

1 **Dynamic Landscapes of tRNA Transcriptomes and**
2 **Translatomes in Diverse Mouse Tissues**

3

4 Peng Yu^{1,2,#}, Siting Zhou^{3,4,#}, Yan Gao^{3,4}, Yu Liang¹, Wenbin Guo^{3,4}, Dan Ohtan
5 Wang^{5,6,7}, Shuaiwen Ding³, Shuibin Lin^{1,*}, Jinkai Wang^{3,4,8,*}, Yixian Cun^{3,4,*}

6

7 ¹ *Center for Translational Medicine, Precision Medicine Institute, The First Affiliated*
8 *Hospital, Sun Yat-sen University, Guangzhou 510080, China*

9 ² *Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of*
10 *Guangzhou Medical University, Guangzhou 510080, China*

11 ³ *Department of Medical Informatics, Zhongshan School of Medicine, Sun*
12 *Yat-sen University, Guangzhou 510080, China*

13 ⁴ *Center for Stem Cell Biology and Tissue Engineering, MOE Key Laboratory for*
14 *Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080,*
15 *China*

16 ⁵ *Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi,*
17 *Chuo-ku, Kobe, Hyogo 650-0047, Japan*

18 ⁶ *Graduate School of Biostudies, Kyoto University, Yoshida hon-machi, Kyoto*
19 *606-8501, Japan*

20 ⁷ *Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang,*
21 *110016, China*

22 ⁸ *RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen*
23 *University, Guangzhou 510080, China*

24 [#] Equal contribution.

25 * Corresponding authors.

26 E-mail: cunyx3@mail.sysu.edu.cn (Cun Y), wangjk@mail.sysu.edu.cn (Wang
27 J), linshb6@mail.sysu.edu.cn (Lin S).

28

29 **Running title: Yu P et al / Crosstalk between tRNAs and Translatomes.**

30

31 Main text: 9299 words.

32 Article title: 73 characters.

33 Running title: 44 characters.

- 34 Key words: 5 words.
- 35 Abstract: 246 words.
- 36 Number of reference: 55.
- 37 Number of figures: 6.
- 38 Number of supplementary figures: 8.
- 39 Number of supplementary tables: 2.
- 40

41 **Abstract**

42 Although the function of tRNA in translational process is well established, it remains
43 controversial whether tRNA abundance is tightly associated with **translational**
44 **efficiency** (TE) in mammals. For example, how critically the expression of tRNAs
45 contributes to the establishment of **tissue-specific** proteomes in mammals has not
46 been well addressed. Here, we measured both **tRNA expression** using DM-tRNA-seq
47 and ribosome-associated mRNAs in the brain, heart, and testis of RiboTag mice.
48 Remarkable variation in the expression of tRNA isodecoders was observed among the
49 different tissues. When the statistical effect of isodecoder-grouping on reducing
50 variations is considered through permutating the anticodons, we observed an expected
51 reduction in the tissue-variations of anticodon expression, an unexpected smaller
52 variation of **anticodon usage bias**, and an unexpected larger variation of tRNA
53 isotype expression. Regardless whether or not they share the same anticodons,
54 isotypes encoding the same amino acids are co-expressed across different tissues.
55 Based on the tRNA expression and TE computed from RiboTag-seq, we find that the
56 tRNA adaptation index (tAI) values and TE are significantly correlated in the same
57 tissues but not among tissues; tRNAs and the **amino acid compositions** of
58 translating peptides are positively correlated in the same tissues but not between
59 tissues. We therefore hypothesize that the tissue-specific expression of tRNAs might
60 be related to post-transcriptional mechanisms, such as aminoacylation, modification,
61 and tRNA-derived small RNAs (tsRNAs). This study provides a resource for tRNA
62 and translation studies to gain novel insights into the dynamics of tRNAs and their
63 role in translational regulation.

64

65 **KEYWORDS:** Translational efficiency; Tissue-specific; tRNA expression;
66 Anticodon usage bias; Amino acid compositions

67

68 **Introduction**

69 The genetic information is transmitted from DNA to RNA, and to proteins. However,
70 the correlation between mRNA abundance and protein expression level is far from
71 linear, suggesting that translation process plays an indispensable role in determining
72 the output of proteins [1]. During protein synthesis, tRNAs decode the template
73 mRNAs via codon-anticodon pairing and deliver the amino acids to the corresponding
74 polypeptide chain in the ribosomes [2]. tRNAs are small non-coding RNAs, 70–90
75 nucleotides in length, transcribed by RNA polymerase III (RNAPIII), and constitute
76 4–10% of the total RNAs in a cell [3]. Although there are only 20 amino acids and 64
77 codons, about 400 nuclear-derived tRNAs have been annotated in mammals (*e.g.*, 429
78 and 401 annotated tRNA genes in human and mouse genomes respectively) in
79 addition to 22 mitochondrial-derived tRNAs (mt-tRNAs) [4]. tRNA transcripts that
80 carry the same anticodons but different body sequences are termed isodecoders [5],
81 while different tRNA species accepting the same amino acids are termed isoacceptors
82 [3]. There are 49 and 47 isoacceptors annotated in human and mouse genomes
83 respectively [6,7].

84 In bacteria and yeast, the tRNA abundance correlates well with the codon usage of
85 highly translated genes [8–10]. In mammals, the relationship is still in debate. Several
86 studies have shown correlation between tRNA and translation. For example, Kimberly
87 et al. reported that the tRNA abundance is significantly correlated with the codon
88 usage of tissue-specific and highly expressed genes [11]. Hila et al. found that tRNAs
89 induced in proliferative cells or differentiated cells often decode codons that are
90 enriched in mRNAs related to cell-autonomy and multicellularity [12]. Yedael et al.
91 reported better adaptation between tissue-specific genes and their tRNA pool when
92 compared with non-specific genes [13]. Xavier et al. reported that the tRNA pool
93 related to the proliferative state affects translational efficiency (TE) [14]. Hamed
94 reported that codon usage is correlated with the TE in adaptation to environmental and
95 physiological changes [15]. However, other studies have shown that the correlation is
96 poor. Marie et al. reported that the significant differences in synonymous codon usage
97 between tissues is not due to translational selection [16]. Kanaya et al. reported that
98 the ribosome genes and histone genes show no difference in codon usage, implying no
99 translational regulation through tRNAs [17]. Thus, it is unclear how tRNA expression
100 profiles are correlated to TE of specific transcripts.

101 To address this issue, quantitative tRNA expression evaluation is desirable.
102 However, due to the stable structure and diverse post-transcriptional modifications of
103 tRNAs which interfere with reverse transcription efficiency and adaptor ligation, it
104 has been difficult for standard sequencing methods to detect tRNA pools efficiently
105 and quantitatively. Most studies have utilized microarrays or Pol III chromatin
106 immunoprecipitation followed by sequencing (ChIP-seq) to identify tRNA
107 transcriptomes. In recent years, more high-throughput sequencing methods have been
108 developed to measure the abundances of tRNAs [18–22]. However, none of these
109 studies have compared the tRNA abundance with matched translatome data. Therefore,
110 whether the dynamics of tRNA expression contribute to the establishment of
111 tissue-specific translatomes in mammals has not been well addressed.

112 Although still largely elusive, the regulation of tRNA expression can be possibly
113 mediated by transcriptional and post-transcriptional mechanisms. On the one hand,
114 the occupancies of Pol III as considered at the isoacceptor family level were invariant
115 in multiple mammalian tissues [7]. On the other hand, the RNA modification and
116 structure of tRNAs can regulate the ribonucleases-catalyzed degradation of tRNAs
117 [23–25]. It was also reported that multiple tRNAs was degraded when histidine or
118 leucine becomes limited, suggesting the tRNA expression was also under
119 post-transcriptional regulation [26].

120 In this study, to overcome the difficulty of quantification of tRNAs expression, we
121 applied the DM-tRNA-seq method reported by Zheng et al. to evaluate the diversity
122 of tRNA pools in three mouse tissues (brain, heart, and testis). The DM-tRNA-seq
123 utilizes engineered demethylases AlkB to remove base methylation on tRNAs and can
124 measure the tRNA transcriptomes efficiently and quantitatively [27]. Meanwhile, we
125 applied RiboTag-seq to capture the ribosome-associated mRNA in the same mouse
126 tissues [28]. We found degrees of variations of tRNA expression at the isodecoder, the
127 isoacceptor, and the amino acid level among different mouse tissues, suggesting the
128 dynamic expression of tRNAs. We then found that the tRNA adaptation index (tAI)
129 values were significantly correlated with TEs intra- but not inter-tissues. Our study
130 suggests that it is unlikely that the differential tRNA expression contributes to
131 tissue-specific translatomes but may be resulted from post-transcriptional regulation
132 of tRNAs.

133
134

135 **Results**

136 **Dynamic expression of tRNA isodecoders among different mouse tissues**

137 In order to systematically elucidate the tissue-specificity of tRNA expression, we
138 obtained total RNAs from three tissues (brain, heart, and testis) of adult male
139 *CMV-Cre*: RiboTag mice and generated tRNA libraries using DM-tRNA-seq with two
140 biological replicates (**Figure 1A**). The RPMs (Reads Per Million mapped reads) were
141 calculated for each tRNA annotated in genomic tRNA database GtRNAdb [4] and
142 mitochondrial tRNA database mitotRNAdb [29] (Table S1; the bioinformatic pipeline
143 is shown in Figure S1). As shown in Figure 1B, the biological replicates of the same
144 tissues are highly similar to each other and clustered together, suggesting
145 tissue-specific expression of tRNAs. We noted that the tRNA expression pattern of
146 brain tissue is less reproducible than that of heart and testis, possibly reflecting the
147 higher cell heterogeneity of the brain. In addition, we found mt-tRNAs accounting for
148 11.1% of the total detected tRNAs in testis but 64.4% in heart and 38.9% in brain,
149 which is consistent with the order of energy demand in these tissues (Figure 1C).
150 Since the dynamics of mt-tRNAs contents are more likely reflecting the dynamics of
151 the number of mitochondria in the cells, we focused on the dynamics of cytosolic
152 tRNAs (cyto-tRNAs), which may relate to the translational regulation of
153 nuclear-derived genes.

154 Differential expression analysis of tRNA isodecoders was performed on three
155 tissues using DESeq2 [30]. Among the 224 detected tRNA isodecoders with unique
156 sequences, 131 (58%) of them had significantly differential expression ($FDR < 0.05$)
157 across the three tissues (Figure 1D). To further elucidate the potential role of
158 expression regulation of tRNA isodecoders on translation, we defined a metric,
159 Relative Synonymous Isodecoder Usage (RSIU), to analyze the usage bias of
160 synonymous isodecoders with the same anticodons (details in ‘Materials and
161 Methods’). As shown in Figure 1E, we observe remarkable differences in the RSIU
162 values among the tissues. RSIU values in one of three tissues for 36 of 224
163 isodecoders are more than 2 folds of those in any other two tissues. For example, the
164 RSIU value of isodecoder Gly-CCC-4-1 in testis was 6.9 and 4.5 folds of that in heart
165 and brain, respectively.

166 **Tissue-specific expression of isodecoders results in tissue-specific expression but
167 not the usage bias of anticodons**

168 To assess tRNA expression at the anticodon level, the 224 cytosolic tRNAs identified
169 by DM-tRNA-seq were separated into 47 groups by combining the isodecoders with
170 the same anticodons. The expression heatmap of tRNA isoacceptors demonstrates the
171 differential expression patterns across the three tissues (**Figure 2A**). We found the
172 samples of the same tissues were clustered together according to the expression of the
173 47 anticodons, suggesting tissue-specific expression of anticodons (Figure 2A and B).
174 Of note, we realized that the coefficient of variation (CV) of isoacceptors among
175 tissues were significantly smaller than that of isodecoders (Figure 2C), consistent with
176 the recent study reporting milder differences of isoacceptors among tissues [21]. To
177 validate our results, we also compared the CV of isoacceptors and isodecoders using
178 one published tRNA dataset examined by a different technology QuantM-tRNA seq
179 [21]. Similarly, we observed greatly reduced CV of the expression by isoacceptors
180 than by isodecoders (Figure S2A). To test whether the relatively smaller variation of
181 isoacceptors expression was due to genuinely tissue-specific expression of anticodons,
182 we made the heatmap of isoacceptors expression examined using QuantM-tRNA seq
183 based on Z-score for each anticodon, we found reproducible tissue-specific
184 isoacceptors expression, although different regions of brain were not largely distinct
185 from each other (Figure S2B), which is consistent with our results, suggesting
186 tissue-specific expression of isoacceptors.

187 Then we asked why the CV of isoacceptors was smaller than isodecoders. We
188 suspected that averaging the subgroups of isodecoders would reduce variations due to
189 statistical principles. We therefore asked whether the reduced variations of
190 isoacceptors among tissues were simply statistically due to the random combinations
191 of isodecoders. For this purpose, we performed permutation analyses by randomly
192 permutating anticodon of the isodecoders and regrouped them into isoacceptors
193 according to the permuted anticodon. We found the CV of the observed isoacceptors
194 among tissues was greater than 86% of 10,000 permutations, indicating a
195 non-significant difference (Figure 2D). The results suggest that the dynamic
196 expression of isoacceptors is simply a reflection of the dynamic expressions of
197 isodecoders. In other words, although not so remarkable, the dynamic expression of
198 isoacceptors is genuine.

199 We then turned to uncover the relationships among the expression levels of the
200 isodecoders. We calculated the correlation coefficient of any two isodecoders across
201 all six samples (Figure 2E). The Pearson's correlation coefficient of isodecoder pairs

202 encoding different amino acids, which are the most unrelated isodecoders, are around
203 0, suggesting the unrelated isodecoders are independently regulated. Interestingly, we
204 found the correlation coefficients between the isodecoders pairs with the different
205 anticodons but encoding the same amino acids were significantly greater than those
206 isodecoders pairs encoding different amino acids. In addition, the isodecoder pairs
207 with the same anticodons had the highest correlation coefficient. To confirm, we
208 performed the same analyses using the published dataset of tRNA expression in
209 multiple mouse tissues based on a different tRNA sequencing technology
210 QuantM-tRNA seq [21]. We observed similar results that the isodecoders pairs with
211 the same anticodons and the pairs with different anticodons but encoding the same
212 amino acids were almost equal and both had significantly greater correlation
213 coefficients than the unrelated pairs (Figure S2C). These results suggest that
214 functionally related isoacceptors do not randomly fluctuate among different tissues
215 but are associated and possibly co-regulated across different tissues, especially at the
216 amino acid level.

217 Nevertheless, it is an interesting question whether the tissue-specific expressions
218 of isoacceptors result in tissue-specific usage bias of tRNA anticodons encoding the
219 same amino acids, which would subsequently lead to differential TEs in different
220 tissues. We calculated the Relative Synonymous Anticodon Usage (RSAU) according
221 to the expression of anticodons in each tissue (details in ‘Materials and Methods’). We
222 found that the overall strength of tRNA anticodon usage bias across tissues had
223 relatively lower diversity than tRNA isodecoder usage bias (Figure 2F and 1E). We
224 further found that the CV of RSAU values among three tissues was significantly
225 smaller than random permutations (Figure 2G). CV of permuted RSAU values
226 greater than the mean of observed CV could be obtained 9957 times out of 10000
227 permutations, suggesting that the variations of synonymous anticodons usage bias
228 among different tissues are prohibited. The above results demonstrate that the
229 distinctive expression of tRNA isoacceptors does not play a vital role in selecting
230 specific synonymous anticodons or determining the TEs in different tissues.

231 Because the isodecoders encoding the same amino acids tend to be co-regulated,
232 we speculated that the diversity of tRNA pools is most likely to match the amino acid
233 composition within specific physiological states during the translation process. We
234 then tested whether the tRNA isotype expression at amino acid level also had tissue
235 specificities by combing the tRNAs encoding the same amino acids. As shown in

236 **Figure 3A and B**, there is an obvious tissue-specific tRNA isotype expression. In
237 addition, the mean CV of isotype expression across these three tissues is greater than
238 all 10,000 permutations, suggesting there is genuine tissue-specific isotype expression
239 (Figure 3C and D). These results together with the above results imply that the
240 dynamic regulation of tRNAs among tissues is more likely a reflection of
241 tissue-specific needs of tRNAs encoding specific amino acids rather than optimizing
242 the codon usages for efficient translation.

243 **RiboTag-seq analysis of translomes in multiple mouse tissues**

244 To further elucidate whether dynamic tRNA expression contributes to the
245 establishment of tissue-specific translomes, we performed RiboTag-seq in the same
246 samples we applied DM-tRNA-seq to. The RiboTag-seq technology takes advantage
247 of RPL22, a component of the 60S subunit of ribosome, to capture the actively
248 translating ribosomes (**Figure 4A**). The expression of RPL22-HA protein can be
249 activated by Cre recombinase-mediated replacement of exon 4 with an HA-tagged
250 exon 4 of *Rpl22* gene [31]. To create a line of mice constitutively expressing
251 Rpl22-HA protein in multiple tissues, RiboTag mice were mated with *CMV-Cre* mice
252 (Figure 4B). We validated the heterozygote *CMV-Cre* and homozygous *Rpl22-HA*
253 alleles in the genomes of offspring and confirmed expression of RPL22-HA protein in a
254 plurality of tissue homogenates, followed by efficient immunoprecipitating (Figure 4C
255 and Figure S3A–C).

256 Since RiboTag only sequenced the RNAs bound by the translation factor RPL22,
257 we calculated the translation levels, which were represented by the gene expression
258 levels of immunoprecipitation RNAs (IP), as well as TEs, which were the translation
259 levels normalized by the expression of input RNAs (Table S2; the bioinformatic
260 pipeline is shown in Figure S1). Strong tissue-specific gene expression as well as TEs
261 were observed (Figure 4D and E). Gene ontology (GO) analysis and Kyoto
262 encyclopedia of genes and genomes (KEGG) analysis of the highly translated gene
263 (top 5%) revealed enrichment for tissue development or tissue physiology-related
264 processes and pathways (Figure S4A–C). We then asked whether the composition of
265 codons was different among these tissues. For this purpose, we defined a metric of
266 codon index (details in ‘Materials and Methods’), which is the proportion of specific
267 codons in all of the top 5% highly translated genes weighted by the translation level of
268 each gene. As shown in Figure 4F, there are distinctive codon indexes among the three
269 tissues, suggesting it might be necessary for tissue-specific tRNA pools. To test

270 whether the usage biases of synonymous codons also differ among tissues, we utilized
271 the previously defined metric Relative Synonymous Codon Usage (RSCU) for each
272 codon [32], which is the observed frequency of specific codons divided by the
273 frequency expected under the assumption of equal usage of the synonymous codons.
274 In the top 5% highly translated genes of each tissue, we found moderate differences
275 among brain, heart, and testis (Figure 4G). However, the CV of RSCU values among
276 the three tissues based on highly translated genes was still significantly higher than
277 the CV based on randomly sampled 5% genes, suggesting that codon usage bias of
278 highly translated genes is truly differential among tissues (Figure 4H).

279 **tRNA pools adapt better to highly translated genes in the same tissues but not to
280 tissue-specifically translated genes**

281 The more accurate interaction analysis between mRNAs and cognate tRNAs will
282 provide a pivotal way for evaluating effective and accurate translation [33,34]. To
283 further elucidate the intrinsic relationship between tRNA expression and mRNA
284 translation, we integrated the data of tissue-specific DM-tRNA-seq and RiboTag-seq
285 to comprehensively uncover the correlation between tRNA pools and codon usage
286 bias in highly translated genes. The adaptation of a specific gene to a specific tRNA
287 pool in terms of codon usage bias can be well evaluated using a widely used metric
288 tRNA adaptation index (tAI) [35,36]. We found the highly translated genes had
289 significantly higher tAI values than moderately and lowly translated genes in all the
290 three tissues based on the tRNA pools of the corresponding tissues (**Figure 5A**),
291 suggesting the role of tRNA in regulating translation in certain tissues. However,
292 when we tested the adaption of highly translated genes with the tRNA pools from
293 other tissues, we found the highly translated genes did not show the highest tAI values
294 based on the tRNA pool of the same tissues. Instead, the tRNA pool of heart had the
295 best adaptation with the highly translated genes of all tissues (Figure 5B). In addition,
296 we performed the correlation analysis between isoacceptor abundances and the codon
297 compositions of the top 5% highly translated genes of each tissue based on the general
298 codon-anticodon recognition rules for tRNA genes [36]. Similar to the tAI analyses,
299 we found significant correlations in heart and testis but not between tissues (Figure
300 S5A and B). The above results suggest that although highly translated genes require
301 tRNAs, the tissue-specific regulation of tRNA expression is not intended to better
302 adapt the tissue-specific usage bias of synonymous codons. In other words, mammals
303 are not likely to regulate tissue-specific translation of certain genes through regulating

304 the composition of tRNA pools, which is consistent with the observation that the
305 usage biases of anticodon do not show significant differences among different tissues
306 (Figure 2G).

307 **tRNA expression correlates with amino acids composition in the same tissues but
308 not between tissues**

309 The analyses of tRNA expression across diverse tissues revealed that isodecoders
310 encoding the same amino acids are likely co-regulated, suggesting that the dynamics
311 of tRNA expression in different tissues might be related with different amino acids
312 compositions of peptides in different tissues. To test this hypothesis, we first tested
313 whether the amino acids compositions are different across the translatomes of
314 different tissues. We calculated each amino acid composition by summing up the
315 number of codons encoding the amino acid of the top 5% highly translated genes
316 weighted by the translation level (RPKM of IP). As shown in **Figure 6A**, we observed
317 reproducible tissue-specific amino acids compositions, which is consistent with our
318 observations that the tRNA isotype expression is tissue-specific (Figure 3A). We also
319 found a positive correlations between the amino acid compositions and the tRNA
320 isotype expression in heart ($P = 0.023$), and a trend of positive correlation in brain (P
321 = 0.067) and testis ($P = 0.11$) respectively (Figure 6B). To further address whether the
322 tissue-specific tRNA expression is related to the tissue-specific amino acid
323 composition of peptides, we tested the correlation between amino acid compositions
324 subtracted by the means and Z-score of tRNA isotype expression among the three
325 tissues. We observed no significant correlation between them (Figure 6C). A
326 non-significant correlation was also observed when we compared the differences of
327 amino acid composition and the differences of tRNA isotype expression between any
328 two tissues (Figure S6A and B).

329 We found that the isodecoders encoding the same amino acid were co-regulated
330 across different tissues (Figure 2E). Based on the above results, this co-regulation is
331 not likely due to active regulatory mechanisms to control the translatomes in a
332 tissue-specific manner. On the contrary, it might be due to post-transcriptional
333 regulation of tRNAs, such as tRNA modification and aminoacylation, the attachment
334 of amino acids to tRNA.

335

336 **Discussion**

337 Although it is well known that tRNAs play a vital role in the synthesis of protein,
338 whether the tRNA pool correlates well with translational efficiency is obscure. Here,
339 based on multiple measurements of tRNAs and translatomes in multiple mouse tissues,
340 we confirmed genuinely dynamic expression of tRNA isodecoder pools as well as
341 isoacceptors among three mouse tissues. Meanwhile, the tRNA pool is significantly
342 correlated with translational efficiency and amino acid composition of the highly
343 translated gene in the same tissues but not between tissues. We finally propose that the
344 tissue-specific expression of tRNA may be due to post-transcriptional regulation.

345 Interestingly, tRNA expression is significantly correlated with translational
346 efficiency in the same tissues but not between different tissues. Consistently, several
347 studies have reported that tRNA-codon bias co-adaptation is not tissue-specific but
348 globally driven [13,37]. These results together suggest the organisms may not regulate
349 the translation of specific genes tissue-specifically through regulating tRNA
350 expression, probably due to the difficulty of achieving precise adjustment through the
351 regulation of tRNA expression. Nevertheless, we cannot rule out that there may be a
352 weak correlation to be revealed and more accurate detection methods need to be
353 developed in the future.

354 It has advantages of using RiboTag to measure the translational efficiency in this
355 study. In contrast to ribosome profiling (Ribo-seq), which measures the translation
356 through obtaining the mRNA fragments protected by ribosomes [38], the RiboTag
357 takes advantage of RPL22, a component of the 60S subunit of the ribosome, to pull
358 down the mRNAs involved in translation elongation. In principle, Ribo-seq has
359 difficulty in distinguishing the large and small ribosome subunits, and thus cannot
360 distinguish translation initiation and elongation. In contrast, RiboTag captures
361 full-length mRNAs bound by actively translating polysomes, thus providing a more
362 specific measurement of translation elongation. Since translation initiation and
363 elongation may relate to translational efficiency in different manners [39], RiboTag
364 overcomes the drawback of ribosome profiling. In addition, considering we have
365 found a significant correlation between tAI and translational efficiency, the RiboTag
366 technology used in this study is reliable in representing the translatome [28].

367 In this study, we hypothesize that the difference of tRNA between tissues is due to
368 passive post-transcriptional regulation during the process of tRNA maturation. First,
369 we found that the isodecoders encoding the same amino acid are co-regulated. Second,
370 there is no difference of the Pol III binding on tRNA genes at the isoacceptor level

371 among tissues [7], suggesting that differences in tRNA may be related to
372 post-transcriptional regulation. In addition, it was reported that in *Escherichia coli*,
373 tRNA can be destabilized and degraded in the case of amino acid starvation and upon
374 the demand for protein synthesis decreases, suggesting the content of tRNA is related
375 to the concentration of the free amino acids [26]. Meanwhile, several groups have
376 shown that certain amino acids such as Cysteine [40], Glycine [41], Serine [42], and
377 Threonyl [43] have key impacts on the modifications of tRNAs, and some
378 modifications of tRNA will further affect tRNA abundances [44,45]. Therefore,
379 post-transcriptional regulation of tRNA may also contribute to the tissue-specific
380 expression of tRNAs and translatomes. This manner of tRNA regulation passively
381 fine-tune the tRNA expression in a tissue-specific manner but not for the purpose of
382 regulating the translatomes.

383 One possible post-transcriptional regulation that may result in tRNA differences
384 between tissues is through the aminoacylation process, which might be regulated by
385 free amino acids concentration and the activity of aminoacyl tRNA synthetases. The
386 activities of aminoacyl-tRNA synthetases (aaRS) are dynamic [46]. Mammals have
387 twenty cytosolic aaRSs, which are the enzymes that attach amino acids to tRNAs and
388 thus allow tRNA molecules to act as adaptors to decode mRNA. Individual tRNA
389 isotype is aminoacylated by a specific aaRS. The aminoacylated tRNA is captured by
390 a translation elongation factor and it is delivered to the ribosome for protein synthesis.
391 The expression of tRNA isotype and free amino acids concentration may affect the
392 level of aminoacyl-tRNAs, which in turn may have positive or negative feedback on
393 the early processing steps of tRNAs or affect the stability of tRNAs in a
394 tissue-specific manner, thus leading to the observed dynamic expression of tRNAs.

395 Another post-transcriptional regulation that may result in tRNA differences
396 between tissues is tRNA modification. tRNAs are the most generally modified RNA
397 species in cells. Eukaryotic tRNAs contain an average of 13 modified bases per
398 molecule. Modifications occurring in the anticodon loop are essential to regulate
399 mRNA decoding, while modifications outside of the anticodon loop are vital to
400 regulate tRNA stability, tRNA localization, and tRNA folding [23]. Dynamic
401 variations at the level of tRNA modification play a role in regulating the translational
402 efficiency and accuracy of particular genes that rely on the codon usage. However, the
403 profiling of tissue-specific tRNA modification is still lacking. In the future, the
404 development of novel large-scale methods to reveal the tRNA modification level can

405 point the light way to understand the diverse function of tRNAs during translation
406 process.

407 Since it is known that DM-tRNA-seq can also generate a large fraction of
408 incomplete tRNA reads due to the incomplete erasure of the modifications on tRNAs
409 [22], the difference of tRNA read length also reflects the differences of modifications.
410 According to the percent of reads with length > 40 bp, we found the proportions are
411 quite similar between different tissues but the proportion of mt-tRNAs is larger than
412 cytosolic tRNAs (Figure S7). This result is consistent with the previous report that
413 cytosolic tRNAs and mitochondrial tRNA are modified differently. mt-tRNAs of
414 higher eukaryotes have smaller and shorter stem and loop regions than that of
415 cyto-tRNAs [23]. Modifications in mt-tRNAs are less diverse comparing with
416 cyto-tRNAs [41,47]. m^1A9 and m^2G10 are considerably abundant modifications
417 identified in mt-tRNA species [41], which can be removed by AlkB demethylases [27]
418 and result in longer mt-tRNAs reads in DM-tRNA-seq.

419 In addition, tRNA modifications also contribute to different biogenesis of
420 tRNA-derived small RNAs (tsRNAs), which are known to regulate translation in
421 versatile ways [48]. Based on the expression of tsRNAs in brain, heart, and testis
422 examined by the PANDORA-seq [49] and CPA-seq [50], we found the expression of
423 tsRNAs was significantly and positively correlated with the expression of tRNAs in
424 the same tissues and between different tissues (Figure S8A and B). The results suggest
425 that tissue-specific expression of tRNA might be related to tsRNAs. It is possible that
426 there might be unknown mechanisms that dynamically regulate the expression of
427 tRNAs in different tissues in order to dynamically generate tsRNA in different tissues.
428

429 **Materials and Methods**

430 **Animals**

431 Mice were maintained on a 12 h light/dark cycle. The RiboTag mice (Stock No.
432 011029, Jackson Laboratory, Bar Harbor, Maine) and *CMV-Cre* mice (Stock No.
433 006054, Jackson Laboratory) were purchased from Jackson Laboratory. The RiboTag
434 mice were bred to the *CMV-Cre* mice to obtain homozygous mice constitutively
435 expressing *Rpl22-HA*. Once the model of *Rpl22-HA*-expressing homozygous mice
436 was built successfully, we maintained the colony as a separate mouse line.

437 **Tissue sample preparation and RNA isolation**

438 All mouse tissue samples were isolated from adult male *CMV-Cre*: RiboTag mice
439 using procedures approved by the Animal Research Committee of Sun Yat-sen
440 University, the First Affiliated Hospital. Samples were rapidly frozen in liquid
441 nitrogen and stored at -80°C until use. 1 ml of TRIzol (Catalog No. 15596026,
442 Invitrogen, Carlsbad, CA) was added per 100 mg of dissected whole tissue and
443 samples were homogenized in TRIzol buffer with a homogenizer (JX-2010, China)
444 until the suspension was completely homogeneous. Cell debris was removed by a
445 high-speed centrifugation procedure. RNA was isolated according to the
446 manufacturer's instructions of TRIzol reagent and resuspended in nuclease-free water
447 and stored at -80°C until DM-tRNA-seq.

448 **Recombinant Protein Purification**

449 Recombinant wild-type and D135S AlkB proteins were purified as previously
450 described [51]. pET30a-AlkB and pET30a-AlkB-D135S were transformed into BL21
451 bacteria for induced expression of recombinant proteins. Bacteria were inoculated and
452 cultured LB medium at 37°C. Recombinant wild-type and D135S AlkB protein
453 expressions were induced in BL21 bacteria (OD 0.6–0.7) using 0.5 mM IPTG (Catalog
454 No. I5502, Sigma, St. Louis, MO) at 20°C overnight. Then the bacteria were collected
455 and lysed by sonication, centrifuged at 15,000 rpm at 4°C for 60 min. The supernatant
456 was collected for the purification of recombinant proteins using Ni-NTA Agarose
457 (Catalog No. 30210, Qiagen, Alameda, CA) following the manufacturer's instructions
458 and stored at -80°C.

459 **DM-tRNA-seq**

460 DM-tRNA-seq was performed following the previously reported protocol [27,47] with
461 some modifications. Small RNAs (< 200 nt) were first purified using the Quick-RNA
462 Microprep kit (Catalog No. R1050, Zymo Research, Orange, CA). Isolated small
463 RNAs were treated with recombinant wild-type and D135S AlkB proteins to remove
464 the dominant methylations on RNAs. Then demethylated RNAs were purified with
465 Oligo Clean & Concentrator kit (Catalog No. D4060, Zymo Research). After that,
466 AlkB-treated RNA libraries were constructed with NEBNext Small RNA Library Prep
467 Set (Catalog No. E7330S, New England Biolabs Inc., Ipswich, MA). The cDNA
468 libraries were sequenced on Illumina Hiseq X10 with paired-end 2×150 bp read length.

469 **Western Blotting**

470 Tissue-specific lysates were extracted with RIPA buffer by a homogenizer. Western
471 Blot assays were performed as described previously [52]. Nitrocellulose membranes

472 were blocked using 5% Blotting Grade Blocker Non-Fat Dry Milk (Catalog No.
473 1706404XTU, Bio-Rad, Hercules, CA) and were then incubated with primary
474 antibody at 4°C overnight. For primary antibodies, anti-HA tag (Catalog No. ab9110,
475 Abcam, Cambridge, UK) was purchased from Abcam; anti-IgG (Catalog No.
476 B900620, Proteintech, China), anti-tubulin (Catalog No. 11224-1-AP, Proteintech)
477 were purchased from Proteintech. The blots were then incubated with horseradish
478 peroxidase-conjugated secondary antibody (Catalog No. 7074, Cell Signaling
479 Technology, Berkeley, CA) at room temperature for 1 h, and the proteins were then
480 detected using the ECL chemiluminescence system (Tanon 4600, China).

481 **Polysome immunoprecipitation**

482 RiboTag immunoprecipitation was performed as previously described [31] with some
483 modifications. Tissue samples were extracted from *CMV-Cre*: RiboTag mice,
484 flash-frozen in liquid nitrogen, and stored at -80°C until use. Tissues were
485 homogenized in ice-cold homogenization buffer (50 mM Tris, pH 7.4, 1% NP-40, 100
486 mM KCl, 12 mM MgCl₂, 100 µg/ml cycloheximide (Catalog No. 66819, Sigma),
487 1:100 protease inhibitors cocktail (Catalog No. 4693116001, Roche, Mannheim,
488 Germany), 1 mg/ml Heparin, 1 mM DTT, 200 units/ml RNasin (Catalog No. N2111,
489 Promega, Madison, WI) in RNase free DDW) with a homogenizer until the
490 suspension was completely homogeneous. To remove cell debris, the homogenate was
491 transferred to a microcentrifuge tube and centrifuged at 13,000g at 4°C for 15 min.
492 Supernatants were transferred to a fresh microcentrifuge tube on ice, and then 70 µl
493 was removed for input fraction analysis and 8 µl (8 µg) of anti-HA antibody (Catalog
494 No. ab9110, Abcam) was added to the supernatant, followed by 4 h of incubation with
495 slow rotation in a cold room at 4°C. Meanwhile, PierceTM Protein A/G Magnetic
496 Beads (Catalog No. 88803, Thermo Fisher Scientific, Waltham, MA), 80 µl per
497 sample, were equilibrated to homogenization buffer by washing three times. At the
498 end of 4 h of incubation with antibody, beads were added to each sample, followed by
499 incubation overnight at 4°C. The following day, samples were placed in a magnet on
500 ice, and supernatants were recovered before washing the pellets three times for 10 min
501 in high salt buffer (50 mM Tris, pH 7.4, 1% NP-40, 300 mM KCl, 12 mM MgCl₂, 100
502 µg/ml cycloheximide, 1 mM DTT). At the end of the washes, beads were magnetized
503 and excess buffer was removed. To prepare total RNA, 5 volumes of Qiagen RLT
504 buffer were added to the remaining pellets or the input samples. Total RNA was
505 prepared according to the manufacturer's instructions using RNeasy Mini kit (Catalog

506 No. 74104, Qiagen) and quantified with a NanoDrop 3000 spectrophotometer
507 (Thermo Fisher Scientific) and taken for RNA-seq. For high-throughput sequencing,
508 both input and IP samples were used for library construction with the SMARTer
509 Stranded Total RNA-seq Kit v2 (Catalog No. 635005, Takara, Dalian, China), and
510 single-end 50 bases reads were generated on the BGISEQ500 platform (BGI-Shenzhen,
511 China).

512 **Processing of high-throughput sequencing data**

513 The nuclear and mitochondrial tRNAs reference sequences were downloaded from
514 GtRNAdb [4] and mitochondrial tRNA database mitotRNAdb [29], respectively.
515 Nuclear and mitochondrial tRNAs with unique sequences generated by collapsing the
516 identical tRNAs were merged and used as the reference for downstream mapping.
517 DM-tRNA-seq raw reads were first processed using Cutadapt v1.18 to remove adaptor
518 sequences and 3'-CCA sequences and to discard reads shorter than 25 nt. Then,
519 Bowtie2 (v2.3.5) [53] was used to align the adaptor-trimmed and filtered reads to the
520 tRNA reference sequences of the mouse genome (mm10) with the parameters:
521 --min-score G,1,8 --local -D 20 -R 3 -N 1 -L 10 -I S,1,0.5. Only reads with unique hits
522 and mapping quality > 10 were considered for further analysis. The isodecoder RPMs
523 (Reads Per Million mapped reads) were calculated by multiplying the number of reads
524 mapped to the gene by 10^6 and dividing it by the total number of mapped reads. The
525 anticodon-level or amino acid-level counts were calculated by summing up the counts
526 of isodecoders with the same anticodons or encoding the same amino acids. tRNA-seq
527 read count tables at both the anticodon-level and isodecoder-level were used to perform
528 differential tRNA expression analysis between each two of the three mouse tissues
529 using the DESeq2 [30]. Differentially expressed tRNAs were determined by requiring
530 FDR < 0.05 between any two tissues. The same pipeline was also applied to the public
531 data of PANDORA-seq [49] and CPA-seq [50] to calculate the total RPM of tsRNAs
532 derived from each tRNA isodecoder.

533 RiboTag raw reads were first mapped to rRNA reference sequences using Bowtie2
534 (v2.3.5). Reads that were mapped to rRNAs were discarded. The remaining reads were
535 then mapped to the mouse genome (mm10) using STAR (v2.7.5). Only uniquely
536 mapped reads were considered for further analysis. Gene expressions were calculated
537 using the StringTie v1.3.5.

538 **Metric definition**

539 Codon index was designed to measure the usage of the codon, i , calculated as follows:

540

$$\text{codon index}_i = \frac{\sum_{j=1}^m \frac{x_{ij}}{\sum_{i=0}^n x_{ij}} \times \text{IP FPKM}_j}{\sum_{i=0}^n \sum_{j=1}^m \frac{x_{ij}}{\sum_{i=0}^n x_{ij}} \times \text{IP FPKM}_j} \quad (1)$$

541 Here, x_{ij} denotes the number of occurrences of codon i in the gene j and FPKM_j
542 denotes the FPKM value of gene j .

543 RSCU as defined by Sharp et al. [32] was calculated for each codon, j , as follows:

544

$$\text{RSCU}_j = \frac{n_i \times x_{ij}}{\sum_{j=1}^m x_{ij}} \quad (2)$$

545 Here, n_i denotes the number of the synonymous codon for amino acid i , x_{ij} denotes
546 the number of occurrences of codon j .

547 RSAU was calculated for each anticodon, j , as follows:

548

$$\text{RSAU}_j = \frac{n_i \times x_{ij}}{\sum_{j=1}^m x_{ij}} \quad (3)$$

549 Here, n_i denotes the number of the anticodon for amino acid i , x_{ij} denotes the
550 number of occurrences of anticodon j .

551 RSIU was calculated for each Isodecoder, j , as follows:

552

$$\text{RSIU}_j = \frac{n_i \times x_{ij}}{\sum_{j=1}^m x_{ij}} \quad (4)$$

553 Here, n_i denotes the number of the isodecoders for anticodon i , x_{ij} denotes the
554 number of occurrences of isodecoder j .

555 Amino acid composition was calculated for each amino acid, i , as follows:

556

$$\text{amino acid composition}_i = \sum_{j=1}^n \text{IP FPKM}_j \times n_i \quad (5)$$

557 Here, n_i denotes the number of codons encoding amino acid i for gene j , IP FPKM_j
558 denotes the FPKM value of gene j in IP of RiboTag.

559 tRNA and translatome analyses

560 Permutation was performed by randomly switching the anticodons of the isodecoders
561 and regrouping them into anticodons according to the permuted anticodons. We
562 compared the mean CVs of anticodon expression, RSAU values, and tRNA isotype
563 expression with 10,000 times permutations. The P values of permutation analyses
564 were determined by calculating the fraction of permutations with the above values
565 greater (isoacceptor expression, isotype expression) or less (RSAU) than the observed
566 data.

567 Translational efficiencies were calculated as the ratio between the FPKMs of IP and
568 the input of RiboTag. Only the genes with $\text{FPKM} > 1$ in both Input and IP samples were

569 used in the downstream analyses. RSCU values were calculated as previously described
570 by Sharp et al. [32] based on highly translated genes (top 5% translational efficiency).
571 The coding region of the longest coding isoform of each gene was used for codon
572 analyses. For comparison, RSCU values based on randomly sampled 5% genes with
573 FPKM > 1 in both Input and IP samples were also calculated. Significance was
574 determined by Wilcoxon signed-rank test.

575 tAI was calculated by R package tAI [36]. tAIs using different tRNA pools were
576 calculated for highly translated genes (top 5% TE), medium translated genes (medium
577 5% TE), and low translated genes (bottom 5% TE). The significance between them was
578 based on Wilcoxon signed-rank test. Data visualization and plotting were performed
579 using ggplot2, ggrepel, and ggforce R packages.

580 The correlation analyses between isoacceptor abundances and the codon
581 compositions of the top 5% highly translated genes of each tissue were based on the
582 general codon-anticodon recognition rules for tRNA genes [36]. Codons recognized
583 by multiple anticodons as well as anticodons that recognize multiple codons were
584 repeated to form one-to-one codon-anticodon pairs.

585

586 **Ethical statement**

587 Animal experiments were licensed with the approval No.
588 SYSU-IACUC-2021-000089 and performed in agreement with the guidelines of the
589 Animal Research Committee of the First Affiliated Hospital, Sun Yat-sen University.

590

591 **Data availability**

592 The raw sequencing data of DM-tRNA-seq and RiboTag in this study have been
593 deposited in the Genome Sequence Archive (GSA) at the National Genomics Data
594 Center (<https://bigd.big.ac.cn/>) [54,55], Beijing Institute of Genomics, Chinese
595 Academy of Sciences, and China National Center for Bioinformation (CNCB) (GSA:
596 CRA005907 with BioProject: PRJCA008001; reviewer accessible link:
597 <https://ngdc.cncb.ac.cn/gsa/s/o8951Ujz>, which are accessible at
598 <https://ngdc.cncb.ac.cn/gsa>.

599

600 **CRediT author statement**

601 **Peng Yu:** Methodology, Validation, Visualization, Writing – original draft. **Siting**

602 **Zhou:** Software, Formal analysis, Visualization, Writing – original draft. **Yan Gao:**
603 Investigation, Funding acquisition. **Yu Liang:** Investigation. **Wenbing Guo:** Formal
604 analysis. **Dan Ohtan Wang:** Writing - Review & Editing. **Shuaiwen Ding:** Writing -
605 Review & Editing. **Shuibin Lin:** Conceptualization, Writing – review & editing,
606 Supervision, Project administration, Funding acquisition. **Jinkai Wang:**
607 Conceptualization, Writing – review & editing, Supervision, Project administration,
608 Funding acquisition. **Yixian Cun:** Conceptualization, Writing – review & editing,
609 Supervision, Project administration. All authors read and approved the final
610 manuscript.

611

612 **Competing interests**

613 The authors have declared no competing interests.

614

615 **Acknowledgments**

616 We are grateful to Professor Jianrong Yang for his constructive discussion and
617 comments. This work was supported by the National Key R&D Program of China
618 (Grant No.2018YFA0107200) to JW, the National Natural Science Foundation of
619 China (Grant Nos.31970594 to JW; Grant Nos.81922052 and 81974435 to SL; Grant
620 Nos.31971335 to D.O.W.), the Natural Science Foundation of Guangdong, China
621 (Grant No.2019B151502011 to SL; 2021A1515110650 to YG), China Postdoctoral
622 Science Foundation (Grant No. 2021M703755) to YG.

623

624 **ORCID**

625 0000-0002-6378-6042 (Peng Yu)
626 0000-0002-4192-1856 (Siting Zhou)
627 0000-0003-3814-5750 (Yan Gao)
628 0000-0002-0024-5783 (Yu Liang)
629 0000-0002-7976-6214 (Wenbing Guo)
630 0000-0002-3126-8558 (Dan Ohtan Wang)
631 0000-0002-1499-3029 (Shuaiwen Ding)
632 0000-0002-7065-614X (Shuibin Lin)
633 0000-0002-2577-7575 (Jinkai Wang)
634 0000-0002-3951-942X (Yixian Cun)

635

636 **References**

637 [1] Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global
638 quantification of mammalian gene expression control. *Nature* 2011;473:337–42.

639 [2] Rodnina MV, Wintermeyer W. The ribosome as a molecular machine: the
640 mechanism of tRNA-mRNA movement in translocation. *Biochem Soc Trans*
641 2011;39:658–62.

642 [3] Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling
643 dynamics and disease. *Nat Rev Genet* 2015;16:98–112.

644 [4] Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes
645 identified in complete and draft genomes. *Nucleic Acids Res* 2016;44:D184–9.

646 [5] Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. *Nucleic Acids Res*
647 2006;34:6137–46.

648 [6] Chan PP, Lowe TM. GtRNAdb: a database of transfer RNA genes detected in
649 genomic sequence. *Nucleic Acids Res* 2009;37:D93–7.

650 [7] Kutter C, Brown GD, Gonçalves A, Wilson MD, Watt S, Brazma A, et al. Pol III
651 binding in six mammals shows conservation among amino acid isotypes despite
652 divergence among tRNA genes. *Nat Genet* 2011;43:948–55.

653 [8] Kanaya S, Yamada Y, Kudo Y, Ikemura T. Studies of codon usage and tRNA genes
654 of 18 unicellular organisms and quantification of *Bacillus subtilis* tRNAs: gene
655 expression level and species-specific diversity of codon usage based on multivariate
656 analysis. *Gene* 1999;238:143–55.

657 [9] Dong H, Nilsson L, Kurland CG. Co-variation of tRNA abundance and codon
658 usage in *Escherichia coli* at different growth rates. *J Mol Biol* 1996;260:649–63.

659 [10] Ikemura T. Codon usage and tRNA content in unicellular and multicellular
660 organisms. *Mol Biol Evol* 1985;2:13–34.

661 [11] Dittmar KA, Goodenbour JM, Pan T. Tissue-specific differences in human
662 transfer RNA expression. *PLoS Genet* 2006;2:e221.

663 [12] Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, et
664 al. A dual program for translation regulation in cellular proliferation and
665 differentiation. *Cell* 2014;158:1281–92.

666 [13] Waldman YY, Tuller T, Shlomi T, Sharan R, Ruppin E. Translation efficiency in
667 humans: tissue specificity, global optimization, and differences between
668 developmental stages. *Nucleic Acids Res* 2010;38:2964–74.

669 [14] Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L. Translational efficiency
670 across healthy and tumor tissues is proliferation-related. *Mol Syst Biol*
671 2021;17:e10097.

672 [15] Najafabadi HS, Goodarzi H, Salavati R. Universal function-specificity of codon
673 usage. *Nucleic Acids Res* 2009;37:7014–23.

674 [16] Sémon M, Lobry JR, Duret L. No evidence for tissue-specific adaptation of
675 synonymous codon usage in humans. *Mol Biol Evol* 2006;23:523–9.

676 [17] Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. Codon usage and tRNA
677 genes in eukaryotes: correlation of codon usage diversity with translation efficiency
678 and with CG-dinucleotide usage as assessed by multivariate analysis. *J Mol Evol*
679 2001;53:290–8.

680 [18] Erber L, Hoffmann A, Fallmann J, Betat H, Stadler PF, Morl M. LOTTE-seq
681 (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific
682 selection of tRNAs with 3'-CCA end for high-throughput sequencing. *RNA Biol*
683 2020;17:23–32.

684 [19] Hu JF, Yim D, Ma D, Huber SM, Davis N, Bacusmo JM, et al. Quantitative
685 mapping of the cellular small RNA landscape with AQRNA-seq. *Nat Biotechnol*
686 2021;39:978–88.

687 [20] Zhang W, Foo M, Eren AM, Pan T. tRNA modification dynamics from individual
688 organisms to metaepitranscriptomics of microbiomes. *Mol Cell* 2022;82:891–906.

689 [21] Pinkard O, McFarland S, Sweet T, Coller J. Quantitative tRNA-sequencing
690 uncovers metazoan tissue-specific tRNA regulation. *Nat Commun* 2020;11:4104.

691 [22] Behrens A, Rodschinka G, Nedialkova DD. High-resolution quantitative
692 profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq.
693 *Mol Cell* 2021;81:1802–1815.

694 [23] Suzuki T. The expanding world of tRNA modifications and their disease
695 relevance. *Nat Rev Mol Cell Biol* 2021;22:375–92.

696 [24] Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. *RNA Biol*
697 2021;18:316–39.

698 [25] Schimmel P. The emerging complexity of the tRNA world: mammalian tRNAs
699 beyond protein synthesis. *Nat Rev Mol Cell Biol* 2018;19:45–58.

700 [26] Svenningsen SL, Kongstad M, Stenum TS, Munoz-Gomez AJ, Sorensen MA.
701 Transfer RNA is highly unstable during early amino acid starvation in *Escherichia*
702 *coli*. *Nucleic Acids Res* 2017;45:793–804.

703 [27] Zheng G, Qin Y, Clark WC, Dai Q, Yi C, He C, et al. Efficient and quantitative
704 high-throughput tRNA sequencing. *Nat Methods* 2015;12:835–837.

705 [28] Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific
706 isolation of ribosome-associated mRNA from complex tissues. *Proc Natl Acad Sci U*
707 *S A* 2009;106:13939–44.

708 [29] Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. tRNAdb 2009:
709 compilation of tRNA sequences and tRNA genes. *Nucleic Acids Res*
710 2009;37:D159–62.

711 [30] Anders S, Huber W. Differential expression analysis for sequence count data.
712 *Genome Biol* 2010;11:R106.

713 [31] Sanz E, Bean JC, Carey DP, Quintana A, McKnight GS. RiboTag: ribosomal
714 tagging strategy to analyze cell-type-specific mRNA expression in vivo. *Curr Protoc*
715 *Neurosci*. 2019;88:e77.

716 [32] Sharp PM, Tuohy TM, Mosurski KR. Codon usage in yeast: cluster analysis
717 clearly differentiates highly and lowly expressed genes. *Nucleic Acids Res*
718 1986;14:5125–43.

719 [33] Hoernes TP, Faserl K, Juen MA, Kremser J, Gasser C, Fuchs E, et al. Translation
720 of non-standard codon nucleotides reveals minimal requirements for codon-anticodon
721 interactions. *Nat Commun* 2018;9:4865.

722 [34] Saint-Léger A, Ribas de Pouplana L. The importance of codon-anticodon
723 interactions in translation elongation. *Biochimie* 2015;114:72–9.

724 [35] Sharp PM, Li W-H. The codon adaptation index--a measure of directional
725 synonymous codon usage bias, and its potential applications. *Nucleic Acids Res*
726 1987;15:1281–95.

727 [36] Dos Reis M, Savva R, Wernisch L. Solving the riddle of codon usage preferences:
728 a test for translational selection. *Nucleic Acids Res* 2004;32:5036–44.

729 [37] Chamary JV, Parmley JL, Hurst LD. Hearing silence: non-neutral evolution at
730 synonymous sites in mammals. *Nat Rev Genet* 2006;7:98–108.

731 [38] Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide
732 analysis in vivo of translation with nucleotide resolution using ribosome profiling.
733 *Science* 2009;24:218–23.

734 [39] Szavits-Nossan J, Ciandrini L. Inferring efficiency of translation initiation and
735 elongation from ribosome profiling. *Nucleic Acids Res* 2020;48:9478–90.

736 [40] Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K. Taurine as a constituent of

737 mitochondrial tRNAs: new insights into the functions of taurine and human
738 mitochondrial diseases. *EMBO J* 2002;21:6581–9.

739 [41] Suzuki T, Yashiro Y, Kikuchi I, Ishigami Y, Saito H, Matsuzawa I, et al.
740 Complete chemical structures of human mitochondrial tRNAs. *Nat Commun*
741 2020;11:4269.

742 [42] Asano K, Suzuki T, Saito A, Wei FY, Ikeuchi Y, Numata T, et al. Metabolic and
743 chemical regulation of tRNA modification associated with taurine deficiency and
744 human disease. *Nucleic Acids Res* 2018;46:1565–1583.

745 [43] Rojas-Benítez D, Eggers C, Glavic A. Modulation of the proteostasis machinery
746 to overcome stress caused by diminished levels of t⁶A-modified tRNAs in *Drosophila*.
747 *Biomolecules* 2017;7:25.

748 [44] Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, et al.
749 Rapid tRNA decay can result from lack of nonessential modifications. *Mol Cell*
750 2006;21:87–96.

751 [45] Motorin Y, Helm M. tRNA stabilization by modified nucleotides. *Biochemistry*
752 2010;49:4934–44.

753 [46] Zhang Z, Ye Y, Gong J, Ruan H, Liu CJ, Xiang Y, et al. Global analysis of tRNA
754 and translation factor expression reveals a dynamic landscape of translational
755 regulation in human cancers. *Commun Biol* 2018;1:234.

756 [47] Suzuki T, Suzuki T. A complete landscape of post-transcriptional modifications in
757 mammalian mitochondrial tRNAs. *Nucleic Acids Res* 2014;42:7346–57.

758 [48] Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of
759 tRNA-derived small RNAs. *Trends Biochem Sci* 2021;46:790–804.

760 [49] Shi J, Zhang Y, Tan D, Zhang X, Yan M, Zhang Y, et al. PANDORA-seq expands
761 the repertoire of regulatory small RNAs by overcoming RNA modifications. *Nat Cell*
762 *Biol* 2021;23:424–436.

763 [50] Wang H, Huang R, Li L, Zhu J, Li Z, Peng C, et al. CPA-seq reveals small
764 ncRNAs with methylated nucleosides and diverse termini. *Cell Discov* 2021;7:25.

765 [51] Lin S, Liu Q, Jiang YZ, Gregory RI. Nucleotide resolution profiling of m⁷G
766 tRNA modification by TRAC-Seq. *Nat Protoc* 2019;14:3220–3242.

767 [52] Wang LQ, Yu P, Li B, Guo YH, Liang ZR, Zheng LL, et al. miR-372 and
768 miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation
769 signaling pathways. *Mol Oncol* 2018;12:1949–1964.

770 [53] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat*

771 Methods 2012;9:357–9.

772 [54] Wang Y, Song F, Zhu J, Zhang S, Yang Y, Chen T, et al. GSA: Genome Sequence
773 Archive. Genomics Proteomics Bioinformatics 2017;15:14–8.

774 [55] Chen T, Chen X, Zhang S, Zhu J, Tang B, Wang A, et al. The Genome Sequence
775 Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genomics
776 Proteomics Bioinformatics 2021;19:578–583.

777

778 **Figure legends**

779 **Figure 1 Dynamic expression of tRNA isodecoders among different mouse**
780 **tissues**

781 **A.** Schematic representation of DM-tRNA-seq based on AlkB demethylation. **B.**
782 Heatmap of pairwise Pearson correlation coefficients of tRNA isodecoder expression
783 among the six samples of the three mouse tissues. **C.** Stacked bar plot depicting the
784 percentages of cytoplasmic tRNA reads and mitochondrial tRNA reads in three mouse
785 tissues. **D.** Heatmap representing the Z-score of gene expression of tRNA isodecoders
786 in the six samples of the three mouse tissues. **E.** Line chart comparing the strength of
787 isodecoders usage bias in different tissues as measured by the RSIU. The
788 representative isodecoders with high tissue specificities are indicated. Cor coef,
789 correlation coefficient; Cyto, cytosolic; Mito, mitochondrial; RPM, Reads Per Million
790 mapped reads; RSIU, Relative Synonymous Isodecoder Usage.

791 **Figure 2 Tissue-specific expression of isodecoders result in tissue-specific**
792 **expression but not the usage bias of anticodons**

793 **A.** Heatmap representing the Z-score of tRNA isoacceptor expression in the six
794 samples of the three mouse tissues. **B.** Multidimensional scaling plot displaying the
795 clustering of the six samples of the three mouse tissues according to the tRNA
796 expression profiles. **C.** Boxplot comparing the CVs of isodecoders and isoacceptors
797 among the six samples of the three mouse tissues, *P*-values of two-tailed Wilcoxon
798 tests are indicated. **D.** Density plot showing the distribution of mean CV of
799 isoacceptor expression across the six samples for 10,000 permutations as well as the
800 observed as indicated by red dot and arrow. *P*-value is calculated as the proportion of
801 permutations with greater x-axis values than the observed. **E.** Boxplot comparing the
802 pairwise Pearson correlation coefficients of three groups of isodecoders: “same
803 anticodon”, “same amino acid but different anticodon”, and “different amino acid”
804 according to the corresponding anticodons and amino acids of the pairs of two
805 isodecoders. *P*-values of two-tailed Wilcoxon tests are indicated. **F.** Line chart
806 comparing the strength of anticodon usage bias based on DM-tRNA-seq in three
807 tissues as measured by the RSAU. **G.** Density plot showing the distribution of mean
808 CV of RSAU values across the six samples for 10,000 permutations as well as the
809 observed as indicated by red dot and arrow. *P*-value is calculated as the proportion of
810 permutations with smaller x-axis values than the observed. CV, Coefficient of

811 variation; aa, amino acid; RSAU, Relative Synonymous Anticodon Usage.

812 **Figure 3 Tissue-specific tRNA isotype expression at amino acid level**

813 **A.** Heatmap representing the Z-score of tRNA isotype expression in the six samples of
814 three mouse tissues. **B.** Heatmap representing the \log_2 -transformed fold change of
815 tRNA isotype expression for the pairwise comparisons of the three tissues. **C.** Box
816 plots comparing the CV of tRNA isotype expression across six samples (observed)
817 with five random permutations, *P*-values of two-tailed Wilcoxon tests are indicated. **D.**
818 Density plot showing the distribution of mean CV of tRNA isotype expression across
819 the six samples for 10,000 permutations as well as the observed as indicated by red
820 dot and arrow. *P*-value is calculated as the proportion of permutations with greater
821 x-axis values than the observed. FC, fold change.

822 **Figure 4 RiboTag analysis of translatomes in multiple mouse tissues**

823 **A.** Overview of RiboTag technology. **B.** Diagram depicting the RiboTag mouse
824 systems. **C.** Western blot analysis of RPL22-HA in different tissues of *CMV-Cre*:
825 RiboTag mouse. **D.** Heatmap of pairwise Pearson correlation coefficients among the
826 six mouse samples in three tissues based on the FPKMs of genes in Input samples of
827 RiboTag. **E.** Heatmap representing the Z-score of TEs in six samples of three mouse
828 tissues. **F.** Heatmap representing the Z-score of codon indexes of top 5% highly
829 translated genes in six samples of three mouse tissues. **G.** Line chart comparing the
830 strength of codon usage bias in different tissues as measured by the RSCU. **H.**
831 Boxplots comparing the CV of RSCU values of the top 5% of highly translated genes
832 (observed) across six samples with four random permutations, *P*-values of two-tailed
833 Wilcoxon tests are indicated. HA, hemagglutinin; MeG, N7- methylated guanosine;
834 wt, wild type; FPKM, Fragments Per Kilobase per Million mapped of fragments; TE,
835 translational efficiency; RSCU, Relative Synonymous Codon Usage.

836 **Figure 5 tRNA pools adapt better to highly translated genes in the same tissues
837 but not to tissue-specifically translated genes**

838 **A.** Box plots comparing the tAI of genes with different TE levels based on the tRNA
839 pools of the same tissues in the three tissues respectively. *P*-values of the two-tailed
840 Wilcoxon tests are indicated. **B.** Box plots showing the tAI of the top 5% of highly
841 translated genes in the brain (left panel), heart (middle panel), and testis (right panel)
842 calculated based on the tRNA pools of the three tissues respectively. *P*-values of
843 two-tailed Wilcoxon tests are indicated. tAI, tRNA adaptation index.

844 **Figure 6 tRNA expression correlates with amino acids composition in the same**

845 **tissues but not between tissues**

846 **A.** Heatmap representing the Z-score of amino acid compositions of top 5% highly
847 translated genes in the six samples of three mouse tissues. **B.** Scatter plots showing
848 the correlation of amino acid compositions of the top 5% highly translated genes with
849 the tRNA isotype expression in brain (left panel), heart (middle panel), and testis
850 (right panel). Blue lines indicate fitted linear models and Pearson's correlations are
851 shown. **C.** Scatter plots showing no significant linear correlation of amino acid
852 compositions subtracted by means with the Z-score of tRNA isotype expression in all
853 three tissues. htg, highly translated genes.

854

855 **Supplementary material**

856 **Figure S1 The bioinformatics analysis flow chart**

857 The left flow chart shows the bioinformatic analysis steps of DM-tRNA-seq data; the
858 right flow chart shows the bioinformatic analysis steps of RiboTag data.

859 **Figure S2 Dynamic expression of anticodons using published QuantM-tRNA
860 seq data**

861 **A.** Comparison of the coefficient of variation of isodecoders and isoacceptors among
862 seven tissues, *P*-values of two-tailed Wilcoxon tests are indicated. **B.** Heatmap
863 representing the Z-score of tRNA reads which collapsed by known isoacceptor groups
864 in seven tissues. Two outliers were removed from the analysis (Cortex_1, Tibialis_1).
865 **C.** Boxplot comparing the pairwise Pearson correlation coefficients of three groups of
866 isodecoders: “same anticodon”, “same amino acid but different anticodon”, and
867 “different amino acid” according to the corresponding anticodons and amino acids of
868 the pairs of two isodecoders. CNS, central nervous system; aa, amino acid; Cor coef,
869 correlation coefficient.

870 **Figure S3 RiboTag analysis of translomes in multiple mouse tissues reveals
871 tissue-specific translational efficiency and codon usage biases**

872 **A.** PCR products using primers that amplify CMV-Cre recombinase and the
873 loxP-containing intron sequence of the *Rpl22* gene. The wild-type PCR product is 260
874 bp, while the mutant PCR product is 290 bp. **B.** Western blots using an anti-HA
875 antibody demonstrate the presence of RPL22-HA specifically in anti-HA pellets

876 versus supernatant. **C.** Agilent Technologies 2100 Bioanalyzer electropherogram
877 analysis of total RNA from brain, heart, and testis immunoprecipitates. M, mouse No.;
878 wt, wild type; IP, immunoprecipitation.

879 **Figure S4 Metascape enrichment analysis of highly translated genes in**
880 **different tissues**

881 **A.–C.** Metascape enrichment analysis of top 5% highly translated genes in brain (A),
882 heart (B), and testis (C).

883 **Figure S5 Pairwise correlation analyses of isoacceptor abundances and the**
884 **codon compositions among the three tissues**

885 **A.** Correlation analysis between isoacceptor abundances and the codon compositions.
886 **B.** Correlation analysis between the fold change of isoacceptor abundances and the
887 fold change of codon compositions. FC, fold change.

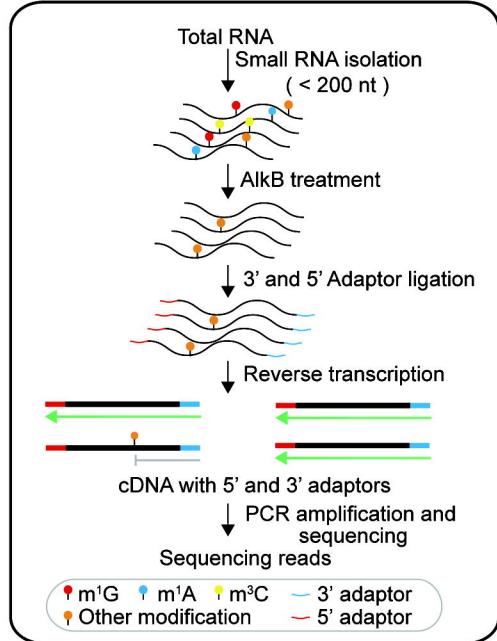
888 **Figure S6 Pairwise correlation analyses of tRNA isotype expression and amino**
889 **acid compositions among the three tissues**

890 **A.** and **B.** Pairwise correlation analyses of the three tissues between delta amino acid
891 composition and the fold change of tRNA isotype expression of all genes (A) and
892 highly translated genes (B) respectively. htg: highly translated genes.

893 **Figure S7 Comparison of the percentages of reads with length greater than 40**
894 **bp of cytosolic and mitochondrial tRNA**

895 Cyto cytosolic; Mito, mitochondrial.

896 **Figure S8 Correlation analyses of tRNA and tsRNA among the three tissues**


897 **A.** Correlation analysis between tsRNA and tRNA on isodecoder level. **B.** Correlation
898 analysis between the fold change of tsRNA and the fold change of tRNA.

899 **Table S1 The counts and expression of tRNAs**

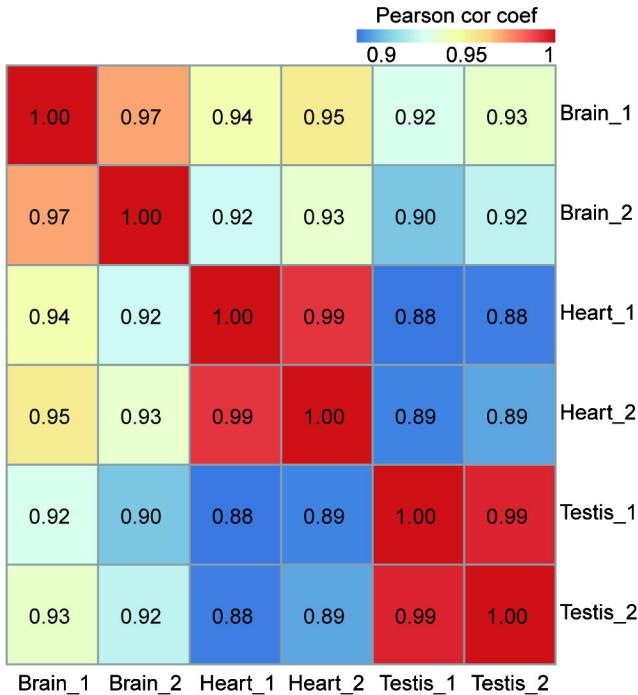
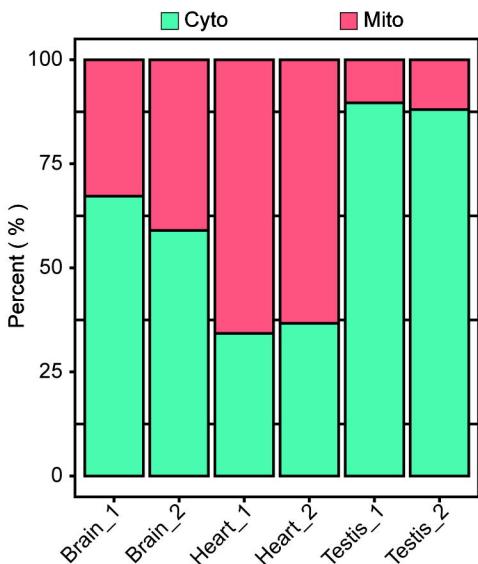
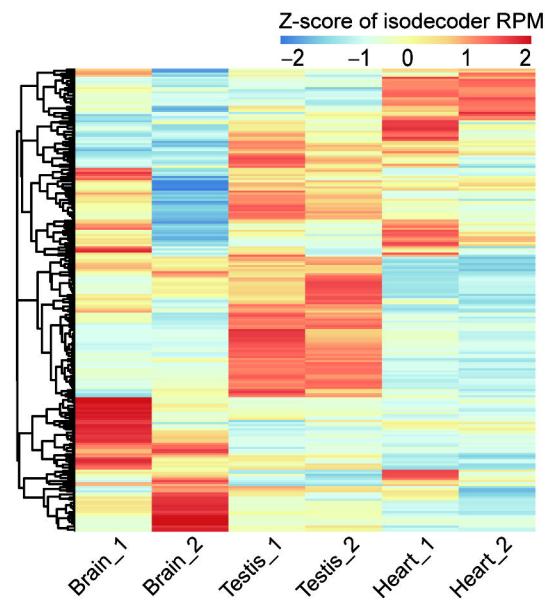
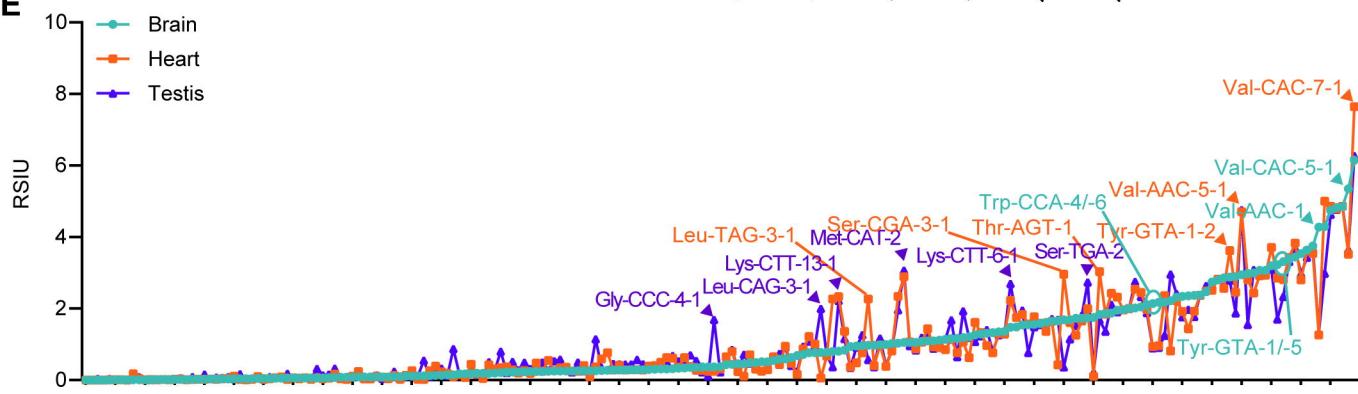
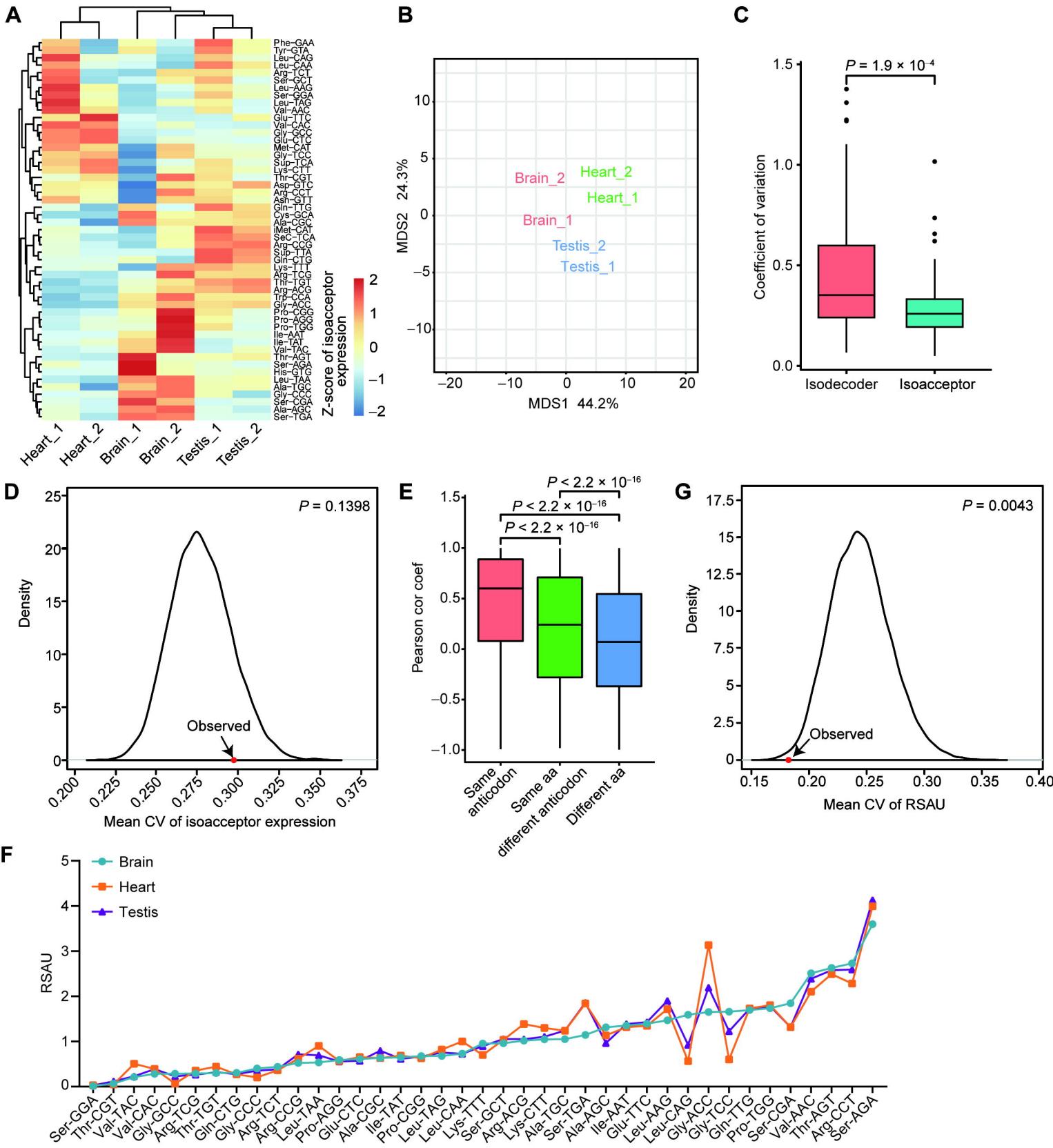

900 **Table S2 The gene FPKMs of IP and Input of RiboTag**

Figure 1


A


B


C



D

E

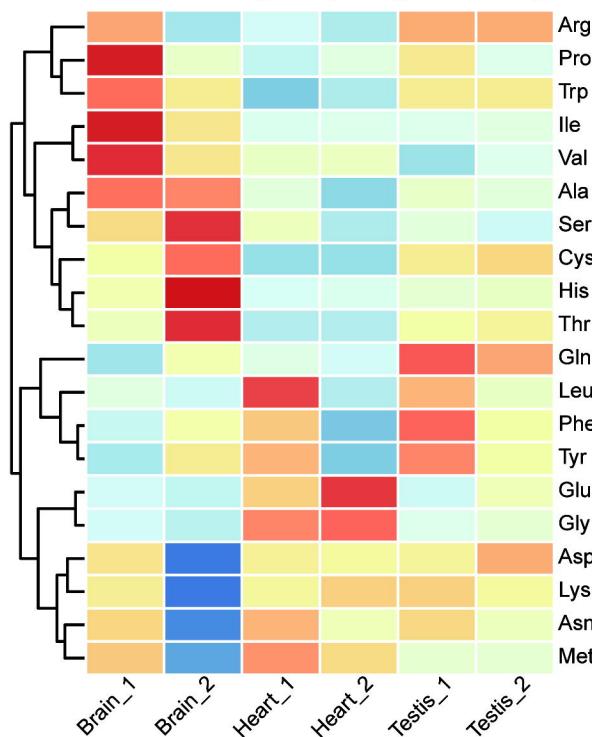
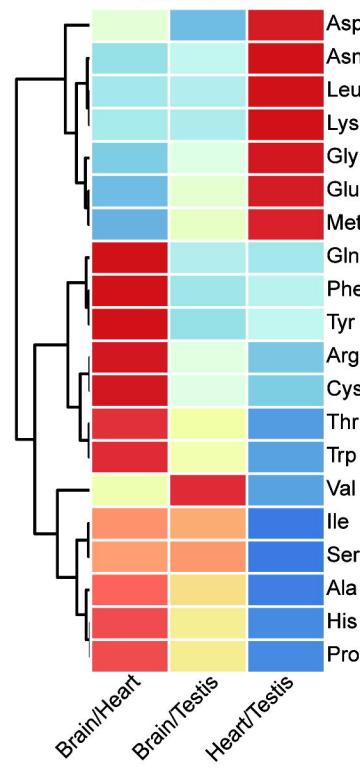
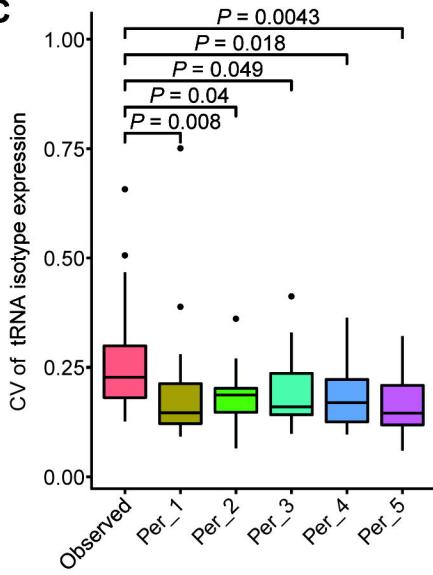
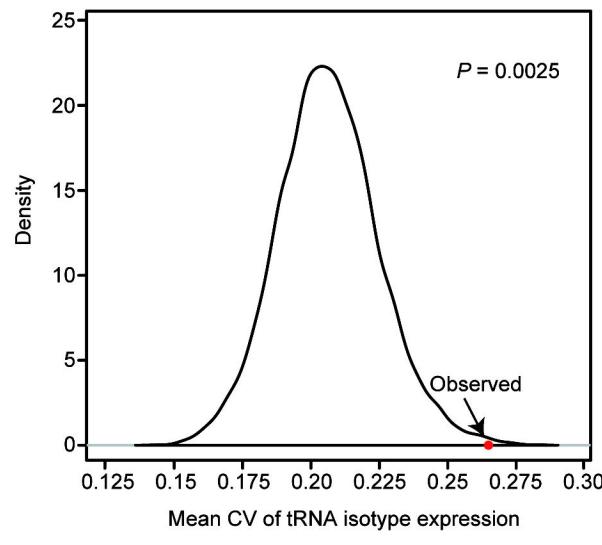
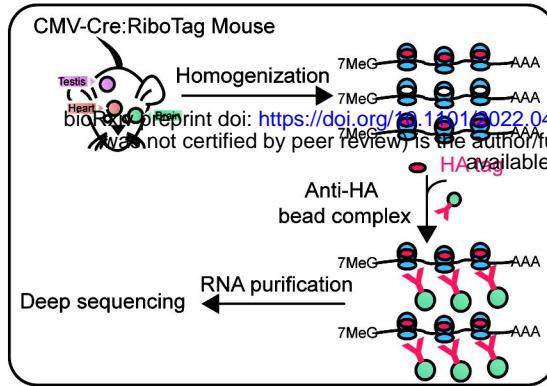
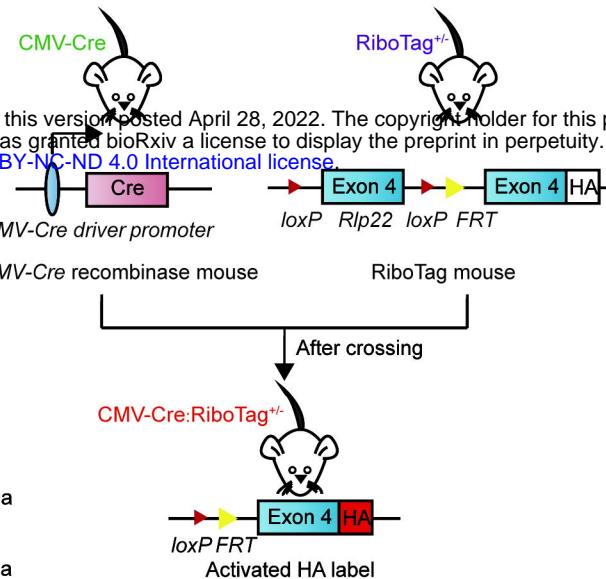
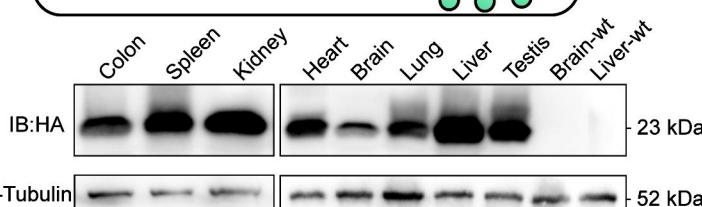
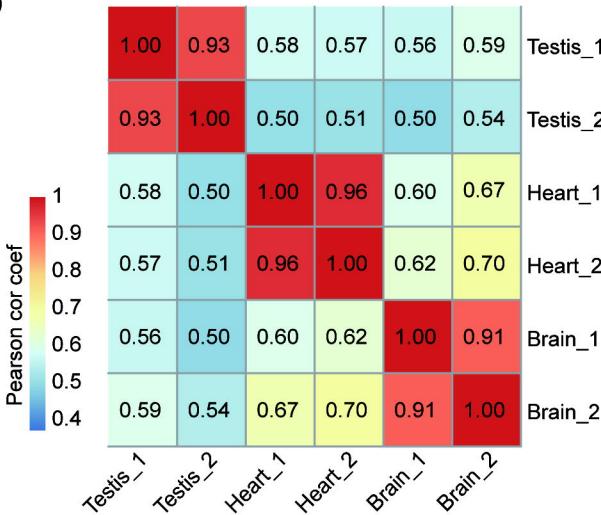
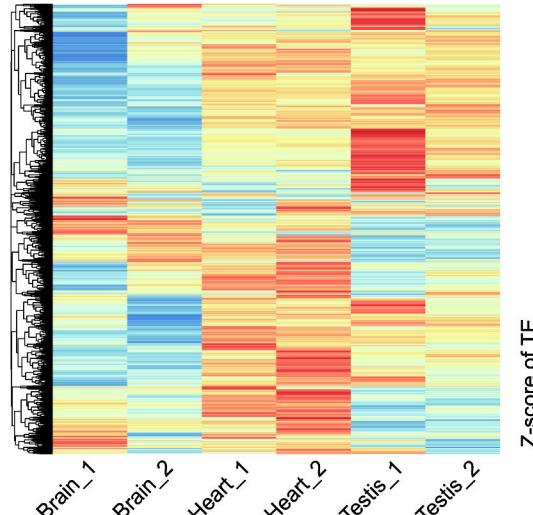
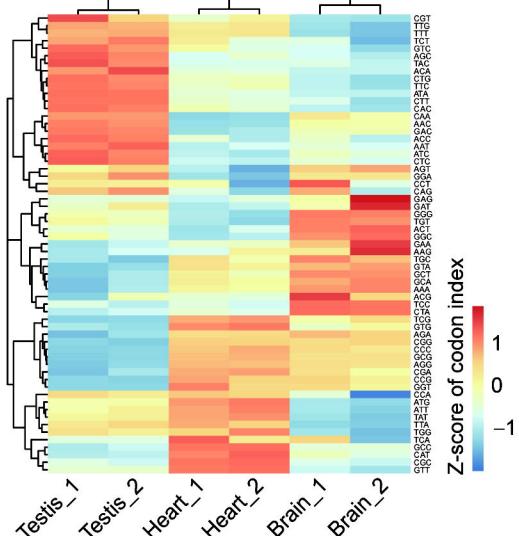
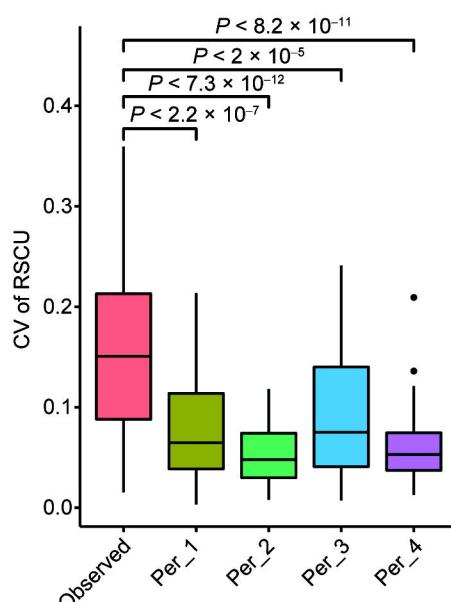
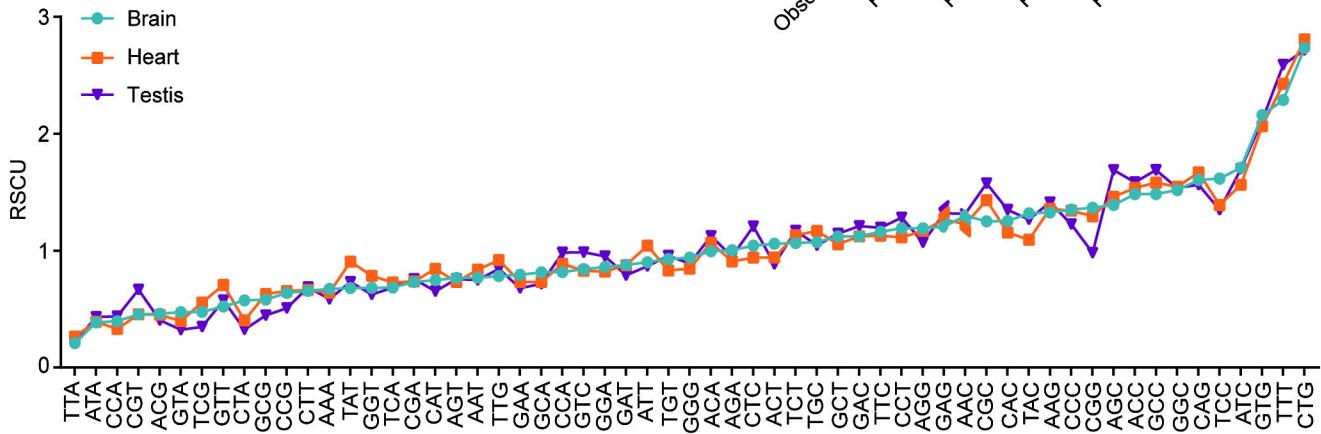
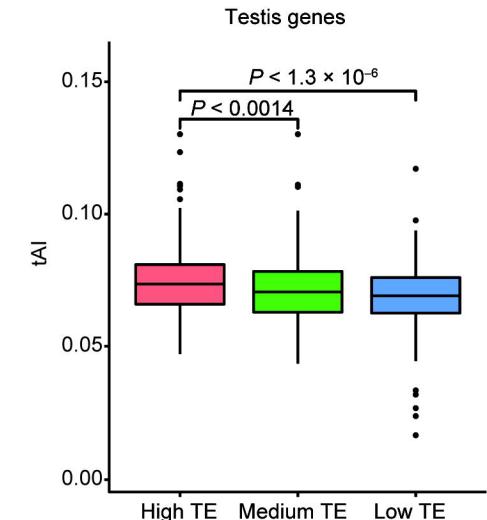
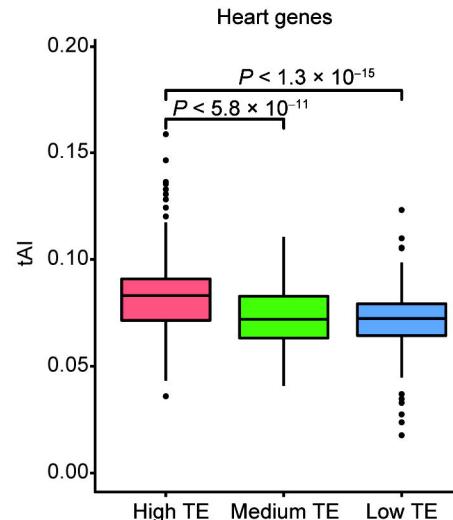
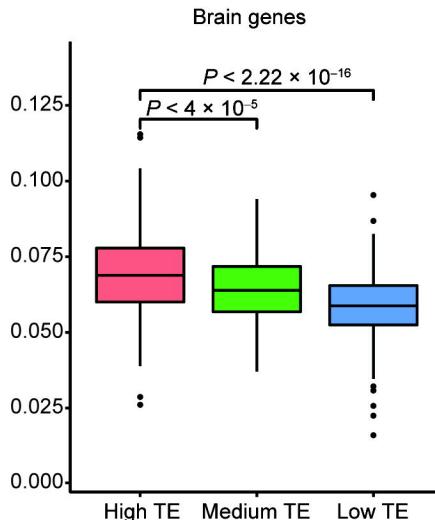
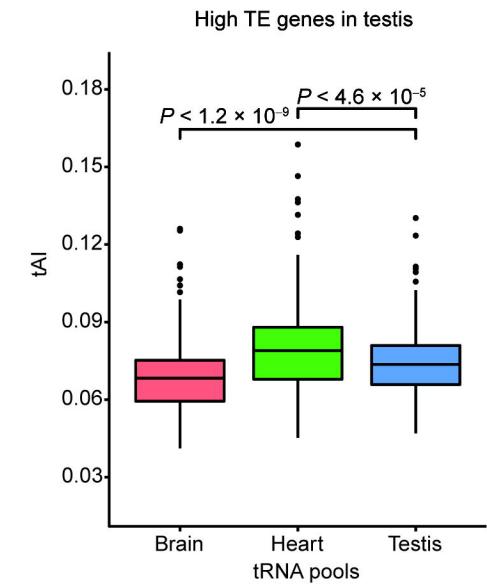
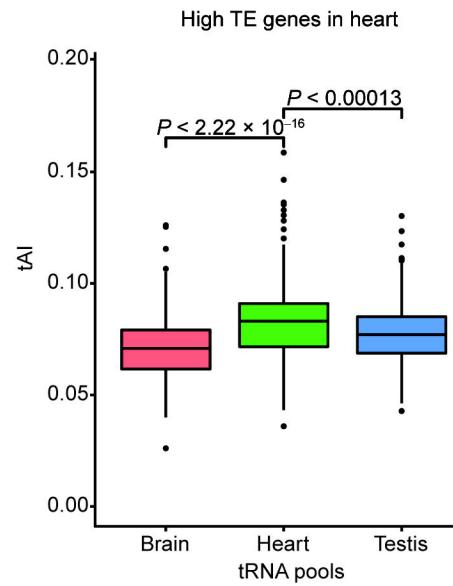
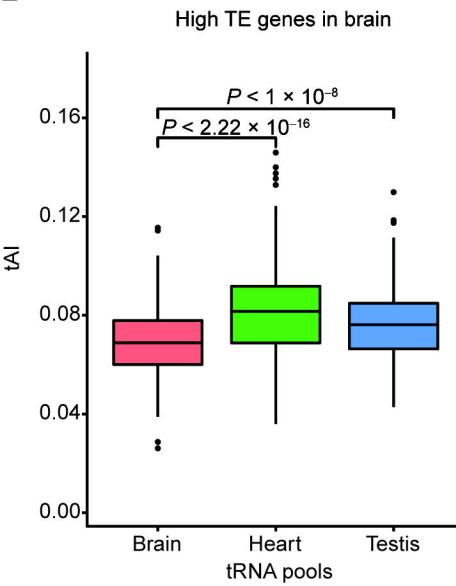
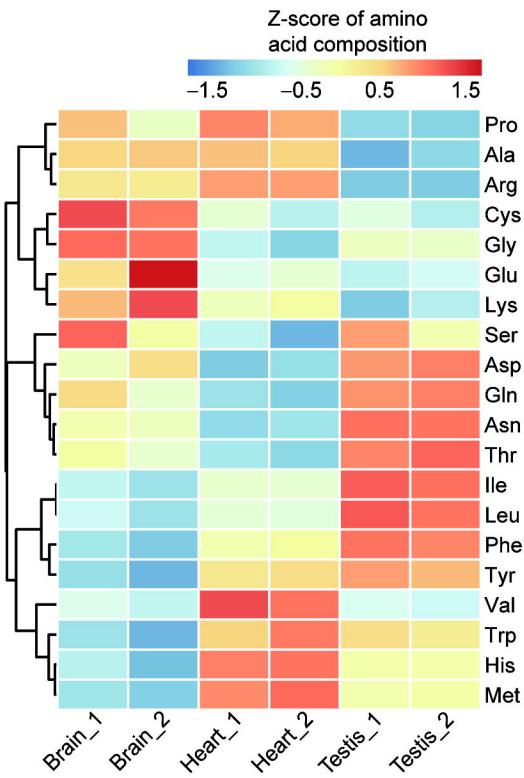
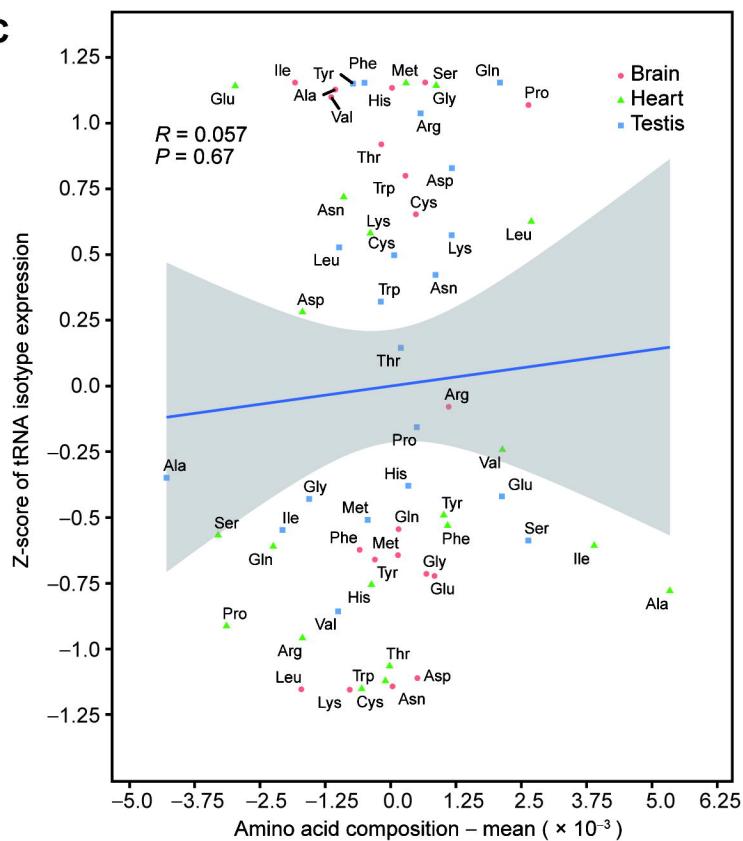
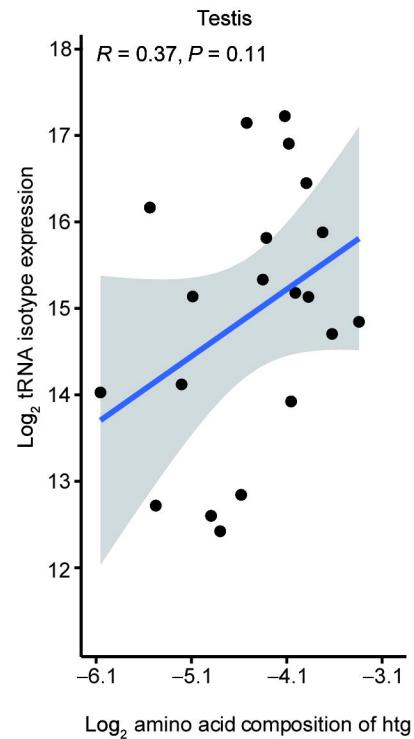
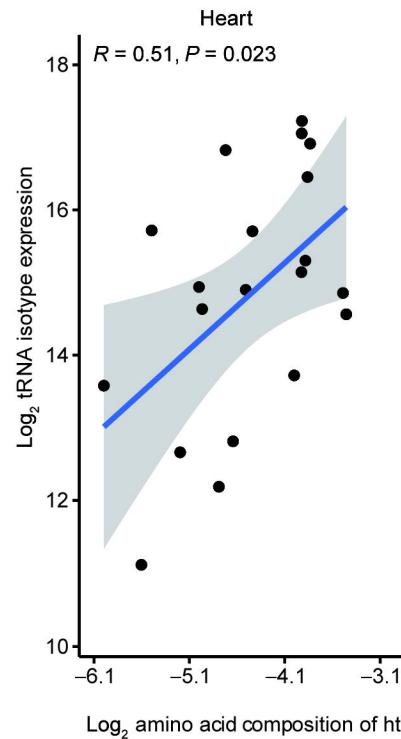
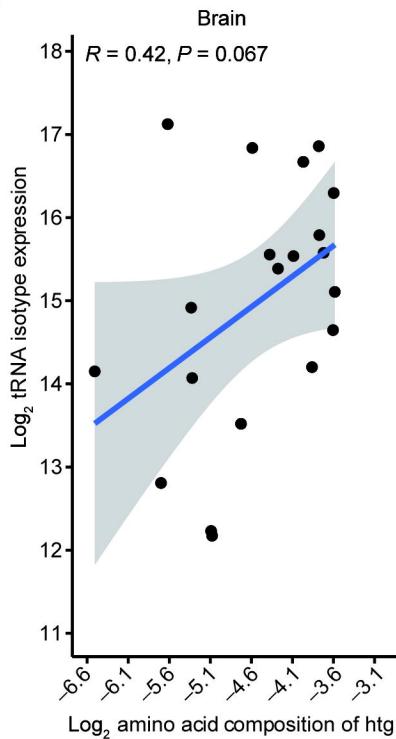


Figure 2

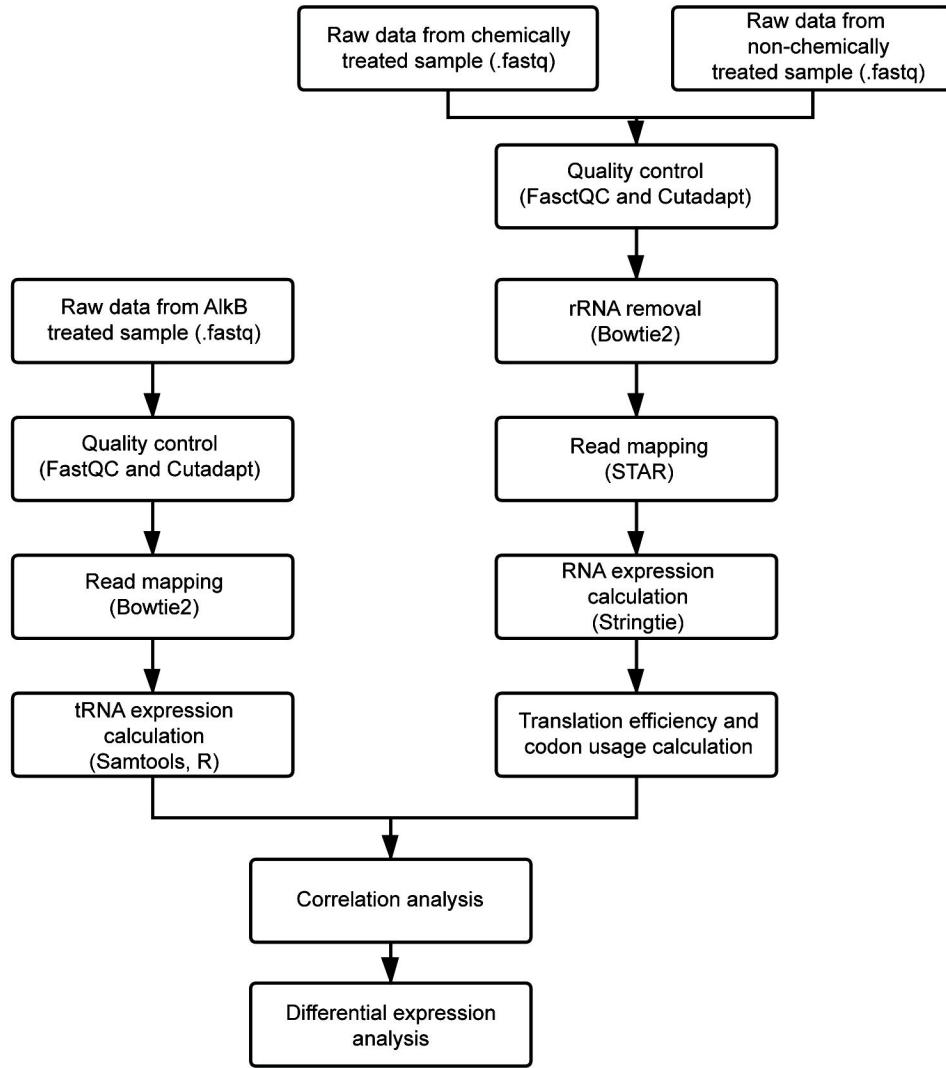



Figure 3**A**









Z-score of tRNA isotype expression







-2 -1 0 1 2






BLog₂FC of tRNA isotype expression

-1 -0.5 0 0.5 1


C**D**

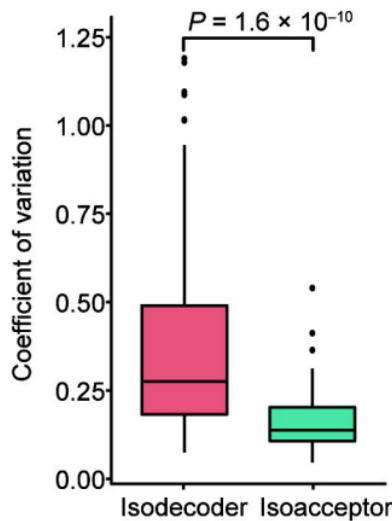
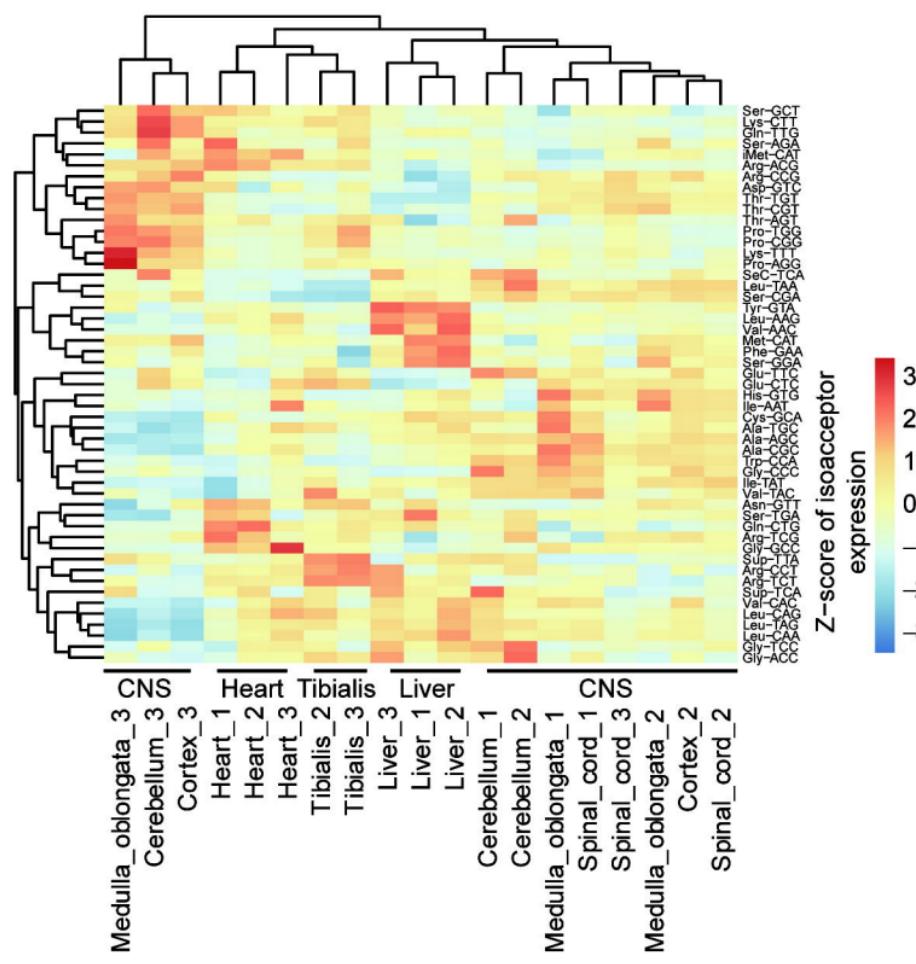
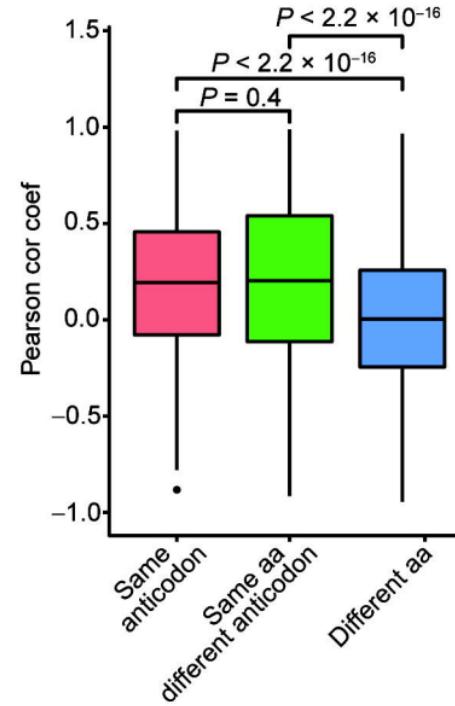
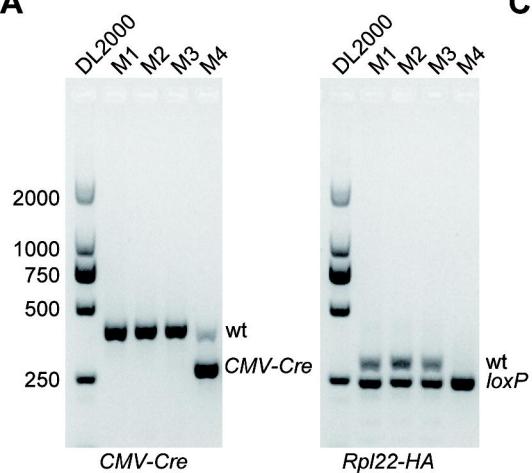
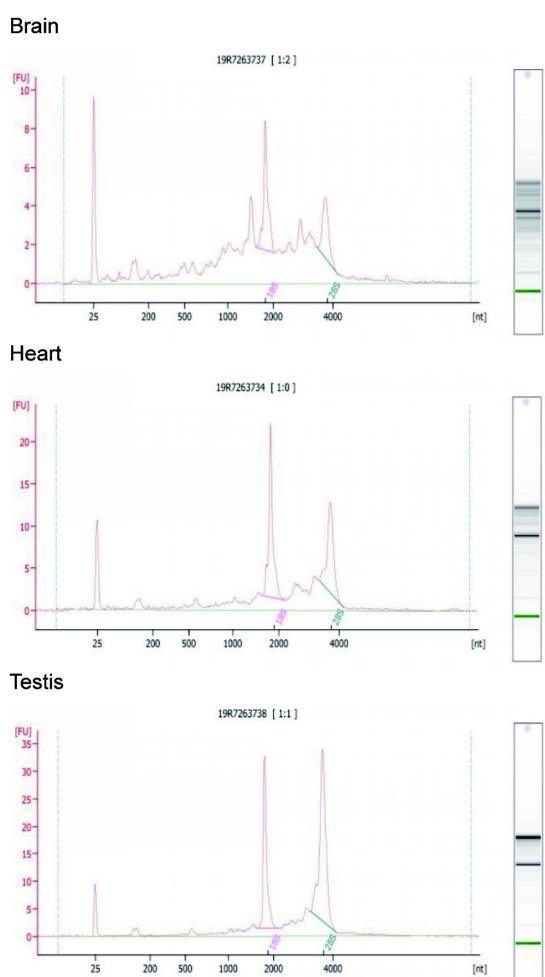
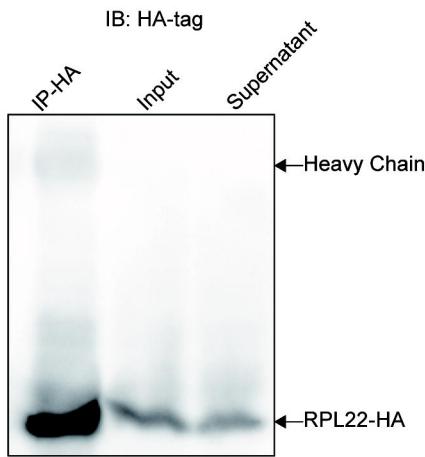
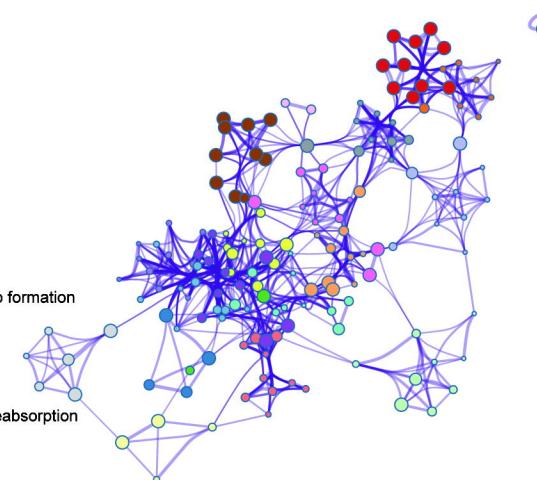
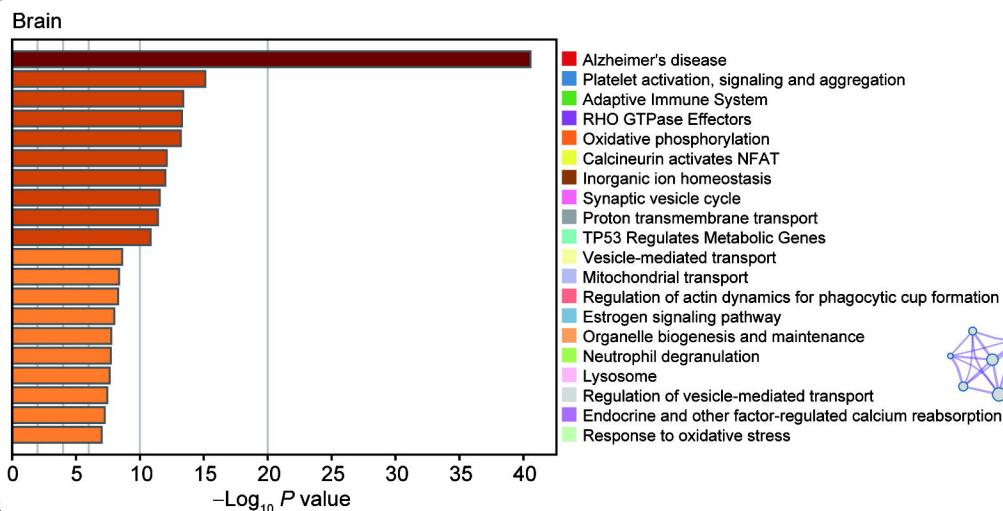



Figure 4**A****B****C****D****E****F****H****G**

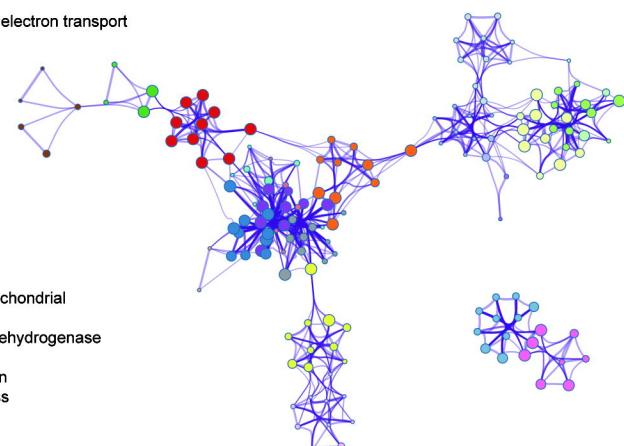
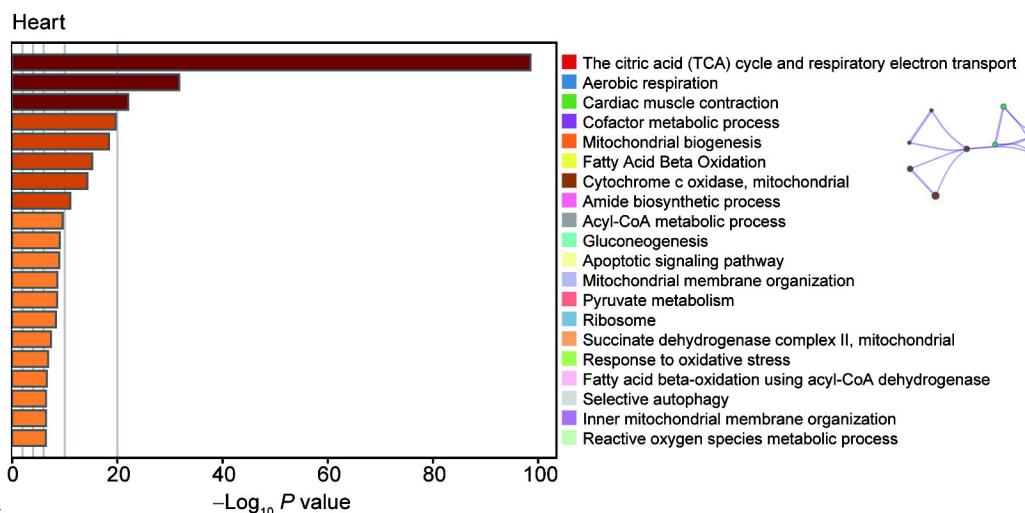
Figure 5**A****B**




Figure 6**A****C****B**

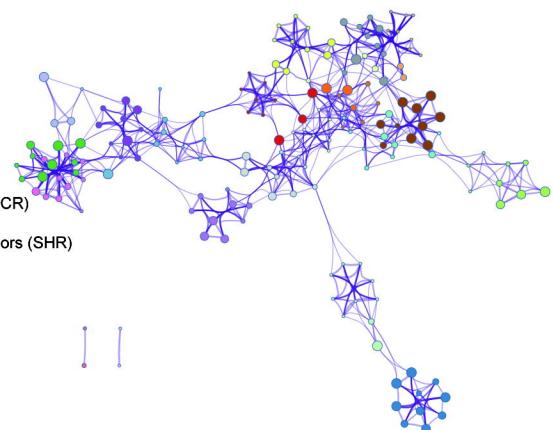
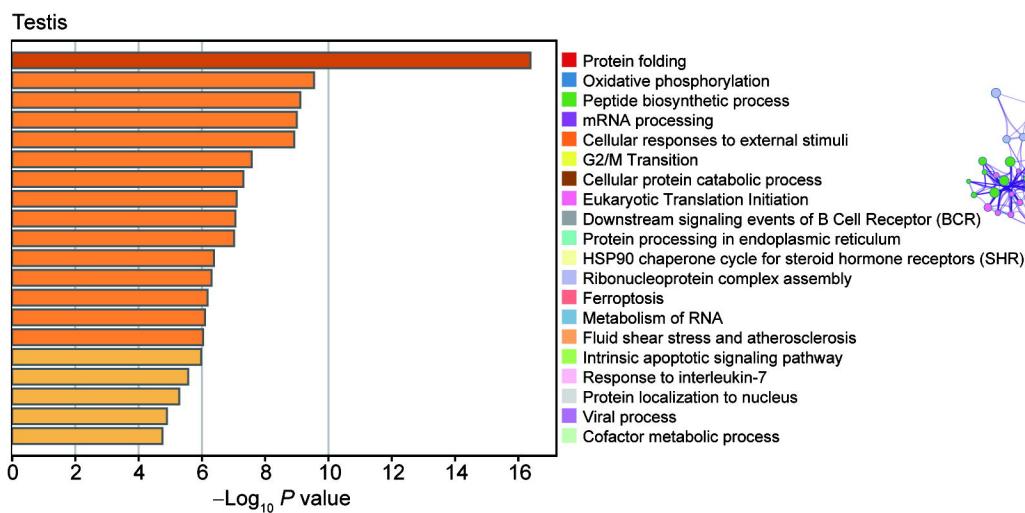
Supplementary Figure 1



Supplementary Figure 2**A****B****C**

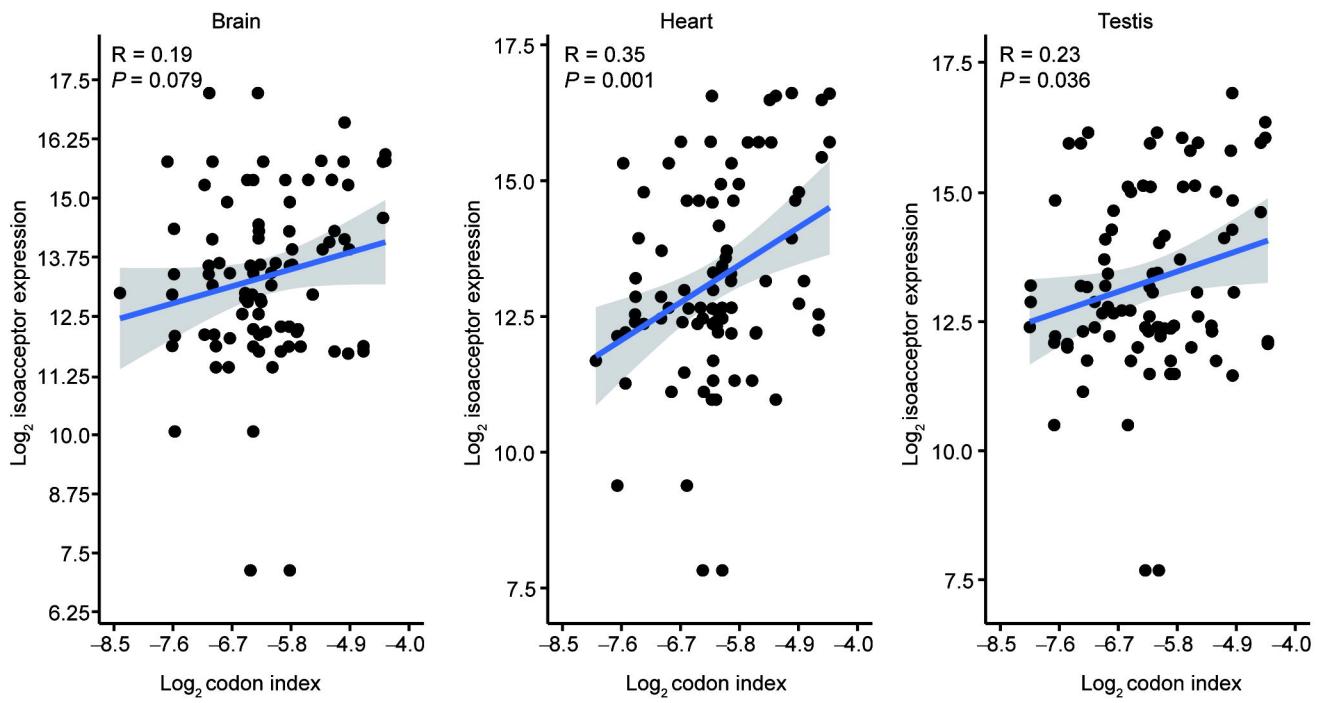
Supplementary Figure 3



A**C****B**

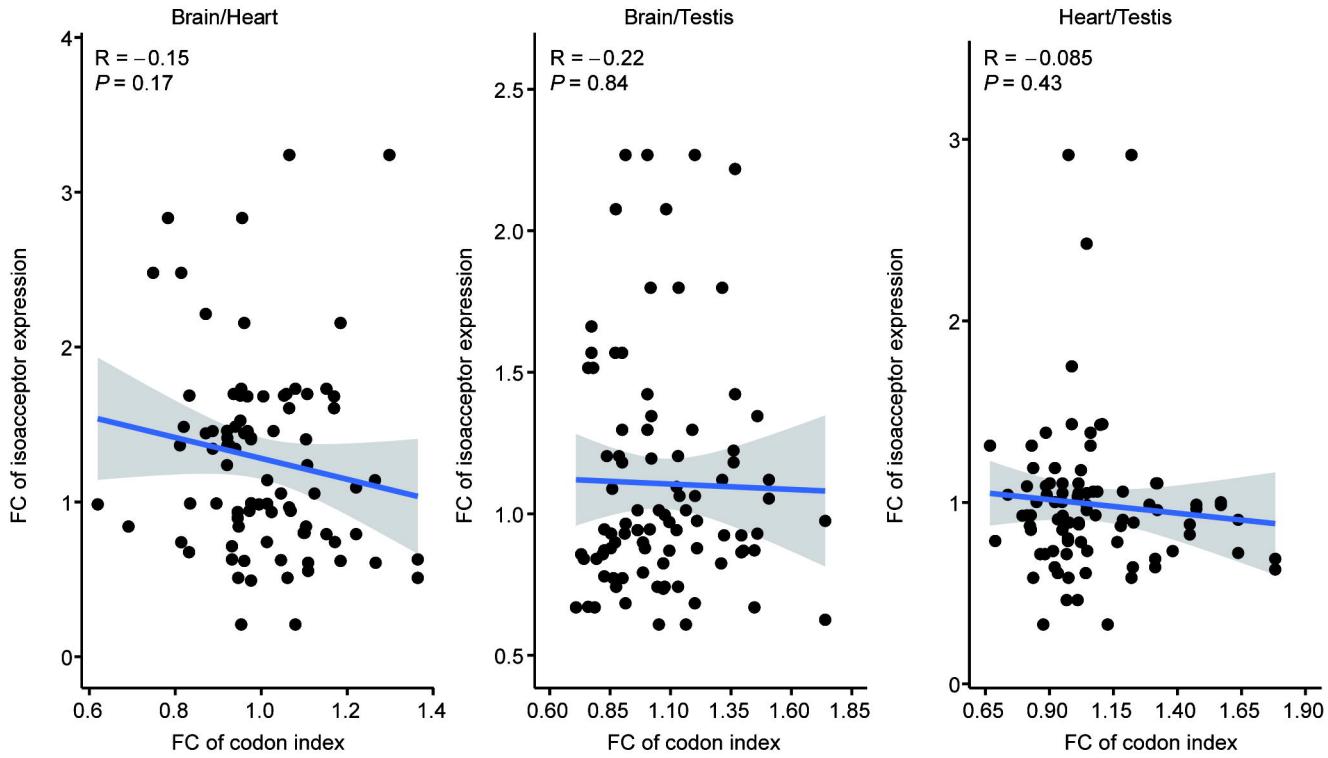
Supplementary Figure 4



A

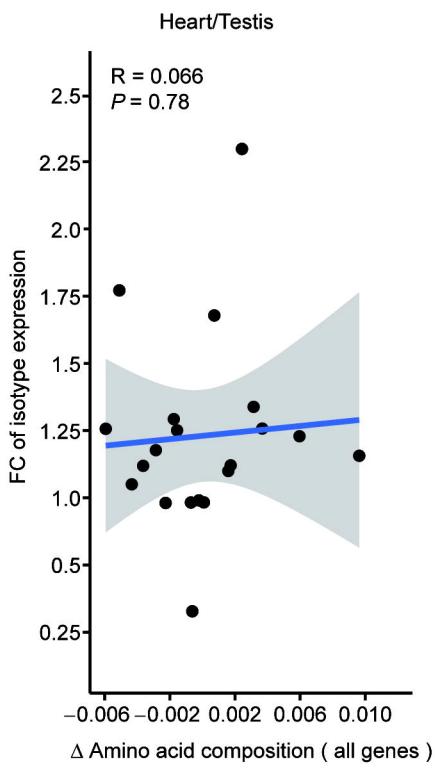
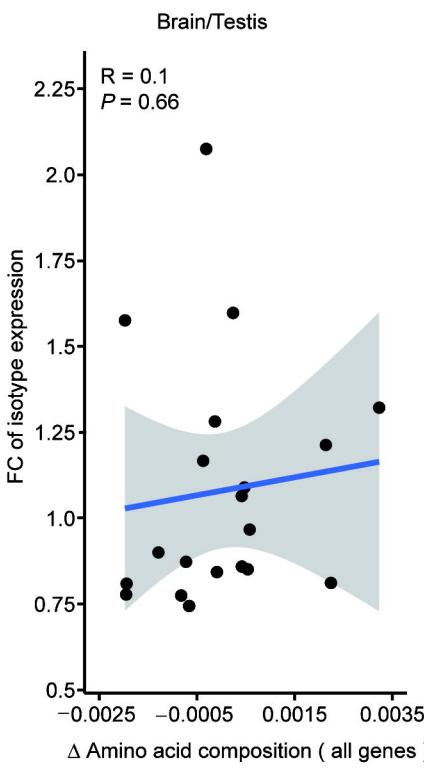
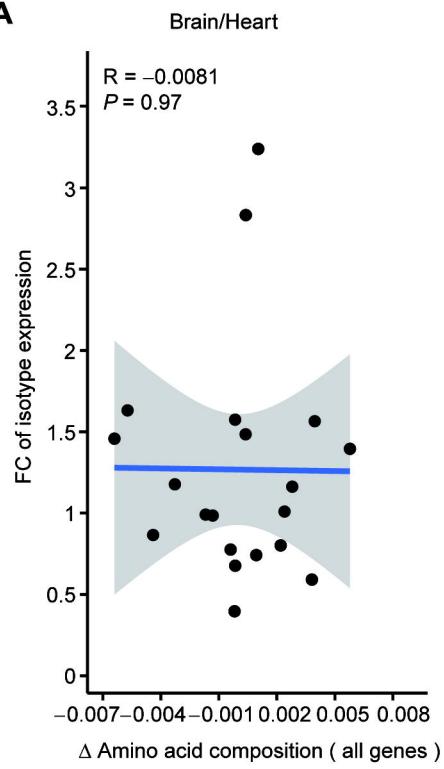
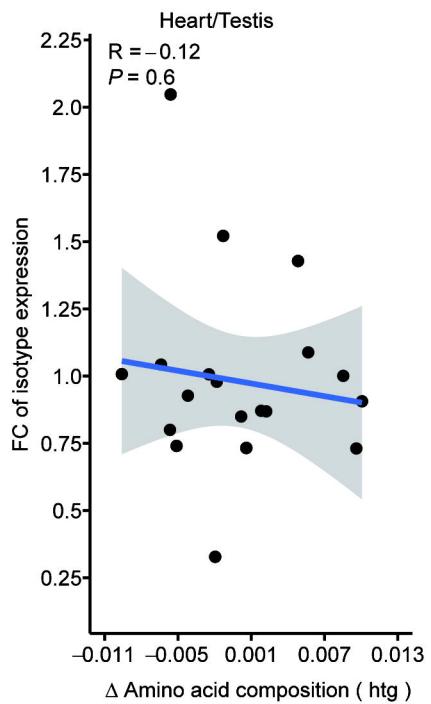
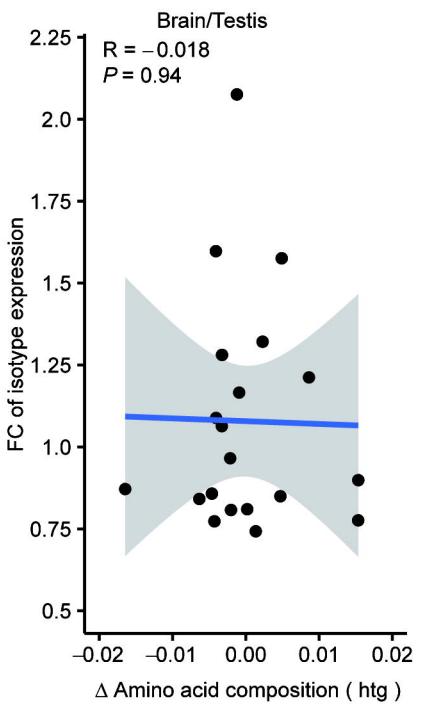
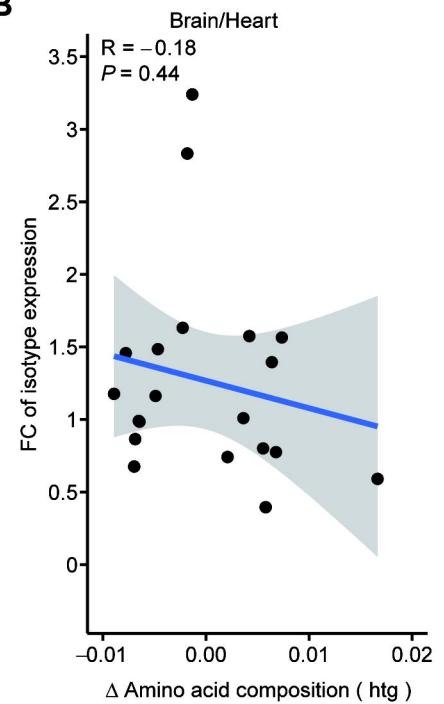
B

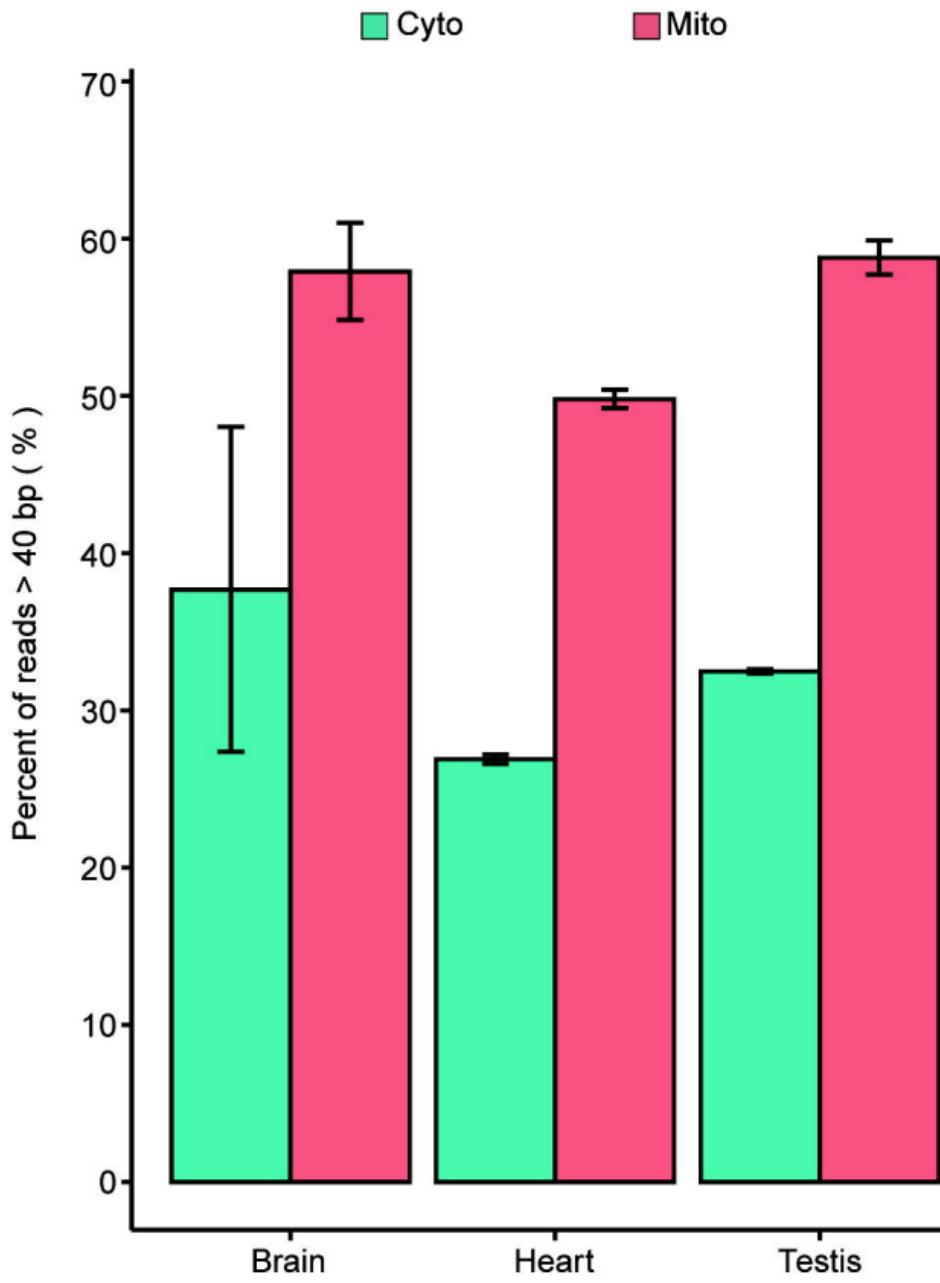


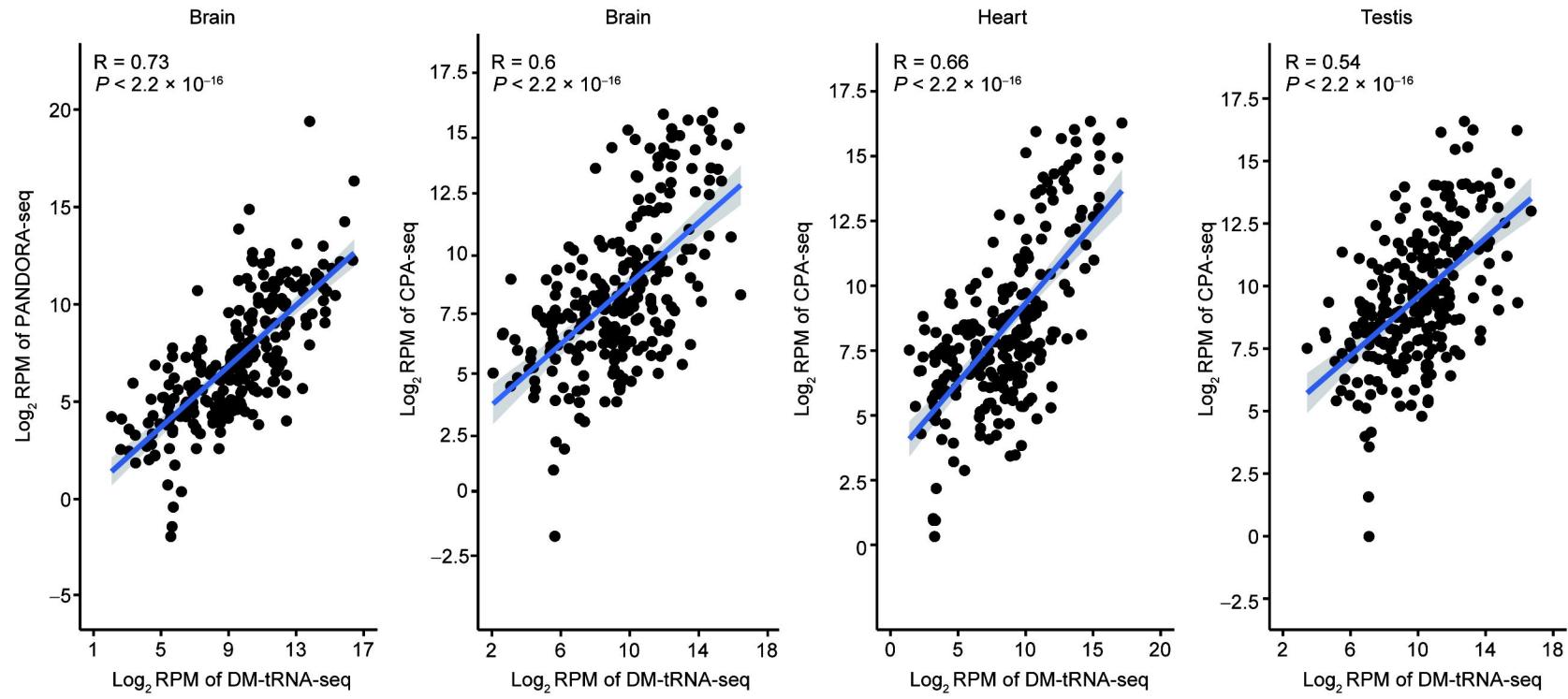
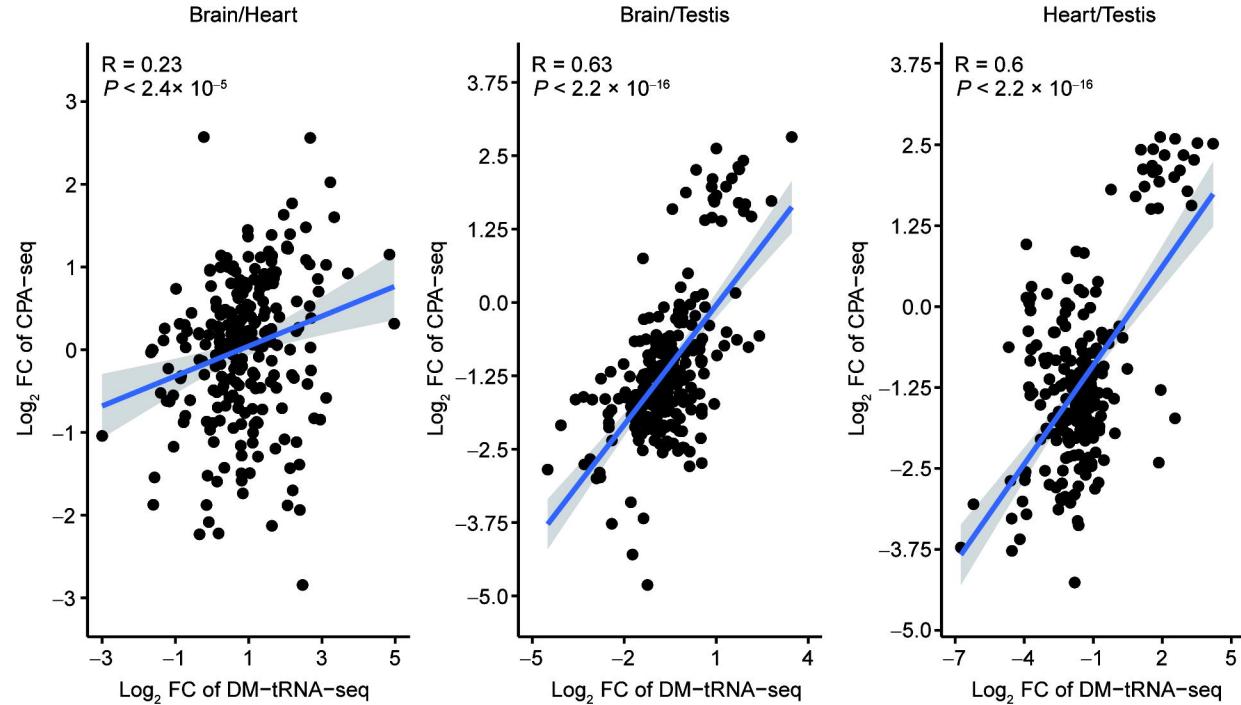
C



Supplementary Figure 5







A


B



Supplementary Figure 6

A**B**

Supplementary Figure 7

Supplementary Figure 8

A**B**