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Abstract 

Host genetics can shape microbiome composition, but to what extent it does, remains unclear. Like any other complex trait, this 

question can be addressed by estimating the heritability (h2) of the microbiome – the proportion of variance in the abundance of 

each taxon that is attributable to host genetic variation. However, unlike most complex traits, microbiome heritability is typically 

based on relative abundance data, where taxon-specific abundances are expressed as the proportion of the total microbial 

abundance in a sample. We derived an analytical approximation for the heritability that one obtains when using such relative 

abundances and we uncovered three problems: 1) The interdependency between taxa leads to imprecise heritability estimates. 2) 

Large sample size leads to high false discovery rates, overestimating the number of heritable taxa. 3) Microbial co-abundances 

lead to biased heritability estimates. We conclude that caution must be taken when interpreting heritability estimates and 

comparing values across studies. 
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Introduction 

The number of host phenotypes known to be impacted by the 

microbiome is ever-growing, from metabolism to behavior, including its 

influence on a range of disease risk factors (Cho and Blaser, 2012; 

Lynch and Hsiao, 2019; Zheng et al., 2020). However, we are only 

beginning to understand the contribution of host genetics in shaping 

microbiome composition (Davenport, 2016; Goodrich et al., 2014, 

2016; Lopera-Maya et al., 2022; Sanna et al., 2022). This interest stems 

not only from our desire to understand how evolution and coevolution 

has shaped host-microbiome interactions over both shorter and longer 

(i.e. macroevolution) timescales (Dethlefsen et al., 2007; Lynch and 

Hsiao, 2019), but identifying a genetic basis of host-microbe 

associations also has important applied health implications (Hall et al., 

2017). Critical to address these questions, is our ability to correctly 

measure the relative importance of hereditary and environmental 

influences on microbiome composition. 

 

Heritability is a central parameter in quantitative genetics that quantifies 

a key aspect of the genetic basis for resemblance between parents and 

offspring. The heritability of a phenotypic trait is a statistical property, 

defined as the proportion of the phenotypic variance in a population that 

is attributable to genetic variation (Fisher, 1918). When estimating 

microbiome heritability, the focal phenotypic trait is typically either a 

measure of community composition or the abundance of a given taxon 

(van Opstal and Bordenstein, 2015). While a consensus is emerging that 

the heritability of most microbiome members is relatively low, specific 

estimates of the importance of host genetic variation in shaping 

microbiome composition vary widely across studies (Table 1). For 

example, a recent study found that 97% of the gut microbes in baboons 

has a significant non-zero heritability (Grieneisen et al., 2021), while a 

different study concluded that host genetic background only plays a 

minor role in shaping microbiome composition in humans (Rothschild 

et al., 2018). How should we interpret such substantial differences 

among studies: do these really reflect biological differences? 

 

The use of heritability as a metric is ubiquitous in genetics, yet what it 

really measures and how it is interpreted remains the source of much 

confusion. Heritability is by definition a population-specific estimate, 

and subject to the influence from the environment and the genetic 

structure of the population. Moreover, detection of a non-zero 

microbiome heritability does not tell us anything about the mechanisms 

that cause related individuals to have, on average, more similar 

microbiomes. Several mechanisms are possible. Microbes might be 

vertically transmitted from the parents (and typically the mother) to 

offspring, for example via transfer during vaginal delivery, or via breast 

milk (Bäckhed et al., 2015; Ferretti et al., 2018); or horizontally 

transmitted from other family members, perhaps simply due to their 

proximity (Tung et al., 2015). Both effects could result in tight 

connections between host and microbial genotypes, and thus inflate 

heritability. Alternatively, host genotype might directly influence the 

types of microbes that can establish, as shown in species of woodrats 

(Weinstein et al., 2021), and this mechanism will also yield high 

estimates of heritability. Conversely, if heritability is estimated to be 

zero this need not mean that there is no vertical transmission (or 

horizontal transmission from relatives), it might simply mean that the 

effects of the environment are much larger and overwhelm these 

transmission effects, as has been found in marine sponges (Björk et al., 

2019). 

 

A methodological complexity when estimating microbiome heritability, 

is that the absolute microbial abundances are typically unknown. It is 

therefore common practice to calculate relative abundances by setting 

the sum in each sample to 1, generating so-called ‘compositional data’. 

The inherent problems with compositional data have been 

acknowledged for some time, and they are known to lead to spurious 

correlations between variables, even when there exists no correlation at 

all (Pearson, 1897). This has more recently been discussed in the 

context of microbial data, for example when testing for differentially 
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abundant microbes across treatment groups (e.g. host disease status) 

(Carr et al., 2019; Gloor and Reid, 2016; Gloor et al., 2017; Nearing et 

al., 2021; Rao et al., 2021; Zhou et al., 2021). The estimation of 

microbiome heritability is rooted in comparison of differential 

abundances among host genotypes, and could therefore be subject to 

similar issues. However to date, studies reporting microbe heritability 

estimates, have not explicitly considered the potential problems 

associated with the use of compositional data. 

 

We present an approximation of the taxon specific heritability that one 

obtains when using relative abundances (we call this estimate 𝜑2). We 

show that this metric differs from traditional h2 estimates: 𝜑2  is not 

simply a function of host genetic and phenotypic variance, but also 

depends on various other properties of the focal microbe and the rest of 

the community. Based on this, we identify three main problems that can 

arise when using relative abundance data to estimate taxon heritabilities. 

First, as relative abundances inherently covary, a heritable signal for 

some microbes can lead to spurious heritability estimates of non-

heritable microbes or, vice versa, non-heritable microbes can mask a 

genetic signal in heritable microbes. This problem is most apparent for 

dominant taxa, and the impact of the issue diminishes for low 

abundance taxa, where the two heritability estimates (h2 and 𝜑2 ) 

converge. However, a related second problem remains: while the 

estimated heritability of a non-heritable microbe can become close to 

zero, it may never completely reach zero. When a large number of host 

are sampled, even such a very weak (spurious) heritable signal can be 

highly significant, reflecting greater statistical power. When considering 

many microbial taxa in a community, the result is a considerable 

overestimation of the overall proportion of heritable microbes. Third, 

microbial taxa that covary in abundance (for instance caused by 

mutualistic or antagonistic interactions), can systematically bias 

heritability estimates. Depending on the nature and sign of the 

covariance, this can either mask or inflate true heritability signals. After 

deriving our approximation for 𝜑2, we detail each of these problems. 

We show that our analytical results match results when we estimate 

heritability by fitting statistical models to simulated datasets. We then 

discuss empirical heritability estimates obtained from published studies 

in the light of our results. In the discussion, we outline some solutions 

that may partly solve the here described issues. We conclude that 

caution must be taken when interpreting heritability  estimates based on 

relative abundances and comparing values across studies, and that 

approximations of microbial absolute abundances may help remedy this 

issue. 

 

The heritability of a taxon’s abundance 

When estimating the heritability of a taxon, one relies on a quantitative 

genetic model, considering a taxon’s abundance as a quantitative 

phenotypic trait of the host. The absolute abundance of taxon i in host j 

(𝑃𝑖𝑗) can be written as: 

𝑃𝑖𝑗 = 𝛼𝑖 + 𝐺𝑖𝑗 + 𝐸𝑖𝑗  Eq. 1 

where 𝛼𝑖  is the average absolute abundance of microbe i, 𝐺𝑖𝑗  is the 

breeding value or host genetic contribution (for simplicity, we assume 

no genetic dominance or epistasis), 𝐸𝑖𝑗  is the environmental 

contribution (residual), and we assume no G×E interactions. Eq. 1 can 

be extended by including additional factors that affect taxon abundance, 

such as host age, sex or season. 

 

Across host individuals, the absolute abundance of microbe i is assumed 

to follow a normal distribution with mean 𝛼𝑖  and variance 𝑉𝑃𝑖
. This 

variance can be decomposed into a genetic and environmental 

contribution (assuming no genotype-environment covariance): 

𝑉𝑃𝑖 = 𝑉𝐺𝑖
+ 𝑉𝐸𝑖   Eq. 2 

Following the definition of the heritability, the heritability of taxon i is: 

ℎ𝑖
2 =

𝑉𝐺𝑖

𝑉𝑃𝑖

    Eq. 3 

When the absolute abundances are known, one can simply estimate the 

taxon heritability by quantifying the proportion of the total variance that 

is attributable to host genetic variation (e.g. by fitting a mixed effects 

model (Wilson et al., 2010)) (note that in this case, as we assume no 

dominance or epistasis, the broad-sense and narrow-sense heritability 

are identical). However, we typically do not know the absolute 

microbial abundances. Instead, most of the time we quantify how the 

relative abundance of taxon i varies across host individuals and estimate 

the heritability as the proportion of the variance in relative abundance 

that is attributable to genetic variation. Below we derive an equation for 

the obtained heritability when one uses relative, and not absolute 

abundances, based on the underlying model shown in Eqs 1-2. 

 

An approximation of the heritability based on relative 
abundances 

As outlined above, the absolute abundance of microbe taxon i is 

distributed across host individuals as:  

𝑃𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝛼𝑖 , 𝑉𝑃𝑖)  Eq. 4 

The distribution of relative abundances not only depends on the focal 

microbe, but also on the absolute abundance of the entire community, 

consisting of M taxa. The community absolute abundance C (where 𝐶 =
∑ 𝑃𝑗

𝑀
𝑗 ) is also a normally distributed variable, where its mean equals the 

sum of the average abundances over all M taxa. The variance depends 

on the variance in each taxon, plus the sum of each phenotypic 

covariance between microbial pair, so that: 

Eq. 5 

𝐶~𝑁𝑜𝑟𝑚𝑎𝑙 (∑ 𝛼𝑗

𝑀

𝑗=1

, ∑ 𝑉𝑃𝑗

𝑀

𝑗=1

+ 2 ∑ covP(𝑗, 𝑘)

𝑀

1≤𝑗<𝑘≤𝑀

 ) 

The relative abundance of focal microbe i (which we call fraction 𝑓𝑃𝑖
) is 

calculated as the absolute abundance of focal taxon i, divided by the 

entire community abundance, and therefore is distributed as the ratio 

between Eq. 4 and Eq. 5: 

Eq. 6 

𝑓𝑃𝑖
~

𝑁𝑜𝑟𝑚𝑎𝑙(𝛼𝑖 , 𝑉𝑃𝑖)

𝑁𝑜𝑟𝑚𝑎𝑙(∑ 𝛼 , ∑ 𝑉𝑃 + 2 ∑ covP(𝑗, 𝑘))
 

We are interested in quantifying var(𝑓𝑃𝑖
) , as this gives us the total 

variance in the relative abundance, analogous to 𝑉𝑃𝑖. Similarly, we can 

obtain how relative abundances vary between host genotypes, by 

replacing 𝑉𝑃𝑖  and 𝑉𝑃 , by 𝑉𝐺𝑖
 and 𝑉𝐺 , respectively, and considering 

genetic covariances covG between each pair of microbes: 

 Eq. 7 

𝑓𝐺𝑖
~

𝑁𝑜𝑟𝑚𝑎𝑙(𝛼𝑖 , 𝑉𝐺𝑖
)

𝑁𝑜𝑟𝑚𝑎𝑙(∑ 𝛼 , ∑ 𝑉𝐺 + 2 ∑ covG(𝑗, 𝑘))
 

The proportion of the variance in relative abundance explained by host 

genetic variation (i.e. the heritability based on relative abundances, from 

now on called 𝜑2) is then: 

Eq. 8 

𝜑2 =
var(𝑓𝐺𝑖

)

var(𝑓𝑃𝑖
)
 

In other words, Eq. 8 gives the heritability that one obtains when using 

relative, and not absolute, abundances. Ideally, if relative abundances  
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Table 1. Summary of the studies estimating heritabilities of the abundance of microbial taxa, sorted by sample size. More details in Appendix S4 on 
methodology per study. 
 

Number Host system # Samples # Taxa # Heritable 

taxa 

Average 

non-zero 

heritability 

Host 

genetic 

relatedness 

based on a 

Normalization / 

Transformation 

Reference 

1 Mice 32 43 NA b 0.47 b Lineage Total sum scaling (O’Connor et al., 2014) 

2 Chickens 56 23 0 NA Pedigree Log-transformation and scaling (Zhao et al., 2013) 

3c Humans 93 116 14 0.35 SNPs Quantile normalization (Davenport et al., 2015) 

  91 104 10 0.37    

  127 102 13 0.26    

4 Humans 108 221 0 NA Twins Box-Cox transformation (Goodrich et al., 2014) 
data from (Turnbaugh et 

al., 2009) 

5 Humans 126 2,933 0 NA Twins Box-Cox transformation (Goodrich et al., 2014) 

data from (Yatsunenko et 

al., 2012) 

6d Humans 244 3 1 0.35 Twins Arcsine square root 
transformation 

(Wright et al., 2021) 

  88 3 0 NA    

7 Humans 250 109 11 NAe Twins Box-Cox transformation (Xie et al., 2016) 

8 Humans 270 249 26 0.58 Pedigree Inverse normal transformation (Turpin et al., 2016) 

9 Switchgrass 383 110 21 0.24 SNPs Total sum scaling (Sutherland et al., 2021) 

10 f Cows 650 512 39 NAe SNPs Quantile normalization (Wallace et al., 2019) 

  200 512 3     

11 Humans 485 91 42 0.34 Twins Log transformation and scaling (Gomez et al., 2017) 

12 Humans 542 369 85 0.27 Twins Inverse normal transformation (Si et al., 2017) 

13 Mice 592 43 NAb 0.51b SNPs Total sum scaling (Org et al., 2015) 

14 Sorghum 600 1189 443 0.22 Lineage Cumulative sum scaling (Deng et al., 2021) 

15 Humans 655 85 52 0.24 Twins Inverse normal transformation (Lim et al., 2017) 

16 Humans 1068 21 6 0.40 SNPs Box-Cox transformation (Ishida et al., 2020) 

17 Humans 1081 909 10 0.29 Twins Box-Cox transformation (Goodrich et al., 2014) 

18 Humans 1176 209 11 0.31 Twins Inverse rank-sum 

transformation 

(Kurilshikov et al., 2021) 

19 g Pigs 1205 1678 170 0.056 Lineage Total sum scaling (Bergamaschi et al., 2020) 

  1295 1678 261 0.078    

  1283 1678 366 0.099    

20 h Maize 4866 792 143 0.17 Lineage Log transformation (Walters et al., 2018) 

  45 2557 5 0.45    

21 Humans 3,261 945 52 0.30 Twins Box-Cox transformation (Goodrich et al., 2016) 

22 Humans 4,745 242 31 0.20 Pedigree Centered log-ratio 

transformation 

(Gacesa et al., 2020) 

23 Baboons 16,234 283 273 0.068 Pedigree Total sum scaling (Grieneisen et al., 2021) 

 
a Type of host genetic data to estimate heritability. Pedigree: take into account pedigree to estimate narrow-sense h2. SNPs: incorporate genetic relatedness matrix based 

on SNPs, to calculate SNP heritability. Lineage: genotype/lineage as random effect, estimates broad-sense H2. Twins: compare MZ with DZ twins, to estimate broad-

sense H2. 
b No significance measures are provided. Average heritability is therefore calculated using all estimates. 
c Analyses are done for winter, summer and both seasons combined 
d European and African ancestry 
e Heritability estimates per taxon are not provided. 
f Two different breeds 
g Three time points during host development 
h 2010 and 2015 field study 
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are used as a proxy for absolute abundance, the heritability measure is 

the same when using absolute and relative abundances, i.e. one hopes 

that ℎ2 = 𝜑2. 

 

An approximation of the heritability of taxon i is given by: 

 Eq. 9 

 

𝜑2 ≈  
𝐴2𝑉𝐺 + 𝛼2𝜔 − 2𝛼(𝐴𝛾 − 𝛼𝜅)  

𝐴2𝑉𝑃 + 𝛼2𝑧 − 2𝛼(𝐴(𝛾 + 𝜖) − 𝛼(𝜈 + 𝜅))
 

(see Appendix S1). Heritability 𝜑2  is a function of properties of the 

focal taxon, with parameters 𝑉𝐺  and 𝑉𝑃  describing the genetic and 

phenotypic variance in absolute abundances, and 𝛼  describing the 

average absolute abundance (to improve readability, we omit subscripts 

i). It follows from Eq. 9 that 𝜑2  is also a function of the summed 

genetic and environmental covariances between focal taxon i and each 

of the other taxa in the community (𝛾 and 𝜖, respectively). Finally, 𝜑2 is 

a function of various properties of the background community 

(excluding the focal taxon): A is the average absolute abundance of the 

background community,  𝜔  and 𝑧   are the total host genetic and 

phenotypic variance in absolute abundances of the background 

community (i.e. the variances summed over all taxa), and 𝜅 and 𝜈 are 

the sums of the genetic and environmental covariances between each 

pair of background community members. Notice the difference between 

Eq. 3 and Eq. 9: whereas ℎ2 is (by definition) only a function of 𝑉𝐺  and 

𝑉𝑃 , the heritability estimate that one obtains when using relative 

abundances, depends on various additional properties of the focal 

microbe (𝛼 ), the entire community (𝐴 , 𝜔 , z, 𝜅 , 𝜈 ) and interactions 

between the focal microbe and the community (𝛾, 𝜖). Depending on the 

biology of the host-microbiome system as well as on properties of the 

data, we identified three problems that can arise as a consequence. 

 

Problem 1: Interdependency between taxa leads to 
imprecise heritability estimates 

As relative abundances are not independent, heritable variation in some 

microbes can lead to spurious non-zero heritabilities, in other microbes. 

Or vice versa, non-heritable microbes can mask a genetic signal in 

heritable microbes. Consider the extreme scenario with only two 

equally abundant microbes, where microbe A has a heritability of 1, and 

microbe B has a heritability of 0 (Fig. 1a). Because abundances are 

scaled to relative abundances, it would still seem that variation in 

microbe B abundance is shaped by host genetics (Fig. 1a). Moreover, 

expressing both abundances as relative abundances partly obscures the 

host genetic effect on microbe A. This results in a heritability estimate 

of 0.5 for both species, which is wrong in both cases, and leads to the 

incorrect conclusion that both microbes are heritable. 

Figure 1. As relative microbial abundances are interdependent, a heritable signal in one microbe can lead to a spurious heritable signal in a second 
microbe that is not heritable, or mask a genetic signal in a heritable microbe. A) As an example we show three host (mouse) genotypes with two 
microbes, where one microbe is fully heritable (Blue, h2=1), and one microbe is not heritable (Red, h2=0). As a consequence, the average absolute 
abundance of microbe Blue differs among genotypes, while the average abundance of microbe Red is constant. Using the absolute abundances (and 
with enough host replicates), heritabilities can correctly be estimated. However, as relative abundances are not independent, a host genetic signal in 
the abundance of the heritable microbe, will also create a host genetic signal in the second microbe, creating variation in relative abundance among 

genotypes. This leads to an incorrect heritability estimate φ̂2 = 0.5 for both microbes. B) When based on relative abundances, properties of both the 
focal microbe and of the entire community shape the heritability estimates. Here, we vary the average absolute abundance of the focal microbe (α) 

compared to the absolute abundance of the rest of the community (A) (x-axis shows 
α

α+A
). Black line: focal microbe has a heritability of 0.5; the 

background community is not heritable (A = 1; z = (
1

6
)

2

; ω = 0; VP = (
1

6
)

2

; VG = 0.5 (
1

6
)

2

). Grey line: focal microbe is not heritable, but the rest of the 

community has an average heritability of 0.5 (A = 1; z = (
1

6
)

2

; ω = 0.5 (
1

6
)

2

; VP = (
1

6
)

2

; VG = 0). C) Difference in heritability estimates when based on 

absolute or relative abundances (y axis) when varying α compared to A (x axis). When the focal microbe has a low average absolute abundance 
compared to the total average abundance of the rest of the community (for instance, in the case of many microbial taxa), the difference between φ2 and 

h2 becomes smaller. h2 of the focal taxon i is 0.2, and colored lines show varying heritabilities of the background community (hcommunity
2 =

ω

z
). A = 100; 

z = 100 (
1

6
)

2

; VP = α (
1

6
)

2

. Crosses show results when we estimate heritabilities by fitting a mixed effects model on simulated relative abundance data. 

To this end, we simulated a population of hosts (500 genotypes x 1000 replicates within each genotype), with microbial communities consisting of 100 
taxa (more details in Appendix S2.1-2.3). 
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This can be formalized using Eq. 9, which, in the absence of genetic and 

environmental covariances, simplifies to: 

Eq. 10 

𝜑2 ≈
𝛼2𝜔 + 𝐴2𝑉𝐺

𝛼2𝑧 + 𝐴2𝑉𝑃
 

It follows that for a focal taxon with a very low average abundance (i.e. 

𝛼 ≪ 𝐴), the estimated heritability approaches the same value as when 

based on absolute abundances (Eq. 3): 

Eq. 11 

lim
𝛼/𝐴→0

𝜑2 ≈
𝑉𝐺

𝑉𝑃
= ℎ2 

However, for a very dominant taxon (𝛼 ≫ 𝐴) it becomes more difficult 

to retrieve the true heritability ℎ2, approaching: 

Eq. 12 

lim
𝛼/𝐴→∞

𝜑2 ≈
𝜔

𝑧
 

Remember that 𝜔 and z are the total genetic and phenotypic variance of 

the entire background community (summed over all microbes, 

excluding the focal microbe). Thus, for a highly dominant microbe, the 

estimated heritability approaches the heritability of the background 

community, and is not shaped at all by the genetic and phenotypic 

variance of the focal microbe. 

 

This implies that depending on properties of both the focal microbe and 

the rest of the community, heritability estimates can be biased in 

different directions (Fig. 1b): we will underestimate the heritability of 

an abundant microbe when it is harbored by a non-heritable community 

(black line in Fig. 1b). On the other hand, an abundant microbe with no 

host genetic signal, will still appear heritable when it occurs in the 

background of a heritable community (grey line in Fig. 1b). As a result, 

the error in the heritability (i.e. the absolute difference between 𝜑2 and 

h2), depends on both the heritability of the focal microbe, as well as on 

the heritability of the background community, and in general increases 

with an increasing abundance relative to the background community 

(Fig. 1c). When 
𝛼

𝛼+𝐴
< 0.05 (for instance, in the case of 20 equally 

abundant taxa in a community), the expected absolute error will be less 

than 10% for all conditions shown in Fig. 1c. Here we note that the 

error not only depends on the total abundance of the background 

community (A) compared to the abundance of the focal microbe (𝛼), but 

also on how variances z and 𝑉𝑃 scale with A and 𝛼, respectively (in Fig. 

1c, 𝑉𝑃 is kept proportional to 𝛼).  

 

Problem 2: Large sample size leads to high false discovery 
rates 

Microbes that are not heritable can still show a genetic signal when 

abundance measurements are relative, due to the interdependency of the 

relative abundances. Using Eq. 9 and in the absence of environmental 

covariances, it follows that the estimated heritability of a non-heritable 

microbe (by setting 𝑉𝐺 = 0) is:  

Eq. 13 

𝜑2 ≈
𝛼2𝜔

𝛼2𝑧 + 𝐴2𝑉𝑃
 

Unless the entire background community is not heritable (i.e. 𝜔 = 0), 

Eq. 13 will be larger than 0. Although 𝜑2  approaches zero when 𝛼 

becomes small compared to A, it might never reach zero. 

 

Even low 𝜑2  values can appear significant with enough statistical 

power. We performed a power analysis using the R-package simr 

(Green and MacLeod, 2016), based on a log likelihood ratio test 

comparing a model with and without host genetics, to calculate the 

probability that the null hypothesis (H0: 𝜑2 = 0) is (wrongly) rejected 

(Appendix S3 for details). Results again depend on both properties of 

the focal microbe and of the rest of the community (Fig. 2), but in 

general, larger sample sizes increase the chance that non-heritable 

microbes are considered heritable. With a large enough dataset, 

statistical power reaches 100% (Fig. 2). 

 

As a consequence, the number of heritable microbes in a community 

can be strongly overestimated, especially with a high sample size (more 

details in results in Appendix S2.4). It is important to note that the high 

false discovery rates are not a problem of, for instance, sampling error 

or confounding factors, and increasing data collection efforts or quality 

alone will not resolve these issues. Similarly, more advanced modeling 

approaches such as cross-validation, permutation analysis and 

correcting for multiple testing are unlikely to fully solve this. This is 

because the problem is inherent to the use of relative abundances: there 

really is a host genetic signal in the relative abundances of non-heritable 

microbes (i.e. it is not a type 1 error; as Eq. 13 shows, 𝜑2 really is larger 

than 0). 

 

Problem 3: Microbial co-abundances lead to biased 
heritability estimates 

Up to this point, we assumed that the covariance terms in Eq. 9 (i.e. 𝛾, 

𝜖, 𝜈 and 𝜅) were zero. We will now show that relaxing this assumption 

leads to biased heritability estimates. 

 

Figure 2. The probability that the heritability of a non-heritable microbe 

( VG = 0 ) wrongly appears significant (α<0.05) increases with sample 
size, based on a power analysis using the R-package simr (28). Results 
depend both on properties of the focal microbe, and on the rest of the 
community: colors show different abundances of the focal microbe (α) 
while keeping the background community abundance constant. Line type 

shows the heritability of the background community (solid lines: 
ω

z
= 0.1; 

dotted lines: 
ω

z
= 0.25). VP = (

1

6
)

2

; A = 100; z = 100 ⋅ (
1

6
)

2

. 
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Non-zero covariance terms reflect the co-abundance of microbial taxa. 

In our framing, there are two processes that can cause microbial 

abundances to covary: host genetic correlations and environmental 

correlations. The first creates microbial co-abundances at the level of 

the host genotypes: e.g., a host genotype with an –on average- higher 

abundance of microbe A, also has a higher abundance of microbe B. 

The second creates co-abundances at the individual host level, by 

creating correlated environmental (residual) terms. Note that, as is 

Figure 3. The use of relative abundances leads to biased heritability estimates when there exists host genetic and/or environmental correlations 
between microbes. A) Illustrates the effects of genetic correlations. As an example we show three host genotypes and two microbes that are both partly 
heritable (h2=0.5), and with a strong genetic correlation (rG=0.99). This implies that host breeding values for the two microbes are strongly correlated. 
As a consequence, the average absolute abundance of both microbes varies in the same way across host genotypes. Heritabilities can accurately be 

estimated when using these absolute abundances (estimates for both microbes: ℎ̂2 = 0.5). When calculating the relative abundances, however, any 
variation across host genotypes disappears. This leads to an incorrect heritability estimate 𝜑̂2 = 0 for both microbes, completely masking the host 
genetic signal. B) Illustrates the effects of environmental correlations. We here show three host genotypes and two microbes that show a strong 
environmental correlation (rE=0.99). As a result, this decreases the amount of variation within genotypes. Heritabilities can be accurately estimated 
when using the absolute abundances. However, because variation in relative abundance within each genotype is greatly reduced, one obtains a wrong 

heritability estimate 𝜑̂2 = 1 for both species. C-E) Comparison of heritability estimates when based on absolute and relative abundances, varying the 

environmental correlation (C), the genetic correlation (D) or both (E). 𝛼 = 1; 𝐴 = 100; 𝑉𝑃 = (
1

6
)

2

; 𝑧 = 100 ⋅ 𝑉𝑃; 
𝜔

𝑧
= 0.25. Crosses show results when we 

estimate heritabilities by fitting a mixed effects model on simulated relative abundance data. To this end, we simulated a population of hosts (500 
genotypes x 500 replicates within each genotype) (more details in Appendix S2.5). 
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general practice in quantitative genetics, we use the term ‘environment’ 

to capture everything outside of genetics: it is essentially a residual 

term. In the case of the microbiome, it captures not only the effect of 

ecological environmental factors on microbial abundances, such as 

temperature or soil, but also effects of the environment inside and 

shaped by the host, the abundance of other microbes within a host, or 

simply unexplained noise. One biological process that would lead to the 

environmental terms being correlated, is microbial interactions. Strong 

mutualistic interactions, e.g. as a result of cross-feeding or public good 

production, result in positive environmental correlations. Antagonistic 

interactions, on the other hand, result in negative environmental 

correlations.  

 

Non-zero covariances can change heritability estimates in different 

directions, depending on the nature of the covariance (i.e. genetic or 

environmental), and whether the covariance involves the focal taxon (𝛾, 

𝜖) and/or the background community (𝜈, 𝜅). For the results presented 

here, we assume that each microbial pair (including focal and 

background community members) has the same genetic and 

environmental correlation. 

 

In a community with positive genetic covariances, the heritabilities are 

generally biased downwards (Fig. 3c). This is because positive genetic 

covariances have a relatively larger (negative) effect on the numerator 

than on the denominator (Eq. 9). To make this intuitive, consider the 

scenario where two equally-abundant microbes both have a heritability 

of 0.5, and also have a strong genetic correlation (rG=0.99). Such a 

strong genetic correlation implies that the host genetic effects for the 

two microbes covary, so that two microbes show co-abundance at the 

host genotype level. As a consequence, the absolute abundances vary 

across host genotypes for both microbes, but they vary in exactly the 

same way (Fig. 3a). When calculating relative abundances, variation in 

abundance across genotypes completely disappears, which leads to the 

incorrect conclusion that none of the microbes show a heritable signal. 

 

The exception is when the true heritability is close to zero: now, 

positive genetic covariances lead to an overestimation of the true 

heritability (Fig. 3c). This occurs when 𝐴𝛾 < 𝑎𝜅 , causing the 

covariance term in Eq. 9 to become negative (thereby increasing the 

numerator). Since 𝛾 is the total genetic covariance between taxon i and 

each of the other microbes, it becomes small when 𝑉𝐺 is close to zero. 

As a result, 𝐴𝛾 < 𝑎𝜅, leading to an overestimated heritability. 

 

Positive environmental covariances in a community (for instance, a 

highly mutualistic community) has largely opposite effects, by 

(negatively) affecting the denominator but not the numerator (Eq. 9). 

Whereas positive host genetic correlations between microbes tend to 

decrease variation in relative abundance between genotypes, positive 

environmental correlations tend to decrease the amount of variation 

within genotypes (Fig. 3b). When variation within each genotype is 

reduced, this creates more unique microbiomes to each genotype, 

suggestive of microbe heritability. As a result, positive environmental 

covariances lead to a general upward bias in the heritabilities (Fig. 3c). 

Only if 𝐴𝜖 < 𝑎𝜈 , the true heritabilities are underestimated. This 

happens, for instance, if there is little environmental variance in the 

focal taxon (i.e. a high heritability), causing 𝜖 to be low. 

 

Finally, when both positive genetic and environmental correlations exist 

in a community, the relationship between the two heritability measures 

can become highly non-linear, making it essentially impossible to 

predict h2 based on 𝜑2 (Fig. 3e). 

Framing the current empirical range of estimates 

Our results provide additional context in considering the range of 

estimates of heritabilities published to date. First, our results indicate 

that estimates of the taxon heritabilities can be precise if each focal 

taxon has low abundance compared to the total community abundance 

(and assuming no microbial co-abundances) (Fig. 1c). Our review of the 

literature indicates that the median number of taxa included in a study is 

221 (Table 1). Since most taxa therefore are likely to have low relative 

abundances, heritability estimates of most individual (low-abundance) 

taxa may be quite accurate. There is, however, also a wide range in the 

number of included taxa across studies (varying between 3 and 2933 

taxa), and furthermore, human microbiomes are often characterized by a 

few dominant taxa (Arumugam et al., 2011), and this may be the case 

for many host species. Our results indicate that for studies that only 

include a few taxa, or where microbiome communities are characterized 

by a few highly dominant taxa, precise heritability estimates will be 

challenging to obtain. 

 

We identified a second problem that is related to the number of sampled 

hosts: the proportion of heritable microbes can be considerably 

overestimated due to high false discovery rates. Empirical estimates of 

the proportion of heritable microbes, show a positive association with 

the number of hosts sampled (Fig. 4a; binomial regression: p-value < 

0.0001). Of course, larger sample sizes always lead to more significant 

results, as higher sample sizes lead to more power to detect small 

effects. The challenge here is that without knowing more about the 

underlying community, we cannot establish how much of this inflation 

is ‘real’ and how much is due to false discovery. Every microbe may 

eventually appear significantly heritable with enough statistical power 

(Fig. 2), even if its absolute abundance is not shaped at all by host 

genetics. This is due to the interdependency microbiome members will 

have with other, truly heritable, microbes; and a positive relationship 

between sample size and the proportion of heritable microbes will 

emerge even if the true proportion heritable is constant across 

populations (Appendix S2.4). 

 

Shifting the focus from the proportion of the taxa that is heritable to 

considering heritability of taxa, this quantity (including only taxa with a 

significant heritable signal) varies widely within as well as between 

studies (Fig. 4b), nearly covering the entire 0-1 range. Across studies, 

the lowest and highest reported significant heritabilities are 0.008 and 

0.84, respectively. The average significant heritability in a community 

is 0.30, and ranges between 0.056 and 0.58 across studies. It is notable 

that empirical estimates suggest a negative correlation between sample 

size and the average heritability, where studies that include a higher 

number of host individuals report lower average heritabilities (Fig. 4b; 

linear regression: p-value = 0.002). This could be due to publication 

bias in smaller studies, in favor of higher heritability estimates, which 

could suggest that the true microbiome heritabilities may be lower than 

sometimes reported. However, it could also be that studies with a larger 

sample size include an increased number of spurious, significant taxa 

with a low estimated heritability, thereby decreasing the average 

heritability. 

 

The included studies clearly differ in many aspects other than sample 

size, both biological (e.g. host system, population and tissue, taxonomic 

levels, any other covariates) and methodological (e.g. data collection, 

significance measure, statistical model). There is no reason to expect 

that the true proportion of heritable microbes or the average heritability 

is the same across studies - to the contrary. Further, there clearly is 

variation that is not explained by sample size, indicating that other 

factors (likely both biological as well as methodological) also play a 
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role. Yet, it is striking that variation in sample size alone, explains 

considerable variation across studies in both the proportion of heritable 

microbes (pseudo-R2=37%) and in the average heritability (R2=39%). 

 

Finally, our results indicate that bias in 𝜑2 relative to h2 depends on 

both the magnitude of h2 and the underlying pattern of genetic and 

environmental correlations (Fig 3). Since little is known about the 

nature and strength of correlations (in absolute abundance) among 

microbes, it is hard to interpret the impact of this bias on published 

results to date. Yet, these results do underscore the importance of 

further efforts to estimate the co-abundance patterns.  

 

Discussion 

Despite the common usage of microbial relative abundance data as a 

proxy for absolute abundance to estimate microbial heritabilities, few 

studies have considered the inherent problems that can result from 

statistical analysis of relative abundances. By their nature, relative 

abundance data are not independent, creating correlations between 

variables (microbial abundances) that do not exist in absolute terms. 

Here we argue that: 1) this can lead to imprecise estimates of 

heritabilities, especially for microbiomes with fewer taxa and/or highly 

abundant taxa. 2) Large sample sizes can drive overestimates of the 

proportion of heritable microbes by increasing the false discovery rate. 

3) Patterns of microbial co-abundance, likely to be common in most 

biological systems, will further bias heritability estimates. Similar 

challenges have been demonstrated for microbial differential abundance 

analysis, where it is challenging to control high false discovery rates 

(Hawinkel et al., 2019; Mandal et al., 2015; Morton et al., 2017; 

Nearing et al., 2021; Weiss et al., 2016; Zhou et al., 2021). 

Characterizing the mechanisms underlying these issues helps identify 

when they might occur, and the direction of bias expected given the 

number of microbial taxa and their abundance, the number of hosts, and 

patterns of co-abundance. It is important to note that heritabilities based 

on relative abundances are potentially misleading only if one wishes to 

make inferences on host genetic control over absolute abundances, i.e., 

if relative abundances are used as a proxy for absolute abundances. If 

the metric of interest is, in fact, the heritability of relative abundance, 

the true value of 𝜑2  is directly accessible using available relative 

abundance data. However, as 𝜑2 is a function of both properties of the 

focal microbe and of the entire community (Eq. 9), its biological 

interpretation is potentially challenging. Unfortunately, there does not 

seem to be a simple solution to fully address the problems described 

here, but below we discuss several potential approaches for advancing 

the field. 

 

One solution that would clearly solve the issue of interdependent 

relative abundance data, is quantifying taxon (or group) absolute 

abundances. In cases where specific microbial taxa are of interest, such 

taxa can be directly quantified using such targeted approaches to 

abundance estimates as quantitative PCR (qPCR), droplet digital PCR 

(ddPCR), or flow cytometry (Barlow et al., 2020; Rao et al., 2021; 

Reese et al., 2021; Vandeputte et al., 2017). Additionally, for microbes 

that are readily cultivable, counts of colony forming units (CFUs) from 

culturing serve as a method to estimate absolute abundance. However, 

these approaches remain challenging for microbiome-wide studies that 

are concerned with the hundreds to thousands of taxa that comprise a 

given microbiome. One possible solution is to integrate microbial 

relative abundance data with estimates of the total microbial load of the 

sample. For instance, if a given taxon represents 1% of the 16S rRNA 

gene reads in a sample, multiplying that 1% by the total number of 16S 

rRNA gene amplicons (derived e.g. from qPCR estimates using the 

Figure 4. Empirical estimates of the proportion of heritable taxa (A) and the average taxon heritability, including all significantly heritable microbes (B), 
plotted against sample size, i.e., number of hosts sampled (note the log scale on the x axis). Dots depict values given in Table 1, where the numbers in 
each dot correspond to the column ‘Number’ in Table 1). Teal lines show the mean prediction based on A) a binomial regression (here the number of 
trials is the number of taxa), and B) a linear regression. In B) dotted lines connect average heritabilities to the lowest and highest significant heritability 
found in each study, shown as open dots. 
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same primers, ng of DNA, and PCR cycle numbers), can provide an 

estimate of that taxon’s absolute abundance. To further improve such an 

approach, researchers could target known single-copy genes, rather than 

the 16S rRNA gene, e.g. rpoB (Case et al., 2007). Studies that compare 

inferences when using absolute vs. relative abundances are beginning to 

emerge (Rao et al., 2021; Vandeputte et al., 2021), although we are not 

aware of any study that addresses this in the context of microbiome 

heritability. 

 

In addition to laboratory techniques, new data analysis approaches 

could prove beneficial. There exists an extensive body of literature on 

how to analyze compositional data (pioneered by Aitchison [1982]), 

with relevance to microbiome studies (but also genomics (gene 

expression), geology (mineral composition) and chemistry (chemical 

composition)). It is beyond the scope of this paper to provide a 

comprehensive overview of all available methods, but we refer the 

interested reader to (Gloor et al., 2017; Hawinkel et al., 2019; Lin and 

Peddada, 2020a; Quinn et al., 2019) for studies applying such methods 

to microbial data. Here, we briefly explain the main intuition behind 

these approaches, and how these may help to improve the accuracy of 

heritability estimates. 

 

Data normalization is a first solution for obtaining better proxies of the 

absolute abundances. Instead of dividing the number of reads per taxon 

by the total number of reads in a sample, one divides the total number 

of reads by some normalization factor. This involves choosing an 

appropriate ‘reference’ value, i.e. deciding what the appropriate 

comparison is within each sample. The advantage of comparing the 

number of reads for each taxon to a set reference, is that it makes 

abundances less sensitive to the other taxa that are in the sample. If 

there are ‘reference’ taxa, known to have constant abundance across 

samples, one could divide each sample by the number of reads for these 

reference taxa, thus transforming the relative abundance in each sample 

into comparable abundances across samples (this is similar to using 

reference genes to normalize gene expression data). Alternatively, if 

only a small number of microbial taxa is thought to be differentially 

abundant across samples, one could also calculate a normalization 

factor based on some quantile (e.g. median) of each sample’s count 

distribution (cumulative-sum scaling) (Paulson et al., 2013).  

 

In addition to normalizing, transforming compositional data, e.g., 

expressing abundances as log ratios is recommended. This transforms 

data from a simplex to real space, making it more suitable for standard 

statistical tests (Aitchison, 1982; Greenacre et al., 2021). Different 

approaches exist, with different reference points: for instance, one could 

calculate the log-ratio between each taxon and the geometric mean of 

all taxa (centered log-ratio transformation) (Fernandes et al., 2014), or 

compare each taxon to a reference taxon (additive log-ratio 

transformation) (Greenacre et al., 2021; Mandal et al., 2015). 

 

The merit of different normalization and transformation methods 

critically depends on the chosen reference. If there truly is a known 

reference taxon with a constant abundance, or if the average abundance 

truly is identical in all samples, one could successfully correct for 

sample coverage differences by applying the appropriate 

normalization/transformation, and retrieve the true heritabilities 

(Appendix S5). However, while some studies on microbiome 

heritabilities apply data transformations (e.g. centered log-ratio 

transformation (Gacesa et al., 2020; Grieneisen et al., 2021), Box-Cox 

(Goodrich et al., 2014) or inverse normal transformation (Lim et al., 

2017)), we lack a validation that such transformations are justified and 

remedy any existing issues. There is currently little empirical data to 

guide us in choosing appropriate normalization factors. 

 

It could be more fruitful to focus on the actual heritability estimates, 

than to focus on the number of significantly heritable taxa. Focusing 

exclusively on p-values, with some arbitrary threshold for results to be 

‘significant’, has been criticized (Halsey et al., 2015; Nakagawa and 

Cuthill, 2007), and dichotomizing results into ‘significant’ and ‘not 

significant’ may be particularly problematic for microbiome 

heritabilities. That is because relative abundances are interdependent: an 

increase in the abundance of one taxon will inevitably decrease the 

relative abundance of other taxa. This implies that host genetic variation 

for the absolute abundance in few microbes, might also lead to genetic 

variation for other, non-heritable, microbes. Therefore, the null 

hypothesis (i.e. that there is no host genetic signal in the relative 

abundances of microbiome members) might rarely be true. With a large 

enough sample size, this will lead to a statistically significant effect 

(Nakagawa and Cuthill, 2007) (Fig. 2), even if the effects may be 

biologically meaningless. 

 

By focusing on effect sizes, we can delineate the heritable taxa that are 

biologically most relevant. Our results indicate that, unless the focal 

microbe has a very high abundance compared to the rest of the 

community (Fig. 1) or microbial abundances covary (Fig. 3), taxon-

specific heritability estimates based on relative abundances are 

unbiased. One could (a priori) set a threshold heritability, and only 

consider heritabilities exceeding this threshold to be biologically 

relevant. For instance, Goodrich et al., (2016) only present results of 

taxa that have an estimated heritability > 0.2. 

 

In addition to focusing on effect sizes, assessing the cumulative 

evidence for specific microbial taxa will help to identify microbes that 

are truly heritable and biologically relevant. Grieneisen et al. (2021) 

found a correlation between their heritability estimates and estimates 

from previously reported studies (although their effect sizes are much 

lower). Also, Goodrich et al. (2016) pinpointed various taxa with 

consistent non-zero heritabilities across studies and across hosts 

systems. Looking for such consistent results will indicate which taxa 

merit more detailed study, especially for microbes associated with host 

performance. Multiple studies have reported high heritabilities for 

members of the Christensenellaceae family, with estimates ranging 

between 30-60% (Goodrich et al., 2014, 2016; Lim et al., 2017; Turpin 

et al., 2016; Waters and Ley, 2019). Members of the 

Christensenellaceae have been linked to several host metabolic traits 

(Waters and Ley, 2019); for example, a higher relative abundance has 

been associated with a lower body mass index (Goodrich et al., 2014). 

 

In this study, we specifically focused on the consequences of using 

relative abundances, where the sum in each sample is set to 1, or 100%. 

The analysis of real-world microbiome datasets comes with additional 

challenges. First of all, variation across samples not only results in 

unknown absolute abundances, it also implies different levels of 

uncertainty. For example, 100 counts of a given taxon in a sample with 

10,000 reads, clearly allows for more robust statistical inference than 1 

count in a sample with 100 reads, even though the relative abundance in 

both cases is the same (1%). This information gets lost when converting 

data into relative abundances. 

 

Further, variation in sampling extent has other important implications. 

First, we do not know the extent to which we have sampled a host’s 

microbiome, i.e. what fraction of an individual microbiome was 

collected for sampling? Knowing the fraction of a microbiome that a 
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sample comprises is crucial to extrapolate absolute abundances to the 

level of the microbiome (Lin and Peddada, 2020b). Second, we do not 

know how thoroughly a sample was assessed, i.e. was the number of 

sequences sufficient to reveal all of a sample’s taxa, or would additional 

sequencing reveal more taxa? Variation in sampling extent influences 

the expected number of sampled taxa, where more sequencing reads 

increases the expected observed microbial richness up to the point of 

complete assessment (Willis, 2019). Solutions to address this include 

rarefying (Sanders, 1968), but this is not without criticism (McMurdie 

and Holmes, 2014). An excess of zero counts results in zero-inflated 

data, violating the assumption of normally distributed residuals that 

underlies many parametric statistical tests. Some studies therefore 

perform log-based transformations to normalize data. However, as we 

know from community ecology, log transforming count data leads to 

biased and imprecise estimates, and it involves choosing an arbitrary 

offset (O’Hara and Kotze, 2010). Further, log-based transformations 

can lead to incorrect microbiome community-level comparisons, for 

example resulting in poor estimates of Bray Curtis dissimilarities 

(McKnight et al., 2019). 

 

How these additional complications further influence the robustness of 

our microbiome heritability estimates, on top of the issues we describe 

here, remains to be investigated. With this study, we hope to make 

researchers aware of the challenges associated with the estimation of 

microbiome heritabilities. We urge researchers to be careful in 

interpreting estimates of the heritability of individual taxa, as well as in 

interpreting the overall proportion of heritable microbes. A focus on 

consistent results across studies, as well as continued investment in both 

technical and statistical developments to obtain better approximations of 

absolute abundances, will likely improve our ability to study the 

microbiome members that are the most intimately associated with their 

hosts. 
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