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Abstract

Host genetics can shape microbiome composition, but to what extent it does, remains unclear. Like any other complex trait, this
question can be addressed by estimating the heritability (h?) of the microbiome — the proportion of variance in the abundance of
each taxon that is attributable to host genetic variation. However, unlike most complex traits, microbiome heritability is typically
based on relative abundance data, where taxon-specific abundances are expressed as the proportion of the total microbial
abundance in a sample. We derived an analytical approximation for the heritability that one obtains when using such relative
abundances and we uncovered three problems: 1) The interdependency between taxa leads to imprecise heritability estimates. 2)
Large sample size leads to high false discovery rates, overestimating the number of heritable taxa. 3) Microbial co-abundances
lead to biased heritability estimates. We conclude that caution must be taken when interpreting heritability estimates and

comparing values across studies.
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Introduction

The number of host phenotypes known to be impacted by the
microbiome is ever-growing, from metabolism to behavior, including its
influence on a range of disease risk factors (Cho and Blaser, 2012;
Lynch and Hsiao, 2019; Zheng et al., 2020). However, we are only
beginning to understand the contribution of host genetics in shaping
microbiome composition (Davenport, 2016; Goodrich et al., 2014,
2016; Lopera-Maya et al., 2022; Sanna et al., 2022). This interest stems
not only from our desire to understand how evolution and coevolution
has shaped host-microbiome interactions over both shorter and longer
(i.e. macroevolution) timescales (Dethlefsen et al., 2007; Lynch and
Hsiao, 2019), but identifying a genetic basis of host-microbe
associations also has important applied health implications (Hall et al.,
2017). Critical to address these questions, is our ability to correctly
measure the relative importance of hereditary and environmental
influences on microbiome composition.

Heritability is a central parameter in quantitative genetics that quantifies
a key aspect of the genetic basis for resemblance between parents and
offspring. The heritability of a phenotypic trait is a statistical property,
defined as the proportion of the phenotypic variance in a population that
is attributable to genetic variation (Fisher, 1918). When estimating
microbiome heritability, the focal phenotypic trait is typically either a
measure of community composition or the abundance of a given taxon
(van Opstal and Bordenstein, 2015). While a consensus is emerging that
the heritability of most microbiome members is relatively low, specific
estimates of the importance of host genetic variation in shaping
microbiome composition vary widely across studies (Table 1). For
example, a recent study found that 97% of the gut microbes in baboons
has a significant non-zero heritability (Grieneisen et al., 2021), while a
different study concluded that host genetic background only plays a
minor role in shaping microbiome composition in humans (Rothschild
et al., 2018). How should we interpret such substantial differences
among studies: do these really reflect biological differences?

The use of heritability as a metric is ubiquitous in genetics, yet what it
really measures and how it is interpreted remains the source of much
confusion. Heritability is by definition a population-specific estimate,
and subject to the influence from the environment and the genetic
structure of the population. Moreover, detection of a non-zero
microbiome heritability does not tell us anything about the mechanisms
that cause related individuals to have, on average, more similar
microbiomes. Several mechanisms are possible. Microbes might be
vertically transmitted from the parents (and typically the mother) to
offspring, for example via transfer during vaginal delivery, or via breast
milk (Béckhed et al., 2015; Ferretti et al., 2018); or horizontally
transmitted from other family members, perhaps simply due to their
proximity (Tung et al., 2015). Both effects could result in tight
connections between host and microbial genotypes, and thus inflate
heritability. Alternatively, host genotype might directly influence the
types of microbes that can establish, as shown in species of woodrats
(Weinstein et al., 2021), and this mechanism will also yield high
estimates of heritability. Conversely, if heritability is estimated to be
zero this need not mean that there is no vertical transmission (or
horizontal transmission from relatives), it might simply mean that the
effects of the environment are much larger and overwhelm these
transmission effects, as has been found in marine sponges (Bjork et al.,
2019).

A methodological complexity when estimating microbiome heritability,
is that the absolute microbial abundances are typically unknown. It is
therefore common practice to calculate relative abundances by setting
the sum in each sample to 1, generating so-called ‘compositional data’.
The inherent problems with compositional data have been
acknowledged for some time, and they are known to lead to spurious
correlations between variables, even when there exists no correlation at
all (Pearson, 1897). This has more recently been discussed in the
context of microbial data, for example when testing for differentially
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abundant microbes across treatment groups (e.g. host disease status)
(Carr et al., 2019; Gloor and Reid, 2016; Gloor et al., 2017; Nearing et
al., 2021; Rao et al., 2021; Zhou et al., 2021). The estimation of
microbiome heritability is rooted in comparison of differential
abundances among host genotypes, and could therefore be subject to
similar issues. However to date, studies reporting microbe heritability
estimates, have not explicitly considered the potential problems
associated with the use of compositional data.

We present an approximation of the taxon specific heritability that one
obtains when using relative abundances (we call this estimate ¢2). We
show that this metric differs from traditional h? estimates: @2 is not
simply a function of host genetic and phenotypic variance, but also
depends on various other properties of the focal microbe and the rest of
the community. Based on this, we identify three main problems that can
arise when using relative abundance data to estimate taxon heritabilities.
First, as relative abundances inherently covary, a heritable signal for
some microbes can lead to spurious heritability estimates of non-
heritable microbes or, vice versa, non-heritable microbes can mask a
genetic signal in heritable microbes. This problem is most apparent for
dominant taxa, and the impact of the issue diminishes for low
abundance taxa, where the two heritability estimates (h? and ¢?)
converge. However, a related second problem remains: while the
estimated heritability of a non-heritable microbe can become close to
zero, it may never completely reach zero. When a large number of host
are sampled, even such a very weak (spurious) heritable signal can be
highly significant, reflecting greater statistical power. When considering
many microbial taxa in a community, the result is a considerable
overestimation of the overall proportion of heritable microbes. Third,
microbial taxa that covary in abundance (for instance caused by
mutualistic or antagonistic interactions), can systematically bias
heritability estimates. Depending on the nature and sign of the
covariance, this can either mask or inflate true heritability signals. After
deriving our approximation for @2, we detail each of these problems.
We show that our analytical results match results when we estimate
heritability by fitting statistical models to simulated datasets. We then
discuss empirical heritability estimates obtained from published studies
in the light of our results. In the discussion, we outline some solutions
that may partly solve the here described issues. We conclude that
caution must be taken when interpreting heritability estimates based on
relative abundances and comparing values across studies, and that
approximations of microbial absolute abundances may help remedy this
issue.

The heritability of a taxon’s abundance

When estimating the heritability of a taxon, one relies on a quantitative
genetic model, considering a taxon’s abundance as a quantitative
phenotypic trait of the host. The absolute abundance of taxon i in host j
(P;;) can be written as:

P”=(Z1+G”+Eu qu
where a; is the average absolute abundance of microbe i, G;; is the
breeding value or host genetic contribution (for simplicity, we assume
no genetic dominance or epistasis), E;; is the environmental
contribution (residual), and we assume no GXE interactions. Eq. 1 can
be extended by including additional factors that affect taxon abundance,
such as host age, sex or season.

Across host individuals, the absolute abundance of microbe i is assumed
to follow a normal distribution with mean «; and variance Vp,. This

variance can be decomposed into a genetic and environmental
contribution (assuming no genotype-environment covariance):
VPi = VGi+VEi Eq2
Following the definition of the heritability, the heritability of taxon i is:
h? = Z Eq. 3

Vp;
When the absolute abundances are known, one can simply estimate the
taxon heritability by quantifying the proportion of the total variance that
is attributable to host genetic variation (e.g. by fitting a mixed effects
model (Wilson et al., 2010)) (note that in this case, as we assume no
dominance or epistasis, the broad-sense and narrow-sense heritability
are identical). However, we typically do not know the absolute
microbial abundances. Instead, most of the time we quantify how the
relative abundance of taxon i varies across host individuals and estimate
the heritability as the proportion of the variance in relative abundance
that is attributable to genetic variation. Below we derive an equation for
the obtained heritability when one uses relative, and not absolute
abundances, based on the underlying model shown in Egs 1-2.

An_approximation of the heritability based on relative

abundances

As outlined above, the absolute abundance of microbe taxon i is
distributed across host individuals as:

P;~Normal(a;,Vp;) Eq. 4
The distribution of relative abundances not only depends on the focal
microbe, but also on the absolute abundance of the entire community,
consisting of M taxa. The community absolute abundance C (where C =
Z;‘-” P;) is also a normally distributed variable, where its mean equals the
sum of the average abundances over all M taxa. The variance depends
on the variance in each taxon, plus the sum of each phenotypic
covariance between microbial pair, so that:

Eq.5
M M M

C~Normal Zaj,z ij +2

j=1  j=1

covp(j, k)
1<j<ksM
The relative abundance of focal microbe i (which we call fraction fp,) is
calculated as the absolute abundance of focal taxon i, divided by the
entire community abundance, and therefore is distributed as the ratio
between Eq. 4 and Eq. 5:
Eq. 6

Normal(a’i, Vpi)

foi~ Normal(Y a,. Vp + 2 Y, covp(j, k))
We are interested in quantifying var(fp,), as this gives us the total
variance in the relative abundance, analogous to Vp,. Similarly, we can
obtain how relative abundances vary between host genotypes, by
replacing Vp, and Vp, by V;; and V;, respectively, and considering
genetic covariances cove between each pair of microbes:

Eq. 7
Normal(al-, Vci)
for~ Normal(Y, a,X Vi + 2 ), covg(j, k))
The proportion of the variance in relative abundance explained by host
genetic variation (i.e. the heritability based on relative abundances, from
now on called ¢?) is then:

Eq. 8
, _ var(fay)

Var(fpi)
In other words, Eq. 8 gives the heritability that one obtains when using
relative, and not absolute, abundances. Ideally, if relative abundances


https://doi.org/10.1101/2022.04.26.489345
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.26.489345; this version posted April 26, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 1. Summary of the studies estimating heritabilities of the abundance of microbial taxa, sorted by sample size. More details in Appendix S4 on
methodology per study.

Number  Host system #Samples #Taxa # Heritable Average Host Normalization / Reference
taxa non-zero genetic Transformation
heritability relatedness
based on ?
1 Mice 32 43 NA® 0.47° Lineage Total sum scaling (O’Connor et al., 2014)
2 Chickens 56 23 0 NA Pedigree Log-transformation and scaling  (Zhao et al., 2013)
3¢ Humans 93 116 14 0.35 SNPs Quantile normalization (Davenport et al., 2015)
91 104 10 0.37
127 102 13 0.26
4 Humans 108 221 0 NA Twins Box-Cox transformation (Goodrich et al., 2014)
data from (Turnbaugh et
al., 2009)
5 Humans 126 2,933 0 NA Twins Box-Cox transformation (Goodrich et al., 2014)
data from (Yatsunenko et
al., 2012)
6¢ Humans 244 3 1 0.35 Twins Arcsine square root (Wright et al., 2021)
transformation
88 3 0 NA
7 Humans 250 109 11 NA® Twins Box-Cox transformation (Xie et al., 2016)
8 Humans 270 249 26 0.58 Pedigree Inverse normal transformation (Turpin et al., 2016)
9 Switchgrass 383 110 21 0.24 SNPs Total sum scaling (Sutherland et al., 2021)
10f Cows 650 512 39 NA® SNPs Quantile normalization (Wallace et al., 2019)
200 512 3
11 Humans 485 91 42 0.34 Twins Log transformation and scaling ~ (Gomez et al., 2017)
12 Humans 542 369 85 0.27 Twins Inverse normal transformation (Sietal., 2017)
13 Mice 592 43 NAP 0.51° SNPs Total sum scaling (Org et al., 2015)
14 Sorghum 600 1189 443 0.22 Lineage Cumulative sum scaling (Deng et al., 2021)
15 Humans 655 85 52 0.24 Twins Inverse normal transformation (Lim et al., 2017)
16 Humans 1068 21 6 0.40 SNPs Box-Cox transformation (Ishida et al., 2020)
17 Humans 1081 909 10 0.29 Twins Box-Cox transformation (Goodrich et al., 2014)
18 Humans 1176 209 11 0.31 Twins Inverse rank-sum (Kurilshikov et al., 2021)
transformation
199 Pigs 1205 1678 170 0.056 Lineage Total sum scaling (Bergamaschi et al., 2020)
1295 1678 261 0.078
1283 1678 366 0.099
20" Maize 4866 792 143 0.17 Lineage Log transformation (Walters et al., 2018)
45 2557 5) 0.45
21 Humans 3,261 945 52 0.30 Twins Box-Cox transformation (Goodrich et al., 2016)
22 Humans 4,745 242 31 0.20 Pedigree Centered log-ratio (Gacesa et al., 2020)
transformation
23 Baboons 16,234 283 273 0.068 Pedigree Total sum scaling (Grieneisen et al., 2021)

2 Type of host genetic data to estimate heritability. Pedigree: take into account pedigree to estimate narrow-sense h?. SNPs: incorporate genetic relatedness matrix based
on SNPs, to calculate SNP heritability. Lineage: genotype/lineage as random effect, estimates broad-sense H2. Twins: compare MZ with DZ twins, to estimate broad-

sense H2

® No significance measures are provided. Average heritability is therefore calculated using all estimates.
¢ Analyses are done for winter, summer and both seasons combined

d European and African ancestry

¢ Heritability estimates per taxon are not provided.

fTwo different breeds

9 Three time points during host development

" 2010 and 2015 field study
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are used as a proxy for absolute abundance, the heritability measure is
the same when using absolute and relative abundances, i.e. one hopes
that h? = ¢?2.

An approximation of the heritability of taxon i is given by:
Eq. 9

B A%V + a?w — 2a(Ay — ak)
o= A%2Vp + a?z = 2a(A(y +€) — a(v + k))

(see Appendix S1). Heritability @2 is a function of properties of the
focal taxon, with parameters V; and Vp describing the genetic and
phenotypic variance in absolute abundances, and a describing the
average absolute abundance (to improve readability, we omit subscripts
i). It follows from Eq. 9 that ¢? is also a function of the summed
genetic and environmental covariances between focal taxon i and each
of the other taxa in the community (y and e, respectively). Finally, ¢? is
a function of various properties of the background community

2

Eq. 3 and Eq. 9: whereas h? is (by definition) only a function of V; and
Vp, the heritability estimate that one obtains when using relative
abundances, depends on various additional properties of the focal
microbe (a), the entire community (4, w, z, k, v) and interactions
between the focal microbe and the community (y, €). Depending on the
biology of the host-microbiome system as well as on properties of the
data, we identified three problems that can arise as a consequence.

Problem 1: Interdependency between taxa leads to

imprecise heritability estimates

As relative abundances are not independent, heritable variation in some
microbes can lead to spurious non-zero heritabilities, in other microbes.
Or vice versa, non-heritable microbes can mask a genetic signal in
heritable microbes. Consider the extreme scenario with only two
equally abundant microbes, where microbe A has a heritability of 1, and
microbe B has a heritability of 0 (Fig. 1a). Because abundances are

scaled to relative abundances, it would still seem that variation in
microbe B abundance is shaped by host genetics (Fig. 1a). Moreover,
expressing both abundances as relative abundances partly obscures the
host genetic effect on microbe A. This results in a heritability estimate
of 0.5 for both species, which is wrong in both cases, and leads to the
incorrect conclusion that both microbes are heritable.

(excluding the focal taxon): A is the average absolute abundance of the
background community, « and z are the total host genetic and
phenotypic variance in absolute abundances of the background
community (i.e. the variances summed over all taxa), and k and v are
the sums of the genetic and environmental covariances between each
pair of background community members. Notice the difference between
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Figure 1. As relative microbial abundances are interdependent, a heritable signal in one microbe can lead to a spurious heritable signal in a second
microbe that is not heritable, or mask a genetic signal in a heritable microbe. A) As an example we show three host (mouse) genotypes with two
microbes, where one microbe is fully heritable (Blue, h?=1), and one microbe is not heritable (Red, h?=0). As a consequence, the average absolute
abundance of microbe Blue differs among genotypes, while the average abundance of microbe Red is constant. Using the absolute abundances (and
with enough host replicates), heritabilities can correctly be estimated. However, as relative abundances are not independent, a host genetic signal in
the abundance of the heritable microbe, will also create a host genetic signal in the second microbe, creating variation in relative abundance among
genotypes. This leads to an incorrect heritability estimate $* = 0.5 for both microbes. B) When based on relative abundances, properties of both the
focal microbe and of the entire community shape the heritability estimates. Here, we vary the average absolute abundance of the focal microbe («)
compared to the absolute abundance of the rest of the community (A) (x-axis shows %A). Black line: focal microbe has a heritability of 0.5; the

2 2 2
background community is not heritable (A=1;z = (%) ;w=0;Vp = (i) 7 Vg =0.5 (%) ). Grey line: focal microbe is not heritable, but the rest of the

2 2 2
community has an average heritability of 0.5 (A=1;z = (i) ;w=0.5 (i) i Vp = (%) ; Vg = 0). C) Difference in heritability estimates when based on
absolute or relative abundances (y axis) when varying a compared to A (x axis). When the focal microbe has a low average absolute abundance
compared to the total average abundance of the rest of the community (for instance, in the case of many microbial taxa), the difference between ¢? and

h? becomes smaller. h? of the focal taxon i is 0.2, and colored lines show varying heritabilities of the background community (h§Ommunity = %). A =100;

2 2
z =100 (%) i Vp = a(%) . Crosses show results when we estimate heritabilities by fitting a mixed effects model on simulated relative abundance data.

To this end, we simulated a population of hosts (500 genotypes x 1000 replicates within each genotype), with microbial communities consisting of 100
taxa (more details in Appendix S2.1-2.3).
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This can be formalized using Eq. 9, which, in the absence of genetic and
environmental covariances, simplifies to:
Eq. 10

B a’w + A%V,

L A%V,
It follows that for a focal taxon with a very low average abundance (i.e.
a < A), the estimated heritability approaches the same value as when
based on absolute abundances (Eq. 3):

2

Eq. 11
V
lim @? ~ — = p?
a/A>0 Vp
However, for a very dominant taxon (a > A) it becomes more difficult
to retrieve the true heritability h?, approaching:
Eq. 12
w
lim ¢?~—
a/A—o A
Remember that w and z are the total genetic and phenotypic variance of
the entire background community (summed over all microbes,
excluding the focal microbe). Thus, for a highly dominant microbe, the
estimated heritability approaches the heritability of the background
community, and is not shaped at all by the genetic and phenotypic
variance of the focal microbe.

This implies that depending on properties of both the focal microbe and
the rest of the community, heritability estimates can be biased in
different directions (Fig. 1b): we will underestimate the heritability of
an abundant microbe when it is harbored by a non-heritable community
(black line in Fig. 1b). On the other hand, an abundant microbe with no
host genetic signal, will still appear heritable when it occurs in the
background of a heritable community (grey line in Fig. 1b). As a result,
the error in the heritability (i.e. the absolute difference between ¢? and
h?), depends on both the heritability of the focal microbe, as well as on
the heritability of the background community, and in general increases
with an increasing abundance relative to the background community
(Fig. 1c). When ﬁ < 0.05 (for instance, in the case of 20 equally

abundant taxa in a community), the expected absolute error will be less
than 10% for all conditions shown in Fig. 1c. Here we note that the
error not only depends on the total abundance of the background
community (A) compared to the abundance of the focal microbe (a), but
also on how variances z and V scale with A and «, respectively (in Fig.
1c, Vp is kept proportional to a).

Problem 2: Large sample size leads to high false discovery
rates

Microbes that are not heritable can still show a genetic signal when
abundance measurements are relative, due to the interdependency of the
relative abundances. Using Eq. 9 and in the absence of environmental
covariances, it follows that the estimated heritability of a non-heritable
microbe (by setting V; = 0) is:

Eq. 13
N a’w
Yt A?Vp
Unless the entire background community is not heritable (i.e. w = 0),
Eqg. 13 will be larger than 0. Although ¢? approaches zero when «
becomes small compared to A, it might never reach zero.

2

Even low ¢@? values can appear significant with enough statistical
power. We performed a power analysis using the R-package simr

Problem 2: Large sample size leads to high false discovery rates
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Figure 2. The probability that the heritability of a non-heritable microbe
(Vg = 0) wrongly appears significant (a<0.05) increases with sample
size, based on a power analysis using the R-package simr (28). Results
depend both on properties of the focal microbe, and on the rest of the
community: colors show different abundances of the focal microbe (a)
while keeping the background community abundance constant. Line type
shows the heritability of the background community (solid lines: % =0.1;
1

dotted lines: £ = 0.25). Vp = (g)z; A=100;z=100- G)z

(Green and MaclLeod, 2016), based on a log likelihood ratio test
comparing a model with and without host genetics, to calculate the
probability that the null hypothesis (Ho: @2 = 0) is (wrongly) rejected
(Appendix S3 for details). Results again depend on both properties of
the focal microbe and of the rest of the community (Fig. 2), but in
general, larger sample sizes increase the chance that non-heritable
microbes are considered heritable. With a large enough dataset,
statistical power reaches 100% (Fig. 2).

As a consequence, the number of heritable microbes in a community
can be strongly overestimated, especially with a high sample size (more
details in results in Appendix S2.4). It is important to note that the high
false discovery rates are not a problem of, for instance, sampling error
or confounding factors, and increasing data collection efforts or quality
alone will not resolve these issues. Similarly, more advanced modeling
approaches such as cross-validation, permutation analysis and
correcting for multiple testing are unlikely to fully solve this. This is
because the problem is inherent to the use of relative abundances: there
really is a host genetic signal in the relative abundances of non-heritable
microbes (i.e. it is not a type 1 error; as Eq. 13 shows, ¢? really is larger
than 0).

Problem 3: Microbial co-abundances lead to biased

heritability estimates

Up to this point, we assumed that the covariance terms in Eq. 9 (i.e. y,
€, v and k) were zero. We will now show that relaxing this assumption
leads to biased heritability estimates.
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Problem 3: Microbial co-abundances lead to biased heritability estimates
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Figure 3. The use of relative abundances leads to biased heritability estimates when there exists host genetic and/or environmental correlations
between microbes. A) lllustrates the effects of genetic correlations. As an example we show three host genotypes and two microbes that are both partly
heritable (h2=0.5), and with a strong genetic correlation (rc=0.99). This implies that host breeding values for the two microbes are strongly correlated.
As a consequence, the average absolute abundance of both microbes varies in the same way across host genotypes. Heritabilities can accurately be
estimated when using these absolute abundances (estimates for both microbes: A2 = 0.5). When calculating the relative abundances, however, any
variation across host genotypes disappears. This leads to an incorrect heritability estimate ¢ = 0 for both microbes, completely masking the host
genetic signal. B) lllustrates the effects of environmental correlations. We here show three host genotypes and two microbes that show a strong
environmental correlation (re=0.99). As a result, this decreases the amount of variation within genotypes. Heritabilities can be accurately estimated
when using the absolute abundances. However, because variation in relative abundance within each genotype is greatly reduced, one obtains a wrong
heritability estimate 2 = 1 for both species. C-E) Comparison of heritability estimates when based on absolute and relative abundances, varying the

2
environmental correlation (C), the genetic correlation (D) or both (E). « = 1; A = 100; V, = (i) ;2 =100-Vp; % = 0.25. Crosses show results when we

estimate heritabilities by fitting a mixed effects model on simulated relative abundance data. To this end, we simulated a population of hosts (500
genotypes x 500 replicates within each genotype) (more details in Appendix S2.5).

Non-zero covariance terms reflect the co-abundance of microbial taxa. the host genotypes: e.g., a host genotype with an —on average- higher
In our framing, there are two processes that can cause microbial abundance of microbe A, also has a higher abundance of microbe B.
abundances to covary: host genetic correlations and environmental The second creates co-abundances at the individual host level, by
correlations. The first creates microbial co-abundances at the level of creating correlated environmental (residual) terms. Note that, as is
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general practice in quantitative genetics, we use the term ‘environment’
to capture everything outside of genetics: it is essentially a residual
term. In the case of the microbiome, it captures not only the effect of
ecological environmental factors on microbial abundances, such as
temperature or soil, but also effects of the environment inside and
shaped by the host, the abundance of other microbes within a host, or
simply unexplained noise. One biological process that would lead to the
environmental terms being correlated, is microbial interactions. Strong
mutualistic interactions, e.g. as a result of cross-feeding or public good
production, result in positive environmental correlations. Antagonistic
interactions, on the other hand, result in negative environmental
correlations.

Non-zero covariances can change heritability estimates in different
directions, depending on the nature of the covariance (i.e. genetic or
environmental), and whether the covariance involves the focal taxon (y,
€) and/or the background community (v, k). For the results presented
here, we assume that each microbial pair (including focal and
background community members) has the same genetic and
environmental correlation.

In a community with positive genetic covariances, the heritabilities are
generally biased downwards (Fig. 3c). This is because positive genetic
covariances have a relatively larger (negative) effect on the numerator
than on the denominator (Eq. 9). To make this intuitive, consider the
scenario where two equally-abundant microbes both have a heritability
of 0.5, and also have a strong genetic correlation (re=0.99). Such a
strong genetic correlation implies that the host genetic effects for the
two microbes covary, so that two microbes show co-abundance at the
host genotype level. As a consequence, the absolute abundances vary
across host genotypes for both microbes, but they vary in exactly the
same way (Fig. 3a). When calculating relative abundances, variation in
abundance across genotypes completely disappears, which leads to the
incorrect conclusion that none of the microbes show a heritable signal.

The exception is when the true heritability is close to zero: now,
positive genetic covariances lead to an overestimation of the true
heritability (Fig. 3c). This occurs when Ay < ak , causing the
covariance term in Eqg. 9 to become negative (thereby increasing the
numerator). Since y is the total genetic covariance between taxon i and
each of the other microbes, it becomes small when V;; is close to zero.
As aresult, Ay < ax, leading to an overestimated heritability.

Positive environmental covariances in a community (for instance, a
highly mutualistic community) has largely opposite effects, by
(negatively) affecting the denominator but not the numerator (Eg. 9).
Whereas positive host genetic correlations between microbes tend to
decrease variation in relative abundance between genotypes, positive
environmental correlations tend to decrease the amount of variation
within genotypes (Fig. 3b). When variation within each genotype is
reduced, this creates more unique microbiomes to each genotype,
suggestive of microbe heritability. As a result, positive environmental
covariances lead to a general upward bias in the heritabilities (Fig. 3c).
Only if Ae < av, the true heritabilities are underestimated. This
happens, for instance, if there is little environmental variance in the
focal taxon (i.e. a high heritability), causing € to be low.

Finally, when both positive genetic and environmental correlations exist
in a community, the relationship between the two heritability measures
can become highly non-linear, making it essentially impossible to
predict h? based on ¢? (Fig. 3e).

Framing the current empirical range of estimates

Our results provide additional context in considering the range of
estimates of heritabilities published to date. First, our results indicate
that estimates of the taxon heritabilities can be precise if each focal
taxon has low abundance compared to the total community abundance
(and assuming no microbial co-abundances) (Fig. 1c). Our review of the
literature indicates that the median number of taxa included in a study is
221 (Table 1). Since most taxa therefore are likely to have low relative
abundances, heritability estimates of most individual (low-abundance)
taxa may be quite accurate. There is, however, also a wide range in the
number of included taxa across studies (varying between 3 and 2933
taxa), and furthermore, human microbiomes are often characterized by a
few dominant taxa (Arumugam et al., 2011), and this may be the case
for many host species. Our results indicate that for studies that only
include a few taxa, or where microbiome communities are characterized
by a few highly dominant taxa, precise heritability estimates will be
challenging to obtain.

We identified a second problem that is related to the number of sampled
hosts: the proportion of heritable microbes can be considerably
overestimated due to high false discovery rates. Empirical estimates of
the proportion of heritable microbes, show a positive association with
the number of hosts sampled (Fig. 4a; binomial regression: p-value <
0.0001). Of course, larger sample sizes always lead to more significant
results, as higher sample sizes lead to more power to detect small
effects. The challenge here is that without knowing more about the
underlying community, we cannot establish how much of this inflation
is ‘real’ and how much is due to false discovery. Every microbe may
eventually appear significantly heritable with enough statistical power
(Fig. 2), even if its absolute abundance is not shaped at all by host
genetics. This is due to the interdependency microbiome members will
have with other, truly heritable, microbes; and a positive relationship
between sample size and the proportion of heritable microbes will
emerge even if the true proportion heritable is constant across
populations (Appendix S2.4).

Shifting the focus from the proportion of the taxa that is heritable to
considering heritability of taxa, this quantity (including only taxa with a
significant heritable signal) varies widely within as well as between
studies (Fig. 4b), nearly covering the entire 0-1 range. Across studies,
the lowest and highest reported significant heritabilities are 0.008 and
0.84, respectively. The average significant heritability in a community
is 0.30, and ranges between 0.056 and 0.58 across studies. It is notable
that empirical estimates suggest a negative correlation between sample
size and the average heritability, where studies that include a higher
number of host individuals report lower average heritabilities (Fig. 4b;
linear regression: p-value = 0.002). This could be due to publication
bias in smaller studies, in favor of higher heritability estimates, which
could suggest that the true microbiome heritabilities may be lower than
sometimes reported. However, it could also be that studies with a larger
sample size include an increased number of spurious, significant taxa
with a low estimated heritability, thereby decreasing the average
heritability.

The included studies clearly differ in many aspects other than sample
size, both biological (e.g. host system, population and tissue, taxonomic
levels, any other covariates) and methodological (e.g. data collection,
significance measure, statistical model). There is no reason to expect
that the true proportion of heritable microbes or the average heritability
is the same across studies - to the contrary. Further, there clearly is
variation that is not explained by sample size, indicating that other
factors (likely both biological as well as methodological) also play a
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Figure 4. Empirical estimates of the proportion of heritable taxa (A) and the average taxon heritability, including all significantly heritable microbes (B),
plotted against sample size, i.e., number of hosts sampled (note the log scale on the x axis). Dots depict values given in Table 1, where the numbers in
each dot correspond to the column ‘Number’ in Table 1). Teal lines show the mean prediction based on A) a binomial regression (here the number of
trials is the number of taxa), and B) a linear regression. In B) dotted lines connect average heritabilities to the lowest and highest significant heritability

found in each study, shown as open dots.

role. Yet, it is striking that variation in sample size alone, explains
considerable variation across studies in both the proportion of heritable
microbes (pseudo-R?=37%) and in the average heritability (R>=39%).

Finally, our results indicate that bias in ¢? relative to h? depends on
both the magnitude of h? and the underlying pattern of genetic and
environmental correlations (Fig 3). Since little is known about the
nature and strength of correlations (in absolute abundance) among
microbes, it is hard to interpret the impact of this bias on published
results to date. Yet, these results do underscore the importance of
further efforts to estimate the co-abundance patterns.

Discussion

Despite the common usage of microbial relative abundance data as a
proxy for absolute abundance to estimate microbial heritabilities, few
studies have considered the inherent problems that can result from
statistical analysis of relative abundances. By their nature, relative
abundance data are not independent, creating correlations between
variables (microbial abundances) that do not exist in absolute terms.
Here we argue that: 1) this can lead to imprecise estimates of
heritabilities, especially for microbiomes with fewer taxa and/or highly
abundant taxa. 2) Large sample sizes can drive overestimates of the
proportion of heritable microbes by increasing the false discovery rate.
3) Patterns of microbial co-abundance, likely to be common in most
biological systems, will further bias heritability estimates. Similar
challenges have been demonstrated for microbial differential abundance
analysis, where it is challenging to control high false discovery rates
(Hawinkel et al., 2019; Mandal et al., 2015; Morton et al., 2017;
Nearing et al.,, 2021; Weiss et al., 2016; Zhou et al., 2021).
Characterizing the mechanisms underlying these issues helps identify

when they might occur, and the direction of bias expected given the
number of microbial taxa and their abundance, the number of hosts, and
patterns of co-abundance. It is important to note that heritabilities based
on relative abundances are potentially misleading only if one wishes to
make inferences on host genetic control over absolute abundances, i.e.,
if relative abundances are used as a proxy for absolute abundances. If
the metric of interest is, in fact, the heritability of relative abundance,
the true value of @? is directly accessible using available relative
abundance data. However, as ¢? is a function of both properties of the
focal microbe and of the entire community (Eg. 9), its biological
interpretation is potentially challenging. Unfortunately, there does not
seem to be a simple solution to fully address the problems described
here, but below we discuss several potential approaches for advancing
the field.

One solution that would clearly solve the issue of interdependent
relative abundance data, is quantifying taxon (or group) absolute
abundances. In cases where specific microbial taxa are of interest, such
taxa can be directly quantified using such targeted approaches to
abundance estimates as quantitative PCR (qPCR), droplet digital PCR
(ddPCR), or flow cytometry (Barlow et al., 2020; Rao et al., 2021;
Reese et al., 2021; Vandeputte et al., 2017). Additionally, for microbes
that are readily cultivable, counts of colony forming units (CFUs) from
culturing serve as a method to estimate absolute abundance. However,
these approaches remain challenging for microbiome-wide studies that
are concerned with the hundreds to thousands of taxa that comprise a
given microbiome. One possible solution is to integrate microbial
relative abundance data with estimates of the total microbial load of the
sample. For instance, if a given taxon represents 1% of the 16S rRNA
gene reads in a sample, multiplying that 1% by the total number of 16S
rRNA gene amplicons (derived e.g. from gPCR estimates using the
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same primers, ng of DNA, and PCR cycle numbers), can provide an
estimate of that taxon’s absolute abundance. To further improve such an
approach, researchers could target known single-copy genes, rather than
the 16S rRNA gene, e.g. rpoB (Case et al., 2007). Studies that compare
inferences when using absolute vs. relative abundances are beginning to
emerge (Rao et al., 2021; Vandeputte et al., 2021), although we are not
aware of any study that addresses this in the context of microbiome
heritability.

In addition to laboratory techniques, new data analysis approaches
could prove beneficial. There exists an extensive body of literature on
how to analyze compositional data (pioneered by Aitchison [1982]),
with relevance to microbiome studies (but also genomics (gene
expression), geology (mineral composition) and chemistry (chemical
composition)). It is beyond the scope of this paper to provide a
comprehensive overview of all available methods, but we refer the
interested reader to (Gloor et al., 2017; Hawinkel et al., 2019; Lin and
Peddada, 2020a; Quinn et al., 2019) for studies applying such methods
to microbial data. Here, we briefly explain the main intuition behind
these approaches, and how these may help to improve the accuracy of
heritability estimates.

Data normalization is a first solution for obtaining better proxies of the
absolute abundances. Instead of dividing the number of reads per taxon
by the total number of reads in a sample, one divides the total number
of reads by some normalization factor. This involves choosing an
appropriate ‘reference’ value, i.e. deciding what the appropriate
comparison is within each sample. The advantage of comparing the
number of reads for each taxon to a set reference, is that it makes
abundances less sensitive to the other taxa that are in the sample. If
there are ‘reference’ taxa, known to have constant abundance across
samples, one could divide each sample by the number of reads for these
reference taxa, thus transforming the relative abundance in each sample
into comparable abundances across samples (this is similar to using
reference genes to normalize gene expression data). Alternatively, if
only a small number of microbial taxa is thought to be differentially
abundant across samples, one could also calculate a normalization
factor based on some quantile (e.g. median) of each sample’s count
distribution (cumulative-sum scaling) (Paulson et al., 2013).

In addition to normalizing, transforming compositional data, e.g.,
expressing abundances as log ratios is recommended. This transforms
data from a simplex to real space, making it more suitable for standard
statistical tests (Aitchison, 1982; Greenacre et al., 2021). Different
approaches exist, with different reference points: for instance, one could
calculate the log-ratio between each taxon and the geometric mean of
all taxa (centered log-ratio transformation) (Fernandes et al., 2014), or
compare each taxon to a reference taxon (additive log-ratio
transformation) (Greenacre et al., 2021; Mandal et al., 2015).

The merit of different normalization and transformation methods
critically depends on the chosen reference. If there truly is a known
reference taxon with a constant abundance, or if the average abundance
truly is identical in all samples, one could successfully correct for
sample coverage differences by applying the appropriate
normalization/transformation, and retrieve the true heritabilities
(Appendix S5). However, while some studies on microbiome
heritabilities apply data transformations (e.g. centered log-ratio
transformation (Gacesa et al., 2020; Grieneisen et al., 2021), Box-Cox
(Goodrich et al., 2014) or inverse normal transformation (Lim et al.,
2017)), we lack a validation that such transformations are justified and

remedy any existing issues. There is currently little empirical data to
guide us in choosing appropriate normalization factors.

It could be more fruitful to focus on the actual heritability estimates,
than to focus on the number of significantly heritable taxa. Focusing
exclusively on p-values, with some arbitrary threshold for results to be
‘significant’, has been criticized (Halsey et al., 2015; Nakagawa and
Cuthill, 2007), and dichotomizing results into ‘significant’ and ‘not
significant” may be particularly problematic for microbiome
heritabilities. That is because relative abundances are interdependent: an
increase in the abundance of one taxon will inevitably decrease the
relative abundance of other taxa. This implies that host genetic variation
for the absolute abundance in few microbes, might also lead to genetic
variation for other, non-heritable, microbes. Therefore, the null
hypothesis (i.e. that there is no host genetic signal in the relative
abundances of microbiome members) might rarely be true. With a large
enough sample size, this will lead to a statistically significant effect
(Nakagawa and Cuthill, 2007) (Fig. 2), even if the effects may be
biologically meaningless.

By focusing on effect sizes, we can delineate the heritable taxa that are
biologically most relevant. Our results indicate that, unless the focal
microbe has a very high abundance compared to the rest of the
community (Fig. 1) or microbial abundances covary (Fig. 3), taxon-
specific heritability estimates based on relative abundances are
unbiased. One could (a priori) set a threshold heritability, and only
consider heritabilities exceeding this threshold to be biologically
relevant. For instance, Goodrich et al., (2016) only present results of
taxa that have an estimated heritability > 0.2.

In addition to focusing on effect sizes, assessing the cumulative
evidence for specific microbial taxa will help to identify microbes that
are truly heritable and biologically relevant. Grieneisen et al. (2021)
found a correlation between their heritability estimates and estimates
from previously reported studies (although their effect sizes are much
lower). Also, Goodrich et al. (2016) pinpointed various taxa with
consistent non-zero heritabilities across studies and across hosts
systems. Looking for such consistent results will indicate which taxa
merit more detailed study, especially for microbes associated with host
performance. Multiple studies have reported high heritabilities for
members of the Christensenellaceae family, with estimates ranging
between 30-60% (Goodrich et al., 2014, 2016; Lim et al., 2017; Turpin
et al, 2016; Waters and Ley, 2019). Members of the
Christensenellaceae have been linked to several host metabolic traits
(Waters and Ley, 2019); for example, a higher relative abundance has
been associated with a lower body mass index (Goodrich et al., 2014).

In this study, we specifically focused on the consequences of using
relative abundances, where the sum in each sample is set to 1, or 100%.
The analysis of real-world microbiome datasets comes with additional
challenges. First of all, variation across samples not only results in
unknown absolute abundances, it also implies different levels of
uncertainty. For example, 100 counts of a given taxon in a sample with
10,000 reads, clearly allows for more robust statistical inference than 1
count in a sample with 100 reads, even though the relative abundance in
both cases is the same (1%). This information gets lost when converting
data into relative abundances.

Further, variation in sampling extent has other important implications.
First, we do not know the extent to which we have sampled a host’s
microbiome, i.e. what fraction of an individual microbiome was
collected for sampling? Knowing the fraction of a microbiome that a
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sample comprises is crucial to extrapolate absolute abundances to the
level of the microbiome (Lin and Peddada, 2020b). Second, we do not
know how thoroughly a sample was assessed, i.e. was the number of
sequences sufficient to reveal all of a sample’s taxa, or would additional
sequencing reveal more taxa? Variation in sampling extent influences
the expected number of sampled taxa, where more sequencing reads
increases the expected observed microbial richness up to the point of
complete assessment (Willis, 2019). Solutions to address this include
rarefying (Sanders, 1968), but this is not without criticism (McMurdie
and Holmes, 2014). An excess of zero counts results in zero-inflated
data, violating the assumption of normally distributed residuals that
underlies many parametric statistical tests. Some studies therefore
perform log-based transformations to normalize data. However, as we
know from community ecology, log transforming count data leads to
biased and imprecise estimates, and it involves choosing an arbitrary
offset (O’Hara and Kotze, 2010). Further, log-based transformations
can lead to incorrect microbiome community-level comparisons, for
example resulting in poor estimates of Bray Curtis dissimilarities
(McKnight et al., 2019).

How these additional complications further influence the robustness of
our microbiome heritability estimates, on top of the issues we describe
here, remains to be investigated. With this study, we hope to make
researchers aware of the challenges associated with the estimation of
microbiome heritabilities. We urge researchers to be careful in
interpreting estimates of the heritability of individual taxa, as well as in
interpreting the overall proportion of heritable microbes. A focus on
consistent results across studies, as well as continued investment in both
technical and statistical developments to obtain better approximations of
absolute abundances, will likely improve our ability to study the
microbiome members that are the most intimately associated with their
hosts.
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