

1 A magnetic pulse does not affect free-flight navigation

2 behaviour of a medium-distance songbird migrant in spring

3 Running Title:

4 No magnetic pulse effect on wild robins

5 Thiemo Karwinkel^{1,2,*}, Michael Winklhofer^{2,3}, Lars Erik Janner^{1,4}, Vera Brust¹, Ommo Hüppop¹, Franz
6 Bairlein^{1,5}, Heiko Schmaljohann^{1,2}

7

8 ¹ Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386 Wilhelmshaven,
9 Germany

10 ² Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg,
11 Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany

12 ³ Research Center for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Carl-von-
13 Ossietzky-Straße 9-11, 26129 Oldenburg, Germany

14 ⁴ Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469 Potsdam,
15 Germany

16 ⁵ Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany

17 * author of correspondence: Thiemo Karwinkel, thiemo.karwinkel@ifv-vogelwarte.de

18

19 **key words (3-6):** bird migration, magnetic map, magnetic-particle-based sensor, magnetoreception,
20 bird navigation, magnetite receptor

21 **Summary statement**

22 Magnetic pulse pre-treatment disturbs geomagnetic map usage of birds in lab environments.
23 However, our free-flying birds show no effect, suggesting geomagnetic map information is less
24 important in the natural environment.

25

26 **Abstract**

27 Current evidence suggests that migratory animals extract map information from the geomagnetic
28 field for true navigation. The sensory basis underlying this feat is elusive, but presumably involves
29 magnetic particles. A common experimental manipulation procedure consists of pre-treating animals
30 with a magnetic pulse. This aims at re-magnetising particles to alter the internal representation of
31 the external field prior to a navigation task. While pulsing provoked deflected bearings in laboratory
32 experiments, analogous studies with free-flying songbirds yielded inconsistent results. Here, we
33 pulsed European robins (*Erithacus rubecula*), being medium-distance migrants, at an offshore
34 stopover site during spring migration and monitored their free-flight behaviour with a regional-scale
35 tracking system. We found no pulse effect on departure probability, nocturnal departure timing, or
36 departure direction, in agreement with results on a long-distance migrant released at the same site
37 in autumn. This necessitates a reassessment of the importance of geomagnetic maps for migratory
38 decisions for free-flying birds.

39

40 **Introduction**

41 Migratory songbirds navigate to familiar breeding and wintering sites with fascinating accuracy and
42 precision, even over distances of several thousands of kilometres (e.g. Salewski et al. 2000; Holland
43 et al. 2013). One cue that plays a major role in this navigational task is the Earth's magnetic field.
44 Through systematic changes in inclination, declination and total intensity, the Earth's magnetic field
45 forms a predictable grid around the globe (Skiles 1985) that could be used as a geomagnetic map.
46 Thus, many studies on migrating birds have hypothesised that experienced birds use such a map to
47 perform true navigation, defined as the ability to return to a familiar migratory destination from an
48 unfamiliar location (reviewed in Holland 2014; Heyers et al. 2017). How birds detect geomagnetic
49 information is still unknown, but is widely believed to be based on small magnetic particles
50 innervated by sensory nerve endings of the trigeminal nerve (Kishkinev et al. 2013; Beason and
51 Semm 1996). While we still lack direct anatomical evidence for the postulated magnetic particles
52 (Curdt et al. 2022), their existence is supported by a number of behavioural studies that pre-treated
53 birds with a strong magnetic pulse (e.g. Wiltschko and Wiltschko 1995; Holland and Helm 2013). The

54 pulse is aimed at re-magnetising (Wiltschko et al. 1994) or re-arranging magnetic particles in the
55 receptor (Davila et al. 2005), producing an altered sensory output to the unchanged ambient
56 magnetic field. Thus, the magnetic pulse leads to an altered internal representation of the
57 geomagnetic field for the bird. Under the magnetic map hypothesis, the pulsed animal would
58 interpret such an altered magnetic field percept as a different location than present or as corrupted
59 signal. Indeed, pulsed songbirds mostly showed deflected orientations, not only when tested in
60 artificial orientation cages (Emlen-funnels; e.g. Wiltschko and Wiltschko 1995; Beason, Dussourd, and
61 Deutschlander 1995; Wiltschko et al. 1998) but also when tracked in free-flight in the wild (Holland et
62 al. 2009; Holland 2010; Holland and Helm 2013). Thereby, the magnetic pulse does not affect the
63 magnetic compass of the birds, because the sensor is most likely based on a radical-pair-based
64 mechanism containing no magnetic material (reviewed in Hore and Mouritsen 2016). Therefore, the
65 results of the pulse studies are consistent with a magnetic-particle-based sensor in a geomagnetic
66 map navigation context.

67 Using a regional high-throughput tracking system with unprecedented spatiotemporal resolution, we
68 recently performed a pulse study comprising of 140 individuals of a long-distance migrant songbird,
69 the northern wheatear (*Oenanthe oenanthe*, hereafter wheatear), on the offshore island of
70 Helgoland in the German Bight during their autumn stopover (Karwinkel et al. 2022). To our surprise,
71 pulsed birds and control birds turned out to be statistically indistinguishable in all migration-related
72 behavioural decisions we had monitored, i.e., departure directions, departure probability, nocturnal
73 departure timing, and consistency in flight direction over 50–100 km (Karwinkel et al. 2022). Taken all
74 previous results together, the most parsimonious explanation for the absence of a pulse effect is the
75 dispensability of magnetic map cues for the wheatear, at least at this offshore location. After all, the
76 stopover site was still several thousands of kilometres away from the migratory destination in Africa,
77 so magnetic map factors may not be essential for navigation at this particular part of the route. This
78 rationale is supported by a recent ring-recovery study presenting correlative evidence that migratory
79 birds use magnetic inclination angles as a cue when closing in on their target region (Wynn et al.
80 2022).

81 We consequently expanded our study to further explore the role of distance to final destination on
82 magnetic map navigation and repeated our pulsing study with the same methodology on a short to
83 medium distance migrant, the European robin (*Erithacus rubecula*, hereafter robin). During spring
84 stopover on Helgoland, robins are much closer to their migratory destination [some 50 to 1250 km],
85 in this case to their breeding sites (Dierschke et al. 2011), compared to wheatears in our former
86 study, whose destination was their African wintering grounds (Karwinkel et al. 2022). Importantly, in
87 an independently conducted study, free-flying robins have been reported to be affected by magnetic
88 pulse pre-treatment on spring migration (Holland 2010). However, evidence to date was based on a

89 sample size of only six treated and 13 control robins and a relatively short tracking range [maximum
90 ca. 5.5 km] at a mainland location. Moreover, control and experimental birds were not corrected for
91 physiological and environmental conditions (Holland 2010), meaning that important migratory
92 factors, like energy stores of the birds, timing within the year and weather conditions differed
93 between groups.

94 Consequently, here we investigate the response to the magnetic pulse of robins during spring
95 migration on the following four migratory traits: departure probability, departure timing, departure
96 direction and consistency in flight direction for the first 50–100 km after departure. We expect that
97 pulsing has an effect on how birds extract and interpret geomagnetic map information, which in turn
98 affects their decision of whether or not to depart, and if so, when and in what direction.

99

100 **Materials and methods**

101 *Ethics*

102 All work was conducted under the permission by the “Ministry of Energy, Agriculture, the
103 Environment, Nature and Digitalisation” of the federal state Schleswig-Holstein, Germany under
104 permission number V 244 – 16840/2019(41-4/19).

105

106 *Study site*

107 The experiment was performed on Helgoland (54°11' N, 07°53' E), which is a small (about 1 km²)
108 island in the North Sea (Fig. 1). The closest shorelines are on Wangerooge Island in the south (44 km)
109 and at St. Peter-Ording (48 km; near Tümlauer Koog) in the east-north-east (Fig. 1B). The shoreline of
110 the German Bight encompasses Helgoland in a section from about 17° (Sylt Island; 72 km) to 232°
111 (Borkum Island; ~ 104 km; Fig. 1B). Otherwise, Helgoland is surrounded by open sea, with the
112 Norwegian coast about 425 km to the north and the British coast about 500 km to the west (Fig. 1A).

113

114 *Study species*

115 During spring migration, robins regularly stop over on the island, with about 200 individuals per day
116 during peak passage from the end of March to the end of April (Dierschke et al. 2011). Robins are
117 solitary night migrants, so their migratory behaviour is independent of conspecifics (Schmaljohann
118 and Klinner 2020; Packmor et al. 2020; Dorka 1966). According to ring recoveries, robins passing
119 Helgoland in spring migrate to northern Germany, southern Scandinavia and the Baltic region (Fig.
120 1A; Bairlein et al. 2014; Dierschke et al. 2011). The proposed breeding area is therefore about 50 to

121 1250 km away from our study site. Radio-tracking data of migrating robins from Helgoland show a
122 mean departure direction of 90° (Klinner 2020). Robins are irregular breeders with maximum 1–2
123 pairs on Helgoland (Dierschke et al. 2011) and no breeding record in summer 2021 (J. Dierschke pers.
124 comm.). Consequently, all robins included in our experiments were migrants. We caught robins with
125 Helgoland funnel traps and mist nets between 24 March and 22 April 2021 throughout the day. Birds
126 were aged, according to Svensson (1992) and Jenni and Winkler (2020). Only second-calendar year
127 birds entered the experiment to exclude any potential age effects. Maximum wing chord of each
128 individual was measured to the nearest 0.5 mm (Svensson 1992).

129

130 *Bird housing*

131 After catching, birds were immediately transferred to individual cages (40 cm x 30 cm base, 40 cm
132 high) within the island station of the Institute of Avian Research “Vogelwarte Helgoland”, where they
133 received artificial light in the natural day-night rhythm. Birds were provided with *ad libitum* access to
134 water and food (mealworms, *Tenebrio molitor*, supplemented with fat-food [Fett-Alleinfutter Typ II
135 grün, Claus GmbH, Germany]) to allow for accumulation of fat, i.e. refuelling on energy stores. By
136 that, we ensured that all birds carried sufficient and comparable energy stores important for high
137 motivation to resume migration, as many studies have shown a significant positive correlation
138 between energy stores and departure probability (Schmaljohann and Eikenaar 2017; Klinner et al.
139 2020; Eikenaar, Karwinkel, and Hessler 2021).

140

141 *Experimental treatment with a magnetic pulse*

142 As night-migratory songbirds most likely decide to resume migration several hours before sunset
143 (Eikenaar et al. 2020), we conducted the experiment six hours before sunset to provide pulsed birds
144 with sufficient time to include the altered geomagnetic map percept into their migratory decision-
145 making process. Pulsed birds that did not directly depart in the first night after treatment can be
146 assumed to still have perceived an altered geomagnetic field over the following days, because former
147 studies demonstrated effects for about ten days after magnetic pulsing (Wiltschko et al. 2007;
148 Holland and Helm 2013). We conducted the experiments only on days with favourable migration
149 conditions (wind <8 m s⁻¹, no rain) to minimise weather-dependent effects on migratory decisions
150 (Erni et al. 2002; Packmor et al. 2020). On these days, at about seven hours before sunset, we divided
151 the housed robins into two equally-sized groups. To calculate the birds' energy stores (Kelsey,
152 Schmaljohann, and Bairlein 2020), we weighed them to the nearest 0.1 g and estimated their muscle
153 score (Bairlein 1994). We found no difference in energy stores between the treatment and control

154 group (Welch Two Sample t-test: $t_{78}=-0.852$, $p=0.315$), which implies comparable physiological states
155 between the groups.

156 Birds in the treatment group were exposed to a magnetic pulse of 0.1 T peak strength using the pulse
157 geometry and protocol detailed in Karwinkel et al. (2022). In brief, the pulse was delivered with a
158 small coil placed on the side of the beak and focused onto the middle part of the beak (Fig. 2), where
159 the putative magnetic-particle-based sensor is thought to be located (Heyers et al. 2017). In the
160 moment the pulse was fired, the birds were hand-held and their heads were fixed in a short piece of
161 tubing (Fig. 2A) to ensure that the application geometry of the pulse was the same for each bird (Fig.
162 2). The head of the bird pointed southwards and the magnetic field lines of the pulse were aligned
163 perpendicularly to the bird's head, with the magnetic North pole pointing towards the bird (Fig. 2B).
164 This perpendicular pulse field geometry was found to cause a significantly larger deflection of homing
165 pigeons on the day of treatment compared to the axial pulse geometry (Beason, Wiltschko, and
166 Wiltschko 1997).

167 The magnetic pulse was produced by a coil with a 5 cm diameter and 15 x 15 windings of 1 mm
168 copper wire connected to a small generator ("Beck-Pulser", magnetic pulse generator, Ing. Büro L.
169 Albrecht, Heist, Germany). The magnetic field reached its maximum after 1.5 ms and decayed within
170 8 ms (Fig. S1). We ensured functionality of the pulse application at every experimental day by
171 controlling peak pulse intensity with a magnetometer (Gaußmeter HGM09s, MAGSYS Magnet
172 Systeme GmbH, Dortmund, Germany). The control group experienced the same handling procedure,
173 but the magnetic pulse was replaced by a short 'click' sound produced by tapping a finger on the
174 structure, resembling the sound of the magnetic pulser at firing (Fig. 2A). Afterward either treatment,
175 we attached a radio-transmitter to the bird and released it before processing the next bird. We
176 performed this experimental procedure on 31st of March with 12 birds, on 20th of April with 44 birds
177 and on 25th of April 2021 with 24 birds ($n_{\text{total}}=80$). Each time, half of the birds entered the control
178 group and the other half the treatment group.

179

180 *Radio-tracking free-flight behaviour*

181 Birds were fitted with radio-transmitters (NTQB-2, Lotek Wireless Inc., Canada; burst intervals
182 between 2.3 and 5.3 seconds) via individually adjusted leg-loop harnesses (Naef-Daenzer 2007). The
183 total weight of the radio-transmitters including harness was about 0.31 g, which did not exceed 2.0%
184 of the bird's body mass (median: 1.8 %) and is therefore well below the 3–5% recommended
185 threshold (Kenward 2001). To track the behaviour of the birds in free flight, we used an automated
186 radio-receiving system on Helgoland (Müller et al. 2018; Karwinkel et al. 2022). This system consists
187 of four SensorGnome receivers (www.sensorgnome.org) at three sites on Helgoland, connected to 16

188 radially aligned antennas (6-element Yagi antennas, Vårgårda Radio AB, Sweden), ensuring a radial
189 resolution of 22.5° (Fig. S2A). Further, the German Bight is equipped with 40 comparable automated
190 radio-receiving stations (Fig. 2B, Brust et al. 2019; Karwinkel et al. 2022), which allowed us to track
191 the birds passing the shoreline of the German Bight after departure from Helgoland. All stations are
192 part of the Motus Wildlife Tracking System; see <http://www.motus.org> and Taylor et al. (2017). From
193 the radio-tracking data, as received from Motus, we determined (I) whether the bird stayed or
194 departed in the first night after the treatment (departure probability), (II) the departure timing within
195 the night, (III) departure direction from Helgoland and (IV) the consistency of this direction towards
196 the shoreline (Fig. S2B), using an algorithm written by the authors, in a replicable and blinded
197 approach to avoid any observer bias. For further details about the radio tracking data analysis see the
198 supplemental material in Müller, Rüppel, and Schmaljohann (2018) and Packmor et al. (2020).

199

200 *Weather data*

201 We considered weather parameters at two time points: First, weather parameters were assigned to
202 the night after release at 200 minutes after sunset, which was the median departure timing in a
203 former study with free-flying robins on Helgoland (Packmor et al. 2020), and second, for the
204 individual time of actual departure.

205 Precipitation [mm] and cloud cover [eighths] were provided by a local weather station on the island
206 operated by the German Weather Service (DWD). Airspeed flow assistance (hereafter wind
207 assistance) [m s^{-1}] for a flight direction of 41° (Klinner 2020), was calculated using NCEP reanalysis
208 data (NOAA, Boulder, CO, USA, <http://www.cdc.noaa.gov/cdc/data.ncep.reanalysisderived.html>;
209 Kemp, Shamoun-Baranes, et al. 2012; Kemp, van Loon, et al. 2012). Wind assistance has the
210 advantage of including multiple relevant wind parameters (e.g., side winds, tailwind component) as
211 well as the birds' own airspeed in a single unit.

212

213 *Statistics*

214 All statistical analyses were performed using R 4.0.3 statistical software (R Core Team 2019). To
215 assess whether our treatment affected the birds' departure probability in the first night [departing or
216 not departing, binomial], we ran a generalised linear model (GLM) including the following predictor
217 variables: treatment condition [experiment/control; categorical], wind assistance [continuous], cloud
218 cover [categorical] and energy stores [continuous]. Here, weather parameters were considered from
219 200 minutes after sunset for the night after release (see section above). We z-transformed all
220 numeric variables. Since model assumptions were violated, as detected by goodness of fit plots
221 (Korner-Nievergelt et al. 2015), and since we did not find a transformation to solve this problem, we

222 had to discard the model and ultimately used a chi-square test to assess the potential difference in
223 the departure probability between the control and experimental group.

224 Because nights were getting shorter during the course of the experiment (night duration of
225 first experiment: 664 min; night duration of last experiment: 558 min), to determine an individual's
226 departure timing, we calculated the proportion of night at departure for each individual separately.
227 To do so, an individual's departure time [minutes after sunset] was divided by the night length in the
228 night of departure [minutes]. To explain variation in the departure timing [log-transformed], we
229 applied a linear model (LM) including the following predictor variables: treatment condition
230 [experiment/control; categorical], wind assistance [continuous], cloud cover [categorical], day of year
231 of release [Julian Day, see above], and energy stores [continuous] and all two-way interactions with
232 the treatment condition (all numerical variable z-transformed). Weather parameters and day of year
233 were assigned for the individual departure timing. Predictor variables were found to be linearly
234 independent (VIF < 2; Babak 2013). Since none of the two-way interactions came out as significant,
235 they were removed from the final model. The residual analyses did not indicate violation of model
236 assumptions (see R-Code in the supplemental for details).

237 To compare the circular variables (departure direction, consistency in flight direction)
238 between the groups, we applied circular statistics using the R packages 'CircStats' (Lund and
239 Agostinelli 2012) and 'circular' (Lund and Agostinelli 2013). Due to the arrangement of the radio-
240 tracking antennas on Helgoland (Fig. S2A), our directional data was grouped. Since the Mardia-
241 Watson-Wheeler test randomly breaks ties (in our case the groups), we repeated the test 10,000
242 times to exclude any bias due to random tie-breaking, and then provided the median of the test
243 parameters (see R-Code in the supplemental for details).

244 **Results and Discussion**

245 *Effects on the four migratory traits*

246 Departure probability was 83% in the control group (33 out of 40 robins departed in the first night
247 after release) and 90% in the magnetic-pulse treated group (36 out of 40 departed in the first night,
248 Fig. 3A, Table S1). Our results thus fail to demonstrate an effect of the magnetic pulse, supposed to
249 alter geomagnetic map information, on the motivation to migrate as departure probability between
250 the groups did not differ (Pearson's χ^2 -test: $\chi^2_1=0.42$, $p=0.52$). A former study demonstrated that
251 artificially altered geomagnetic field information on caged birds indeed affected nocturnal migratory
252 restlessness (Bulte et al. 2017), which is a direct proxy for the departure probability in the wild
253 (Eikenaar et al. 2014). However, while Bulte et al. (2017) altered the geomagnetic field consistent
254 with a meaningful spatiotemporal occurrence of the study species, we corrupted the sensor of the
255 robins with a magnetic pulse in an unknown way. This makes it impossible to predict, whether the
256 field percept corresponds to a meaningful location to our birds or not. Nevertheless, the study of
257 Bulte et al. (2017) shows that changes in geomagnetic cues affect the motivation to depart in caged
258 birds, but our results and the former ones of Karwinkel et al. (2022) did not verify this for free-flying
259 songbirds.

260 Regarding nocturnal departure timing, robins in the control group had a median departure
261 after 15% of the night length had elapsed, and robins of the magnetic-pulse treated group after 13%
262 had elapsed (Fig. 3B). We found no effects of the treatment condition ($p=0.64$; Fig. 3B) and day of
263 year ($p=0.64$) on nocturnal departure timing (Table S2). Increasing energy stores ($p=0.03$) and wind
264 assistance ($p < 0.001$), but decreasing cloud cover ($p=0.002$), advanced nocturnal departure timing
265 (Table S2), which is consistent with the natural departure behaviour of free-flying birds, i.e., without
266 caging and feeding (e.g. Packmor et al. 2020). This reflects that we can confidently assume that our
267 experimental procedure does not alter the natural migration behaviour of robins in this study.

268 Departure directions from Helgoland of both groups were significantly oriented to the east
269 from Helgoland (Fig. 3C) and did not differ from each other (repeated Mardia-Watson-Wheeler test:
270 $W_2=0.33$, $p=0.85$). The robins consistently maintained their flight direction from Helgoland of about
271 50–100km towards the shoreline (Fig. 3D) and their consistency did not differ between the groups
272 (Watson-Williams test: $F_{1,64}=0.04$, $p=0.842$). Consequently, departure directions from Helgoland are
273 representative for the sustained migratory flight direction during the night. Therefore, we are
274 convinced that there was no biologically significant effect of the magnetic pulse on departure
275 direction. This is in stark contrast to the findings of (Holland 2010), who found a 90° anticlockwise
276 shift in departure direction after a magnetic pulse applied to the same species, also during spring,
277 albeit with a fifth of our sample size.

278

279 *Is geomagnetic map information dispensable for migratory birds?*

280 Former magnetic pulse studies (e.g. Wiltschko and Wiltschko 1995; Holland and Helm 2013)
281 suggested that birds use geomagnetic map information obtained via a magnetic-particle-based
282 sensor. This is in contrast to our findings where, despite large statistical power to resolve effects if
283 present, pulse pre-treatment did not affect migratory behaviour and decisions, neither in robins as
284 reported here, nor in our parallel study on wheatears (Karwinkel et al. 2022). We can safely assume
285 that our pulse was strong enough to affect the putative magnetite-based magnetoreceptor and to
286 provoke altered magnetic field percepts persisting over the observation time. It is also evident that
287 the departure directions of our tracked birds are seasonally appropriate. However, a key
288 requirement for the magnetic pulse to have an effect on migratory decisions is that birds rely on
289 magnetic map information for their migratory decisions. In former studies, this was assumed,
290 although it was mostly unknown before the experiments were performed. This prompts rethinking of
291 the necessity of geomagnetic map cues for the migratory decisions considered in our study.

292 The assumed accuracy of a geomagnetic map is supposed to be in the order of 10–30 km
293 (Mouritsen 2018). As all robins left Helgoland and migrated at least beyond the shoreline of the
294 German Bight, their breeding areas are most likely far more than 50–100 km away from the island.
295 Thus, the spatial resolution of the geomagnetic map information is deemed sufficient to guide the
296 robins from Helgoland towards their breeding areas (Mouritsen 2018). However, during which parts
297 of their migratory journey birds rely on geomagnetic map information for navigation and where they
298 may dispense with it, is currently unclear. Former studies that found an effect might have been
299 conducted at locations critical for geomagnetic map navigation, for example, if the birds were in the
300 homing range of the migratory goal (Holland 2010; Holland and Helm 2013). Birds stopping over on
301 Helgoland may be in a different phase of migration, e.g., long-distance phase. Thus, the importance
302 of geomagnetic map cues for deciding in which direction to continue migration might differ between
303 the studies in general and might be rather low in our case in particular.

304 It appears most likely that birds (both pulsed and untreated), independent of their migration
305 context, rely primarily on non-magnetic map cues or no map cues at all in places like Helgoland. Of all
306 cues thought to be important for navigation in migrants, landmarks and similar visual patterns are
307 considered to be particularly important for songbirds (Mouritsen 2018). Since most migratory
308 songbirds show weak faithfulness to their stopover sites (Catry et al. 2004), which is especially true
309 for Helgoland (Dierschke 2002), our birds were unlikely to have former experience about the specific
310 location of Helgoland. However, general landmarks in the German Bight, such as the shoreline or
311 artificially illuminated areas, might guide them towards a given location. On the other hand,

312 comparable landmarks, e.g., mountain ridges, rivers, Lake Constance, streets or cities, were also
313 present and even far closer in the studies reporting pulse effects (Holland 2010; Holland and Helm
314 2013). Therefore, it is not obvious why such landmarks would be more important at our test site than
315 at others. It remains unclear why free-flying birds in Holland (2010) and Holland and Helm (2013)
316 responded to the magnetic pulse with a deflected departure direction, but not in our present study
317 or in Karwinkel et al. (2022).

318 The contradictory findings on geomagnetic map information in birds discussed above warrant
319 rethinking the perception and use of geomagnetic maps for migration decisions in a sensory and
320 ecological context. To better understand or even resolve this contradiction, a magnetic pulse study is
321 needed where we know with certainty that birds rely on and indeed use geomagnetic map cues, as
322 shown in Chernetsov, Kishkinev, and Mouritsen (2008) or Kishkinev et al. (2015). Such a study would
323 ultimately link the geomagnetic map use and to a sensory system based on magnetic particles.

324

325 *Do birds need a magnetic-particle-based mechanism for geomagnetic map navigation?*

326 If an experiment like the one suggested above does not find an effect of a magnetic pulse, we
327 carefully question that a magnetic-particle-based mechanism is the sensory mechanism required for
328 geomagnetic map navigation. Of the three geographic properties of the Earth's magnetic field
329 (inclination, declination, and total intensity), the radical-pair-based mechanism of magnetoreception
330 might be able to sense at least inclination and declination (declination only in combination with a
331 celestial compass). Whereas there is direct evidence for the use of declination (Chernetsov et al.
332 2017), and partly also for inclination (Wiltschko and Wiltschko 1992; Wynn et al. 2022) as
333 geomagnetic cues, convincing evidence for the biological importance of magnetic intensity for
334 navigation is currently lacking. This at least raises the cautious question of whether birds need a
335 magnetic-particle-based mechanism for geomagnetic navigation and therefore whether such a
336 sensor exists.

337 **Acknowledgements**

338 We thank the team at the island station of the Institute of Avian Research on Helgoland for their
339 support during fieldwork, especially Sven Hessler, Jochen Dierschke and Klaus Müller. We thank
340 Mario de Neidels, Thomas Mertens, Heinz-Hinrich Blikslager and the entire team behind the Motus
341 wildlife tracking system for their invaluable technical support. We also thank Dario Allenstein for the
342 independent radio tracking data analysis, Zephyr Züst for language editing and Miriam Liedvogel for
343 helpful comments.

344 **Competing interests**

345 No competing interests declared.

346 **Authors' contributions**

347 H.S., F.B., and M.W. conceptualisation and methodology; T.K., and E.J.: field work; T.K., E.J., and H.S.:
348 data analyses and statistics; H.S., O.H., and V.B.: Motus radio-tracking system; T.K. and H.S.: writing-
349 original draft; all: revising and editing of the manuscript; H.S.: supervision. All authors gave their final
350 approval for publication and agree to be held accountable for the work performed therein.

351 **Funding**

352 Funding was granted from the Deutsche Forschungsgemeinschaft (DFG) within the
353 Sonderforschungsbereich (SFB) 1372 'Magnetoreception and Navigation in Vertebrates' (project
354 number 395940726) to H.S. and F.B employing T.K. and to M.W. Radio receiving station on the
355 islands were financially supported by the DFG to H.S. (SCHM 2647/3-1, SCHM 2647/4-1, SCHM
356 2647/7-1). Mainland receivers were financially supported by the Federal Agency for Nature
357 Conservation (BfN) with funds from the Federal Ministry for the Environment, Nature Conservation
358 and Nuclear Safety (BMU), grant nos. 351582210A and 351986140A to O.H.

359 **Data availability**

360 The datasets and codes supporting this article have been uploaded as part of the supplementary
361 material.

362

363 **References**

364 Babak, N. 2013. 'usdm: Uncertainty analysis for species distribution models.', *R package version 1.1-*
365 *12.*.: <http://CRAN.R-project.org/package=usdm>.

366 Bairlein, F. 1994. *Manual of field methods. European-African Songbird Migration*. Germany: Institut
367 für Vogelforschung, Wilhelmshaven.

368 Bairlein, F., J. Dierschke, V. Dierschke, V. Salewski, O. Geiter, K. Hüppop, U. Köppen, and W. Fiedler.
369 2014. *Atlas des Vogelzugs. Ringfunde deutscher Brut- und Gastvögel*. Germany: AULA Verlag,
370 Wiebelsheim.

371 Beason, R. C., N. Dussourd, and M. E. Deutschlander. 1995. 'Behavioural evidence for the use of
372 magnetic material in magnetoreception by a migratory bird', *The Journal of Experimental
373 Biology*, 198: 141-46.

374 Beason, R. C., and P. Semm. 1996. 'Does the avian ophthalmic nerve carry magnetic navigational
375 information?', *The Journal of Experimental Biology*, 199: 1241-44.

376 Beason, R. C., R. Wiltschko, and W. Wiltschko. 1997. 'Pigeon Homing: Effects of Magnetic Pulses on
377 Initial Orientation', *The Auk*, 114: 405-15.

378 Brust, V., B. Michalik, and O. Hüppop. 2019. 'To cross or not to cross - thrushes at the German North
379 Sea coast adapt flight and routing to wind conditions in autumn', *Mov Ecol*, 7: 32.

380 Bulte, M., D. Heyers, H. Mouritsen, and F. Bairlein. 2017. 'Geomagnetic information modulates
381 nocturnal migratory restlessness but not fueling in a long distance migratory songbird',
382 *Journal of Avian Biology*, 48: 75-82.

383 Catry, P., V. Encarnacão, A. Araújo, P. Fearon, A. Fearon, M. Armelin, and P. Delaloye. 2004. 'Are long-
384 distance migrant passerines faithful to their stopover sites?', *Journal of Avian Biology*, 35:
385 170-81.

386 Chernetsov, N., D. Kishkinev, and H. Mouritsen. 2008. 'A long-distance avian migrant compensates
387 for longitudinal displacement during spring migration', *Curr Biol*, 18: 188-90.

388 Chernetsov, N., A. Pakhomov, D. Kobylkov, D. Kishkinev, R. A. Holland, and H. Mouritsen. 2017.
389 'Migratory Eurasian Reed Warblers Can Use Magnetic Declination to Solve the Longitude
390 Problem', *Curr Biol*, 27: 2647-51 e2.

391 Curdt, F., K. Haase, L. Ziegenbalg, H. Greb, D. Heyers, and M. Winklhofer. 2022. 'Prussian Blue
392 Technique is Prone To Yield False Negative Results In Magnetoreception Research', *Preprint
393 doi: 10.21203/rs.3.rs-1324083/v1*.

394 Dierschke, J., V. Dierschke, K. Hüppop, O. Hüppop, and K.F. Jachmann. 2011. *Die Vogelwelt der Insel
395 Helgoland* (OAG Helgoland, Missing-Link-Versandbuchhandlung, Bremen: Helgoland).

396 Dierschke, V. 2002. 'Kaum ein Vogel kehrt zurück: geringe Rastplatztreue von ziehenden Landvögeln
397 zur Nordseeinsel Helgoland', *Vogelwarte*, 41: 190-95.

398 Dorka, V. 1966. 'Das jahres- und tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach
399 Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis)', *Ornithol Beob*, 63: 165-223.

400 Eikenaar, C., T. Karwinkel, and S. Hessler. 2021. 'Changes in fat mass affect the motivation to migrate
401 in northern wheatears', *Journal of Avian Biology*, 52.

402 Eikenaar, C., T. Klinner, K. L. Szostek, and F. Bairlein. 2014. 'Migratory restlessness in captive
403 individuals predicts actual departure in the wild', *Biology Letters*, 10.

404 Eikenaar, C., J. Schaefer, S. Hessler, F. Packmor, and H. Schmaljohann. 2020. 'Diel variation in
405 corticosterone and departure decision making in migrating birds', *Hormones and behavior*,
406 122: 104746.

407 Erni, B., F. Liechti, L.G. Underhill, and B. Bruderer. 2002. 'Wind and rain govern the intensity of
408 nocturnal bird migration in central Europe - a log-linear regression analysis', *Ardea*, 90: 155-
409 66.

410 Heyers, D., D. Elbers, M. Bulte, F. Bairlein, and H. Mouritsen. 2017. 'The magnetic map sense and its
411 use in fine-tuning the migration programme of birds', *J Comp Physiol A Neuroethol Sens
412 Neural Behav Physiol*, 203: 491-97.

413 Holland, R. A. 2010. 'Differential effects of magnetic pulses on the orientation of naturally migrating
414 birds', *J R Soc Interface*, 7: 1617-25.

415 Holland, R. A., and B. Helm. 2013. 'A strong magnetic pulse affects the precision of departure
416 direction of naturally migrating adult but not juvenile birds', *J R Soc Interface*, 10: 20121047.

417 Holland, R. A., K. Thorup, A. Gagliardo, I. A. Bisson, E. Knecht, D. Mizrahi, and M. Wikelski. 2009.
418 'Testing the role of sensory systems in the migratory heading of a songbird', *J Exp Biol*, 212:
419 4065-71.

420 Holland, R.A. 2014. 'True navigation in birds: from quantum physics to global migration', *Journal of
421 Zoology*, 293: 1-15.

422 Holland, Richard, Caterina Filannino, and Anna Gagliardo. 2013. 'A magnetic pulse does not affect
423 homing pigeon navigation: a GPS tracking experiment', *Journal of Experimental Biology*, 216:
424 2192-200.

425 Hore, P. J., and H. Mouritsen. 2016. 'The Radical-Pair Mechanism of Magnetoreception', *Annu Rev
426 Biophys*, 45: 299-344.

427 Jenni, L., and R. Winkler. 2020. *Moult and Aging of European passerines* (Bloomsbury: London).

428 Karwinkel, T., M. Winklhofer, P. Christoph, D. Allenstein, O. Hüppop, V. Brust, F. Bairlein, and H.
429 Schmaljohann. 2022. 'No apparent effect of a magnetic pulse on free-flight behaviour in
430 northern wheatears (Oenanthe oenanthe) at a stopover site', *Journal of The Royal Society
431 Interface*, 19: 20210805.

432 Kelsey, N., H. Schmaljohann, and F. Bairlein. 2020. 'A handy way to estimate lean body mass and fuel
433 load from wing length - A quantitative magnetic resonance data approach', *Ringing &
434 Migration*, 34: 8-24.

435 Kemp, M. U., J. Shamoun-Baranes, E. E. van Loon, J. D. McLaren, A. M. Dokter, and W. Bouten. 2012.
436 'Quantifying flow-assistance and implications for movement research', *J Theor Biol*, 308: 56-
437 67.

438 Kemp, M.U., E. van Loon, J. Shamoun-Baranes, and W. Bouten. 2012. 'RNCEP: global weather and
439 climate data at your fingertips', *Methods in Ecology and Evolution*, 3: 65-70.

440 Kenward, R.E. 2001. *A Manual for Wildlife Radio Tagging* (Academic Press: London, San Diego).

441 Kishkinev, D., N. Chernetsov, D. Heyers, and H. Mouritsen. 2013. 'Migratory reed warblers need
442 intact trigeminal nerves to correct for a 1,000 km eastward displacement', *PLoS One*, 8:
443 e65847.

444 Kishkinev, D., N. Chernetsov, A. Pakhomov, D. Heyers, and H. Mouritsen. 2015. 'Eurasian reed
445 warblers compensate for virtual magnetic displacement', *Curr Biol*, 25: R822-4.

446 Klinner, T. 2020. 'What's the difference? Migration behaviour of long- and medium-distance
447 migratory songbirds. PhD-Thesis, University of Oldenburg, Germany.'

448 Klinner, T., J. Buddemeier, F. Bairlein, and H. Schmaljohann. 2020. 'Decision-making in migratory
449 birds at stopover: an interplay of energy stores and feeding conditions', *Behavioral Ecology
450 and Sociobiology*, 74: 1-14.

451 Korner-Nievergelt, F., T. Roth, S. von Felten, J. Guélat, B. Almasi, and P. Korner-Nievergelt. 2015.
452 *Bayesian data analysis in ecology using linear models with R, BUGS, and Stan* (Elsevier:
453 London).

454 Lund, U., and C. Agostinelli. 2012. 'CircStats: Circular Statistics, from 'Topics in Circular Statistics'', *R
455 package version 0.2-4*: <http://www.CRAN.R-project.org/package=CircStats>.

456 ——. 2013. 'circular: Circular Statistics, R package version 0.4-7': <http://www.CRAN.R-project.org/package=circular>.

457

458 Mouritsen, H. 2018. 'Long-distance navigation and magnetoreception in migratory animals', *Nature*,
459 558: 50-59.

460 Müller, F., C. Eikenaar, Z.J. Crysler, P.D. Taylor, and H. Schmaljohann. 2018. 'Nocturnal departure
461 timing in songbirds facing distinct migratory challenges', *Journal of Animal Ecology*, 87: 1102-
462 15.

463 Müller, F., G. Rüppel, and H. Schmaljohann. 2018. 'Does the length of the night affect the timing of
464 nocturnal departures in a migratory songbird?', *Animal Behavior*, 141: 183-94.

465 Naef-Daenzer, B. 2007. 'An allometric function to fit leg-loop harnesses to terrestrial birds', *Journal of
466 Avian Biology*, 38: 404-07.

467 Packmor, F., T. Klinner, B. K. Woodworth, C. Eikenaar, and H. Schmaljohann. 2020. 'Stopover
468 departure decisions in songbirds: do long-distance migrants depart earlier and more
469 independently of weather conditions than medium-distance migrants?', *Movement Ecology*,
470 8: 1-14.

471 **R Core Team. 2019. 'A language and environment for statistical computing.'**

472 Salewski, V., F. Bairlein, and B. Leisler. 2000. 'Recurrence of some palaearctic migrant passerine
473 species in West Africa', *Ringing & Migration*, 20: 29-30.

474 Schmaljohann, H., and C. Eikenaar. 2017. 'How do energy stores and changes in these affect
475 departure decisions by migratory birds? – A critical view on stopover ecology studies and
476 some future perspective', *Journal of Comparative Physiology A*, 203: 411-29.

477 Schmaljohann, H., and T. Klinner. 2020. 'A quasi-experimental approach using telemetry to assess
478 migration-strategy-specific differences in the decision-making processes at stopover', *BMC
479 Ecology*, 20: 36.

480 Skiles, Durward D. 1985. 'The geomagnetic field its nature, history, and biological relevance.' in,
481 *Magnetite biomineralization and magnetoreception in organisms* (Springer).

482 Svensson, L. 1992. *Identification guide to European passerines* (BTO).

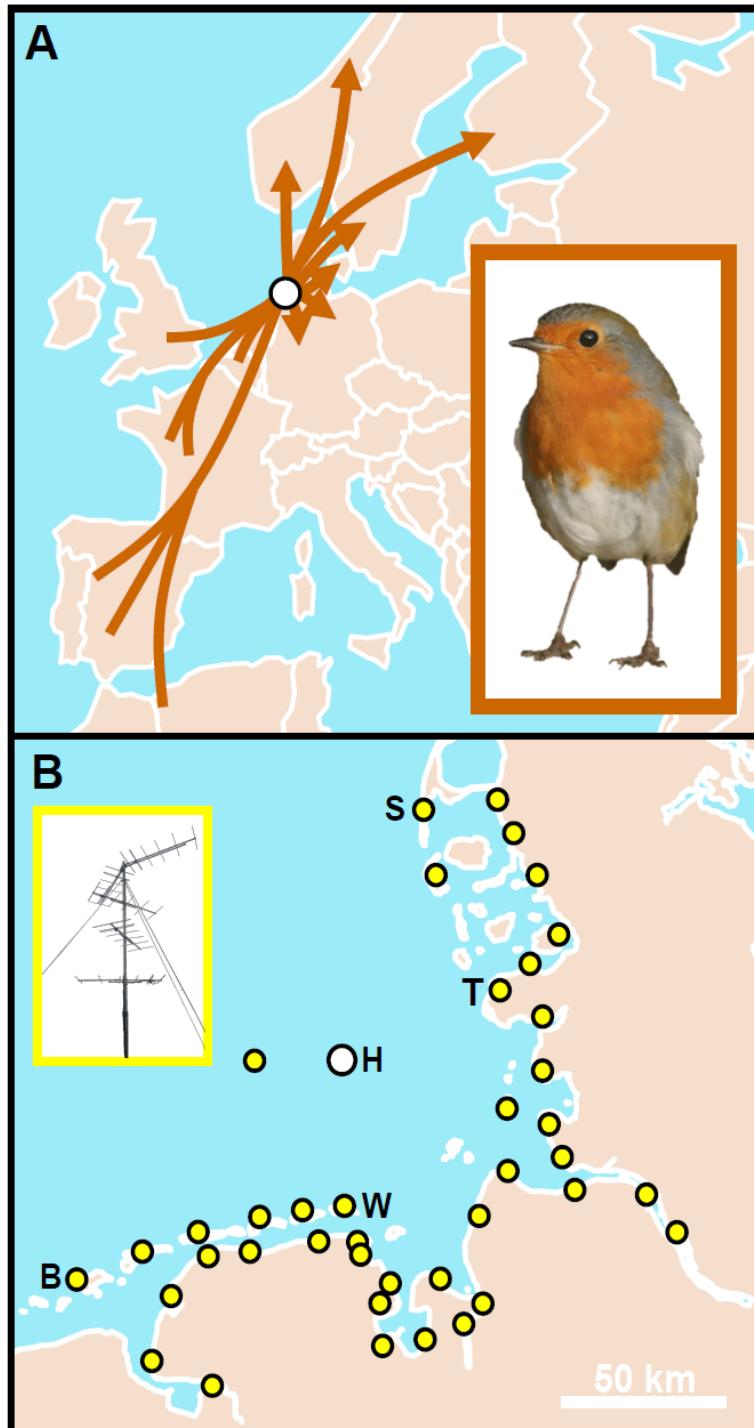
483 Taylor, P. D., T. Crewe, S. Mackenzie, D. Lepage, Y. Aubry, Z. Crysler, G. Finney, C. Francis, C.
484 Guglielmo, and D. Hamilton. 2017. 'The Motus Wildlife Tracking System: a collaborative
485 research network to enhance the understanding of wildlife movement', *Avian Conservation
486 and Ecology*, 12: 8.

487 Wiltschko, W., H. Ford, U. Munro, M. Winklhofer, and R. Wiltschko. 2007. 'Magnetite-based
488 magnetoreception: the effect of repeated pulsing on the orientation of migratory birds', *J
489 Comp Physiol A Neuroethol Sens Neural Behav Physiol*, 193: 515-22.

490 Wiltschko, W., U. Munro, R. C. Beason, H. Ford, and R. Wiltschko. 1994. 'A magnetic pulse leads to a
491 temporary deflection in the orientation of migratory birds', *Experientia*, 50: 697-700.

492 Wiltschko, W., U. Munro, H. Ford, and R. Wiltschko. 1998. 'Effect of a magnetic pulse on the
493 orientation of silvereyes, *zosterops l. lateralis*, during spring migration', *J Exp Biol*, 201 (Pt
494 23): 3257-61.

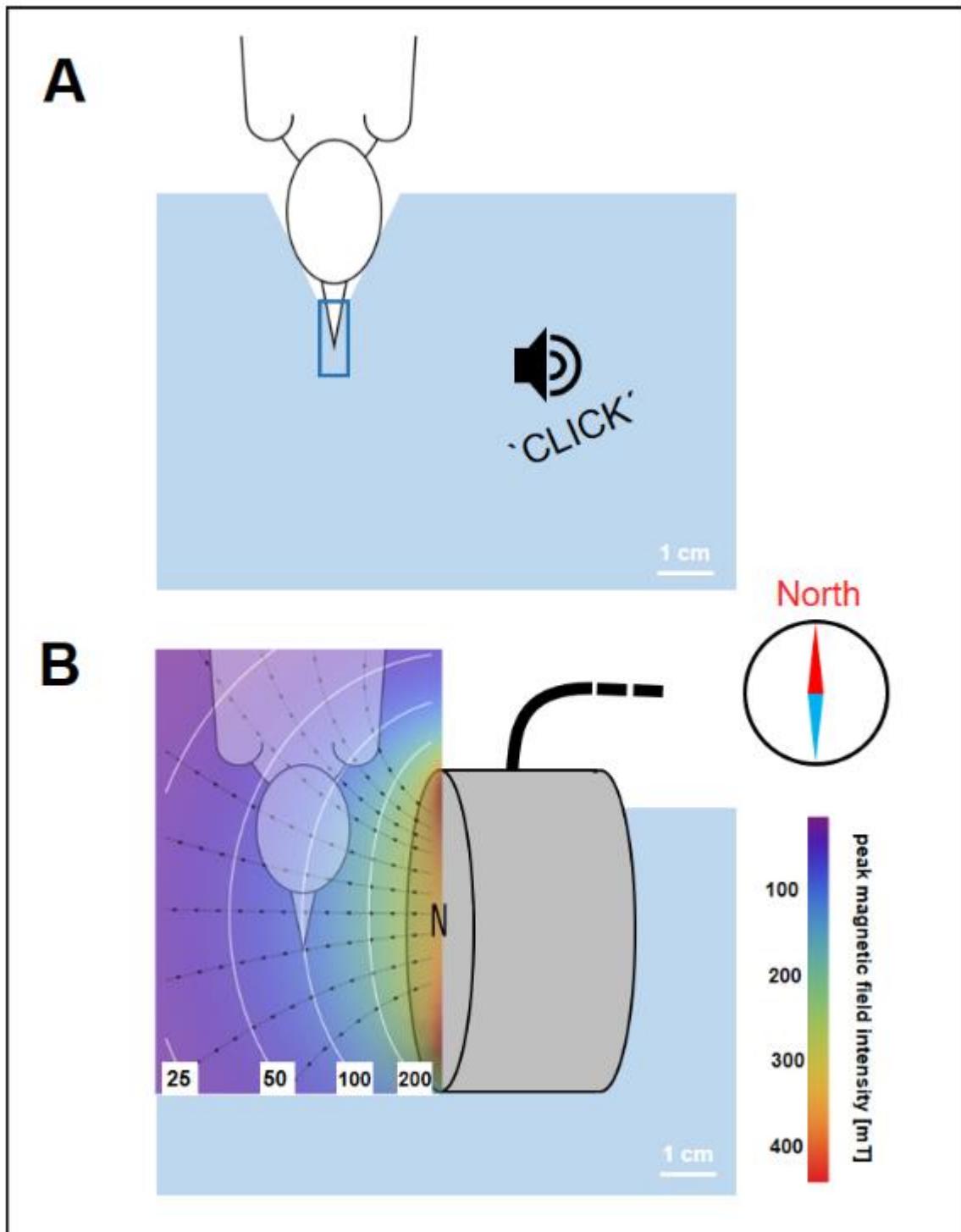
495 Wiltschko, W., and R. Wiltschko. 1992. 'Migratory orientation: Magnetic compass orientation of
496 Garden Warblers (*Sylvia borin*) after a simulated crossing of the magnetic equator', *Ethology*,
497 91: 70-74.


498 ——. 1995. 'Migratory orientation of European robins is affected by the wavelength of light as well
499 as by a magnetic pulse', *Journal of Comparative Physiology A*, 177: 363-69.

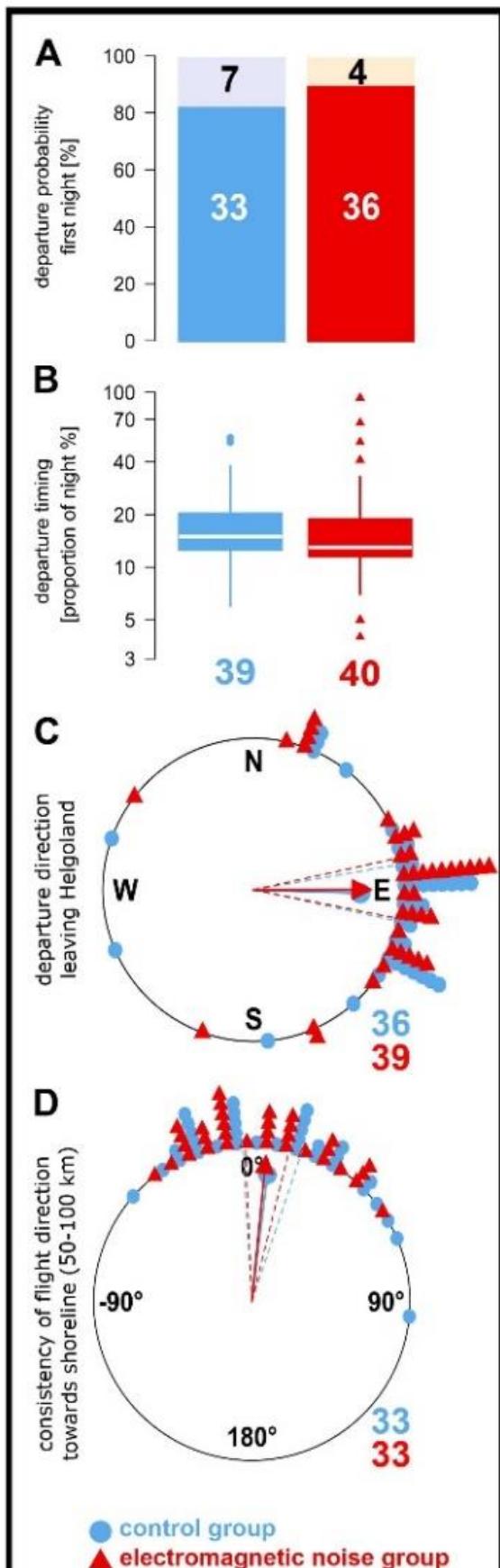
500 Wynn, J., O. Padget, H. Mouritsen, J. Morford, P. Jaggers, and T. Guilford. 2022. 'Magnetic stop signs
501 signal a European songbird's arrival at the breeding site after migration', *Science*, 375: 446-
502 49.

503

504 **Figures**


505

506


507 **Figure 1. Study area in the context of European robin (*Erithacus rubecula*) migration and radio-**
508 **tracking array. (A)** Estimated migration routes of European robins passing Helgoland (H) on spring
509 migration, based on ring recoveries. **(B)** Radio tracking array in the German Bight, with every dot
510 representing a radio receiving station (example shown in the inset). H-Helgoland; B-Borkum; W-
511 Wangerooge; T-Tümlauer Koog; S-Sylt.

512

513

514 **Figure 2. Control and experimental treatment with a magnetic pulse. (A)** While hand-holding the
515 bird, its head was gently fixed against an indentation on a styrofoam block, with its beak inserted in a
516 small plastic tube (blue rectangle). Control birds experienced just a short 'click' sound. **(B)** Birds in the
517 experimental group were similarly hand-held, but experienced a magnetic pulse from a coil (grey
518 cylinder). White lines on the heat map show isolines of peak magnetic field intensity. Black lines are
519 selected magnetic field lines. Figure adopted from Karwinkel et al. (2022).

521 **Figure 3. Effect of a magnetic pulse on four migratory traits in free-flying European robins**
522 **(*Erythacus rubecula*) during spring migration.** Numbers indicate sample sizes per group. Sample sizes
523 decreased in sequence as not every trait could be characterised for every bird, for details see
524 methods. **(A)** Departure probability as proportion of birds departing on the first night after the
525 release from Helgoland (white numbers, lower bar solid colour) or staying for the first night (black
526 numbers, upper bar transparent colour). **(B)** Nocturnal departure timing as proportion of the night at
527 departure for all birds. Control: 1st quartile: 13%, median: 15%, 3rd quartile: 21%, range: 6–55%.
528 Treatment: 1st quartile: 12%, median: 13%, 3rd quartile: 19%, range: 4–93%). **(C)** Initial departure
529 direction from Helgoland. Control: Rayleigh-test: $r=0.77$, $p < 0.001$, mean: 92° . Treatment: Rayleigh-
530 test: $r=0.78$, $p < 0.001$, mean: 90° . **(D)** The consistency of flight direction after departure from
531 Helgoland until passage at the shoreline of the German Bight (50–100 km), given as the directional
532 deviation between departure direction from Helgoland and passage location site on the shoreline
533 (Fig. 1B, see methods for more details). Control: Rayleigh-test: $r=0.856$, $p < 0.001$, mean: 7° .
534 Treatment: Rayleigh-test: $r=0.919$, $p < 0.001$, mean: 6° . Data points in the circular plots are shifted
535 slightly off-centre by $<5^\circ$ to better distinguish the data of the corresponding groups.