

1 **Pre-T cell receptor Self-MHC Sampling Restricts Thymocyte Dedifferentiation**

2

3

4 **Jonathan S. Duke-Cohan^{1,2,3*}, Aoi Akitsu^{1,2,3}, Robert J. Mallis^{1,2,4}, Cameron M. Messier⁵,**

5 **Patrick H. Lizotte⁵, Wonmuk Hwang⁶, Matthew J. Lang⁷, Ellis L. Reinherz^{1,2,3*}**

6

7 ¹Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.

8 ²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

9 ³Department of Medicine, Harvard Medical School, Boston, MA, USA.

10 ⁴Department of Dermatology, Harvard Medical School, Boston, MA, USA.

11 ⁵Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA.

12 ⁶Departments of Biomedical Engineering, Materials Science & Engineering, Physics &

13 Astronomy, Texas A&M University, College Station, TX, USA.

14 ⁷Department of Chemical and Biological Engineering and Department of Molecular Physiology

15 and Biophysics, Vanderbilt University, Nashville, TN, USA.

16

17 *Corresponding authors

18

19 **Summary paragraph**

20

21 **Programming T lymphocytes to distinguish self from non-self is a vital, multi-step**
22 **process arising in the thymus¹⁻⁴. Signalling through the pre-T cell receptor (preTCR), a**
23 **CD3-associated heterodimer comprising an invariant p $\text{T}\alpha$ chain and a clone-specific β**
24 **chain, constitutes a critical early checkpoint in thymocyte development within the $\alpha\beta$ T-**
25 **cell lineage^{5,6}. Recent work demonstrates that preTCRs arrayed on double negative (DN)**
26 **thymocytes, like $\alpha\beta$ TCRs appearing on double positive (DP) thymocytes, ligate peptides**
27 **bound to MHC molecules (pMHC) on thymic stroma but via a different molecular docking**
28 **strategy⁷⁻¹⁰. Here we show the consequences of those distinctive interactions for**
29 **thymocyte progression, using synchronized fetal thymic progenitor cultures differing in**
30 **the presence or absence of pMHC on support stroma, determining single cell**
31 **transcriptomes at key thymocyte developmental transitions. Although MHC negative**
32 **stroma fosters $\alpha\beta$ T lymphocyte differentiation, the absence of pMHC-preTCR interplay**
33 **leads to deviant thymocyte transcriptional programming associated with de-**
34 **differentiation. Highly proliferative DN and DP subsets with antecedent characteristics of**
35 **T cell lymphoblastic and myeloid malignancies emerge. Thus, at least *in vitro*, beyond**
36 **fostering β chain repertoire broadening for subsequent $\alpha\beta$ TCR utilization, preTCR-pMHC**
37 **interaction limits cellular plasticity to facilitate normal thymocyte differentiation and**
38 **proliferation that, if absent, introduces significant developmental vulnerabilities.**

39

40

41

42

43

44 **Main**

45 The $\alpha\beta$ T cell repertoire consists of many millions to billions of T lymphocytes, each
46 expressing unique surface TCRs in a clonal manner¹¹⁻¹³. These lymphocytes mediate precise
47 recognition and elimination of aberrant host cells displaying “foreign” surface pMHC ligands
48 consequent to infection or cellular transformation. In the thymus of jawed vertebrates during
49 foetal, neonatal and juvenile life, the repertoire of clonotypic $\alpha\beta$ TCRs and their predecessor
50 preTCRs is generated⁶. To this end, thymic progenitors originating from the bone marrow (and
51 foetal liver *in utero*) proliferate during the early CD4 $^+$ CD8 $^-$ double negative (DN1, DN2) stages
52 and, under the influence of Notch at DN2, commit to the T cell lineage (Fig. 1a)¹. Progression to
53 the DN3a compartment (CD44 $^+$ CD25 $^+$ CD28 lo) leads to further commitment to the $\alpha\beta$ T cell
54 lineage, with recombination activating genes 1 and 2 (*Rag-1* and *Rag-2*) expression fostering
55 TCR β locus rearrangements that produce a recombined β chain expressed as a disulphide-
56 linked heterodimer with the invariant pT α subunit¹⁴. In turn, pT α - β associates with the CD3
57 signalling subunits. Subsequently, upon preTCR signalling at the β selection checkpoint, the
58 DN3b population (CD44 $^+$ CD25 $^+$ CD28 hi) undergoes a critical program change to suppress Notch
59 signalling, downregulate transcription of *Rag-1*, -2 and *Ptcra* genes, increase cell cycling, and
60 mediate allelic exclusion at the TCR β locus enforcing expression of only one TCR β chain per
61 cell⁶. In turn, those thymocytes transition into the DN4 (CD44 $^+$ CD25 $^-$) and then immature CD8
62 single positive (ISP) compartments¹⁵. Upon further progression to the double positive
63 (CD4 $^+$ CD8 $^+$; DP) stage, *Rag* genes are upregulated for a second time, permitting recombination
64 and transcription at the TCR α locus and thereafter expression of the TCR $\alpha\beta$ heterodimer¹⁶⁻¹⁸.
65 To refine the $\alpha\beta$ T cell repertoire, both positive and negative selection events ensue at this DP
66 stage in the thymic cortex and continue into the maturing SP (CD4 $^+$ CD8 $^-$ and CD4 $^-$ CD8 $^+$)
67 medullary compartment followed by their later export as peripheral T cells¹⁹.

68

69 PreTCR signalling was judged independent of ligand recognition at the DN3 stage
70 consequent to several lines of prior investigation²⁰⁻²³. First, ablation of the TCR β chain variable
71 domain that forms part of the interaction surface with pMHC in the $\alpha\beta$ TCR did not impact
72 development through the DN3a to DN3b checkpoint. Second, in further support of ligand binding
73 dispensability, a preTCR missing the extracellular domains of both the β chain and the pT α
74 chain could drive development to the DP compartment. Third, in MHC $\text{I}^{\text{-}}$ MHC $\text{II}^{\text{-}}$ double knockout
75 mice, thymocyte progression was unimpaired through the DN3 stage to the DP stage with
76 respect to both cell numbers and phenotypes.

77

78 Recent structural and biophysical data, however, reveal direct interactions between
79 preTCRs and pMHC ligands that utilize a horizontal binding mode compatible with facile
80 mechanosensing^{8,10,24}. Moreover, functional assays demonstrate both restricted proliferation
81 and repertoire development in the absence of stromal MHC I and MHC II molecules^{7,8}. Together
82 these findings necessitate re-examination of the earlier results. Therefore, we have investigated
83 whether and how the absence of ligand-dependent preTCR signalling impacts proper thymocyte
84 development. Through single cell transcriptome (scRNA-Seq) and bulk RNA-Seq analyses our
85 study reveals cellular aberrations at both DN4 and DP stages consistent with a vital role of
86 preTCR-pMHC interactions in enforcing orderly thymocyte-like transcriptional programming.

87

88 **Early T-lineage differentiation**

89 Utilizing an *in vitro* model of thymocyte differentiation, we seeded haematopoietic stem
90 cells (HSC) from foetal liver of wild-type C57Bl/6 mice onto OP9-DL4 MHC $\text{I}^{\text{+}}$ stromal
91 support cells or the same cells rendered MHC $\text{I}^{\text{-}}$ by CRISPR/Cas9 targeting of *B2m* and
92 *Tap2* genes (MHC $\text{II}^{\text{-}}$)⁷. Both stromata lack endogenous MHC II expression. Extensive use of this
93 model demonstrates synchronized expansion and development through to the immature single-

94 positive (ISP) and DP stage within the d8 to d13 window thus recapitulating embryonic
95 development dominated by a highly proliferative blast and DP compartment. This is in contrast
96 to postnatal thymic development where formation of medullary components leads to robust
97 presence of mature SP populations²⁵.

98

99 To examine the TCR β chain selection checkpoint at the DN3a to DN3b transition, 3.2 x
100 10^4 HSC were seeded onto MHC $^+$ or MHC $^-$ stroma and developing thymocyte-like cells analysed
101 at d9 (6.225×10^7 on MHC $^+$; 3.375×10^7 on MHC $^-$). For brevity, we refer to cells generated on
102 MHC $^+$ and MHC $^-$ stroma with prefix MHC $^+$ or MHC $^-$, respectively. Cells were sorted by FACS
103 into DN3a, DN3b, DN4 and DP populations (Extended Data Fig. 1) and processed for scRNA-
104 Seq using the 10X Genomics Chromium system simultaneously preparing from each cell a
105 library enriched for TCR α and β chain clonotype transcripts. To reduce dimensionality of the
106 transcriptome information, all libraries were aggregated and projected into a single Uniform
107 Manifold Approximation and Projection (UMAP) plane allowing direct comparison of clusters and
108 inferred trajectory analysis incident to the FACS sorting by phenotype (Fig. 1b; Supplemental
109 Information Files 2, 3). To objectively delineate the relation of each cluster to thymocyte
110 developmental stage, the dominant markers of normal transition from the DN3a to DPsm stages
111 were extracted as reference arrays (Extended Data Fig. 2) from the Immunological Genome
112 Project (IGP) α/β T lineage database²⁶ and applied to each cluster yielding a transcriptome
113 reference trajectory that matched with relative cluster representation in each stage-specific
114 library (Fig. 1c). Within the DN4 libraries, a population with an γ/δ T cell-like and innate lymphoid
115 cell-like (γ/δ -ILC) transcriptome signature partitions due to lack of expression of CD44 and
116 CD25 (Extended Data Fig. 3a) pointing to the developmental fidelity of this *in vitro* system.

117

118 For this analysis, the pro-apoptotic (Extended Data Fig. 3b) and apoptotic populations
119 (transcripts dominantly of mitochondrial origin) are retained not only as topological markers but

120 to highlight the possibility, given the absence of thymic reticuloendothelial cells removing
121 damaged cells, that in this assay apoptosis may be a significant process even before negative
122 selection events occurring at DP stages and beyond. The DN3a/3b cluster (Fig.1c) shows early
123 upregulation of *Ikzf3* and *Cd28*, markers of preTCR signalling (Fig.1a, Extended Data Fig.2a)
124 and bridges the DN3a and DN3b libraries. Likewise, the DN3b/4 cluster is represented in the
125 DN3b, DN4, and DP libraries indicating the increased resolution over phenotype provided by the
126 transcriptional signature (Fig. 1c, Extended Data Fig. 2b). The DPbI population segregates away
127 from the mature DPsm population based on strong representation of cell cycling-related
128 transcripts (Extended Data Fig. 2d).

129

130 **Lack of MHC impacts preTCR signalling**

131 Having established the cluster signature trajectory in normal developmental progression,
132 development in the MHC- state was examined (Fig. 1b, 1c). The MHC⁺ trajectory for the DN3a
133 cluster shows a clear diminution with progression from the DN3a to the DN4 libraries (Fig. 1c,
134 top row and Fig. 1d). For the MHC- state, this progression is significantly less where >36% of
135 the DN3b cells by phenotype, and >22% of the phenotypically DN4 cells, retain a DN3a-like
136 transcriptome, contrasted to 22% and <10%, respectively, in the MHC⁺ condition (Fig. 1c, d).
137 Nonetheless, there is phenotypic developmental progression in the absence of potential pMHC
138 ligand binding to the preTCR. The DN3a to DN3b transition is marked by upregulation of a new
139 transcriptional program highlighted by upregulation of *Ikzf3*, *Rorc*, *Cd2*, *Cd28* and
140 downregulation of *Hes1*, *Erg* and *Ptcra* (Fig. 1a, Extended Data Fig. 2b). We applied this gene
141 panel to a subset of the DN3b/4 cluster more strongly represented in the MHC- DN4 library than
142 in the control condition, highlighted as a “tail” moving back into the DN3a/3b cluster (Fig. 1b,
143 Fig. 2a). Splitting the MHC- DN4 cluster into 2 subclusters, one representing the main region
144 overlapping in position with the MHC⁺ DN3b/DN4 cluster and the other, the tail, showed clear
145 differences. The latter, despite being phenotypically DN4, had neither upregulated *Ikzf3*, *Rorc* or

146 *Cd2* nor downregulated *Hes1* and *Erg* as observed in the MHC⁺ cluster and, further, had not
147 robustly upregulated *Trbv* transcription (Fig. 2b, Extended Data Fig. 2b). Collectively, these
148 observations are consistent with a differentiation trajectory that bypasses the β selection
149 checkpoint. The main MHC⁻ DN3b/4 cluster shows an intermediate expression between the
150 MHC⁺ DN3b/4 cluster and the tail suggesting that elements of the aberrant transcriptional
151 regulation observed in the tail subcluster extend to the main subcluster.

152

153 **Reduced DN4 β clonotypic diversity**

154 The importance of preTCR interacting with MHC for appropriate developmental
155 regulation of *Trbv* transcription and repertoire diversity at the DN4 stage was examined further
156 by β chain clonotype analysis of the developing subpopulations using targeted RNA-Seq. Wild-
157 type HSC were seeded onto MHC⁺ OP9-DL4 stromal cells, onto MHC⁻ OP9-DL4 stromal cells or
158 onto the same MHC⁻ cells transfected to re-express MHC class I as a single chain VSV8
159 peptide/ β 2m/H-2K^b (scH-2K^b). The scH-2K^b derivative expresses multiple copies of a single
160 pMHC thus maintaining the potential for the horizontal binding mode to the preTCR but
161 presenting a homogenous peptide, RGYVYQGL, derived from amino acids 52–59 of vesicular
162 stomatitis virus nucleoprotein⁷. After 9 days, cell proliferation was uniformly better on the MHC⁺
163 stromal cells than on either the MHC⁻ or scH-2K^b support stroma (Extended Data Fig. 4a, b).
164 Cells from each support stroma culture were sorted into phenotypically defined DN3, DN4, DP_{bl}
165 and DP_{sm} populations (Supplemental Information File 3) and *Trbv* clonotypes of 10⁴ cells for
166 each stage and condition identified by targeted RNA-Seq.

167

168 TCR β clonotype diversity is relatively high at the DN3 stage for cells developing on all
169 variants of the OP9-DL4 support stroma used here (Fig. 2c). The DN4 compartment, however,
170 reveals consistently contracted repertoire diversity only on the MHC⁻ support stroma (Fig. 2d,

171 Extended Data Fig. 4c). Further, up to 70% of the clonotypes developing in the MHC⁻ DN4
172 population were found at <7.5% levels in the MHC⁺ and scH-2K^b populations (Extended Data
173 Fig. 4d) suggesting these clonotypes may represent a restricted population of TCR responding
174 to non-classical MHC or MHC-unrelated structures on the stromal surface. Conversely, ~92% of
175 the clonotypes expressed on cells developing on the MHC⁺ and scH-2K^b stroma, where
176 preTCR-pMHC interaction can occur, are absent in the MHC⁻ cultures. The limited clonotype
177 representation in the MHC⁻ developing DN4 population is not a consequence of restricted cell
178 proliferation since clonotype diversity of DN4 cells developing on scH-2K^b stroma is as rich as
179 that of the cells developing in the MHC⁺ condition (Fig. 2d, Extended Data Fig. 4c) despite
180 similar cell representation of all 3 DN4 cell populations (10⁴ cells analysed/sample). The
181 characteristics of cells developing on MHC⁻ stroma or scH-2K^b stroma both diverge from those
182 on the MHC⁺ stroma during the DP stage (Fig. 2e, f; Extended Data Fig. 4c). Cells developing
183 on scH-2K^b stroma reveal a contraction of β repertoire diversity, likely linked to limited positive
184 selection afforded by a single peptide (i.e., VSV8) on scH-2K^b stroma. Of note, the N15 β
185 clonotype with known specificity for VSV8 peptide presented by H-2K^b appears in the top 20
186 clonotypes coming through at the DPsm stage on the scH-2K^b stroma (Extended Data Table 1).
187 On the other hand, the MHC⁻ developing cells recover diversity at the DPbl and DPsm stages,
188 often overshooting that of cells on the MHC⁺ stroma (Fig. 2, Extended Data Fig. 4c) and indicate
189 aberration of β chain transcriptional regulation when MHC-dependent preTCR signalling is
190 circumvented. Continued Notch stimulation in the absence of preTCR signalling has already
191 been demonstrated to permit differentiation through to the DP stages²⁷.

192

193 **Origin of β diversity in MHC α^- system**

194 The development of TCR clonotypes in the MHC⁻ condition implies that thymocytes can
195 develop and bypass the preTCR checkpoint in the absence of MHC, either via a ligandless

196 mode or utilizing non-classical MHC I and MHC II molecules or additional ligands. A panel of non-
197 classical MHC I (MHC I^b) was compiled (Extended Data Table 2) and, following full transcriptome
198 analysis of the OP9 MHC⁺ and OP9 MHC⁻ stromal cells (Extended Data Fig. 5a-c), expression
199 of non- β 2m dependent MHC were examined. Loss of CD1d surface expression, dependent
200 upon β 2m, was used as a functional validation marker of the CRISPR/Cas9 knockout in addition
201 to loss of MHC I (Extended Data Fig. 5d) thus supporting our focus upon non- β 2m dependent
202 MHC. Of all potential candidates, transcriptome analysis identified only Raet-1d and Raet-1e as
203 being significantly expressed at the transcriptome level with detectable surface protein
204 expression but with no difference between MHC⁺ OP9-DL4 and the MHC⁻ OP9-DL4 variant
205 (Extended Data Fig. 5e). Consequently, the origin of the “background” clonotypes comprising
206 the repertoire at the DN4 and subsequent stages in the MHC⁻ condition, also found as a minor
207 fraction of the total repertoires in the MHC⁺ and scH-2K^b conditions (Extended Data Fig. 4d), is
208 uncertain but may involve non-MHC ligands or non-classical MHC I^b ligands that may be
209 surface-expressed without an absolute requirement for β 2m or assembly of the peptide-loading
210 complex.

211

212 **Without MHC, unusual DN4 cells develop**

213 To further address the diminution in β chain representation at DN4 in the MHC⁻ condition,
214 examination of the scRNA-Seq clustering is informative. Although the partitioning of the ILC-like
215 and γ/δ T-like cells within the DN4 represents a β chain-low population (Fig. 1c; Extended Data
216 Fig. 3a), this is not the source of the difference as the representation of this cluster is similar
217 between the MHC⁺ and MHC⁻ conditions. Apart from the ILC-like and γ/δ T-like cells, the
218 DN3b/4 cluster is the only other significant representation in the thymocyte developmental path
219 within the MHC⁺ DN4 subpopulation. These cells exhibit a robust upregulation of β chain
220 transcript (264.6 ± 74.3 log2-fold increase, median = 88.4; $P < 0.0001$) on transitioning from the
221 DN3a/3b cluster (Extended Data Fig. 2b). In contrast, in the MHC⁻ DN4 population in addition to

222 the DN3b/4 population, there remains a high representation of phenotypically defined DN4 cells
223 with a DN3a-like transcriptome as well as an unusual population barely observed in the MHC⁺
224 condition (“unusual”; Fig. 1c, d). As described above, on comparison with the MHC⁺ DN4 library
225 *Trbv* transcript expression, within the MHC⁻ DN4 library the DN3b/4 main population trends
226 toward suppression (Fig. 2b), the DN3b/4 tail exhibits a significant suppression (7.65-fold down
227 against MHC⁺ DN3b/4, P<0.0002; 4.48-fold down against the MHC⁻ DN3b/4 main cluster,
228 P<0.0025), as do the DN3a-like cells (5.38-fold down against MHC⁻ DN3b/4; P<0.0001), and the
229 MHC⁻ unusual DN4 cluster (Fig. 3a; Extended Data Fig.5f). The aggregated effect of all these
230 phenomena may contribute to the low DN4 *Trbv* clonotype representation in the MHC⁻ condition
231 (Fig. 2d, Extended Data Fig. 4c).

232
233 The MHC⁻ unusual cluster (1776 cells; 14.3% of all DN4 cells), minimal in the MHC⁺ DN4
234 library (205 cells; 2.79% of all DN4 cells), displays a complex transcriptome. Unlike the DN3b/4
235 cells expected in the DN4 library, the unusual cluster cells have not consolidated the robust
236 expression of β chains (Fig. 3a; Extended Data Fig. 5f). Nevertheless, 83.6% of the cells in the
237 DN4 unusual cluster express *Trbc1/2* transcripts and of these 70.7% express *Lck* and/or *Ptcra*
238 confirming the T lineage origin of a large fraction of the cells (Supplemental Information File 2).
239 Moreover, there is maintained expression of progenitor drivers (*Kit*, *Lyl1*, *Ezh1* and *Id2*) as well
240 as *Spi1* coding for PU.1 that operates at the critical decision checkpoint determining myeloid or
241 T cell lineage specification. These observations are consistent with not having passed through
242 the preTCR checkpoint as is the maintained expression of early lineage and $\gamma\delta$ T cell-linked
243 developmental transcripts such as *Fcer1g*, *Icos*, *Il18rap*, etc. (Extended Data Fig. 3a). The high
244 representation of these unusual cells is not part of the normal ILC or $\gamma\delta$ T cell development,
245 else they would also appear in the MHC⁺ DN4 library that harbours a similar ILC- $\gamma\delta$ T cell
246 cluster. Furthermore, the MHC⁻ unusual cells are in a cycling state with high histone transcript
247 expression, together with high expression of *AY036118* (Fig.3a, 3b), a lncRNA (XR_877120.4)

248 on Chr17 implicated in regulation of thymocyte proliferation possibly mediated by telomeric
249 association^{28,29}. The volcano plot identifies transcripts of high fold-change and probability
250 averaged across the whole cluster hence significance can be driven by a well-represented
251 subset of cells rather than the complete cluster population. Examining select transcripts that are
252 regulated in the same direction in most cells within a cluster, in addition to *AY036118*, the
253 histones represented here by *Hist1h1d* as well as *Lars2* coding for mitochondrial leucyl-tRNA
254 synthetase 2, a marker of high metabolic activity stand out³⁰ (Fig. 3b).

255

256 Unexpectedly, this analysis led to identification of irregularities in *Rag1* and *Rag2*
257 transcription in the DN4 unusual population where both Rag transcripts are minimal (Fig. 3b).
258 *Rag1* is well expressed in MHC⁺ and MHC⁻ DN3b/4 clusters. *Rag2* is expressed well in the
259 MHC⁺ DN3b/4 cluster while expression in the MHC⁻ DN3b/4 is comparable to that of the DN4
260 unusual cluster. These findings not only illuminate possible differential regulation of the *Rag1*
261 and *Rag2* transcripts but also show that the MHC⁻ DN3b/4 cells are already experiencing
262 transcriptional aberrations despite appearing phenotypically identical with MHC⁺ DN3b/4 cells.
263 Reduction of Rag1/Rag2 heterodimeric protein activity in the DN4 unusual population due to
264 regulation of *Rag2* transcripts might contribute to the loss of diversity in the β chain repertoire at
265 this stage (Fig. 2d).

266

267 **Dysregulated transcriptome of MHC⁻ DN4**

268 Further refinement of the properties of the MHC⁻ DN4 unusual cluster are revealed by
269 single cell β clonotype analysis. Examination of the MHC⁺ DN4 library for the top 20 clonotypes
270 based on cellular representation (Extended Data Table 3a) shows that the majority localise to
271 the DN3b/4 cluster as expected, given appropriate preTCR signalling with minimal tracking to
272 other clusters (Fig. 3c). Similar analysis of the MHC⁻ DN4 library exposes a starkly different
273 distribution where the majority of highly represented β clonotypes map to the DN4 unusual

274 cluster (Fig. 3d). Of the 17 clonotypes represented in the DN4 unusual cluster, for 14 we can
275 identify related cells bearing the same clonotype in the DN3a/3b and DN3b/4 clusters (Fig. 3d
276 right panel). Consequently, we propose that in the absence of pMHC, some cells may
277 differentiate from DN3a through to DN4 but deviate from the normal transcriptome trajectory to
278 map to the unusual cluster. Cell representation of the top 20 clonotypes in the DN4 libraries,
279 normalizing for differences in initial library size, shows 3.25 ± 0.55 cells for each MHC⁺
280 clonotype (only 2/20 found in the unusual cluster) compared with 6.56 ± 2.07 cells for each
281 MHC⁻ clonotype (17/20 in the DN4 unusual cluster, $P < 0.0001$). This confirms the increased
282 proliferation implied by the transcriptome signature of the MHC⁻ developing cells in this unusual
283 cluster.

284 Eight of the top 20 clonotypes are found in the γ/δ T/ILC cluster and five of these are
285 shared with the MHC⁻ DN4 unusual cluster implying T lineage developmental options may
286 remain open without delivery of appropriate preTCR-pMHC-dependent regulatory signals. Of
287 interest is the observation that cells expressing the same unique β clonotype, particularly those
288 MHC⁻ developing cells, tend to group closely together within the UMAP cluster implying
289 conservation of the transcriptional signature, even for occasional clonotypes split between
290 clusters (Extended Data Fig. 6).

291

292 The transcript signature of the DN4 unusual population, with upregulation of early
293 progenitor proliferative genes and of *Spi1* controlling the myeloid/T lineage decision point at the
294 DN2a/DN2b transition, connotes a de-differentiation of the DN4 cells in the absence of
295 appropriate preTCR signalling. To examine the possibility that this uncommon transition may
296 generate a transcriptional landscape consistent with aberrant transformation potential, we
297 performed single sample gene set expression analysis (ssGSEA) against cancer modules
298 followed by more refined comparisons with clinically defined T-ALL gene sets. By ssGSEA

299 analysis, the DN4 “unusual” cluster shows a strong score (>1000) against 9 of the top 10
300 modules defined by maximal score difference from the DN3b/4 clusters of both the MHC⁺ and
301 MHC⁻ DN4 libraries (Fig. 3e). Leukaemia/lymphoma transcriptomes show significant co-
302 ordinated regulation with all 9 of these gene set modules. In contrast, the DN3b/4 clusters of
303 both MHC⁺ and MHC⁻ DN4 libraries tracked together and showed weaker association or even
304 inverse correlation. Further refinement of this analysis compared expression in the DN4 unusual
305 population with published transcript panels defining T-cell acute lymphoblastic leukaemia (T-
306 ALL) focussing upon Early T-cell Precursor ALL (ETP-ALL), a subset of T-ALL with poor
307 prognosis in humans and believed to develop from early thymic progenitors immigrating from
308 the bone marrow^{31,32}. The selected transcripts were grouped as being common to T-ALL
309 generally, or alternatively, representing DN1/2a ETP-ALL prior to committing to the T lineage
310 (“early”), or DN2b ETP-ALL after commitment to the T lineage (“late”). Transcript representation
311 within the MHC⁻ DN4 unusual cluster subsequently was compared with that in MHC⁺ DN3b/4
312 cells following the expected developmental trajectory (Fig. 3f). Seven of 10 transcripts
313 representing the common panel tended to upregulation, while three showed no change. Except
314 for *Spib* that is weakly upregulated, none of the transcripts in the DN2b-ALL “late” panel were
315 upregulated. In contrast, 5 of the 8 selected genes in the DN1/2a-ALL “early” panel were
316 significantly upregulated, and the remainder all trended upwards, compatible with the cells
317 dedifferentiating from a DN4 state back towards the early progenitor state. As no significant
318 differences were noted in CDR3 length or hydropathy between DN4 V β clonotypes developing
319 on MHC⁺ versus MHC⁻ stroma (⁸ and Supplemental Information File 3), the abnormal
320 transcriptome likely emanates from lack of preTCR ligation by MHC and not aberrant preTCR
321 sequences *per se*.

322

323 **Abnormal DP subset with dedifferentiation**

324 The DN4 unusual cluster forms one section of a bipartite UMAP cluster that also
325 includes a unique population found only in the MHC⁻ DP thymocyte-like library leading to its
326 classification here as abnormal (Fig. 1b, c). This DP population projects away from the DN4
327 component due to the expression of *Cd4*, *Cd8a* and *Cd8b1* (Extended Data Fig. 5g) but maps to
328 the same DN4 cluster projection due to the strong expression of *AY036118*, histones, early
329 progenitor-related transcripts, *Spi1* driving non-T lineage commitment in the early DN stages
330 and markers not strongly expressed in the MHC⁺ developing DPbl or DPsm clusters (Fig. 4a).
331 Remarkably, the most significantly upregulated transcripts in this DP abnormal population are
332 transcripts that define the myeloid lineage: *Mpo* (myeloperoxidase), *Prtn3* (proteinase 3), *Ctsg*
333 (cathepsin G), and *Elane* (neutrophil elastase), where expression is specific to this cluster
334 without expression in any of the DN3a to DPsm clusters representing the expected
335 developmental trajectory or in the MHC⁻ DN4 unusual cluster (Extended Data Fig. 5h). Selecting
336 transcripts that are upregulated throughout the DP abnormal cluster confirms the signature
337 *AY036118* profile, cell cycling and DNA packaging using *Hist1h1d* as representative of a broad
338 spectrum of histones, *Plac8* as an oncogenic driver as well as the key myeloid markers, *Prtn3*
339 and *Mpo* (Fig. 4b). *SPI1*, *LYL1*, *LMO2* and *MEFC2* are dominant components of a panel
340 defining human ETP-ALL³³ and the mouse homologues are upregulated in the DP abnormal
341 cluster, where *Lyl1* and *Spi1* are upregulated above that already seen in the DN4 unusual
342 cluster (Fig. 3a, 4a). Supporting origin from $\alpha\beta$ TCR T cell lineage, the *Spi1*⁺ cells in the MHC⁻
343 DP cluster express β variable region transcripts (Fig. 4g) with fully recombined clonotypic TCR β
344 chains in more than 37% of those cells (Extended Data Fig. 5i).
345

346 To investigate the possibility that the DP abnormal cluster arose from aberrant
347 expansion of one HSC in the progenitor pool, the fraction of Chr:Y⁺ cells in each cluster was
348 determined. These results do not support stochastic growth independent of stromal cell MHC
349 expression (Supplemental Information File 6). Instead, comparison with a matched panel of

350 autosomal genes reveals that the transcriptional abnormalities are found equivalently in Chr:Y⁺
351 and Chr:Y⁻ cells within the MHC- DP abnormal cluster. Further strengthening the proposal that
352 the DP abnormal cells are following a path deviating from the wild-type developmental pathway,
353 80% of the *Mpo*⁺ cells and 84% of the *Mpo*⁺*Spi1*⁺ cells are co-expressing *Lck* and/or *Cd3e*
354 (Extended Data Fig. 5j).

355

356 Both NKT cells and Mucosal-associated invariant T cells (MAIT) develop from the DP
357 population but there is no evidence that these cells are developing as an alternative path to
358 canonical $\alpha\beta$ TCR cells in the absence of pMHC ligation based on two orthogonal findings in our
359 data. First, their respective transcriptional signatures do not map to the DP abnormal population
360 (*Rorc*, *Tbx21* and *Gata3* for NKT; *Zbtb16*, *Drosha*, and *Il18* for MAIT^{32,34}, although *Mr1* is 2-fold
361 upregulated). Second, all 3 TCR β chains restricted to mouse NKT cells (*Trbv1*, *Trbv13* alleles
362 and *Trbv29*) are downregulated in the DP abnormal population while those β chains restricted to
363 mouse MAIT cells are downregulated (*Trbv13* alleles) or unchanged (*Trbv19*) (Fig. 4a)³⁴.

364

365 As observed for the DN4 libraries, the distribution of the top 20 clonotypes by cell
366 representation was markedly different between the MHC⁺ DP library and the MHC⁻ DP library
367 (Extended Data Table 3b). Average cell representation of each clonotype was higher in the
368 MHC⁻ condition (Fig. 4c, d), and tracking showed that this difference was retained in the DPsm
369 and pre-apoptotic clusters. Representatives of both the DP abnormal and of the DPsm are
370 found in the DPbl population, but there is minimal overlap between the DPsm and DP abnormal
371 cells implying cluster destiny is specified at the DPbl stage. Given the proliferative transcript
372 signature, the early progenitor profile, and the presence of the myeloid markers in the context of
373 a DPbl population origin, we examined the transcriptome by ssGSEA for evidence that the DP
374 abnormal population may be entering into a state conducive to future myeloid dysplasia or
375 leukaemia development (Fig. 4e). MSigDb C4 cancer module 489 generated the highest

376 differential score, a cell profile that is strongly associated with leukaemias including T-ALL and
377 AML. The signature panel for regulatory gene abnormalities in CD34⁺ leukaemic stem cells
378 isolated from acute myeloid leukaemia (AML) patients overlaps completely with that for T-ALL
379 (Fig. 3f, 4f)³⁵. A further AML CD34⁺ leukaemic stem cell panel (LSC17)³⁶ was used to assess
380 any potential equivalence of the DP abnormal cells with transformed AML leukaemic stem cells
381 (Fig. 4f). The DP abnormal cells expressed 7/10 signature transcripts in the T-ALL/AML
382 common panel at levels significantly higher than developing DP⁺ cells. The minimal change in
383 *Gata3* and *Runx1* may indicate the ongoing T cell lineage programme in both subpopulations.
384 Comparison with representatives of the human LSC17 panel found significant upregulation of
385 4/9 markers with a further 3 trending upward. *Cd34*, the canonical haematopoietic stem cell
386 marker, was the most profoundly upregulated (293-fold). The high expression of *Cd34* coupled
387 with persistence of *Erg* (Fig. 1a) in the MHC⁻ DP abnormal population, absent in the MHC⁺
388 libraries, points to an earlier progenitor environment in the absence of pMHC-driven preTCR
389 signalling.

390

391 ***B2m* and *H2-Ab1* dKO preTCR signalling**

392 We next examined gene expression in the thymus of MHC⁺ B6 mice and mice on the
393 same background carrying double knockout (dKO) mutations for both *B2m* and for *H2-Ab1*
394 previously created to abrogate expression of MHC I and MHC II²¹ (MHC⁻). We ascertained
395 whether the phenomena observed *in vitro* were recapitulated *in vivo*. Cell recoveries indicated a
396 significant increase in DN3a cells in the MHC⁻ thymi, a differential that extended less
397 significantly through the DN3b to DN4 stages (Extended Data Fig. 7a). Examining gene
398 expression for cells transitioning from the DN3a to immature CD8 single positive (ISP) stage
399 (Supplemental Information File 4), strong downregulation of *B2m* and moderate downregulation
400 of *H2-Ab1* was observed for H-2 negative thymocytes (Extended Data Fig. 7b). For the
401 transcript changes occurring in the DN3a to ISP transition depicted in Fig. 1a, however, we

402 found no difference between MHC⁺ and the MHC⁻ thymocytes (Extended Data Fig. 7c).
403 Moreover, no reduction in the *Trbv* transcription at the DN4 stage was observed in the MHC⁻
404 thymocytes (Extended Data Fig. 7d). In contrast, a defined hallmark of preTCR signalling, the
405 upregulation of anti-apoptotic *Bcl2a1* family transcripts, was clearly observed in the MHC⁺ but
406 not detected in MHC⁻ DN4 thymocytes (Extended Data Fig. 7e), while canonical *Bcl2* pathway
407 transcripts were similar in both³⁷. Upregulation of *Trav* transcripts dependent upon preTCR
408 signalling was significantly stronger in the MHC⁺ than in MHC⁻ mice ($P=2\times10^{-8}$; Extended Data
409 Fig. 7f)³⁸. Of interest, the *Pim1* proto-oncogene associated with foetal haematopoiesis and
410 overexpressed in myeloid and lymphoid leukaemias³⁹ is one of the strongest expressed
411 transcripts detected in the MHC⁻ libraries but barely detected in the MHC⁺ libraries (Extended
412 Data Fig. 7e). Analysis of complete β chain repertoires for the entire thymus representation of
413 DN3a to ISP cells was uninformative; for each library more than 98.9% of the clonotypes were
414 represented by 3 or fewer UMI leading to such high repertoire diversity scores that no significant
415 differences were observed between libraries.

416

417 **Compensatory MHC^{Ib} upregulation in dKO mice**

418 Remarkably, in all MHC⁻ libraries, both *H2-T3* (TL) and *H2-T22* were dramatically
419 upregulated over those in MHC⁺ libraries (Extended Data Fig. 7b; *H2-T3* mean Fragments Per
420 Kilobase of transcript per Million mapped reads (FPKM) for MHC⁺ = 0.75 and for MHC⁻ = 44.1
421 FPKM; *H2-T22* mean FPKM for MHC⁺ = 21.0 FPKM and for MHC⁻ = 97.0). In contrast, OP9-DL4
422 *H2-T22* expression was similar between the MHC⁺ and MHC⁻ cells and *H2-T3* (TL) was
423 undetectable in either of the isogenic stroma (Extended Data table 2). Also, noteworthy in MHC⁻
424 libraries was upregulation of *H2-Q10* and *H2-T-ps*, the latter now believed to be protein coding
425 (NCBI Gene ID: 667803).

426

427 The enhanced transcription of *H2-T22*, *H2-T3* (TL), *H2-Q10* and *H2-T-ps* genes implies
428 that adaptation *in vivo* maintains functional β selection by upregulating non-classical minor
429 MHC1b products, thereby compensating for loss of classical MHC1a alleles. This phenomenon is
430 not operative in the OP9 cultures. Our animal studies are not only consistent with the apparent
431 normal phenotypic thymocyte development of *B2m* and for *H2-Ab1* double knock out mice
432 observed previously²¹ but underscore the complexity of vital *in vivo* biological signalling
433 including mechanisms to override pathway blockade via compensatory adaptation.
434 Nonetheless, preTCR signalling is not entirely normal as evidenced by the failure to observe
435 upregulation of *Trav* and *Bcl2a1*, in agreement with the suggestion that the narrow width of the
436 MHC1b $\alpha 1\alpha 2$ presenting platform relative to that of MHC1b might attenuate preTCR signaling⁸.
437 Given this biological readjustment *in vivo*, the utility of synchronous *in vitro* culture to pinpoint
438 critical developmental steps is essential.

439

440 **preTCR-pMHC safeguards orderly development**

441 The current *in vitro* study reveals that preTCR-pMHC interactions sculpt the
442 transcriptome of DN3 and later stage thymocytes, in addition to fostering β clonotype diversity in
443 the $\alpha\beta$ T cell lineage. By comparing single cell transcriptomes of a pool of B6 DN3 foetal
444 thymocyte progenitors differentiating in parallel on isogenic MHC⁺ and MHC⁻ OP9-DL4 epithelial
445 stroma, three irregular UMAP clusters were uncovered on the MHC⁻ stroma. The *first*, an
446 aberrant DN3b-DN4 transitional population, lacked evidence of preTCR signalling but
447 maintained Notch signalling and manifest a broad decrease in *Trbv* transcripts. The *second*, a
448 DN4 unusual population, minimally present in the MHC⁺ population, abnormally upregulated
449 genes involved in earlier stages of thymic renewal (*Lyl1*, *Kit*, *Id2*, *Dtx1* and *Bcl11a*), T cell co-
450 stimulatory function (*Icos*), adhesion function (*Itgb3*) and cytokine receptors involved in
451 inflammation (*Il18r*, *Il23r*). The *third*, an entirely anomalous cluster, DPbl abnormal, expressed

452 *Cd4*, *Cd8a* and *Cd8b1*, and simultaneously multiple myeloid genes (*Mpo*, *Prtn3*, *Ctsg*, *Elane*,
453 *Hdc* and *Cst7*). Both DN4 unusual highly proliferating cells and DPbl abnormal myeloid-like cells
454 expressed the *AY036118* gene implicated in control of thymocyte proliferation²⁹. Thus, even in
455 short-term *in vitro* culture of progenitors, striking deviations in normal progeny arise in the
456 absence of preTCR-pMHC ligation.

457

458 Such aberrations of developmental programs at DN and DP thymocyte stages are
459 noteworthy given that human T-ALL represent malignancies of these same phenotypic
460 subpopulations including a subset of DN early T cell precursors^{31,40}. Collectively, this aggressive
461 group of malignancies results from key genetic abnormalities including instabilities fostering
462 rearrangements and/or deletions of *TCRB*, *TCRA* and *TCRD* loci, genes linked to cell cycle
463 growth control (*Cdkn2a* or *Cdkn2b*) and mutations associated with hyperactive Notch
464 signalling^{41,42}. The latter are present in ≥50% of cases, often with additional mutations of
465 transcription factors and signalling pathways⁴³.

466

467 *In vivo* mouse over-expression of transcription factors (*Tal1* and *Tlx1*) also results in T-
468 ALL^{44,45} with acceleration of disease mediated by additional mutations such as those involving
469 *Bcl11b* or *Notch1*^{46,47}. Over-expression of Notch intracellular domain, the signalling entity
470 generated by normal ligation of Notch and proteolytic cleavage by γ-secretase, in early
471 extraembryonic yolk sack haematopoietic precursors transplanted into lethally irradiated mice
472 led to T-ALL with a DP thymocyte blast phenotype⁴⁸. Perhaps even more strikingly, disruption of
473 competition between "new" bone marrow-derived immigrants and "existing" DN3a thymic
474 resident progenitors leads to aberrant self-renewal of the latter culminating in murine T-ALL
475 reminiscent of human T-ALL in virtually all respects, replete with their development of activating
476 *Notch1* mutations⁴⁹. These DN3a thymic self-renewal progenitors give rise to TCRβ-deficient DP

477 thymocytes with a high frequency of non-productive β gene rearrangements expressing *Notch1*
478 and *Ptcra* transcripts consistent with ongoing Notch signalling⁵⁰.

479

480 The DP blast abnormal cluster's expression of myeloid genes and transcriptional
481 signatures shared with AML and ETP-ALL stem cells^{35,36} suggest that a subset of myeloid
482 malignancies may arise from the DP compartment after further transformation, particularly in
483 light of the clinical entity of mixed phenotype acute leukaemia (MPAL) expressing both lymphoid
484 and myeloid malignant markers simultaneously^{33,51}. Thus, consideration needs to be given to
485 the possibility that rather than singularly arising from ETP, a thymic genesis of certain
486 haematopoietic malignancies can involve de-differentiation from later stages of development
487 including DP thymocytes and maybe even involve transdifferentiation to other lineages. De-
488 differentiation is a normal process whereby cells progress in a retrograde manner from a more
489 to a lesser differentiated state as a safeguard against progenitor loss⁵². Although such
490 phenomena have been induced by chemical or genetic means in the haematopoietic system⁵³⁻
491⁵⁵, here we demonstrate that lack of appropriate signalling during development leads to
492 reprogramming. The UMAP projection localizes the abnormal cluster cells between the
493 expected developmental path and the apoptotic cluster. While detected within a synchronised
494 window of differentiation *in vitro*, rapid *in vivo* removal of apoptotic cells by phagocytes in the
495 thymus would obscure the destiny of the unusual and abnormal cluster cells.

496

497 We postulate that self-pMHC reactivity triggers preTCRs on thymocytes during β -
498 selection, attendant downregulation of Notch signalling, modulation of cell-cell adhesion,
499 migration, and metabolism. Recent immunofluorescence microscopy studies demonstrated
500 formation of an immunological synapse between DN3a thymocytes and stroma, thereby
501 creating a preTCR platform around β -selection to integrate cues involving Notch ligand, the
502 CXCR4 ligand as well as pMHC on thymic stroma likely involving asymmetric cell division to

503 foster further differentiation^{56,57}. A cellular niche of this type could serve as a pivotal nexus within
504 the developmental circuit to terminate cellular plasticity and foster orderly downstream
505 development. The preTCR on DN3 thymocytes and pMHC on stroma may offer bidirectional
506 signalling in receptor and ligand expressing cells, given precedent in other systems⁵⁸. This
507 circuit can go awry, however, if preTCR-pMHC ligation falters because of absent functional
508 ligands, should there be disruption of the physiologic regulation of attendant associated
509 pathways, or if there is dysregulated entrance of progenitors into and/or exit from their
510 developmental niche. In this view, the previously unexpected oncogenic potential of a preTCR
511 lacking its V β variable domain to induce DP T cell lymphoma now can be rationalized given that
512 the V β domain is the only receptor domain capable of binding to pMHC⁵⁹. Likewise, generation
513 of intra-thymic AML (⁶⁰ and references therein) can be understood as a possible consequence
514 of early developmental plasticity and thymic niche anomalies. TCR gene rearrangement
515 processes necessary for T-lineage repertoire formation bracket the β -selection that fosters
516 clonal expansion and repertoire diversification, thereby creating a further vulnerability for
517 tumorigenesis. Somatic TCR repertoire formation affording protective adaptive immunity incurs
518 this potential cost. Lastly, our findings emphasize that while thymocyte progression *per se* can
519 occur in the absence of classical MHC ligand-dependent preTCR function, those self-pMHC
520 interactions are essential for normal development and to mitigate aberrant de-differentiation.
521 The upregulation *in vivo* of non-classical MHCIb in the double knockout mice to preserve ligand-
522 dependent preTCR function underscores this biology.

523

524

525 **References**

526 1 Hosokawa, H. & Rothenberg, E. V. How transcription factors drive choice of the T cell
527 fate. *Nat Rev Immunol* **21**, 162-176, doi:10.1038/s41577-020-00426-6 (2021).

528 2 Koch, U. *et al.* Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic
529 T cell lineage commitment. *J Exp Med* **205**, 2515-2523, doi:10.1084/jem.20080829
530 (2008).

531 3 Rodewald, H. R., Ogawa, M., Haller, C., Waskow, C. & DiSanto, J. P. Pro-thymocyte
532 expansion by c-kit and the common cytokine receptor gamma chain is essential for
533 repertoire formation. *Immunity* **6**, 265-272, doi:10.1016/s1074-7613(00)80329-5 (1997).

534 4 Shortman, K., Egerton, M., Spangrude, G. J. & Scollay, R. The generation and fate of
535 thymocytes. *Semin Immunol* **2**, 3-12 (1990).

536 5 Kreslavsky, T. *et al.* beta-Selection-induced proliferation is required for alphabeta T cell
537 differentiation. *Immunity* **37**, 840-853, doi:10.1016/j.jimmuni.2012.08.020 (2012).

538 6 von Boehmer, H. The thymus in immunity and in malignancy. *Cancer Immunol Res* **2**,
539 592-597, doi:10.1158/2326-6066.CIR-14-0070 (2014).

540 7 Das, D. K. *et al.* Pre-T Cell Receptors (Pre-TCRs) Leverage Vbeta Complementarity
541 Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-
542 ligands. *J Biol Chem* **291**, 25292-25305, doi:10.1074/jbc.M116.752865 (2016).

543 8 Li, X. *et al.* Pre-T cell receptors topologically sample self-ligands during thymocyte beta-
544 selection. *Science* **371**, 181-185, doi:10.1126/science.abe0918 (2021).

545 9 Mallis, R. J., Arthanari, H., Lang, M. J., Reinherz, E. L. & Wagner, G. NMR-directed
546 design of pre-TCRbeta and pMHC molecules implies a distinct geometry for pre-TCR
547 relative to alphabetaTCR recognition of pMHC. *J Biol Chem* **293**, 754-766,
548 doi:10.1074/jbc.M117.813493 (2018).

549 10 Mallis, R. J. *et al.* Pre-TCR ligand binding impacts thymocyte development before
550 alphabetaTCR expression. *Proc Natl Acad Sci U S A* **112**, 8373-8378,
551 doi:10.1073/pnas.1504971112 (2015).

552 11 Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition.
553 *Nature* **334**, 395-402, doi:10.1038/334395a0 (1988).

554 12 Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and
555 coreceptors. *Annu Rev Immunol* **24**, 419-466,
556 doi:10.1146/annurev.immunol.23.021704.115658 (2006).

557 13 Wang, J. H. & Reinherz, E. L. The structural basis of alphabeta T-lineage immune
558 recognition: TCR docking topologies, mechanotransduction, and co-receptor function.
559 *Immunol Rev* **250**, 102-119, doi:10.1111/j.1600-065X.2012.01161.x (2012).

560 14 Saint-Ruf, C. *et al.* Analysis and expression of a cloned pre-T cell receptor gene.
561 *Science* **266**, 1208-1212, doi:10.1126/science.7973703 (1994).

562 15 Xiong, J., Armato, M. A. & Yankee, T. M. Immature single-positive CD8+ thymocytes
563 represent the transition from Notch-dependent to Notch-independent T-cell
564 development. *Int Immunol* **23**, 55-64, doi:10.1093/intimm/dxq457 (2011).

565 16 Petrie, H. T. *et al.* Multiple rearrangements in T cell receptor alpha chain genes
566 maximize the production of useful thymocytes. *J Exp Med* **178**, 615-622,
567 doi:10.1084/jem.178.2.615 (1993).

568 17 Shinkai, Y. *et al.* Restoration of T cell development in RAG-2-deficient mice by functional
569 TCR transgenes. *Science* **259**, 822-825, doi:10.1126/science.8430336 (1993).

570 18 Wilson, A., Held, W. & MacDonald, H. R. Two waves of recombinase gene expression in
571 developing thymocytes. *J Exp Med* **179**, 1355-1360, doi:10.1084/jem.179.4.1355 (1994).

572 19 Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of
573 the T cell repertoire: what thymocytes see (and don't see). *Nat Rev Immunol* **14**, 377-
574 391, doi:10.1038/nri3667 (2014).

575 20 Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-
576 cell receptor alpha gene in development of alpha beta but not gamma delta T cells.
577 *Nature* **375**, 795-798, doi:10.1038/375795a0 (1995).

578 21 Grusby, M. J. *et al.* Mice lacking major histocompatibility complex class I and class II
579 molecules. *Proc Natl Acad Sci U S A* **90**, 3913-3917, doi:10.1073/pnas.90.9.3913
580 (1993).

581 22 Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell
582 receptor extracellular immunoglobulin domains. *Science* **280**, 905-908,
583 doi:10.1126/science.280.5365.905 (1998).

584 23 Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice
585 deficient in beta 2M, MHC class I proteins, and CD8+ T cells. *Science* **248**, 1227-1230,
586 doi:10.1126/science.2112266 (1990).

587 24 Mizsei, R. *et al.* A general chemical crosslinking strategy for structural analyses of
588 weakly interacting proteins applied to preTCR-pMHC complexes. *J Biol Chem* **296**,
589 100255, doi:10.1016/j.jbc.2021.100255 (2021).

590 25 Xiao, S. Y., Li, Y. & Chen, W. F. Kinetics of thymocyte developmental process in fetal
591 and neonatal mice. *Cell Res* **13**, 265-273, doi:10.1038/sj.cr.7290171 (2003).

592 26 Mingueneau, M. *et al.* The transcriptional landscape of alphabeta T cell differentiation.
593 *Nat Immunol* **14**, 619-632, doi:10.1038/ni.2590 (2013).

594 27 Allman, D. *et al.* Separation of Notch1 promoted lineage commitment and
595 expansion/transformation in developing T cells. *J Exp Med* **194**, 99-106,
596 doi:10.1084/jem.194.1.99 (2001).

597 28 Fujita, T., Yuno, M., Okuzaki, D., Ohki, R. & Fujii, H. Identification of non-coding RNAs
598 associated with telomeres using a combination of enChIP and RNA sequencing. *PLoS*
599 *One* **10**, e0123387, doi:10.1371/journal.pone.0123387 (2015).

600 29 Lin, Y. W. & Aplan, P. D. Gene expression profiling of precursor T-cell lymphoblastic
601 leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets.
602 *Leukemia* **21**, 1276-1284, doi:10.1038/sj.leu.2404685 (2007).

603 30 Li, R. & Guan, M. X. Human mitochondrial leucyl-tRNA synthetase corrects
604 mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with
605 mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and
606 diabetes. *Mol Cell Biol* **30**, 2147-2154, doi:10.1128/MCB.01614-09 (2010).

607 31 Coustan-Smith, E. *et al.* Early T-cell precursor leukaemia: a subtype of very high-risk
608 acute lymphoblastic leukaemia. *Lancet Oncol* **10**, 147-156, doi:10.1016/S1470-
609 2045(08)70314-0 (2009).

610 32 Vadillo, E., Dorantes-Acosta, E., Pelayo, R. & Schnoor, M. T cell acute lymphoblastic
611 leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms
612 common and unique among hematologic malignancies. *Blood Rev* **32**, 36-51,
613 doi:10.1016/j.blre.2017.08.006 (2018).

614 33 Dai, Y.-T. *et al.* Transcriptome-wide subtyping of pediatric and adult T cell acute
615 lymphoblastic leukemia in an international study of 707 cases. *Proceedings of the*
616 *National Academy of Sciences of the United States of America* **119**, e2120787119,
617 doi:10.1073/pnas.2120787119 (2022).

618 34 Pellicci, D. G., Koay, H. F. & Berzins, S. P. Thymic development of unconventional T
619 cells: how NKT cells, MAIT cells and gammadelta T cells emerge. *Nat Rev Immunol* **20**,
620 756-770, doi:10.1038/s41577-020-0345-y (2020).

621 35 Thoms, J. A. I. *et al.* Disruption of a GATA2, TAL1, ERG regulatory circuit promotes
622 erythroid transition in healthy and leukemic stem cells. *Blood*,
623 doi:10.1182/blood.2020009707 (2021).

624 36 Ng, S. W. *et al.* A 17-gene stemness score for rapid determination of risk in acute
625 leukaemia. *Nature* **540**, 433-437, doi:10.1038/nature20598 (2016).

626 37 Mandal, M. *et al.* The BCL2A1 gene as a pre-T cell receptor-induced regulator of
627 thymocyte survival. *The Journal of experimental medicine* **201**, 603-614,
628 doi:10.1084/jem.20041924 (2005).

629 38 Koyasu, S. *et al.* Pre-TCR signaling components trigger transcriptional activation of a
630 rearranged TCR alpha gene locus and silencing of the pre-TCR alpha locus: implications
631 for intrathymic differentiation. *International immunology* **9**, 1475-1480,
632 doi:10.1093/intimm/9.10.1475 (1997).

633 39 Amson, R. *et al.* The human protooncogene product p33^{plim} is expressed during fetal
634 hematopoiesis and in diverse leukemias. *Proceedings of the National Academy of
635 Sciences of the United States of America* **86**, 8857-8861, doi:10.1073/pnas.86.22.8857
636 (1989).

637 40 Reinherz, E. L., Kung, P. C., Goldstein, G., Levey, R. H. & Schlossman, S. F. Discrete
638 stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic
639 lymphoblasts of T-cell lineage. *Proc Natl Acad Sci U S A* **77**, 1588-1592,
640 doi:10.1073/pnas.77.3.1588 (1980).

641 41 Van Vlierberghe, P. & Ferrando, A. The molecular basis of T cell acute lymphoblastic
642 leukemia. *J Clin Invest* **122**, 3398-3406, doi:10.1172/JCI61269 (2012).

643 42 Girardi, T., Vicente, C., Cools, J. & De Keersmaecker, K. The genetics and molecular
644 biology of T-ALL. *Blood* **129**, 1113-1123, doi:10.1182/blood-2016-10-706465 (2017).

645 43 Zhang, J. *et al.* The genetic basis of early T-cell precursor acute lymphoblastic
646 leukaemia. *Nature* **481**, 157-163, doi:10.1038/nature10725 (2012).

647 44 Condorelli, G. L. *et al.* T-cell-directed TAL-1 expression induces T-cell malignancies in
648 transgenic mice. *Cancer Res* **56**, 5113-5119 (1996).

649 45 Kelliher, M. A., Seldin, D. C. & Leder, P. Tal-1 induces T cell acute lymphoblastic
650 leukemia accelerated by casein kinase IIalpha. *EMBO J* **15**, 5160-5166 (1996).

651 46 De Keersmaecker, K. *et al.* The TLX1 oncogene drives aneuploidy in T cell
652 transformation. *Nat Med* **16**, 1321-1327, doi:10.1038/nm.2246 (2010).

653 47 Rakowski, L. A., Lehotzky, E. A. & Chiang, M. Y. Transient responses to NOTCH and
654 TLX1/HOX11 inhibition in T-cell acute lymphoblastic leukemia/lymphoma. *PLoS One* **6**,
655 e16761, doi:10.1371/journal.pone.0016761 (2011).

656 48 Ding, J., Cardoso, A. A., Yoshimoto, M. & Kobayashi, M. The Earliest T-Precursors in
657 the Mouse Embryo Are Susceptible to Leukemic Transformation. *Front Cell Dev Biol* **9**,
658 634151, doi:10.3389/fcell.2021.634151 (2021).

659 49 Martins, V. C. *et al.* Cell competition is a tumour suppressor mechanism in the thymus.
660 *Nature* **509**, 465-470, doi:10.1038/nature13317 (2014).

661 50 Paiva, R. A. *et al.* Self-renewal of double-negative 3 early thymocytes enables thymus
662 autonomy but compromises the beta-selection checkpoint. *Cell Rep* **35**, 108967,
663 doi:10.1016/j.celrep.2021.108967 (2021).

664 51 Khan, M., Siddiqi, R. & Naqvi, K. An update on classification, genetics, and clinical
665 approach to mixed phenotype acute leukemia (MPAL). *Ann Hematol* **97**, 945-953,
666 doi:10.1007/s00277-018-3297-6 (2018).

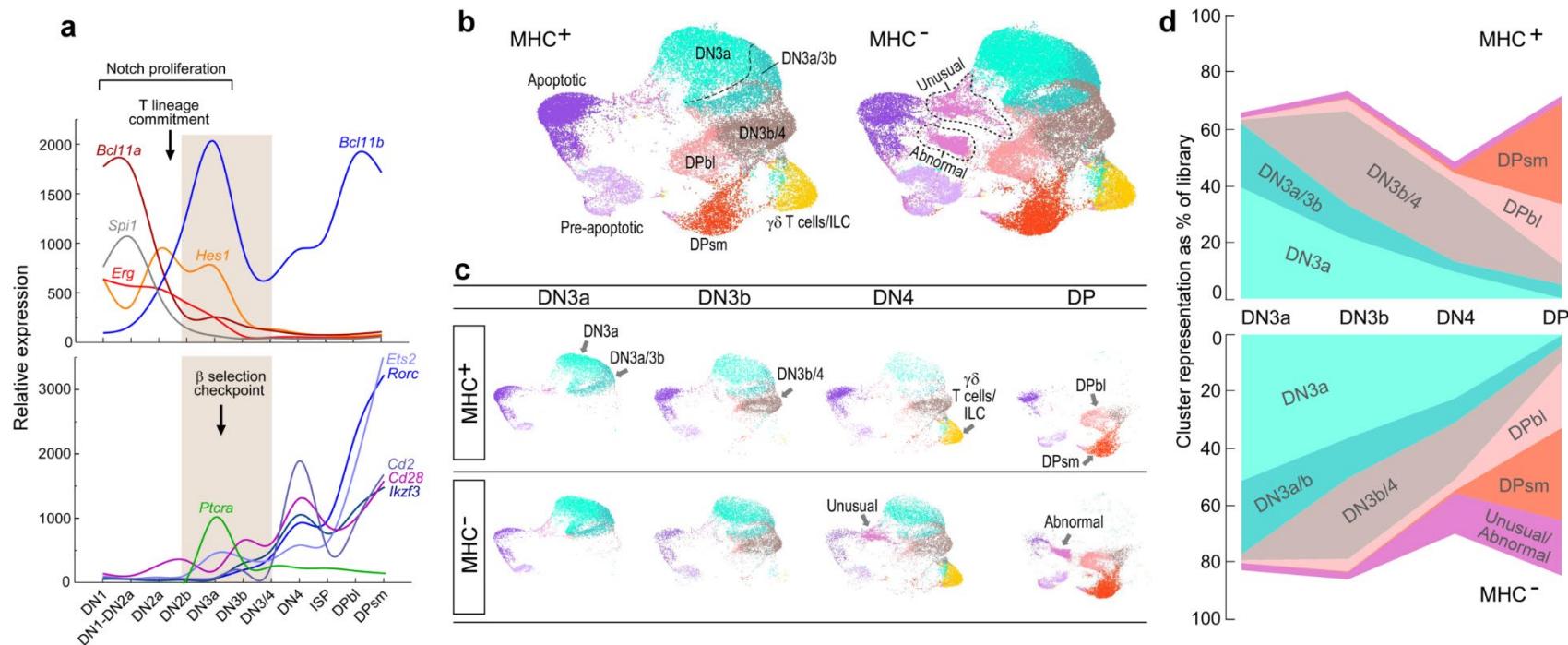
667 52 Kai, T. & Spradling, A. Differentiating germ cells can revert into functional stem cells in
668 *Drosophila melanogaster* ovaries. *Nature* **428**, 564-569, doi:10.1038/nature02436
669 (2004).

670 53 Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by
671 dedifferentiation to uncommitted progenitors. *Nature* **449**, 473-477,
672 doi:10.1038/nature06159 (2007).

673 54 Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L. & Graf, T. Reprogramming of
674 committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and
675 PU.1 transcription factors. *Immunity* **25**, 731-744, doi:10.1016/j.jimmuni.2006.09.011
676 (2006).

677 55 Riddell, J. *et al.* Reprogramming committed murine blood cells to induced hematopoietic
678 stem cells with defined factors. *Cell* **157**, 549-564, doi:10.1016/j.cell.2014.04.006 (2014).

679 56 Charnley, M., Ludford-Menting, M., Pham, K. & Russell, S. M. A new role for Notch in
680 the control of polarity and asymmetric cell division of developing T cells. *J Cell Sci* **133**,
681 doi:10.1242/jcs.235358 (2019).


682 57 Pham, K. *et al.* Asymmetric cell division during T cell development controls downstream
683 fate. *J Cell Biol* **210**, 933-950, doi:10.1083/jcb.201502053 (2015).

684 58 Gucciardo, E., Sugiyama, N. & Lehti, K. Eph- and ephrin-dependent mechanisms in
685 tumor and stem cell dynamics. *Cell Mol Life Sci* **71**, 3685-3710, doi:10.1007/s00018-
686 014-1633-0 (2014).

687 59 Jacobs, H. *et al.* Oncogenic potential of a pre-T cell receptor lacking the TCR beta
688 variable domain. *Oncogene* **12**, 2089-2099 (1996).

689 60 Kundu, S. *et al.* Thymic precursor cells generate acute myeloid leukemia in NUP98-
690 PHF23/NUP98-HOXD13 double transgenic mice. *Sci Rep* **9**, 17213,
691 doi:10.1038/s41598-019-53610-7 (2019).

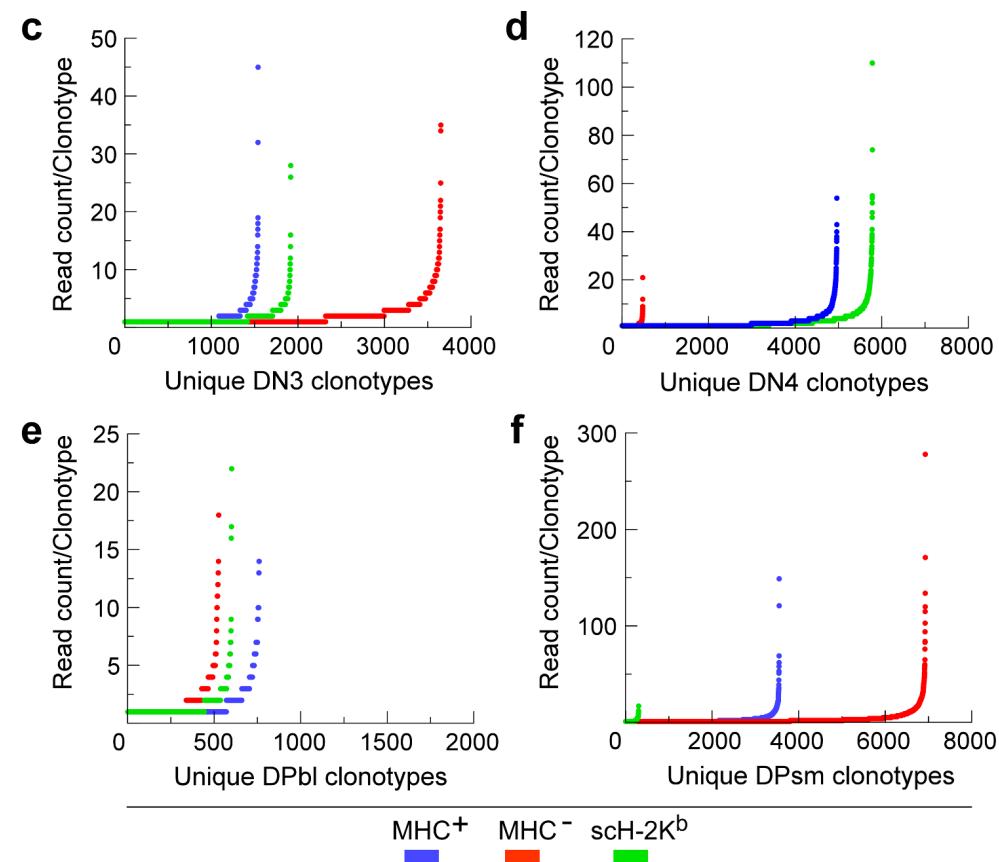
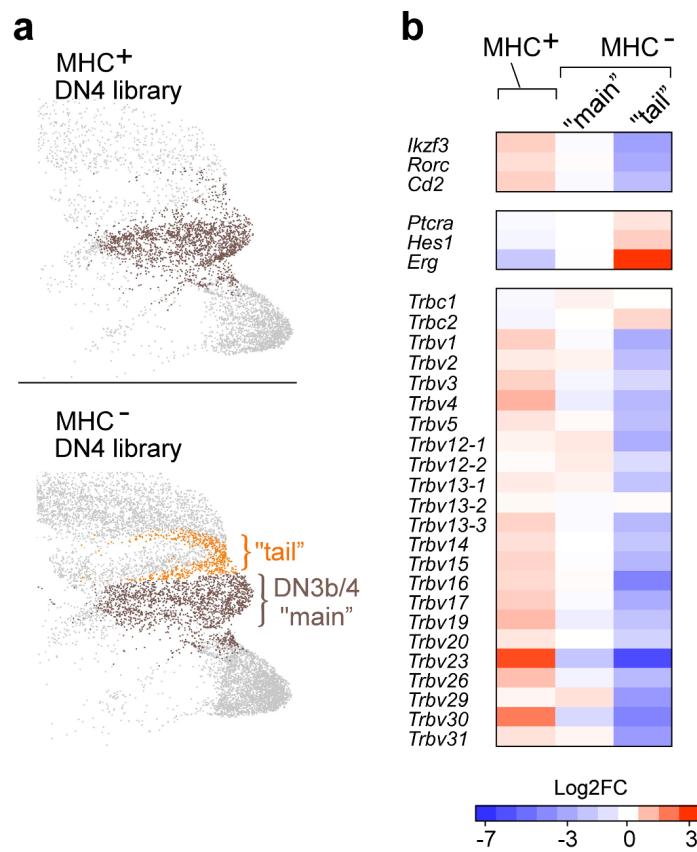
692

694 **Fig. 1. Developmental trajectories for thymocyte-like development on MHC⁺ or MHC⁻**
695 **supporting stroma.**

696 **a.** Schematic depicting representative gene transcript levels during key thymocyte
697 developmental transitions (based on array data from the Immune Genome Project²⁵). Upper
698 panel: Early DN1-DN3 proliferation is driven by thymocyte Notch signalling, represented here by
699 the *Erg* and *Hes1* transcripts. Myeloid development is suppressed during the DN2a to DN2b
700 transition by downregulation of *Spi1* (coding for PU.1) and by the switch from *Bcl11a* to *Bcl11b*
701 committing progenitors to the T lineage. Lower panel: following entry in to the DN3 stage and
702 commitment to the $\alpha\beta$ T cell lineage, preTCR with invariant pT α (pTCR α) is expressed. PreTCR
703 signalling leads to downregulation of the Notch pathway, inhibition of TCR β locus
704 recombination, downregulation of *Ptcr α* and upregulation of the indicated transcripts. Curves
705 have been smoothed between data points for each stage to aid tracking.

706 **b.** UMAP projection of k -means clustering ($k = 10$) for DN3a, DN3b, DN4, and DP libraries
707 for cells developing on either MHC⁺ or MHC⁻ stroma. All libraries are projected into the same
708 space to permit direct comparison. Process for assignment of labels to each cluster is defined in
709 the text.

710 **c.** Cluster developmental trajectories of individual libraries and relationship of individual
711 clusters to phenotypically characterized thymocyte subsets. Projection of the individual FACS-
712 sorted libraries (labeled in large font) into the primary space allows initial assignment of clusters
713 expressing distinct transcriptomes (labelled in small font) and permits identification and
714 developmental staging of cluster differences between the MHC⁺ and MHC⁻ conditions.

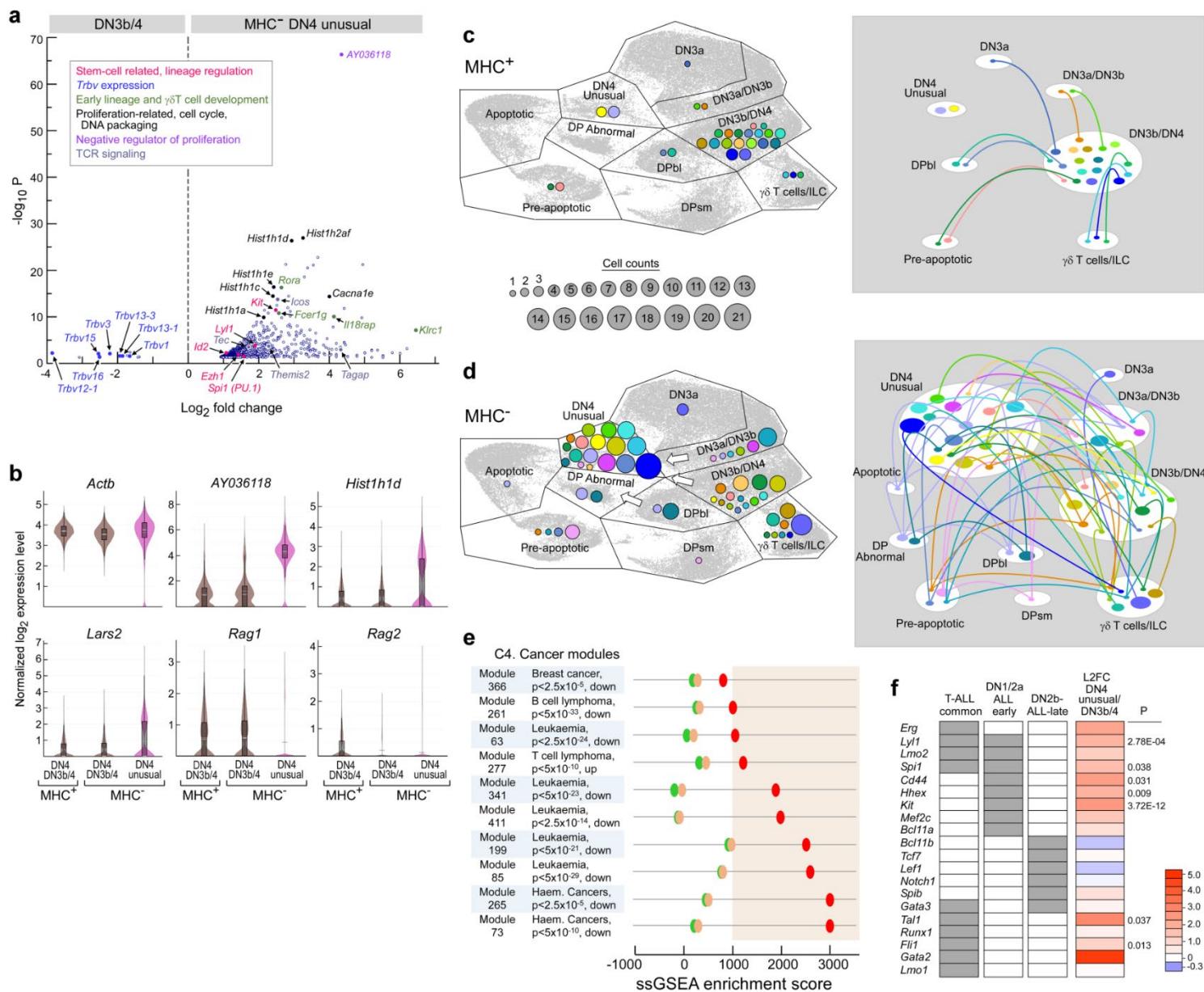


715 **d.** MHC⁻ thymocyte-like cells progress developmentally by phenotype from DN3a to the DP
716 stage but with altered distribution on comparison with MHC⁺ cells. To focus only on the $\alpha\beta$ TCR
717 lineage, ILC- γ/δ -like T cells and pre-apoptotic/apoptotic cells are excluded. For each library, the
718 proportion of each defined developmental cluster is depicted. Cluster colours are consistent with
719 those used in Figs. 1b and 1c. For each MHC⁺ library, cell numbers in parentheses: DN3a

720 (6,970 cells), DN3b (7,711 cells), DN4 (7,337 cells), and DP (5,747) and likewise for the MHC-
721 libraries: DN3a (9,453 cells), DN3b (8,776 cells), DN4 (12,454 cells), and DP (13,011). $P < 2.5 \times$
722 10^{-7} for difference between MHC⁺ and MHC⁻ stage distributions (Chi-square statistic).

723

724

725



726 **Fig. 2. Uncoupling of the transcriptome and repertoire from phenotype in thymocyte-like**
727 **cells developing on MHC⁻ stroma.**

728 **a.** The DN3b/4 cluster in the MHC⁻ DN4 library harbours a population with characteristics of
729 cells not having passed through the preTCR signalling checkpoint. The MHC⁻ DN3b/4 cluster in
730 the DN4 library is split into two subclusters, one corresponding to the DN3b/4 cluster in the
731 MHC⁺ DN4 library (“main”, brown) and one corresponding to a set poorly represented in the
732 MHC⁺ DN4 library (“tail”, orange).

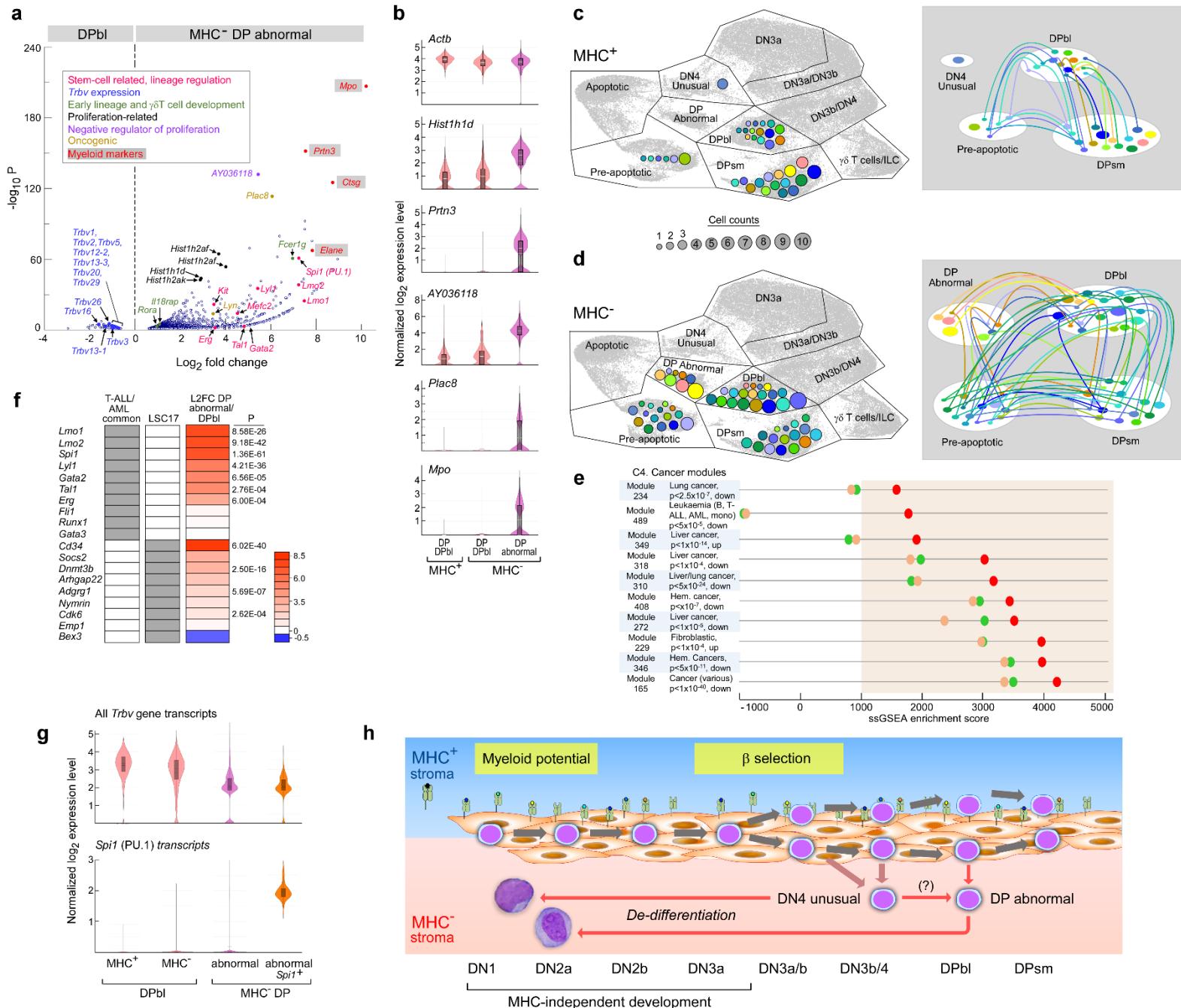
733 **b.** Transcript expression in MHC⁺ and MHC⁻ DN3b/4 cells. Transcripts well-expressed and
734 marking the transition to DN3b/4 cells (*Ikzf3*, *Rorc*, *Cd2*; Suppl. Fig. 3) remain low in the MHC⁻
735 “tail” subcluster, transcripts expected to be downregulated remain high (Fig. 1a), and robust
736 TCR β chain upregulation is not observed (*Extended Data. Fig. 2b*).

737 **c-f.** Stage-specific analysis of β chain clonotype representation/ 10,000 cells in d9 MHC⁺,
738 MHC⁻, and scH-2K^b OP9-DL4 thymocyte-like development cultures. Representative of 6
739 experiments examining MHC⁺ (n = 5), MHC⁻ (n = 6), scH-2K^b (n = 3).

741 **Fig. 3. Single cell transcriptomics of the MHC⁻ DN4 unusual cluster reveal complex**
742 **proliferative and lineage abnormalities.**

743 **a.** Volcano plot of significant transcript differences ($P < 0.05$) between the DN4 unusual
744 population and the DN3b/4 cluster in the same MHC⁻ DN4 library. Upregulated DN4 unusual
745 transcripts are shown to the right of zero on the x-axis, downregulated to the left. Functional
746 significance of the highlighted transcripts is listed in the inset box. An additional 14 *Trbv*
747 transcripts were downregulated but did not meet the $P < 0.05$ threshold.

748 **b.** Violin plots depicting indicated log-normalised transcript levels selected for
749 representation within most cells of the DN4 unusual cluster that are significantly different to
750 representation with the DN3b/4 clusters within the MHC⁺, and MHC⁻ libraries, respectively. *Actb*
751 transcript is included as a reference. Cluster colours are consistent with those depicted in *Figs.*
752 1 and 2. Box plot within cell distribution represents 1st to 3rd quartiles; where visible, dotted line
753 within represents mean and solid line represents median.


754 **c.** Cluster distribution of top 20 DN4 clonotypes developing on MHC⁺ stroma with expected
755 developmental trajectory into DN3b/4 cluster. (left panel). Each colour represents a unique
756 clonotype and circle diameter is proportional to the cell number expressing that specific β chain
757 (see cell count scale common to Fig. 3c and Fig. 3d). Colour/clonotype specification is unique to
758 the panel and bears no relation to colour use in Fig. 3d or Fig. 4c, d. Right panel depicts
759 clonotype tracking from cluster to cluster with cluster/track colouring concordant with left panel.

760 **d.** Distribution of top 20 DN4 clonotypes developing on MHC⁻ stroma similar to depiction in
761 Fig. 3c. However, colour/clonotype specification is unique to the panel. Right panel depicts
762 clonotype tracking from cluster to cluster and cluster/track colouring is concordant with left
763 panel.

764 **e.** ssGSEA scores for MHC⁺ DN3b/4 (green), MHC⁻ DN3b/4 (light orange), and MHC⁻ DN4
765 unusual (red) cells analysing module gene sets with co-ordinated gene regulation in tumours
766 (MSigDb C4) and probability of association of specific tumors with up- or down-regulation of the

767 specific module. ssGSEA scores greater than 1000 are considered strong, equal to zero as
768 showing no correlation with module genes, and < 0 as inversely correlated.

769 **f.** Comparison of the DN4 unusual cluster developing on MHC- with the DN3b/4 cluster
770 developing on DN4 MHC⁺ stroma (positive control) for transcripts reported as dysregulated in
771 human T-ALL. Column1 grey boxes indicate regulatory transcripts found significantly over-
772 expressed in human T-ALL in general. Column 2 grey box highlights regulatory genes of human
773 T-ALL overexpressed in early thymic progenitors (ETP) characteristic of the pre-T lineage
774 commitment checkpoint (labelled here DN1/DN2a ALL early). Column 3 highlights regulatory
775 genes for transcript profiles of T-ALL consistent with a later DN2b stage (DN2b-ALL-late).
776 Column 4 heatmap depicts log2-fold difference for the indicated transcript (scale to right); P
777 indicates significance; if no value given then P>0.05).

779 **Fig. 4. Single cell transcriptomics of the MHC⁻ DP abnormal cluster disclose**

780 **dedifferentiation and reprogramming to include a myeloid programme.**

781 **a.** Volcano plot of significant transcript differences ($P < 0.05$) between the DP abnormal
782 population and the DP^{bl} cluster in the same MHC⁻ DP library. DP abnormal upregulated
783 transcripts shown to the right of zero, downregulated to the left. Functional significance of the
784 highlighted transcripts is listed in the inset box. An additional 10 *Trbv* transcripts were
785 downregulated but did not meet the $P < 0.05$ threshold.

786 **b.** Violin plots depicting indicated log-normalised transcript levels selected for
787 representation within most cells of the DP abnormal cluster that are significantly different to
788 representation with the DP^{bl} clusters within the MHC⁺ and MHC⁻ libraries, respectively. *Actb*
789 transcript is included as a reference. Cluster colours consistent with those depicted in Figs. 1
790 and 2. P values as in panel a.

791 **c.** Cluster distribution of top 20 DP clonotypes developing on MHC⁺ stroma (left panel).
792 Each colour represents a unique clonotype and circle diameter is proportional to the cell number
793 expressing that specific β chain. Colour/ clonotype specification is unique to the panel and bears
794 no relation to colour use in Fig. 4d or Fig. 3c, d. Right panel depicts clonotype tracking from
795 cluster to cluster maintaining colour concordance with left panel.

796 **d.** DP cluster distribution of top 20 clonotypes developing on MHC⁻ stroma. Each colour
797 represents a unique clonotype and circle diameter is proportional to the cell number expressing
798 that specific β chain (see cell count scale common to Fig. 4c and Fig. 4d). Right panel depicts
799 clonotype tracking from cluster to cluster.

800 **e.** ssGSEA scores for MHC⁺ DP^{bl} (green), MHC⁻ DP^{bl} (light orange), and MHC⁻ DP
801 abnormal (red) cells analysing module gene sets with co-ordinated gene regulation in tumours
802 (MSigDb C4) and probability of association of specific tumors with up- or down-regulation of the
803 specific module. Significance of ssGSEA scores as described in Fig. 3e legend.

804 **f.** Comparison of MHC⁻ DP abnormal cluster with the DP cluster developing on MHC⁺
805 stroma for transcripts reported as dysregulated in human AML (T-ALL/AML common) or as
806 overexpressed in CD34⁺ leukaemic stem cells (LSC) from AML patients (LSC17). Note that not
807 all 17 transcripts in the human LSC17 panel have equivalents in the mouse while others are
808 expressed at levels too low (*i.e.* 0) by scRNA-Seq to generate a meaningful fold-change ratio.

809 Column 3 heatmap depicts log2-fold difference for the indicated transcript (scale to right); P
810 indicates significance. If no value indicated, then P>0.05).

811 **g.** Co-expression of *Spi1* and *Trbv* transcripts in *Spi1*⁺ MHC⁻ DP abnormal cells.

812 **h.** Schematic of proposed dedifferentiation for thymocytes developing in the MHC⁻
813 condition (pink area). Proliferation and development appear identical with that in the control
814 MHC⁺ condition (light blue area) as cells progress from early progenitors into the DN3a
815 compartment. The MHC presents a diverse range of small self-peptides. Following absence of
816 preTCR binding to pMHC ligand, however, multiple abnormalities in β chain representation
817 develop as noted in the text, apparent within DN4 unusual cells found with minimal
818 representation in the MHC⁺ libraries (reddish-brown arrows) as well as in a new population, DP
819 abnormal, absent in the MHC⁺ DP library.

820 **Methods**

821 **Mice**

822 Six-week-old C57Bl/6 (B6) and B6.129-*H2-Ab1^{tm1Gru} B2m^{tm1Jae} N17*²¹ (MHC⁻) mice were
823 purchased from Taconic Farms Inc. and housed at the DFCI Animal Facility, accredited by the
824 Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). All
825 maintenance, breeding, and experimental procedures were approved under Dana-Farber
826 Cancer Institute Institutional Animal Care and Use Committee (IACUC) protocols 03-138 and
827 04-113. Euthanasia was by CO₂ inhalation followed by cervical dislocation. Following removal
828 from the uterus, E14.5 fetuses were euthanized by decapitation with surgical scissors. Where
829 appropriate, no gender preference was expressed for experimental animal use.

830

831 **Reagents**

832 The OP9-DL4 parental (MHC⁺) cell line, and the MHC⁻ and scH-2K^b variants, were
833 developed and used as described previously^{7,60}. Anti-mouse CD44-APC/Cy7 (clone IM7) and
834 anti-mouse CD117-APC (c-Kit; clone 2B8) were obtained from BD Biosciences. Anti-mouse
835 CD24 and anti-mouse CD24-FITC (clone M1/69), anti-mouse CD3e-BV605 (clone 145-2C11),
836 anti-mouse CD4-Pacific Blue and CD4-BV711 (clone RM4-5), anti-mouse CD8a-PerCP/Cy5.5
837 (clone 53-6.7), anti-mouse CD8b.2-PE (clone 53-5.8), anti-mouse CD11b-biotin (clone M1/70),
838 anti-mouse CD11c-biotin (clone N418), anti-mouse CD19-biotin (clone 6D5), anti-mouse CD28-
839 PE (clone E18), anti-mouse CD45-APC (clone 30-F11), anti-mouse NK1.1-biotin (clone PK136),
840 anti-mouse Gr-1-biotin (clone RB6-8C5), anti-mouse Ter-119-biotin (clone TER-119), anti-
841 mouse TCR γ / δ (clone GL3), streptavidin-BV421, and Zombie Aqua were obtained from
842 Biolegend. Anti-mouse Ly-6A/E (Sca1)-FITC (clone D7) and anti-mouse CD25-PE/Cy7 (clone
843 PC61.5) were obtained from eBioscience.

844

845 **Analysis of B6 thymocyte-like development *in vitro***

846 Isolation of wild-type haematopoietic stem cells (HSC) followed the procedure described
847 previously⁷. Briefly, fetal liver cells from 30 E14.5 B6 embryos from 3 dams were depleted of B
848 cells using anti-CD24 and complement lysis (Cedarlane) followed by staining with anti-CD4-
849 Pacific Blue, anti-CD8-PE, anti-Scal-FITC and anti-CD117(c-Kit)-APC. The CD4-CD8⁻ (lineage
850 negative, lin⁻) Scal⁺ c-Kit⁺ cells (HSC) were isolated by a Becton-Dickinson FACS Aria II cell
851 sorter. For the T cell repertoire analysis from pooled FACS-sorted thymocyte-like cells, 2,000
852 HSC were seeded onto 70 to 90% confluent layers of wild-type OP9-DL4 cells (MHC⁺), or onto
853 MHC-negative OP9-DL4 cells (MHC⁻), or onto the MHC⁻ cells re-expressing a single chain H-2K^b
854 presenting VSV8 peptide (scH-2K^b), in six-well plates (i.e. six independent cultures) in α-MEM
855 without nucleosides + 15% FCS (OP9 media), HEPES (10mM), and gentamycin supplemented
856 with Flt3 (5 ng/ml; R&D) and IL-7 (1 ng/ml; Peprotech). For the scRNA-seq experiments, 30,000
857 similarly prepared HSC were seeded onto MHC⁺ or MHC⁻ stromal cells under the same
858 conditions, increasing the replicates to ten 10 cm dishes/OP9 variant. After growth for 9 days,
859 cells were isolated from the cultures and counted prior to FACS separation to enrich by surface
860 antigen phenotype for cells at different stages of thymocyte-like differentiation.

861

862 **Cell sorting, library preparation and data processing for scRNA-seq and TCR V(D)J
863 repertoire characterization.**

864 For scRNA-seq analysis, cells were stained with a cocktail consisting of Zombie Aqua for
865 gating of non-viable cells, anti-CD45-APC for gating of haematopoietic cells, with biotinylated
866 anti-CD11b, anti-CD11c, anti-NK1.1, anti-mouse TCRγ/δ, anti-Gr-1, anti-Ter119, and anti-CD19
867 followed by streptavidin-BV421 for gating of non-T lineage cells, and of anti-CD4-BV711, anti-
868 CD8α-PerCP/Cy5.5, anti-CD44-APC/Cy7, anti-CD25-PE/Cy7 and anti-CD28-PE for gating and
869 collection of DN3a, DN3b, DN4 and DP thymocyte-like cells on a FACS Aria II cell sorter
870 (*Extended Data Fig. 1*). Note that residual ILC-γ/δ-like T cells in the DN4 subset represent cells
871 with a ILC precursor (*Id2*, *Zbtb16*), ILC2 (*Gata3*, *Rora*), γ/δ T cell-like transcriptome but with no

872 or low surface TCR expression. For each condition (MHC⁺ or MHC⁻), 50,000 DN3a, DN3b, DN4
873 and DP cells were collected by FACS for application to a 10X Chromium controller (10X
874 Genomics) and recovery of 8,932 ± 920 (mean ± s.e.m.; n = 8) processed cells for gene
875 expression (5' GEX) and TCR V(D)J sequence library construction. Bar coding and 5' library
876 construction using v1.0 chemistry was performed precisely following the manufacturer's
877 protocol. Targeted mouse TCR recovery utilised the Chromium Single Cell V(D)J Enrichment Kit
878 for mouse T cells. All libraries were single i7-indexed using the Chromium i7 Multiplex kit.
879 Following isolation and clean-up of library DNA, integrity was assessed using an Agilent
880 Bioanalyzer and quantification by Qubit analysis (Invitrogen). All libraries were adjusted to ~50
881 ng/µL, where peak fragment size (including Illumina adapters) for the gene expression (5' GEX)
882 libraries averaged 473 bp and ranged from 300 – 740 bp for the 5' TCR libraries representing
883 ongoing recombination products in the developing thymocyte libraries. Sequencing (150 PE)
884 was performed on HiSeq 3000 utilizing 4 lanes where two 5' GEX libraries (2 x 40% of reads)
885 and two TCR libraries (2 x 10% of reads) were sequenced per lane.

886

887 Following conversion of the *bcl2* sequencing files to *fastq* format, the 5' GEX sequencing
888 results were pipelined to Cellranger 3.1.0 using the GRCm38.p6/mm10 mouse genome as
889 reference and the TCR files were pipelined to Cellranger V(D)J 3.1.0 using
890 vdj_GRCm38_alts_ensembl-3.1.0.gz-3.1.0 as reference, all using default parameters. Gene
891 expression data from all libraries were aggregated by Cellranger to generate a UMAP of all
892 libraries into the same 2D space. For aggregation, the count output files for each Chromium
893 controller well were processed using the “aggr” command to produce a single feature-barcode
894 matrix containing all the data. Since barcodes may overlap between libraries, a well suffix is
895 added to each barcode-nucleotide sequence to hardcode well origin. Before merging, depth
896 normalization is performed to subsample reads for each library to equalize the number of reads
897 confidently mapped to the transcriptome. Prior to Principal Component Analysis, the UMI counts

898 were normalized towards the median across all cells by multiplying each cell's UMI count by a
899 scaling factor of the median UMI count across all the cells divided by the UMI count for the cell.
900 The matrix is log-transformed then centered and scaled per-gene such that the mean is 0 and
901 the standard deviation is 1 prior to clustering. Consequently, all data used for differential
902 expression is log-normalized and a pseudocount of 1 was added to both the numerator and
903 denominator of the mean expression. For a cluster or selected cell subset within a cluster, log2-
904 fold change was either tested against the mean expression for all other cells (global analysis) or
905 against a selected cluster or subset (local analysis) using the Loupe browser 4.2.0 together with
906 the Loupe V(D)J browser 3.0.0 (10X Genomics) for integration of TCR clonotype parameters.

907

908 **Bulk population TCR repertoire protocol and data processing for cells developing *in vitro***

909 For the bulk population β repertoire analyses of thymocyte-like cells developing on the
910 MHC $^+$ and MHC $^-$ stromata, respectively, cells were stained with anti-CD45-APC, anti-CD4-
911 Pacific Blue, anti-CD8-PE, anti-CD25-PE/Cy7 and anti-CD44-APC/Cy7 for simultaneous
912 collection of DN3, DN4, DPbl and DPsm thymocytes on a FACS Aria II cell sorter (Supplemental
913 Information File 4). Contaminating OP9 cells expressed GFP permitting their exclusion while
914 selection for CD45 expression ensured only hematopoietic cells were used for subset
915 delineation. Cells were gated as CD4 $^-$ CD8 $^-$ (double negative, DN) and CD4 $^+$ CD8 $^+$ (double
916 positive) from which 10,000 cells each of DN3 (CD25 $^+$ CD44 $^-$) cells, DN4 (CD25 $^-$ CD44 $^-$) cells,
917 DPbl (blast cells, in cell cycle; CD4 $^+$ CD8 $^+$ high forward scatter) and DPsm (small, more mature
918 cells; CD4 $^+$ CD8 $^+$ low forward scatter), were collected. For each population, the cells were
919 immediately deposited into TCL lysis buffer (Qiagen) supplemented with 2-mercaptoethanol
920 (1%) on ice, snap-frozen by immersion in dry-ice-methanol and stored at -80°C until processed
921 for RNA extraction and β chain repertoire analysis.

922

923 Total RNA was extracted from each sample of 10^4 cells using the PicoPure column

924 purification system (Applied Biosystems). Subsequently, the procedure followed precisely that
925 described by Mamedov *et al.*⁶¹. Briefly, using a 3' *Trbc* (TCRβ constant region) universal primer,
926 1st strand cDNA was synthesized from the starting RNA and a universal “Switch” primer ligated
927 to the 5' ends. Nested/extended PCR amplification through the universal ends yielded unbiased
928 amplification of transcripts containing the complete V(D)J region and a 5' segment of the *Trbc*.
929 In the second PCR, pentanucleotide bar codes were introduced to tag each library with unique
930 barcodes at both 5' and 3' ends. Following quality control using the Agilent 2100 Bioanalyzer
931 and Illumina adapter addition, samples were sequenced (150 PE) on the MiSeq platform.
932 Library sequences were deconvoluted from the fastx sequence output files using the barcode
933 splitter module of the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). The
934 deconvoluted library sequences were aligned to Vβ regions in the GRCm38.p6/mm10 mouse
935 genome followed by clone assembly and CDR3 extraction using the MiXCR suite running under
936 Java⁶². Output provided V, D, J, and Cβ usage, CDR3 nucleotide and amino acid sequence,
937 sequence quality, and relative representation by read count. The VDJtools analytical package
938 was used to track and compare clonotypes within the libraries⁶³.

939

940 **Gene expression and total β clonotype analysis of thymus DN3 to ISP cells**

941 The thymus from each of 3 B6 and 3 MHC⁻ mice (all males aged 3 weeks) was isolated
942 and the cells dispersed into RPMI-1640 medium treating each thymus as an individual sample.
943 The cells were incubated with anti-CD4 (clone L3T4) covalently linked to microbeads (Miltenyi
944 Biotec) used at a ratio of 100 µL beads/10⁸ cells then incubated for 10 min on ice. The
945 thymocyte/microbead mixtures were applied to replicate LS MACS columns in a MidiMACS
946 separator and unbound cells collected as CD4-depleted populations removing DP thymocytes
947 and CD4SP thymocytes. The CD4-depleted populations were then sorted to remove the non-T
948 lineage cells as described above (viable, non-T lin⁻ < 0.05% CD4⁺). Following gating on DN cells
949 (CD4⁻CD8⁻), cells were gated further on the DN3/4 population (CD44⁺), and then into three

950 further gates of CD25^{hi}CD28^{lo/int} (DN3a), CD25^{int}CD28^{hi} (DN3b), and CD25^{lo}CD28^{hi} (DN4) as
951 outlined in Supplemental Information File 4. Following gating on the CD8⁺ cells in the viable,
952 non-T lin⁻ population, the cells were further gated on the CD24^{hi}CD3⁻ cells (Immature single
953 positive; ISP) and isolated populations collected into TCL lysis buffer as described above. For
954 each mouse this procedure yielded the complete representation of all phenotypically defined
955 DN3a, DN3b, DN4, and ISP thymocytes. Total RNA for each population was prepared using the
956 RNAqueous-4PCR protocol (Applied Biosystems/Life Technologies). From the isolated total
957 RNA, 200 ng was removed for NGS library preparation (SMART-Seq v4 Ultra Low Input RNA,
958 Takara), Illumina adapter addition, and sequencing (PE150, Novaseq platform, ~40 \times 10⁶
959 reads/sample) for gene expression analysis (Medgenome). The remaining RNA was used for
960 total population repertoire determination following the protocol of Mamedov *et al*⁶¹ with minor
961 differences to the procedure described above. To reduce errors introduced by PCR amplification
962 as well as estimate individual RNA contributing to a particular clonotype, the “Switch” primer
963 incorporated a region with a universal molecular identifier (UMI) motif of 12 nucleotides within
964 which were interspersed several deoxyuridine nucleotides subsequently treated after cDNA
965 synthesis with uracyl deglycosylase to prevent participation of the Switch primer in the
966 downstream PCR reactions. The individual barcoded DN3a, DN3b, DN4 and ISP libraries for
967 each animal were pooled and Illumina adapters added to generate one total thymus library of
968 these stages for each animal. Following sequencing (PE150, Novaseq platform by
969 Medgenome), library deconvolution, assembly, alignment and UMI processing was handled by
970 the MIGEC package⁶⁴ to determine β clonotype repertoire based on UMI rather than total reads.
971 The output was then pipelined directly to the VDJtools package⁶³ as described above.
972 Repertoire diversity was assessed using CalcDiversityStats module of the VDJtools package
973 based on the D50 and Diversity Index (DI)⁶⁵ that yields a value in the 0 – 1 range where 1 =
974 maximal diversity.
975

976 **Y chromosome fractional analysis of transcriptionally defined clusters**

977

978 To address the possibility that the well-represented DN4 unusual population (1776 cells,
979 14.3% of DN4 library) and DP abnormal population (2512 cells, 19.3% of DP library) in the
980 MHC⁺ condition represent the clonal development of a single or limited number of aberrant
981 progenitor cell(s) during the 9-day culture, skewing of the initial HSC male-to-female cell ratio
982 was assessed by examining the XY cell fraction in each cluster. Given that the initial seeding of
983 30,000 foetal liver progenitors/initial culture plate originated from a common pool, the ratio of
984 male (XY) cells to female (XX) cells should be maintained across all MHC⁺ and MHC⁻ cultures
985 through to the isolation of phenotypically defined subsets and transcriptionally-defined subsets
986 (clusters) within. Accordingly, a skewed XY/XX ratio within a cluster may indicate non-uniform
987 clonal expansion.

988

989 Chromosome Y transcripts likely to be expressed were determined as described in the
990 Supplemental Information File 6 (and ^{67,68}) and the list screened against all libraries to generate
991 a panel of 4 transcripts (*Ddx3y*, *Eif2s3y*, *Kdm5d*, *Uty*) found to be consistently expressed and
992 detectable across all libraries and clusters. The representation of these transcripts was then
993 used to define presence of a Y chromosome. The reverse procedure utilizing transcripts with
994 increased representation in XX cells was not feasible as none of the identified, skewed,
995 transcripts were detected at levels high enough or specifically enough to characterize a cell as
996 definitively XX. Consequently, results were expressed as fraction of cells within a cluster
997 characterized as XY. To exclude observed skewing being a result of apoptotic or other
998 processes occurring in a specific cluster independent of supporting stroma, a panel of genes
999 matched to expression of the Y transcript panel was determined. This latter panel of autosomal
1000 gene transcripts (*Cdk8*, *Slc25a5*, *Pank1*, *DFFB*) provided an internal control for cluster-specific

1001 skewing within the stroma-specific libraries unrelated to aberrant clonal development
1002 (Supplemental Information File 6).

1003

1004 **Statistical analysis**

1005 For all the gene expression results, P represents the adjusted p value (P_{adj}) where
1006 $P < 0.05$ was considered significant. Standard parametric statistics followed by Students t test
1007 and 2-tailed probabilities were used for all group comparisons. For comparison of small lists of
1008 transcripts representing gene expression levels (e.g. *Trbv* alleles), paired t-test or the Chi-
1009 square test (utilizing MHC⁺ as “expected”) were used.

1010

1011 **Methods References**

1012 60 Mohtashami, M. *et al.* Direct comparison of Dll1- and Dll4-mediated Notch activation
1013 levels shows differential lymphomyeloid lineage commitment outcomes. *J Immunol* **185**,
1014 867-876, doi:10.4049/jimmunol.1000782 (2010).

1015 61 Mamedov, I. Z. *et al.* Preparing unbiased T-cell receptor and antibody cDNA libraries for
1016 the deep next generation sequencing profiling. *Front Immunol* **4**, 456,
1017 doi:10.3389/fimmu.2013.00456 (2013).

1018 62 Bolotin, D. A. *et al.* MiXCR: software for comprehensive adaptive immunity profiling. *Nat
1019 Methods* **12**, 380-381, doi:10.1038/nmeth.3364 (2015).

1020 63 Shugay, M. *et al.* VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. *PLoS
1021 Comput Biol* **11**, e1004503, doi:10.1371/journal.pcbi.1004503 (2015).

1022 64 Shugay, M. *et al.* Towards error-free profiling of immune repertoires. *Nat Methods* **11**,
1023 653-655, doi:10.1038/nmeth.2960 (2014).

1024 65 Han, F. F. *et al.* Profiling the pattern of human TRB/IGH-CDR3 repertoire in liver
1025 transplantation patients via high-throughput sequencing analysis. *Scand J Immunol* **92**,
1026 e12912, doi:10.1111/sji.12912 (2020).

1027 66 Forman, J. & Fischer Lindahl, K. Listing, Location, Binding Motifs, and Expression of
1028 Nonclassical Class I and Related Genes and Molecules. *Current Protocols in*
1029 *Immunology* **49**, A.1M.1-A.1M.13 (2002).

1030 67 Stevant, I. *et al.* Dissecting Cell Lineage Specification and Sex Fate Determination in
1031 Gonadal Somatic Cells Using Single Cell Transcriptomics. *Cell Reports* **26**, 3272-
1032 3283.e3, doi: 10.1016/j.celrep.2019.02.069 (2019).

1033 68 Godfrey, A.K. *et al.* Quantitative analysis of Y-chromosome gene expression across 36
1034 human tissues. *Genome Res.* **30**, 860-873, doi: 10.1101/gr.261248.120 (2020).

1035 **Acknowledgements**

1036 This research was supported by NIH NIAID grant AI136301. CMM and PHL were
1037 supported additionally by the Expect Miracles Foundation and the Robert and Renée Belfer
1038 Foundation. We gratefully acknowledge Dr. Jia-huai Wang for scientific discussion and insight,
1039 and Drs. David A. Barbie and Cloud P. Paweletz (Robert and Renée Belfer Center for Applied
1040 Cancer Research, Dana-Farber Cancer Institute) for facilitating the scRNA-Seq analyses.

1041

1042 **Author contributions**

1043 Conceptualization, J.S.D.-C., A.A., R.J.M., W.H., M.J.L., and E.L.R.; Methodology,
1044 J.S.D.-C, A.A., R.J.M., and E.L.R.; Investigation, J.S.D.-C, A.A., C.M.M., and P.H.L.; Writing-
1045 Original Draft, J.S.D-C., and E.L.R.; Writing-Review and Editing, J.S.D.-C., R.J.M., A.A., W.H.,
1046 M.J.L., and E.L.R.; Funding Acquisition, M.J.L., and E.L.R.; Supervision, J.S.D.-C., and E.L.R.

1047

1048 **Competing interests**

1049 The authors declare no competing interest.

1050

1051 **Data availability**

1052 All sequence files deposited in NCBI Gene Expression Omnibus (GEO) under accession

1053 GSE186049.

1054

1055 **Additional information**

1056 Supplementary Information is available for this paper. Correspondence and requests for

1057 materials should be addressed to: jonathan_duke-cohan@dfci.harvard.edu,

1058 ellis_reinherz@dfci.harvard.edu

1059

1060 **Extended Data**

1061

1062 **Extended Data Fig. 1 | Schematic for FACS isolation of thymocyte subsets (DN3a, DN3b,
1063 DN4, DP) for 10X scRNA-Seq and single cell TCR α and β chain clonotype sequencing.**

1064 Sorted cells were isolated as DN3a cells (CD25 $^{+}$ CD44 $^{-}$ CD28 $^{-}$), DN3b cells (CD25 $^{+}$ CD44 $^{-}$ CD28 $^{+}$),
1065 DN4 (CD25 $^{-}$ CD44 $^{-}$ CD28 $^{+}$) cells, and DP (CD4 $^{+}$ CD8 $^{+}$) cells.

1066

1067 **Extended Data Fig. 2 | Cluster delineation of DN3a to DPsm cell transitions.** For each
1068 transition, data from the Immune Genome Project (IGP) microarray and RNA-Seq data was
1069 used to construct a panel representing genes with the highest fold-change between
1070 phenotypically defined stages of thymocyte differentiation. The gene panel was then used to
1071 query the MHC $^{+}$ thymocyte clusters identified by UMAP projection. Combination of library
1072 phenotype together with good fit to the interrogating gene panel permitted identification of
1073 cluster relationships and developmental trajectories. **a.** Delineation of early post- β selection
1074 checkpoint DN3a/3b thymocytes from pre- β selection checkpoint DN3a thymocytes by
1075 differential gene expression. The left-hand heatmap depicts a panel selected by comparison of
1076 DN3b thymocyte gene expression from the IGP with DN3a cell expression. The same genes
1077 were examined for expression in the clusters defined as DN3a and DN3a/3b in Fig.1B (right-
1078 hand heatmap). The volcano plot depicts the log₂-fold increase of expression in the DN3a/3b
1079 population over DN3a for the expected normal developmental trajectory (x-axis). Note that for all
1080 volcano plots reported here, only the significantly changed transcripts are depicted ($P_{adj} < 0.05$;
1081 y-axis). **b.** Delineation of late post- β selection checkpoint DN3b/4 thymocytes from early pre- β
1082 selection checkpoint DN3a/3b thymocytes by differential gene expression. The heatmap on the
1083 far left depicts a panel selected by comparison of DN4 thymocyte gene expression from the IGP
1084 with DN3b cell expression (neither DN3a/3b nor DN3b/4 transitional states are explicitly defined
1085 in the IGP database). Transcripts in red were predicted from IGP data to be upregulated in the

1086 DN3b to DN4 transition but are downregulated for the conditions reported here. **c.** Delineation of
1087 late post- β selection checkpoint DN3b/4 thymocytes from DPbl thymocytes by differential gene
1088 expression. The DPbl cluster was extracted from the DP library and delineated from the more
1089 mature DPsm population by transcriptome signature as described below. **d.** Delineation of
1090 mature DPsm thymocytes from cycling DPbl thymocytes by differential gene expression. The
1091 heatmap on the far left depicts a panel selected by comparison of DPsm thymocyte gene
1092 expression from the IGP with DPbl cell. Note that during the DPbl to DPsm transition, significant
1093 cell cycling transcripts were downregulated thus significantly upregulated transcripts in the
1094 volcano plot represent the DPbl cells.

1095

1096 **Extended Data Fig. 3 | Delineating the ILC- γ/δ TCR thymocyte cluster and pro-apoptotic**
1097 **cluster from the main α/β TCR lineage pathway. a.** Distinguishing ILC- γ/δ -like cells from
1098 DN3b/4 in the DN4 libraries by gene expression. The heatmap on the left shows a manually
1099 curated panel of gene transcripts selected by likely high representation in either DN3b/4 or ILC-
1100 γ/δ -like cells. Log2 Fold-change (L2FC) and P_{adj} in the DN4 libraries for differential expression
1101 between the DN3b/4 clusters and ILC- γ/δ -like clusters are shown in the volcano plot to the right
1102 with transcripts associated with ILC development are highlighted in light purple (*Id2*, *Zbtb16*,
1103 *Gata3*, *Rora*). TCR γ and δ transcripts are highlighted in green, and *Trbv* transcripts highlighted
1104 in blue. **b.** Gene expression profile of the pro-apoptotic cluster. The dominant pro-apoptotic
1105 cluster upregulated gene expression changes are similar between all the MHC⁺ libraries on
1106 comparison with the 2 dominant clusters within each of these libraries. All log2-fold changes
1107 (L2FC) are relative only to the 3 clusters listed in each heatmap (i.e. local) and not to the
1108 average across all clusters in that library.

1109

1110 **Extended Data Fig. 4 | Development and TCR repertoire analyses for cells growing on**
1111 **MHC⁺, MHC⁻ and scH-2K^b stromal support cells.** **a.** Total cell recoveries after 9d development
1112 from 2,000 seeded HSC (6 independent experiments examining 5 independent MHC⁺ cultures,
1113 6 independent MHC⁻ cultures, and 3 independent scH-2K^b cultures). Boxes bound 25th to 75th
1114 percentile; median is solid line; mean is dotted line; whisker is 1.5 interquartile range (IQR). P
1115 determined by t test. **b.** Apparent thymocyte developmental stage representation as fraction of
1116 total cells for cultures represented in panel a. **c.** Stage-specific analysis of β chain clonotype
1117 representation/10,000 cells in d9 MHC⁺, MHC⁻, and scH-2K^b OP9-DL4 development cultures.
1118 Representation of data from replicate experiments of data in Fig. 2c-f. **d.** TCR β chain clonotype
1119 diversity at DN4 on MHC⁺, MHC⁻, and scH-2K^b stroma. The total number of TCR β chain
1120 clonotypes (black) recovered from 10^4 cells of each DN4 population isolated after growth for 9d
1121 on the varying OP9-DL4 stroma is represented by an ellipse of area in direct proportion to
1122 unique clonotype count (5 independent experiments). Percentage shared clonotypes of the total
1123 for each condition (MHC⁺ in blue, MHC⁻ in pink, and scH-2K^b in green) is depicted. Note that the
1124 area of overlap only approximates degree of sharing to maintain consistent orientation of the
1125 ellipses for presentation. The overlap of MHC⁺ and scH-2K^b for experiments 4 and 5 is <1% and
1126 too small to represent in this format. Statistics and P calculated from Student's t test presented
1127 on left.

1128
1129 **Extended Data Fig. 5 | Transcriptome and selected phenotype comparison of MHC⁺ and**
1130 **MHC⁻ OP9-DL4 cells and select gene expression profiles for the DN4 unusual and DP^{hi}**
1131 **abnormal populations.** **a.** Comparison of MHC⁺ and MHC⁻ OP9-DL4 stromal cells for
1132 transcriptome and phenotypic differences. 93.6% of transcripts detected shared by MHC⁺ and
1133 MHC⁻ stroma. **b.** Correlation between cell transcriptomes. Square of Pearson correlation
1134 coefficient ($R^2 = 0.958$) ideally greater than 0.92 under optimal experimental conditions. **c.**
1135 Differential gene expression is <4% of all transcripts detected. **d.** Loss of CD1d surface

1136 expression in *B2m/Tap2* KO MHC⁻ OP9-DL4 and confirmation of lack of MHC Class II
1137 expression in MHC⁺ and MHC⁻ OP9-DL4. **e.** *Raet* expression in MHC⁺ and MHC⁻ OP9-DL4. **f.**
1138 Select transcripts significantly differentially expressed between the MHC⁻ DN3b/4 cluster and
1139 the DN4 “unusual” cluster. Heatmap depicts log₂-fold change (L2FC) of the DN4 “unusual”
1140 cluster relative to the DN3b/4 cluster. Actual L2FC values are listed within the heatmap. **g.** Co-
1141 expression of *Cd4* transcript with *Cd8a* and/or *Cd8b1* transcripts in an overlay of the MHC⁻
1142 libraries focussed on the DN4 unusual, DPbl, and DP abnormal clusters. **h.** Characteristic
1143 myeloid gene transcript expression maps to the MHC⁻ DP abnormal cluster. **i.** Full-length
1144 clonotypic TCR β chain transcript expression in 82 of 221 *Spi1*⁺ cells (37.1%) in the MHC⁻ DP
1145 abnormal cluster. **j.** *Mpo*-expressing cells in the DP abnormal cluster and the *Mpo*⁺*Spi1*⁺ subset
1146 co-express T lineage *Lck* and/or *Cd3e*.

1147

1148 **Extended Data Fig. 6** | Highly proliferating clonotypic progeny cluster together by
1149 transcriptional signature. **a.** MHC⁺ DN4 20 most highly represented clonotypes by cell number.
1150 **b.** MHC⁻ DN4 20 most highly represented clonotypes by cell number. The identical MHC⁺ and
1151 MHC⁻ DN4 clonotypic cells to those presented in Fig.3d and Extended Data Table 3a are shown
1152 in their mapped positions in the UMAP projection. Each clonotype is represented for each panel
1153 in a unique colour with cell number indicated in key. Note that colours are not directly related to
1154 those used in Fig. 3d.

1155

1156 **Extended Data Fig. 7** | Transcriptome comparison of DN and ISP thymocyte subsets from
1157 MHC⁺ and MHC⁻ mice. **a.** Thymocyte subset cell recoveries from thymi of MHC⁺ and MHC⁻
1158 mice. Mean ± S.D. shown; 3 mice/group; ** P < 0.02; *** P < 0.005; **** P < 0.0005. **b.** Log₂-fold
1159 change in expression from global population mean for the MHC⁻ knocked out genes (*B2m*, *H2-*

1160 *Ab1*), classical and minor MHC I genes, and MHC II genes. Note that for each thymocyte subset
1161 there are 3 replicates except for the MHC- DN4 cells for which there are duplicates. Asterisks
1162 highlight transcripts that are upregulated across all MHC- libraries on comparison with MHC+
1163 *Q10* ($P = 7 \times 10^{-5}$), *H2-T3 (TL)* ($P = 3 \times 10^{-7}$), *H2-T22* ($P = 1 \times 10^{-7}$) and *H2-T-ps* ($P = 4 \times 10^{-5}$).
1164 c. Log₂-fold change in expression of all development stage marker genes depicted in Fig. 1a. d.
1165 Log₂-fold change in TCR V β chain segment (*Trbv*) expression. Mean depicted of triplicates for
1166 all libraries except for duplicates for MHC- DN4 samples. e. Log₂-fold change in *Bcl2a1* family
1167 transcripts (upper panel), canonical *Bcl2* transcripts (middle panel), and *Pim1* protooncogene
1168 (lower panel). Mean values presented. f. Log₂-fold change in TCR V α chain segment (*Trav*)
1169 expression. Mean depicted of triplicates for all libraries except for duplicates for MHC- DN4
1170 samples.

1171
1172 **Extended Data Table 1. | Top 20 DPsm TCR β clonotypes developing on scH-2K^b stroma
1173 at d9.** Codons highlighted by blue border indicate unique clonotypes encoding the same CDR3
1174 amino acid sequence (in gold). The N15 β chain is highlighted with known specificity for
1175 interaction with VSV8 peptide presented by H-2K^b. This interaction may occur in the context of a
1176 TCR α chain ($\alpha\beta$ TCR at the DP stage) or absence of a mature TCR α chain (preTCR at the DN3
1177 stage).

1178
1179 **Extended Data Table 2. | Non-classical MHC class I expression in MHC+ and MHC- OP9-
1180 DL4.** Sixty-one non-classical MHC are listed⁶⁶. Dependence on β 2m indicated by '+' or 'no'.
1181 Genes labeled as pseudogene (Ps) may result in transcripts, initially classified as non-coding
1182 but subsequently found to be protein coding, as in the instances of *H2-Q5*, *H2-Q10*, *H2-T1*, *H2-
1183 T4*, *H2-T12*, *H2-T13*, *H2-T14*, *H2-M10.4*, *H2-M10.6*. *H2-T-Ps* has been provisionally redefined
1184 as protein coding. Genes in bold font are not β 2m-dependent and have transcript levels above

1185 zero measured as transcripts per million (tpm). Small panel at bottom right presents data for the
1186 CRISPR/Cas9 targets *B2m* and *Tap2* deleted in the MHC⁺ variant, Delta-like ligand 4, and major
1187 MHC⁺ alleles.

1188

1189 **Extended Data Table 3. | Well-represented clonotypes in MHC⁺ and MHC⁻ libraries. a.** Top
1190 20 clonotypes in the DN4 libraries; clonotypes present in the DN4 unusual cluster are
1191 highlighted in purple. Note that the *Trbv12-2+Trbv13-2* transcript is not a mix of *Trbv12-2* and
1192 *Trbv13-2* but rather the result of an independent recombination event between the 5' end of
1193 *Trbv12-2* and the 3' end of *Trbv13-2*, an event recently and frequently detected in 10X TCR
1194 single cell repertoire analyses. **b.** Top 20 clonotypes in the DPbl libraries; clonotypes present in
1195 DP abnormal cluster are highlighted in purple.

1196

1197 **Supplementary Information**

1198

1199 **File 1.** Gene expression level (UMI/cell), log₂fold change (global), and P_{adj} for all clusters in all
1200 MHC⁺ libraries – scRNA-Seq.

1201 MS Excel file: Supplementary-Information-File1.xlsx

1202

1203 **File 2.** Gene expression level (UMI/cell), log₂fold change (global), and P_{adj} for all MHC⁻ clusters
1204 – scRNA-Seq.

1205 MS Excel file: Supplementary-Information-File2.xlsx

1206

1207 **File 3.** TCR β chain clonotypes for DN3, DN4, DPbl and DPsm thymocytes developing on
1208 MHC⁺, MHC⁻, and scH-2K^b/VSV8 stroma.

1209 MS Excel file: Supplementary-Information-File3.xlsx

1210

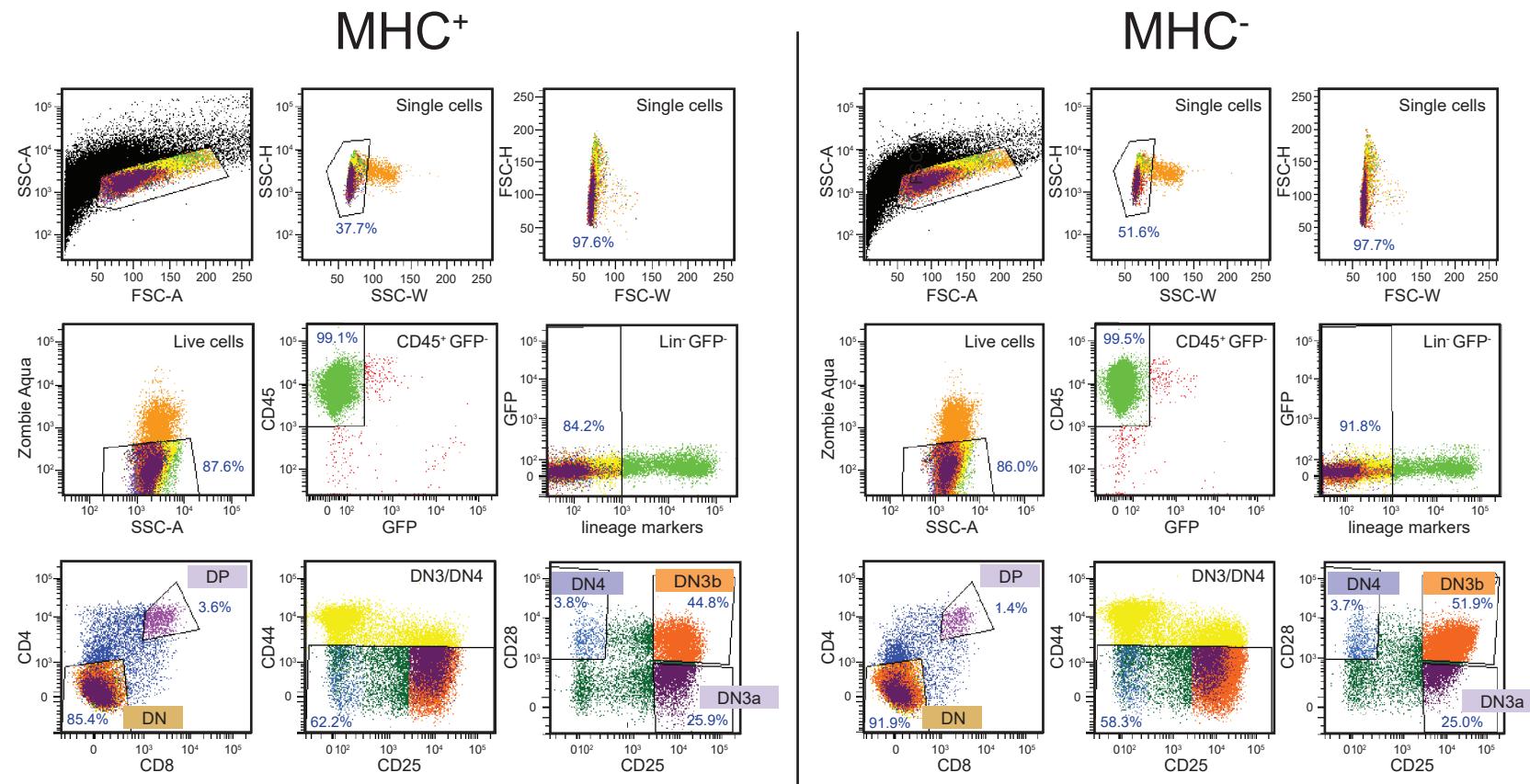
1211 **File 4.** Representative FACS separation profiles of developing thymocyte-like subsets *in vitro*
1212 and thymocyte subsets *in vivo*.

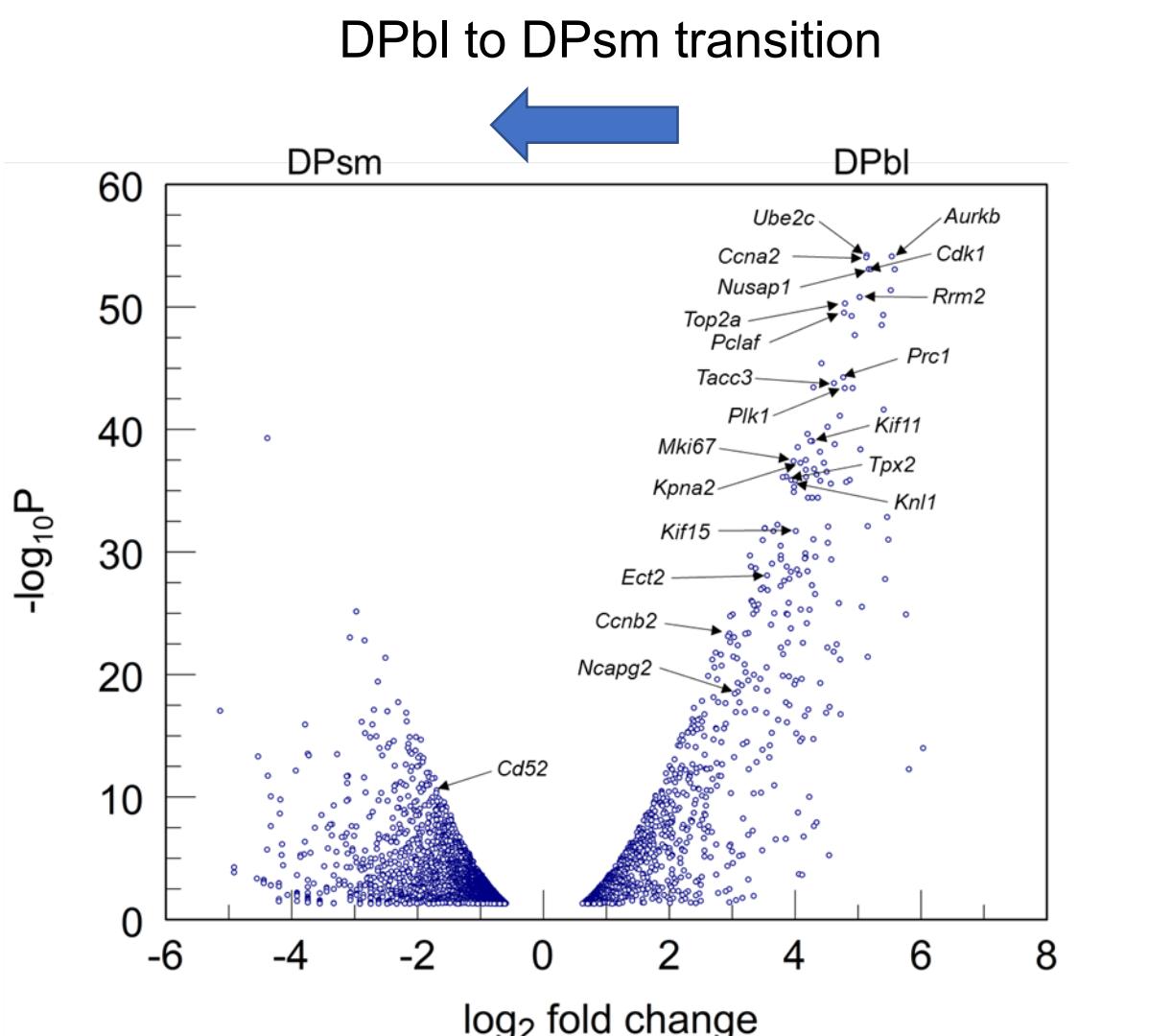
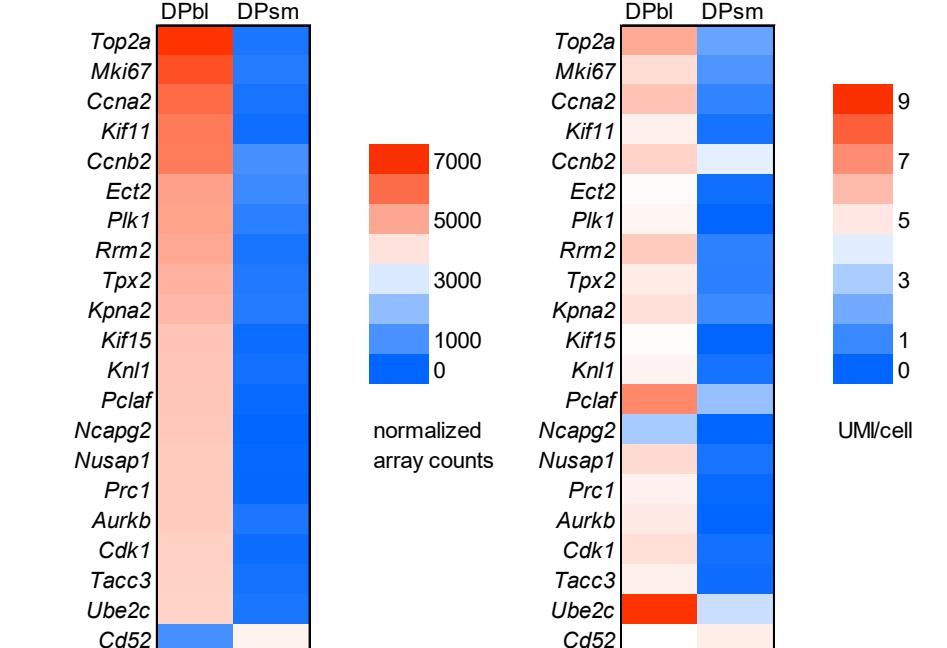
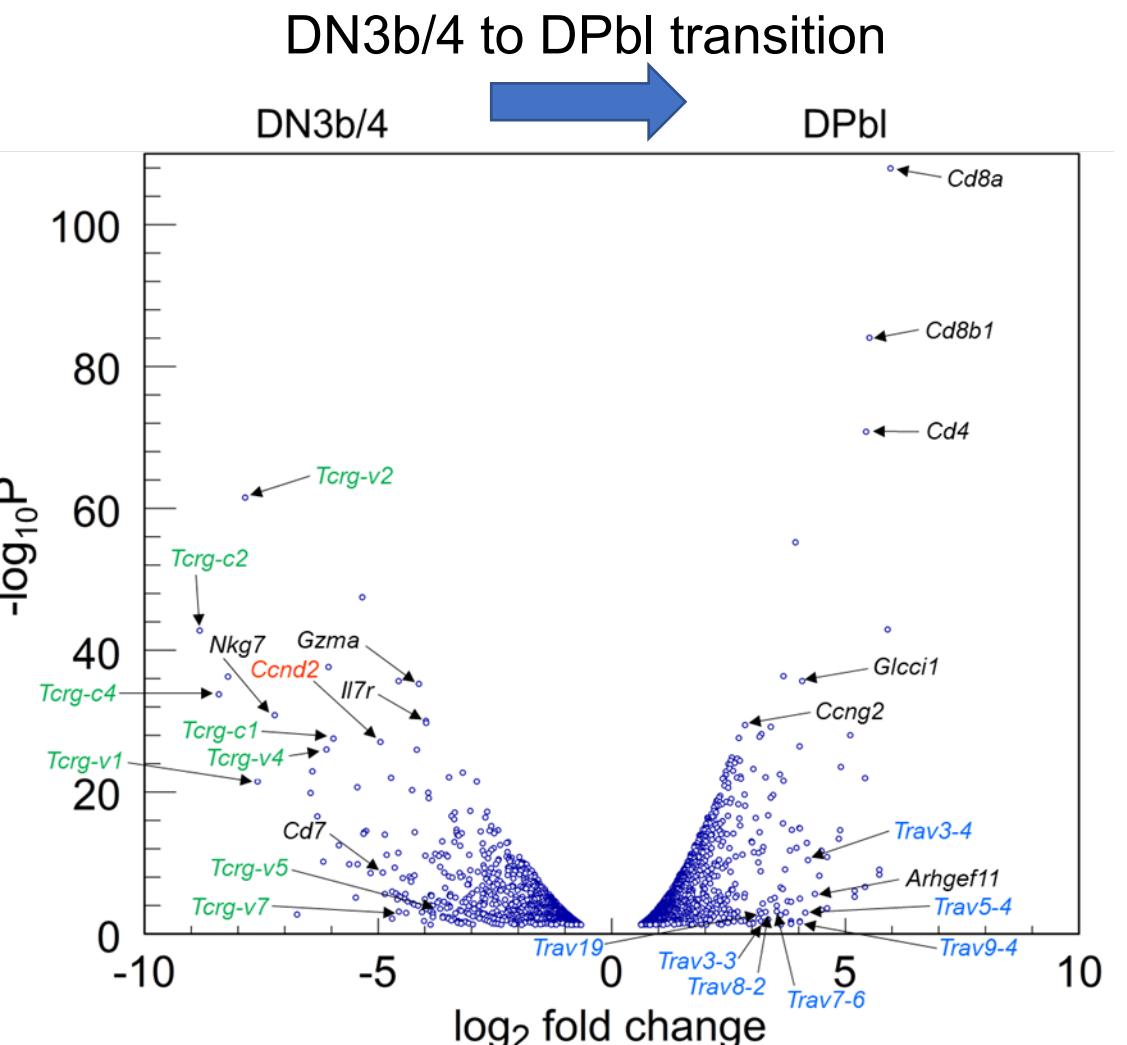
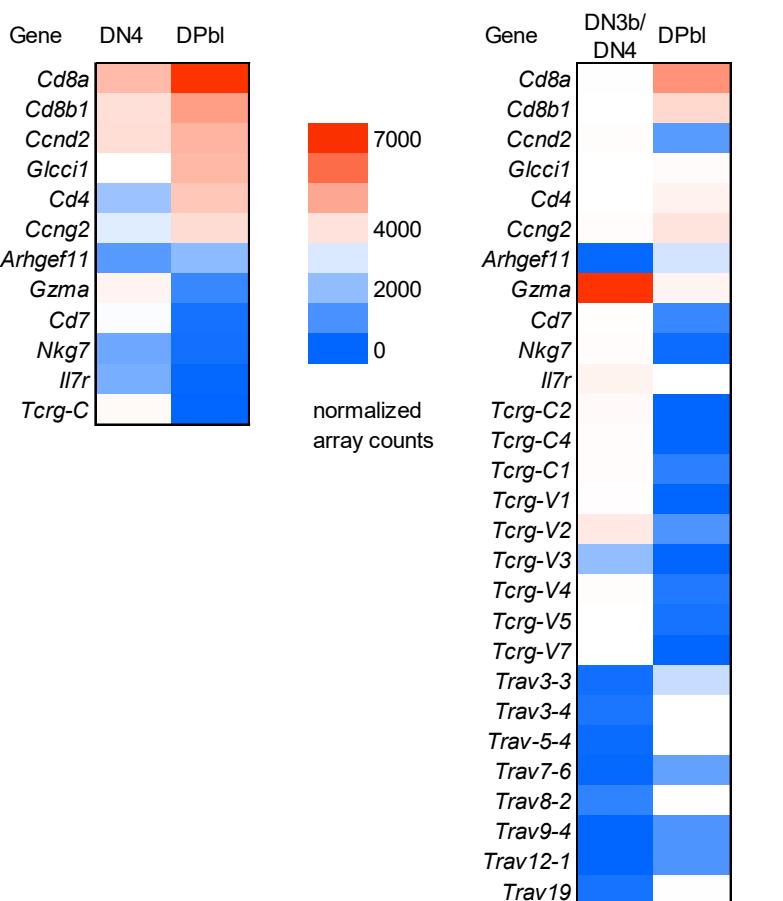
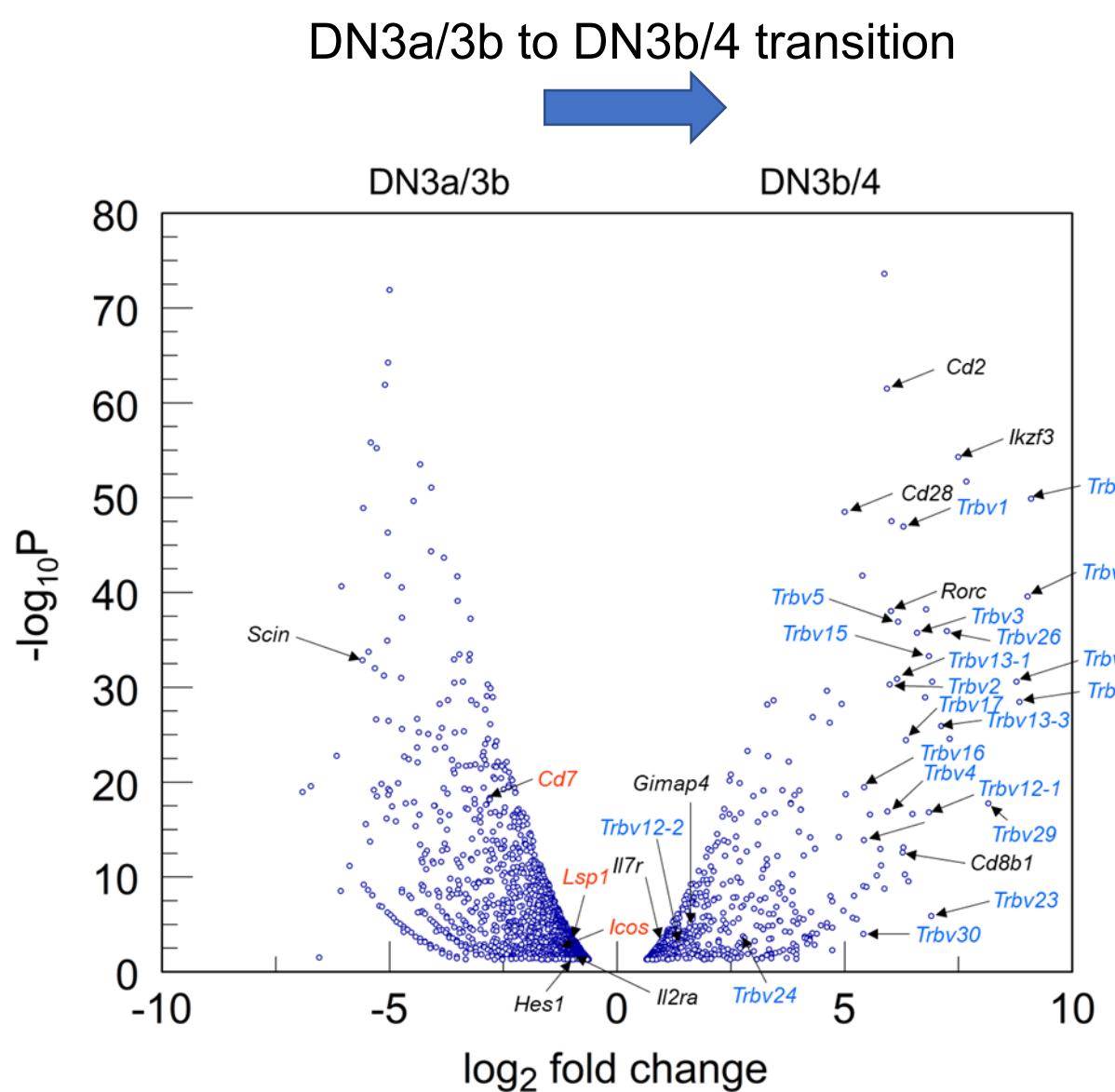
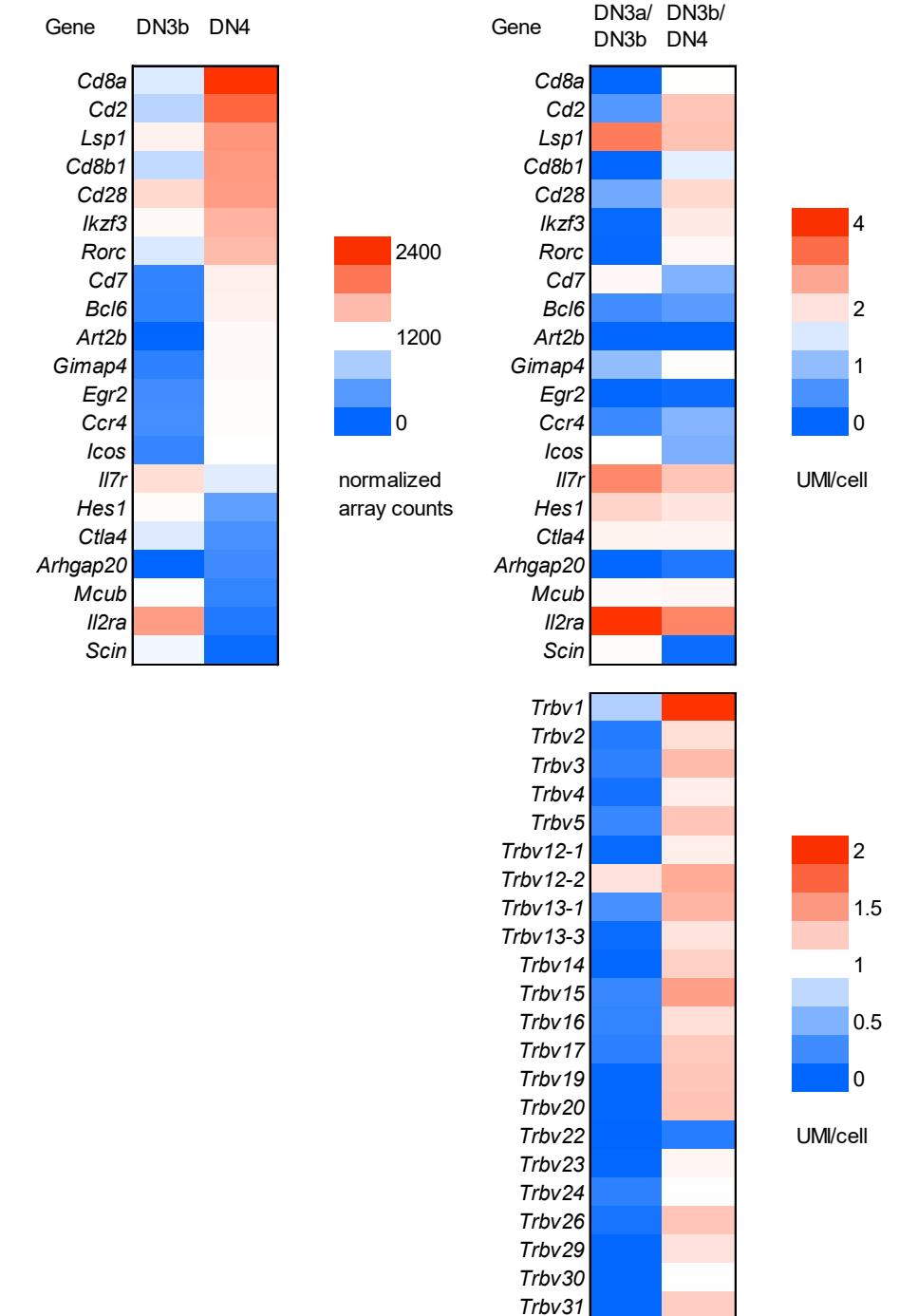
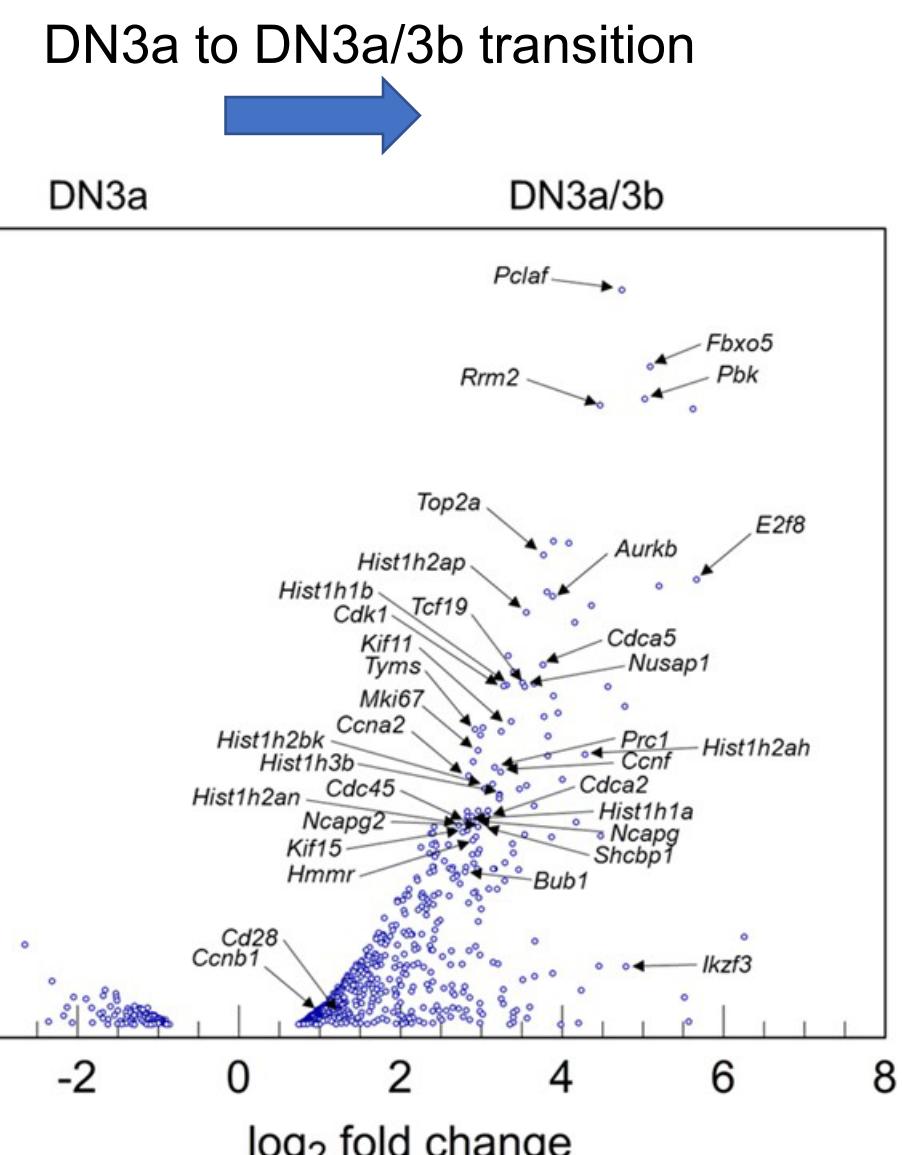
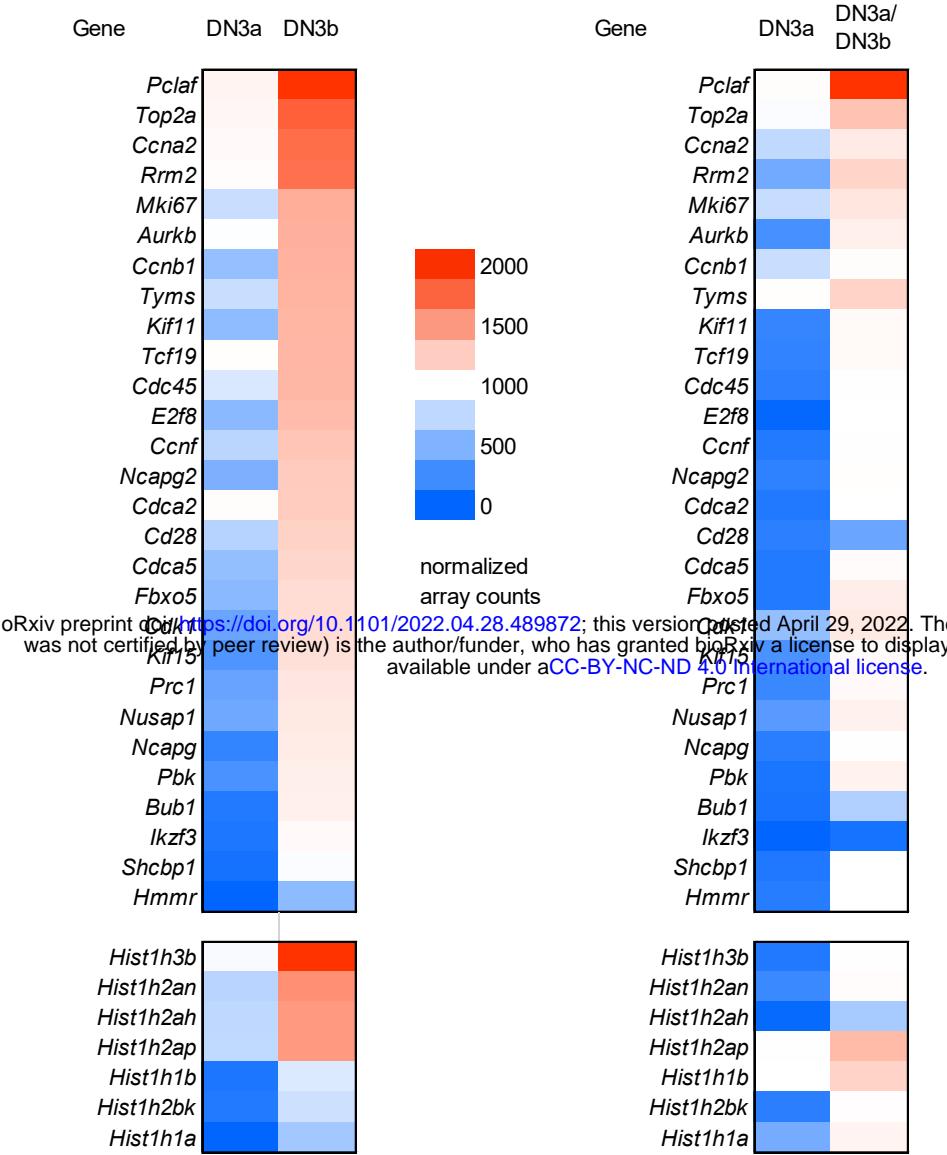
1213 PDF file: Supplementary-Information-File4.pdf

1214

1215 **File 5.** Gene expression and total TCR β clonotype repertoire data for DN3a, DN3b, DN4 and
1216 ISP cells isolated from MHC $^+$ and MHC $^-$ mice.

1217 MS Excel file: Supplementary-Information-File5.xlsx

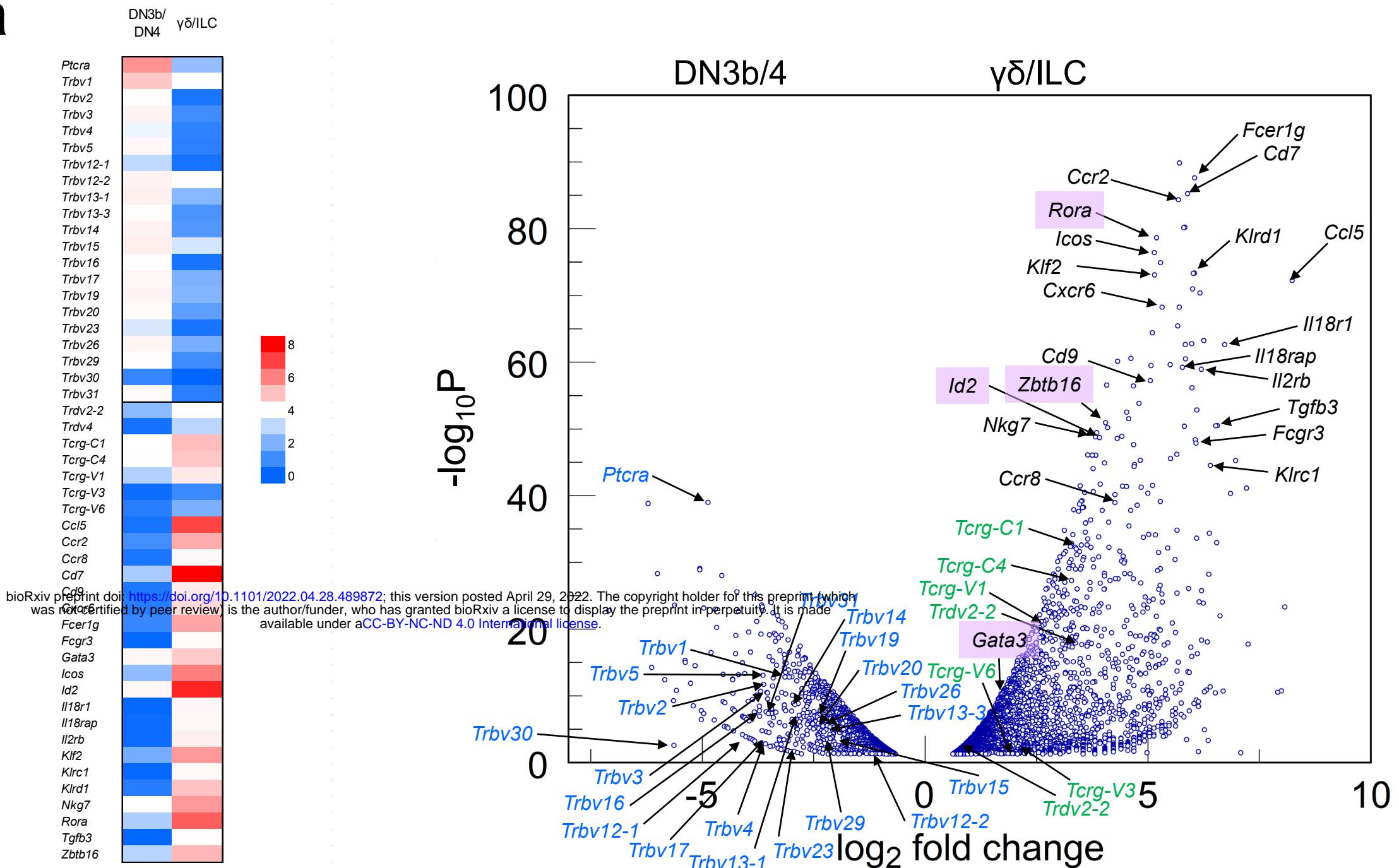

1218









1219 **File 6.** Gene expression analysis of a chromosome Y transcript panel and expression-matched
1220 autosomal panel to address aberrant clonal HSC expansion contributing to the MHC $^-$ DN4
1221 unusual and DP abnormal populations.

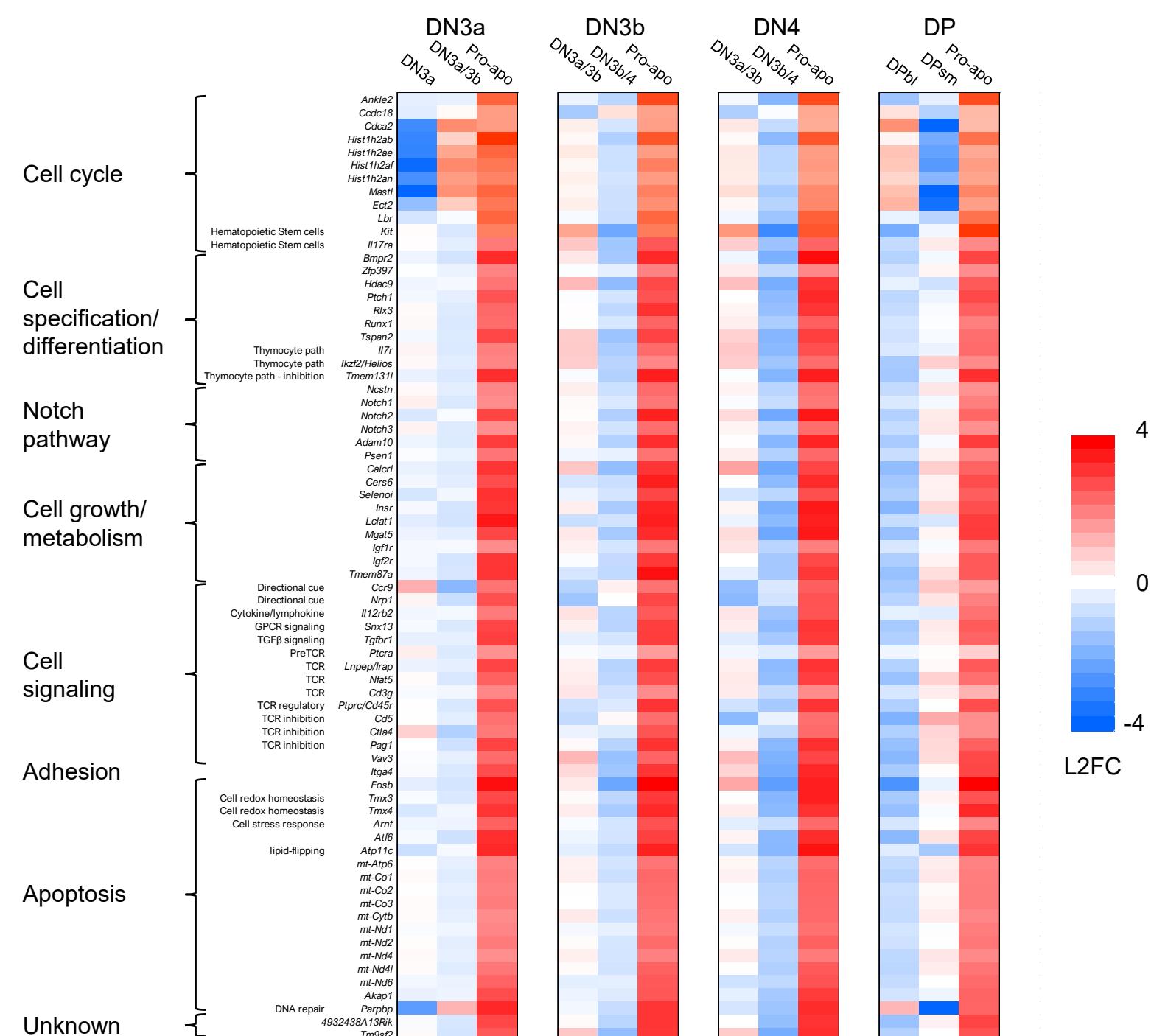
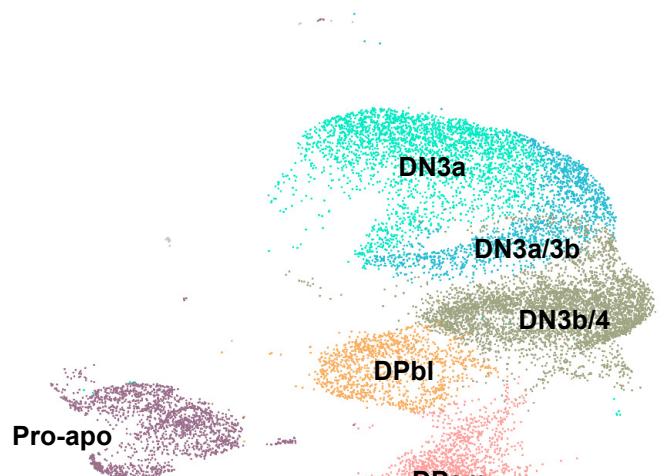
1222 MS Excel file: Supplementary-Information-File6.xlsx

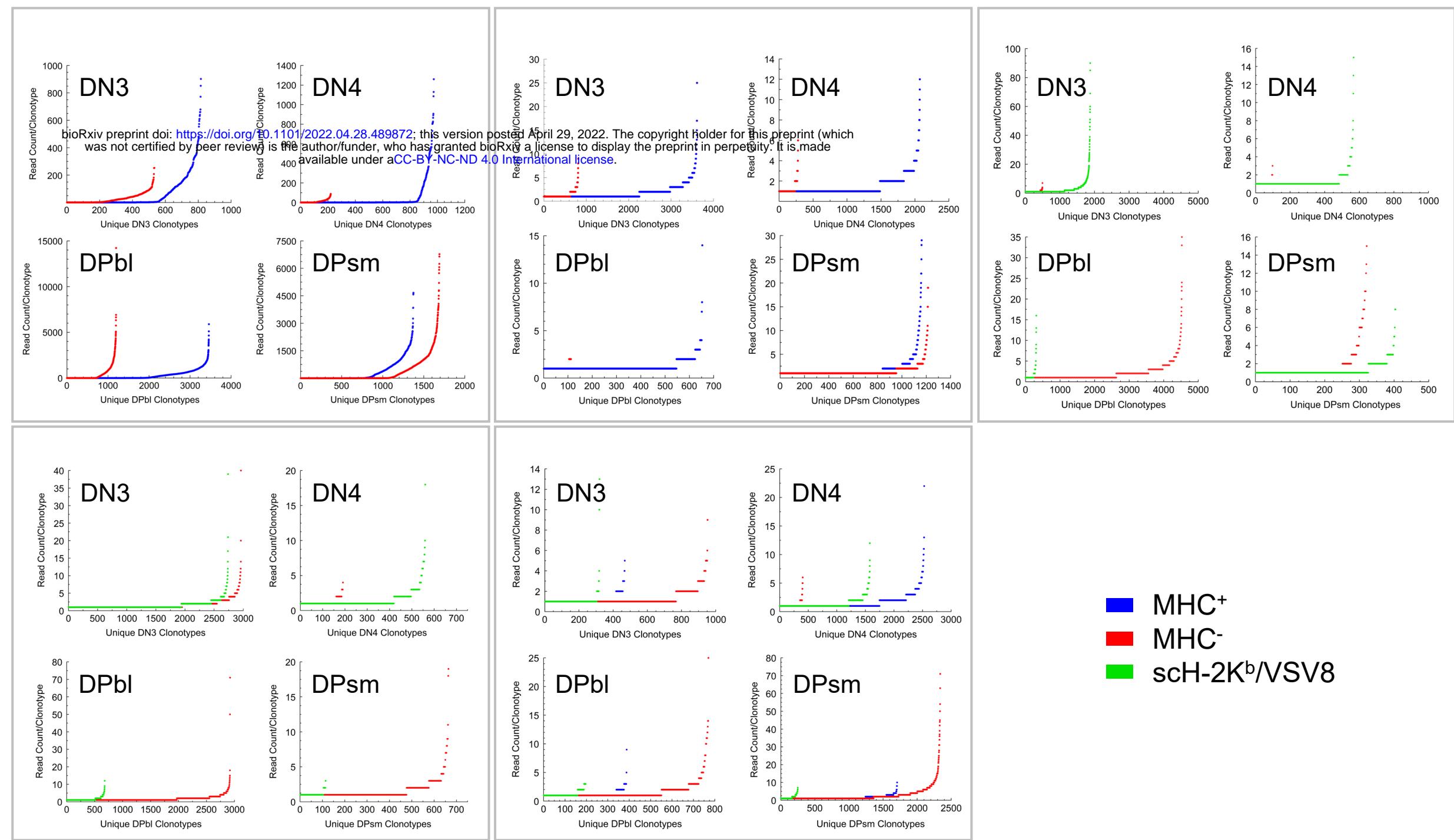
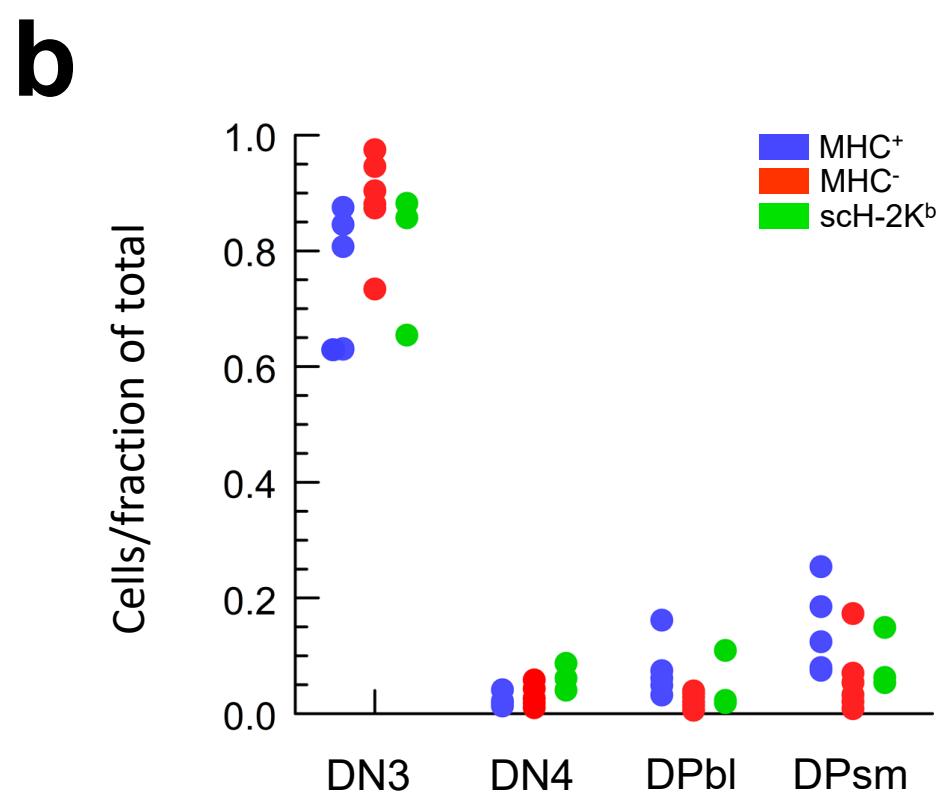
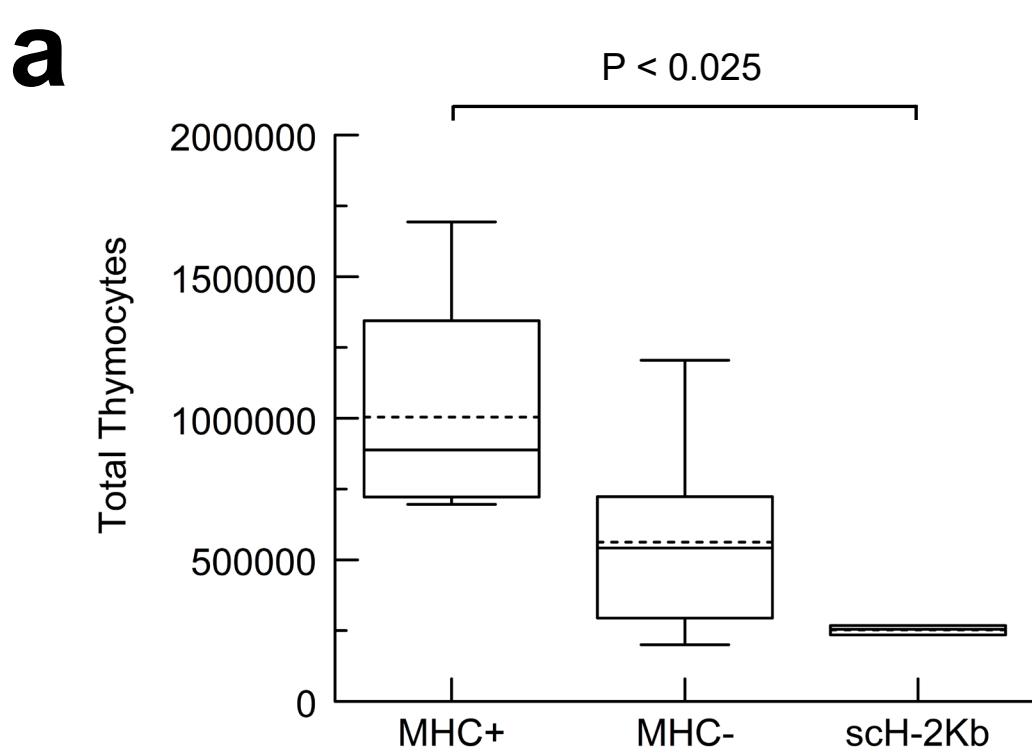
1223

Extended Data Fig.1



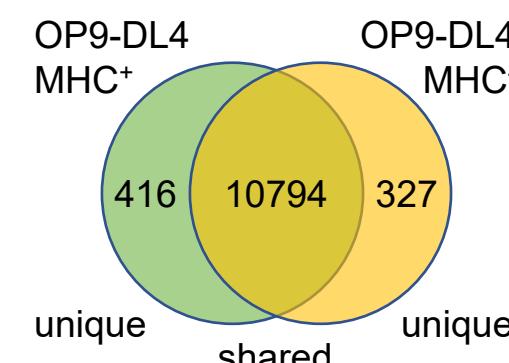
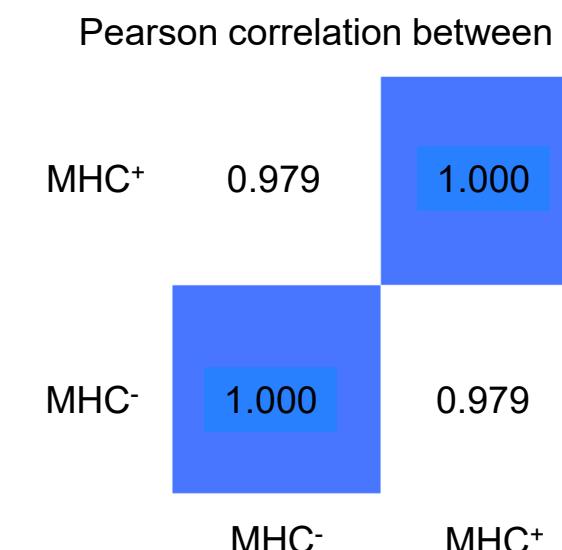
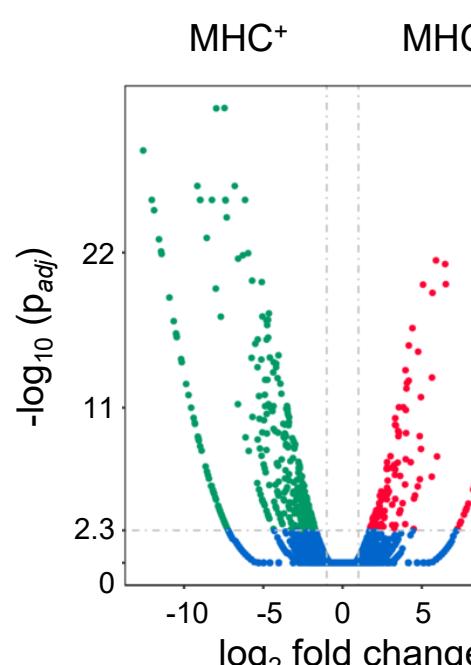
Extended Data Fig.2

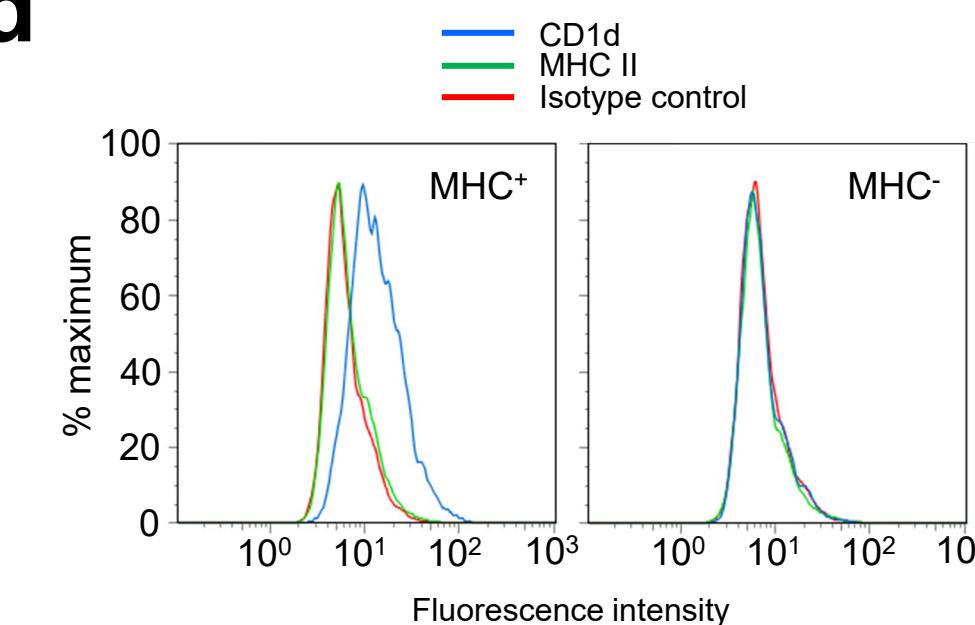
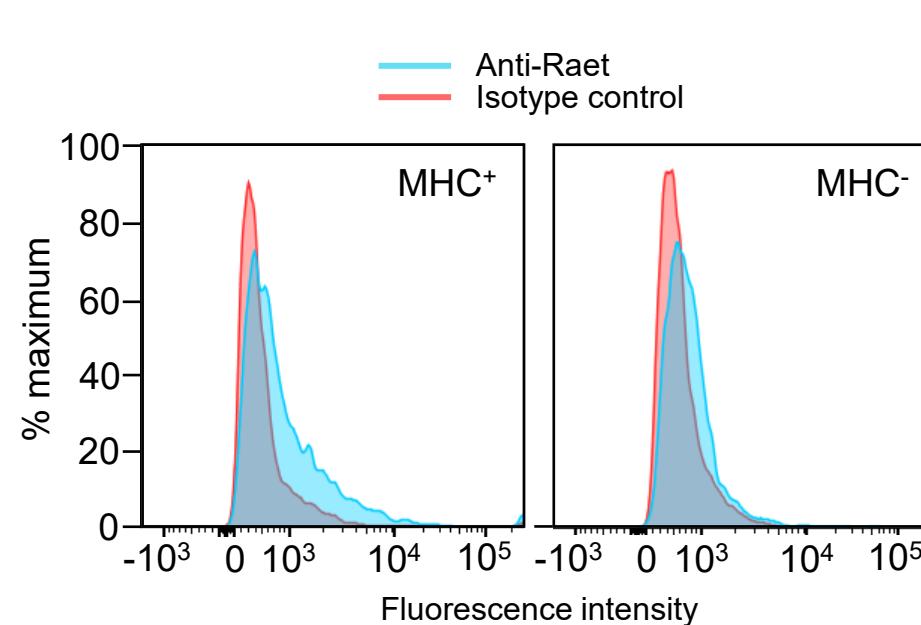


Extended Data Fig.3




a

b

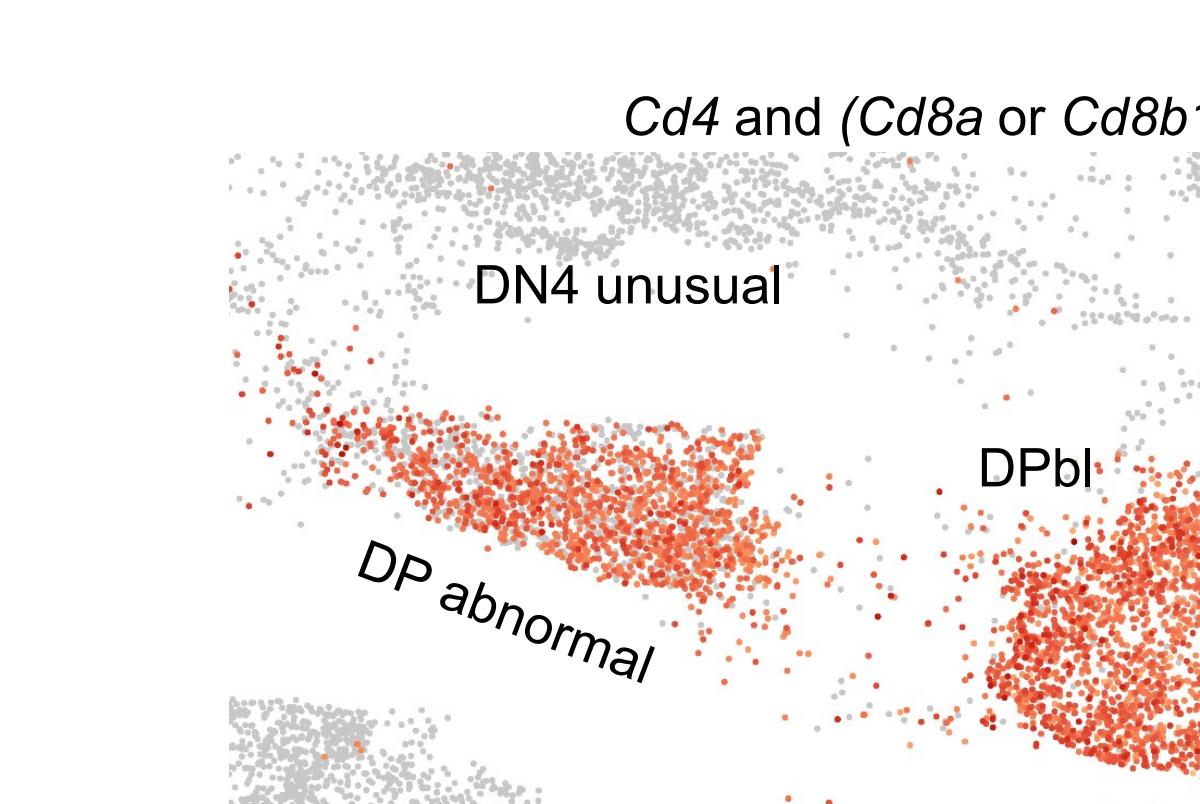
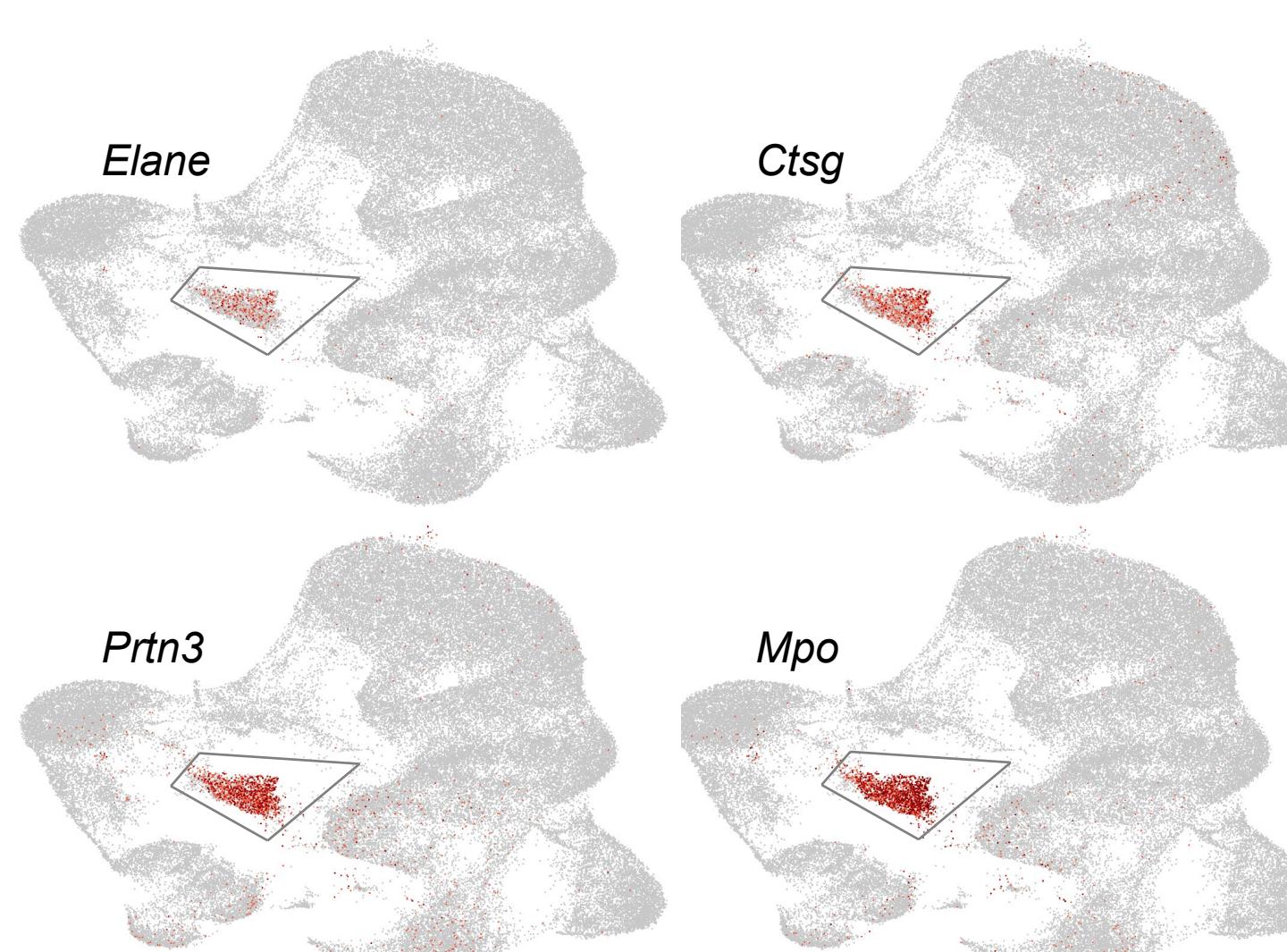
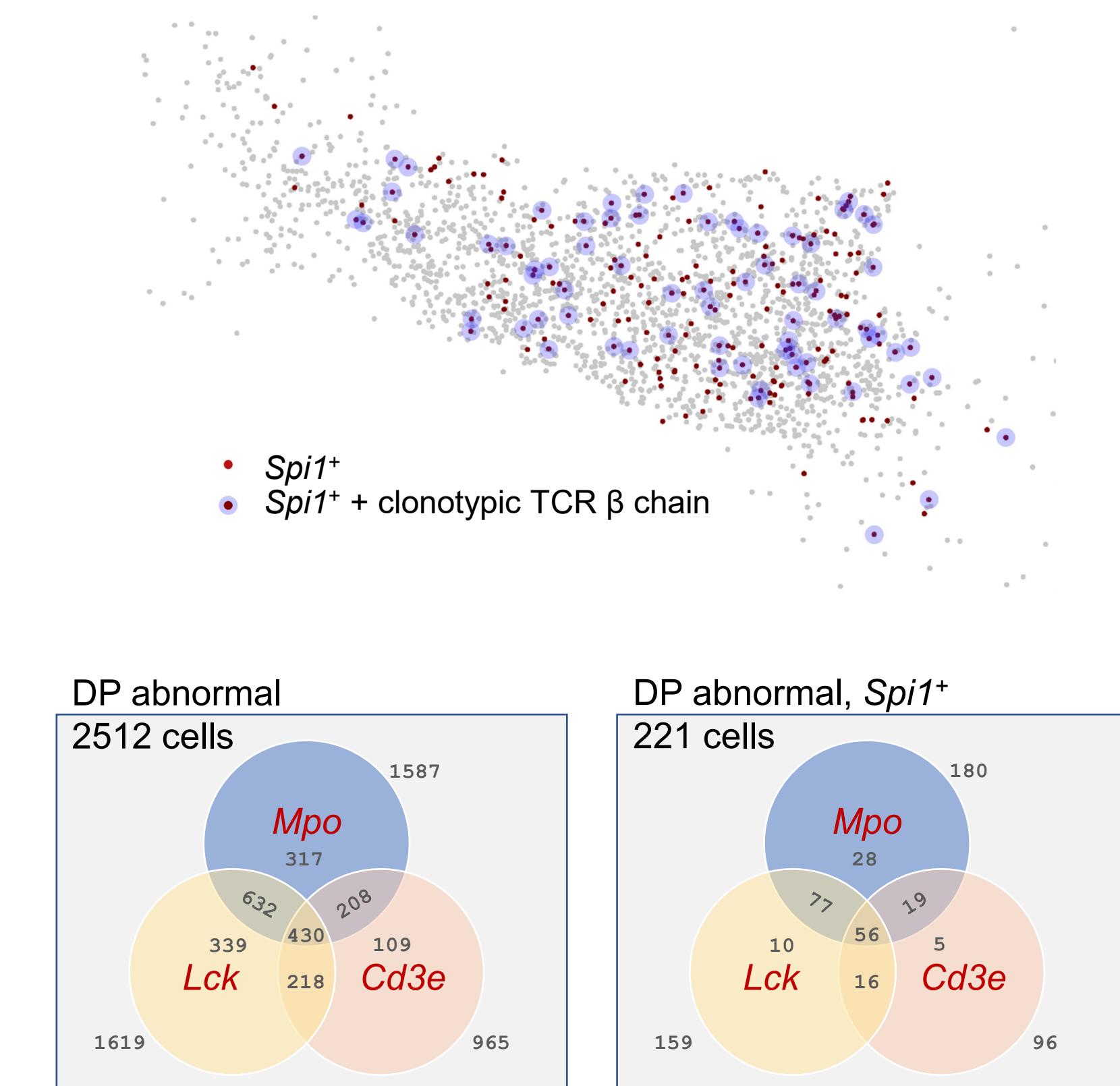
Distinguishing proapoptotic cluster from other clusters

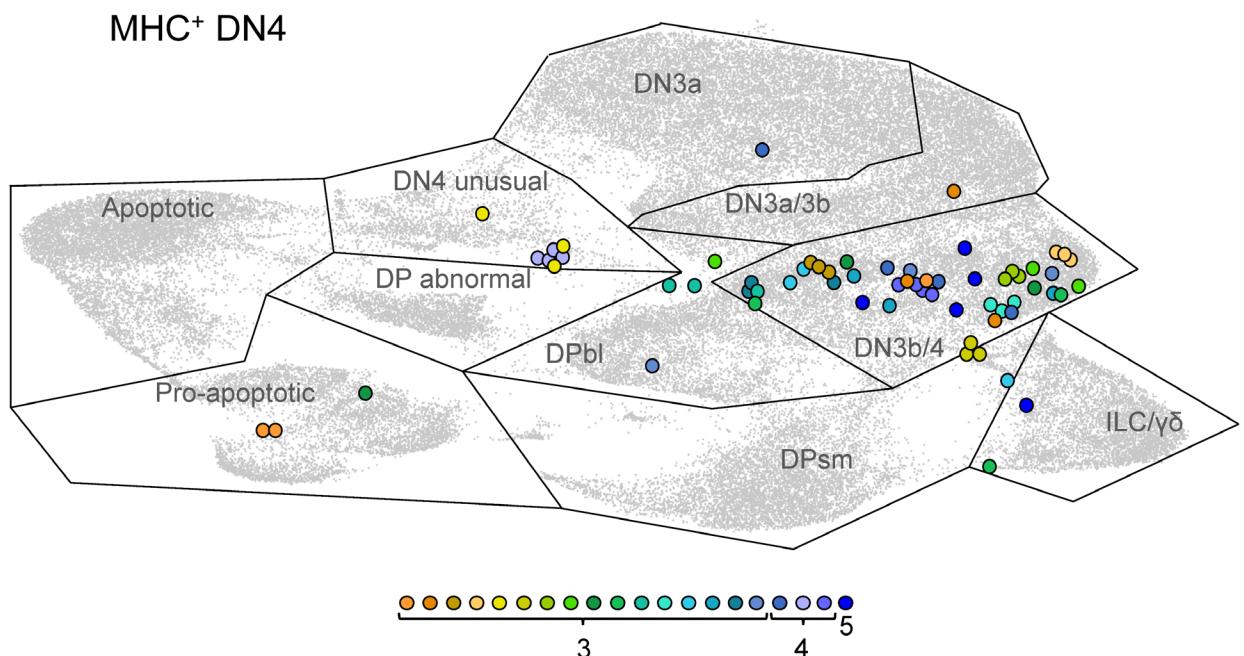
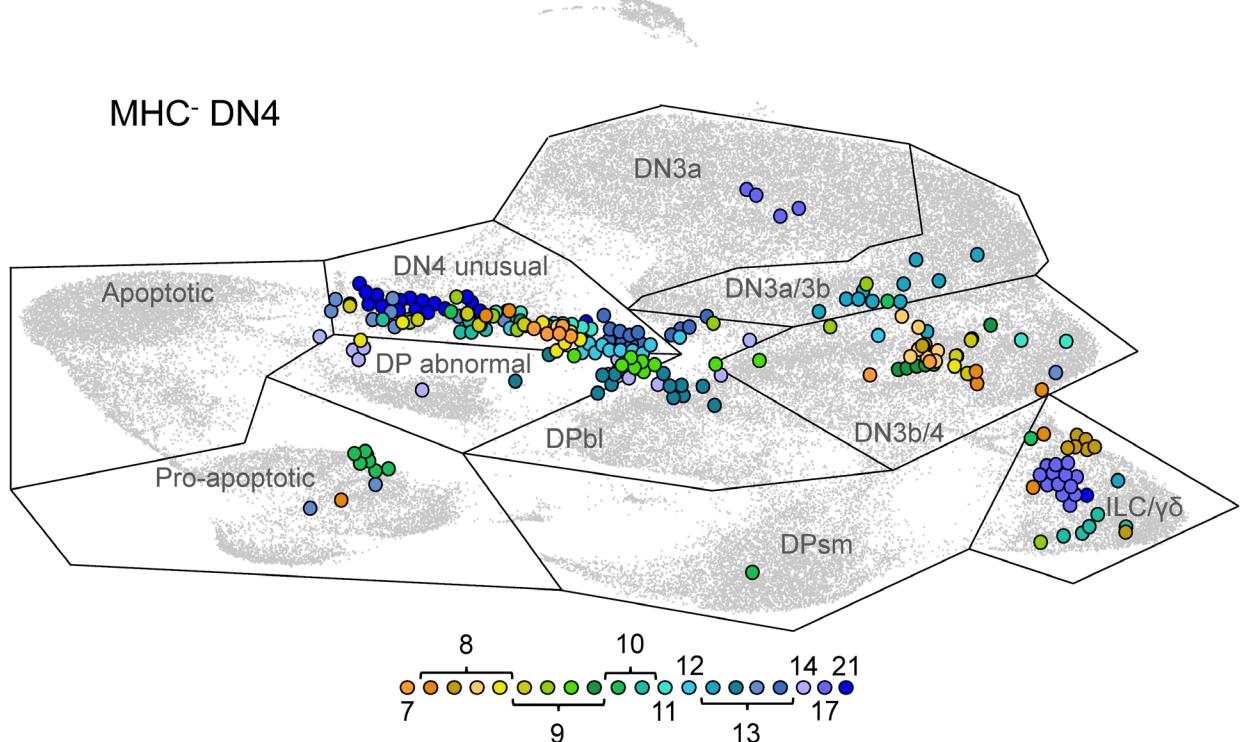


DN4 library	Mean shared clonotypes
MHC ⁺	5.54%
MHC ⁻	37.92%]
scH-2K ^b	4.38%] P = 0.031

Extended Data Fig.4

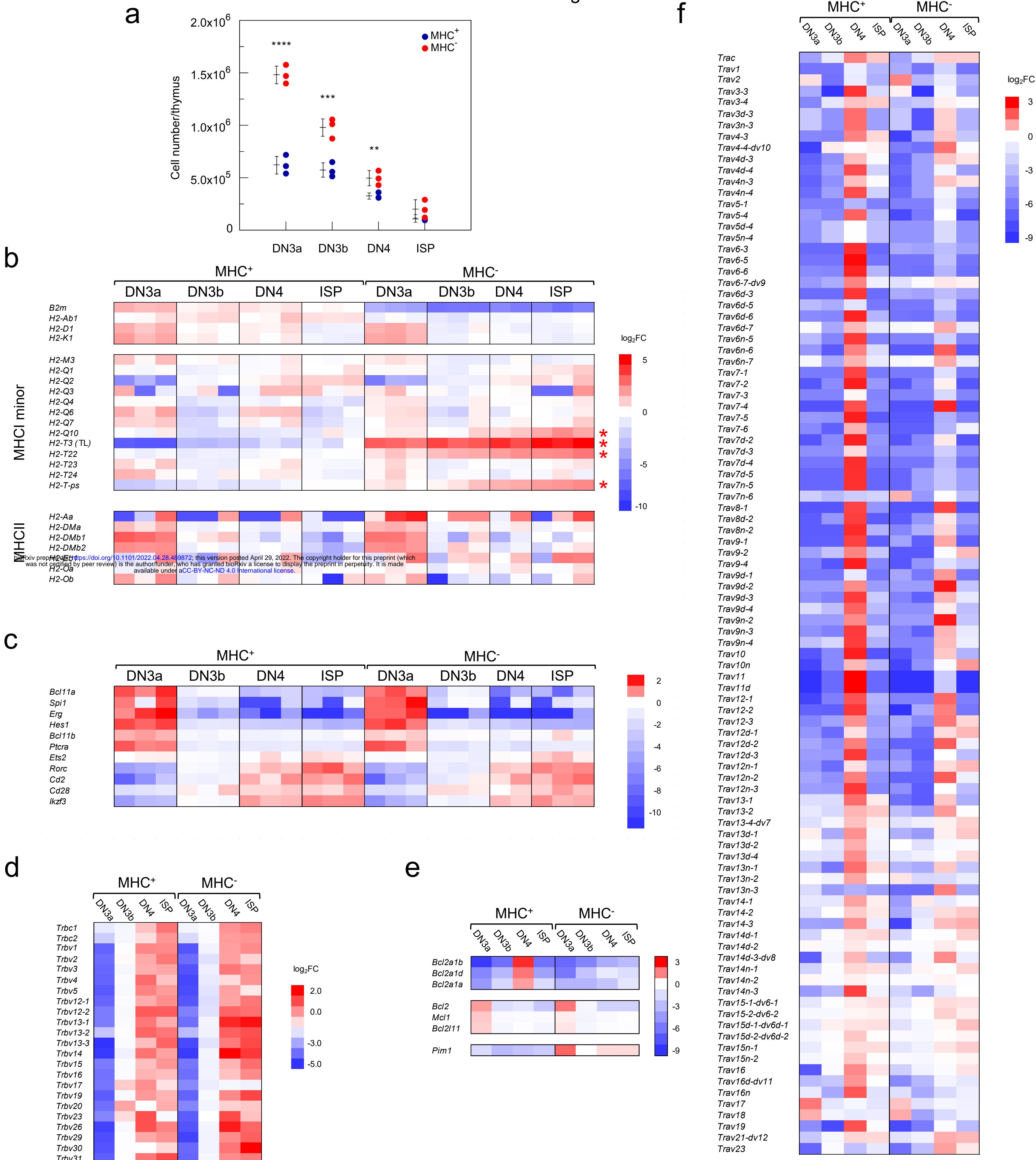
a**b****c**




Differentially-expressed genes: 454
Upregulated in MHC+: 133
Downregulated in MHC+: 321

d**e**



bioRxiv preprint doi: <https://doi.org/10.1101/2022.04.28.489872>; this version posted April 29, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

f


Gene	L2FC	P	Gene	L2FC	P
AY036118	4.356	4.5E-67	<i>mt-Nd6</i>	1.671	4E-06
<i>Tagap</i>	4.336	0.001	<i>Hist1h3i</i>	1.642	5E-05
<i>Il18rap</i>	4.128	9.6E-11	<i>Hist1h4d</i>	1.638	1E-05
<i>Cacna1e</i>	4.001	4.2E-15	<i>Spi1</i>	1.614	0.0377
<i>Il2rb</i>	3.447	5.7E-08	<i>Hist2h3b</i>	1.599	0.0002
<i>Fcgr3</i>	3.379	0.00043	<i>Hist1h2be</i>	1.506	0.0059
<i>Hist1h2af</i>	3.255	1E-27	<i>Hist1h4h</i>	1.462	0.0009
<i>Hist2h4</i>	2.891	6.5E-12	<i>Hist1h3e</i>	1.383	0.0004
<i>Hist1h1d</i>	2.764	5.4E-22	<i>Ezh1</i>	1.382	0.0301
<i>Fcer1g</i>	2.731	1.5E-11	<i>Hist1h3f</i>	1.374	0.0059
<i>Rora</i>	2.650	5.4E-17	<i>Stat1</i>	1.363	0.0014
<i>Klf2</i>	2.568	1.8E-11	<i>Hist1h3d</i>	1.359	0.0061
<i>Klrd1</i>	2.547	2.3E-06	<i>Hist1h3c</i>	1.302	0.005
<i>Icos</i>	2.546	1.8E-14	<i>Hist1h3b</i>	1.276	0.0026
<i>Kit</i>	2.480	3.7E-12	<i>mt-Cytb</i>	1.273	0.0006
<i>Hist1h1e</i>	2.436	4.5E-17	<i>Zfp36l1</i>	1.253	0.011
<i>Ccr2</i>	2.435	1E-08	<i>Hist1h4c</i>	1.239	0.0396
<i>Hist1h1c</i>	2.406	3.6E-15	<i>Hist1h2ai</i>	1.221	0.0053
<i>Hist1h2ak</i>	2.366	2.2E-09	<i>Hist1h2ac</i>	1.191	0.0236
<i>Hist4h4</i>	2.241	1.8E-06	<i>Hist1h2bg</i>	1.111	0.0365
<i>Cd7</i>	2.240	1.4E-08	<i>Rorc</i>	1.098	0.031
<i>Cd9</i>	2.213	4.4E-05	<i>Id2</i>	1.041	0.0152
<i>Themis2</i>	2.199	0.00101	<i>Hist1h2an</i>	0.998	0.033
<i>Hist1h1a</i>	2.162	3.7E-12	<i>mt-Nd5</i>	0.976	0.0242
<i>Hist2h2bb</i>	2.154	4.9E-08	<i>Ets2</i>	0.936	0.045
<i>Hist1h2ab</i>	2.149	1.6E-10	<i>Trbv1</i>	-1.662	0.0274
<i>Hist1h2bn</i>	2.044	9.5E-07	<i>Trbv20</i>	-1.860	0.022
<i>Hist1h2ah</i>	2.007	3.6E-07	<i>Trbv13-1</i>	-1.899	0.0234
<i>Lyn</i>	1.931	0.00549	<i>Trbv3</i>	-2.206	0.0087
<i>Hist1h1b</i>	1.844	9.9E-09	<i>Trbv16</i>	-2.515	0.0274
<i>Lyl1</i>	1.824	0.00028	<i>Trbv15</i>	-2.533	0.0124
<i>Hist2h2ac</i>	1.791	9.3E-06	<i>Trbv12-1</i>	-3.849	0.0063
<i>Tec</i>	1.771	0.0014			

g**h****j**

Extended Data Fig.5

a**b****Extended Data Fig.6**

Extended Data Fig.7

Extended Data Table 1

Top 20 DPsm TCR β clonotypes developing on scH-2K^b stroma at d9

Fraction of transcript reads	Clonotype nucleotide sequence	V(D)J subunit usage	CDR3 amino acid sequence			
01	0.0219	TGTGCCAGCAGTTCGGGACCACTAGTCAGAAACGCTGTATTT	TRBV15*00	TRBD1*00	TRBJ2-3*00	CASSFGTTSAETLYF
02	0.0200	TGTGCCAGCAGCCAAGATGGTCCTATAATTGCCCTCTACTTT	TRBV2*00		TRBJ1-6*00	CASSQDGSYNSPLYF
03a	0.0164	TGTGCCAGCAGCCGGACAGGGGTGCAGAAACGCTGTATTT	TRBV3*00	TRBD1*00	TRBJ2-3*00	CASSRDRGAETLYF
03b	0.0018	TGTGCCAGCAGCCGGACAGGGGTGCAGAAACGCTGTATTT	TRBV3*00	TRBD1*00	TRBJ2-3*00	CASSRDRGAETLYF
04	0.0128	TGTGCCAGCGGTGTGGACTGGGGGTGAACAGTACTTC	TRBV13-2*00	TRBD2*00	TRBJ2-7*00	CASGVGLGGEQYF
05	0.0109	TGCACCTGCAGTGCAGGGACTGGGAATCTGAGCAGTTCTTC	TRBV1*00	TRBD2*00	TRBJ2-1*00	CTCSAGTGNYAEQFF
06	0.0109	TGTGCCAGCAGTGTGGACAGGGAACGAAAGATTATTTTC	TRBV13-1*00	TRBD1*00	TRBJ1-4*00	CASSDGTGNERLFF
07	0.0109	TGTGCCAGCGGTGACAGGACAACTAGTCAGAAACGCTGTATTT	TRBV13-2*00	TRBD1*00	TRBJ2-3*00	CASGDRRTSAETLYF
08	0.0109	TGTGCTAGCAGACCGGGACTGGGGGTGCAGAAACGCTGTATTT	TRBV17*00	TRBD2*00	TRBJ2-3*00	CASRPGLGGAETLYF
09	0.0109	TGTGCTAGCTTAGGCTGGGGGGCAGAAACGCTGTATTT	TRBV29*00	TRBD2*00	TRBJ2-3*00	CASSLGWGAETLYF
10	0.0109	TGTGCCAGCAGCTGGACAAATTCTGAAATACGCTCTATTT	TRBV3*00	TRBD1*00	TRBJ1-3*00	CASSWTNSGNTLYF
11a	0.0109	TGTGCCAGCAGCCGACAGGGGGCAGAAAGTCTTCTTT	TRBV4*00	TRBD1*00	TRBJ1-1*00	CASSRQGAEVFF
11b	0.0018	TGTGCCAGCAGCCGACAGGGGGCGGAAGTCTTCTTT	TRBV4*00	TRBD1*00	TRBJ1-1*00	CASSRQGAEVFF
12	0.0091	TGCACCTGCAGTGCAGACTGGGGGGTGCAGAAACGCTGTATTT	TRBV1*00		TRBJ2-3*00	CTCSADWGAETLYF
13a	0.0091	TGTGCCAGCTCTCCGCTGGGGGATGAACAGTACTTC	TRBV12-1*00	TRBD2*00	TRBJ2-7*00	CASSLRWGDEQYF
13b	0.0018	TGTGCCAGCTCTCCGCTGGGGGATGAACAGTACTTC	TRBV12-1*00	TRBD2*00	TRBJ2-7*00	CASSLRWGDEQYF
14	0.0091	TGTGCCAGCGGTGAGCATAACCAAGACACCCAGTACTTT	TRBV13-2*00		TRBJ2-5*00	CASGEHNQDTQYF
15	0.0091	TGTGCCAGCGGAGGGTATGAACAGTACTTC	TRBV13-2*00		TRBJ2-7*00	CASGGYEQYF
16	0.0091	TGTGCCAGCAGGCCGGACAGGGCAGAAAGATTATTTTC	TRBV13-3*00	TRBD1*00	TRBJ1-4*00	CASRPQGERLFF
17	0.0091	TGTGCCAGCAGTTAAGGGCACAGAAAGTCTTCTTT	TRBV15*00	TRBD1*00	TRBJ1-1*00	CASSLRGTEVFF
18	0.0091	TGTGCCAGCAGTACAGGGCTCCGCTTTTT	TRBV15*00	TRBD1*00	TRBJ1-5*00	CASSTGAPIF
19	0.0091	TGTGCCAGCAGTATATGGGGGGAAAGTGCAGAAACGCTGTATTT	TRBV19*00	TRBD2*00	TRBJ2-3*00	CASSIWGGSAAETLYF
20	0.0091	TGTGCCAGCAGCCAGGGACAGGGTGAACAGTACTTC	TRBV2*00	TRBD1*00	TRBJ2-7*00	CASSQGQGEQYF

N15 β chain

Extended Data Table 2

bioRxiv preprint doi: <https://doi.org/10.1101/2022.04.28.489872>; this version posted April 29, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Gene	β2m	Ps	OP9-DL4 (tpm)		Gene	β2m	Ps	OP9-DL4 (tpm)	
			MHC ⁺	MHC ⁻				MHC ⁺	MHC ⁻
<i>H2-Q1</i>	+		33	32	<i>H2-M2</i>	+		0	0
<i>H2-Q2</i>	+		0	0	<i>H2-M3</i>	+		90	74
<i>H2-Q3</i>		+	0	0	<i>H2-M4-ps</i>		+	0	0
<i>H2-Q4</i>	+		86	2	<i>H2-M5</i>	+		41	46
<i>H2-Q5</i>	+		0	0	<i>H2-M6-ps</i>		+	4	2
<i>H2-Q6</i>	+		0	0	<i>H2-M7-ps</i>		+	0	41
<i>H2-Q7</i>	+		1	0	<i>H2-M8-ps</i>		+	0	0
<i>H2-Q8</i>	+		0	0	<i>H2-M9</i>	+		0	0
<i>H2-Q9</i>	+		0	0	<i>H2-M10.1</i>	+		0	0
<i>H2-Q10</i>	+		5	4	<i>H2-M10.2</i>	+		0	0
<i>H2-T1</i>	+		0	0	<i>H2-M10.3</i>	+		0	0
<i>H2-T2</i>	+		0	0	<i>H2-M10.4</i>	+		0	0
<i>H2-T3 (TL)</i>	+		0	0	<i>H2-M10.5</i>	+		0	0
<i>H2-T4</i>	+		0	0	<i>H2-M10.6</i>	+		0	0
<i>H2-T5</i>	+		0	0	<i>Cd1d1</i>	+		112	67
<i>H2-T6</i>	+		0	0	<i>Cd1d2</i>	+		0	0
<i>H2-T7</i>	+		0	0	<i>Raet1a</i>	no		0	0
<i>H2-T8</i>	+		0	0	<i>Raet1b</i>	no		0	0
<i>H2-T9</i>	+		0	0	<i>Raet1c</i>	no		0	0
<i>H2-T10</i>	+		51	13	<i>Raet1d</i>	no		109	309
<i>H2-T-ps</i>	(+)	(+)	0	0	<i>Raet1e</i>	no		1128	1100
<i>H2-T12</i>	+		0	0	<i>Fcgtr</i>	+		1867	1093
<i>H2-T13</i>	+		0	0	<i>Hfe</i>	+		954	1560
<i>H2-T14</i>	+		0	0	<i>Azgp1</i>	no		0	0
<i>H2-T15</i>	+		0	0	<i>Mr1</i>	+		798	571
<i>H2-T16</i>	+		0	0					
<i>H2-T17</i>	+		0	0					
<i>H2-T18</i>	+		0	0					
<i>H2-T19</i>	+		0	0					
<i>H2-T20</i>	+		0	0	<u>Other significant transcripts</u>				
<i>H2-T21</i>	+		0	0	<i>B2m</i>	mutated		9589	2003
<i>H2-T22</i>	+		1161	753	<i>Tap2</i>	mutated		1196	630
<i>H2-T23 (Qa-1^b)</i>	+		404	315	<i>Dll4</i>	transduced		33378	55021
<i>H2-T24</i>	+		21	47	<i>H2-K1</i>	+		327	95
<i>H2-Bl</i>	+		0	0	<i>H2-D1</i>	+		573	481
<i>H2-M1</i>	+		0	0					

Extended Data Table 3

a

frequency	proportion	CDR3 amino acid	CDR3 length (aa)	CDR3 nucleotide	Trbv	Trbd	Trbj	Trbc
5	0.001973	CASSQDRANTEVFF	14	TGTGCCAGCAGCCAAGACAGGGCAAACACAGAAGTCTTCTTT	Trbv5		<i>Trbj1-1</i>	<i>Trbc1</i>
4	0.001579	CASSWDNYAEQFF	13	TGTGCCAGCAGCTGGGACAACATATGCTGAGCAGTTCTTC	Trbv10		<i>Trbj2-1</i>	
4	0.001579	CASSQGQGANTEVFF	15	TGTGCCAGCAGCCAGGGACAGGGGGCAAACACAGAAGTCTTCTTT	Trbv2		<i>Trbj1-1</i>	<i>Trbc1</i>
4	0.001579	CGARGAEVFF	10	TGTGGTCTAGGGGGCAGAAGTCTTCTTT	Trbv20		<i>Trbj1-1</i>	<i>Trbc1</i>
3	0.001184	CASGDAGQGGGAETLYF	17	TGTGCCAGCGGTGATGGACAGGGAGGGGGTCAGAAACGCTGTATTT	Trbv12-2+Trbv13-2		<i>Trbj2-3</i>	
3	0.001184	CASRDRSSYEQYF	13	TGTGCCAGCAGGGACAGGAGCTCCTATGAACAGTACTTC	Trbv13-1		<i>Trbj2-7</i>	
3	0.001184	CASSDRGVSNERLFF	15	TGTGCCAGCAGTGATCGGGGGTTCCAACGAAAGATTATTTTC	Trbv13-3		<i>Trbj1-4</i>	<i>Trbc1</i>
3	0.001184	CASSPGLGGREQYF	14	TGTGCCAGCAGCCCAGGACTGGGGGGCGAACAGTACTTC	Trbv15		<i>Trbj2-7</i>	
3	0.001184	CASSIHSQNTLYF	13	TGTGCCAGCAGTATACTCTGAAATACGCTCTATT	Trbv19		<i>Trbj1-3</i>	<i>Trbc1</i>
3	0.001184	CASSPGQGADTGQLYF	16	TGTGCCAGCAGCCCAGGACAGGGGGCGAACAGCTACTTT	Trbv19		<i>Trbj2-2</i>	
3	0.001184	CASSQDRAETLYF	13	TGTGCCAGCAGCCAAGACAGGGCAGAAACGCTGTATTT	Trbv2		<i>Trbj2-3</i>	
3	0.001184	CASSQGHQNTLYF	13	TGTGCCAGCAGCCAAGGGCATAAAACACCTTGACTTT	Trbv2		<i>Trbj2-4</i>	
3	0.001184	CASSQDRGEQYF	12	TGTGCCAGCAGCCAAGACAGGGGTAAACAGTACTTC	Trbv2		<i>Trbj2-7</i>	
3	0.001184	CGARDTNTEVFF	12	TGTGGTCTAGGGACACAAACACAGAAGTCTTCTTT	Trbv20		<i>Trbj1-1</i>	<i>Trbc1</i>
3	0.001184	CGARDTNSDYTF	12	TGTGGTCTAGGGACACAAACTCCGACTACACCTTC	Trbv20		<i>Trbj1-2</i>	<i>Trbc1</i>
3	0.001184	CGARTGGYEQYF	12	TGTGGTCTAGGGACAGGGGGCTATGAACAGTACTTC	Trbv20		<i>Trbj2-7</i>	
3	0.001184	CGARDRGREQYF	12	TGTGGTCTAGGGACAGGGGGCGAACAGTACTTC	Trbv20		<i>Trbj2-7</i>	
3	0.001184	CASSGTYEQYF	11	TGTGCCAGCAGTGGGACATATGAACAGTACTTC	Trbv26		<i>Trbj2-7</i>	
3	0.001184	CASSLGQGANERLFF	15	TGTGCCAGCAGCTTAGGACAGGGGCCAACGAAAGATTATTTTC	Trbv3		<i>Trbj1-4</i>	<i>Trbc1</i>
3	0.001184	CASSLADWGDTQYF	14	TGTGCCAGCAGCTTAGCGGACTGGGGACACCCAGTACTTT	Trbv3		<i>Trbj2-5</i>	
21	0.007455	CTCSADWGGANQDTQYF	17	TGCACCTGCAGTGCAGACTGGGGGGGCCAACCAAGACACCCAGTACTTT	Trbv1		<i>Trbj2-5</i>	
17	0.006035	CTCSPGLGGEQYF	13	TGCACCTGCAGTCAGGACTGGGGGTAAACAGTACTTC	Trbv1		<i>Trbj2-7</i>	
15	0.005325	CASRDSQNTLYF	12	TGTGCCAGCAGGGACAGTAAAACACCTTGACTTT	Trbv19		<i>Trbj2-4</i>	
14	0.004970	CASGDETGVSYEQYF	15	TGTGCCAGCGGTGATGAAACTGGGTCTCTATGAACAGTACTTC	Trbv12-2		<i>Trbj2-7</i>	
13	0.004615	CASGDSTGGDQDTQYF	16	TGTGCCAGCGGTGATTGACTGGGGGGACCAAGACACCCAGTACTTT	Trbv12-2		<i>Trbj2-5</i>	
13	0.004615	CASSFPASQNTLYF	14	TGTGCCAGCAGTTCAGCTAGTAAAACACCTTGACTTT	Trbv14		<i>Trbj2-4</i>	
13	0.004615	CASSQDWLNQDTQYF	15	TGTGCCAGCAGCCAAGACTGGCTAACCAAGACACCCAGTACTTT	Trbv5		<i>Trbj2-5</i>	
12	0.004260	CASSLSRGEQYF	12	TGTGCTAGCAGTTATCAAGGGGTAAACAGTACTTC	Trbv29		<i>Trbj2-7</i>	
11	0.003905	CASRRRTGGAGAEQFF	15	TGTGCCAGCAGCGGACTGGGGGGCTGGGCTGAGCAGTTCTTC	Trbv26		<i>Trbj2-1</i>	
10	0.003550	CASSYNSQNTLYF	13	TGTGCCAGCAGCTACAATTCTGAAATACGCTCTATT	Trbv10		<i>Trbj1-3</i>	<i>Trbc1</i>
10	0.003550	CASSLEDNYAEQFF	14	TGTGCTAGCAGTTAGAGGACAACATGCTGAGCAGTTCTTC	Trbv29		<i>Trbj2-1</i>	
9	0.003195	CASSEGATEVFF	12	TGTGCCAGCAGTGAGGGGCCACAGAAGTCTTCTTT	Trbv13-3		<i>Trbj1-1</i>	<i>Trbc1</i>
9	0.003195	CASSLRENTLYF	12	TGTGCCAGCTCTCAGGGAAAACACCTTGACTTT	Trbv12-2		<i>Trbj2-4</i>	
9	0.003195	CASGEGRDFQDTQYF	15	TGTGCCAGCGGTGAGGGCCGGACTCCAAGACACCCAGTACTTT	Trbv12-2		<i>Trbj2-5</i>	
9	0.003195	CASGEQYF	8	TGTGCCAGCGGTAAACAGTACTTC	Trbv12-2		<i>Trbj2-7</i>	
9	0.003195	CASSQEWGVQDTQYF	15	TGTGCCAGCAGCCAAGAATGGGGGTCCAAGACACCCAGTACTTT	Trbv5		<i>Trbj2-5</i>	
8	0.002840	CASSDGTGASAETLYF	16	TGTGCCAGCAGTGATGGGACTGGGCTAGTGCAGAAACGCTGTATTT	Trbv13-1		<i>Trbj2-3</i>	
8	0.002840	CASSGTYEQYF	11	TGTGCCAGCAGTGGGACATATGAACAGTACTTC	Trbv13-1		<i>Trbj2-7</i>	
8	0.002840	CAWSSGTGGYEQYF	14	TGTGCCAGCAGCTGGAGTTGGGACAGGGGGCTATGAACAGTACTTC	Trbv31		<i>Trbj2-7</i>	
8	0.002840	CASSPDRGPEVFF	13	TGTGCCAGCAGCCCAGACAGGGGCCAGAAGTCTTCTTT	Trbv5		<i>Trbj1-1</i>	<i>Trbc1</i>

MHC
DN4

MHC-
DN4

b

frequency	proportion	CDR3 amino acid	CDR3 length (aa)	CDR3 nucleotide	Trbv	Trbd	Trbj	Trbc
5	0.001973	CASSLQGANSODYTF	14	TGTGCCAGCTCTACAGGGGCAACTCCGACTACACCTTC	Trbv12-2		Trbj1-2	Trbc1
4	0.001579	CTCSAAGTGPNERLFF	16	TGCACCTGCAGTGCAGCCGGACAGGGCCAACGAAAGATTATTTTC	Trbv1		Trbj1-4	Trbc1,
4	0.001579	CASSRQGANTEVFF	14	TGTGCCAGCAGCAGACAGGGGAAACACAGAAGTCTTCTT	Trbv10		Trbj1-1	Trbc1
4	0.001579	CGARDTNTEVFF	12	TGTGGTCTAGGGACACAAACACAGAAGTCTTCTT	Trbv20		Trbj1-1	Trbc1
3	0.001184	CASGEDTNSODYTF	13	TGTGCCAGCGGTGAGGACACAAACTCCGACTACACCTTC	Trbv12-2+Trbv13-2		Trbj1-2	Trbc1
3	0.001184	CASGDDSQNTLYF	13	TGTGCCAGCGGTGATGACAGTCAAAACACCTTGTACTTT	Trbv12-2+Trbv13-2		Trbj2-4	
3	0.001184	CASSLRGGGAETLYF	16	TGTGCCAGCAGTTAAGGGGGCGGGGTGCAGAAACGCTGTATTT	Trbv15		Trbj2-3	
3	0.001184	CASSQDWGGYEQYF	14	TGTGCCAGCAGCCAAGACTGGGGGGCTATGAACAGTACTTC	Trbv2		Trbj2-7	
3	0.001184	CASSSGTGDNQAPLF	15	TGTGCTAGCAGTTCCGGACAGGGACAACCAGGCTCCGCTTTTT	Trbv29		Trbj1-5	Trbc1
3	0.001184	CASSLGDSNERLFF	14	TGTGCCAGCAGCTTAGGGATTCCAACGAAAGATTATTTTC	Trbv3		Trbj1-4	Trbc1
3	0.001184	CAWSLTGQLYF	11	TGTGCCTGGAGCCTCACCGGGCAGCTCTACTTT	Trbv31		Trbj2-2	
3	0.001184	CASSQDNTEVFF	12	TGTGCCAGCAGCCAAGACAACACAGAAGTCTTCTT	Trbv5		Trbj1-1	Trbc1
3	0.001184	CASSLDSSYEQYF	13	TGTGCCAGCTCTCGACAGCTCTATGAACAGTACTTC	Trbv12-2		Trbj2-7	
3	0.001184	CASSLGTGEDTQYF	14	TGTGCAAGCAGCTTAGGGACAGGGAAAGACACCCAGTACTTT	Trbv16		Trbj2-5	
3	0.001184	CASSQEDRDTEVFF	12	TGTGCCAGCAGCCAAGAGGGACACAGAAGTCTTCTT	Trbv2		Trbj1-1	Trbc1
3	0.001184	CASSQDEQYF	10	TGTGCCAGCAGCCAAGATGAACAGTACTTC	Trbv2		Trbj2-7	
3	0.001184	CGARDTGSODYTF	12	TGTGGTCTAGGGATACAGGGTCCGACTACACCTTC	Trbv20		Trbj1-2	Trbc1
3	0.001184	CASSRDWGYEQYF	13	TGTGCCAGCAGCCGGACTGGGGTATGAACAGTACTTC	Trbv3		Trbj2-7	
3	0.001184	CASSQDRGQNTLYF	14	TGTGCCAGCAGCCAAGACAGGGTCAAAACACCTTGTACTTT	Trbv5		Trbj2-4	
3	0.001184	CASSQDSSYEQYF	13	TGTGCCAGCAGCCAAGACAGCTCTATGAACAGTACTTC	Trbv5		Trbj2-7	
14	0.001523	CASGDAGGTGQLYF	14	TGTGCCAGCGGTGATGCAGGGGCACCGGGCAGCTCTACTTT	Trbv12-2+Trbv13-2		Trbj2-2	
14	0.001523	CASSRDRGQDTQYF	14	TGTGCTAGCAGTAGAGACAGGGGCAAGACACCCAGTACTTT	Trbv17		Trbj2-5	
13	0.001414	CASSQQGANTEVFF	14	TGTGCCAGCAGCCAACAGGGGAAACACAGAAGTCTTCTT	Trbv5		Trbj1-1	Trbc1
12	0.001305	CASSRRANTEVFF	13	TGTGCCAGCTCTCGCAGGGCAAACACAGAAGTCTTCTT	Trbv12-2		Trbj1-1	Trbc1
11	0.001196	CASSLGTGGEQYF	13	TGTGCCAGCAGCTCGGGACAGGGGTGAACAGTACTTC	Trbv15		Trbj2-7	
10	0.001088	CASGDNSPLYF	11	TGTGCCAGCGGTGATAATTGCCCTCTACTTT	Trbv12-2+Trbv13-2		Trbj1-6	Trbc1
10	0.001088	CGARGHTEVFF	11	TGTGGTCTAGGGGACACACAGAAGTCTTCTT	Trbv20		Trbj1-1	Trbc1
10	0.001088	CASSRDTNTEVFF	13	TGTGCCAGCAGCCGGGACACAAACACAGAAGTCTTCTT	Trbv3		Trbj1-1	Trbc1
9	0.000979	CASSLDRGQNTLYF	15	TGTGCCAGCTCTCGACAGGGGCGCCAAAACACCTTGTACTTT	Trbv12-2		Trbj2-4	
9	0.000979	CASSDGTANTEVFF	14	TGTGCCAGCAGTGATGGGACAGCAAACACAGAAGTCTTCTT	Trbv13-3		Trbj1-1	Trbc1
9	0.000979	CGARDRANTEVFF	13	TGTGGTCTAGGGACAGGGCAAACACAGAAGTCTTCTT	Trbv20		Trbj1-1	Trbc1
8	0.000870	CTCSAQANTEVFF	13	TGCACCTGCAGTGCACAGGCAAACACAGAAGTCTTCTT	Trbv1		Trbj1-1	Trbc1
8	0.000870	CTCSADQGAETLYF	14	TGCACCTGCAGTGCAGATCAGGGTCAGAAACGCTGTATTT	Trbv1		Trbj2-3	
8	0.000870	CASSLDRDRGAEQFF	15	TGTGCAAGCAGCTTAGACCGGGACAGGGGTGCTGAGCAGTTCTC	Trbv16		Trbj2-1	
8	0.000870	CASSLDWGGAEQFF	14	TGTGCAAGCAGCTTAGACTGGGGGTGCTGAGCAGTTCTC	Trbv16		Trbj2-1	
8	0.000870	CASRQGAGQLYF	12	TGTGCCAGCAGACAGGGGCCGGCAGCTCTACTTT	Trbv19		Trbj2-2	
8	0.000870	CASSQDTNSODYTF	13	TGTGCCAGCAGCCAAGACACAAACTCCGACTACACCTTC	Trbv2		Trbj1-2	Trbc1
8	0.000870	CASSQQGAEVFF	12	TGTGCCAGCAGCCAACAGGGGCAGAAGTCTTCTT	Trbv5		Trbj1-1	Trbc1
7	0.000761	CTCSADQDTQYF	12	TGCACCTGCAGTGCAGATCAAGACACCCAGTACTTT	Trbv1		Trbj2-5	
7	0.000761	CASSLDSQNTLYF	13	TGTGCCAGCAGTTAGACAGTCAAAACACCTTGTACTTT	Trbv14		Trbj2-4	

MHC
DP

MHC
DP