profiles. A pattern of “ups” and “downs” is computed476

by comparing the expression level at each time with all subsequent times for both the expression curve G and477

the equivalently sampled sinusoidal template curves. Then the total number of agreements (concordancies)478

and disagreements (discordancies) in the up-down pattern of G and the that of the known periodic curves are479

computed, giving the Kendall rank correlation coefficient between the curves. By precomputing the exact null480

distribution of Kendall’s tau correlation [45] using the Harding algorithm [46], an exact Bonferroni-adjusted481

p-value is rapidly computed for each gene. For this work, an implementation of JTK-CYCLE in Python by482
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Alan Hutchinson [47] was modified.483

4.2.2 LEM484

The Local Edge Machine (LEM) algorithm [11] adopts a Bayesian framework to perform inference of functional485

gene regulation. Namely, a prior distribution on the space of single-edge regulatory models of a given gene G is486

updated by the conditional likelihoods that the observed expression data of gene G was produced by functional487

regulation by gene H. Thus a prior distribution is first placed on a predefined set of potential regulatory models,488

where each model is of the standard form of a Hill function [48]:489

dG

dt
:= γ − βG+ F(H), (2)

with either a model of repression of G by H,

F(H) := rep(H) := α
kn

kn +Hn
,

or a model of activation of G by H

F(H) := act(H) := α
Hn

kn +Hn
.

The likelihood of the observed data given a model of regulation is estimated using the Laplace approxima-490

tion formula [49] to integrate a measure of model goodness-of-fit over the five-dimensional parameter space,491

(α, β, γ, k, n). The resulting formulation explicitly balances the model error at an optimal choice of model492

parameters, found by a parameter optimization procedure, against the robustness of this error to small per-493

turbations of the model parameters. Using Bayes formula, the likelihood of each regulatory model is used to494

update the prior distribution and produce a posterior distribution on the space of single-edge regulatory models495

for gene G. We refer to the posterior probabilities on each local model of regulation for a fixed target as the496

model’s pld score.497

In principle, the allowable model space may be expanded to include complex regulation of G or models498

with other functional forms, but the current implementation is restricted to single-edge regulation. In the499

absence of any prior knowledge about gene function, the uniform distribution should be adopted as the prior500

distribution. On the other hand, the prior distribution on the space of allowable regulatory models may be501

informed by existing evidence of regulatory interactions between gene products or by known function, e.g. if502

there is evidence that a gene acts only as a repressor. Moreover, data from replicate experiments may be utilized503

by iteratively updating an initial prior. In particular, data from replicate 1 of an experiment can be used to504

produce a posterior distribution on model space, which is then taken to be the prior distribution on model space505

for data from replicate 2. This iterative posterior calculation has been included in a new implementation of the506

LEM algorithm that was written in Python to further improve platform compatibility, algorithm extensibility507

and efficiency.508
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4.2.3 DSGRN Pattern Matching509

DSGRN (Dynamic Signatures Generated by Regulatory Networks) [29,30] is a software tool that, given a genetic510

regulatory network (GRN), creates a database of all possible dynamical behaviors that the GRN can exhibit.511

A GRN is represented by its nodes and interaction structure showing activating and repressing regulatory512

interactions between genes and gene products. This includes algebraic expressions for combining multiple input513

edges at target nodes, but it does not require explicit knowledge of real-valued parameters such as binding514

strength or decay rate. Imposing such a set of real values on a network can potentially induce qualitatively515

different types of dynamics.516

The mathematical foundations for DSGRN [50–53] defines a general framework in which the characterization517

of long-term dynamical behaviors that a network can exhibit is finite. The DSGRN software identifies dynamics518

via these characterizations [42,54]. DSGRN decomposes high-dimensional parameter space into a finite number519

of regions, where each DSGRN parameter region contains meaningful dynamical information that is true for520

all real-valued parameter sets inside that region. The dynamical behaviors are encoded as state transition521

graphs (STGs), where the nodes of an STG are qualitative concentration levels of gene product, e.g. low,522

medium, high. The edges are permitted transitions between these system states. For example, if a repressor523

is currently at a high level, then its downstream target would not, unless also impacted by an activator, be524

permitted to increase. An STG tracks where each gene product is increasing or decreasing in concentration and525

where each gene product can achieve a (local) maximum or minimum expression level. A consequence is that526

the potential for oscillatory behavior can be identified from the STG, as well as the stability of the oscillations527

and the order of the maxima and minima of different gene product concentrations within the oscillations.528

We propose that ordering the extrema in a time series dataset is an appropriate description of the observed529

dynamical behavior, taking noise into account. This representation is coarse, but it qualitatively captures530

certain characteristics, such as relative frequency and phase differences. Given any collection of gene products,531

we can transform the associated time series dataset into a graph called the data graph where the nodes are532

the extrema of the time series and the edges represent events that have a known order in time [55]. Not every533

pair of nodes representing gene products will have an edge between them. It is possible, and in fact common,534

that two extrema from different time series occur close enough together that their timing is indistinguishable535

under an assumption of small noise.536

The data graph encodes information about the procession of extrema in a similar way to that of the state537

transition graph. The process of attempting to match up the ordering of the extrema in the data graph and538

the extrema in the state transition graph is called DSGRN pattern matching [56]. If a pattern match539

exists, then we say the model is consistent with the data. When consistency exists, then the network model540

that produced the STG cannot be rejected as a hypothesis for explaining the experimental observations. The541

proportion of STGs for a network that exhibit a pattern match in a stable oscillation is the pattern match score542

discussed in the text.543

There are limitations to the networks for which DSGRN computations are possible. The main challenge544
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is that the combinatorial growth of the number of DSGRN parameter regions causes computations to become545

prohibitively expensive with an increasing number of edges in the network. Practically speaking, given current546

algorithms and technology, this limits networks to about 10 nodes and a maximum of 4 or 5 regulators at any547

given node; however, only one or two nodes may have 4 or 5 regulators. In addition, the expense of pattern548

matching further reduces the size of computationally accessible networks. The user must gauge computational549

resources against network sample size and choose the maximum number of allowed DSGRN parameter regions550

accordingly. In addition, the DSGRN pattern matching technique is not yet available for self-repressing edges,551

although this is expected to become available in the near future.552

4.3 Component Integration and Evaluation553

The DL×JTK node ranking prioritizes gene time series for further analysis in the Inherent Dynamics Pipeline.554

LEM ingests the top-ranked nodes and produces a ranked-ordered list of edges called the local edge ranking555

that is used to initiate the network finding step. The procedure for the network finding step is to pick a seed556

network composed of the top few LEM edges, and then to stochastically search in a neighborhood around557

the seed network for strongly connected networks that are sampled using a larger portion of the local edge558

ranking. We call edges permitted in the construction of networks the top-ranked LEM edges. The increased559

permissivity allows the possibility of including network edges that may have been downranked by LEM due560

to either stochastic computation or experimental noise. Self-repressing edges are currently removed from the561

top-ranked LEM edges for technical reasons, but this functionality is expected to be added in the near future.562

Using the top-ranked LEM edges, the network finding step produces a sample of candidate networks in563

the neighborhood around the seed network. User-supplied scoring constraints are then employed to identify564

a collection of top performing networks. These scoring constraints are based on the fact that the number of565

DSGRN parameters is finite, which allows proportions of DSGRN parameter space with the desired dynamical566

behavior to be computed. In this work, there are two numerical scores that we use to choose top regulatory567

networks. The first is the proportion of DSGRN parameters that exhibit stable oscillations (oscillation score).568

The second is the proportion of stably oscillating DSGRN parameters that exhibit a pattern match to at least one569

dataset within the stable oscillation (pattern match score). When we have replicate experimental datasets,570

as we do for the S. cerevisiae data, we also require at least one pattern matching success for each replicate.571

Candidate networks that meet the chosen criteria are called the top-ranked DSGRN networks.572

A rank-ordered list of edges called the global edge ranking is created by measuring the participation of573

each edge in the top-ranked DSGRN networks. Every edge is assigned an edge prevalence score that is the574

proportion of top-ranked DSGRN networks in which it appears, i.e., for the edge i → j, the edge prevalence575

score Pi→j is576

Pi→j =
Ni→j

T
, (3)

where T is the number of top networks and Ni→j is the number of top networks that have the edge i → j (or577

i a j for a repressing edge). Pi→j is nonzero for any edge i → j that participates in at least one network that578
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can faithfully reproduce the observed data to the requested degree of robustness and accuracy.579

The edge prevalence score defines the global edge ranking, which is a re-ranking of the top-ranked LEM580

edges according to their ability to participate in complex networks with a desired phenotypic behavior. When581

ties in the edge prevalence score exist, they are broken by local edge rank. Any edge with a zero prevalence582

score is given the worst possible ranking: the number of top-ranked LEM edges.583

In addition to ranking edges, we can also revise the DL×JTK node ranking for experimental prioritization.584

The method is the same for either the local edge ranking from LEM or the global edge ranking from DSGRN.585

We use the (local or global) node participation score, which is computed for each node g by collecting the586

ranks of all edges either coming into g or emanating from g and taking the median of these ranks. The global587

edge and node rankings together provide guidance to the experimentalist desiring to prioritize experiments.588

4.4 Computational Details589

Data and scripts used to create images and generate statistics in Results Section 2 are located in [57].590

4.4.1 Synthetic network construction591

We constructed a collection of six-node network topologies that robustly exhibit oscillations across DSGRN592

parameter regions, and then we chose the top ranked of these with nontrivial regulation at a node (see node C593

in Fig 2 (a)). We generated synthetic time series data from this network from three different DSGRN parameter594

regions. This was accomplished by sampling the DSGRN parameter regions for explicit real-valued parameters595

with which to simulate Hill function ODE models of the network. The simulations were evaluated for robust596

periodicity exhibiting a minimum of a four-fold change between peak and trough for all six synthetic genes. The597

three simulated datasets show distinct patterns of maxima and minima, i.e. distinct dynamical behaviors. This598

is roughly analogous to studying a regulatory network under three distinct experimental conditions, where each599

experimental condition is viewed as a different set of parameters imposed on the ODE system for the regulatory600

network in Fig 2 (a). The network’s oscillation score is 100% and the pattern match scores for each time series601

dataset ranged from 45.8% to 51.2%.602

We then added a spurious time series, “node” G, to the dataset to evaluate the performance of the Inherent603

Dynamics Pipeline with imperfect data. The time series for G was generated by604

G = 2

(
sin

(
9

2π
t

)
+ 1

)
,

where t is the vector of time points used to simulate the synthetic data.605

To generate the synthetic gene expression profiles from the network topologies given in Fig 2 (a) and (e),606

we simulated systems of ODEs with Hill function nonlinearities as specified in Equations 4 and 5 respectively,607

with parameters given in Table 4.1.608
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Figure 7: The true negative time series G for the synthetic network.
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Note that the parameter ΓD,C is one or two orders of magnitude smaller for Fig 2 (b) than in the parameter609

sets corresponding to Fig 2 (d) and Fig 2 (c) respectively. In the translation of the DSGRN modeling framework610

to Hill function ODEs (4), ΓD,C distributes to the coefficients on each of the nonlinearities describing activation611

of C by E and activation of C by A. The effect is a more significant reduction in the relative maximum strength612

of regulation of node C by E and A for the first parameter choice compared to the other two. In other words,613

D’s maximum strength of regulation on C is made comparatively much stronger than the other two inputs to614

node C in the first parameter (Fig 2 (b)). This may partially explain the observation that node D serves an615

essential role in maintaining system oscillations in the parameterization producing Fig 2 (b)/(f), but not in the616

other parameterizations.617
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DSGRN Parameter Region

Fig 2 (b),(f) Fig 2 (c),(g) Fig 2 (d),(h)

ΓB,F 0.1071294686 0.1247062357 0.1054951481
ΩB,F 1.1980739800 2.6962820818 2.0937997708
θB,F 0.0055430383 0.3637389501 0.5673228474
ΓF,E 0.0175034071 0.5011731410 0.2455250910
ΩF,E 0.8244263241 0.1209518139 1.5683516101
θF,E 1.3029576011 1.5201526697 0.8518129907
ΓC,B 0.0011155796 0.1958127811 0.0966678191
ΩC,B 1.9491367094 1.5533875523 2.3227225179
θC,B 2.9810640658 3.5689954379 3.1482725035
ΓE,D 0.2201158863 0.2141223259 0.0529032838
ΩE,D 3.6625872030 2.9847903373 0.5576409019
θE,D 0.5390177462 1.0533043028 0.3727988706
ΓE,C 1.6499211746 0.4358121924 0.0676798151
ΩE,C 0.3900059619 0.5490600005 1.7873719546
θE,C 0.0088027178 1.4982296668 1.4187706085
ΓA,C 0.1007846993 0.4132072556 0.0928646536
ΩA,C 0.2578132626 2.2969011759 1.2197732691
θA,C 0.2419230934 0.6819105357 1.7352137828
ΓB,E 0.0096494654 0.2810071904 0.6185173324
ΩB,E 0.7130182868 2.2758756351 3.7129348824
θB,E 1.5106988697 0.6517967757 0.7417231063
ΓA,D 0.0542085170 0.1210124702 0.2731054750
ΩA,D 0.8946601377 2.0147888846 0.5576412929
θA,D 0.6862437739 1.1760092769 0.4867821250
ΓD,C 0.0624991995 1.1124366444 0.2593204887
ΩD,C 1.3297386450 3.2764296326 4.0461307096
θD,C 1.0817547392 2.1191576389 0.1931413047
ΓF,A 0.1885194202 0.0567438444 0.0398781756
ΩF,A 1.4488910403 2.1341889294 6.1842079625
θF,A 0.7285164419 0.3815742876 1.4900313815
n 5 5 5

Table 4.1: Synthetic Network ODE Parameters.

4.4.2 Synthetic network hyperparameters618

For each target/regulator pair, denoted (A,B), LEM first optimizes the choice of model parameters Γ =619

(α, β, γ, k, n), from Methods Section 4.2.2, applied to the right hand side of the Hill model ODE dA
dt = f(B; Γ).620

The optimization Python package, scipy.optimize.basinhopping, attempts to find the choice of Γ which globally621

minimizes the loss (mean square error) between the model prediction and the measured target time series. This622

is done by repeatedly running local optimizations (# iterations times) at different starting locations determined623

by random jumps in parameter space with a maximum displacement of size step size and an accept/reject624

criterion controlled by the “temperature” hyperparameter, T . The “interval” hyperparameter controls the625

number of iterations between adjustments of the step size hyperparameter. Local optimizations are performed626

using the bounded, limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm.627

Loss function Local Optimizer # iterations T step size interval
MSE “L-BFGS-B” 10 1 0.5 10

Table 4.2: Edge Finding Hyperparameters for Synthetic Network and Yeast Cell Cycle Applica-
tions.
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The local edge ranking of LEM informs the network finding step through the choice of seed network and628

additional edges to be used for network sampling. A user-chosen cutoff for the LEM score (LEM pld threshold)629

determines the edges in the seed network, and the user also specifies the number of additional edges to use in630

network construction. The seed edges and user-specified LEM edges together form the top-ranked LEM edges631

introduced in Table 2.1. The network neighborhood search around the seed network is constrained by network632

finding hyperparameter choices, the most important of which are topological constraints, probabilities for adding633

or removing nodes and edges, the range of such operations to perform, the noise levels at which to compute the634

sequence of extrema in the data, and the maximum size of the networks allowed given in terms of the number of635

DSGRN parameter regions for the network. The maximum size must be limited for computational reasons; the636

number of DSGRN parameter regions scales combinatorially with the number of edges in the network. In the637

following, we limited ourselves to networks with at most 3000 DSGRN parameter regions. The network in Fig 2638

(a) has 2016 DSGRN parameter regions. As mentioned in the Introduction, we are searching for core oscillator639

behavior, or strongly periodic signals that drive large-scale downstream oscillations. A key assumption is that640

a core oscillator is strongly connected, i.e. that there is a feedback path from every node to every other node641

in the network. We only sampled networks in the network finding step with this topological property.642

LEM pld
threshold

user-specified
LEM edges

number of
operations

prob.
add node

prob.
add edge

prob.
drop node

prob.
drop edge

noise
level

0.98 40 2-10 0.1 0.9 0.0 0.0 0%

Table 4.3: Network Finding Hyperparameters for Synthetic Network

The remainder of the network finding hyperparameters are shown in Table 4.3. Regarding noise levels, since643

we have reasonably smooth data we evaluated the sequence of extrema at a 0% noise level. For experimental644

data, this is not a reasonable choice, and a nonzero value will be chosen in our demonstration of the yeast cell645

cycle. The choice of seed network, the number of user-specified LEM edges, and the probabilities of adding646

and removing nodes and edges all depend on the level of trust in LEM output. For the synthetic network, we647

decided to put absolute trust in the very top LEM scores, but weak trust that all relevant network edges are648

highly ranked. In particular, we chose a seed network composed of all LEM edges with a probability greater649

than 0.98 and permitted only the addition of nodes and edges. We chose to explore a neighborhood of the seed650

network that permits a range of 2-10 additions from the next 40 (of 98 total) LEM-ranked edges, excluding651

self-repressing edges as mentioned earlier.652

In Fig 3, the well ranked LEM edges figure (Left) shows the oscillation and pattern match scores for one of653

the five simulations for the parameterization in Fig 2 (b). The poorly ranked LEM edges figure (Right) uses the654

bottom 50 ranked edges in the same edge finding step along with an empty seed network to repeat the network655

finding step with the same hyperparameters.656

4.4.3 Yeast cell cycle hyperparameters657

Table 4.4 lists the genes that were investigated in the yeast cell cycle study. The nine genes on the left are known658

to participate in the yeast cell cycle through extensive experimentation [32, 33, 36], where we have chosen to659
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focus on transcription factors with the addition of only one protein-protein mediated regulator, CLN3. The two660

genes on the right have not been implicated in the yeast cell cycle, and yet are transcription factors that exhibit661

high amplitude, robust periodicity of the same period as the cell cycle according to DL×JTK analysis [25].662

Substantiated Nodes Unsubstantiated Nodes
ASH1 EDS1
CLN3 RIF1
HCM1
NDD1
NRM1
SWI4
SWI5
WHI5
YOX1

Table 4.4: The list of 9 substantiated and 2 unsubstantiated yeast cell cycle genes.

To choose “true positive” regulatory edges, we use YEASTRACT, a database that compiles experimental663

evidence for regulatory interactions in the yeast genome [7]. We assume that regulatory edges that have664

documented transcriptional evidence in YEASTRACT are “ground truth”, or substantiated edges. When665

using YEASTRACT, we specified that expression level data was required for a regulatory interaction; binding-666

only relationships were not used. We augment the substantiated edges list by the three interactions WHI5667

repressed by CLN3, SWI4 repressed by WHI5, and SWI4 repressed by NRM1 from the cell cycle network model668

in [33]. The full list of 24 substantiated edges is in Table 4.5. All other putative regulatory edges are deemed669

unsubstantiated. These include all regulatory interactions between RIF1 and EDS1 with SWI4, NDD1, SWI5,670

HCM1, CLN3, WHI5, NRM1, YOX1, or ASH1, none of which were found in YEASTRACT.671

The time series input into the Inherent Dynamics Pipeline are two replicates of wild type S. cerevisiae672

grown in standard media with microarray time series collected and processed in [36]. We dropped the first time673

point in each of the replicate time series to remove the stress response from the synchronization via centrifugal674

elutriation.675

The edge finding hyperparameters are given in Table 4.2, and do not differ from those chosen for the synthetic676

network. However, the network finding hyperparameters have substantially changed. Referencing Table 4.6, the677

number of top-ranked LEM edges has increased from 40 up to 75, in addition to the seed network edges. This678

is due to the increased number of edges analyzed, 108-242 depending on scenario, instead of 98, which is due to679

the increased number of nodes and the presence or absence of nontrivial annotations. Also due to the increased680

number of edges, we increased the network sample size from 2000 to 4000 and correspondingly decreased the681

number of DSGRN parameter regions from 3000 to 2000 for computational reasons. Another change is that682

nonzero probabilities for node and edge removal have been specified. This represents a decrease in the trust of683

top rankings in LEM, simply because the data are noisier. For the same reason, a noise level of 5% instead of684

0% was chosen for analyzing the time series.685
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Target Regulation Source
ASH1 act by SWI5
ASH1 rep by YOX1
CLN3 act by SWI5
CLN3 rep by SWI4
CLN3 rep by YOX1
HCM1 act by SWI4
HCM1 rep by YOX1
HCM1 rep by ASH1
NDD1 act by SWI4
NDD1 act by HCM1
NRM1 act by SWI4
NRM1 act by HCM1
NRM1 rep by YOX1
SWI4 act by SWI4
SWI4 rep by WHI5
SWI4 rep by NRM1
SWI4 rep by YOX1
SWI5 act by NDD1
SWI5 rep by YOX1
WHI5 act by HCM1
WHI5 rep by CLN3
YOX1 act by SWI4
YOX1 act by YOX1
YOX1 act by ASH1

Table 4.5: Substantiated edges used in the yeast cell cycle results as determined from YEASTRACT and [33].
Every node acts both as a target and as a source. When annotations are specified, HCM1, NDD1, and SWI5
are activators only and NRM1, CLN3, and WHI5 are repressors only, as can be verified from the table. For
example, HCM1 activates NDD1, NRM1, and WHI5, but has no repressing activity. All other nodes may be
either activators or repressors.

LEM pld
threshold

user-specified
LEM edges

number of
operations

prob.
add node

prob.
add edge

prob.
drop node

prob.
drop edge

noise
level

0.98 75 2-10 0.1 0.6 0.1 0.2 5%

Table 4.6: Network Finding Hyperparameters for Yeast Cell Cycle
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Edge Finding for the Synthetic Network

Dataset
# edges
analyzed

# true positives
pld ≥ 0.98

# false positives
pld ≥ 0.98

# true positives (out of 10) in
top-ranked LEM edges

Fig 2 (b) 98 4.60± 0.49 0.00± 0.00 9.80± 0.40
Fig 2 (c) 98 4.80± 0.40 0.00± 0.00 8.80± 0.40
Fig 2 (d) 98 2.60± 0.80 0.00± 0.00 9.00± 0.00

Table A.1: Synthetic Network Table of Results for Edge Finding. All numbers are means over five
separate runs of the Inherent Dynamics Pipeline plus/minus one standard deviation. Column 1 contains the
dataset that was analyzed. Column 2 reports the the total number of pairwise interactions modeled by LEM; in
this case that is 72 interactions between 7 nodes multiplied by 2 for positive and negative regulation. Columns 3
and 4 report the number of true positive and false positive edges with a LEM probability score greater than the
chosen threshold. This indicates the number of ground truth and non-ground truth edges in the seed network
for the network finding step out of 10 total ground truth edges (see Fig 2 (a)). Column 5 is the number of
ground truth edges available for network sampling in the network finding step; i.e. the number of ground truth
edges out of 10 that are in the top-ranked LEM edges, which has approximately 45 edges. It varies slightly
according to the size of the seed network.

Network Finding for the Synthetic Network

Dataset
# consistent networks

(out of 2000)
# top

networks
# false negatives

# true negatives
correctly identified

Fig 2 (b) 873± 221 49± 20 0.00± 0.00 24.20± 1.33
Fig 2 (c) 1043± 102 30± 2 0.00± 0.00 26.00± 0.89
Fig 2 (d) 1075± 183 83± 51 0.20± 0.40 20.20± 2.79

Table A.2: Synthetic Network Table of Results for Network Finding. All numbers are means over five
separate runs of the Inherent Dynamics Pipeline plus/minus one standard deviation. Column 1: The dataset
that was analyzed. Column 2: The number of sampled networks that have at least one pattern match for at
least one dataset out of 2000 sampled networks. Column 3: Top networks are those networks with an oscillation
score of 100% and a pattern match score of 50% or above. Column 4: The number of true positive edges with a
zero edge prevalence score, i.e., those that are false negatives. These are above and beyond those missing from
local edge ranking, as indicated in the last column of Table A.1. Column 5: The number of false positives that
are correctly identified, out of approximately 45.
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Edge
Mean edge prevalence score
± 1 standard deviation

Median global
edge ranking

Median local
edge ranking

B=act(C) 100.0%± 0.0% 1 1

C=rep(D) 77.0%± 28.2% 2 2

F=rep(B) 100.0%± 0.0% 3 3

E=act(F) 100.0%± 0.0% 4 4

A=act(F) 87.9%± 24.3% 5 5

D=rep(E) 58.6%± 27.4% 7 13

C=act(E) 46.2%± 19.7% 7 25
E=act(A) 43.1%± 9.5% 8 30

C=act(A) 37.2%± 12.4% 9 26
A=rep(B) 14.8%± 4.2% 12 22

E=rep(B) 13.6%± 2.9% 13 23
A=rep(C) 7.2%± 2.1% 16 28
E=rep(C) 7.7%± 2.4% 17 36
C=act(F) 4.5%± 3.2% 19 33
A=rep(D) 4.2%± 1.9% 20 35
F=rep(C) 2.9%± 5.7% 44 25
F=rep(E) 1.4%± 2.9% 44 32
G=rep(A) 0.0%± 0.0% 45 8
G=act(G) 0.0%± 0.0% 45 10
G=act(E) 0.0%± 0.0% 45 11
G=rep(D) 0.0%± 0.0% 45 11
G=act(F) 0.0%± 0.0% 45 12
G=rep(E) 0.0%± 0.0% 45 13
G=act(A) 0.0%± 0.0% 45 13
G=rep(F) 0.0%± 0.0% 45 14
G=act(D) 0.0%± 0.0% 45 15
G=rep(C) 0.0%± 0.0% 45 16
G=act(B) 0.0%± 0.0% 45 19
G=act(C) 0.0%± 0.0% 45 21
G=rep(B) 0.0%± 0.0% 45 24
F=rep(A) 0.0%± 0.0% 45 35
F=rep(D) 0.0%± 0.0% 45 45

Table A.3: Median edge rankings and average edge prevalence scores over five computations for Fig 2 (b). These
are the edges present in the top-ranked LEM edges in all five computations. The notation A=act(B) should be
read “A activated by B”. Boxed global edge ranks denote ground truth edges. Notice that the ground truth
edge D repressed by A was not a top-ranked LEM edge for at least one computation and is therefore not listed.
All edges with a zero prevalence score are given the worst possible rank. The edges are sorted by median global
edge ranking.
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Edge
Mean edge prevalence score
± 1 standard deviation

Median global
edge ranking

Median local
edge ranking

F=rep(B) 100.0%± 0.0% 1 1

E=rep(B) 100.0%± 0.0% 2 2

B=act(C) 100.0%± 0.0% 3 3

D=rep(A) 88.7%± 22.7% 4 4

C=rep(D) 100.0%± 0.0% 5 5
A=act(E) 63.3%± 14.5% 6 14

A=act(F) 48.6%± 8.0% 7 6
D=rep(F) 38.1%± 6.4% 8 22
F=act(E) 33.1%± 3.0% 9 36
C=act(F) 27.4%± 5.7% 10 31

C=act(E) 18.5%± 2.8% 12 33

C=act(A) 14.5%± 2.2% 13 20
F=act(D) 10.5%± 2.2% 15 32
F=rep(A) 5.7%± 3.6% 17 36
E=act(D) 4.7%± 1.9% 17 30
F=rep(C) 2.5%± 2.4% 19 27
D=act(B) 0.6%± 1.3% 45 34
G=act(A) 0.0%± 0.0% 45 7
G=act(G) 0.0%± 0.0% 45 10
G=rep(A) 0.0%± 0.0% 45 10
G=act(E) 0.0%± 0.0% 45 11
G=rep(B) 0.0%± 0.0% 45 11
G=act(F) 0.0%± 0.0% 45 13
G=rep(C) 0.0%± 0.0% 45 15
G=act(C) 0.0%± 0.0% 45 15
G=act(B) 0.0%± 0.0% 45 16
G=rep(E) 0.0%± 0.0% 45 16
G=rep(D) 0.0%± 0.0% 45 17
G=rep(F) 0.0%± 0.0% 45 18
G=act(D) 0.0%± 0.0% 45 22
B=rep(D) 0.0%± 0.0% 45 24
E=rep(C) 0.0%± 0.0% 45 26
B=act(A) 0.0%± 0.0% 45 28
A=rep(B) 0.0%± 0.0% 45 29
F=act(F) 0.0%± 0.0% 45 37
B=act(F) 0.0%± 0.0% 45 41
F=rep(E) 0.0%± 0.0% 45 41
F=act(G) 0.0%± 0.0% 45 43

Table A.4: Median edge rankings and average edge prevalence scores over five computations for Fig 2 (c). These
are the edges present in the top-ranked LEM edges in all five computations. The notation A=act(B) should be
read “A activated by B”. Boxed global edge ranks denote ground truth edges. Notice that the ground truth
edges D repressed by E and E activated by F were not top-ranked LEM edges for at least one computation and
are therefore not listed. All edges with a zero edge prevalence score are given the worst possible rank. The
edges are sorted by median global edge ranking.
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Edge
Mean edge prevalence score
± 1 standard deviation

Median global
edge ranking

Median local
edge ranking

A=act(F) 100.0%± 0.0% 1 1

F=rep(B) 100.0%± 0.0% 2 2
B=rep(D) 52.9%± 18.0% 3 25

C=act(A) 60.6%± 4.1% 4 19

B=act(C) 58.5%± 19.1% 5 4

D=rep(A) 40.3%± 8.9% 6 27
B=act(A) 33.5%± 16.8% 7 17

E=act(F) 42.0%± 26.1% 9 10
C=act(F) 18.1%± 5.2% 11 28
D=rep(F) 12.8%± 6.5% 12 9
F=act(D) 12.2%± 7.0% 13 30
A=act(E) 12.7%± 5.8% 14 29
F=rep(C) 9.6%± 6.3% 14 21
F=rep(A) 16.9%± 15.4% 15 32

C=act(E) 44.3%± 45.5% 17 3
A=rep(B) 7.9%± 2.5% 17 33

E=rep(B) 25.0%± 37.6% 18 5

D=rep(E) 4.9%± 2.5% 19 6
B=act(E) 8.5%± 7.7% 20 34
E=rep(C) 3.5%± 5.1% 22 34
E=act(D) 0.8%± 0.9% 23 36
F=rep(D) 0.3%± 0.4% 42 38
G=act(D) 0.0%± 0.0% 42 7
G=rep(C) 0.0%± 0.0% 42 8
G=rep(B) 0.0%± 0.0% 42 11
G=act(G) 0.0%± 0.0% 42 12
G=act(F) 0.0%± 0.0% 42 14
G=act(E) 0.0%± 0.0% 42 14
G=act(A) 0.0%± 0.0% 42 16
G=rep(D) 0.0%± 0.0% 42 19
G=act(C) 0.0%± 0.0% 42 19
G=rep(A) 0.0%± 0.0% 42 21
G=rep(E) 0.0%± 0.0% 42 21
G=rep(F) 0.0%± 0.0% 42 22
G=act(B) 0.0%± 0.0% 42 24
E=act(E) 0.0%± 0.0% 42 37
F=act(F) 0.0%± 0.0% 42 39

Table A.5: Median edge rankings and average edge prevalence scores over five computations for Fig 2 (d). These
are the edges present in the top-ranked LEM edges in all five computations. The notation A=act(B) should be
read “A activated by B”. Boxed global edge ranks denote ground truth edges. Notice that the ground truth
edge C repressed by D was not a top-ranked LEM edge for at least one computation and is therefore not listed.
All edges with a zero edge prevalence score are given the worst possible rank. The edges are sorted by median
global edge ranking.
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Edge Finding for Yeast Cell Cycle

Scenario
# edges
analyzed

# subst. edges
pld ≥ 0.98

# unsubst. edges
pld ≥ 0.98

# subst. edges (out of 24) in
top-ranked LEM edges

S+A+ 108 4.2± 0.75 1.40± 0.80 22 ±0.0
S+A− 162 2.80± 0.40 0.00± 0.00 18.40± 1.02
S−A+ 176 3.60± 0.80 2.00± 1.55 14.6 ±1.36
S−A− 242 2.20± 0.40 0.40± 0.80 14.00± 0.00

Table B.1: Yeast Cell Cycle Table of Results for Edge Finding. All numbers are means over five
separate runs of the Inherent Dynamics Pipeline plus/minus one standard deviation. Column 1: The decreasing
information available to an Inherent Dynamics Pipeline run. Column 2 reports the number of edges modeled by
LEM, which is dependent on the presence of annotations (decreases the number of edges) and unsubstantiated
nodes (increases the number of edges). Columns 3 and 4 report the number of substantiated and unsubstantiated
edges with a LEM probability score greater than the chosen threshold; i.e. the edges in the seed network for
the network finding step. Column 5 is the number of substantiated edges available to the network sampling in
the network finding step out of 24 (see Table 4.5). There are approximately 80 top-ranked LEM edges for each
of the five computations. It varies slightly according to the size of the seed network.

Network Finding for Yeast Cell Cycle

Scenario
# consistent networks

(out of 4000)
# top

networks
# substantiated edges

with 0 prev. score
# unsubstantiated edges

with 0 prev. score
S+A+ 1678 ±281 165 ±92 6.0± 1.4 15.8± 5.2
S+A− 2436± 274 285± 109 2.80± 0.98 10.20± 4.87
S−A+ 2452 ±140 649± 95 2.00± 1.41 13.00± 2.61
S−A− 2495± 303 447± 234 2.60± 1.36 14.80± 4.07

Table B.2: Yeast Cell Cycle Table of Results for Network Finding. All numbers are means over five
separate runs of the Inherent Dynamics Pipeline plus/minus one standard deviation. Column 1: The decreasing
amounts of information available to an Inherent Dynamics Pipeline run. Column 2: The number of sampled
networks that have at least one pattern match for at least one dataset out of 4000 sampled networks. Column
3: Top networks are those networks with an oscillation score of 10-40% and a pattern match score of 100%.
Column 4: The number of substantiated edges with a zero edge prevalence score, meaning they are probable
false negatives. Column 5: The number of unsubstantiated edges with a zero edge prevalence score, i.e. probable
true negatives. For example, in row 1, six substantiated edges are probable false negatives on average during
the network finding step above and beyond the two substantiated edges lost from the top-ranking LEM list due
to a low edge ranking (see the last column of Table B.1 in row 1 showing 22/24 edges in the top-ranked LEM
edges). In addition, on average 16 unsubstantiated edges are identified as probable true negatives.
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