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Summary: A network embedding approach reduces the analysis
complexity of large biological networks by converting them to low-
dimensional vector representations (features/embeddings). These
lower-dimensional vectors can then be used in machine learning pre-
diction tasks with a wide range of applications in computational bi-
ology and bioinformatics. Several network embedding approaches
have been proposed with different methods of generating vector rep-
resentations. These network embedding approaches can be quite
diverse in terms of data representation and implementation. More-
over, most were not originally developed for biological networks.
Therefore comparing and assessing the performance of these diverse
models in practice, in biological contexts, can be challenging. To fa-
cilitate such comparisons, we have developed the BioNE framework
for integration of different embedding methods in prediction tasks.
Using this framework one can easily assess, for instance, whether
combined vector representations from multiple embedding meth-
ods offer complementary information with regards to the network
features and thus better performance on prediction tasks. In this pa-
per, we present the BioNE software suite for embedding integration,
which applies network embedding methods following standardised
network preparation steps, and integrates the vector representations
achieved by these methods using three different techniques. BioNE
enables selection of prediction models, oversampling methods, fea-
ture selection methods, cross-validation type and cross-validation
parameters.

Availability and implementation: BioNE pipeline and detailed
explanation of implementation is freely available on GitHub, at
https://github.com/pooryaparvizi/BioNE

Keywords: Biological Networks, Graph Embedding, Network Em-
bedding, Node Embedding, Link Prediction, Ensemble Learning,
Supervised Learning

Introduction

The advancement in high-throughput technologies has re-
sulted in a substantial increase in available data, providing
opportunities to research and gain a deeper understanding
of interactions within biological systems. This allows for
the analysis and exploration of cells or organisms as sys-
tems where molecular parts act together in a dynamic way
(1). Network biology analysis, which is based on graph
theory, could provide a structure for integrating these high-
throughput multi-omics data and investigating interactions
within biological systems (2). Although, analysing large
amounts of data within the network is valuable, analysis and
interpretation results can be challenging using conventional
statistical methods (3). Network embedding approaches can
provide an effective way to overcome the complexity of large
biological network analysis. Embedding approaches map
nodes to low-dimensional vectors by preserving the proper-

ties of their higher dimensional counterparts. Lower dimen-
sional embeddings are then used in downstream analysis such
as supervised learning link prediction tasks.

Embedding methods have been developed and used in a wide
range of domains, most notably natural language processing.
While research exploring the application of these methods to
biological networks is still in its early stages, there is con-
siderable interest. These applications can be loosely divided
into three categories; (1) drug-related applications, such as
drug-target interactions (DTIs) (4-9), drug-disease interac-
tions (10-12), drug side-effects (13, 14), drug-drug inter-
actions (15-17), polypharmacy antagonistic effects (18, 19)
and synergistic reactions in drug combination therapy (20);
(2) protein-related applications, such as protein-protein in-
teractions (PPIs) (21-24) and protein/gene disease interac-
tions (25-31); and (3) transcriptomics-related applications,
such as IncRNAs-diseases associations (32-35) and miRNA-
disease associations (36—43) and many other applications
(44-50).

Since network embedding methods were not originally de-
veloped for biological networks, their performance in obtain-
ing different biological network features is yet to be estab-
lished. Different network embedding approaches capture the
network’s structural properties using different methods; the
focus can be on local or global properties (51-53). Biological
networks are sparse and incomplete (54). Therefore, it is nec-
essary to develop embedding models that take into account
the sparsity and incompleteness of biological networks while
also accounting for their local and global structural proper-
ties. As no single approach appears to handle these trade-offs
satisfactorily, one may ask whether integrating network em-
beddings from different methods might provide richer feature
representations, greater insight into the network, and better
prediction performance when used in downstream analysis.
To address this question we have developed the BioNE pro-
cessing pipeline, which provides tools for the preparation of
networks, application of different network embedding meth-
ods and integration of embeddings in different ways. To the
best of our knowledge, this pipeline is the first set of tools to
support comprehensive integration of network embeddings.

Implementation

The BioNE pipeline consists of three steps: network prepa-
ration, network embedding, and link prediction:

(a) Network preparation involves representing the input
data in formats suitable for processing within the net-
work embedding step. In this step, users are required to

Parvizi etal. | bioRxiv | April26,2022 | 1-6


mailto:poorya.parvizi@ed.ac.uk
mailto:s.luz@ed.ac.uk
https://github.com/pooryaparvizi/BioNE
https://doi.org/10.1101/2022.04.26.489560
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.26.489560; this version posted April 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

convert adjacency matrices to edge list files. The user
also has an option to set networks as directed or two
or more edge lists can be combined to create heteroge-
neous networks.

(b) BioNE’s network embedding step takes the prepared
input and applies network embedding methods to learn
low-dimensional vector representations for each node
on the network. The following embedding methods
are available within BioNE; LINE (55), GraRep (56),
SDNE (57), HOPE (58), LaplacianEigenmaps (LAP)
(59), node2vec (60), DeepWalk (61) and Graph Fac-
torization (62). The user has options to treat the net-
work as directed, weighted or set the vector represen-
tations size. The output is a space-delimited file that
contains vector representations (features/embeddings)
of the nodes.

(c) In the link prediction step, the user needs to provide the
annotation file in order to define dependent and inde-
pendent variables for link prediction tasks. For exam-
ple, the annotation file should contain information such
as, drug A and protein E do not show an association;
drug B and protein E show an association. Therefore,
the dependent variable of link drug A and protein E is 0
and for drug B and protein E is 1. The concatenation of
the drug and protein embeddings are independent vari-
ables (see Figure 1). The user is also required to pro-
vide the list of embedding files generated by different
embedding methods (produced in the embedding step),
which the user wishes to integrate. The user can select
the cross-validation method and parameters, an over-
sampling method (for imbalanced data), feature selec-
tion techniques and prediction models.

Three techniques, late (eq.1), early (eq.2) and mixed (eq.3)
fusions are used to integrate different embeddings.
Late Fusion: For late fusion the resulting embeddings are
fed to the classifier (machine learning model) separately. The
classifier then calculates the prediction probabilities for each
instance. The class with the highest sum of prediction prob-
abilities for each instance is assigned as the prediction, that
is:

c=argmax(}  pleile, f)) )

eclk

where C' is the set of classes {0,1}, E is the set of em-
beddings {elinm €grareps €sdne> €hope> €lap> €node2vecs
€deepwalks €qf + derived from different embedding methods
{line, grarep, sdne, hope, lap, node2vec, deepwalk, gf},
and p(c;le, f) is the prediction probability of class ¢ for
classifier f (e.g. support-vector machine, SVM) for data e.

Early fusion: Early fusion concatenates the embedding re-
sults before inserting them into the prediction model. In the
case of the integration of grarep, SDNE and deepwalk em-
beddings:

Me = €grarep D esdne @ €deepwalk
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where M, is a concatenation of embeddings. The classifier f
(i.e. SVM) then estimates the conditional class probabilities
p(ci|Me, f) for the merged data M.

Mixed fusion: Mixed fusion merges data as in early fusion
and then passes them on to different classifiers. The sum
of prediction probabilities from different classifiers for each
instance is calculated and the class with the highest sum is
considered as the prediction:

c:argglg)cg(Zp(CﬂMe,f)) 3
fEF

where M. is a concatenation of embeddings
of methods and F is the set of Cclassifiers
{Random Forest, SVM, Naive Bayes, XGBoost}
and p(c;| M., f) is the prediction probability of class ¢ for
classifier f for data M.

BioNE outputs the prediction performance of the link pre-
diction in different metrics. In addition, BioNE also pro-
vides receiver operating characteristic (ROC) and precision-
recall (PR) curves. ROC shows the true positive rate of a
model’s prediction plotted against its false positive rate as
the classification threshold varies. The PR curve displays the
trade-off between precision and recall for different classifica-
tion thresholds. Both plots help evaluate the model by plot-
ting performance trade-offs; ROC are the most common of
the two, but PR curves can be useful for highly imbalanced
classes, which is a common feature in many biological pre-
diction tasks.

Advantages of BioNE

As mentioned above, the BioNE framework integrates em-
beddings from different embedding method, enabling the as-
sessment of whether the combined embeddings offer comple-
mentary information with regards to the input network fea-
tures and thus better performance on prediction tasks. In ad-
dition, BioNE provides toolsets to overcome the challenges
in link prediction and machine learning analysis. In link pre-
diction tasks, machine learning classifiers are used to classify
the presence or absence of an interaction between two enti-
ties. In biological networks, there is often the problem of
class imbalance, as the absence of interactions tend to over-
whelmingly dominate the distribution. BioNE provides dif-
ferent oversampling techniques such as SMOTE (63) to over-
come this challenge. Another oversampling technique avail-
able in BioNE is to equalize the number of positive and neg-
ative interactions.

Following the integration of embeddings, the total number of
features increases and can lead to the “curse of dimension-
ality” which can cause substantial issues for most traditional
machine learning algorithms. Insufficiency of training sam-
ples and redundancy among features is regarded as a signif-
icant issue in the supervised classification of hyperspectral

Parvizi etal. | BioNE


https://doi.org/10.1101/2022.04.26.489560
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.26.489560; this version posted April 27, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[

E

a
A
d e g
Drug-drug D

edge list Q

— E—
-0 ® ;
0! F

Protein-protein
edge list

Embeddings

C

Annotation file

Proteins
E F G

0]0]1

1]1]0]0

0]0]1

A E 0
A F 0 Early fusion
A G 1
= 1 .
»> E 0 »  Late fusion
B G 0
C E 0 . .
C E 0 Mix fusion
C G 1
Independent Dependent
variables variables

Network Preparation Network Embedding

Predictions Using the
Integration of Embeddings

Fig. 1. Use case example of BioNE in the use of embedding methods in a drug-target interaction prediction task without the application of the fusion step. This consists
of three parts: preparation of the networks, learning of vector representations using network embedding methods, and predictions using the learnt representations. In this
prediction model, embeddings are independent variables and their interactions (i.e. 0 and 1) in the annotation file (i.e. known drug-target interactions) are dependent variables.

data. BioNE provides feature selection methods based on
ANOVA and Mutual information (MI) to address this issue.
In addition, BioNE provides different machine learning mod-
els and helps reduce the risk of over-fitting by providing
two different cross-validation methods, namely, k-fold and
stratified cross-validation. The performance of the prediction
is evaluated using different metrics such as accuracy, preci-
sion, recall, specificity, F-scores and area under the ROC and
PR curves. As mentioned previously, the PR curve, which
mainly focuses on true positive cases, is particularly valuable
when measuring model link prediction performance on im-
balanced data.

Example Application of BioNE

As an example of the use of BioNE, the late fusion technique
has been tested on the drug-target interaction (DTI) predic-
tion task shown in Figure 1. To conduct this prediction, drug-
drug interactions (708 drugs) and known DTIs were extracted
from the Drug-Bank database (Version 3.0) (64). Protein-
protein interactions (1493 proteins) were obtained from the
Human Protein Reference Database (HPRD, release 9) (65).
Embedding methods (LINE, GraRep, SDNE, HOPE, LAP,
DeepWalk and GF) were applied to both drug-drug inter-
actions and protein-protein interactions networks separately
using default hyperparameters. Detailed explanation of pa-
rameters can be found on the Github!' page. Vector repre-
sentations of the drugs are derived from the embedding of
drug-drug interaction networks, and vector representations
of the proteins are derived from the embeddings of protein-
protein interaction networks. The size of vector representa-
tions achieved from each network embedding method is 20.
The embeddings of the proteins and drugs are then concate-
nated according to the annotation file that contains known
DTIs. These concatenations are considered as predictors, and
the absence or presence of associations between drugs and
proteins are taken to be the values of the dependent variables,
as in (66).

Ihttps://github.com/pooryaparvizi/BioNE
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The BioNE pipeline easily integrates different embeddings
achieved from network embedding methods and uses the late
fusion technique to test the performance of the predictions.
For the late fusion step, a 10-fold cross-validation procedure
without the application of oversampling and feature selection
methods was conducted. In order to eliminate the problem
raised due to imbalanced size between classes, the number
negative associations is matched to the number of positive
associations, as done in other studies (67). This is achieved
by randomly (under)sampling the specified number of neg-
ative associations from the sample. In this task, the predic-
tion model used was SVM with a radial basis function (RBF)
kernel. In addition, we assessed several embeddings indi-
vidually for comparison to BioNE’s late fusion. Prediction
performance of this method and other embedding methods is
shown in Table 1. This table summarizes the performance
of this prediction for each fold, reported values include the
mean performance metrics. This table, along with ROC and
PR curves are the outputs of the BioNE framework.

Accuracy  Precision  Recall Fl1 ROC-auc  PR-auc
foldl 0.80 0.77 0.78 0.78 0.87 0.88
fold2 0.80 0.79 076  0.77 0.87 0.85
fold3 0.72 0.75 070  0.73 0.83 0.86
fold4 0.83 0.85 0.81 0.83 0.88 0.90
fold5 0.83 0.90 079  0.84 0.89 0.93
fold6 0.82 0.86 0.78 0.82 0.91 0.93
fold7 0.81 0.87 0.75 0.80 0.90 0.91
fold8 0.77 0.75 074  0.74 0.85 0.86
fold9 0.77 0.83 070  0.76 0.85 0.86
fold10 0.76 0.81 0.71 0.76 0.86 0.89
Mean 0.79 0.82 0.75 0.78 0.87 0.89

Table 1. Cross validation results for late fusion, as implemented through the BioNE
pipeline: different metrics to evaluate the performance of the late fusion in the drug-
target interaction prediction task. Each line represents the performance in each fold
of cross-validation and last line takes the mean of these metrics.

In addition, Table 2 compares the area under ROC and PR
curves of other network embedding methods in the drug-
target interaction prediction task.

Results show that the BioNE results outperform other net-
work embedding methods when comparing area under ROC
and PR curves. With area under the ROC curve of 0.87
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LINE GraRep SDNE HOPE LAP DeepWalk GF BioNE

ROC 0.75 0.84 0.77 0.66 0.74 0.82 0.83 0.87
PR 0.76 0.86 0.77 0.64 0.75 0.82 0.84 0.89

Table 2. Mean area under the ROC and PR curves in different embedding methods
in DTI prediction task. The column labelled BioNE shows the results of predictions
using late fusion for combining different embedding methods.

BioNE outperformed network embedding methods GraRep,
GF, DeepWalk, SDNE, LINE, LAP and HOPE by %3, %4,
%5, %10, %12, %13 and %21 respectively. This demon-
strates that, BioNE is a valuable tool set to easily integrate
the embeddings to achieve more comprehensive knowledge
of the network and to test their performance in prediction
tasks.

Conclusions

As network embedding methods were not originally designed
for biological networks, their performance in obtaining dif-
ferent biological network features is not straightforward. We
believe, the integration of network embeddings can take into
account the sparsity and incompleteness of biological net-
works and is also capable of hurdling the trade-off between
local and global structure properties in network embedding
methods.

Therefore, the main purpose of this framework is to enable
researchers to easily reuse and combine well-known network
embedding methods and test their performance individually
and in combination on different link/association predictions.
In addition, BioNE provides tool sets to overcome some of
the challenges in link prediction and machine learning meth-
ods such as oversampling methods to overcome the imbal-
anced data challenges, feature selection methods to reduce
the curse of dimensionality and many other tools. Although,
we focused on well-known embedding methods, users can
expand this framework by adding other de-novo network
embedding methods such as graph convolutional networks
(GCN) (68, 69), other feature selection and oversampling
methods.

In addition, in the case where users wish to add other features
unrelated to the networks to the prediction task, they can in-
tegrate these features to vector representations (embedding
step’s output) and then pass them as inputs to the prediction
task. To the best of our knowledge, this pipeline is the first
easy to use toolset to support comprehensive integration of
network embeddings and test their performance in prediction
task, and we intend to develop it further in cooperation with
its user community.
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