

1 **Rewiring of liver diurnal transcriptome rhythms by triiodothyronine (T₃)**
2 **supplementation**

3 Leonardo Vinícius Monteiro de Assis^{1*}, Lisbeth Harder^{1,2*}, José Thalles Lacerda³, Rex
4 Parsons⁴, Meike Kaehler⁵, Ingolf Cascorbi⁵, Inga Nagel⁵, Oliver Rawashdeh⁶, Jens Mittag⁷,
5 Henrik Oster¹

6 ¹ Institute of Neurobiology, Center of Brain Behavior & Metabolism, University of Lübeck,
7 Germany

8 ² Current address: Division of Molecular Neurobiology, Department of Medical Biochemistry
9 and Biophysics, Karolinska Institutet, Stockholm, Sweden

10 ³ Institute of Bioscience, Department of Physiology, University of São Paulo, Brazil

11 ⁴ Australian Centre for Health Services Innovation and Centre for Healthcare Transformation,
12 School of Public Health and Social Work, Faculty of Health, Queensland University of
13 Technology, Kelvin Grove, Australia

14 ⁵ Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-
15 Holstein, Campus Kiel, Germany

16 ⁶ School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane,
17 Australia

18 ⁷ Center of Brain Behavior & Metabolism, Institute for Endocrinology and Diabetes –
19 Molecular Endocrinology, University of Lübeck, Germany

20 de Assis, LVM: <https://orcid.org/0000-0001-5209-0835>

21 Harder, L: <https://orcid.org/0000-0002-0637-720X>

22 Lacerda, JT: <https://orcid.org/0000-0003-4588-7197>

23 Parsons, R: <https://orcid.org/0000-0002-6053-8174>

24 Kaehler, M: <https://orcid.org/0000-0002-2401-6037>

25 Cascorbi, I: <https://orcid.org/0000-0002-2182-9534>

26 Nagel, I: <https://orcid.org/0000-0001-5174-4454>

27 Mittag, J: <https://orcid.org/0000-0001-7778-5158>

28 Rawashdeh, O: <https://orcid.org/0000-0002-7147-4778>

29 Oster, H: <https://orcid.org/0000-0002-1414-7068>

30

31

32

33

34 * Authors with equal contribution.

35 [#] Corresponding author: Henrik Oster, Center of Brain Behavior & Metabolism, Institute of
36 Neurobiology, University of Lübeck, Germany, Marie Curie Street, 23562 Lübeck, Germany.
37 e-mail: henrik.oster@uni-luebeck.de or leonardo.deassis@uni-luebeck.de

38

39

40

41

ABSTRACT

42 Diurnal (i.e., 24-hour) physiological rhythms depend on transcriptional programs
43 controlled by a set of circadian clock genes/proteins. Systemic factors like humoral and
44 neuronal signals, oscillations in body temperature, and food intake align physiological
45 circadian rhythms with external time. Thyroid hormones (THs) are major regulators of
46 circadian clock target processes such as energy metabolism, but little is known about how
47 fluctuations in TH levels affect the circadian coordination of tissue physiology. In this study,
48 a high triiodothyronine (T_3) state was induced in mice by supplementing T_3 in the drinking
49 water, which affected body temperature, and oxygen consumption in a time-of-day dependent
50 manner. 24-hour transcriptome profiling of liver tissue identified 37 robustly and time
51 independently T_3 associated transcripts as potential TH state markers in the liver. Such genes
52 participated in xenobiotic transport, lipid and xenobiotic metabolism. We also identified 10 –
53 15 % of the liver transcriptome as rhythmic in control and T_3 groups, but only 4 % of the
54 liver transcriptome (1,033 genes) were rhythmic across both conditions – amongst these
55 several core clock genes. In-depth rhythm analyses showed that most changes in transcript
56 rhythms were related to mesor (50%), followed by amplitude (10%), and phase (10%). Gene
57 set enrichment analysis revealed TH state dependent reorganization of metabolic processes
58 such as lipid and glucose metabolism. At high T_3 levels, we observed weakening or loss of
59 rhythmicity for transcripts associated with glucose and fatty acid metabolism, suggesting
60 increased hepatic energy turnover. In sum, we provide evidence that tonic changes in T_3
61 levels restructure the diurnal liver metabolic transcriptome independent of local molecular
62 circadian clocks.

63

64

65

66

67

68

69

70

Key words: thyroid hormones; liver; hyperthyroidism; transcriptome; circadian clock

71

72 **INTRODUCTION**

73 Circadian clocks play an essential role in regulating systemic homeostasis by
74 controlling, in a time-dependent manner, numerous biological processes that require
75 alignment with rhythms in the environment (Gerhart-Hines and Lazar 2015; West and
76 Bechtold 2015; de Assis and Oster 2021). At the molecular level, the clock machinery is
77 comprised of several genes that are organized in interlocked transcriptional-translational
78 feedback loops (TTFLs). The negative TTFL regulators, *Period* (*Per1-3*) and *Cryptochrome*
79 (*Cry1-2*), are transcribed after activation by Circadian Locomotor Output Cycles Kaput
80 (CLOCK) and Brain and Muscle ARNT-Like 1 (BMAL1 or ARNTL) in the subjective day.
81 Towards the subjective night, PER and CRY proteins heterodimerize and, in the nucleus,
82 inhibit BMAL1/CLOCK activity. This core TTFL is further stabilized by two accessory loops
83 comprised by Nuclear Receptor Subfamily 1 Group D Member 1-2 (NR1D1-2, also known as
84 REV-ERBa-β) and Nuclear Receptor Subfamily 1 Group F Member 1-3 (NR1F1-3, also
85 known as RORα-γ), and the *PAR-bZip* (proline and acidic amino acid-rich basic leucine
86 zipper) transcription factor DBP (Albumin D-Site Binding Protein) (Takahashi 2017; Pilorz
87 et al. 2020; de Assis and Oster 2021). Upon degradation of PER/CRY, towards the end of the
88 night, BMAL1/CLOCK are disinhibited, and a new cycle starts.

89 How the molecular clocks in different tissues and downstream physiological rhythms
90 are coordinated has been the subject of increasing scientific interest in recent years.
91 Environmental light is detected by a non-visual retinal photoreceptive system that innervates
92 the central circadian pacemaker, the suprachiasmatic nucleus (SCN) (Golombek and
93 Rosenstein 2010; Hughes et al. 2016; Ksendzovsky et al. 2017; Foster et al. 2020). The SCN
94 distributes temporal information to other brain regions and across all organs and tissues
95 (Husse et al. 2015; de Assis and Oster 2021) through partially redundant pathways, including
96 nervous stimuli, hormones, feeding-fasting, and body temperature cycles. Despite an ongoing

97 discussion about the organization of systemic circadian coordination, all models share the
98 need for robustly rhythmic systemic time cues (de Assis and Oster 2021).

99 The thyroid hormones (THs), triiodothyronine (T_3) and thyroxine (T_4), are major
100 regulators of energy metabolism. In the liver, THs regulate cholesterol and carbohydrate
101 metabolism, lipogenesis, and fatty acid β -oxidation (Sinha et al. 2014; Ritter et al. 2020).
102 While circadian regulation of the upstream thyroid regulator TSH (thyroid-stimulating
103 hormone) has been described, T_3 and T_4 rhythms in the circulation show relatively modest
104 amplitudes in mammals, probably due to their long half-life (Weeke and Laurberg 1980;
105 Russell et al. 2008; Philippe and Dibner 2015). Interestingly, in hyperthyroid patients, non-
106 rhythmic TSH secretion patterns are observed (Ikegami et al. 2019).

107 In this study, we investigated how a high T_3 state in mice affects diurnal transcriptome
108 organization in the liver. Our data show that tonic endocrine state changes rewire the liver
109 transcriptome in a time-dependent manner independent of the liver molecular clock. Main
110 targets of TH signaling are genes-associated with lipid, glucose, and cholesterol metabolism.

111

112 **RESULTS**

113 **Effects of high T₃ on behavioral and metabolic diurnal rhythms**

114 We used an experimental mouse model of hyperthyroidism by supplementing the
115 drinking water with T₃ (0.5 mg/L in 0.01 % BSA). Control animals (CON) were kept under
116 the same conditions with 0.01 % BSA supplementation (Sjögren et al. 2007; Vujoovic et al.
117 2015). TH state was validated by analyzing diurnal profiles of T₃ and T₄ levels in serum.
118 Significant diurnal (i.e., 24-hour) rhythmicity was detected for T₃ in CON with peak
119 concentrations around the dark-to-light phase transition. T₃ supplemented mice showed ca. 5-
120 fold increased T₃ levels compared to CON mice with no significant diurnal rhythm. T₄ levels
121 were non-rhythmic in all groups (Fig. 1A – B, Table S1). Compared to CON, overall T₄
122 levels were reduced 2 to 3-fold in T₃ supplemented animals (Fig. 1B). Resembling the human
123 hyperthyroid condition, T₃ mice showed increased average body temperature (Fig. S1A) as
124 well as food and water intake compared to CON mice (Fig. S1B – C). Conversely, T₃ mice
125 showed higher body weight on the 3rd week of experimentation (Fig. S1D), as previously
126 shown (Johann et al. 2019).

127 Metabolism-associated parameters such as locomotor activity, body temperature, O₂
128 consumption (VO₂), and respiratory quotient (RQ) showed significant diurnal rhythms in
129 both conditions (Fig. 1C – F, Table S1). No marked differences in locomotor activity were
130 seen between the groups (Fig. 1C, S1E). In contrast, in the T₃ group, body temperature was
131 elevated in the light (rest) phase (Fig. 1D, S1F) leading to a marked reduction in diurnal
132 amplitude. Oxygen consumption in T₃ was elevated throughout the day, but this effect was
133 more pronounced during the dark phase (Fig. 1E, S1G) leading to an increase in diurnal
134 amplitude. Linear regression of energy expenditure (EE) against body weight in CON and T₃
135 mice (Tschöp et al. 2012) revealed no difference in slope, but a higher elevation/intercept was
136 found in T₃ mice (Fig. S1H). These data suggest that the higher EE of T₃ mice is not only a
137 consequence of increased body weight, but it also arises from a higher metabolic state. In T₃

138 mice, RQ was slightly higher in the second half of the dark and the beginning of the light
139 phase indicating higher carbohydrate utilization during this period (Fig. 1F, S1I). In
140 summary, TH dependent changes in overall metabolic activity were observed resembling the
141 human hyperthyroid condition, albeit with marked diurnal phase-specific effects.

142 These findings prompted us to evaluate to which extent T_3 and T_4 levels would be
143 predictive for overall metabolic state (*TH state effects*) or, alternatively, for changes in
144 metabolic activity across the day (*temporal TH effects*) by correlating hormone levels with
145 metabolic parameters. When comparing daily averages to assess TH state effects, we found
146 an association between T_3 levels, body temperature and VO_2 levels but not activity (Fig. 1G –
147 I). Regarding temporal TH effects, we found that neither T_3 nor T_4 qualified as markers for
148 diurnal variations in energy metabolism (Fig. 1J – O, Table S2). In summary, our data
149 suggest that T_3 levels are valid predictors of baseline metabolic state but fail to mirror diurnal
150 changes in metabolic activity at, both, physiological and high- T_3 states. T_4 is an overall poor
151 metabolic biomarker.

152

153 **Daytime-independent effects of TH on the liver transcriptome**

154 To study the molecular pattern underlying the observed diurnal modulation of
155 metabolic activity in T_3 -treated mice, we focused on the liver as a major metabolic tissue. We
156 initially identified time-of-day independent transcriptional markers reflecting TH state in this
157 tissue. Comparing the liver transcriptome across times of day and T_3 treatment conditions,
158 2,343 differentially expressed probe sets (2,336 genes – DEGs) were identified (± 1.5 -fold
159 change; $FDR < 0.1$; Fig. 2A, Table S3). Of these DEGs, 1,391 and 945 genes were up- or
160 downregulated, respectively, by elevated T_3 (Fig. 2A, Table S3). Gene set enrichment
161 analysis (GSEA) of upregulated DEGs yielded processes related to xenobiotic
162 metabolism/oxidation-reduction, immune system, and cholesterol metabolism, amongst
163 others. On the other hand, GSEA of downregulated DEGs yielded biological processes

164 pertaining to fatty acid (FA) and carbohydrate metabolism, as well as cellular responses to
165 insulin (Fig. 2B, Table S3). We identified 37 genes whose expression was robustly up- or
166 down-regulated by T₃ across all timepoints (Fig 2C, Table S4). Genes involved in xenobiotic
167 transport/metabolism (*Abcc3*, *Abcg2*, *Ces4a*, *Ugt2b37*, *Papss2*, *Gstt1*, *Sult1d1*, *Cyp2d12*,
168 *Ephx2*, and *Slc35e3*), lipid, fatty acid and steroids metabolism, (*Cyp39a1*, *Ephx2*, *Akr1c18*,
169 *Acnat1*, *Cyp4a12a/b*, *Cyp2c44*), vitamin C transport (*Slc23a1*), and vitamin B₂ (*Rfk*) and
170 glutathione metabolism (*Glo1*) were identified. Additional genes involved in mitosis and
171 replication were also identified (*Cep126*, *Mdm2*, *Trim24*, and *Mcm10*) (Fig. 2D, Table S4).

172 We suggest that these transcripts could serve as robust daytime-independent
173 biomarkers of TH state in liver.

174

175 **TH dependent regulation of liver diurnal transcriptional rhythms**

176 We used the JTK cycle algorithm (Hughes et al. 2010) to describe the effects of TH
177 state changes on 24-hour liver gene expression rhythms. We identified 3,354 and 2,592
178 probes – comprising 3,329 and 2,585 unique genes – as significantly rhythmic (p < 0.05) in
179 CON or T₃, respectively (Fig 3A, Table S5). Of these, 2,319 and 1,557 probes were classified
180 as exclusively rhythmic in CON or T₃, respectively. One thousand and thirty-five (1,035)
181 probes (1,032 genes) were identified as rhythmic in both groups (Fig. 3A, Table S5), amongst
182 these most core circadian clock genes (Table S5). Principal component analysis (PCA)
183 showed a distinct pattern of organization across time between the groups for the shared genes
184 (Fig. S2). We next assessed the distribution of phase and amplitude across 24 h between the
185 groups. Rose plot analyzes revealed a similar distribution pattern of phase, but T₃ mice
186 showed a higher number of genes peaking in the light phase (ZT 7 – 9) and first half of dark
187 phase (ZT 13 – 20) compared to CON (Fig. 3B). Cross-condition comparison of genes with
188 robust rhythmicity revealed only a minor phase advance of around 1h in T₃ (Fig. 3 C).

189 GSEA of rhythmic genes was performed to detect rhythmically regulated pathways
190 under both TH conditions. In CON mice, transport, RNA splicing, lipid and glucose
191 metabolism, and oxidation-reduction processes were overrepresented. In the high-T₃
192 condition, several immune-related processes, fatty acid oxidation, and regulation of Mitogen-
193 Activated Protein Kinase 1 (MAPK) signaling were found. Interestingly, robustly rhythmic
194 genes were enriched for lipid and cholesterol metabolism and circadian related processes,
195 suggesting that these processes are tightly coupled to circadian core clock regulation (Fig.
196 3D, Table S5). Individual inspection of clock genes revealed the absence of marked effects
197 on mesor and amplitude, but a slight phase advance (Fig. 3E – F), which corroborates the
198 phase advance effects seen at the rhythmic transcriptome level (Fig. 3C).

199 We next focused on the diurnal regulation of TH signaling by analyzing the
200 expression of genes encoding for modulators of TH signaling, i.e., TH transporters,
201 deiodinases, and TH receptors, and established TH target genes. We found that the TH
202 transporter genes, *Slc16a2* (*Mct8*), *Slc7a8* (*Lat2*), and *Slc10a1* (*Ntcp*) lost rhythmicity in T₃
203 mice compared to CON. Amongst the receptors, *Thra* was rhythmic, while *Thrb* was
204 arrhythmic under both conditions. Of the deiodinases, only *Dio1* was robustly expressed
205 under both conditions, but without variation across the day (Fig. 4A). Significant, but non-
206 uniform changes in baseline expression levels were observed for *Slc16a10*, *Slc7a8*, *Dio1* (up
207 in T₃) and *Slco1a1*, *Thra*, and *Thrb* (down in T₃; Fig. 4A). To analyze the effect of such
208 changes on TH action, we studied diurnal regulation of established liver TH output genes.
209 Reflecting elevated T₃, all selected TH target genes showed increased expression across the
210 day in T₃ mice (Fig. 4B – C). No clear regulation was seen regarding amplitude or phase (Fig.
211 4 C).

212 In summary, we provide evidence that the molecular clock of the liver functions
213 independent of TH state. At the same time, changes in diurnal expression patterns were found
214 for fatty acid oxidation- and immune system-related genes in T₃ mice. These changes were

215 associated with marked gene expression profile alterations for TH signal regulators and
216 outputs. Collectively, these data indicate an adaptation of the diurnal liver transcriptome in
217 response to changes in TH state in a largely tissue clock-independent manner.

218 **Quantitative characterization of TH dependent changes in liver diurnal transcriptome
219 rhythms**

220 To dissect TH state dependent rhythm alterations in the liver transcriptome, we
221 employed CircaCompare (Parsons et al. 2020) to assess mesor and amplitude in genes that
222 were rhythmic in at least one condition. For precise phase estimation, analyses were
223 performed only on robustly rhythmic genes. Of note, some differences in rhythm
224 classification between JTK and CircaCompare were detected, which is expected due to the
225 different statistical methods. Since we used CircaCompare's rhythm parameter estimations
226 for quantitative comparisons, gene rhythmicity cut-offs in the following analyses were taken
227 from this algorithm. Pairwise comparisons of rhythm parameters (*i.e.*, mesor, amplitude, and
228 phase) revealed predominant effects of TH state on mesor (2,519 probes / 2,504 genes)
229 followed by alterations in amplitude (518 probes / 516 genes) and phase (491 probes/genes;
230 Fig 5A, Table S6).

231 We further differentiated CircaCompare outcomes into mesor or amplitude elevated
232 (UP) or reduced (DOWN) and phase delayed or advanced for subsequent GSEA. In these
233 analyses, lipid metabolism was enriched in all categories, except for the phase advance
234 group, which suggests a differential regulation of different gene sets related to lipid
235 metabolism. GSEA of genes with reduced amplitude showed enrichment for fatty acid
236 metabolism and cholesterol biosynthesis, whereas GSEA of elevated amplitude genes showed
237 a strong enrichment for immune system-related genes. Interestingly, genes associated with
238 circadian processes and response to glucose were enriched in the phase delay group (Fig. 5B,
239 Table S6).

240 We extracted genes associated with glucose and fatty acid (FA) metabolic pathways
241 from KEGG and assessed rhythmic parameter alterations according to CircaCompare (Fig.
242 5C – E, S3). Averaged and mesor-normalized gene expression data of each gene identified by
243 GSEA were used to identify time-of-day dependent changes in biological processes.

244 Our data suggest a rhythmic pattern of glucose transport in CON mice roughly in
245 phase with locomotor activity (Fig S3, Table S5; 1C). *Slc2a1* (*Glut1*) was rhythmic in both
246 groups but showed a higher mesor in T₃ mice (Fig. S3A; Table S5). Conversely, *Slc2a2*
247 (*Glut2*), the main glucose transporter in the liver, was rhythmic in both groups, but it showed
248 a reduced mesor in T₃ mice. Other carbohydrate related transporters such as *Slc37a3* and
249 *Slc35c1* gained rhythmicity and showed higher amplitude and/or mesor in T₃ mice. Although
250 GLUT1 role in liver is minor, increased GLUT1 signaling has been associated with liver
251 cancer and in non-alcoholic steatosis (NASH) (Chadt and Al-Hasani 2020). CON mice,
252 overall rhythmicity in carbohydrate metabolism transcripts, with acrophase in the dark
253 phase, was identified whereas in T₃ mice this process was arrhythmic due to a reduction in
254 amplitude and mesor (Fig. 5D, S3A). Individual gene inspection showed that glucose kinase
255 (*Gck*), an important gene that encodes a protein that phosphorylates glucose, thus allowing its
256 internal storing and *Pgk1*, which encodes an enzyme responsible for the conversion of 1,3-
257 diphosphoglycerate to 3-phosphoglycerate, showed reduction of amplitude in T₃ mice. Loss
258 of rhythmicity was found for *Pdk4*, a gene that encodes an important kinase that inhibits
259 pyruvate dehydrogenase and for *Pdhb*, an important component of pyruvate dehydrogenase
260 complex. Reduced inhibition of the pyruvate dehydrogenase complex is known to lead to less
261 glucose utilization via tricarboxylic acid cycle and thus it favors β-oxidation (Zhang, Hulver,
262 et al. 2014).

263 Absence of rhythmicity and a higher mesor for the FA biosynthesis rate-limiting gene,
264 *Fasn*, was found in T₃ mice, despite this process was not enriched (Fig. S3B, Table S6). We
265 identified two subsets of genes with a different regulation at mesor level in FA metabolism

266 (Fig. 5E). Overall pathway analysis suggested reduced amplitudes associated with a higher
267 mesor. Individual inspection revealed genes mainly related with unsaturated FA especially
268 with biosynthesis (*Fads2*), and long chain FA elongation (*Elovl3*, *Acnat1-2*, and *Elovl6*), and
269 oxidation (*Acox2*). *Fads2*, *Elovl2*, and *Elovl3* genes also showed a phase delay. Other subsets
270 of genes showed reduced mesor without changes in amplitude, amongst these genes involved
271 in FA biosynthesis (*Acsm3*, *Acsm5*, *Slc27a2*, and *Slc27a5*), β -oxidation (*Acaa2*, *Hsd17b4*,
272 *Crot*, *Acadl*, *Acadm*, *Hadh*, *Decr1*, *Cpt1a*, *Acs11*, and *Hadhb*), glycerolipids biosynthesis
273 (*Gpat4*), and FA elongation (*Hacd3*) (Fig. 5E, S3B, Table S6). To evaluate the metabolic
274 consequences of T_3 mediated diurnal rewiring of FA-related transcripts, we measured TAG
275 levels in the liver across the day. TAG levels were rhythmic with an acrophase in the light
276 phase in both groups. However, high T_3 levels resulted in a marked increase in amplitude and
277 mesor, thus arguing for a pronounced TAG biosynthesis in the light phase, followed by a
278 stronger reduction in the dark phase, which points to higher TAG consumption. Interestingly,
279 in serum, TAG levels were reduced only in the night phase, likely as a result of the higher
280 energy demands of T_3 mice (Fig 5F; 1E; Table S6). Taken altogether, our data suggest a
281 preferential effect of T_3 to increase FA biosynthesis and oxidation and a reduction in glucose
282 metabolism as energy source in the liver.

283 A marked diurnal transcription rhythm was observed for cholesterol metabolism genes
284 in CON mice (Fig. 5G – H). In T_3 mice, cholesterol biosynthesis associated genes were
285 enriched in the amplitude down group, thus suggesting a weakening of rhythmicity. Within
286 this line, the rate-limiting enzyme encoding gene, *Hmgcr*, showed loss of rhythmicity with
287 reduced amplitude and increased mesor in T_3 mice (Fig S3C; Table 6). Interestingly, upon
288 evaluation of liver cholesterol levels no significant difference was observed, although in both
289 groups, cholesterol levels were rhythmic and with an acrophase in the rest phase. In serum,
290 only in T_3 mice, cholesterol levels were rhythmic but showed a marked mesor reduction
291 compared to CON, especially in the dark phase (Fig 5I; Table 6). Rhythmic genes with a

292 marked higher mesor involved in cholesterol uptake (*Ldlr*, *Lrp5*, and *Nr1h2*) and secretion
293 (*Abcg5/8* and *Cyp7a1*) in bile acids (Fig 5G; S3C; Table 6) were detected in line with T₃
294 mediated increased bile acid production (Gebhard and Prigge 1992; Bonde et al. 2012).
295 Taken altogether, our data suggest T₃ mediated time-restricted reduction of cholesterol serum
296 levels in favor of increased cholesterol metabolism.

297 **DISCUSSION**

298 In this study, we analyzed the effects of high T_3 state in the mouse liver. Our data
299 argue that T_3 is a marker for time-independent metabolic output which is subject to distinct
300 temporal (i.e., diurnal) modulation. At the transcriptome level, T_3 induction led to metabolic
301 pathway rewiring associated with only a minor impact on the circadian clock machinery of
302 the liver.

303 Upon analyzing the diurnal metabolic effects of T_3 , we identified a reduction of core
304 body temperature amplitude due to an elevation in the light phase. Conversely, T_3 mice
305 showed a higher O_2 consumption amplitude due to increased respiratory activity in the dark
306 phase. Day versus night analyzes confirmed that during the light phase, T_3 mice have increase
307 metabolic output, which become higher during the dark phase. The absence of an effect in
308 locomotor activity between the groups, reinforces the fact of T_3 as strong activator of energy
309 metabolism in our study, which is support by experimental data (Lanni et al. 2005; Cioffi et
310 al. 2010; Mullur et al. 2014; Jonas et al. 2015). Thus, one could suggest that several adaptive
311 mechanisms must happen to increase basal metabolic rate. In this line, increased energy
312 output shown by T_3 mice seems to relay on a slightly increased glucose (higher RQ quotient)
313 consumption both at light and dark phases. In the liver, our transcriptome analyzes revealed
314 important changes in gene expression reflecting increased metabolic output, which will be
315 discussed below.

316 Although daytime specific effects in metabolic outputs were observed, no clear
317 correlation between TH levels and metabolic outputs was found, thus ruling out that T_3 or T_4
318 are useful *temporal* markers for metabolic output. On the other hand, as a *state* marker, i.e.,
319 when seen on a longer perspective, T_3 served as a robust predictor of metabolic output. For
320 T_4 , a lack of temporal correlation is easily explained by the absence of diurnal rhythmicity in
321 both normal- and high- T_3 conditions. Conversely, T_3 levels were rhythmic in only CON mice,
322 and thus, the lack of T_3 correlational effect may reside in absence of rhythmicity in the T_3

323 group. Previous studies have suggested that serum T₃ shows lack of rhythmicity, or if it is
324 present, displays rhythms of small amplitude in humans and/or mice (Weeke and Laurberg
325 1980; Russell et al. 2008; Philippe and Dibner 2015). In our experimental conditions, CON
326 mice displayed a stable circadian rhythm of T₃, albeit with a low amplitude.

327 Nonetheless, different set of genes were differentially expressed at different times of
328 the day, thus suggesting time-dependent effects of T₃ in the liver. This is suggestive of
329 additional underlying mechanisms that are not dependent on the oscillatory T₃ serum levels.
330 We hypothesized that the liver could display increased sensitivity to T₃ effects likely via
331 rhythmicity in TH transporters, *Dio1*, and TH receptors expression and/or activity. To
332 illustrate this concept, our transcriptome analyzes showed that the liver diurnal transcriptome
333 has 2,336 robustly regulated genes (ca.10% of the transcriptome). Previous studies from the
334 early 2000s using microarrays identified about 2-5 % as T₃ responsive genes (Feng et al.
335 2000; Flores-Morales et al. 2002). Experimental differences such as different T₃ levels
336 associated with differences in statistical and significance threshold levels contribute to the
337 differences found between our data and the previous studies. Enrichment analyzes showed
338 that elevated levels of T₃ were associated with oxidation-reduction and immune system
339 related genes whereas a negative association was found for glucose and FA metabolism.

340 Focusing on comprehending time of day dependent effects in the liver, we focused on
341 the differently expressed genes per timepoint. We identified several hundreds of DEGs across
342 time in T₃ mice, thus arguing for a time-dependent effect of T₃ in the liver. *Dio1* expression is
343 classically associated with liver thyroid state (Zavacki et al. 2005). In our dataset, *Dio1* was
344 differently expressed in all ZTs, except for ZT 22, an effect caused by increased variation in
345 the CON group. Remarkably, 37 genes were identified as time-independent DEGs, i.e.,
346 displayed stable T₃ state dependent expression across all time points, of which were 22 up-
347 and 15 downregulated in T₃ mice. These genes participate in several biological processes
348 such as xenobiotic transport/metabolism, lipid, fatty acid metabolism, and amongst others.

349 From a translational view, we suggest that these genes could be used to evaluate the thyroid
350 state of the liver at any given time in experimental studies. Moreover, these genes could be
351 used to create a signature of thyroid state in the liver in different conditions and diseases.

352 While tonic transcriptional targets of T_3 have been described in tissues such as the
353 liver, at the same time, robust diurnal regulation of modulators of thyroid hormone action
354 such as TH transporters, deiodinases, and TH receptors can be observed from high-resolution
355 circadian studies ((Zhang, Lahens, et al. 2014); <http://circadiomics.igb.uci.edu>). This
356 prompted us to study how T_3 may affect the transcriptional outputs across the day using
357 established circadian biology methods. Circadian evaluation of CON and T_3 livers revealed
358 10 – 15 % of the liver transcriptome as rhythmic under both experimental conditions, which
359 is in line with previous experiments (Zhang, Lahens, et al. 2014; Greco et al. 2021). 1,032
360 genes (ca. 5 % of the liver transcriptome) were robustly rhythmic under both T_3 conditions.
361 Overall, the elevation of T_3 had a slight phase delaying effect on these rhythmic genes, which
362 is similar to the effects found in core circadian clock genes.

363 mRNA expression of TH transporter genes, *Slc16a2* (*Mct8*), *Slc7a8* (*Lat2*), and
364 *Slc10a1* (*Ntcp*), showed a loss of rhythmicity while no gain of rhythmicity was found for T_3
365 mice. Such loss of rhythmicity in TH transporters could represent a compensatory mechanism
366 to the higher T_3 levels found across the day. The transcriptional response in TH regulators
367 suggests a desensitization mechanism in the liver of T_3 mice with a downregulation of TH
368 receptors but increased baseline expression of *Dio1*, *Slc16a10*, and *Slc7a8*. Collectively,
369 these data suggest a compensatory mechanism of decreased signal responses, elevated
370 transport and metabolism of T_3 under high- T_3 conditions at the mRNA level. However,
371 one must consider the potential diurnal regulation of TH receptor protein levels as well as
372 DIO1 and transporter activity to fully confirm this putative compensatory mechanism.

373 Regarding diurnal changes, we observed a strong effect of T_3 on mesor, followed by
374 changes in amplitude and phase. Interestingly, while circadian parameter analysis revealed a

375 strong effect of T₃ on liver transcriptome rhythms, this was mostly without affecting the
376 molecular clock machinery itself. Therefore, T₃ effects in the liver seem to act downstream of
377 the molecular clock through a still elusive mechanism.

378 Considering the broad range of changes found in our study, we focused our efforts on
379 comprehending T₃ effects on metabolic pathways. Our data reveal a strong T₃ mediated
380 diurnal regulation of energy metabolism, mainly related to glucose and FAs, on the mRNA
381 level. Transcripts associated with both processes lost their rhythmicity under high-T₃
382 conditions, thus becoming constant across the day. Interestingly, we found evidence that T₃
383 leads to a shift towards FA β -oxidation over glucose utilization in the liver. T₃ effects in FA
384 biosynthesis showed a preferential effect on the synthesis and oxidation of long chain FA on
385 the mRNA level. Confirming our predictions, livers from T₃ mice had higher levels of TAG
386 during the light phase compared to CON, thus suggesting a higher TAG synthesis during the
387 rest phase. However, during the dark phase a marked reduction in TAG serum and liver
388 levels were observed, which suggests an important role of FA β -oxidation as energy source to
389 meet the higher energetic demands imposed by T₃. Indeed, such changes can be associated
390 with higher energetic demands (higher VO₂) both during the light and dark phase in T₃ mice.
391 It is a known fact that T₃ increases TAG synthesis in the liver (Sinha et al. 2018), but our data
392 provide an interesting time of day dependency in T₃ effects. Interestingly, no marked
393 alteration in protein catabolism was found, thus suggesting a preferential effects of T₃ for
394 glucose and FA related energy sources, at least in liver (Mullur et al. 2014).

395 Our bioinformatic analyzes predicted a higher pool of acetyl-CoA in liver of T₃ mice
396 as consequence of higher FA β -oxidation, which we hypothesized being associated with a
397 putative increased cholesterol biosynthesis. However, no differences were observed in liver
398 cholesterol between the groups, but a marked reduction in serum cholesterol levels was
399 identified in T₃ mice. In face of no differences in cholesterol levels in liver, but associated
400 with a marked reduction in serum cholesterol, we suggest a cholesterol higher uptake and

401 conversion into bile acid. Indeed, such mechanism is supported by our transcriptomic data as
402 well as the literature as T_3 is known to increase cholesterol secretion via bile acids or non-
403 esterified cholesterol in the feces (Mullur et al. 2014; Sinha et al. 2018). Such marked diurnal
404 alterations in the liver transcriptome, especially with regards to metabolic pathways, led us to
405 speculate on the overall consequences of high T_3 on organismal rhythms. Loss or weakening
406 of rhythmicity in relevant metabolic processes in other organs, such as the pancreas, white
407 and brown adipose tissue, and other organs, may also take place in the high- T_3 condition,
408 which could explain the higher energetic demands induced by elevated T_3 levels. It is still
409 elusive how T_3 affects other metabolic and non-metabolic organs in a circadian way. Such
410 knowledge will proof useful in design therapeutic strategies for TH-related diseases such as
411 hepatic steatosis (Marjot et al. 2022).

412 Considering the effects seen in the liver circadian transcriptome, associated with the
413 metabolic data provided, we suggest that T_3 may act as a rewiring factor of metabolic
414 rhythms. In this sense, T_3 leads to reduction of rhythmicity of major metabolic pathways to
415 sustain higher energy demands across the day. Such pronounced effects are not reflected in
416 marked alterations in the liver clock. From a chronobiological perspective, T_3 may be
417 considered a disruptor that uncouples the circadian clock from its outputs, thus promoting a
418 state of chronodisruption (Potter et al. 2016; de Assis and Oster 2021). This duality of T_3
419 effects warrants further investigation.

420 An exciting concept that arises from our data is the concept of chrono-modulated
421 regimes for thyroid-related diseases such as hypo- and hyperthyroidism. We suggest evidence
422 that the liver and presumably other organs may show temporal windows in which treatment
423 can be more effective. Based on our diurnal transcriptome data, no optimal time could be
424 suggested due to the lack of rhythmicity for *Dio1*, *Thrb*, and other TH regulators genes.
425 Nonetheless, time-dependent effects in other genes and/or biological processes were
426 identified and could be explored for chronotherapeutic drug intervention.

427 Taken altogether, our study shows that T₃ displays time of day dependent effects in
428 metabolism output and liver transcriptome, despite the presence of a strong T₃ diurnal
429 rhythm. With regards to metabolism, T₃ acts as a *state* marker, but fails to reflect temporal
430 regulation of metabolic output. Metabolic changes induced by T₃ resulted in a higher overall
431 activation and loss of rhythmicity of genes involved in glucose and FA metabolism,
432 concomitant with higher metabolic turnover, and independent of the liver circadian clock.
433 Collectively, our data suggest a novel layer of diurnal regulation of liver metabolism that can
434 bear fruits for future treatments of thyroid related diseases.

435 **MATERIAL AND METHODS**

436 **Mouse model and experimental conditions**

437 Two to three months-old male C57BL/6J mice (Janvier Labs, Germany) were housed
438 in groups of three under a 12-hour light, 12-hour dark (LD, ~300 lux) cycle at 22 ± 2 °C and
439 a relative humidity of 60 ± 5 % with *ad-libitum* access to food and water. To render mice
440 hyperthyroid (i.e., high T₃ levels) the animals received one week of 0.01 % BSA (Sigma-
441 Aldrich, St. Louis, USA, A7906-50G) in their drinking water, followed by two weeks with
442 water supplemented with T₃ (0.5 mg/L, Sigma-Aldrich T6397, in 0.01 % of BSA). Control
443 animals received only 0.01 % BSA in the drinking water over the whole treatment period.
444 During the treatment period mice were monitored for body weight and rectal temperature
445 (BAT-12, Physitemp, Clifton, USA) individually and food and water intake per cage. All *in*
446 *vivo* experiments were ethically approved by the Animal Health and Care Committee of the
447 Government of Schleswig-Holstein and were performed according to international guidelines
448 on the ethical use of animals. Sample size was calculated using G-power software (version
449 3.1) and are shown as biological replicates in all graphs. Experiments were performed at three
450 to four times. Euthanasia was carried out using cervical dislocation and tissues were collected
451 every 4 h. Night experiments were carried out under dim red light. Tissues were immediately
452 placed on dry ice and stored at -80 °C until further processing. Blood samples were collected
453 from the trunk, and clotting was allowed for 20 min at room temperature. Serum was
454 obtained after centrifugation at 2,500 rpm, 30 min, 4 °C and samples stored at -20 °C.

455

456 **Total T₃ and T₄ evaluation**

457 Serum quantification of T₃ and T₄ was performed using commercially available kits
458 (NovaTec, Leinfelden-Echterdingen, DNOV053, Germany for T₃ and DRG Diagnostics,
459 Marburg, EIA-1781, Germany for T₄) following the manufacturers' instructions.

460 **Serum and tissue triacylglycerides (TAG) and cholesterol evaluation**

461 TAG and cholesterol evaluation of tissue and serum were processed according to the
462 manufacturers' instructions (Sigma-Aldrich, MAK266 for TAG and Cell Biolabs, San Diego,
463 USA, STA 384 for Cholesterol).

464 **Telemetry and metabolic evaluation**

465 Core body temperature and locomotor activity were monitored in a subset of single-
466 housed animals using wireless transponders (E-mitters, Starr Life Sciences, Oakmont, USA).
467 Probes were transplanted into the abdominal cavity of mice 7 days before starting the
468 drinking water treatment. During the treatment period mice were recorded once per week for
469 at least two consecutive days. Recordings were registered in 1-min intervals using the Vital
470 View software (Starr Life Sciences). Temperature and activity data were averaged over two
471 consecutive days (treatment days: 19/20) and plotted in 60-min bins.

472 An open-circuit indirect calorimetry system (TSE PhenoMaster, TSE Systems, TSE
473 Systems, USA) was used to determine respiratory quotient (RQ = carbon dioxide produced /
474 oxygen consumed) and energy expenditure in a subset of single-housed mice during drinking
475 water treatment. Mice were acclimatized to the system for one week prior to starting the
476 measurement. Monitoring of oxygen consumption, water intake as well as activity took place
477 simultaneously in 20-min bins. VO_2 and RQ profiles were averaged over two consecutive
478 days (treatment days: 19/20) and plotted in 60-min bins. Energy expenditure was estimated
479 by determining the caloric equivalent according to Heldmaier (Heldmaier 1975): heat
480 production (mW) = $(4.44 + 1.43 * \text{RQ}) * \text{VO}_2$ (ml O₂/h). A linear regression between EE and
481 body weight was performed to rule out a possible confounding factor of body weight (Tschöp
482 et al. 2012).

483 **Microarray analysis**

484 Total RNA was extracted using TRIzol (Thermofisher, Waltham, USA) and the
485 Direct-zol RNA Miniprep kit (Zymo Research, Irvine, USA) according to the manufacturer's

486 instructions. Genome-wide expression analyses was performed using Clariom S arrays
487 (Thermo Fisher Scientific) using 100 ng RNA of each sample according to the
488 manufacturer's recommendations (WT Plus Kit, Thermo Fisher Scientific). Data was
489 analyzed using Transcriptome Analyses Console (Thermo Fisher Scientific, version 4.0) and
490 expressed in \log_2 values.

491 **Differentially expressed gene (DEG) analysis**

492 To identify global DEGs, all temporal data from each group was considered and
493 analyzed by *Student's t* test and corrected for false discovery rates (FDR < 0.1). Up- or
494 downregulated DEGs were considered when a threshold of 1.5-fold (0.58 in \log_2 values)
495 regulation was met. As multiple probes can target a single gene, we curated the data to
496 remove ambiguous genes. To identify DEGs at specific time points (ZTs – Zeitgeber time;
497 ZT0 = “lights on”), the procedure described above for each ZT was performed separately.
498 Time-independent DEGs were identified by finding consistent gene expression pattern across
499 all ZTs.

500

501 **Rhythm analysis**

502 To identify probes that showed diurnal (i.e., 24-hour) oscillations, we employed the
503 non-parametric JTK_CYCLE algorithm (Hughes et al. 2010) in the Metacycle package (Wu
504 et al. 2016) with a set period of 24 h and an adjusted p-value (ADJ.P) cut-off of 0.05. For
505 visualization, data were plotted in Prism 9.0 (GraphPad, USA) and a sine wave was fit with a
506 period set at 24 h. Rhythmic gene detection by JTK_CYCLE was evaluated by CircaSingle, a
507 non-linear cosinor regression included in the CircaCompare algorithm (Parsons et al. 2020),
508 largely (ca. 99 %) confirming the results from JTK_CYCLE. Phase and amplitude parameter
509 estimates from CircaSingle were used for rose plot visualizations. To directly compare
510 rhythm parameters (mesor and amplitude) in gene expression profiles between T₃ and CON,

511 CircaCompare fits were used irrespective of rhythmicity thresholds. Phase comparisons were
512 only performed when a gene was considered as rhythmic in both conditions ($p < 0.05$).

513 **Gene set enrichment analysis (GSEA)**

514 Functional enrichment analysis of DEGs was performed using the Gene Ontology
515 (GO) annotations for Biological Processes on the Database for Annotation, Visualization, and
516 Integrated Discovery software (DAVID 6.8 (Huang et al. 2009). Processes were considered
517 significant for a biological process containing at least 5 genes (gene count) and a p-value <
518 0.05. To remove the redundancy of GSEA, we applied the REVIGO algorithm (Supek et al.
519 2011) using default conditions and a reduction of 0.5. Enrichment analyzes from genes sets
520 containing less than 100 genes, biological processes containing at least 2 gene were included.
521 Overall gene expression evaluation of a given biological process was performed by
522 normalizing each timepoint of CON and T_3 by CON mesor. A sine curve was plot and used
523 for representation of significantly rhythmic profiles.

524

525 **Principle component analysis (PCA) plots**

526 For PCA analyzes, each timepoint was averaged to a single replicate and analyzes
527 were performed using the factoextra package in R and Hartigan-Wong, Lloyd, and Forgy
528 MacQueen algorithms (version 1.0.7).

529

530 **Data handling and statical analysis of non-bioinformatic related experiments**

531 Samples were only excluded upon technical failure. For temporal correlation analyzes,
532 normalized values were obtained by dividing each value by the daily group average.
533 Normalized values were correlated with normalized T_3 and T_4 levels using Spearman's
534 correlation. Correlation analyzes were performed between different groups of animals that
535 underwent the same treatment. Analyzes were done in Prism 9.0 (GraphPad) and a p-value of
20

536 0.05 was used to reject the null hypothesis. Data from ZT0-12 were considered as light phase
537 and from ZT 12 to 24 as dark phase. Data were either averaged or summed as indicated.
538 Temporal data between groups were analyzed by two-way ANOVA followed by Bonferroni
539 post-test. Single timepoint data were evaluated by unpaired *Student's* t test with Welch
540 correction or Mann-Whitney test for parametric or non-parametric samples, respectively.

541 **Data handling and statical analysis of bioinformatic experiments**

542 Statistical analyses were conducted using R 4.0.3 (R Foundation for Statistical
543 Computing, Austria) or in Prism 9.0 (GraphPad). Rhythmicity was calculated using the
544 JTK_CYLCE algorithm in meta2d, a function of the MetaCycle R package v.1.2.0 (Wu et al.
545 2016). Rhythmic features were calculated and compared among multiple groups using the
546 CircaCompare R package v.0.1.1 (Parsons et al. 2020). Data visualization was performed
547 using the ggplot2 R package v.3.3.5, eulerr R package v.6.1.1, and Prism 9.0 (GraphPad).
548 Heatmaps were created using the Heatmapper tool (<http://www.heatmapper.ca>).

549 **Data availability**

550 All experimental data are deposited in the [Figshare](#) depository. Microarray data was
551 deposited in the Gene Expression Omnibus (GEO) database ([GSE199998](#)). Upon publication
552 all datasets will be publicly available.

553

554 **CONFLICT OF INTEREST**

555 All authors declare no competing interests that could have an impact on the study.

556

557

558

559 **ACKNOWLEDGEMENTS AND FUNDING**

560 This work was supported by grants of the German Research Foundation (DFG) to HO
561 353-10/1, GRK-1957, and CRC-296 “LocoTact” (TP13 and TP14). JTH is a fellow of the
562 São Paulo Research Foundation (FAPESP - 04524-8/2020). We thank Lucas Moreira Ribeiro
563 from the Federal University of Ouro Preto (UFOP, Brazil) for technical assistance in the
564 bioinformatics analyzes.

565 **AUTHOR CONTRIBUTIONS**

566 LH, JM, and HO conceptualization. LVMA data curation. LH and LVMA formal
567 analysis and investigation. LH, LVMA, JTL, RP, MK, IC, IN, and OR, methodology. HO
568 funding acquisition, project administration, and supervision. LVMA and HO writing -
569 original draft. All authors: text review & editing.

570

571 **REFERENCES**

572 Bonde, Y., T. Plösch, F. Kuipers, B. Angelin, and M. Rudling. 2012. Stimulation of murine
573 biliary cholesterol secretion by thyroid hormone is dependent on a functional
574 ABCG5/G8 complex, *Hepatology*, 56: 1828-37.

575 Chadt, A., and H. Al-Hasani. 2020. Glucose transporters in adipose tissue, liver, and skeletal
576 muscle in metabolic health and disease, *Pflugers Arch*, 472: 1273-98.

577 Cioffi, F., S. P. Zambad, L. Chhipa, R. Senese, R. A. Busiello, D. Tuli, S. Munshi, M.
578 Moreno, A. Lombardi, R. C. Gupta, V. Chauthaiwale, C. Dutt, P. de Lange, E.
579 Silvestri, A. Lanni, and F. Goglia. 2010. TRC150094, a novel functional analog of
580 iodothyronines, reduces adiposity by increasing energy expenditure and fatty acid
581 oxidation in rats receiving a high-fat diet, *Fasebj*, 24: 3451-61.

582 de Assis, L. V. M., and H. Oster. 2021. The circadian clock and metabolic homeostasis:
583 entangled networks, *Cell Mol Life Sci*.

584 Feng, Xu, Yuan Jiang, Paul Meltzer, and Paul M. Yen. 2000. Thyroid Hormone Regulation
585 of Hepatic Genes in Vivo Detected by Complementary DNA Microarray, *Mol
586 Endocrinol*, 14: 947-55.

587 Flores-Morales, A., H. Gullberg, L. Fernandez, N. Ståhlberg, N. H. Lee, B. Vennström, and
588 G. Norstedt. 2002. Patterns of liver gene expression governed by TRbeta, *Mol
589 Endocrinol*, 16: 1257-68.

590 Foster, R. G., S. Hughes, and S. N. Peirson. 2020. Circadian Photoentrainment in Mice and
591 Humans, *Biology (Basel)*, 9.

592 Gebhard, R. L., and W. F. Prigge. 1992. Thyroid hormone differentially augments biliary
593 sterol secretion in the rat. II. The chronic bile fistula model, *J Lipid Res*, 33: 1467-73.

594 Gerhart-Hines, Z., and M. A. Lazar. 2015. Circadian metabolism in the light of evolution,
595 *Endocr Rev*, 36: 289-304.

596 Golombek, D. A., and R. E. Rosenstein. 2010. Physiology of circadian entrainment, *Physiol
597 Rev*, 90: 1063-102.

598 Greco, C. M., K. B. Koronowski, J. G. Smith, J. Shi, P. Kunderfranco, R. Carriero, S. Chen,
599 M. Samad, P. S. Welz, V. M. Zinna, T. Mortimer, S. K. Chun, K. Shimaji, T. Sato, P.
600 Petrus, A. Kumar, M. Vaca-Dempere, O. Deryagin, C. Van, J. M. M. Kuhn, D. Lutter,
601 M. M. Seldin, S. Masri, W. Li, P. Baldi, K. A. Dyar, P. Muñoz-Cánores, S. A.
602 Benitah, and P. Sassone-Corsi. 2021. Integration of feeding behavior by the liver

603 circadian clock reveals network dependency of metabolic rhythms, *Sci Adv*, 7:
604 eabi7828.

605 Heldmaier, Gerhard. 1975. Metabolic and thermoregulatory responses to heat and cold in the
606 Dzungarian hamster, *Phodopus sungorus*, *Journal of comparative physiology*, 102:
607 115-22.

608 Huang, Da Wei, Brad T. Sherman, and Richard A. Lempicki. 2009. Systematic and
609 integrative analysis of large gene lists using DAVID bioinformatics resources, *Nat
610 Protoc*, 4: 44-57.

611 Hughes, Michael E., John B. Hogenesch, and Karl Kornacker. 2010. JTK_CYCLE: an
612 efficient nonparametric algorithm for detecting rhythmic components in genome-scale
613 data sets, *J Biol Rhythms*, 25: 372-80.

614 Hughes, S., A. Jagannath, J. Rodgers, M. W. Hankins, S. N. Peirson, and R. G. Foster. 2016.
615 Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells,
616 *Eye*, 30: 247-54.

617 Husse, J., G. Eichele, and H. Oster. 2015. Synchronization of the mammalian circadian
618 timing system: Light can control peripheral clocks independently of the SCN clock:
619 alternate routes of entrainment optimize the alignment of the body's circadian clock
620 network with external time, *Bioessays*, 37: 1119-28.

621 Ikegami, Keisuke, Samuel Refetoff, Eve Van Cauter, and Takashi Yoshimura. 2019.
622 Interconnection between circadian clocks and thyroid function, *Nature Reviews
623 Endocrinology*, 15: 590-600.

624 Johann, Kornelia, Anna Lena Cremer, Alexander W. Fischer, Markus Heine, Eva Rial
625 Pensado, Julia Resch, Sebastian Nock, Samuel Virtue, Lisbeth Harder, Rebecca
626 Oelkrug, Mariana Astiz, Georg Brabant, Amy Warner, Antonio Vidal-Puig, Henrik
627 Oster, Anita Boelen, Miguel López, Joerg Heeren, Jeffrey W. Dalley, Heiko Backes,
628 and Jens Mittag. 2019. Thyroid-Hormone-Induced Browning of White Adipose
629 Tissue Does Not Contribute to Thermogenesis and Glucose Consumption, *Cell Rep*,
630 27: 3385-400.e3.

631 Jonas, W., J. Lietzow, F. Wohlgemuth, C. S. Hoefig, P. Wiedmer, U. Schweizer, J. Köhrle,
632 and A. Schürmann. 2015. 3,5-Diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects
633 on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in
634 male diet-induced obese mice, *Endocrinology*, 156: 389-99.

635 Ksendzovsky, Alexander, I. Jonathan Pomeraniec, Kareem A. Zaghloul, J. Javier Provencio,
636 and Ignacio Provencio. 2017. Clinical implications of the melanopsin-based non-
637 image-forming visual system, *Neurology*, 88: 1282-90.

638 Lanni, A., M. Moreno, A. Lombardi, P. de Lange, E. Silvestri, M. Ragni, P. Farina, G. C.
639 Baccari, P. Fallahi, A. Antonelli, and F. Goglia. 2005. 3,5-diiodo-L-thyronine
640 powerfully reduces adiposity in rats by increasing the burning of fats, *Faseb j*, 19:
641 1552-4.

642 Marjot, T., D. W. Ray, and J. W. Tomlinson. 2022. Is it time for chronopharmacology in
643 NASH?, *J Hepatol*.

644 Mullur, Rashmi, Yan-Yun Liu, and Gregory A. Brent. 2014. Thyroid hormone regulation of
645 metabolism, *Physiol Rev*, 94: 355-82.

646 Parsons, R., R. Parsons, N. Garner, H. Oster, and O. Rawashdeh. 2020. CircaCompare: a
647 method to estimate and statistically support differences in mesor, amplitude and
648 phase, between circadian rhythms, *Bioinformatics*, 36: 1208-12.

649 Philippe, J., and C. Dibner. 2015. Thyroid circadian timing: roles in physiology and thyroid
650 malignancies, *J Biol Rhythms*, 30: 76-83.

651 Pilarz, V., M. Astiz, K. O. Heinen, O. Rawashdeh, and H. Oster. 2020. The Concept of
652 Coupling in the Mammalian Circadian Clock Network, *J Mol Biol*, 432: 3618-38.

653 Potter, G. D., D. J. Skene, J. Arendt, J. E. Cade, P. J. Grant, and L. J. Hardie. 2016. Circadian
654 Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and
655 Countermeasures, *Endocr Rev*, 37: 584-608.

656 Ritter, M. J., I. Amano, and A. N. Hollenberg. 2020. Thyroid Hormone Signaling and the
657 Liver, *Hepatology*, 72: 742-52.

658 Russell, W., R. F. Harrison, N. Smith, K. Darzy, S. Shalet, A. P. Weetman, and R. J. Ross.
659 2008. Free triiodothyronine has a distinct circadian rhythm that is delayed but
660 parallels thyrotropin levels, *J Clin Endocrinol Metab*, 93: 2300-6.

661 Sinha, R. A., B. K. Singh, and P. M. Yen. 2014. Thyroid hormone regulation of hepatic lipid
662 and carbohydrate metabolism, *Trends Endocrinol Metab*, 25: 538-45.

663 Sinha, Rohit A., Brijesh K. Singh, and Paul M. Yen. 2018. Direct effects of thyroid hormones
664 on hepatic lipid metabolism, *Nature Reviews Endocrinology*, 14: 259-69.

665 Sjögren, M., A. Alkemade, J. Mittag, K. Nordström, A. Katz, B. Rozell, H. Westerblad, A.
666 Arner, and B. Vennström. 2007. Hypermetabolism in mice caused by the central
667 action of an unliganded thyroid hormone receptor alpha1, *Embo j*, 26: 4535-45.

668 Supek, F., M. Bošnjak, N. Škunca, and T. Šmuc. 2011. REVIGO summarizes and visualizes
669 long lists of gene ontology terms, *PLoS One*, 6: e21800.

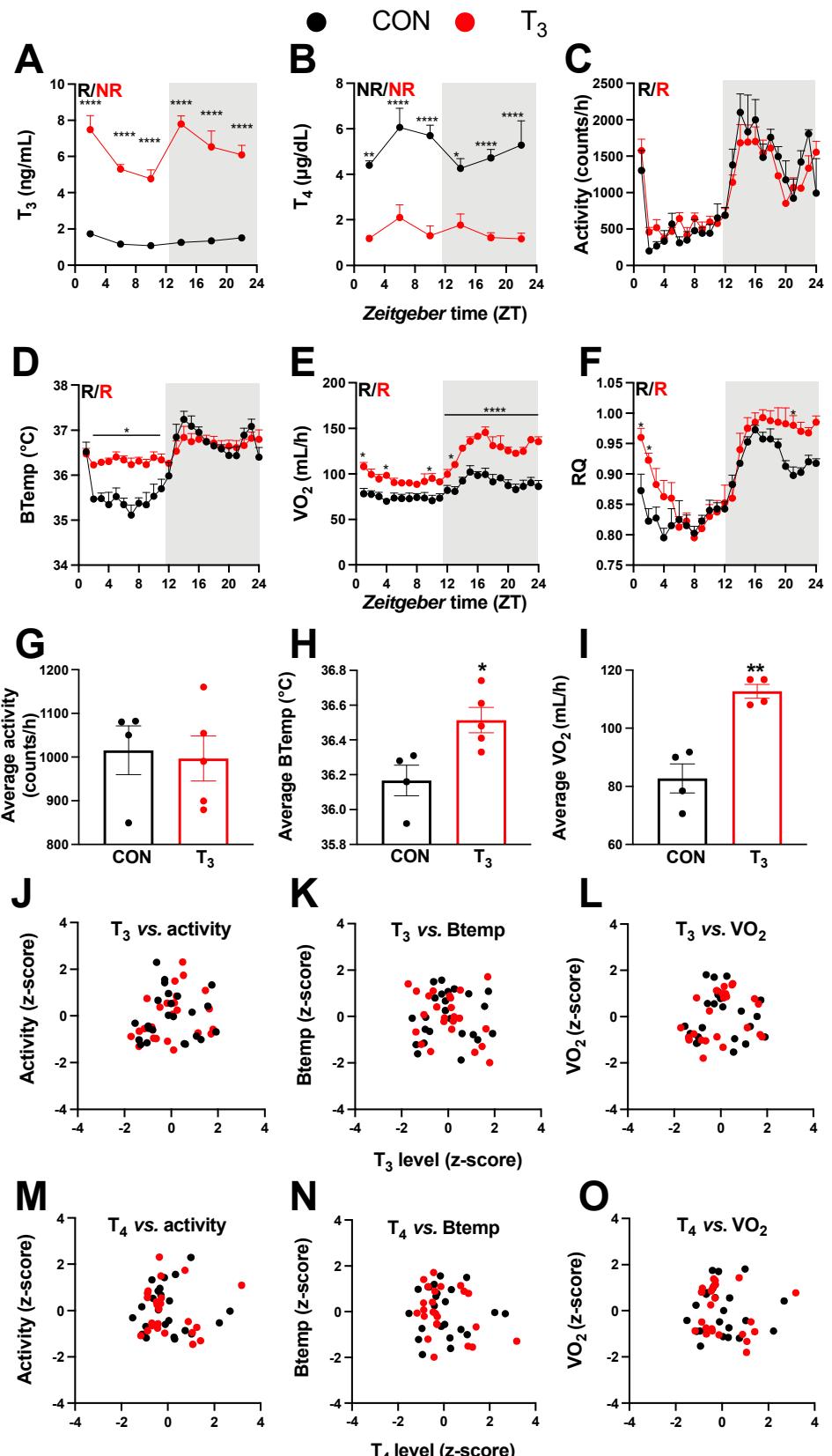
670 Takahashi, J. S. 2017. Transcriptional architecture of the mammalian circadian clock, *Nat*
671 *Rev Genet*, 18: 164-79.

672 Tschöp, Matthias H., John R. Speakman, Jonathan R. S. Arch, Johan Auwerx, Jens C.
673 Brüning, Lawrence Chan, Robert H. Eckel, Robert V. Farese, Jose E. Galgani,
674 Catherine Hambly, Mark A. Herman, Tamas L. Horvath, Barbara B. Kahn, Sara C.
675 Kozma, Eleftheria Maratos-Flier, Timo D. Müller, Heike Münzberg, Paul T. Pfluger,
676 Leona Plum, Marc L. Reitman, Kamal Rahmouni, Gerald I. Shulman, George
677 Thomas, C. Ronald Kahn, and Eric Ravussin. 2012. A guide to analysis of mouse
678 energy metabolism, *Nat Methods*, 9: 57-63.

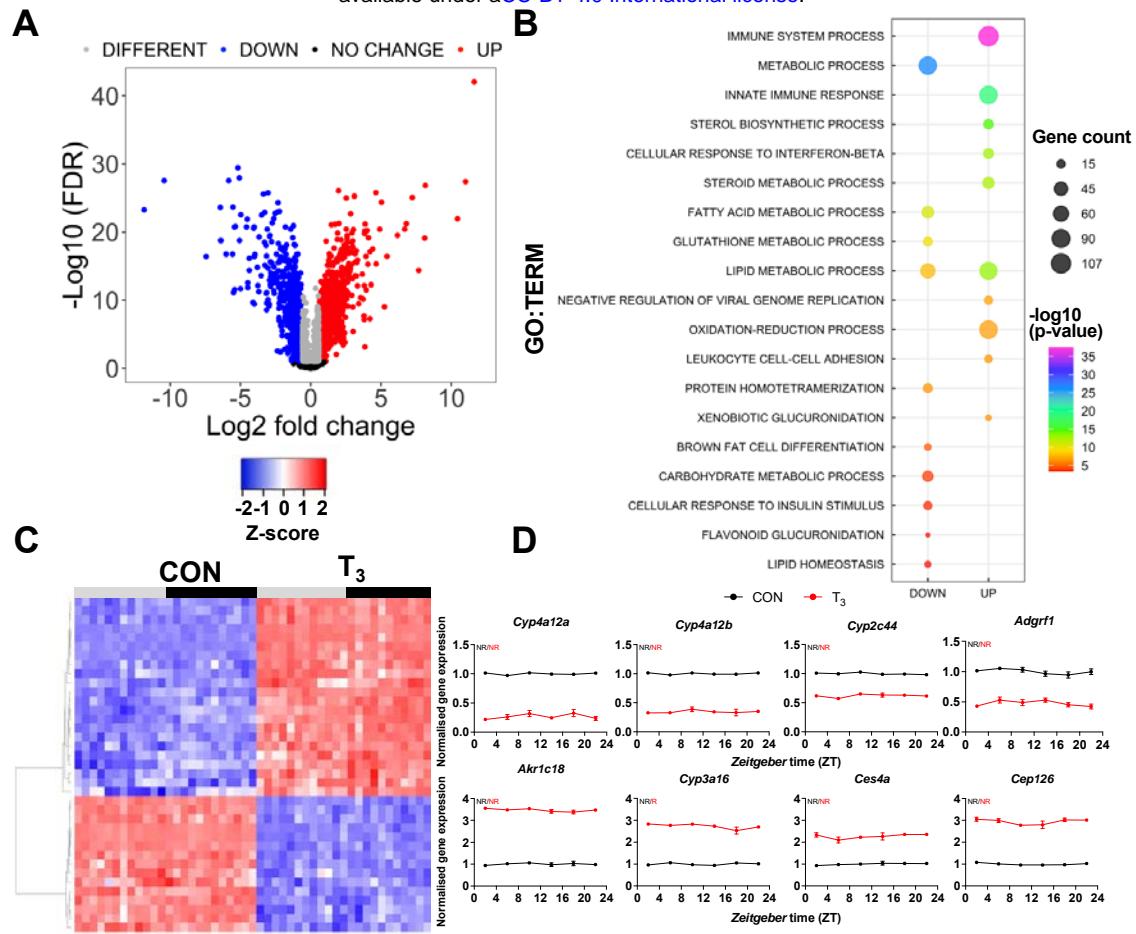
679 Vujovic, M., S. Dudazy-Gralla, J. Hård, P. Solsjö, A. Warner, B. Vennström, and J. Mittag.
680 2015. Thyroid hormone drives the expression of mouse carbonic anhydrase Car4 in
681 kidney, lung and brain, *Mol Cell Endocrinol*, 416: 19-26.

682 Weeke, J., and P. Laurberg. 1980. 24-h profile of serum rT3 and serum 3,3'-T2 in normal
683 man, *Acta Endocrinol (Copenh)*, 94: 503-6.

684 West, A. C., and D. A. Bechtold. 2015. The cost of circadian desynchrony: Evidence, insights
685 and open questions, *Bioessays*, 37: 777-88.


686 Wu, G., R. C. Anafi, M. E. Hughes, K. Kornacker, and J. B. Hogenesch. 2016. MetaCycle: an
687 integrated R package to evaluate periodicity in large scale data, *Bioinformatics*, 32:
688 3351-53.

689 Zavacki, A. M., H. Ying, M. A. Christoffolete, G. Aerts, E. So, J. W. Harney, S. Y. Cheng, P.
690 R. Larsen, and A. C. Bianco. 2005. Type 1 iodothyronine deiodinase is a sensitive
691 marker of peripheral thyroid status in the mouse, *Endocrinology*, 146: 1568-75.


692 Zhang, R., N. F. Lahens, H. I. Ballance, M. E. Hughes, and J. B. Hogenesch. 2014. A
693 circadian gene expression atlas in mammals: implications for biology and medicine,
694 *Proc Natl Acad Sci U S A*, 111: 16219-24.

695 Zhang, Shuai, Matthew W. Hulver, Ryan P. McMillan, Mark A. Cline, and Elizabeth R.
696 Gilbert. 2014. The pivotal role of pyruvate dehydrogenase kinases in metabolic
697 flexibility, *Nutrition & metabolism*, 11: 10-10.

698

1
2 Figure 1: T₃ treated mice show classic effects of high thyroid hormone levels compared to control mice
3 (CON). A – F) Serum levels of T₃ and T₄, 24-hour profiles of locomotor activity, body temperature, O₂
4 consumption and respiratory quotient are shown. Rhythm evaluation was performed by JTK cycle ($p < 0.01$,
5 Table S1). Presence (R) or absence of circadian rhythm (NR) is depicted. G – I) Average levels of locomotor
6 activity, temperature, and O₂ consumption. J – O) Correlation between thyroid hormone levels and normalized
7 levels of metabolic outputs are shown as z-scores (additional information is described in Table S2). In A and B, n
8 = 4 – 6 animals per group and/or timepoint. In C and D, n = 4 and 5 for CON and T₃ groups, respectively. In E
9 and F, n = 4 for each group.

11

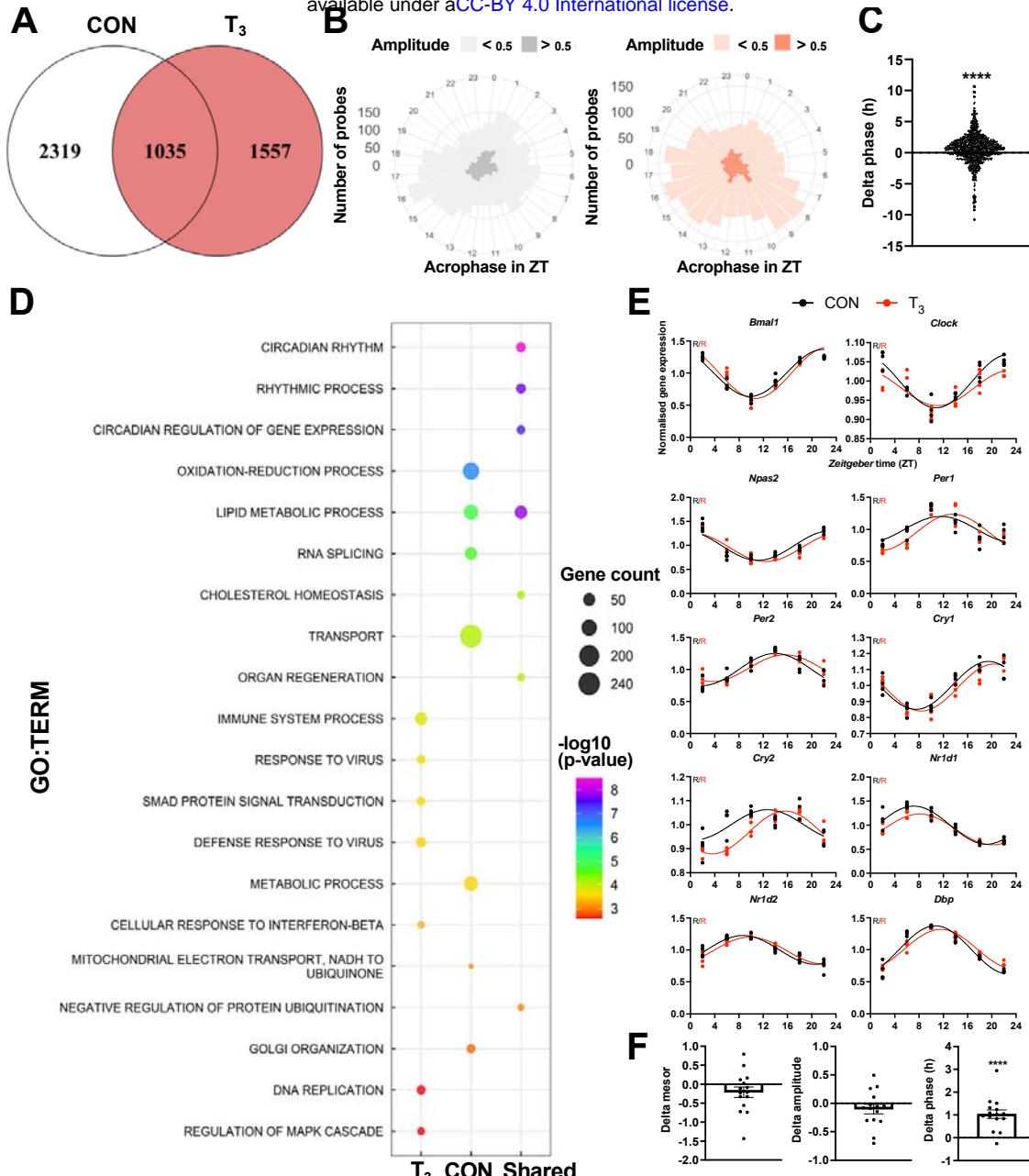
12 **Figure 2: Identification of daytime-independent differentially expressed genes (DEGs) in liver of T₃ mice.**
13 A) Global evaluation of liver transcriptomes revealed 2,336 DEGs of which 1,391 and 945 were considered as
14 up- or downregulated, respectively, using a false discovery rate (FDR) < 0.1. Genes with an FDR < 0.1 were
15 classified as different irrespectively of fold change values. B) Top-10 list of biological processes from gene set
16 enrichment analyzes (GSEA) of up- and down-regulated DEGs are represented. Additional processes can be
17 found in table S3. C) Heat map of liver DEGs showing significant T₃-dependent regulation across all time points.
18 Light and dark phases are shown as gray and black, respectively. D) Diurnal expression profiles of most robustly
19 regulated DEGs. Gene expression of all both groups were normalized by CON mesor. Additional information is
20 described in Table S4. None of these genes showed rhythmic regulation across the day (NR). n = 4 samples per
21 group and timepoint, except for T₃ group at ZT 22 (n = 3).

22

23

24

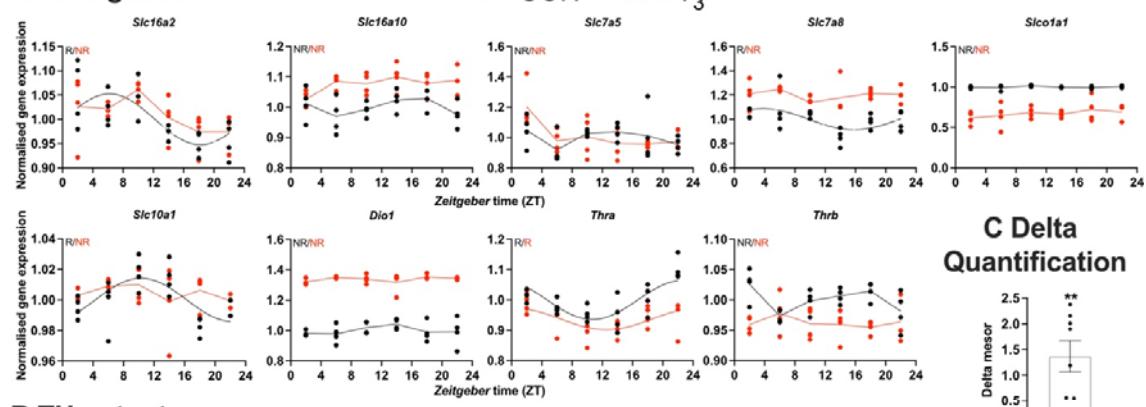
25


26

27

28

29


30

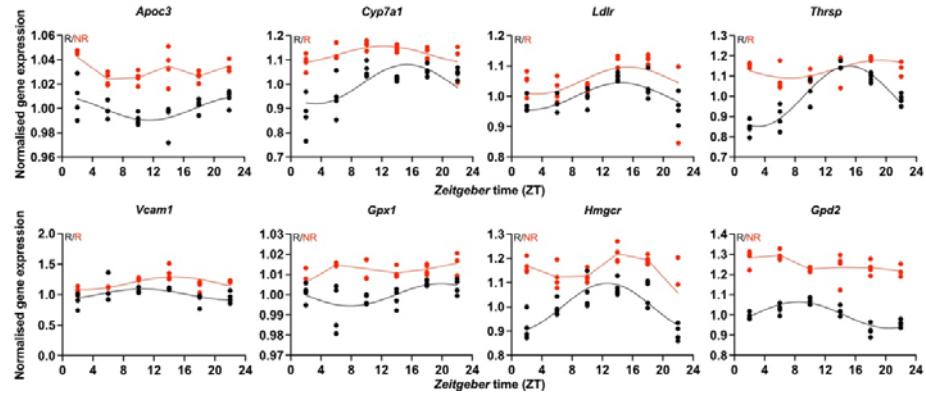

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

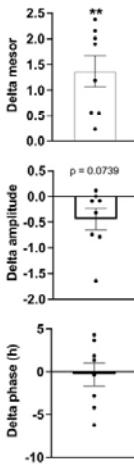
Figure 3: Diurnal evaluation of liver transcriptome of T₃ mice. A) Rhythmic probes were identified using JTK cycle algorithm (Table S5). Venn diagram represents the distribution of rhythmic probes for each group. B) Roseplot of all rhythmic genes from CON (grey) and T₃ (red) are represented by the acrophase and amplitude. Phase estimation was obtained from CircaSingle algorithm. C) Phase difference between shared rhythmic genes is shown. Each dot represents a single gene. One-sample *t* test against zero was performed and a significant interaction (mean 0.7781, *p* < 0.001) was found. D) Top 7 GSEA of exclusive genes from CON, T₃, and shared are depicted. Additional processes are shown in Table S5. E) Sine curve was fitted for selected clock genes. Gene expression of all both groups were normalized by CON mesor. F) For mesor, amplitude, and phase delta assessment, CircaCompare algorithm was used. CON group was used as baseline. Additional genes (*Per3*, *Rorc*, *Tef*, *Hif1a*, and *Nfil3*) were used for these analyzes. 1-sample *t* test against zero value was used and only phase was different from zero (mean 1.036, *p* < 0.001). *n* = 4 samples per group and timepoint, except for T₃ group at ZT 22 (*n* = 3).

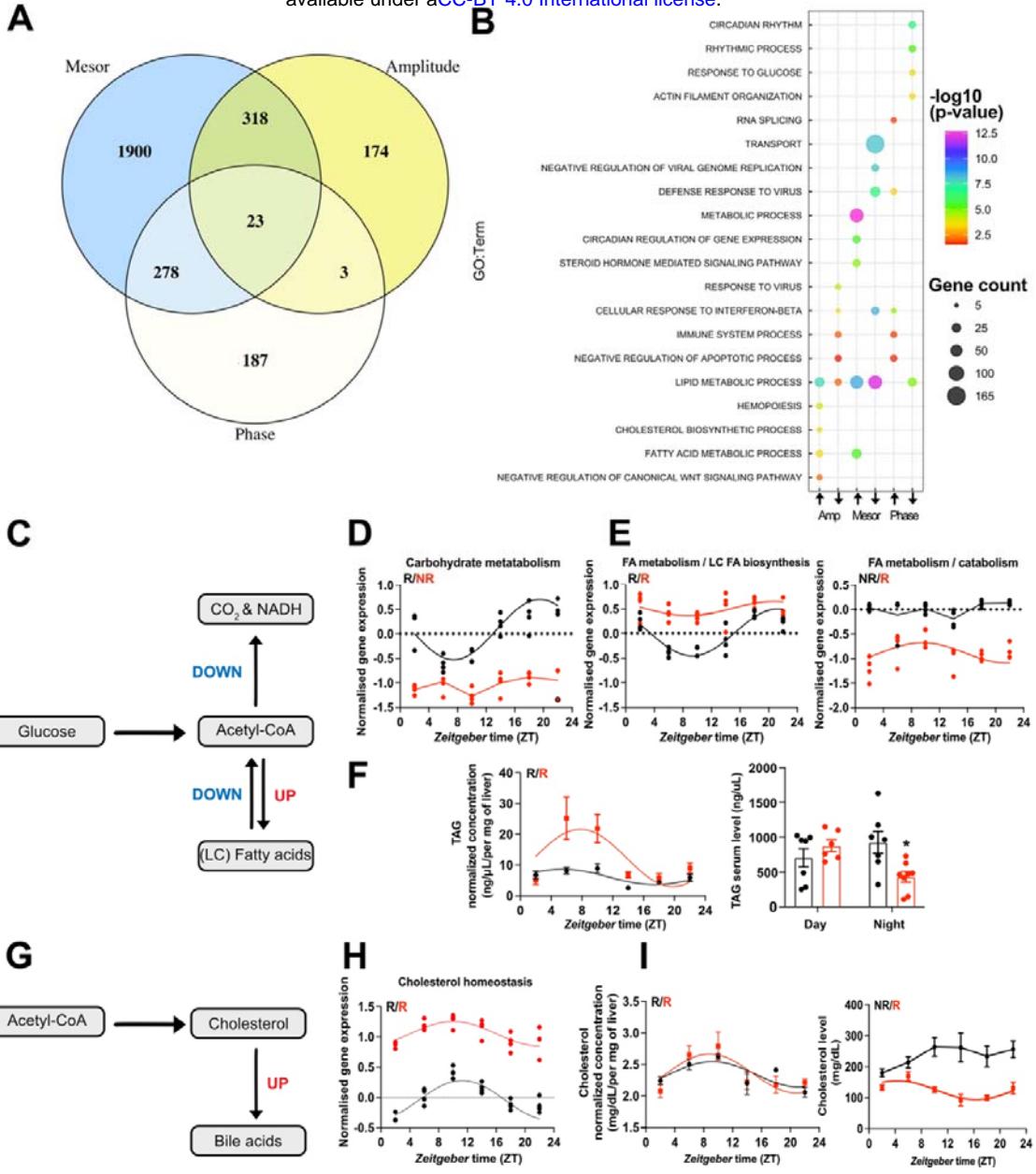
A TH regulators

B TH outputs

46

47 Figure 4: Gene expression evaluation of thyroid hormones (THs) regulators and metabolic outputs in T_3
48 compared to CON. A and B) Genes involved in TH regulation, including transporters, *Dio1*, TH receptors, and
49 well-known T_3 outputs are presented. Presence (R) or absence of circadian rhythm (NR) detected by
50 CircaCompare is depicted. Sine curve was fitted for rhythmic genes. Gene expression of all both groups were
51 normalized by CON mesor. C) Evaluation of rhythmic parameters from genes described in B was performed by
52 CircaCompare using CON group as baseline. 1-sample *t* test against zero value was used and only mesor was
53 different from zero (mean 1.371, $p < 0.01$). n = 4 samples per group and timepoint, except for T_3 group at ZT 22
54 ($n = 3$).

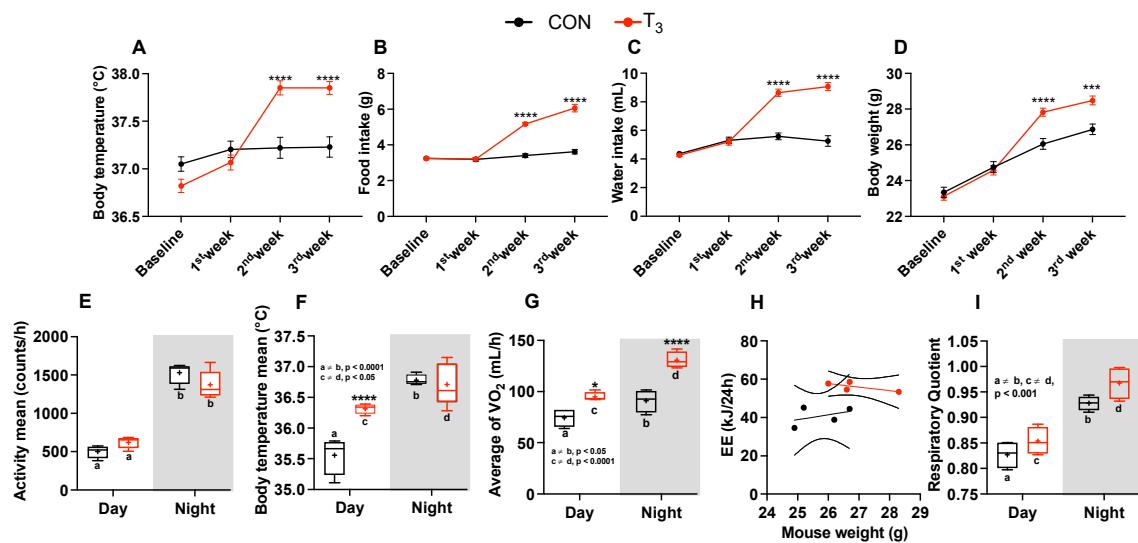

55


56

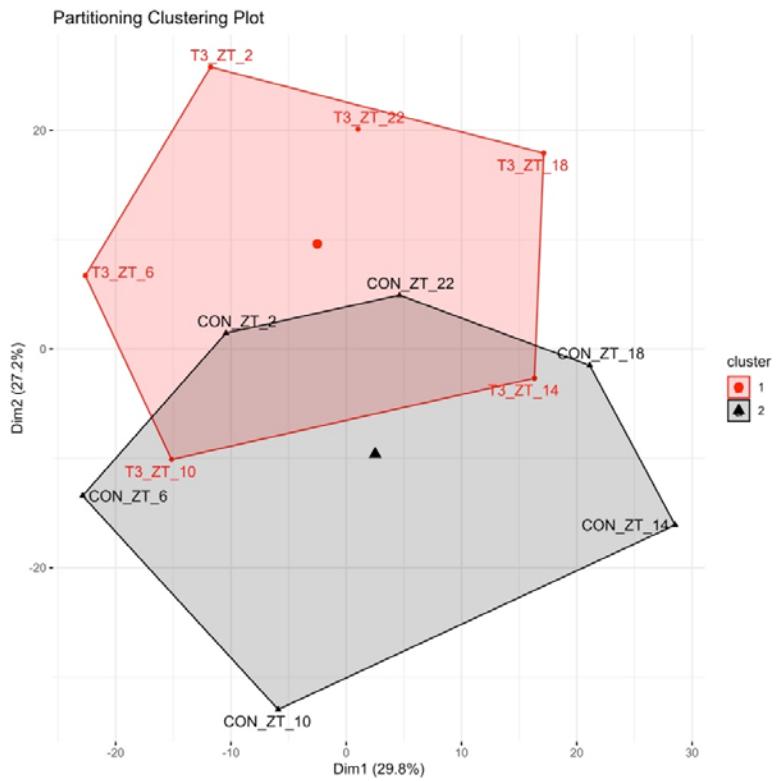
57

58

C Delta Quantification


59

60


61 Figure 5: CircaCompare analyses of T₃ (red) mice compared to CON (black). A) Venn diagram
62 demonstrates the number of probes that displayed differences in each rhythmic parameter (mesor, amplitude,
63 and phase). B) Top 5 enriched biological processes for each rhythmic parameter category. C) Summary of the
64 CircaCompare analyzes regarding glucose and FA metabolism. D – E) Representation of glucose and fatty acid
65 metabolism biological processes obtained from transcriptome data. F) Diurnal rhythm evaluation of liver TAG and
66 day (ZT 2-6) vs night (ZT18-22) serum TAG levels comparisons. G) Summary of the CircaCompare analyzes
67 regarding cholesterol metabolism. H) Representation of cholesterol homeostasis obtained from transcriptome
68 data. I) Diurnal rhythm evaluation of liver and serum cholesterol. Gene expression from each biological process
69 was averaged per ZT and plotted. The reader should refer to the text for detailed information regarding the
70 changes found at the gene level of these processes. Sine curve was fitted for each rhythmic biological process.
71 Individual gene expression pertaining to these processes is found in Fig. S3. n = 4 samples per group and
72 timepoint, except for T₃ group at ZT 22 (n = 3).
73

74

75

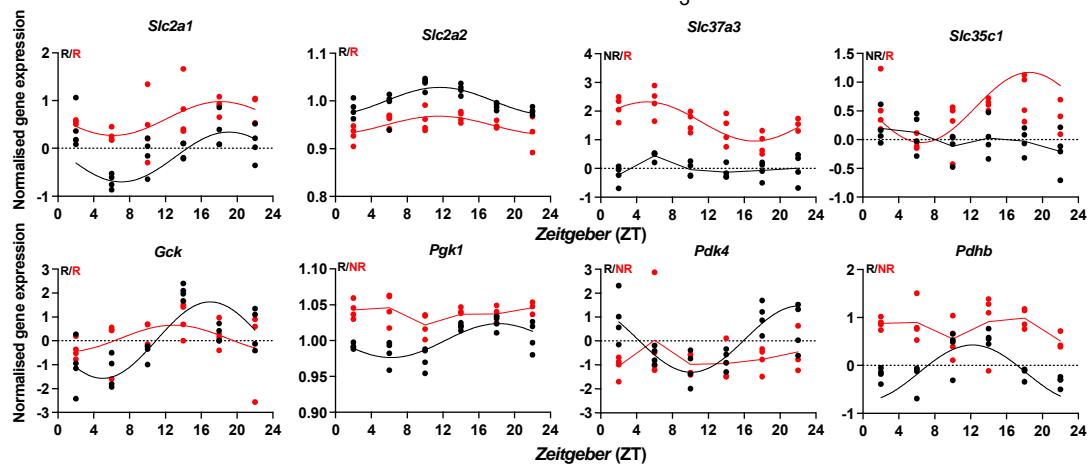


Figure S1: Metabolic evaluation of CON and T_3 mice. A – D) Assessment of body temperature, food and water intake (per cage, $n = 8$), and body weight. E – I) Metabolic parameters (described in the y-axis) were obtained from the 3rd week of experiment (days 19/20). Day and night data were obtained by averaging values from ZT 0 to 12 (day) and from ZT 12 to 24 (night) and plot accordingly. Letters represent a difference between the same group in day versus night comparisons. Asterisks represent significant differences between CON and T_3 mice. In H, 95% confidence interval are shown. Comparison of the slope and elevations/intercept between the groups were performed: $p = 0.30$ and 0.01 , respectively. Data are shown either as mean \pm SEM or by boxplot. $n = 24$ for A and D. E – I) $n = 4 – 5$ per group.

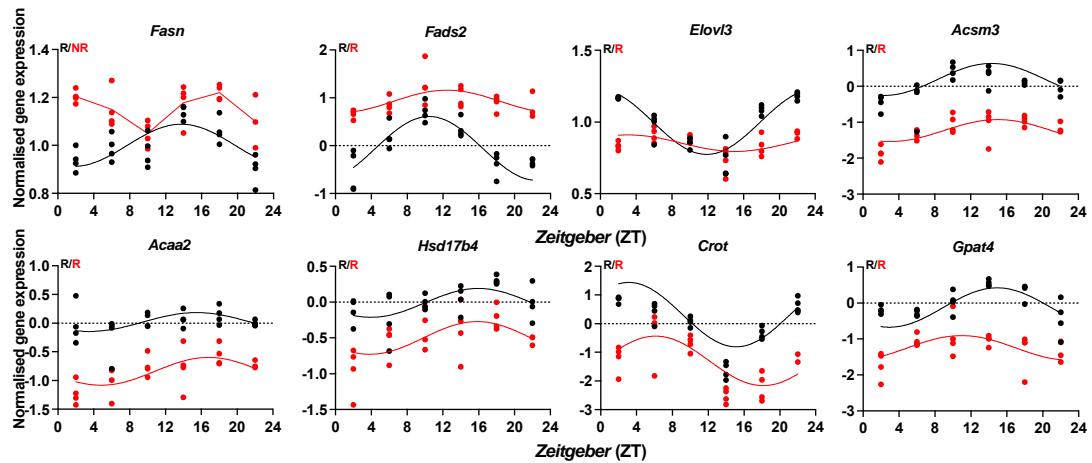


Figure S2: PCA plots of shared rhythmic genes. Each timepoint was averaged into a single replicate and PCA analyzes were performed using the factoextra package in R and Hartigan-Wong, Lloyd, and Forgy MacQueen algorithms.

A Glucose Metabolism

B Fatty acid metabolism

C Cholesterol metabolism

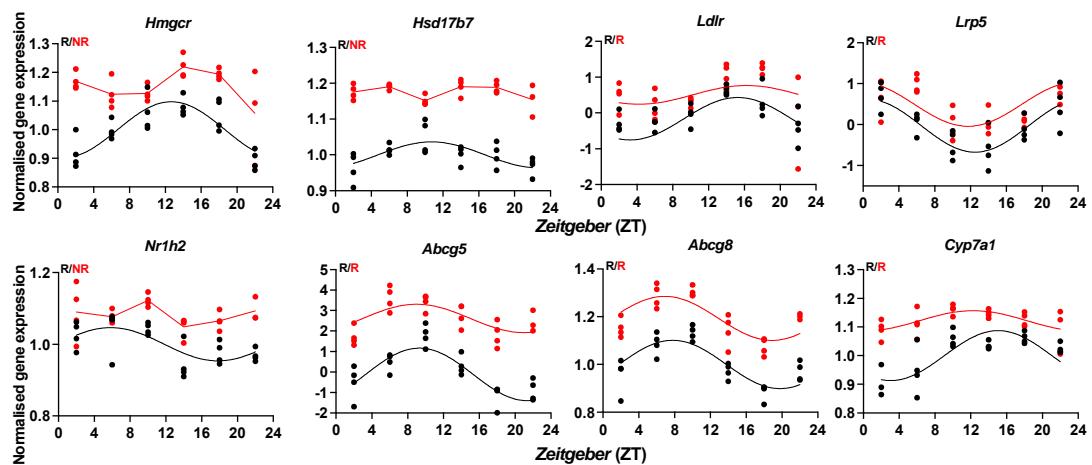


Figure S3. Expression profile of selected genes pertaining to biological processes identified in CircaCompare. Diurnal profile of genes from glucose (A), fatty acid (B) and cholesterol metabolism (C). Diurnal overall gene expression was normalized by CON mesor and plotted. Sine curve was fitted for rhythmic genes (R). Absence of rhythmic is represented by connected lines and NR symbol. n = 4 samples per group and timepoint, except for T₃ group at ZT 22 (n = 3). CircaCompare data is provided in Table S6.