

1 **Ancient dental calculus preserves signatures of biofilm succession and inter-
2 individual variation independent of dental pathology**

3

4 **Running title**

5 Ancient dental calculus in health and disease

6

7 **Authors**

8 Irina M. Velsko^{1*}, Lena Semerau^{1,2}, Sarah A. Inskip^{3*}, Maite Iris García-Collado^{4,5}, Kirsten
9 Ziesemer⁶, Maria Serrano Ruber³, Luis Benítez de Lugo Enrich⁷, Jesús Manuel Molero García⁸,
10 David Gallego Valle⁸, Ana Cristina Peña Ruiz⁹, Domingo C. Salazar García^{10,11}, Menno L.P.
11 Hoogland¹³, Christina Warinner^{1,2,14*}

12

13 **Affiliations**

14 ¹Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig,
15 Germany 04103

16 ²Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany 07743

17 ³School of Archaeology and Ancient History, University of Leicester, University Road, Leicester.
18 LE1 7RH, UK.

19 ⁴GIPYPAC, Department of Geography, Prehistory and Archaeology, University of the Basque
20 Country, Leioa, Spain, 48940

21 ⁵BioArCh, Department of Archaeology, University of York, York, United Kingdom YO10 5NG

22 ⁶University Library, Vrije Universiteit, Amsterdam, The Netherlands, 1081 HV

23 ⁷Universidad Complutense de Madrid, Departamento de Prehistoria, Historia Antigua y
24 Arqueología, Madrid, Spain 28040

25 ⁸Universidad de Castilla-La Mancha, Facultad de Letras, Ciudad Real, Spain 13004

26 ⁹Universidad de Castilla-La Mancha, Facultad de Bellas Artes, Cuenca, Spain 13004

27 ¹⁰Departament de Prehistòria, Historia i Arqueologia, Universitat de València, València, Spain
28 46010

29 ¹¹Department of Geological Sciences, University of Cape Town, Rondebosch, South Africa 7701

30 ¹²Faculty of Archaeology, Leiden University, Einsteinweg, Leiden, The Netherlands, 2333 CC

31 ¹³Department of Anthropology, Harvard University, Cambridge, USA 02138

32

33 ***Corresponding authors:**

34 Irina Velsko, irina_marie.velsko@eva.mpg.de

35 Sarah A. Inskip, s.inskip@le.ac.uk

36 Christina Warinner, warinner@fas.harvard.edu

37

38 **Keywords**

39 Ancient DNA; Dental calculus; Microbiome; Metagenomics; Tobacco; Smoking

40

41

42

43 **Abstract**

44 Dental calculus preserves oral microbes, enabling comparative studies of the oral microbiome
45 and health through time. However, small sample sizes and limited dental health metadata have
46 hindered health-focused investigations to date. Here we investigate the relationship between
47 tobacco pipe smoking and dental calculus microbiomes. Dental calculus from 75 individuals
48 from the 19th century Middenbeemster skeletal collection (Netherlands) were analyzed by
49 metagenomics. Demographic and dental health parameters were systematically recorded,
50 including the presence/number of pipe notches. Comparative data sets from European
51 populations before and after the introduction of tobacco were also analyzed. Calculus species
52 profiles were compared with oral pathology to examine associations between microbiome
53 community, smoking behavior, and oral health status. The Middenbeemster individuals
54 exhibited relatively poor oral health, with a high prevalence of periodontal disease, caries, heavy
55 calculus deposits, and antemortem tooth loss. No associations between pipe notches and
56 dental pathologies, or microbial species composition, were found. Calculus samples before and
57 after the introduction of tobacco showed highly similar species profiles. Observed inter-
58 individual microbiome differences were consistent with previously described variation in human
59 populations from the Upper Paleolithic to the present. Dental calculus may not preserve
60 microbial indicators of health and disease status as distinctly as dental plaque.

61 **Research Highlights**

62

- 63 No associations between calculus species profiles and oral health metrics were detected in a
single large population
- 64 A minority of individuals have a dental calculus species profile characterized by low levels of
65 *Streptococcus* and high levels of anaerobic taxa

66

67 **Introduction**

68 Dental calculus is a mineralized form of dental plaque that forms on the surface of teeth during
69 life and persists in the archaeological record. Diverse microremains and biomolecules, including
70 DNA, protein, and metabolites, are preserved within ancient dental calculus (Adler et al., 2013;
71 Hardy et al., 2016; Hendy et al., 2018; Salazar-García et al., 2021; Velsko et al., 2019, 2017;
72 Warinner et al., 2014) and can be used to study oral microbial ecology and evolution through
73 time (Fellows Yates et al., 2021b; Granehäll et al., 2021; Ottoni et al., 2021), as well as provide
74 evidence of past human activities (Radini et al., 2019). The majority of biomolecules present in
75 calculus derive from dental plaque bacteria, and there is great interest in determining the
76 feasibility of using these microbes to indirectly trace evidence of human behavioral or lifestyle
77 changes and their impact on health through deep time. Certain past activities, such as the rise
78 and spread of tobacco smoking during the European Colonial period, can be difficult to detect
79 directly but likely had important health consequences. Examining dental plaque communities via
80 dental calculus may enable the detection of tobacco use and its growing impact on oral health,
81 but to date this topic has not been extensively explored.

82

83 Tobacco was introduced to Europe from the Americas at the turn of the 15th century, initially as
84 a medical remedy (Goodman, 1993). However, by the late 16th century, tobacco smoking had
85 become a popular social and leisure activity, particularly in Western Europe (Brongers, 1964;
86 Gately, 2001; Goodman, 1993). Archaeologically, it has been possible to detect pipe smoking
87 through the identification of so-called dental 'pipe notches'. Pipe notches are areas of dental
88 abrasion caused by habitually clenching a clay pipe between the anterior teeth (Figure 1B, C,
89 Supplemental Figure S1). Multiple studies of these features in 17th-19th century European
90 populations have shown that pipe smoking was a predominantly male activity which varied in
91 popularity over time but increasingly became linked to lower socioeconomic status in the 18th
92 and 19th century (Geber and Murphy, 2018; Inskip et al., n.d.; Kvaal and Derry, 1996; Veselka,
93 2016; Walker and Henderson, 2010). These trends correspond to historical records about
94 tobacco use and smoking in England and the Netherlands (Goodman, 1993; Hughes, 2003;
95 Tullett, 2019).

96

97 Studies of present-day tobacco users have reported a negative relationship between tobacco
98 use and oral health (Albandar et al., 2000; Axelsson et al., 1998; Huang and Shi, 2019).
99 Tobacco users have been shown to have more severe dental and periodontal pathologies,
100 including caries and tooth loss (Heng et al., 2006; Vellappally et al., 2007), periodontal disease
101 (Bergstrom, 2014; Pejčić et al., 2007; Sreedevi et al., 2012), and calculus accumulation
102 (Albandar et al., 2000; Baljoon et al., 2005; Martinez-Canut et al., 1995; Sreedevi et al., 2012).
103 Chemicals inhaled in tobacco smoke appear to affect oral microbes and promote a more
104 pathogenic community, such that multiple studies have found that smokers have distinct dental
105 plaque microbial communities compared to non-smokers (Al Bataineh et al., 2020; Kumar et al.,
106 2011; Mason et al., 2015; Moon et al., 2015; Yang et al., 2019). However, the extent to which
107 these differences are also present and persist in dental calculus, which represents a more
108 mature biofilm than dental plaque (Velsko et al., 2019), is not known. Potentially, dental calculus
109 may preserve these distinctions, and if so, would offer the possibility of identifying heavy
110 smokers in the past, including in cases where abrasive clay pipes were not used.

111
112 Here we investigated the dental calculus microbial communities associated with pipe smoking in
113 historic European populations, particularly focusing on 19th century individuals from
114 Middenbeemster (MID), the Netherlands (Figure 1A). Contrary to expectations, we found that
115 there are minimal differences in the dental calculus microbial structure of individuals with
116 evidence of heavy pipe smoking (pipe notches) and those without, despite evidence for
117 differences in skeletal markers of oral disease between those groups. Moreover, we find that
118 through comparative analysis with additional Medieval, Industrial, and Modern (present-day)
119 individuals, this pattern holds more broadly, with no discernible differences in overall microbial
120 community profiles between individuals who lived before and after the introduction of tobacco to
121 Europe.

122
123 A minority of MID individuals (9/72, 12%) exhibited a distinct oral microbial profile characterized
124 by a greatly reduced number of early colonizer taxa, including *Streptococcus*. A similar oral
125 microbial profile at a similar prevalence (11%) was also observed among a diverse range of
126 humans from Europe and Africa from the Paleolithic onwards (Fellows Yates et al., 2021b).
127 Through analysis of the MID assemblage and a set of densely sampled Chalcolithic dentitions
128 (Fagernäs et al., 2022), we demonstrate that this pattern is not associated with dental
129 pathology, but may instead reflect long-term standing variation in patterns of plaque biofilm
130 development among humans.

131 **Results**

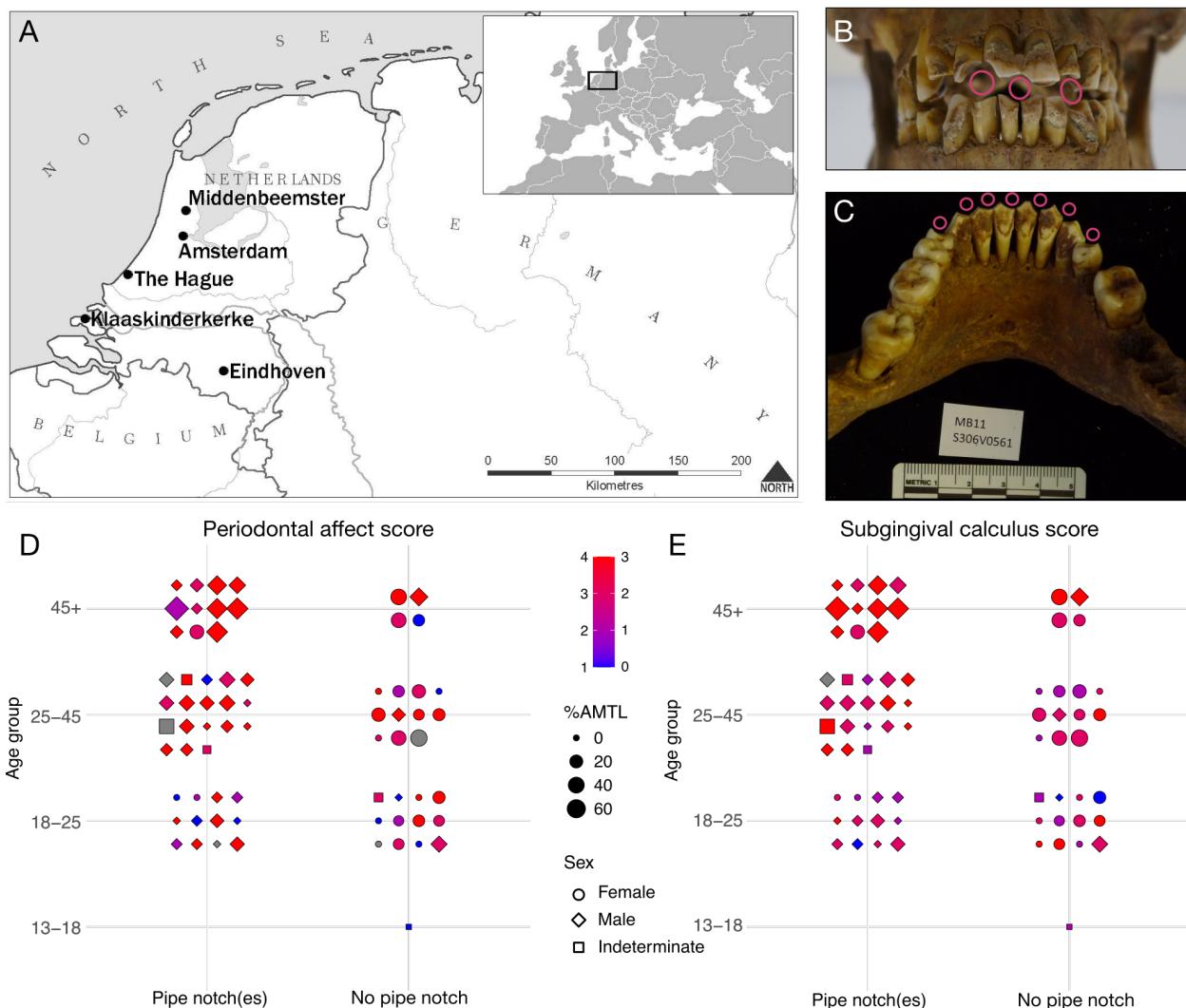
132 *Dentition*

133 *Demography and pipe use*

134 Dental calculus was collected from a total of 75 individuals in the Middenbeemster collection,
135 including 40 males, 25 females, and 5 individuals of unknown sex. A total of 66 of individuals
136 could be aged (Table 1). Of the 25 females, 24 could be attributed an age, while for the 40
137 males, 38 could be provided an age estimate. In general there are proportionally more females
138 in the young category, and more males in the old category, which needs to be considered when
139 assessing oral pathology.

140 **Table 1.** Age and sex distribution of individuals in the study sample.

Age (yearss)	Number Males ¹	Number Females ¹	Number Unknown sex ¹
Young (18-25)	15 (22.7%)	13 (19.7%)	1 (1.5%)
Middle (25-45)	14 (21.2%)	8 (12.1%)	3 (4.5%)
Old (>45)	9 (13.6%)	3 (4.5%)	0
Unknown	2	1	1
Total	40	25	5


141 ¹Percent indicates percent of total aged individuals (66).

143 The dentition was sufficiently intact to score the presence or absence of pipe notches in 70
144 individuals (Table S2, Figure 1B). We observed a strong relationship between biological sex and
145 pipe smoking, with most individuals bearing pipe notches being male. Only 3 of 25 females had
146 pipe notches (12%). Two of these women had one notch, and the other had two. Conversely,
147 most men exhibited pipe notches (88%; 35/40). Of the five men who did not have a notch, two
148 of these are young males and three are middle-age males. Of those with notches, 75% had at
149 least two notches. The maximum number of notches observed among men was 7 (Figure 1C).
150 The pattern of pipe notches in males suggests that habitual pipe smoking started from a young
151 age. Furthermore, based on this data, pipe smokers were slightly older on average than non-
152 smokers.

153 *Oral pathologies by pipe use status*

154 While there was no difference in the incidence of caries between individuals with and without
155 pipe notches, individuals without pipe notches had a higher percentage of teeth with caries
156 (26%) compared to pipe-users (15.1%) ($t=2.1194$, $df=66$, $p = 0.038$), and more non-users had
157 gross caries (50%) than pipe-users (27.5%). However, there was a trend for more of the pipe
158 users to have lost teeth antemortem (80.5%) than non-users (67.9%), possibly confounding our
159 observations (Table S3).

160
161 Early stages of periodontal disease (stage 2) was observable in almost all individuals. As such,
162 we assessed whether there were differences in more severe stages of periodontal disease
163 between pipe-users and non-users (stages 3 and 4). More pipe-users had periodontal disease
164 at stage 3 or 4 (87.8%) than non-users (64.3%), a difference that was statistically significant by
165 chi-squared test ($p = 0.035$, $n = 69$). In terms of periapical lesions, more pipe users were
166 affected (45%) compared to non-users (35.7%), and had more positions affected (3.4)
167 compared to non-users (2.4). Additionally, dental calculus was almost ubiquitous in the sample
168 collection, so we assessed how many teeth were affected and the general level of severity in
169 the mouth. Pipe users had a greater proportion of teeth with dental calculus (73.5%) compared
170 to non-users (58.6%), and had a greater build-up of both supra- and subgingival calculus.
171

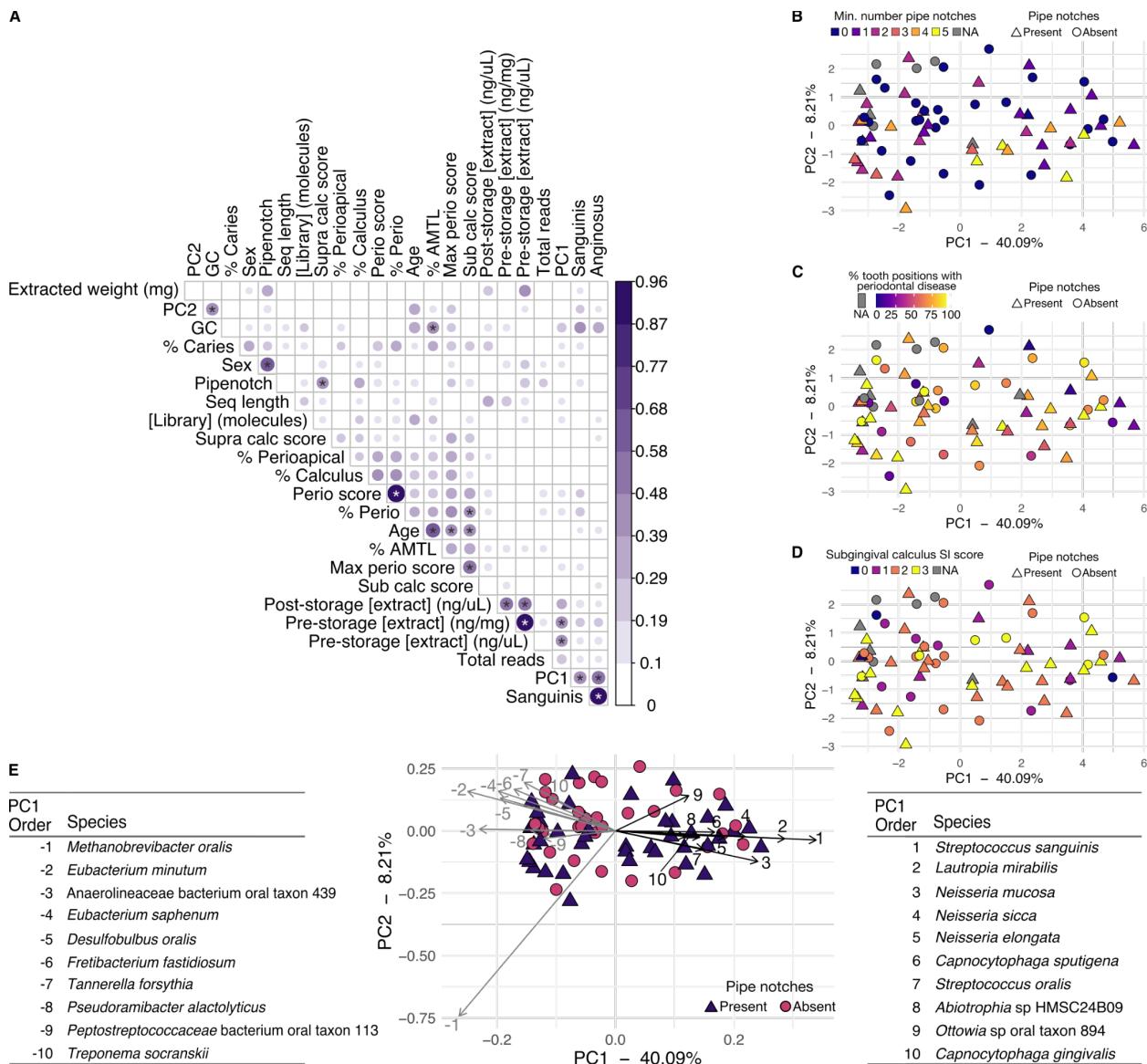
172
173

174 **Figure 1.** The Middenbeemster collection. **A.** Map locating the region of Middenbeemster in the
175 Netherlands and Europe. **B.** Male individual from Middenbeemster with three prominent pipe notches in
176 the anterior dentition indicated by hollow pink dots. **C.** Mandible of a male individual S306V0561 with at
177 least 7 pipe notches on the anterior dentition, indicated by hollow pink dots. **D,E.** Dental pathology of
178 Middenbeemster individuals in relation to age, sex, antemortem tooth loss (AMTL) and presence of pipe
179 notches, points colored by **D.** periodontal affect score (1-4), or **E.** subgingival calculus score (0-3). Gray
180 indicates no data. Photo credit: Sarah A. Inskip.

181 To better understand patterns of oral pathologies, we assessed the relationship between each
182 condition and age. There was a positive relationship between prevalence and age for all oral
183 pathologies with the exception of caries and gross caries. Caries prevalence was similar in all
184 age groups, while gross caries became less common with age. While this may seem
185 counterintuitive, caries is a leading cause of tooth loss, and AMTL prevalence was highest in the
186 oldest age category. The lower prevalence of caries, especially of gross caries, in the oldest
187 category is likely due to the high degree of observed tooth loss.

188 Figures 1D and E graphically depict the severity of three oral pathologies that have been linked
189 to smoking in present-day modern populations, including periodontal disease, antemortem tooth
190 loss (AMTL) and subgingival calculus (Al-Zahrani et al., 2021; Bergström, 2005; Eke et al.,
191 2015; Kowalski, 1971; Lee et al., 2022), by age and sex. For all three oral pathologies, middle-
192 age and old-age adults tended to have more severe manifestations of the conditions, with nearly
193 all individuals in the 45+ years category having periodontal disease scores of 3 or 4, calculus
194 scores of 2 or 3, and high rates of tooth loss (mean 28% of teeth per individual, compared to
195 mean 8.8% for all other age groups). As such, it is evident that there is a strong positive
196 relationship between the severity of oral pathologies and age but not sex (Figure 1D,E).

197 *Calculus preservation assessment*


198 To explore whether microbial signatures of smoking could be detected from 18th century
199 Europe, we analyzed dental calculus samples from Middenbeemster (MID), the Netherlands,
200 and Convento de los Mercedarios de Burtzeña (CMB), Spain. Dental calculus microbial
201 community preservation was high at both sites (Supplemental Figures S2, S3), with all but 3
202 MID samples passing preservation thresholds. Eight MID samples did not have sufficient
203 metadata for further comparisons and were excluded from all microbiome analysis. After filtering
204 for preservation and metadata completeness, 73 samples were used in downstream analyses
205 (MID = 65, CMB = 8).

206 *Species profile differences*

207 We first wanted to determine if there are broadly discernable differences in calculus species
208 profiles related to smoking evidence within the MID and CMB populations. To compare
209 microbial profile differences related to smoking status, individuals were classified as heavy
210 smokers if their dentition showed one or more pipe notches, or light/non-smokers if there was
211 no sign of pipe notches in their dentition. Beta-diversity analysis was performed with a principal
212 components analysis (PCA) to compare species profiles. Canonical correlation analysis was
213 used to assess correlations between sample metadata, including oral pathology, laboratory
214 outcomes, and sequencing analysis, as well as between sample metadata and principal
215 component loadings (Figure 2A).

216
217 Strong correlations were found between sex and the presence of pipe notches, and between
218 individual age at death and the following oral pathologies: percent antemortem tooth loss,
219 percent of teeth with periodontal disease, maximum periodontal disease score, and subgingival
220 calculus score. PC1 loadings were found to be correlated with extracted DNA concentration,
221 and the proportions of *Streptococcus* taxa belonging to the Sanguinis and Anginosus groups in
222 the samples, while PC2 loadings were correlated with average library GC content. However, no
223 clustering with respect to microbial community composition and evidence of smoking status in
224 PCA was observed, such as minimum number of pipe notches (Figure 2B), or periodontal
225 health, such as percent of tooth positions with periodontal disease (Figure 2C), subgingival
226 calculus score (Figure 2D), and others (Supplemental Figure S5). This suggests that these
227 health metrics are not shaping the species profiles in this dataset, and other factors may be
228 involved.

229

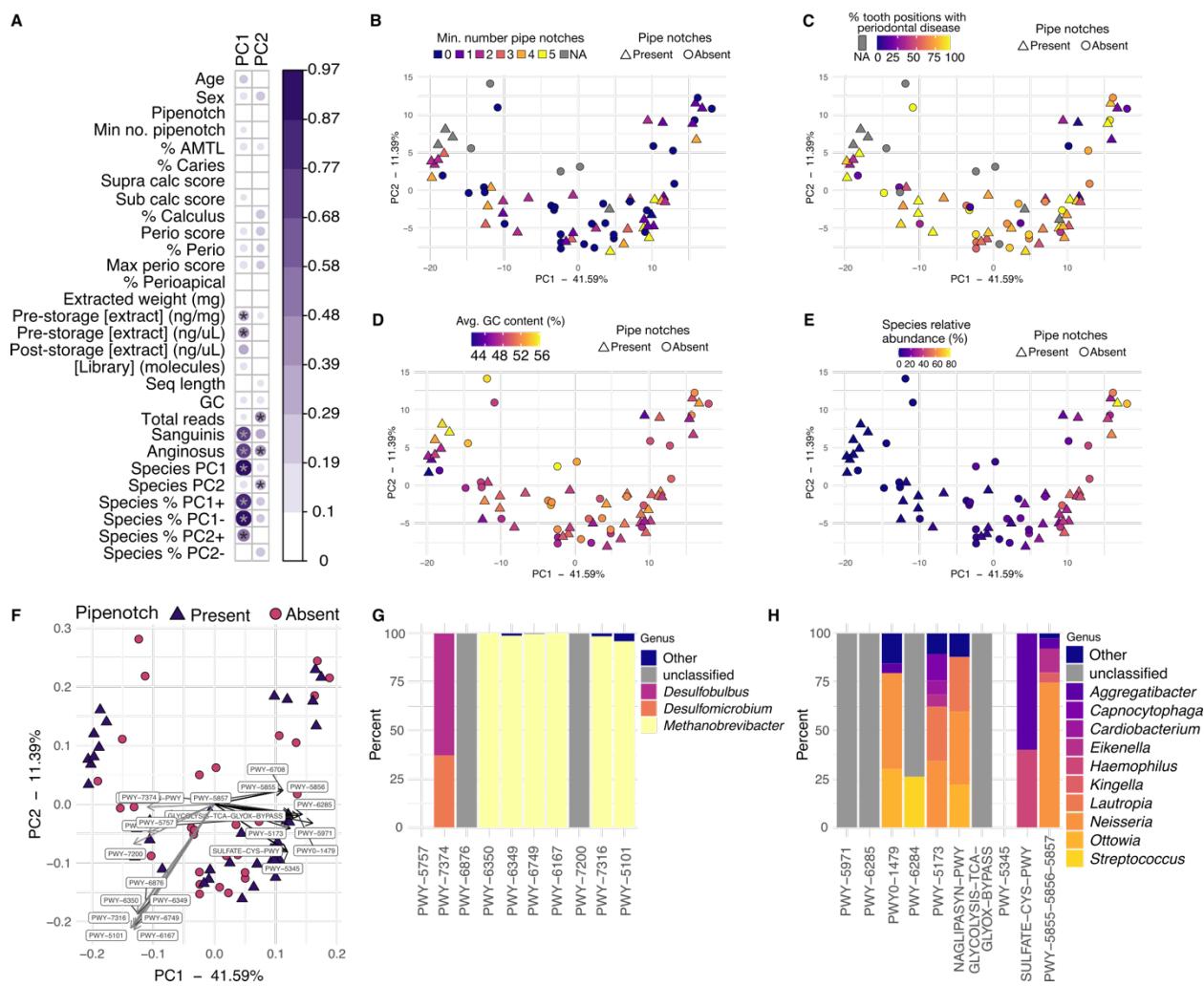
230

231

232 **Figure 2.** Microbial community diversity and correlations with oral pathology and laboratory work
233 metadata. **A.** Canonical correlations (CC) for Middenbeemster samples between metadata categories
234 and principal components loadings. Significance tests were performed with a Pearson correlation test.
235 The size and color of the dots corresponds to the CC value, which does not determine the direction of the
236 correlation (positive or negative. Hence all CC values are positive). Correlations ≥ 0.4 have significance
237 indicated with stars. * $p \leq 0.001$. **B-E** PCA based on species composition of MID and CMB samples
238 colored by **B.** Minimum number of pipe notches. **C.** Percent of tooth positions with periodontal disease. **D.**
239 Subgingival calculus SI score. Samples from CMB are colored gray in B-D because due to the
240 fragmented nature of the skeletons, the same metadata could not be collected (see Supplemental Figure
241 S1). **E.** PCA based on species composition of MID and CMB samples colored by pipe notch presence,
242 including a bi-plot indicating the loadings of 10 species with strongest positive and negative PC1 loadings,
243 with the species are listed in tables to the left and right of the plot, ordered by decreasing strength
244 of the loading. Metadata shown in **(A):** **extracted weight (mg)** - weight of calculus used in extraction;
245 **PC2 - PC2 loadings;** **GC** - library average GC content; **% Caries** - % of teeth with caries; **Sex** - estimated
246 biological sex; **Pipenotch** - pipe notch present; **Seq length** - library average sequence length; **[Library]**
247

248 **(molecules)** - total DNA molecules in the library (x 106); **Supra calc score** - subgingival calculus SI
249 score; **% Perioapical** - % of teeth with perioapical lesions; **% Calculus** - % of teeth with calculus; **Perio**
250 **score** - average periodontitis score; **% Perio** - % of teeth with periodontal disease; **% AMLT** - % of teeth
251 lost ante-mortem; **Max perio score** - maximum periodontitis score; **Sub calc score** - subgingival calculus
252 SI score; **Post-storage [extract]** (ng/uL) - extract DNA concentration after storage; **Pre-storage [extract]**
253 (ng/mg) - extract DNA concentration directly after extraction; **Pre-storage [extract]** (ng/uL) - extract
254 DNA concentration directly after extraction; **Total reads** - total reads in the library after quality-trimming
255 and merging; **PC1** - PC1 loadings; **Sanguinis** - proportion of total reads that were assigned to a species
256 in the Sanguinis *Streptococcus* group; **Anginosus** - proportion of total reads that were assigned to a
257 species in the Anginosus *Streptococcus* group.
258

259 To understand which species were driving the sample plotting patterns, we examined the top
260 ten species with the strongest positive and negative loadings in PC1 (Figure 2E). We found the
261 species separating samples along PC1 have different environmental niches. The top ten
262 species with strongest negative loadings are largely anaerobic taxa that are dominant in mature
263 oral biofilms, including those in the genera *Methanobrevibacter*, *Eubacterium*, *Desulfobulbus*,
264 *Fretibacterium*, and *Tannerella*. In contrast, the top ten species with strongest positive loadings
265 are largely aerobic or facultative taxa that grow well in the presence of oxygen and are dominant
266 in early dental biofilm formation, including those in the genera *Streptococcus*, *Neisseria*, and
267 *Capnocytophaga*. The samples with high positive PC1 loadings, indicating a strong presence of
268 oxygen-tolerant, early colonizer taxa, also show a higher proportion of 'plaque' in the
269 SourceTracker plots (Supplemental Figure S3), supporting that they have a species profile that
270 appears to have calcified at an earlier stage of development.
271


272 *Microbial functional profile*

273 Although we found no differences in the species profiles between heavy- and light/non-smokers,
274 and few associations between the species profiles and any metadata we collected from MID
275 and CMB, we next investigated microbial gene content in the calculus from these populations.
276 The extent to which inferred metabolic activity from ancient metagenomic data may reflect
277 biofilm activity is an open area of investigation. Clinical periodontal microbiome research has
278 reported distinctive gene expression profiles between dental plaque samples on teeth with and
279 without periodontitis, even when there were not distinctive taxonomic differences (Duran-Pinedo
280 et al., 2014; Yost et al., 2017, 2015). We used HUMAnN3 (Beghini et al., 2021) to infer the
281 metabolic pathways present based on gene content in the MID and CMB samples, and
282 performed PCA and canonical correlation analysis to assess the associations between sample
283 metadata and the inferred metabolic potential of these calculus microbial communities (Figure
284 3).
285

286 Similar to the species-based canonical correlations, we found few strong correlations (>0.4)
287 between the PCA principal component loadings and our sample metadata (Figure 3A), with the
288 strongest being between the proportion of Sanguinis and Anginosus group streptococci in the
289 samples. The principal component loadings of PC1 were also strongly correlated with the PC1
290 loadings from the species-based PCA, indicating that the sample loadings are shaped by similar
291 factors in both the taxonomic and metabolic pathway PCA. Plots of PCAs revealed no distinctive
292 clustering of the samples based on the minimum number of pipe notches (Figure 3B), the

percent of teeth with periodontal disease (Figure 3C), or the library average GC content (Figure 3D). However, the samples with the highest positive PC1 loadings had the highest percentage of species with strongest positive PC1 loadings in the species PCA (Figure 3E, Figure 2E). Finally, we investigated the species that contribute to the 10 metabolic pathways with the strongest positive and negative loadings in PC1 (Figure 3F). The pathways with strongest negative PC1 loadings are mainly contributed by late colonizer, anaerobic taxa in the genera *Methanobrevibacter*, *Desulfovibulus*, and *Desulfomicrobium* (Figure 3G), while the pathways with the strongest positive PC1 loadings are contributed by a variety of aerobic and facultative species in the genera including *Eikenella*, *Haemophilus*, *Kingella*, *Lautropia*, *Neisseria*, *Ottowia* (Figure 3H). The difference in species contributing to pathways separating samples along PC1 reflects the gradient of taxa in the species-based PCA (Figure 2E), where samples at one end are characterized by a strong presence of early-colonizer taxa, while those at the other end are characterized by a strong presence of late-colonizer taxa. Both the species-based and metabolic pathway-based analyses indicate that calculus preserves dental plaque biofilms that calcify at different stages of biofilm development, which does not directly reflect any of the oral pathologies that we have recorded.

309

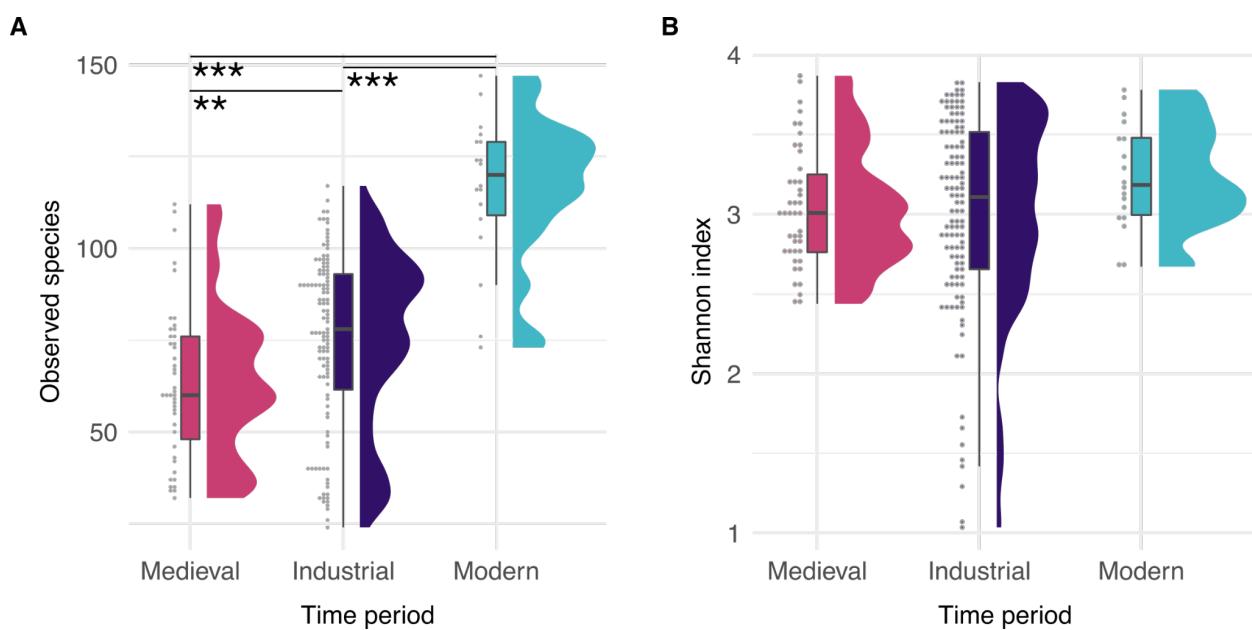
310

311

312 **Figure 3.** Metabolic pathway analysis and correlations. **A.** Canonical correlations (CC) for MID and CMB
313 samples between metadata categories and principal component loadings for a PCA based on pathway
314 abundance. Significance tests were performed with a Pearson correlation test. The size and color of the
315 dots corresponds to the CC value, which does not determine the direction of the correlation (positive or
316 negative. Hence all CC values are positive). Correlations ≥ 0.4 have significance indicated with stars. * p
317 ≤ 0.001 . **B-E** PCA plot based on pathway abundance in MID and CMB samples colored by **B.** Minimum
318 number of pipe notches, **C.** Percent of teeth with periodontal disease, **D.** Average GC content (%), and **E.**
319 Relative abundance of the 10 species with strongest PC1 positive loadings from the species PCA in
320 Figure 2E. In (C) Samples from CMB are colored gray because due to the fragmented nature of the
321 skeletons, the same metadata could not be collected (see Supplemental Figure S1). **F.** PCA biplot
322 showing the 20 pathways with strongest loadings in PC1 (10 highest positive loadings, 10 highest
323 negative loadings). **G** and **H** show the percent of each pathway contributed by species in the indicated
324 genera. **G.** Ten pathways with strongest positive PC1 loadings. **H.** Ten pathways with strongest negative
325 PC1 loadings. PWY-5855, PWY-5856, and PWY-5857 all have the same PC1 loading, and are
326 contributed by the same proportions of the same species. All genera for which the total contribution was
327 $< 5\%$ are grouped together as Other. The empty places for PWY-5757 in D and PWY-5345 in G indicate
328 that HUMAnN3 was not able to attribute these pathways to specific species. Metadata shown in **A:** **PC1** -
329 **PC1** loadings; **PC2** - **PC2** loadings; **Age** - estimated age at death; **Sex** - estimated biological sex;
330 **Pipenotch** - one or more pipe notches present; **Min no. pipenotch** - minimum number of pipe notches;
331 **% AMTL** - % of teeth lost ante-mortem; **% Caries** - % of teeth with caries; **Supra calc score** -
332 subgingival calculus SI score; **Sub calc score** - subgingival calculus SI score; **% Calculus** - % of teeth
333 with calculus; **Perio score** - average periodontitis score; **% Perio** - % of teeth with periodontal disease;
334 **Max perio score** - maximum periodontitis score; **% Perioapical** - % of teeth with perioapical lesions;
335 **Extracted weight (mg)** - weight of calculus used in extraction; **Pre-storage [extract] (ng/mg)** - extract
336 DNA concentration directly after extraction; **Pre-storage [extract] (ng/uL)** - extract DNA concentration
337 directly after extraction; **Post-storage [extract] (ng/uL)** - extract DNA concentration after storage;
338 **[Library] (molecules)** - total DNA molecules in the library ($\times 10^6$); **Seq length** - library average sequence
339 length; **GC** - library average GC content; **Total reads** - total reads in the library after quality-trimming and
340 merging; **Sanguinis** - proportion of total reads that were assigned to a species in the Sanguinis
341 Streptococcus group; **Anginosus** - proportion of total reads that were assigned to a species in the Anginosus
342 Streptococcus group; **Species PC1** - Sample loading in PC1 from the PCA based on the
343 MetaPhiAn3 species table; **Species PC2** - Sample loading PC2 from the PCA based on the MetaPhiAn3
344 species table; **Species % PC1+** - percent of 10 species with strongest PC1+ loadings in the species-
345 based PCA out of total species ; **Species % PC1-** - percent of 10 species with strongest PC1- loadings in
346 the species-based PCA out of total species; **Species % PC2+** - percent of 10 species with strongest
347 PC2+ loadings in the species-based PCA out of total species; **Species % PC2-** - percent of 10 species
348 with strongest PC1- loadings in the species-based PCA out of total species.
349

350 *Comparison with pre-tobacco introduction populations in Europe*

351 While we did not detect differences in the microbial species profiles or microbial metabolic
352 pathway profiles between heavy smokers and light/non-smokers within the MID and CMB
353 individuals, these populations were living during a time when smoking was common and many
354 people would have been exposed to high levels of second-hand smoke, even if they were not
355 using pipes or smoking themselves. High second-hand smoke exposure might obscure
356 smoking-related species profile changes that develop between smokers and non-smokers
357 (Beghini et al., 2019). To investigate possible differences in species profiles that are related to
358 smoke exposure, we chose to broadly compare calculus species profiles of European
359 populations living before and after the introduction of tobacco to Europe during three time
360 periods: Medieval, Industrial, and present-day Modern.
361

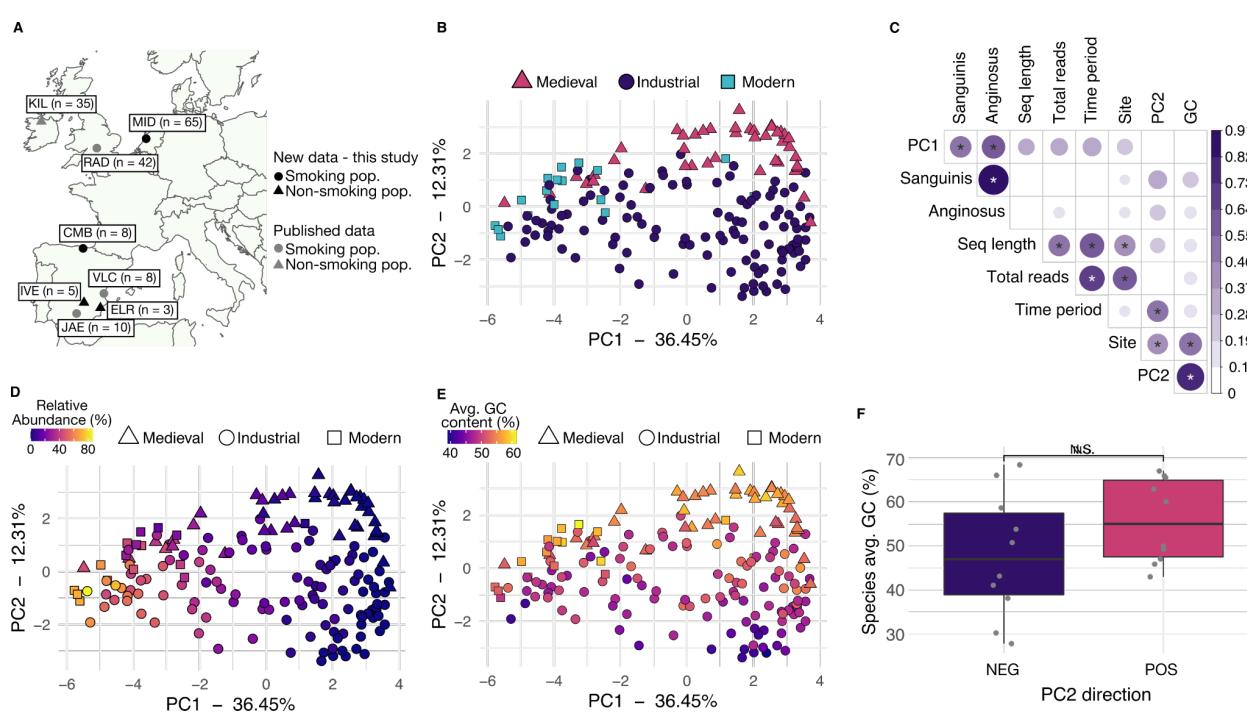

362 We selected a total of 6 additional European populations based on geographic proximity and
363 availability of comparative samples (Figure 5A). As pre-tobacco Medieval populations, we
364 included the Kilteasheen calculus data set (KIL) (Mann et al., 2018) from Ireland. Additionally,
365 we produced data from two sites in Spain dated to the medieval period, El Raval (ELR) and
366 Iglesia de la Virgen de la Estrella (IVE), to match the CMB population. As an additional
367 Industrial-era smoke-exposed population, we included the Radcliffe calculus data set (RAD)
368 (Velsko et al., 2019), from the early 1800s England. Modern calculus data sets from Jaen, Spain
369 (JAE) (Velsko et al., 2019) and from Valencia, Spain (VLC) (Fellows Yates et al., 2021b) were
370 also included for comparison. Poorly preserved samples were removed based on preservation
371 assessments (Supplemental figures S2, S3), leaving 176 samples that were used in
372 downstream analyses (MID = 65, CMB = 8, KIL = 35, ELR = 3, IVE = 5, RAD = 42, JAE = 10,
373 VLC = 8).

374
375 We first wanted to know if there is a change in the average number of species detected
376 between samples from the Medieval, Industrial, and Modern periods. There are statistically
377 significant differences between Modern and Medieval groups (Figure 4, $p < 0.001$, effect size
378 0.71), and between Modern and Industrial groups (Figure 4, $p < 0.001$, effect size 0.48), but
379 also between Industrial and Medieval groups, although the effect size was small ($p < 0.01$,
380 effect size 0.24). We found few differences between historic sites, with significant differences
381 between only MID and CMB ($p < 0.001$, effect size 0.37) and between MID and KIL ($p < 0.001$,
382 effect size 0.41). All historic sites had significantly fewer species than either of the modern
383 groups, VLC or JAE (Supplemental figure S6, Supplemental Table S9). The Shannon index was
384 not significantly different between any time periods (Figure 4B) or sites (Supplemental figure
385 S6), indicating that the distribution of species is highly similar across all samples.

386
387 To confirm the trend of increasing numbers of species in calculus samples over time, we
388 investigated the influence of sequencing depth and average read length on species detection.
389 The modern calculus samples were sequenced much more deeply than the historic samples,
390 and they have a longer average read length, possibly making detection of low-abundance taxa
391 more likely. We generated two additional datasets by down-sampling all calculus libraries in two
392 ways: first by sequencing depth, then by read length. For the first set, we randomly subsampled
393 all libraries with $> 10M$ reads down to $10M$ reads, while maintaining all libraries with $< 10M$
394 reads (Sub 10M set). For the second set, we subsampled all libraries to include only reads \leq
395 75bp in length (Sub 75bp set). Each subsetted dataset was then profiled with MetaPhlan3, and
396 the number of species and Shannon index calculated (Supplemental Figures S7, S8).

397
398 Both subsampling methods reduced the number of species detected for all groups
399 (Supplemental Figures S7A, C, and S8A, C), however Modern samples still had significantly
400 more species detected than either Medieval or Industrial samples. The Shannon index was
401 unaffected by subsampling for read depth (Supplemental Figures S7B,D), but was affected by
402 subsampling for read length (Supplemental Figures S8B,D). We found that the Sub 10M dataset
403 had significantly fewer reads than the full set for most sites (Supplemental Figure S9A), but the
404 average read length and the average GC content of the reads were unaffected (Supplemental
405 Figure S9B,C). The Sub 75bp dataset compared to the full dataset had significantly fewer reads

406 (Supplemental Figure S9A) and significantly lower average read length (Supplemental Figure
407 S9B) for most sites, but the average GC content was minimally affected (Supplemental Figure
408 S9C). The number of species detected in the Sub10M dataset compared to the full dataset was
409 significantly lower for both the Modern sites but none of the historic sites, while the number of
410 species detected in the Sub75bp dataset compared to the full set was significantly lower for all
411 sites, although two were not significantly different (Supplemental Figure S10). The subsampling
412 results suggest that the higher species counts in Modern samples compared to Medieval and
413 Industrial samples may be a real effect, but further detailed investigation of normalizing
414 sequencing depth and read lengths, and addition of more modern calculus samples from more
415 sites, are needed to confirm this.
416

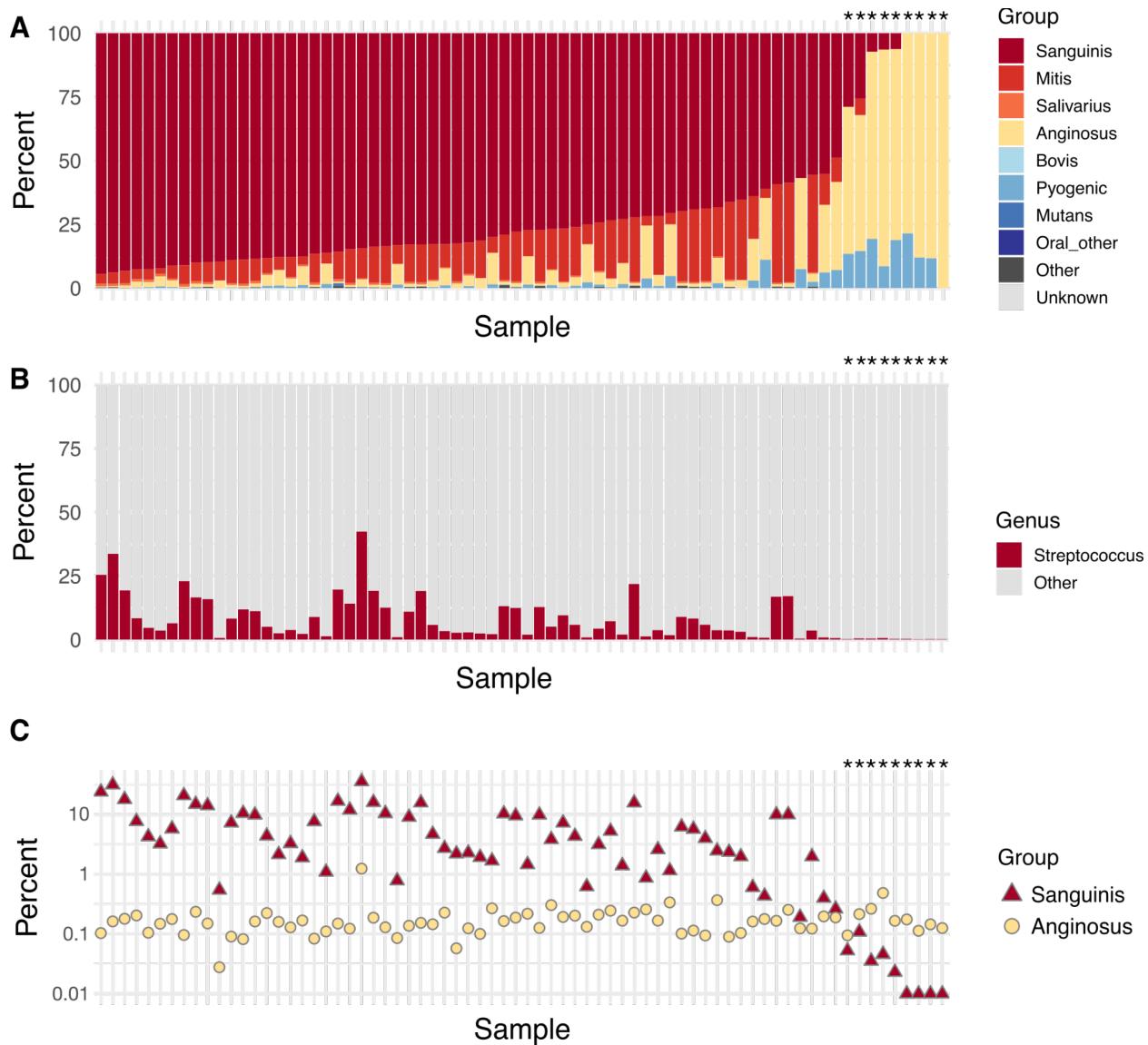


417
418 **Figure 4.** Within-sample species diversity. **A.** Raincloud plots showing the observed species in each
419 sample, grouped by time period. **B.** Raincloud plots showing the Shannon index in each sample, grouped
420 by time period. *** p < 0.001, ** p < 0.01.
421

422 We next wanted to determine if the microbial community structure of calculus from Medieval,
423 Industrial, and Modern calculus groups differ. This would let us know whether there are
424 substantial changes that have occurred in species composition of dental calculus between
425 distinct historic periods. We performed PCA based on the species abundance table to see
426 whether the samples clustered by time period or by other metadata categories (Figure 5B,
427 Supplemental Figure S11A). The Medieval samples generally cluster away from the Industrial
428 samples along PC2, while the Modern samples generally cluster with Industrial and Medieval
429 samples at one end of PC1. While this may suggest that there are time-related differences in
430 species composition driving separation of samples, we note several other factors that may be
431 driving the species composition pattern and confounding this observation.
432

433 Canonical correlation analysis revealed there are significant correlations between PC1 loadings
434 and the proportion of Sanguinis group and Anginosus group *Streptococcus* present in samples,
435 and there are significant correlations between PC2 loadings and library average GC content, in

436 addition to site and time period (Figure 5C). We further investigated the sources of variation in
 437 the samples that most strongly influence PC loadings. Samples appear to separate along PC1
 438 according to biofilm maturation stage (Figure 5D, Supplemental Figure S11B), similar to Figure
 439 2, however the loadings have reversed the species gradient. The samples with more negative
 440 PC1 loadings, including all but one of the Modern calculus samples, are enriched in early
 441 colonizer, aerobic and facultative taxa such as *Streptococcus*, *Neisseria*, and *Rothia*
 442 (Supplemental Table S4). Modern calculus samples are known to have higher levels of early-
 443 colonizer species than historic European dental calculus, which may be related to toothbrushing
 444 and other dental interventions (Velsko 2019). In contrast, the samples with more positive PC1
 445 loadings are enriched in late colonizer, anaerobic, proteolytic taxa such as *Treponema*,
 446 *Tannerella*, and *Fretibacterium* (Figure 5D, Supplemental Figure S11B, Supplemental Table
 447 S4). The late-stage colonizer *Methanobrevibacter oralis* is highly abundant in several Industrial-
 448 era samples and we performed an additional PCA on a table without *M. oralis* to check if this
 449 species was strongly shaping the PCA, and found that it is not (Supplemental figure S12).
 450


453 **Figure 5.** Community structure is shaped by species aerotolerance and sample GC content rather than
 454 time period. **A.** Map of sample sites. **B.** PCA of species profile colored by time period. **C.** Canonical
 455 correlation (CC) analysis correlations between metadata categories principal component loadings for all
 456 libraries. Significance tests were performed with a Pearson correlation test. The size and color of the dots
 457 corresponds to the CC value, which does not determine the direction of the correlation (positive or
 458 negative). Hence all CC values are positive. The tested metadata were selected because the information
 459 was available for the majority of libraries. Only correlations ≥ 0.4 have significance indicated with stars, *
 460 $p \leq 0.001$. **D.** PCA of species profile colored by relative abundance of the 10 species with strongest
 461 negative loadings in PC1, all of which are aerobic or facultative species found early in dental biofilm
 462 development (Supplemental Table S2). **E.** PCA of species profile colored by average GC content of the
 463 sample. **F.** Average GC content of the 10 species with strongest PC1 negative (NEG) and positive (POS)
 464 loadings, indicating that species characterizing the samples with higher average GC content have higher
 465 average GC content than the species characterizing the samples with lower GC content. N.S. - non-

466 significant ($p > 0.05$ by Wilcox test). **PC1** - PC1 loadings; **Sanguinis** - proportion of total reads that were
467 assigned to a species in the Sanguinis group; **Anginosus** - proportion of total reads that were assigned
468 to a species in the Anginosus group; **Seq length** - library average sequence length; **Total reads** - total
469 reads in the library after quality-trimming and merging; **Time period** - time period of the samples; **Site** -
470 site of the samples; **PC2** - PC2 loadings; **GC** - library average GC content.
471

472 Loadings in PC2 are correlated with GC content, time period, and site (Figure 5C), which are
473 themselves correlated. Only a single time period is represented per site, and older calculus
474 samples are expected to have higher average GC content due to the taphonomic loss of short
475 AT-rich fragments (Fagernäs et al., 2020; Mann et al., 2018). Thus it is expected that the
476 Medieval calculus samples have higher average GC content than the Industrial samples. This
477 is, however, not entirely an age-related effect, as the modern samples also have a higher
478 average GC content, in the same range as the medieval samples (Figure 5E). The species
479 characterizing samples with high positive PC2 loadings have a higher average GC content than
480 the species characterizing samples with strong negative PC2 loadings (Figure 5F), indicating
481 the trend in GC content is reflected in taxonomic assignments. The average read length of
482 samples does not appear to influence the species composition of these samples, as the modern
483 samples and Radcliffe samples have the longest read lengths and are distributed across PC1
484 from the lowest to the highest values (Supplemental Figure S7C). Taken together, it appears
485 that the factors driving differences in species diversity between samples are derived from a
486 variety of sources, several of which are unrelated to biofilm and host ecology. These results
487 indicate human behavioral differences such as tobacco smoking may not be as strongly
488 reflected in calculus community profiles as they are in dental plaque, and studies will need to be
489 carefully constructed to account for this and maximize the chance of observing signals related to
490 the study question.

491 *Streptococcus species distributions*

492 Although we did not find associations between oral pathology metadata and species profiles of
493 MID calculus samples, we found differences related to species ecological niches. This
494 suggested an opportunity to investigate distinctive distributions of *Streptococcus* species in our
495 dataset, such as that reported in a deep-time study of ancient calculus (Fellows Yates et al.,
496 2021b). Fellows Yates, et al, reported a small group of human calculus samples that had a low
497 proportion of *Streptococcus* that was represented predominantly by species of the Anginosus
498 group, rather than of the more typical Sanguinis group, which is a pattern that resembles
499 streptococcal patterns found in chimpanzee calculus. Fellows-Yates et al. (2021b) were unable
500 to speculate on the reasons for this distinction within humans because of small sample size and
501 insufficient metadata, but the MID collection presents the opportunity to examine a large number
502 of dental calculus samples from a homogenous population sampled from a single location and
503 time period with associated high quality health-related metadata.
504

Figure 6. *Streptococcus* species group distributions in Middenbeemster and Convento de los Mercedarios de Burtzeña. **A.** Percent of *Streptococcus*-assigned reads in each *Streptococcus* group per sample, ordered by decreasing proportion of Sanguinis group and increasing proportion of Anginosus group. **B.** Percent of reads assigned to *Streptococcus* out of all genera detected per sample. **C.** Percent of reads assigned to species in the Sanguinis and Anginosus groups per sample. The y-axis is log-scaled and the four samples on the far right have no reads assigned to Sanguinis group *Streptococcus* species. Sample order is identical across all 3 panels. A star (*) indicates samples in which >50% of the *Streptococcus* reads come from species in the Anginosus group.

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

To determine whether the distribution of *Streptococcus* groups across humans is consistent in our populations, or whether there are humans with a *Streptococcus* group profile that more closely resembles that found among chimpanzees as reported by Fellows Yates, *et al.* (Fellows Yates *et al.*, 2021b), we used a species table generated by MALT using the same RefSeq database used by Fellows Yates, *et al.* This allowed us to directly compare our results with

521 previously published results. We grouped all *Streptococcus* species in each individual into
522 seven phylogenetically-supported clades (Richards et al., 2014): Sanguinis, Mitis, Salivarius,
523 Anginosus, Bovis, Pyogenic, and Mutans, as well as the categories Other if they fell outside of
524 these clades, or Unknown if they have not been phylogenetically placed.

525

526 When the individuals from MID and CMB were ordered by decreasing proportion of Sanguinis
527 group *Streptococcus*, there was a clear distinction within the population, with nine of 72
528 individuals (11%) having Anginosus as their dominant group (> 50% of all *Streptococcus* reads
529 were assigned to species in the Anginosus group), as opposed to Sanguinis for the majority of
530 individuals (Figure 6A). These Anginosus-dominated individuals had a lower overall proportion
531 of *Streptococcus* (Figure 6B), which was due to a loss of Sanguinis group species (Figure 6C),
532 and were the same individuals that have species profiles characterized by a high proportion of
533 anaerobic taxa (Supplemental Figure S5).

534

535 Since this pattern of *Streptococcus* species distribution has now been shown at a continental
536 scale (Fellows Yates et al., 2021b) and within two individual populations (MID, CMB), we next
537 asked whether this pattern holds for an individual, or whether there is intra-individual variation.
538 To investigate tooth-specific *Streptococcus* species differences with individuals, we used the
539 data published by Fagernäs, et al. (Fagernäs et al., 2022). This dataset consists of calculus
540 sampled from 12-18 teeth per individual from 4 individuals. The species table published by
541 Fagernäs, et al. was generated with the same version of MALT and the same RefSeq database,
542 and we therefore grouped the *Streptococcus* species as described above, per tooth. When
543 multiple sites of a single tooth were sampled, we averaged the read counts to produce a tooth-
544 wide average.

545

546

547 **Figure 7.** Distribution of *Streptococcus* groups in calculus of each tooth sampled from two individuals
 548 from the Chalcolithic site (ca. 4500-5000 BP) Camino del Molino, Spain. **A.** Average proportion of reads
 549 assigned to the genus *Streptococcus* compared to all other genera in individual CM55, averaged across
 550 all teeth sampled. **B.** Proportion of reads assigned to species within each group of *Streptococcus*, by
 551 tooth, in individual CM55. **C.** Average proportion of reads assigned to the genus *Streptococcus* compared
 552 to all other genera in individual CM165, averaged across all teeth sampled. **D.** Proportion of reads
 553 assigned to species within each group of *Streptococcus*, by tooth, in individual CM165. Tooth numbers
 554 are in FDI World Dental Federation notation.

555

556 We found that three of the individuals (CM55, CM59, and CM82) had a majority of teeth
 557 dominated by Sanguinis group *Streptococcus* species (Figure 7A,B, Supplemental Figure S13),
 558 while in individual CM165, 6 of 15 teeth (40%) were dominated by Anginosus group
 559 *Streptococcus* species. Individual CM165 had overall, across their entire dentition, a lower
 560 proportion of reads identified as *Streptococcus* compared to the other three individuals (Figure
 561 7C), where those teeth with the lowest proportion of *Streptococcus* reads were dominated by
 562 Anginosus group species (Figure 7D, Supplemental Figure S13D). Across each individual in this
 563 data set, teeth with lower proportions of *Streptococcus* had lower proportions of Sanguinis
 564 group species and higher proportions of Anginosus group species, indicating that this dichotomy
 565 is a tooth-specific phenomenon that is reflected at an individual level.

566 Discussion

567 We investigated patterns related to dental health and pipe use in ancient dental calculus in a
568 large osteological collection from the Netherlands, as well as a small group from Spain. No
569 microbial species distribution patterns pertaining to dental health were detected in the samples,
570 nor was there any indication that species profiles distinguish individuals with pipe notches
571 (heavy smokers) and those without pipe notches (light/non-smokers). Further, a broader time
572 scale, spanning the medieval period through modern day, also did not show patterns of
573 differentiation based pre- and post-introduction of tobacco to Europe. Instead, patterns appear
574 to be driven by individual variation in biofilm development, with individuals from each time period
575 having species profiles ranging from more aerotolerant to more anaerobic. This pattern is
576 highlighted in the proportions of *Streptococcus* groups detected in calculus, where a minority of
577 individuals carry exceptionally low proportions of Sanguinis group *Streptococcus* species,
578 appearing instead to be dominated by Anginosus group species. However, this minority has
579 overall very low proportions of *Streptococcus* species, and high proportions of late-colonizer
580 anaerobic taxa, and this pattern appears to be an individual-specific trait.

581 Although there were some differences in dental pathologies by pipe use status within the
582 Middenbeemster collection, with users having fewer caries, more severe periodontal disease
583 and larger calculus deposits, it was difficult to correlate the results directly with pipe smoking for
584 two key reasons. First, the clear relationship between pipe use and biological sex, with the
585 majority of males having at least one pipe notch and most females having no pipe notches,
586 confounded comparison of pipe users and non-users. In many populations, including Dutch
587 populations of the period (Baetsen and Weterings-Korthorst, 2013; Clevis and Constandse-
588 Westermann, 1992; Jackes, 2015), there are significant differences in oral health between
589 males and females that relate to biological differences and gendered differences in diet (Lukacs
590 and Largaespada, 2006; Lukacs, 2008). Without having more information from female pipe
591 users and male non-pipe users it is difficult to disentangle whether the differences we see are
592 related to biological or gender differences.

593 Another issue is that there is a strong correlation between age and the presence and severity of
594 oral pathology, and because our sample was drawn from a natural cemetery assemblage, it was
595 not balanced in terms of age: the smokers/males were older. A pertinent issue here is inability to
596 know whether individuals with significant tooth loss were smoking pipes. However, a previous
597 study comparing oral pathology between Middenbeemster males and earlier pre-tobacco males
598 from Klaaskinderkerke (Figure 1A) identified lower caries rates, and higher AMTL and calculus
599 severity in pipe smoking males in comparison to pre-tobacco males (Inskip et al., n.d.). Similar
600 results were also found by others who had much larger sample sizes with a better
601 representation of pipe users and non-users (Geber and Murphy, 2018; Walker and Henderson,
602 2010; Western and Bekvalac, 2020). While these results suggest an impact, a confounding
603 issue is that it is not possible to entirely disentangle the influence of smoking versus the
604 abrasion of teeth by clay pipe stems, which may lead to the obliteration of early caries, hence
605 lower caries rates, but also speed up tooth loss due to advanced wear.

606 The Middenbeemster skeletal collection is an extensively studied assemblage, and a wealth of
607 metadata is available for each individual. Given that dental plaque biofilm species profiles are
608 distinct between healthy and disease-affected teeth (Abusleme et al., 2021), studying this
609 collection afforded us the opportunity to assess whether ancient dental calculus microbial
610 communities also maintain differences related to dental health. While we found no broad
611 community-scale differences relating to pathology including periodontal disease, calculus score,
612 caries, and antemortem tooth loss, among others, this is consistent with the observation that
613 dental calculus appears to be a stable climax biofilm community (Velsko et al., 2019). The
614 ecological succession by which biofilms reach a terminal state (Kolenbrander et al., 2006;
615 Listgarten et al., 1975, 1973; Socransky et al., 1977; Theilade et al., 1974, 1966; Tinanoff et al.,
616 1976) may be influenced by external forces including oral hygiene, immunological responses,
617 and tobacco use, with intermediate biofilm states strongly depending on the local oral
618 environment (Wade, 2021). However, once a terminal community is reached, the fully mature
619 biofilm may have lost most indications of earlier community states.
620

621 Tobacco smoking adversely affects oral health, and is associated with substantial changes in
622 dental plaque biofilm community profiles (Buduneli, 2021; Nociti et al., 2015). Whether the
623 microbial changes are due to direct influence of tobacco smoke exposure or to physiological
624 changes in the oral tissues is not clear, and different studies report different specific species
625 abundance changes (Al Bataineh et al., 2020; Kumar et al., 2011; Mason et al., 2015; Moon et
626 al., 2015; Yang et al., 2019). Overall, however, the species profile appears to shift to one with
627 more pathogenic potential, with elevated abundances of anaerobic, proteolytic species that are
628 associated with periodontal disease. Given that dental calculus species profiles generally have
629 higher abundance of these same disease-associated species, even in the absence of dental
630 pathology (Kazarina et al., 2021; Velsko et al., 2019), detecting smoke exposure-induced
631 changes may be difficult. Specific changes might be detected by differential abundance
632 analysis, but the relative value of this information in ancient dental calculus remains to be
633 investigated.
634

635 The patterns we detected within the MID and CMB samples appear to be related to individual
636 differences in the terminal dental biofilm community. The results of our transect support this
637 observation, which is consistent with other publications that have performed time transect
638 studies (Fellows Yates et al., 2021b; Ottoni et al., 2021), where community diversity analyses do
639 not cluster samples by time period. Instead of patterns relating to sample site, time period, or
640 dental health, the samples appear to maintain individuality. This pattern of stable microbial
641 signatures in dental plaque is a known phenomenon, with individual teeth having relatively
642 stable communities over months-long time scales (Tamashiro et al., 2021). Despite high
643 variability in profiles across teeth within an individual, plaque from any one tooth in an individual
644 is more similar to other teeth in the same individual than to teeth in other individuals (Tamashiro
645 et al., 2021). This pattern of individuality is also captured in ancient dental calculus (Fagernäs et
646 al., 2022), where there is relatively high variability across teeth in an individual, yet samples
647 from one individual are more similar to each other than to samples from another individual.
648

649 The strongest pattern we detected separating samples in beta-diversity analysis was the
650 proportion of species with different environmental niches. This was shown by a strong gradient
651 where samples at one end of the PCA were enriched in aerotolerant, early biofilm colonizer
652 taxa, and samples at the opposite end were enriched in anaerobic, later biofilm colonizer taxa.
653 This was true for not only the MID and CMB samples, but also for samples from other sites and
654 time periods in Europe. We found no correlation with dental pathology, suggesting individual
655 differences in plaque development timelines may account for this pattern, and studies of biofilm
656 succession may offer insight. *In vivo* studies of plaque development have reported two distinct
657 patterns, one termed “rapid” and the other “slow” (Listgarten et al., 1975; Zee et al., 1997,
658 1996). Slow plaque-forming individuals maintained a “younger” biofilm dominated by more
659 aerotolerant taxa, including *Streptococcus* and other Gram-positive cocci (Listgarten et al.,
660 1975; Zee et al., 1997, 1996). During the same period of time, the biofilm in rapid plaque
661 formers developed a more complex community with higher proportions of anaerobic and Gram-
662 negative taxa. This difference in the rate at which biofilms mature and calcify, and the species
663 composition of the end-state climax community, may be captured in dental calculus.
664

665 We found the abundance of *Streptococcus* and the distribution of species within distinct
666 phylogenetic lineages of *Streptococcus* to reflect this individual difference. While Fellows Yates,
667 et al. (2021b) identified a small number of human calculus samples that have a *Streptococcus*
668 species profile and abundance distribution that is more similar to chimpanzee calculus, they
669 were unable to further speculate on the origin of this distinction. We found this pattern replicated
670 in the MID and CMB samples, and with no association with dental pathology. Finer-scale
671 assessment of four individuals for which data from multiple calculus samples was available from
672 across their dentition revealed that the abundance and distribution of *Streptococcus* species
673 was fairly uniform in three individuals but variable in the fourth. This fourth individual had
674 variable amounts of *Streptococcus* across their dentition and the predominant species were
675 distinct between teeth with relatively high and relatively low *Streptococcus* abundance. Overall
676 this individual had fewer reads assigned to *Streptococcus*, and fell within the ‘chimpanzee-like’
677 profile.
678

679 The results of this study suggest that it may not be possible to use dental calculus
680 metagenomes to distinguish broad health-associated changes in community profiles such as
681 can be detected in living dental plaque biofilms. Instead, the value of these ancient
682 metagenomes may lie in providing insight into individual biofilm characteristics, particularly
683 related to biofilm and microbial ecology. Another intriguing avenue of ancient dental calculus
684 metagenome research is on the evolution of specific species and strains through the assembly
685 and reconstruction of ancient metagenome assembled genomes (Brealey et al., 2020;
686 Granehäll et al., 2021; Wibowo et al., 2021). In contrast, the wealth of proteins and metabolites
687 that are preserved in calculus may reflect biofilm community responses to altered oral
688 environments such as dental disease or tobacco smoking (Jersie-Christensen et al., 2018;
689 Velsko et al., 2019, 2017), and could be used instead of the metagenome to study the role of
690 health in shaping the oral microbiome in deep time.
691

692 Materials and Methods

693 *Archaeological sites and associated skeletal remains*

694

695 Middenbeemster (MID). Middenbeemster is today a small town in the Beemster region of the
696 Dutch province of North Holland (Figure 1A). Settlement in the region began after the draining of
697 the Beemster lake in 1612 (Aten et al. 2012). Following land reclamation, the region was used
698 primarily for agriculture, and it became particularly renowned for its dairy farming and cheese
699 production (de Jong et al., 1988), although residents also worked in local service industries,
700 shops, and the military (Falger et al., 2012). While it was initially planned to construct multiple
701 churches throughout the region, only one church, the Keyserkerk, was completed at
702 Middenbeemster, and as such it served the entire Beemster community (Aten et al., 2012).

703

704 In 2011, the Laboratory for Human Osteoarchaeology of Leiden University and the company
705 Hollandia Archeologen carried out archaeological excavations at the Middenbeemster
706 Keyserkerk prior to a planned construction project. The excavation of part of the cemetery
707 (Leroux, 2012), which was in use from 1623 to 1866, uncovered approximately 450 individuals,
708 and their skeletal remains were relocated to the Human Osteology Laboratory of Leiden
709 University for research and long-term care. Most of the excavated individuals date to the later
710 periods of the cemetery's use because historical records indicate that the older portions of the
711 cemetery, which had become overcrowded, were cleared in 1829 to make room for new burials
712 (Leroux, 2012). At the time of death, undertakers and gravediggers wrote down individual
713 information for each burial, including name, age at death, date of death, and the profession of
714 the deceased, creating burial records, death registers, and a map of Middenbeemster's
715 cemetery (Veldman, 2013). This information was used to identify some of the excavated
716 skeletons; however, alternative ways of spelling names and typographical errors have made it
717 difficult to identify most remains with certainty (Leroux, 2012). After excavation, the skeletal
718 remains recovered from the cemetery were washed with water to remove clay and sand from
719 the burial prior to storage.

720

721 All metadata were collected by the Laboratory for Human Osteoarchaeology of Leiden
722 University and confirmed by S. I. and M. H.. Biological sex estimates were made by observing
723 and recording the sexually dimorphic morphological traits of the skull and pelvis, following
724 standard methods (Buikstra and Ubelaker, 1995; Workshop of European Anthropologists,
725 1980). The approximate age at death for each individual was estimated using dental attrition
726 (Maat, 2001), cranial suture closure (Lovejoy et al., 1985), the sternal rib-end (Işcan and Loth,
727 1986), the pubic symphysis (Brooks and Suchey, 1990), and the auricular surface (Buckberry
728 and Chamberlain, 2002) and grouped into four age categories: adolescent (13-18 years), young
729 adult (18-25 years), middle adult (25-45 years), and old adult (>45 years). For known
730 individuals, age estimates were cross checked with archival information, which showed a high
731 degree of accuracy for sex estimates, and good accuracy with age estimates.

732

733 Total DNA from the calculus of 75 Beemster individuals was extracted and sequenced for this
734 study. The oral health of each skeleton was recorded with reference to the presence and

735 absence of pipe notches, periapical lesions, supra- and subgingival calculus scores, periodontal
736 diseases, caries, antemortem tooth loss, and their respective severeness (Supplementary Table
737 S1). To be scored in the analysis of dental pathology, it was important to know whether an
738 individual had pipe notches or not. As such, only individuals retaining at least 50% of their
739 anterior teeth in alternating positions (thereby allowing pipe notches to be observed) were
740 included in the analysis of dental pathology. To evaluate the presence and severity of
741 periodontal disease, the mandible and maxilla of each individual were examined
742 macroscopically. Changes were recorded based on the inflammatory loss of the alveolar bone,
743 and scored following the four point scale described in (Ogden, 2007): None – 1, Mild – 2,
744 Moderate – 3, Severe – 4. Additionally, the percentage of tooth positions with signs of
745 periodontitis was calculated.

746
747 Caries were recorded when there was evidence for enamel loss (Hillson, 2001) on any tooth
748 surface; this included the lingual, buccal, occlusal, medial, and distal crown sites, as well as at
749 the cementoenamel junction (CEJ) and root surfaces. Gross caries were scored when it was no
750 longer possible to identify the origin of the carious lesion. Individuals were recorded as having
751 caries if one or more teeth were affected and caries rates per individual were also calculated.
752 Antemortem tooth loss was scored as present when one or more teeth were absent and there
753 was evidence of remodeling to the alveolar margins of the socket that indicated healing. The
754 total number of teeth lost antemortem was calculated. Calculus was graded following the four
755 point scale by Brothwell (Brothwell, 1981): 0=none, 1=slight, 2=moderate, 3=extensive. Due to
756 the complexity of differentiating between types of periapical lesions (granuloma, abscess or
757 cysts) without x-ray, an individual was scored as positive for the conditions when at least one of
758 the three types, as identified by Ogden (2008), were present. For periodontal disease and
759 calculus, individuals were given a score based on the highest observed score per individual. A
760 full table of the collected dental metadata is in Supplementary Data S1.

761
762 Dental calculus from the Middenbeemster collection was collected by K. Z. in 2014. For each
763 individual, calculus from multiple teeth was sampled and pooled for analysis. Calculus from a
764 total of 75 individuals was sampled. Of these, 40 individuals had pipe notches, and 7 individuals
765 had dentitions that were too fragmentary to determine whether pipe notches were present.

766
767 Convento de los Mercedarios de Burtzeña (CMB). The Convento de los Mercedarios de
768 Burtzeña, is located in the eastern part of Burtzeña, in Northern Spain. Archaeological and
769 historical information about the site and its excavation are available in (Domínguez Ballesteros
770 et al., 2018) and (García-Collado et al., 2018). The use of the cemetery is dated between the
771 end of the 16th century. and the beginning of the 19th century. The excavations revealed the
772 remains of the foundation under the pavement of the church, which contained the sandstone-
773 boxed inhumations of more than 150 graves, of which most were occupied by several
774 individuals. Fifty graves, covered with slabs, were excavated during the excavation works. A
775 total of 62 articulated individuals and numerous scattered bone remains were found. Each grave
776 contained individuals of different ages, which may represent family graves, which were typical at
777 that time.

778

779 All metadata for the site were investigated and collected by M. I. G-C., E. D. B. and L. S. Z.. All
780 the anthropological remains recovered were cleaned by washing with water at room
781 temperature and brushing with soft bristled brushes. Care was taken not to submerge the bones
782 completely in order to minimize water absorption. The material was then left to dry at room
783 temperature on absorbent paper in a ventilated room.

784

785 Calculus from 8 individuals from the Convento de los Mercedarios de Burtzeña cemetery were
786 extracted and sequenced for this study. Four individuals had pipe notches in their dentition, and
787 four did not. It is possible that individuals CMB003 and CMB004 are the same individual, as
788 each is represented by a partial mandible recovered from the same grave. The oral health of
789 each skeleton was recorded with reference to the presence and absence of pipe notches. This
790 was investigated as previously described (García-Collado et al., 2018). Biological sex was
791 estimated observing the sexually dimorphic morphological traits of the skull and pelvis (Buikstra
792 and Ubelaker, 1995; Phenice, 1969). Age-at-death of each individual was estimated using the
793 pubic symphysis (Brooks and Suchey, 1990), the auricular surface (Lovejoy et al., 1985), the
794 sternal rib-end (Işcan and Loth, 1986) and the sacrum (Passalacqua, 2009). Since most
795 individuals originated from disarticulated assemblages of human remains and often were just
796 isolated mandibles, it was not possible to make precise age estimations for all skeletons. Four
797 individuals could only be classified as "older than 20 years" and therefore could not be classified
798 into the same age groups as used for the Middenbeemster collection; they were instead
799 classified as "Adult".

800

801 Dental calculus from the Convento de los Mercedarios de Burtzeña was collected by M. I. G-C.
802 in 2019. For each individual, calculus from multiple teeth was sampled and pooled for analysis.
803 Eight individuals were sampled, four with pipe notches, and four without pipe notches
804 (Supplemental Figure S1).

805

806 El Raval and Iglesia de la Virgen de la Estrella. Dental calculus was also analyzed for two
807 Spanish sites dated to the Medieval period, El Raval (ELR) and Iglesia de la Virgen de la
808 Estrella (IVE). Calculus from five individuals from each site was extracted and sequenced for
809 this study (Supplemental Table S1). Samples from El Raval were collected in 2018 by D.C.S.G.
810 Calculus were collected off of multiple teeth and pooled for extraction/collected off a single tooth
811 per individual (Salazar-García et al., 2014).

812

813 El Raval is a medieval necropolis from the city of Crevillent (Alacant, Spain), from the times of
814 the Kingdom of València, Crown of Aragón. The necropolis was radiocarbon dated between the
815 end of the 14th century AD and the beginning of the 16th century A.D., and was located outside
816 the city wall besides one of the main roads leading into the city (Martí et al., 2009). Burial
817 customs revealed that most individuals interred were Mudéjar, Muslims of Al-Andalus that
818 remained in Iberia after the Christian Conquest, and a minority were Islamic people who had
819 converted to Christianity (Trelis et al., 2010). A total of 81 burials were recovered, mostly single
820 graves occasionally covered by rocks or wood. Individuals of all ages, except those older than
821 60, were buried in the cemetery, being both full adults and infants (0-4 yo) the most frequent.

822 Oral pathologies, such as dental calculus, caries, periodontal disease and antemortem tooth
823 loss, are frequent amongst the adult individuals (de Miguel Ibáñez, 2007).

824

825 Samples from Iglesia de la Virgen de la Estrella were collected in 2016 by D.C.S.G. Calculus
826 were collected from multiple teeth and pooled for extraction.

827

828 Metadata for the samples sequenced for this study are in Supplemental Table S1.

829 *Comparative data sets*

830 Two published datasets were selected to represent comparative European populations pre- and
831 post- introduction of tobacco to Europe: the Kilteasheen (KIL) dataset from Ireland ca. 600–
832 1300 CE (n = 36, (Mann et al., 2018)), and the Radcliffe Infirmary (RAD) burial ground set from
833 England ca. 1850 (n = 44, (Velsko et al., 2019)). Data from Chalcolithic-era dental calculus (ca.
834 4500–5000 BP) previously reported in Fagernäs, et al. (Fagernäs et al., 2022) were included as
835 a comparative dataset to examine intraindividual variation in *Streptococcus* species. The
836 samples are listed in Supplemental Table S5.

837 *Tobacco use at the sites*

838 European encounters with tobacco commenced in the 15th and 16th century during the
839 European colonization of the Americas, at which time it was presented to them by indigenous
840 American peoples (Gately, 2001; Norton, 2008). Tobacco was long used by indigenous peoples
841 in a myriad of ways; it formed an important part of their lives and identities. Its use as a
842 medicinal agent, inspired Europeans to investigate its healing and curative properties, while its
843 role in ritual and political ceremonies demonstrated its use as a social and recreational entity
844 (Norton, 2008). In terms of smoking, the habit traversed the Atlantic via colonialists, returning
845 adventurers and sailors, sojourners, Indigenous delegates, and enslaved individuals. From
846 there it diffused into the general population (Brongers, 1964; Goodman, 1993; Norton, 2008). By
847 the early 17th century, tobacco was a taxable commodity throughout much of western Europe
848 including present-day Spain, England, France, and the Netherlands, and was consumed by a
849 large proportion of society (Goodman, 1993).

850 Tobacco smoking is well documented in the Netherlands during the 17th to 19th century.
851 Initially, the Dutch procured much of their tobacco from the English, although later they had their
852 own domestic industry (Brongers, 1964). While there were changing fashions, clay pipe
853 smoking was the dominant method for tobacco use in the Netherlands, who became the leading
854 producers of pipes in Europe (Stam, 2019). Pipe smoking was a common habit that was
855 associated with masculine identity and sociability, together with the consumption of alcohol
856 (Brongers 1964). During excavations of the cemetery at Middenbeemster, eleven 17th-19th
857 century clay pipe fragments were recovered from a ditch in the cemetery boundaries (Hakvoort,
858 2013). There are also multiple contemporaneous sites that have been excavated in the
859 Beemster that have yielded abundant clay pipe fragments (Schabbink, 2020). Furthermore,
860 advertisements indicate that there was also a cigar manufacturing company in the Beemster,

861 making cigars also available to the local population (Inskip et al., n.d.). Snuff and tobacco were
862 also used as ingredients in medical remedies.

863 Tobacco was economically significant in the post-medieval period and as a result there are
864 plentiful historical sources on its import, processing and use. The kingdoms of Castille and
865 Portugal had the earliest colonies and were exporting tobacco to Europe by the end of the 16th
866 century (Norton, 2008). In the early 17th century, all tobacco imports came through Seville
867 (Goodman, 1993) which also became the leading producer of European snuff. In contrast to the
868 Netherlands, the inhabitants of Iberia were renowned for their cigars and snuff, which likely
869 relates to their early encounters with indigenous peoples who used tobacco in this form
870 (Goodman, 1993). However, depictions of tobacco pipe smoking (Norton, 2008) and the finding
871 of tobacco pipes at Post-Medieval and Modern sites showing that people used it in this form
872 (Cortes Bár cena, 2013; de Heredia Bercero et al., 2012). The graves at the CMB site were
873 found to contain kaolin clay pipes, in addition to coins, rosaries, crosses, medals, remains of
874 ceramics, glass, metal, nails, and fragments of stained glass. Among the many clay pipes
875 recovered, one fragment contained a type of decoration suggesting that it may have originated
876 from a pipe of Dutch manufacture. These clay pipes became popular in the region in the 17th
877 century (Domínguez Ballesteros et al., 2018).

878 *DNA Extraction*

879 For each Middenbeemster dental calculus sample, 10-30 mg were subsampled for extraction
880 into 1.5 mL tubes. To remove surface contamination, 1 ml of 0.5M EDTA was added to each
881 sample and mixed by vortexing for 20 seconds, followed by 15 minutes of incubation with
882 rotation. The sample solutions were then briefly centrifuged for 1 minute at 6000 rpm (batches
883 1-4) or 13000 rpm (batch 5) to pellet the calculus fragments, and the supernatant was removed.
884

885 To decalcify the decontaminated dental calculus, the resulting pellet was resuspended in 1 ml of
886 0.5 M EDTA and vortexed for 20 seconds. All samples were then incubated with rotation for
887 4.75 hours (batch 5), 7 hours (batch 2) or overnight (batches 1, 3, 4). To each sample, 100 µl
888 Proteinase K (30 units/mg) was added, while the controls received 50 µl. All tubes were
889 incubated at 55°C for 5.5 hours (batch 1), 6.5 hours (batch 4), 7.5 hours (batch 3) or overnight
890 (batches 2, 5). There was only enough Qiagen Proteinase K to add to Batch 1-3, therefore
891 Batch 4 and 5 needed to be treated with Invitrogen Proteinase K that has been dissolved in 2.5
892 ml 99.5% glycerol, 0.5 ml Tns-HCl (100 mM), 0.1 ml CaCl (1M) and 1.9 ml H2O. The samples
893 were held at room temperature and further incubated and digested for five days.
894

895 The extraction of the MID DNA was performed using the phenol:chloroform:isoamyl alcohol
896 (25:24:1) method. Solutions B1 and B2 consisted of 375 µl phenol and 375 µl
897 chloroform:isoamylalcohol (phenol:chloroform:isoamlyalcohol 25:24:1), B3 of 750 chloroform:
898 isoamylalcohol. The samples were centrifuged at 13000 rpm for 5 minutes. The supernatant
899 was transferred to solution B1 and the pellet was stored at -20°C. The B1 mix was incubated
900 while being rotated for 1 minute. After a centrifugation step at 13000 rpm for 5 minutes, the
901 aqueous phase was transferred to solution B2, and the rotation and centrifugation step was
902 repeated. The organic phase of B1 was stored at - 20°C. Again, the aqueous phase of B2 was

903 transferred to B3, the mixture rotated and centrifuged and the organic phase of B2 stored at -
904 20°C.

905

906 The extracted DNA was isolated by silica column-based purification. A MinElute Zymo reservoir
907 with 13 ml PB buffer was placed in a 50 ml falcon tube. The sample was transferred to the PB
908 buffer in the column and centrifuged at 1500 g for 4 minutes, then rotated for 2 minutes. The
909 MinElute column was removed from the reservoir and transferred in a clean collection tube. The
910 column was dry spun at 6000 rpm for 1 minute, and the flow-through was discarded. The DNA
911 containing membranes were washed twice by adding 750 µl PE buffer and centrifugation at
912 6000 rpm for 1 minute. Each time, the flow-through was discarded. The column underwent
913 another dry spin at 13000 rpm for 1 minute. The MinElute column was transferred to a clean
914 collection tube. A volume of 30 µl EB buffer was added to the center of the filter of the column
915 and incubated for 5 minutes. To elute the DNA from the column, the columns were centrifuged
916 at 13000 rpm for 1 minute. The flow-through was collected, quantified using a Qubit fluorometer
917 and stored at -20°C.

918

919 DNA extractions from the CMB, ELR, and IVE sites were performed following the published
920 protocol “Ancient DNA Extraction from Dental Calculus” (Aron et al., 2020a). A single extraction
921 blank, which included water instead of a sample, was included in each extraction batch.

922 *Library building and Sequencing*

923 Library preparation, indexing, amplification, and pooling for all extraction sets (MID, CMB, ELR,
924 IVE) was identical. Library preparation was performed following the published protocol “Half-
925 UDG treated double-stranded ancient DNA library preparation for Illumina sequencing” (Aron et
926 al., 2020b), including a single library blank per batch, which included water instead of sample
927 extract. Indexing was performed following the published protocol “Illumina double-stranded DNA
928 dual indexing for ancient DNA V.2” (Stahl et al., 2021). Final amplification and pooling were
929 performed following the published protocol “Amplification and Pooling” (Aron and Brandt, 2020).
930

931 MID and CMB calculus libraries were pooled in equimolar amounts, and blank libraries pooled in
932 equimolar amounts that were one fifth the concentration of calculus libraries. All libraries,
933 extraction blank libraries, and library build blank libraries were pooled together. Sequencing of
934 the pooled libraries was performed on two flow cells on an Illumina NextSeq500, with 2x75bp
935 chemistry to a depth of ~8M reads per calculus library and ~2M reads per blank library
936 (Supplemental Table S1). Sequencing of the IVE and ELR libraries was performed on three
937 independent NextSeq500 runs with 2x150 chemistry for 2 runs, and 2x75bp chemistry for the
938 third (Supplemental Table S1). Fastq files for independent sequencing runs were merged per
939 sample in the data processing steps described below.

940 *Data processing*

941 All raw data were processed using the nf-core/eager pipeline (Fellows Yates et al., 2021a),
942 version 2.1.0. This included quality checks with FastQC (Andrews, 2010), adapter trimming,
943 read collapsing, and quality filtering with AdapterRemoval (Schubert et al., 2016), and mapping

944 against the human genome (HG19) with bwa aln -n 0.02 -l 1024 (Li and Durbin, 2009) and
945 samtools (Danecek et al., 2021) to remove human reads. The human-mapped reads were not
946 used for any analyses. Taxonomic profiling was performed with MALT v. 0.4.0 (Herbig et al.,
947 2016; Vågene et al., 2018). The command to run this can be found in the github repository
948 https://github.com/ivelsko/smoking_calculus/02-scripts.backup/smokers_calc_notes.txt.
949 Metadata for data processing for data produced for this study are in Supplemental Table S6.

950 *Processing of comparative data*

951 These published historic dental calculus samples were downloaded from ENA and processed
952 with the nf-core/eager pipeline (Fellows Yates et al., 2021a), described above. For analyses of
953 pre- and post-tobacco introduction populations, post-medieval individuals from RAD, MID, and
954 CMB were treated as smokers and medieval individuals from KIL, ELR, and IVE were treated as
955 non-smokers, since no tobacco products were available in Europe during the lifetime of these
956 individuals. Metadata for data processing for published data used in this study are in
957 Supplemental Table S7.

958

959 The published species table from Supplemental Table S1 in (Fagernäs et al., 2022), was used
960 as input for assessing the distribution of *Streptococcus* species across the dentition of four
961 individuals. This table was generated by processing the data in a similar manner to the rest of
962 this study. In brief, the data was processed with the nf-core/eager pipeline with identical settings
963 as used here, with the exception that a different version of the human genome was used as a
964 reference for mapping. All reads that did not map to the human genome were profiled with
965 MALT v 0.4.0 (Herbig et al., 2016; Vågene et al., 2018) within the nf-core/eager pipeline, using
966 the same settings and the same RefSeq-based database as used in this study, and the species
967 table was produced in MEGAN6 CE from the MALT output .

968 *Taxonomic profiling and decontamination*

969 All remaining reads that did not map to the human genome were taxonomically profiled with two
970 profilers: MetaPhlAn3 (Beghini et al., 2021) run as a stand-alone program, and MALT v. 0.4.0
971 (Herbig et al., 2016; Vågene et al., 2018) within the nf-core/eager pipeline. All microbial species
972 diversity and correlation analyses, as well as cuperdec (Fellows Yates et al., 2021b)
973 preservation analysis, were performed with the MetaPhlAn3 species table. The commands to
974 generate the table can be found in /mnt/archgen/microbiome_calculus/smoking_calculus/02-
975 scripts.backup/009-metaphlan3_mid.Snakefile. The MALT species table was used strictly for
976 SourceTracker analysis and for investigating *Streptococcus* species distributions, as we found a
977 taxonomic gradient across samples resulting in an artifact during diversity analysis (described
978 below in the section “*Taxonomic gradient investigation*”). MALT was run within the nf-core/eager
979 pipeline with default settings. The database used was the custom RefSeq database described in
980 Fellows Yates (Fellows Yates et al., 2021b). The output rma6 files from MALT were imported to
981 MEGAN6 CE v. 6.18.0 (Huson et al., 2016) with the “comparison” mode, and a species-level
982 table with read counts was exported as a tsv file for all downstream analyses. The MetaPhlAn3
983 species table is presented as Supplemental Table S8, and the MALT species table can be
984 found on the github repository as an RData file https://github.com/ivelsko/smoking_calculus/05-

985 results.backup/Taxonomy_tables.RData or as a tsv file
986 https://github.com/ivelsko/smoking_calculus/05-results.backup/malt_refseq_species.tsv
987
988 Poorly preserved dental calculus samples were identified using the R package cuperdec
989 (Fellows Yates et al., 2021b) using the MetaPhlAn3 table, and were removed from the table for
990 all downstream processing. Potential contaminant taxa were removed from the taxonomic table
991 using the R package decontam (Davis et al., 2018), with extraction blanks and library blanks
992 from this study, as well as femur samples from (Fellows Yates et al., 2021b), as controls. Scripts
993 for these steps can be found in the github repository:
994 https://github.com/ivelsko/smoking_calculus/02-scripts.backup/ in the files
995 MID_mpa3_cuperdec.Rmd, MID_mpa3_decontam.Rmd.
996
997 SourceTracker (Knights et al., 2011) was used to determine the proportion of species in each
998 sample that come from a set of authentic oral and potential contamination sources.
999 SourceTracker was run using the MALT species table as input because species profiles of the
1000 source sample generated with MALT using the RefSeq database from (Fellows Yates et al.,
1001 2021b) were available, negating the need to download, process, and taxonomically profile the
1002 source raw data. Species tables for all sources except modern calculus were obtained from the
1003 table Evolution-Comparison_MEAGAN_20190410-
1004 ex_absolute_species_prokaryotes_summarised_refseq.txt from the github page of Fellows
1005 Yates, et al. (Fellows Yates et al., 2021b), and the following sources were used: modern dental
1006 calculus, supragingival plaque, subgingival plaque, rural gut, urban gut, skin, archaeological
1007 bone, and sediment. Modern calculus source data was obtained from Velsko, et al. (Velsko et
1008 al., 2019) and Fellows Yates, et al. (Fellows Yates et al., 2021b) and was processed through nf-
1009 core/eager and MALT with the ancient calculus for this study. Scripts for these steps can be
1010 found in the github repository: https://github.com/ivelsko/smoking_calculus/02-scripts.backup/ in
1011 the files 001-shotgun_sourcetracker_high_rare.sh and MID_tax_sourcetracker.Rmd.

1012 *Diversity analyses and metadata comparisons*

1013 The MetaPhlAn3 species table was used for all diversity analyses. The Shannon index was
1014 calculated in R using the diversity function in the package vegan (OKSANEN and J, 2007).
1015 Kruskal-wallace tests were performed using the R package rstatix (Kassambara, 2020). A PCA
1016 was calculated in R on a CLR-transformed species table using the package mixOmics (Rohart
1017 et al., 2017). PERMANOVA was run on the PCA using the function adonis2 in the R package
1018 vegan (OKSANEN and J, 2007). Batch effects within the MID sample set were investigated by
1019 coloring the points in a PCA plot by extraction batch, but no clustering based on batch was
1020 observed (Supplemental Figure S4). https://github.com/ivelsko/smoking_calculus/06-publication/main_figures/ in MID_mpa3_alphadiv.Rmd and MID_mpa3_betadiv.Rmd.

1022 *Subsampled datasets*

1023 The effects of library sequencing depth and average read length on the number of species
1024 detected were investigated by down-sampling the full libraries in two ways. For the first set, we
1025 randomly subsampled all libraries with > 10M reads down to 10M reads using seqtk and setting

1026 the seed to -s10000, while leaving all libraries with < 10M reads untouched (Sub 10M set). For
1027 the second set, we subsampled all libraries to include only reads \leq 75bp in length (Sub 75bp
1028 set) using bioawk -c fastx '{if (length(\$seq) < 76){print "@\$name"
1029 "\$comment"\n"\$seq"\n+\$qual}}' <library>. The full libraries that were downsampled were
1030 those that had been processed by nf-core/eager (adapter-trimmed and quality-filtered,
1031 collapsed, mapped against the human genome, and had human reads removed), and were
1032 profiled by MetaPhlAn3 for full analysis. Both subsetted datasets were profiled with MetaPhlAn3
1033 as described above for the full set. The total number of reads, the average read length, and the
1034 average GC content of the libraries for both subsetted datasets were calculated from FASTQC
1035 (Andrews, 2010) using multiqc (Ewels et al., 2016) (Supplemental Tables S6, S7) and
1036 compared with the full set. Alpha-diversity metrics Observed species (number of species) and
1037 Shannon index were calculated as described for the full set in Diversity analyses and metadata
1038 comparisons (Supplemental Table S9). Scripts for these steps can be found in the github
1039 repository: https://github.com/ivelsko/smoking_calculus/02-scripts.backup/ in the files
1040 MID_mpa3_alphadiv_sub10M.Rmd, MID_mpa3_alphadiv_sub75bp.Rmd,
1041 MID_mpa3_sp_counts_sub10M_sub75bp.Rmd, and MID_sub10M_sub75bp_numbers.Rmd.

1042 *Canonical correlation analysis*

1043 Canonical correlation analysis was performed to look for correlations between different
1044 metadata categories and between metadata and principal component loadings from PCA, as in
1045 (Briscoe et al., 2022). Input tables contained selected metadata categories and the PC1 and
1046 PC2 loadings from PCA. Canonical correlations were calculated with the function canCorPairs
1047 from the R package variancePartition (Hoffman and Roussos, 2021; Hoffman and Schadt,
1048 2016). Statistical tests were performed with the cor.mtest function in the R package corrplot
1049 (Wei et al., 2013), and correlation matrix plots were generated with the function corrplot in the
1050 same package. To focus on the strongest correlations, we considered only correlations ≥ 0.4
1051 with a significance of $p \leq 0.05$. Scripts for these steps can be found in the github repository:
1052 https://github.com/ivelsko/smoking_calculus/02-scripts.backup/MID_mpa3_PC_metadata_corr.Rmd and
1053 https://github.com/ivelsko/smoking_calculus/06-publication/main_figures/ in
1054 Figure_2/Figure_2.Rmd and Figure_5/Figure_5.Rmd.

1056 *Taxonomic gradient investigation*

1057 Beta diversity analysis PCA plots based on the MALT RefSeq table showed a distinctive
1058 horseshoe shape, indicating a taxonomic gradient (Morton et al., 2017). The taxa responsible
1059 for this were investigated by examining the species with strongest loadings in PC1 positive
1060 space and PC1 negative space. When the taxon abundance was plotted as a heatmap with the
1061 samples ordered by loading in PC1, a diagonal gradient was observed (Supplemental Figure
1062 S5). Samples at one end of the PCA horseshoe were characterized by early colonizer taxa,
1063 while those at the other end were characterized by poorly characterized taxa, mostly isolated
1064 from non-human sources such as environment and anaerobic sludge digestors. Since filtering
1065 could not remove these environmental taxa, which are likely mis-assignments, we used the
1066 MetaPhlAn3 input table instead for all downstream diversity analyses. MetaPhlAn2 was shown

1067 to produce a highly accurate species profile on ancient dental calculus data, with very low
1068 numbers of false positive taxa identified (Velsko et al., 2018). Scripts for these steps can be
1069 found in the github repository: https://github.com/ivelsko/smoking_calculus/02-scripts.backup/MID_tax_horseshoe.Rmd.
1070
1071

1072 *HUMAnN3 functional analysis*

1073 Potential metabolic functional profiles were generated with HUMAnN3 (Beghini et al., 2021)
1074 using default parameters. We used the pathway abundance table, which was converted from
1075 reads per kilobase to copies per million with the humann3 helper script
1076 humann_renorm_table.py. The total pathway assignment per sample was used in analysis, and
1077 not the species-specific assignments per pathway. A PCA was performed on the pathway
1078 abundance table using MixOmics as described for the species tables above. A canonical
1079 correlation analysis was performed on the principal component loadings, the metadata, and the
1080 loadings from the species PCA, as described above in Canonical Correlation Analysis. Scripts
1081 for these steps can be found in the github repository:
1082 https://github.com/ivelsko/smoking_calculus/02-scripts.backup/MID_humann3_paths.Rmd.

1083 *Streptococcus species distributions*

1084 Dental calculus profiles are distinct from dental plaque, but can be highly variable between
1085 individuals. An earlier study (Fellows Yates 2021) noted a distinct clustering of human calculus
1086 samples with a *Streptococcus* species profile resembling that found in chimpanzees, yet was
1087 not able to associate this profile with any metadata due to low sample numbers. We used our
1088 large cohort from a single population in a single cemetery to investigate if this trend is
1089 observable in a dataset where the reasons for this might be investigated. Using the species
1090 table from MALT RefSeq profiling, we assigned each *Streptococcus* species to a group as used
1091 in (Fellows Yates et al., 2021b): Sanguinis, Mitis, Salivarius, Anginosus, Bovis, Pyogenic,
1092 Mutans, unknown, NA, which come from (Richards et al., 2014).
1093

1094 To be able to group *Streptococcus* genomes that had reads aligned by MALT but were not
1095 assigned a species name, we ran `dRep cluster` on all *Streptococcus* genomes with hits in any
1096 sample. *Streptococcus* isolates with no species designation were then assigned to a group
1097 based on which clade defined by Richards, et al. 2014, they fell into in the dRep primary
1098 clustering phylogeny. We calculated the proportion of reads from *Streptococcus* species in each
1099 of these groups out of all *Streptococcus* species-assigned reads in each sample. Further, within
1100 each sample, we calculated the proportion of reads that were assigned to any species in the
1101 genus *Streptococcus* vs. all other genus assignments. Scripts for these steps can be found in
1102 the github repository: https://github.com/ivelsko/smoking_calculus/02-scripts.backup/ in the files
1103 010-dRep_Strep_nunknowns.Snakefile and MID_Strep_groups.Rmd and
1104 DA_Strep_group.Rmd.

1105 *Additional plotting aspects*

1106 Plots were arranged in grids using cowplot (Wilke, 2020) or patchwork v1.1.0 (Pedersen, 2017)
1107 in R. Metadata plots used ggpointgrid (Schmid, 2022). Significance on plots was indicated with
1108 the R package ggsignif (Ahlmann-Eltze and Patil, 2021). A map of Europe with the sites of MID,
1109 CMB, and comparative data sites was generated in R using the packages sf (Pebesma, 2018),
1110 rnaturalearth (South, 2017a), rnaturalearthdata (South, 2017b)(), rgeos (Bivand et al., 2017)(),
1111 and maps (Becker et al., 2021). Scripts to generate all main and supplemental figures can be
1112 found in their respective folders in the github repository:
1113 https://github.com/ivelsko/smoking_calculus/06-publication/.

1114 **Data Availability**

1115 All data generated for this study has been uploaded to the European Nucleotide Archive under
1116 accession **PRJEB52394**. Scripts for analysis can be found on the github repository
1117 https://github.com/ivelsko/smoking_calculus.

1118 **Author Contributions**

1119 I.M.V., S.I., M.I.G.C., M.H., and C.W. designed the study. S.I. and M.I.G.C. performed the
1120 osteological analyses. L.S. and K.Z. performed the laboratory analyses. I.M.V. and S.I.
1121 performed data analysis. M.H., M.I.G.C., M.R.S., L.B.L.E, J.M.M.G, D.G.V., A.C.P.R., D.C.S.G.
1122 and K.Z. provided materials and resources including performing calculus sampling. I.M.V., S.I.,
1123 and C.W. wrote the manuscript, with contributions from all coauthors.

1124 **Competing Interests**

1125 The authors declare they have no competing interests.

1126 **Acknowledgments**

1127 We thank Antje Wissgot for assistance with sequencing. We thank the Historisch Genootschap
1128 Beemster for access to the Middenbeemster skeletal collection. We also like to thank the
1129 Middenbeemster community for allowing access to the remains of their ancestors. We thank
1130 Qark Arqueología (Eder Domínguez-Ballesteros, Leandro Sánchez) for access to the calculus
1131 samples from Convento de los Mercedarios de Burtzeña, Spain. We thank Julio
1132 Treliis/Ayuntament de Crevillent for access to the calculus samples from El Raval, Spain. This
1133 research was supported by the Werner Siemens Stiftung (I.M.V. and C.W.), the Deutsche
1134 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence
1135 Strategy EXC 2051 Project-ID 390713860 (I.M.V. and C.W.), the Max Planck Society, and the
1136 UKRI AHRC FLF grant MR/T022302/1 (S.I.), and the Government of the Basque Country grant
1137 POS_2020_1_0006 (M.I.G.C.). DCSG acknowledges funding from the Generalitat Valenciana
1138 (CIDEVENT 2019/061) and the Spanish government (EUR2020-112213). DCSG acknowledges
1139 funding from the Generalitat Valenciana (CIDEVENT 2019/061) and the Spanish government
1140 (EUR2020-112213).

1141

1142

1143 **References**

1144 Abusleme L, Hoare A, Hong B-Y, Diaz PI. 2021. Microbial signatures of health, gingivitis, and
1145 periodontitis. *Periodontol 2000* **86**:57–78.

1146 Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJA, Townsend
1147 G, Sołtysiak A, Alt KW, Parkhill J, Cooper A. 2013. Sequencing ancient calcified dental
1148 plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial
1149 revolutions. *Nat Genet* **45**:450–5, 455e1.

1150 Ahlmann-Eltze C, Patil I. 2021. ggsignif: R Package for Displaying Significance Brackets for
1151 “ggplot2.” *PsyArXiv*. doi:10.31234/osf.io/7awm6

1152 Albandar JM, Streckfus CF, Adesanya MR, Winn DM. 2000. Cigar, Pipe, and Cigarette Smoking
1153 as Risk Factors for Periodontal Disease and Tooth Loss. *Journal of Periodontology*.
1154 doi:10.1902/jop.2000.71.12.1874

1155 Al Bataineh MT, Dash NR, Elkhazendar M, Alnusairat DMH, Darwish IMI, Al-Hajjaj MS, Hamid
1156 Q. 2020. Revealing oral microbiota composition and functionality associated with heavy
1157 cigarette smoking. *J Transl Med* **18**:421.

1158 Al-Zahrani MS, Alhassani AA, Melis M, Zawawi KH. 2021. Depression is related to edentulism
1159 and lack of functional dentition: An analysis of NHANES data, 2005-2016. *J Public Health
1160 Dent* **81**:206–213.

1161 Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data.

1162 Aron F, Brandt G. 2020. Amplification and Pooling v1. *protocols.io*.
1163 doi:10.17504/protocols.io.beqkjduw

1164 Aron F, Hofman C, Fagernäs Z, Velsko I, Skourtanioti E, Brandt G, Warinner C. 2020a. Ancient
1165 DNA extraction from dental calculus v1. *protocols.io*. doi:10.17504/protocols.io.bidyka7w

1166 Aron F, U Neumann G, Brandt G. 2020b. Half-UDG treated double-stranded ancient DNA library
1167 preparation for Illumina sequencing v1. *protocols.io*. doi:10.17504/protocols.io.bmh6k39e

1168 Aten D, Bossaers K, Dehé J, Kuypershoek E, Misset C, Schaap E, Steenhuis M, Van der Wiel
1169 K. 2012. 400 jaar Beemster 1612-2012. Wormerveer: Stichting Uitgeverij Noord-Holland.

1170 Axelsson P, Paulander J, Lindhe J. 1998. Dental status and smoking habits among 35-75 year
1171 olds in Sweden. *Journal of Clinical Periodontal* **25**:297–305.

1172 Baetsen S, Weterings-Korthorst L. 2013. De menselijke overblijfselen In: Arts N, editor. *Een
1173 Knekelveld Maakt Geschiedenis, Het Archeologisch Onderzoek Vanhet Koor En Het
1174 Grafveld van de Middeleeuwse Catharinakerk in Eindhoven, circa 1200-1850. Matrijs:
1175 Utrecht*. pp. 151–212.

1176 Baljoon M, Natto S, Abanmy A, Bergstrom J. 2005. Smoking and vertical bone defects in a
1177 Saudi Arabian population. *Oral Health Prev Dent* **3**:173.

1178 Becker RA, Wilks AR, Brownrigg R, Minka TP, Deckmyn A. 2021. Maps: Draw geographical
1179 maps. *Comprehensive R Archive Network (CRAN)*. <https://CRAN.R-project.org/package=maps>

1180 Beghini F, McIver LJ, Blanco-Míguez A, Dubois L, Asnicar F, Maharjan S, Mailyan A, Manghi P,
1181 Scholz M, Thomas AM, Valles-Colomer M, Weingart G, Zhang Y, Zolfo M, Huttenhower C,
1182 Franzosa EA, Segata N. 2021. Integrating taxonomic, functional, and strain-level profiling of
1183 diverse microbial communities with bioBakery 3. *Elife* **10**:e65088.

1184 Beghini F, Renson A, Zolnik CP, Geistlinger L, Usyk M, Moody TU, Thorpe L, Dowd JB, Burk R,
1185 Segata N, Jones HE, Waldron L. 2019. Tobacco exposure associated with oral microbiota
1186 oxygen utilization in the New York City Health and Nutrition Examination Study. *Ann
1187 Epidemiol* **34**:18–25.e3.

1188 Bergstrom J. 2014. Smoking rate and periodontal disease prevalence: 40-year trends in

1190 Sweden 1970-2010. *J Clin Periodontol* **41**:952–957.

1191 Bergström J. 2005. Tobacco smoking and subgingival dental calculus. *J Clin Periodontol* **32**:81–88.

1192

1193 Bivand R, Rundel C, Pebesma E. 2017. rgeos: interface to geometry engine-open source (GEOS). *R package version 0 3-26*.

1194

1195 Brealey JC, Leitão HG, van der Valk T, Xu W, Bougiouri K, Dalén L, Guschanski K. 2020. Dental Calculus as a Tool to Study the Evolution of the Mammalian Oral Microbiome. *Mol Biol Evol* **37**:3003–3022.

1196

1197 Briscoe L, Balliu B, Sankararaman S, Halperin E, Garud NR. 2022. Evaluating supervised and unsupervised background noise correction in human gut microbiome data. *PLoS Comput Biol* **18**:e1009838.

1198

1199

1200

1201 Brongers GA. 1964. Nicotiana tabacum: the history of tobacco and tobacco smoking in the Netherlands. Becht.

1202

1203 Brooks S, Suchey JM. 1990. Skeletal age determination based on the os pubis: A comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. *Hum Evol* **5**:227–238.

1204

1205 Brothwell DR. 1981. Digging Up Bones: The Excavation, Treatment, and Study of Human Skeletal Remains. Cornell University Press.

1206

1207 Buckberry JL, Chamberlain AT. 2002. Age estimation from the auricular surface of the ilium: a revised method. *Am J Phys Anthropol* **119**:231–239.

1208

1209 Buduneli N. 2021. Environmental factors and periodontal microbiome. *Periodontol 2000* **85**:112–125.

1210

1211 Buikstra JE, Ubelaker DH. 1995. Standards for Data Collection from Human Skeletal Remains. *The Quarterly Review of Biology*. doi:10.1086/419244

1212

1213 Clevis H, Constandse-Westermann T. 1992. De doden vertellen. Opgraving in de Broerenkerk te Zwolle 1987-88. Stichting Archaeologie IJssel/Vechtstreetk: Kampen.

1214

1215 Cortes Bárcena C. 2013. Dutch and English clay pipes found in Santander (Cantabria, Spain). *Journal of the Académie Internationale de la Pipe* **6**:83–85.

1216

1217 Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwam A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. *Gigascience* **10**. doi:10.1093/gigascience/giab008

1218

1219

1220 Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome* **6**:226.

1221

1222

1223 de Heredia Bercero JB, Alaix NM i., Soberón M. 2012. Production and Trade of short stemmed Clay Pipes Found in Barcelona between the Seventeenth and the Nineteenth Century. *Journal of the Académie Internationale De La Pipe* **5**.

1224

1225

1226 de Jong R, Mit ME, Pielage GJ, Haartsen AJ. 1988. Nominatiedossier (nederlandse versie): droogmakerij de Beemster aan de hand waarvan de UNESCO droogmakerij de Beemster op 1 december 1999 op de werelderfgoedlijst heeft geplaatst. Netherlands Department for Conservation, Zeist.

1227

1228

1229

1230 de Miguel Ibáñez MP. 2007. Anexo. Necrópolis mudéjar de Crevillent: estudio osteoarqueológico. *Lucentum* 221–231.

1231

1232 Domínguez Ballesteros E, Zufiaurre LS, Collado MIG. 2018. El monasterio mercedario de Burtzeña. *Kobie Paleoantropología* 185–198.

1233

1234 Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. 2014. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. *ISME J* **8**:1659–1672.

1235

1236

1237 Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, Taylor GW, Page RC, Beck JD, Genco RJ. 2015. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. *J Periodontol* **86**:611–622.

1238

1239

1240 Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis results for

1241 multiple tools and samples in a single report. *Bioinformatics* **32**:3047–3048.

1242 Fagernäs Z, García-Collado MI, Hendy J, Hofman CA, Speller C, Velsko I, Warinner C. 2020. A
1243 unified protocol for simultaneous extraction of DNA and proteins from archaeological dental
1244 calculus. *J Archaeol Sci* **118**:105135.

1245 Fagernäs Z, Salazar-García DC, Fernández AA, Uriarte MH, Henry A, Maurandi JL, Ozga A,
1246 Velsko IM, Warinner C. 2022. Understanding the microbial biogeography of ancient human
1247 dentitions to guide study design and interpretation. *FEMS Microbes*.
1248 doi:10.1093/femsma/xtac006

1249 Falger VSE, Beemsterboer-Köhne CA, Kölker AJ. 2012. Nieuwe Kroniek van de Beemster.
1250 Serendipity.

1251 Fellows Yates JA, Lamnidis TC, Borry M, Valtueña AA, Fagernäs Z, Clayton S, Garcia MU,
1252 Neukamm J, Peltzer A. 2021a. Reproducible, portable, and efficient ancient genome
1253 reconstruction with nf-core/eager. *PeerJ*. doi:10.1101/2020.06.11.145615

1254 Fellows Yates JA, Velsko IM, Aron F, Posth C, Hofman CA, Austin RM, Parker CE, Mann AE,
1255 Nägele K, Arthur KW, Arthur JW, Bauer CC, Crevecoeur I, Cupillard C, Curtis MC, Dalén L,
1256 Díaz-Zorita Bonilla M, Díez Fernández-Lomana JC, Drucker DG, Escribano Escrivá E,
1257 Francken M, Gibbon VE, González Morales MR, Grande Mateu A, Harvati K, Henry AG,
1258 Humphrey L, Menéndez M, Mihailović D, Peresani M, Rodríguez Moroder S, Roksandic M,
1259 Rougier H, Sázelová S, Stock JT, Straus LG, Svoboda J, Teßmann B, Walker MJ, Power
1260 RC, Lewis CM, Sankaranarayanan K, Guschanski K, Wrangham RW, Dewhirst FE,
1261 Salazar-García DC, Krause J, Herbig A, Warinner C. 2021b. The evolution and changing
1262 ecology of the African hominid oral microbiome. *Proc Natl Acad Sci U S A* **118**.
1263 doi:10.1073/pnas.2021655118

1264 García-Collado MI, Ballesteros ED, Zufiaurre LS. 2018. Estudio osteoarqueológico de la
1265 población humana enterrada en el Convento Mercedario de Burtzeña (Barakaldo, Bizkaia),
1266 finales s. XVI–principios s. XIX. *Kobie Paleoantropología* **36**:199–222.

1267 Gately I. 2001. La Diva Nicotina: The Story of how Tobacco Seduced the World. Scribner.

1268 Geber J, Murphy E. 2018. Dental markers of poverty: Biocultural deliberations on oral health of
1269 the poor in mid-nineteenth-century Ireland. *Am J Phys Anthropol* **167**:840–855.

1270 Goodman J. 1993. Tobacco in history: The cultures of dependence. Routledge.

1271 Granehäll L, Huang KD, Tett A, Manghi P, Paladin A, O'Sullivan N, Rota-Stabelli O, Segata N,
1272 Zink A, Maixner F. 2021. Metagenomic analysis of ancient dental calculus reveals
1273 unexplored diversity of oral archaeal Methanobrevibacter. *Microbiome* **9**:197.

1274 Hakvoort A. 2013. De begravingen bij de Keyserkerk te Middenbeemster. HOLLANDIA
1275 archeologen.

1276 Hardy K, Radini A, Buckley S, Sarig R, Copeland L, Gopher A, Barkai R. 2016. Dental calculus
1277 reveals potential respiratory irritants and ingestion of essential plant-based nutrients at
1278 Lower Palaeolithic Qesem Cave Israel. *Quat Int* **398**:129–135.

1279 Hendy J, Warinner C, Bouwman A, Collins MJ, Fiddymont S, Fischer R, Hagan R, Hofman CA,
1280 Holst M, Chaves E, Klaus L, Larson G, Mackie M, McGrath K, Mundorff AZ, Radini A, Rao
1281 H, Trachsel C, Velsko IM, Speller CF. 2018. Proteomic evidence of dietary sources in
1282 ancient dental calculus. *Proc Biol Sci* **285**:20180977.

1283 Heng CK, Badner VM, Freeman KD. 2006. Relationship of Cigarette Smoking to Dental Caries
1284 in a Population of Female Inmates. *J Correct Health Care* **12**:164–174.

1285 Herbig A, Maixner F, Bos KI, Zink A, Krause J, Huson DH. 2016. MALT: Fast alignment and
1286 analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman. *bioRxiv*.
1287 doi:10.1101/050559

1288 Hillson S. 2001. Recording dental caries in archaeological human remains. *Int J Osteoarchaeol*
1289 **11**:249–289.

1290 Hoffman GE, Roussos P. 2021. Dream: powerful differential expression analysis for repeated
1291 measures designs. *Bioinformatics* **37**:192–201.

1292 Hoffman GE, Schadt EE. 2016. variancePartition: interpreting drivers of variation in complex
1293 gene expression studies. *BMC Bioinformatics* **17**:483.

1294 Huang C, Shi G. 2019. Smoking and microbiome in oral, airway, gut and some systemic
1295 diseases. *J Transl Med* **17**:225.

1296 Hughes J. 2003. Learning to Smoke: Tobacco Use in the West. University of Chicago Press.

1297 Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H-J, Tappu R. 2016.
1298 MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale
1299 Microbiome Sequencing Data. *PLoS Comput Biol* **12**:e1004957.

1300 Inskip SA, Zachary L, Serrano Ruber M, Hoogland MLP. n.d. Pipe Smoking and Oral Health in
1301 Males from the Netherlands during the 18th-19th century. *Post Medieval Archaeology*.

1302 Işcan MY, Loth SR. 1986. Determination of age from the sternal rib in white females: a test of
1303 the phase method. *J Forensic Sci* **31**:990–999.

1304 Jackes M. 2015. The Zwolle teeth: an independent look at the data.

1305 Jersie-Christensen RR, Lanigan LT, Lyon D, Mackie M, Belstrøm D, Kelstrup CD, Fotakis AK,
1306 Willerslev E, Lynnerup N, Jensen LJ, Cappellini E, Olsen JV. 2018. Quantitative
1307 metaproteomics of medieval dental calculus reveals individual oral health status. *Nat
1308 Commun* **9**:4744.

1309 Kassambara A. 2020. rstatix: pipe-friendly framework for basic statistical tests. R package
1310 version 0.4. 0.

1311 Kazarina A, Petersone-Gordina E, Kimsis J, Kuzmicka J, Zayakin P, Griškjans Ž, Gerhards G,
1312 Ranka R. 2021. The Postmedieval Latvian Oral Microbiome in the Context of Modern
1313 Dental Calculus and Modern Dental Plaque Microbial Profiles. *Genes* **12**.
1314 doi:10.3390/genes12020309

1315 Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD,
1316 Knight R, Kelley ST. 2011. Bayesian community-wide culture-independent microbial source
1317 tracking. *Nat Methods* **8**:761–763.

1318 Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. 2006.
1319 Bacterial interactions and successions during plaque development. *Periodontol 2000*
1320 **42**:47–79.

1321 Kowalski CJ. 1971. Relationship between smoking and calculus deposition. *J Dent Res* **50**:101–
1322 104.

1323 Kumar PS, Matthews CR, Joshi V, de Jager M, Aspiras M. 2011. Tobacco smoking affects
1324 bacterial acquisition and colonization in oral biofilms. *Infect Immun* **79**:4730–4738.

1325 Kvaal SI, Derry TK. 1996. Tell-tale teeth: abrasion from the traditional clay pipe. *Endeavour*
1326 **20**:28–30.

1327 Lee H, Kim D, Jung A, Chae W. 2022. Ethnicity, social, and clinical risk factors to tooth loss
1328 among older adults in the U.S., NHANES 2011-2018. *Int J Environ Res Public Health*
1329 **19**:2382.

1330 Leroux H. 2012. The use of dental nonmetric traits for intracemetery kinship analysis and
1331 cemetery structure analysis from the site of Middenbeemster, the Netherlands. University of
1332 Leiden.

1333 Listgarten MA, Mayo H, Amsterdam M. 1973. Ultrastructure of the attachment device between
1334 coccal and filamentous microorganisms in “corn cob” formations of dental plaque. *Arch Oral
1335 Biol* **18**:651–IN5.

1336 Listgarten MA, Mayo HE, Tremblay R. 1975. Development of dental plaque on epoxy resin
1337 crowns in man. A light and electron microscopic study. *J Periodontol* **46**:10–26.

1338 Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP. 1985. Chronological metamorphosis of
1339 the auricular surface of the ilium: a new method for the determination of adult skeletal age
1340 at death. *Am J Phys Anthropol* **68**:15–28.

1341 Lukacs JR, Largaespada LL. 2006. Explaining sex differences in dental caries prevalence:
1342 saliva, hormones, and “life-history” etiologies. *Am J Hum Biol* **18**:540–555.

1343 Lukacs J r. 2008. Fertility and Agriculture Accentuate Sex Differences in Dental Caries Rates.
1344 *Curr Anthropol* **49**:901–914.

1345 Maat GJ. 2001. Diet and age-at-death determinations from molar attrition. *A review related to*
1346 *the Low Countries J Forensic Odonto-Stomatol* **19**:18–21.

1347 Mann AE, Sabin S, Ziesemer K, Vågene AJ, Schroeder H, Ozga AT, Sankaranarayanan K,
1348 Hofman CA, Fellows Yates JA, Salazar-García DC, Frohlich B, Aldenderfer M, Hoogland M,
1349 Read C, Milner GR, Stone AC, Lewis CM Jr, Krause J, Hofman C, Bos KI, Warinner C.
1350 2018. Differential preservation of endogenous human and microbial DNA in dental calculus
1351 and dentin. *Sci Rep* **8**:9822.

1352 Martí JT, Pérez JRO, Gómez IR, Bebia MAE. 2009. El cementerio mudéjar del Raval
1353 (Crevillent-Alicante). *AyTM* **16**:179–216.

1354 Martinez-Canut P, Lorca A, Magán R. 1995. Smoking and periodontal disease severity. *J Clin*
1355 *Periodontol* **22**:743–749.

1356 Mason MR, Preshaw PM, Nagaraja HN, Dabdoub SM, Rahman A, Kumar PS. 2015. The
1357 subgingival microbiome of clinically healthy current and never smokers. *ISME J* **9**:268–272.

1358 Moon J-H, Lee J-H, Lee J-Y. 2015. Subgingival microbiome in smokers and non-smokers in
1359 Korean chronic periodontitis patients. *Mol Oral Microbiol* **30**:227–241.

1360 Morton JT, Toran L, Edlund A, Metcalf JL, Lauber C, Knight R. 2017. Uncovering the Horseshoe
1361 Effect in Microbial Analyses. *mSystems* **2**. doi:10.1128/mSystems.00166-16

1362 Nociti FH Jr, Casati MZ, Duarte PM. 2015. Current perspective of the impact of smoking on the
1363 progression and treatment of periodontitis. *Periodontol 2000* **67**:187–210.

1364 Norton M. 2008. Sacred Gifts, Profane, Pleasures: A History of Tobacco and Chocolate in the
1365 Atlantic World. Cornell University Press.

1366 Ogden A. 2007. Advances in the palaeopathology of teeth and jawsAdvances in Human
1367 Palaeopathology. Chichester, UK: John Wiley & Sons, Ltd. pp. 283–307.

1368 OKSANEN, J. 2007. Vegan : community ecology package version 1.8-6. <http://cran.r-project.org>.

1369 Ottoni C, Borić D, Cheronet O, Sparacello V, Dori I, Coppa A, Antonović D, Vujević D, Price TD,
1370 Pinhasi R, Cristiani E. 2021. Tracking the transition to agriculture in Southern Europe
1371 through ancient DNA analysis of dental calculus. *Proc Natl Acad Sci U S A* **118**.
1372 doi:10.1073/pnas.2102116118

1373 Passalacqua NV. 2009. Forensic Age-at-Death Estimation from the Human Sacrum. *Journal of*
1374 *Forensic Sciences*. doi:10.1111/j.1556-4029.2008.00977.x

1375 Pebesma E. 2018. Simple features for R: Standardized support for spatial vector data. *R J*
1376 **10**:439.

1377 Pedersen TL. 2017. patchwork: The Composer of ggplots. *R package version 0.0.1*.

1378 Pejčić A, Obradović R, Kesić L, Kojović D. 2007. Smoking and periodontal disease: A review.
1379 *Med Biol* **14**:53–59.

1380 Phenice TW. 1969. A newly developed visual method of sexing the os pubis. *Am J Phys*
1381 *Anthropol* **30**:297–301.

1382 Radini A, Tromp M, Beach A, Tong E, Speller C, McCormick M, Dudgeon JV, Collins MJ, Rühli
1383 F, Kröger R, Warinner C. 2019. Medieval women's early involvement in manuscript
1384 production suggested by lapis lazuli identification in dental calculus. *Sci Adv* **5**:eaau7126.

1385 Richards VP, Palmer SR, Pavinski Bitar PD, Qin X, Weinstock GM, Highlander SK, Town CD,
1386 Burne RA, Stanhope MJ. 2014. Phylogenomics and the dynamic genome evolution of the
1387 genus *Streptococcus*. *Genome Biol Evol* **6**:741–753.

1388 Rohart F, Gautier B, Singh A, Lê Cao K-A. 2017. mixOmics: An R package for 'omics feature
1389 selection and multiple data integration. *PLoS Comput Biol* **13**:e1005752.

1390 Salazar-García DC, Power RC, Rudaya N, Kolobova K, Markin S, Krivoshapkin A, Henry AG,
1391 Richards MP, Viola B. 2021. Dietary evidence from Central Asian Neanderthals: A
1392 combined isotope and plant microremains approach at Chagyrskaya Cave (Altai, Russia). *J*
1393

1394 *Hum Evol* **156**:102985.

1395 Salazar-García DC, Richards MP, Nehlich O, Henry AG. 2014. Dental calculus is not equivalent
1396 to bone collagen for isotope analysis: a comparison between carbon and nitrogen stable
1397 isotope analysis of bulk dental calculus, bone and dentine collagen from same individuals
1398 from the Medieval site of El Raval (Alicante, Spain). *Journal of Archaeological Science*.
1399 doi:10.1016/j.jas.2014.03.026

1400 Schabbink ML. 2020. Een Beemster Poldermolen. Archaeologisch onderzoek rond de
1401 Draaioorder molengang in Zuidoostbeemster (No. 6). Noord-Hollandse Archaeologisch
1402 Publicaties - 9. Huis Van Hilde Archaeologiecentrum Noord-Holland: Castricum. .

1403 Schmid C. 2022. ggpointgrid: Rearrange scatter plot points on a regular grid.
1404 <https://github.com/nevrome/ggpointgrid>

1405 Socransky SS, Manganiello AD, Propas D, Oram V, van Houte J. 1977. Bacteriological studies
1406 of developing supragingival dental plaque. *J Periodontal Res* **12**:90–106.

1407 South A. 2017a. rnaturalearth: World map data from Natural Earth. R package version 0.1. 0.
1408 *The R Foundation* <https://CRAN.R-project.org/package=rnaturalearth>.

1409 South A. 2017b. rnaturalearthdata: world vector map data from Natural Earth used
1410 in 'rnaturalearth'. R package version 0.1. 0.

1411 Sreedevi M, Ramesh A, Dwarakanath C. 2012. Periodontal status in smokers and nonsmokers:
1412 a clinical, microbiological, and histopathological study. *Int J Dent* **2012**:571590.

1413 Stahl R, Warinner C, Velsko I, Orfanou E, Aron F, Brandt G. 2021. Illumina double-stranded
1414 DNA dual indexing for ancient DNA v2. *protocols.io*. doi:10.17504/protocols.io.bvt8n6rw

1415 Stam RD. 2019. Vergeten glorie: De economische ontwikkeling van de Nederlandse
1416 kleipijpennijverheid in de 17e en 18e eeuw, met speciale aandacht voor de export.
1417 Universiteit Utrecht.

1418 Tamashiro R, Strange L, Schnackenberg K, Santos J, Gadalla H, Zhao L, Li EC, Hill E, Hill B,
1419 Sidhu G, Kirst M, Walker C, Wang GP. 2021. Stability of healthy subgingival microbiome
1420 across space and time. *Sci Rep* **11**:23987.

1421 Theilade E, Fejerskov O, Prachyabrued W, Kilian M. 1974. Microbiologic study on developing
1422 plaque in human fissures. *Scand J Dent Res* **82**:420–427.

1423 Theilade E, Wright WH, Jensen SB, Löe H. 1966. Experimental gingivitis in man. II. A
1424 longitudinal clinical and bacteriological investigation. *J Periodontal Res* **1**:1–13.

1425 Tinanoff N, Gross A, Brady JM. 1976. Development of plaque on enamel. Parallel
1426 investigations. *J Periodontal Res* **11**:197–209.

1427 Trelis J, Ortega JR, Reina I, Esquembre MA. 2010. El Cementeri Mudèjar del Raval (Crevillent-
1428 Alacant). *Rella, La* 213–252.

1429 Tullett W. 2019. Smell in Eighteenth-Century England: A Social Sense. Oxford University Press.

1430 Vågene ÅJ, Herbig A, Campana MG, Robles García NM, Warinner C, Sabin S, Spyrou MA,
1431 Andrades Valtueña A, Huson D, Tuross N, Bos KI, Krause J. 2018. *Salmonella enterica*
1432 genomes from victims of a major sixteenth-century epidemic in Mexico. *Nat Ecol Evol*
1433 **2**:520–528.

1434 Veldman JK. 2013. Non-metric traits. An assessment of cranial and post-cranial non-metric
1435 traits in the skeletal assemblage from the 17th-19th century churchyard of
1436 middenbeemster, the Netherlands. University of Leiden.

1437 Vellappally S, Fiala Z, Smejkalová J, Jacob V, Shriharsha P. 2007. Influence of tobacco use in
1438 dental caries development. *Cent Eur J Public Health* **15**:116–121.

1439 Velsko IM, Fellows Yates JA, Aron F, Hagan RW, Frantz LAF, Loe L, Martinez JBR, Chaves E,
1440 Gosden C, Larson G, Warinner C. 2019. Microbial differences between dental plaque and
1441 historic dental calculus are related to oral biofilm maturation stage. *Microbiome* **7**:102.

1442 Velsko IM, Frantz LAF, Herbig A, Larson G, Warinner C. 2018. Selection of Appropriate
1443 Metagenome Taxonomic Classifiers for Ancient Microbiome Research. *mSystems* **3**.
1444 doi:10.1128/mSystems.00080-18

1445 Velsko IM, Overmyer KA, Speller C, Klaus L, Collins MJ, Loe L, Frantz LAF, Sankaranarayanan
1446 K, Lewis CM Jr, Martinez JBR, Chaves E, Coon JJ, Larson G, Warinner C. 2017. The
1447 dental calculus metabolome in modern and historic samples. *Metabolomics* **13**:134.

1448 Veselka B. 2016. Begraven bij de Sint-Janskerk: analyse van de zeventiende tot negentiende-
1449 eeuwse skeletten uit RoosendaalJaarboek de Gulden Roos. pp. 33–44.

1450 Wade WG. 2021. Resilience of the oral microbiome. *Periodontol 2000*. doi:10.1111/prd.12365

1451 Walker D, Henderson M. 2010. Smoking and health in London's East End in the first half of the
1452 19th century. *Post-Medieval Archaeology* **44**:209–222.

1453 Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y,
1454 Tito RY, Fiddymont S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-García DC,
1455 Eppler E, Seiler R, Hansen LH, Castruita JAS, Barkow-Oesterreicher S, Teoh KY, Kelstrup
1456 CD, Olsen JV, Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM Jr, Collins MJ,
1457 Gilbert MTP, Rühli F, Cappellini E. 2014. Pathogens and host immunity in the ancient
1458 human oral cavity. *Nat Genet* **46**:336–344.

1459 Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. 2013. corrrplot: Visualization of a correlation
1460 matrix. *R package version 0.73* **230**.

1461 Western G, Bekvalac J. 2020. Manufactured Bodies: The Impact of Industrialisation on London
1462 Health. Oxbow Books.

1463 Wibowo MC, Yang Z, Borry M, Hübner A, Huang KD, Tierney BT, Zimmerman S, Barajas-
1464 Olmos F, Contreras-Cubas C, García-Ortiz H, Martínez-Hernández A, Luber JM, Kirstahler
1465 P, Blohm T, Smiley FE, Arnold R, Ballal SA, Pamp SJ, Russ J, Maixner F, Rota-Stabelli O,
1466 Segata N, Reinhard K, Orozco L, Warinner C, Snow M, LeBlanc S, Kostic AD. 2021.
1467 Reconstruction of ancient microbial genomes from the human gut. *Nature* **594**:234–239.

1468 Wilke CO. 2020. cowplot: streamlined plot theme and plot annotations for “ggplot2”. *R package*
1469 version 0.9. 2; 2017. <https://cloud.r-project.org/web/packages/cowplot/index.html>

1470 Workshop of European Anthropologists. 1980. Recommendations for age and sex diagnoses of
1471 skeletons. *J Hum Evol* **9**:517–549.

1472 Yang Y, Zheng W, Cai Q-Y, Shrubsole MJ, Pei Z, Brucker R, Steinwandel MD, Bordenstein SR,
1473 Li Z, Blot WJ, Shu X-O, Long J. 2019. Cigarette smoking and oral microbiota in low-income
1474 and African-American populations. *J Epidemiol Community Health* **73**:1108–1115.

1475 Yost S, Duran-Pinedo AE, Krishnan K, Frias-Lopez J. 2017. Potassium is a key signal in host-
1476 microbiome dysbiosis in periodontitis. *PLoS Pathog* **13**:e1006457.

1477 Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. 2015. Functional signatures of
1478 oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome
1479 analysis. *Genome Med* **7**:27.

1480 Zee KY, Samaranayake LP, Attström R. 1997. Scanning electron microscopy of microbial
1481 colonization of “rapid” and “slow” dental-plaque formers *in vivo*. *Arch Oral Biol* **42**:735–742.

1482 Zee K-Y, Samaranayake LP, Attstrom R. 1996. Predominant cultivable supragingival plaque in
1483 Chinese “rapid” and “slow” plaque formers. *Journal of Clinical Periodontology*.
1484 doi:10.1111/j.1600-051x.1996.tb00532.x

1485

Supporting Information for
Ancient dental calculus preserves signatures of biofilm succession and inter-individual variation independent of dental pathology

Irina M. Velsko, Lena Semerau, Sarah A. Inskip, Maite Iris García-Collado, Kirsten Ziesemer, Maria Serrano Ruber, Luis Benítez de Lugo Enrich, Jesús Manuel Molero García, David Gallego Valle, Ana Cristina Peña Ruiz, Domingo Salazar Garcia, Menno L.P. Hoogland, Christina Warinner

List of Supplemental Tables in Excel sheets	2
Table S2. Number of pipe notches in individuals from Middenbeemster.	3
Table S3. Numbers of observations and prevalence rates for oral pathologies for males, females, and a pooled sex group.	4
Figure S1. Pipe notches in anterior maxillary dentition of 2 individuals from Convento de los Mercedarios de Burtzeña (CMB).	5
Figure S2. Preservation assessment.	6
Figure S3. SourceTracker plot showing in each sample the proportion of species assigned to each source.	7
Figure S4. PCA plot of species diversity for Middenbeemster (MID) and Convento de los Mercedarios de Burtzeña (CMB).	8
Figure S5. Species gradient in Middenbeemster (MID) and Convento de los Mercedarios de Burtzeña (CMB) calculus samples profiled with MALT.	9
Figure S6. Alpha-diversity of samples grouped by site.	10
Figure S7. Alpha-diversity after sub-sampling all libraries to a maximum of 10M reads.	11
Figure S8. Alpha-diversity after sub-sampling all libraries for only reads \leq 75 bp.	12
Figure S9. Read characteristics for full and sub-sampled libraries.	13
Figure S10. Diversity indices for full and sub-sampled libraries. A. Number of species. B. Shannon index.	14
Figure S11. Beta-diversity PCA plot of calculus samples from pre- and post-introduction of tobacco to Europe.	15
Table S4. Top 10 species with strongest loadings in PC1 in the PCA with pre- and post-tobacco introduction to Europe samples (Figure XX5, Supplemental Figure XX8).	16
Figure S12. PCA of the species table excluding <i>Methanobrevibacter oralis</i> .	17
Figure S13. Distribution of <i>Streptococcus</i> groups (top panels) and proportion of <i>Streptococcus</i> reads (bottom panels) in individual teeth of 4 individuals from Camino del Molino, Spain.	18

List of Supplemental Tables in Excel sheets

Table S1. Oral pathology metadata for samples sequenced for this study. (Excel sheet)

Table S5. Oral pathology metadata for published samples included in this study. (Excel sheet)

Table S6. Extraction and library metadata for samples sequenced for this study (Excel sheet)

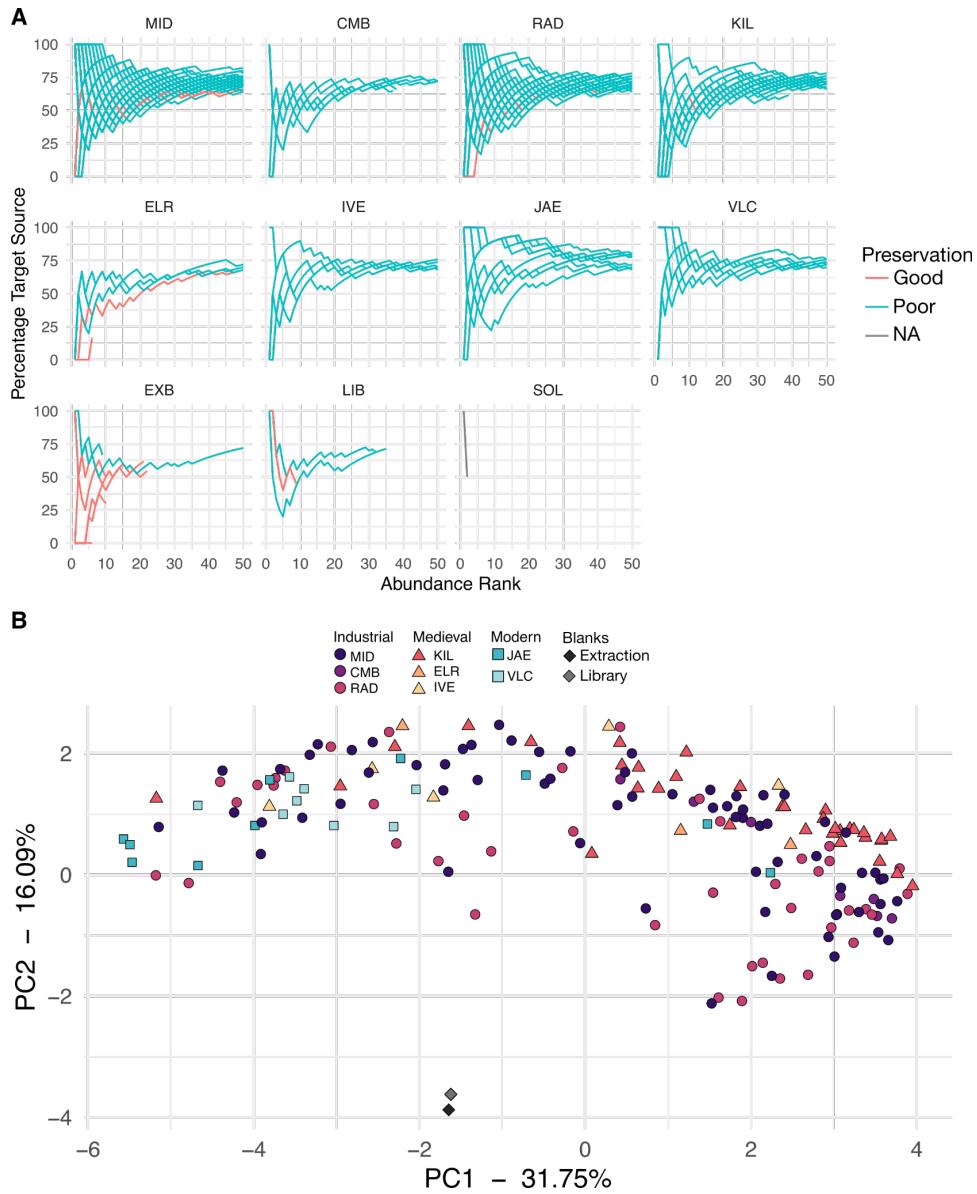
Table S7. Extraction and library metadata for published samples included in this study (Excel sheet)

Table S8. MetaPhlAn3 taxonomy table for all samples included in this study. (Excel sheet)

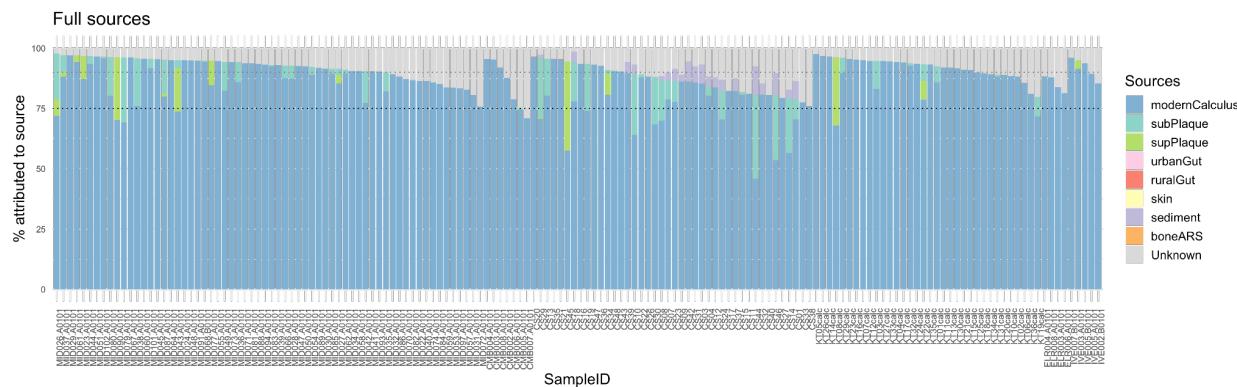
Table S2. Number of pipe notches in individuals from Middenbeemster.

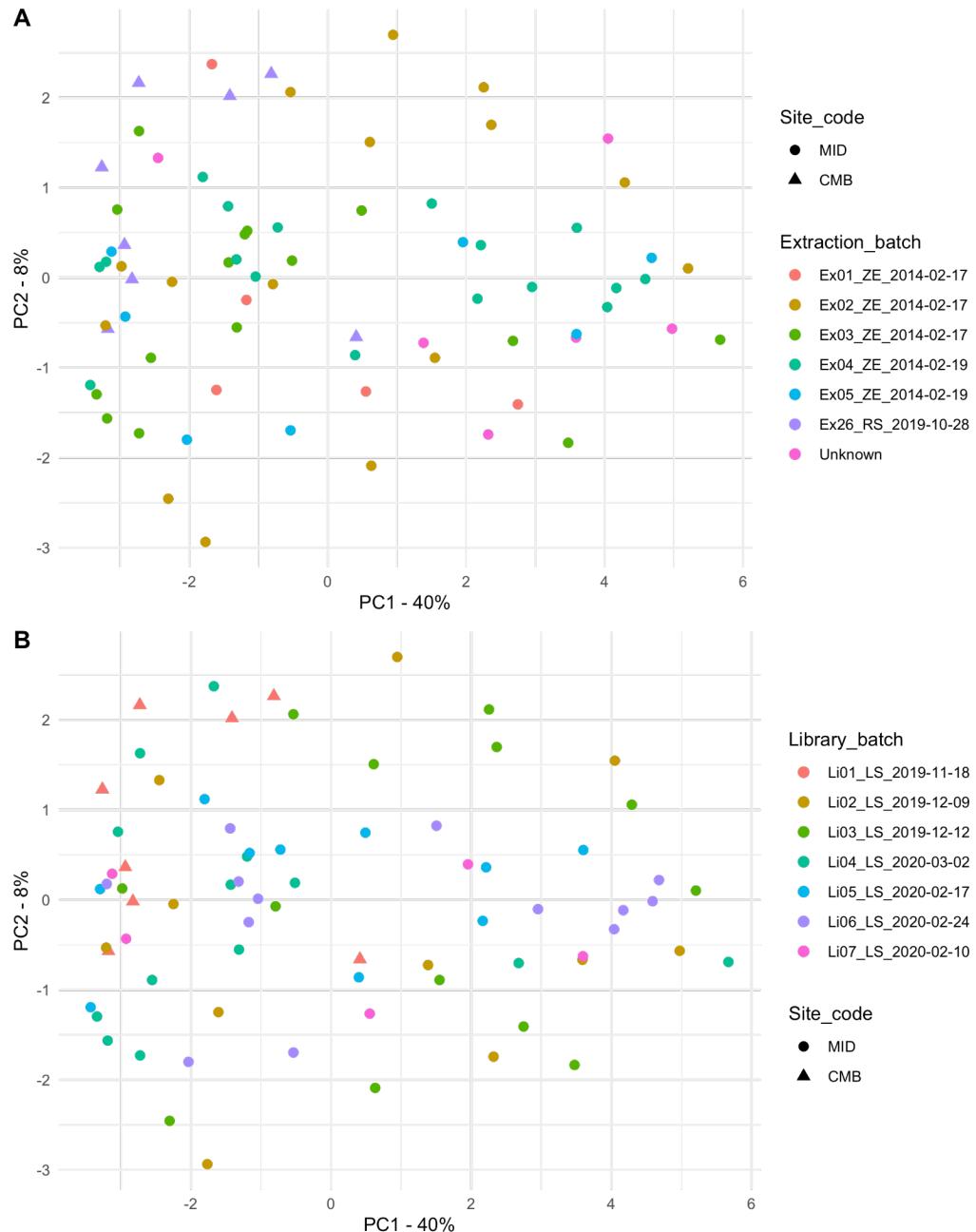
		Number of pipe notches							
		0	1	2	3	4	5	7	Total
Biological sex	Female	22	2	1	-	-	-	-	25
	Indeterminate	2	-	2	-	-	1	-	5
	Male	5	10	10	4	7	3	1	40
	Total	29	12	13	4	7	4	1	70

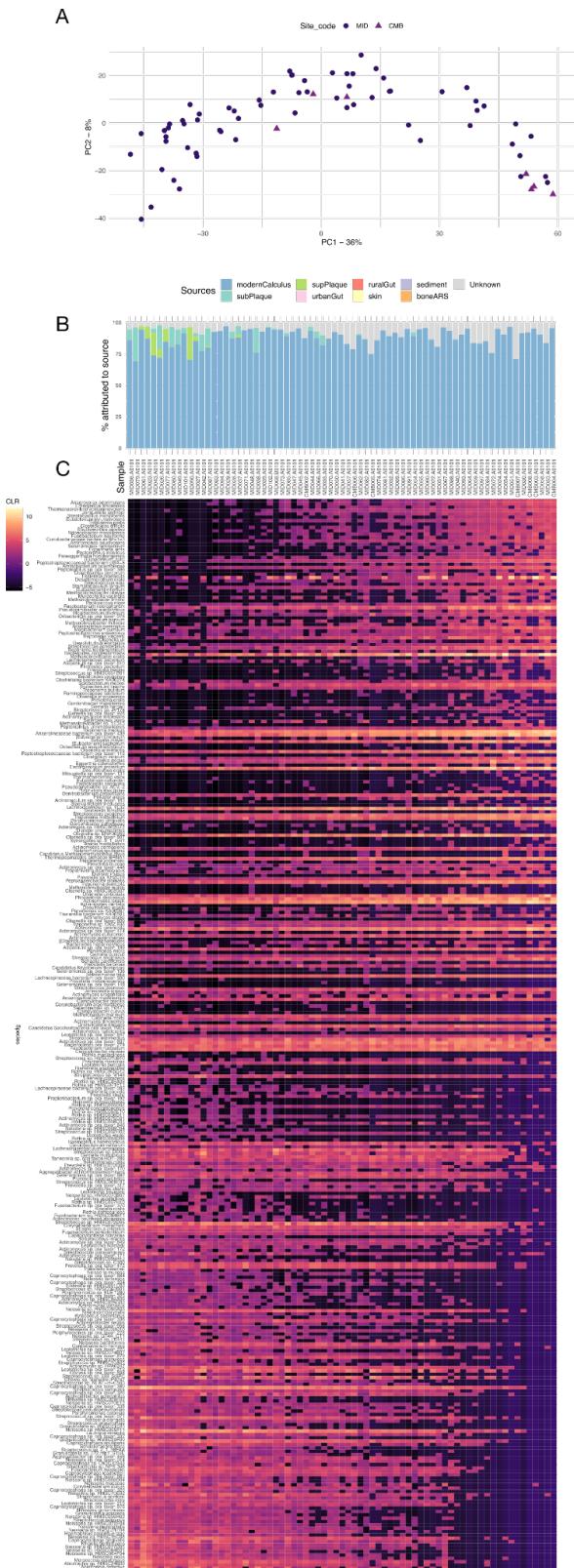
(-) indicates no individuals fell into this category.

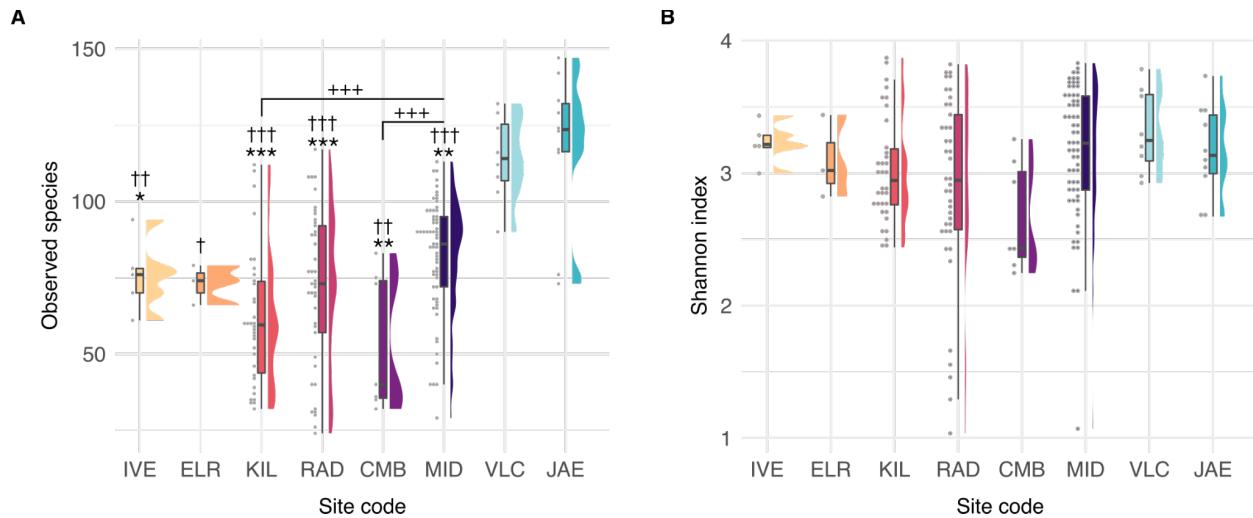

Table S3. Numbers of observations and prevalence rates for oral pathologies for males, females, and a pooled sex group.

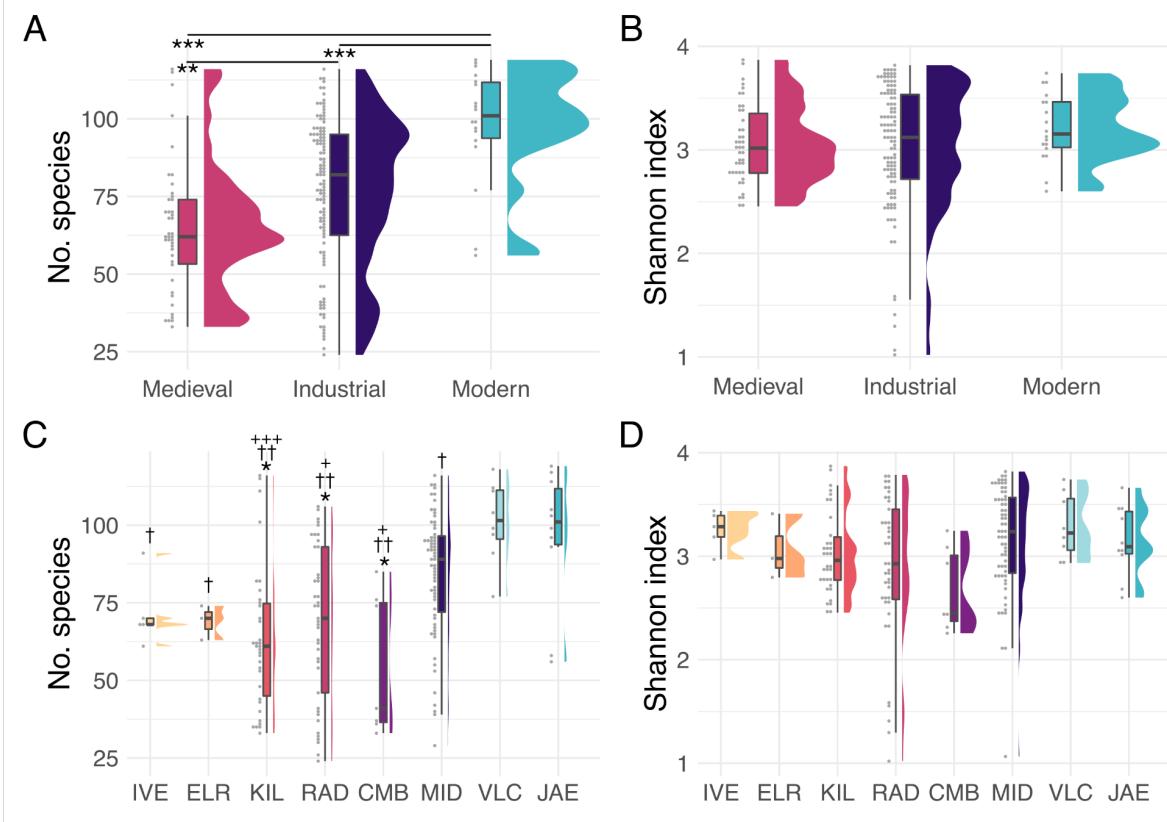
	Males			Females			Pooled sex		
	All Male	Pipe notches absent	Pipe notches present	All female	Pipe notches absent	Pipe notches present	All	Pipe notches absent	Pipe notches present
Number of individuals	40	4	36	25	22	3	70	28	42
AMTL									
Number observable for AMTL	39	4	35	25	22	3	69	28	41
% individuals with AMTL	82	75	82.8	64	68.2	33.3	75.4	67.9	80.5
%teeth lost AMTL	13.3	14.2	13.2	12.6	13.2	8.3	13	12.6	13.3
Periapical lesions									
No ob periapical lesions	39	4	35	25	22	3	68	28	40
% individuals with periapical lesion	51.3	50	51.4	32	36.4	0	41.1	35.7	45
Average of No positions with periapical lesion	3.8	2.3	3.9	2.8	3.2	0	3.2	2.8	3.4
Caries									
No individuals observable for caries	38	4	34	25	22	3	67	28	39
%individual with caries	79	100	76.5	88	86.3	100	82	85.7	79.5
%individual Gross caries	31.6	50	29.4	52	54.6	33.3	36.8	50	27.5
Average of %teeth with caries	14.9	15.1	12.9	28.7	30.5	15.4	19.6	26.03	15.1
Calculus									
No individuals observable for calculus	38	4	34	24	21	3	66	27	39
% individuals with calculus	100	100	100	100	100	100	100	100	100
% of teeth with calculus	69.3	42.7	72.4	63.3	62.7	67.6	67.3	58.6	73.5
Average of calc sup score	2.4	1.5	2.5	2.2	2.1	3	2.3	2	2.5
Average of Calc sub score	2.2	1.75	2.3	1.8	1.8	1.7	2	1.8	2.2
Periodontal disease (PD)									
No individuals observable for PD	39	4	35	25	22	3	68	28	40
% individuals with PD (score 3 or 4)	87.5	75	89	64	64.6	66.7	78.3	64.3	87.8
Average max PD score	3.2	3	3.2	2.9	2.9	3	3.1	2.9	3.2
Average of % positions with PD	74.3	69.8	74.9	62.4	66.1	37.8	69	64.3	72.2

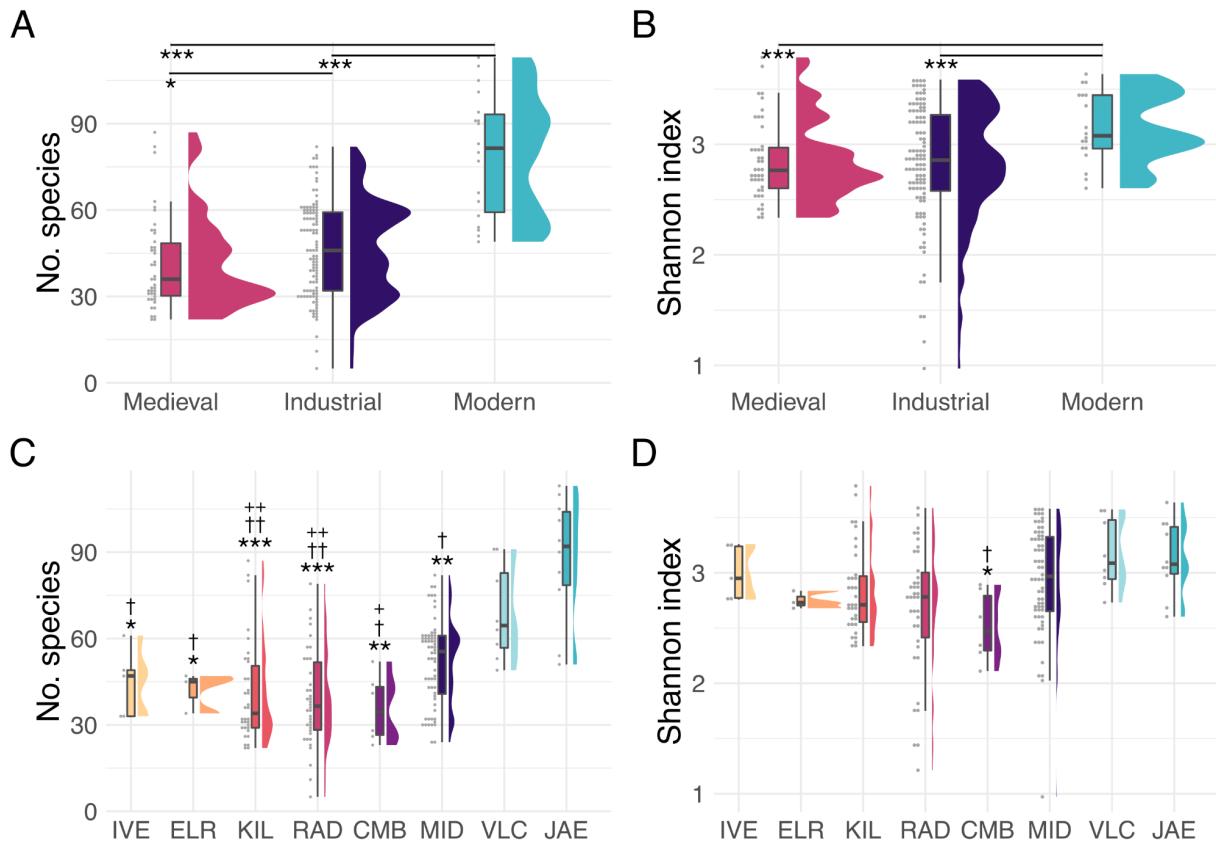

No - number; **AMTL** - antemortem tooth loss; **sup** - supragingival; **sub** - subgingival; **PD** - periodontal disease.


Figure S1. Pipe notches in anterior maxillary dentition of 2 individuals from Convento de los Mercedarios de Burtzeña (CMB). **A.** Individual CMB001. **B.** Individual CMB003. Notch locations are indicated by hollow pink circles. Photo credit: Maite I. Garcia-Collado.


Figure S2. Preservation assessment. A. Cumulative percent decay curves (cuperdec). Curves demonstrating the proportion of species that come from an oral source, ordered by abundance. All samples with red lines were removed from all analyses. B. PCA of samples passing cuperdec preservation cut-offs, as well as extraction and library blanks. Site codes: **MID** - Middenbeemster, **CMB** - Convento de los Mercedarios de Burtzeña, **RAD** - Radcliffe, **KIL** - Kilteasheen, **ELR** - El Raval, **IVE** - Iglesia de la Virgen de la Estrella, **JAE** - Jaen, **VLC** - Valencia, **EXB** - Extraction blank, **LIB** - library blank, **SOL** - soil.


Figure S3. SourceTracker plot showing in each sample the proportion of species assigned to each source. Only a single sample has a proportion below 75% assigned to an oral source (modern calculus, subgingival plaque, supragingival plaque). The input table was from a MALT run that used the RefSeq database from Fellows Yates, et al. 2021. SubPlaque - subgingival plaque, supPlaque - supragingival plaque, boneARS - bones from site Arbulag sum, Mongolia (site code ARS). The modern calculus used as a source is the JAE samples used in this study as comparative samples. The dotted black line indicates 75%, and the dotted gray line indicates 90%.


Figure S4. PCA plot of species diversity for Middenbeemster (MID) and Convento de los Mercedarios de Burtzeña (CMB) colored by **A.** extraction batch and **B.** library batch. Samples do not cluster by either extraction or library batch.


Figure S5. Species gradient in Middenbeemster (MID) and Convento de los Mercedarios de Burtzeña (CMB) calculus samples profiled with MALT. The sample order of plots B and C follows the order of points along PC1 in the PCA shown in panel A. **A.** PCA of read-based species counts result in a horseshoe pattern PCA plot. **B.** SourceTracker results indicate that the samples with the most negative PC1 loadings have higher proportions of species found in supra- and subgingival dental plaque than the other samples. **C.** Heat map showing the CLR-transformed abundance of species present at > 0.01% abundance. A gradient of taxa in samples from one end of the PCA to the other end can be traced from the upper right corner to the lower left corner. Samples with the most negative PC1 loadings have higher proportions of early-colonizer, aerobic and facultative taxa, and lower proportions of late-colonizer, anaerobic taxa than samples with the most positive PC1 loadings, consistent with a higher source contribution of plaque seen in panel B.

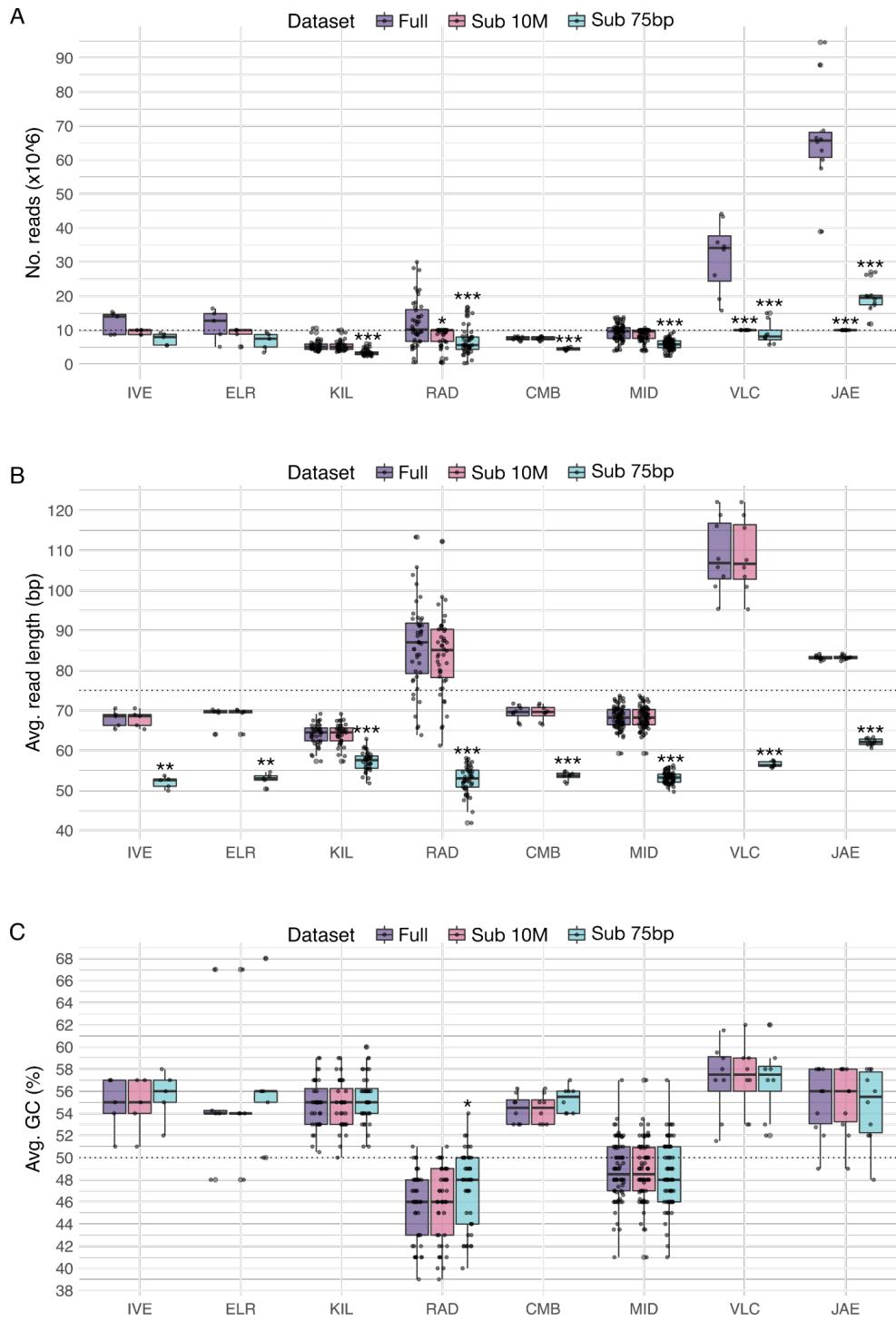

Figure S6. Alpha-diversity of samples grouped by site. A. Number of species. B. Shannon index. *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$ compared to JAE. ††† $p < 0.001$, †† $p < 0.01$, † $p < 0.05$ compared to VLC. ++ $p < 0.01$, +++ $p < 0.001$ compared to MID. No significant differences in Shannon index were detected between sites. Site codes: **IVE** - Iglesia de la Virgen de la Estrella; **ELR** - El Raval; **KIL** - Kilteasheen; **RAD** - Radcliffe; **CMB** - Convento de los Mercedarios de Burtzeña; **MID** - Middenbeemster; **VLC** - Valencia; **JAE** - Jaen.

Figure S7. Alpha-diversity after sub-sampling all libraries to a maximum of 10M reads. **A.** Number of species grouped by time period. **B.** Shannon index grouped by time period. **C.** Number of species grouped by site. **D.** Shannon index grouped by site. *** p < 0.001, ** p < 0.01, * p < 0.05 compared to JAE. ††† p < 0.001, †† p < 0.01, † p < 0.05 compared to VLC. + p < 0.05, ++ p < 0.01, +++ p < 0.001 compared to MID. No significant differences in Shannon index were detected between time periods or sites. Site codes: **IVE** - Iglesia de la Virgen de la Estrella; **ELR** - El Raval; **KIL** - Kilteasheen; **RAD** - Radcliffe; **CMB** - Convento de los Mercedarios de Burtzeña; **MID** - Middenbeemster; **VLC** - Valencia; **JAE** - Jaen.

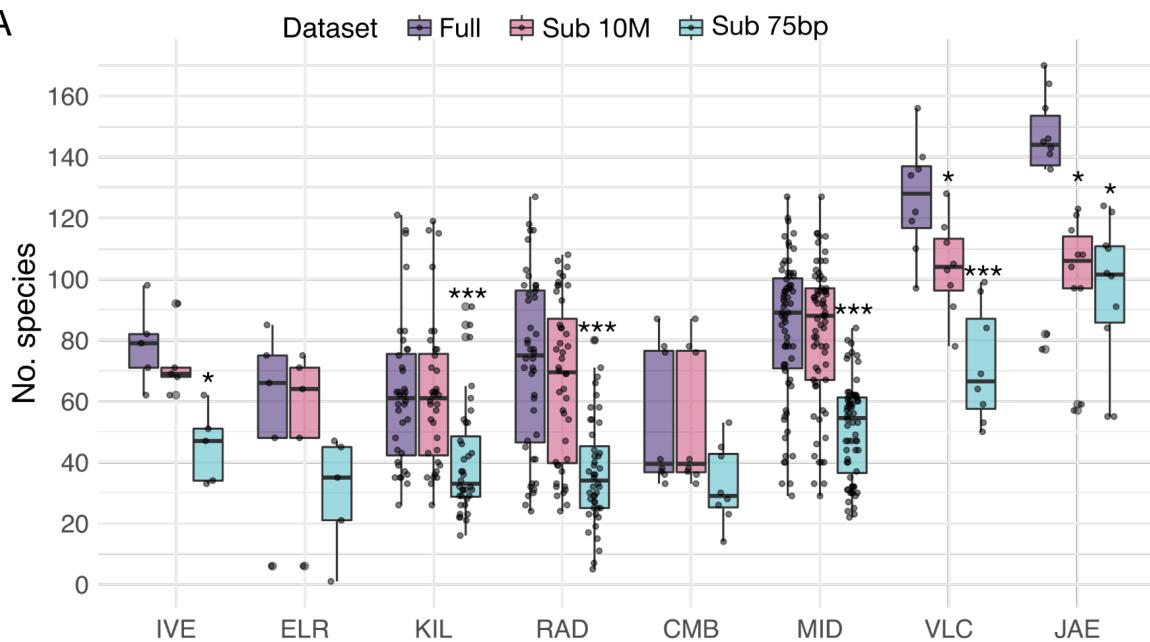


Figure S8. Alpha-diversity after sub-sampling all libraries for only reads 75 bp. **A.** Number of species grouped by time period. **B.** Shannon index grouped by time period. **C.** Number of species grouped by site. **D.** Shannon index grouped by site. *** p < 0.001, ** p < 0.01, * p < 0.05 compared to JAE. ††† p < 0.001, †† p < 0.01, † p < 0.05 compared to VLC. + p < 0.05, ++ p < 0.01, +++ p < 0.001 compared to MID. No significant differences in Shannon index were detected between time periods. Site codes: **IVE** - Iglesia de la Virgen de la Estrella; **ELR** - El Raval; **KIL** - Kilteasheen; **RAD** - Radcliffe; **CMB** - Convento de los Mercedarios de Burtzeña; **MID** - Middenbeemster; **VLC** - Valencia; **JAE** - Jaen.

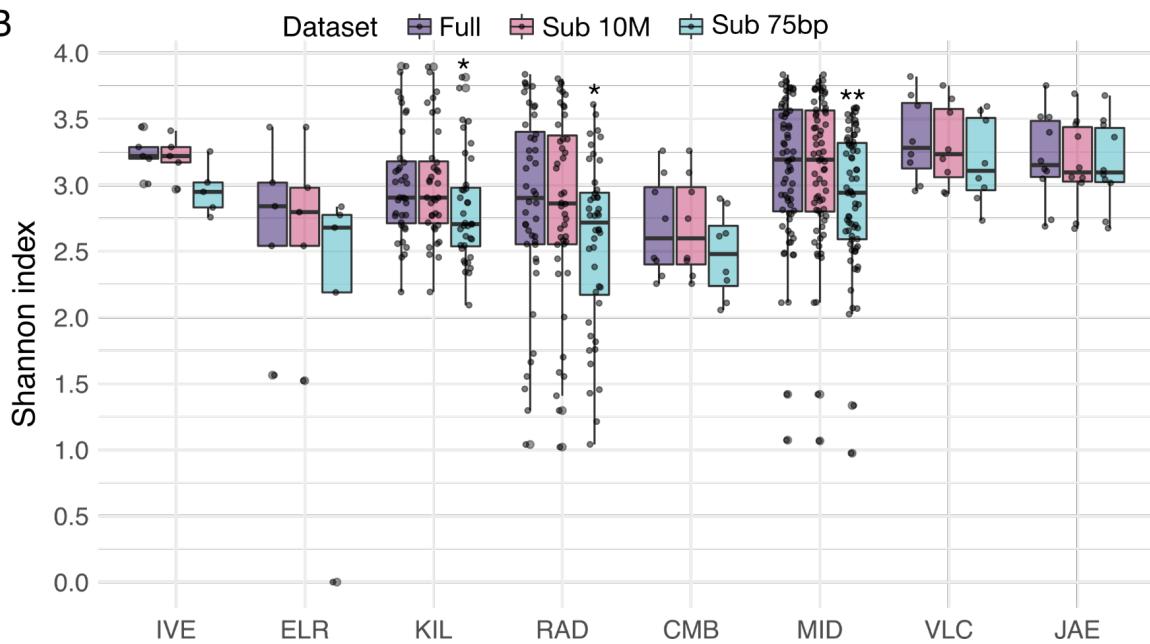
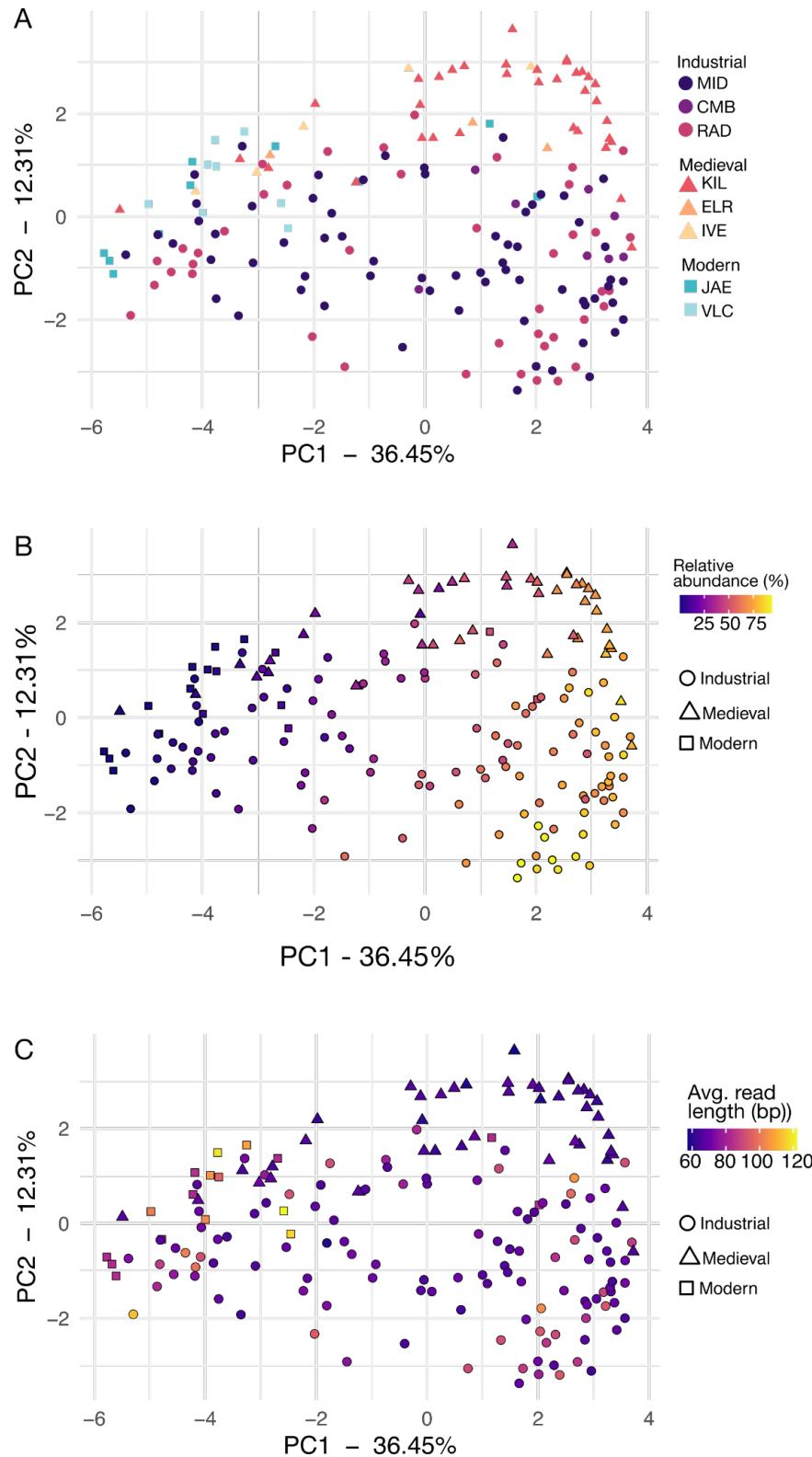


Figure S9. Read characteristics for full and sub-sampled libraries. A. Total number of reads. B. Average read length (bp). C. Average GC content (%). Sub 10M - libraries subsampled to include no more than 10 million reads. Sub 75bp - libraries subsampled to include only reads \leq 75bp in length. *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$ compared to the full dataset


A

B

Figure S10. Diversity indices for full and sub-sampled libraries. **A.** Number of species. **B.** Shannon index. *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$ compared to the full dataset. **Sub 10M** - libraries subsampled to include no more than 10 million reads. **Sub 75bp** - libraries subsampled to include only reads $\leq 75\text{bp}$ in length

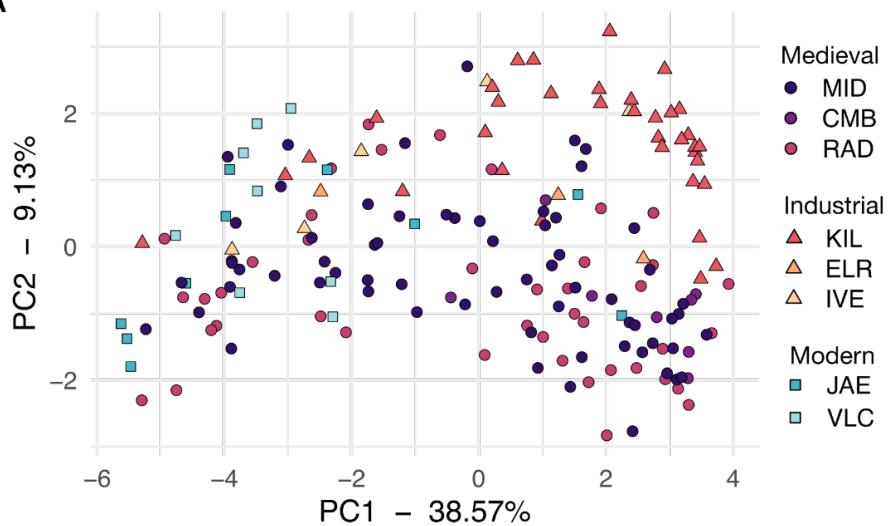
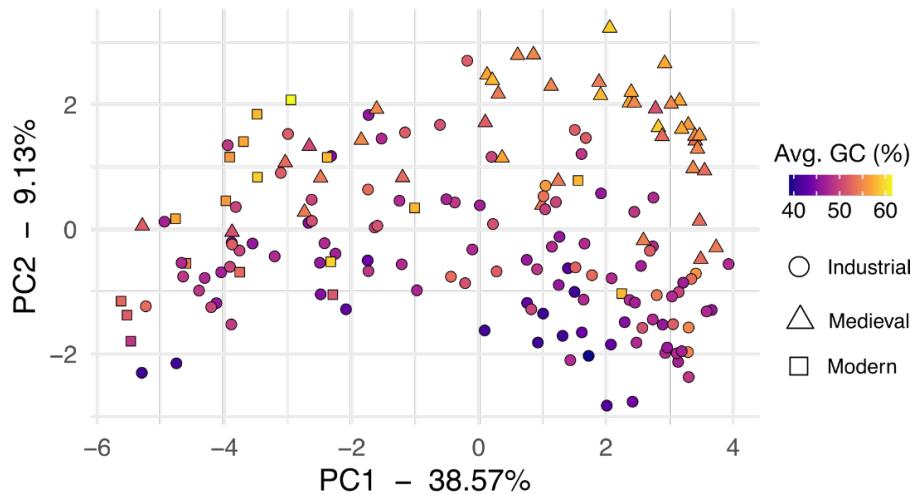

Figure S11. Beta-diversity PCA plot of calculus samples from pre- and post-introduction of tobacco to Europe. Shapes in both indicate time period. These are the same plot as main figure XX5 but colored by **A**. Site. **B.** Relative abundance of the 10 species with strongest positive PC1 loadings, all of which are anaerobic species found late in dental biofilm development. See Supplemental table SXX4. **C.** Average read length per sample.

Table S4. Top 10 species with strongest loadings in PC1 in the PCA with pre- and post-tobacco introduction to Europe samples (Figure XX5, Supplemental Figure XX8).

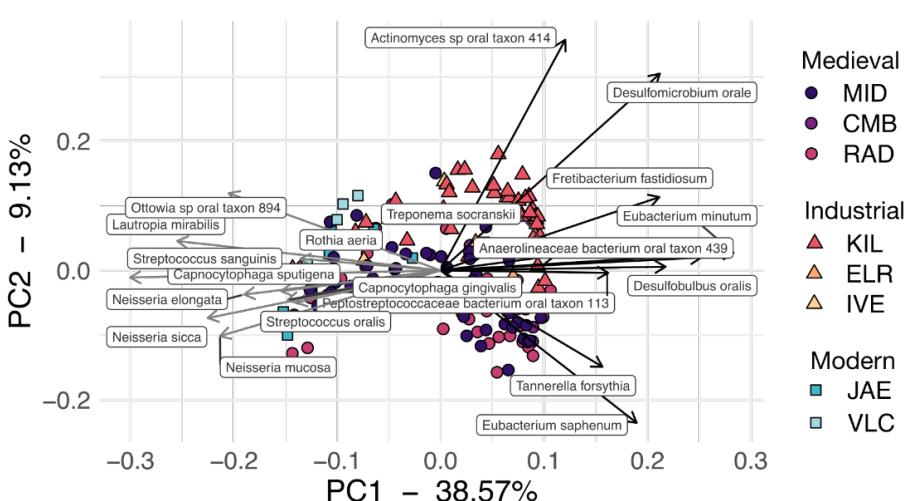
PC1 direction	Species*	Aerotolerance
Positive	<i>Eubacterium minutum</i>	Anaerobic
Positive	Anaerolineaceae bacterium oral taxon 439	Anaerobic
Positive	<i>Methanobrevibacter oralis</i>	Anaerobic
Positive	<i>Desulfobulbus oralis</i>	Anaerobic
Positive	<i>Fretibacterium fastidiosum</i>	Anaerobic
Positive	<i>Desulfomicrobium orale</i>	Anaerobic
Positive	<i>Eubacterium saphenum</i>	Anaerobic
Positive	<i>Peptostreptococcaceae bacterium oral taxon 113</i>	Unclear
Positive	<i>Tannerella forsythia</i>	Anaerobic
Positive	<i>Treponema socranskii</i>	Anaerobic
Negative	<i>Streptococcus sanguinis</i>	Facultative
Negative	<i>Lautropia mirabilis</i>	Facultative
Negative	<i>Neisseria sicca</i>	Aerobic
Negative	<i>Neisseria mucosa</i>	Aerobic
Negative	<i>Ottowia</i> sp oral taxon 894	Unclear
Negative	<i>Neisseria elongata</i>	Aerobic
Negative	<i>Capnocytophaga sputigena</i>	Facultative
Negative	<i>Capnocytophaga gingivalis</i>	Facultative
Negative	<i>Rothia aeria</i>	Aerobic
Negative	<i>Streptococcus oralis</i>	Facultative

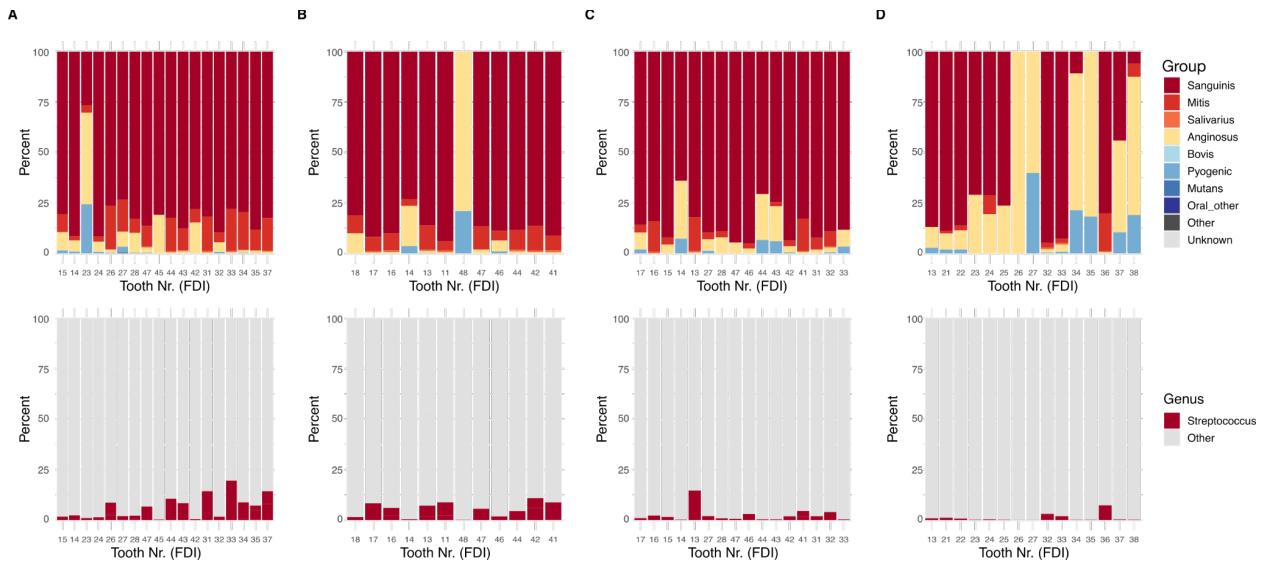
* Species are ordered from strongest to weakest loading.

A


Figure S12. PCA of the species table excluding *Methanobrevibacter oralis*. Removal of this species only slightly alters the relationship of samples in the PCA.

A. PCA with points colored by site and shaped by time period.


B. Same as A with points colored by sample average GC content. **C.** Same as A with a biplot showing the top 10 species with strongest PC1 positive and negative loadings.


Site codes: **MID** - Middenbeemster, **CMB** - Convento de los Mercedarios de Burtzeña, **RAD** - Radcliffe, **KIL** - Kilteasheen, **ELR** - El Raval, **IVE** - Iglesia de la Virgen de la Estrella, **JAE** - Jaen, **VLC** - Valencia.

B

C

Figure S13. Distribution of *Streptococcus* groups (top panels) and proportion of *Streptococcus* reads (bottom panels) in individual teeth of 4 individuals from Camino del Molino, Spain. **A.** Individual CM55, **B.** Individual CM59, **C.** Individual CM82, **D.** Individual CM165. In cases where multiple surfaces of a tooth were sampled, the proportions were averaged across all surfaces to create a tooth-wide average, which was plotted. Tooth Nr. (FDI) - tooth number based on the FDI World Dental Federation notation.