

1 **Effector-dependent activation and oligomerization of NRC helper NLRs by *Rpi-amr3* and**
2 ***Rpi-amr1***

3

4 Hee-Kyung Ahn^{1,*}, Xiao Lin^{1,*}, Andrea Carolina Olave-Achury^{1,2}, Lida Derevnina^{1,3}, Mauricio P
5 Contreras¹, Jiorgos Kourelis¹, Sophien Kamoun¹, Jonathan D G Jones^{1,**}

6

7 ¹ The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4
8 7UH, UK

9 ² Present address: Earlham Institute, Norwich Research Park, Norfolk, NR4 7UZ, UK

10 ³ Present address: Crop Science Centre, Department of Plant Sciences, University of
11 Cambridge, Lawrence Weaver Road, Cambridge CB3 0LE, UK

12 * These authors contributed equally

13 ** Correspondence to: jonathan.jones@tsl.ac.uk

14

15 Keywords: NRC/*Rpi-amr*/NLR activation/plant immunity/blue native-PAGE

16 Word count = 9,198 words

17 **Abstract**

18 Plant pathogens compromise crop yields. Plants have evolved robust innate immunity that
19 depends in part on intracellular Nucleotide-binding, Leucine Rich-Repeat (NLR) immune
20 receptors that activate defense responses upon detection of pathogen-derived effectors. Most
21 “sensor” NLRs that detect effectors require the activity of “helper” NLRs, but how helper NLRs
22 support sensor NLR function is poorly understood. Many Solanaceae NLRs require the NRC
23 (NLR-Required for Cell death) class of helper NLRs. We show here that Rpi-amr3, a sensor
24 NLR from *Solanum americanum*, detects AVRamr3 from the potato late blight pathogen,
25 *Phytophthora infestans*, and activates oligomerization of the helper NLR NRC2 into a high-
26 molecular weight resistosome. The NRC2 resistosome also forms upon recognition of *P.*
27 *infestans* effector AVRamr1 by another sensor NLR, Rpi-amr1. The ATP-binding motif of Rpi-
28 amr3 is required for NRC2 resistosome formation, but not for interaction with the cognate
29 effector. The NRC2 resistosome can be activated by AVRamr3 homologs from other
30 *Phytophthora* species. Mechanistic understanding of NRC resistosome formation will underpin
31 engineering crops with durable disease resistance.

32

33 Introduction

34 Plants have powerful defense mechanisms, but to be effective, these must be rapidly activated
35 at sites of attempted pathogen ingress. Activation of defense requires detection, both by cell
36 surface receptors that usually detect pathogen-derived components such as flagellin or chitin
37 (Lee *et al*, 2021), and by intracellular Nucleotide-binding, Leucine-rich Repeat (NLR) receptors
38 which detect effectors that often function for the pathogen to attenuate plant defenses (Jones *et*
39 *al*, 2016).

40 Natural plant populations carry extensive genetic variation in immune receptor repertoires
41 (Ngou *et al*, 2022b). Plant breeders have long exploited this genetic variation to elevate crop
42 varietal resistance by introgression of multiple disease *Resistance (R)* genes from wild relatives.
43 *R* genes usually encode NLR immune receptors (Meyers *et al*, 1999). Some plant species carry
44 scores or even hundreds of different NLR immune receptor genes, with extensive allelic
45 diversity and presence/absence polymorphism (Barragan & Weigel, 2021). These NLR immune
46 receptors can confer resistance to bacteria, fungi, oomycetes, viruses and even invertebrates
47 (Ngou *et al*, 2022a), triggering broad interest in how these immune receptors can activate
48 defense upon recognition of molecules from such diverse sources.

49 NLRs are broadly categorized into three subclasses, based on their N-terminal domains. TIR-
50 NLRs, CC-NLRs, and CC_R-NLRs have N-terminal Toll-like, Interleukin-1 receptor, Resistance
51 (TIR) domains, Coiled-Coil (CC) domains, and RPW8-like (CC_R) domains, respectively (Collier
52 *et al*, 2011; Meyers *et al*, 1999). The N-terminal domains of the NLRs have direct roles in
53 signaling upon effector-dependent oligomerization of the NLRs. For example, the TIR-NLRs
54 ROQ1 and RPP1 form a tetramer upon detection of their cognate recognized effectors,
55 activating an NADase activity by forming a tetramer of the TIR domain (Ma *et al*, 2020; Martin *et*
56 *al*, 2020). The enzymatic activity generates small molecules that are required for downstream
57 signaling via EDS1 (Huang *et al*, 2022). The oligomerization of ZAR1 and Sr35 into a pentamer
58 upon effector detection induces assembly of the α -helices in the CC domains into a cation
59 channel in the plasma membrane that is required for signalling (Bi *et al*, 2021; Förderer *et al*,
60 2022; Wang *et al*, 2019a). The CC_R-NLR NRG1.1 and ADR1 also oligomerize and localize to
61 the plasma membrane and can mediate calcium ion influx (Jacob *et al*, 2021). However,
62 whether all NLRs form resistosomes upon activation is unclear.

63 NLRs often function independently as singletons, but accumulating evidence suggests that
64 many NLRs function in pairs or networks. The effector-detecting NLR is often named a “sensor”
65 NLR, whereas the downstream signaling NLRs that convert recognition into immune activation

66 are called “helper” NLRs (Feehan *et al*, 2020). Paired NLRs, such as RRS1/RPS4 or
67 RGA4/RGA5, are divergently transcribed, and one of the NLRs often carries an integrated
68 domain (ID) for effector detection, while the other signals upon recognition (Cesari *et al*, 2014).
69 In contrast, helper NLRs of the CC_R-NLR and NRC classes usually map to different genomic
70 loci from the “sensor” NLRs and are required for the activity of multiple “sensor” NLRs (Feehan
71 *et al.*, 2020; Jubic *et al*, 2019; Wu *et al*, 2018). The first CC_R-type helper NLR, NRG1 (Peart *et*
72 *al*, 2005), was found to be required for the function of TIR-NLRs (Castel *et al*, 2019; Qi *et al*,
73 2018; Wu *et al*, 2019), and the related ADR1 helper NLRs can contribute to both TIR-NLR and
74 CC-NLR function (Saile *et al*, 2020).

75 The NRC class of helper NLR was discovered in the Solanaceae and is widespread in the
76 asterid but not the rosid clade of angiosperms (Wu *et al*, 2017). The NRC class of helper NLRs
77 are phylogenetically related to their corresponding sensor NLRs in the asterid plant family, and
78 ~50% of Solanaceae NLRs are either NRC-dependent sensor NLRs or NRCs (Wu *et al.*, 2017).
79 Different sensor NLRs depend on different combinations of helper NLRs to activate the immune
80 response (Wu *et al.*, 2018). A conserved N-terminal MADA motif was found in the NRC family
81 and in ~20% of other CC-NLRs, including ZAR1 from Arabidopsis (Adachi *et al*, 2019), leading
82 to the hypothesis that NRCs might activate defense via similar mechanisms to ZAR1. Mutating
83 the MADA motifs of NRC2, NRC3 or NRC4 from *Nicotiana benthamiana* results in loss of
84 function, and the corresponding N-terminal α 1 helix can be swapped with the equivalent region
85 of ZAR1 (Adachi *et al.*, 2019; Duggan *et al*, 2021; Kourvelis *et al*, 2021). This suggests that the
86 MADA motif of NRCs might form a cation-selective channel to activate immune signalling and
87 cell death, as does ZAR1 (Bi *et al.*, 2021). However, how the NRC-dependent immune
88 response is activated upon effector detection by sensor NLRs remains unknown.

89 *Phytophthora* diseases cause yield loss for many important crop plants (Kamoun *et al*, 2015).
90 These diseases are mainly controlled by agrochemical sprays (Cooke *et al*, 2011). Many *R*
91 genes against *P. infestans* (*Rpi*) genes were cloned from wild potatoes (Vleeshouwers *et al*,
92 2011). We cloned the *Rpi-amr3* and *Rpi-amr1* genes from *Solanum americanum* for resistance
93 against *P. infestans*, and both *Rpi* genes confer broad-spectrum resistance against late blight in
94 potato (Lin *et al*, 2021; Witek *et al*, 2016; Witek *et al*, 2021). We also defined the cognate
95 effectors *Avramr3* and *Avramr1* from *P. infestans* (Lin *et al.*, 2021; Lin *et al*, 2020). *Rpi-amr3*
96 and *Rpi-amr1* can also recognize AVR α 3 and AVR α 1 homologs from other *Phytophthora*
97 pathogens (Lin *et al.*, 2021; Witek *et al.*, 2021). *Rpi-amr3* and *Rpi-amr1* are NRC2/3/4- and
98 NRC2/3- dependent, respectively (Lin *et al.*, 2021; Witek *et al.*, 2021).

99 Here, we used *nrc2/3/4* CRISPR knockout (KO) *N. benthamiana* line (Wu *et al.*, 2020) and
100 transient expression of Rpi-amr3/AVRamr3 or Rpi-amr1/AVRamr1, and of a NRC2 mutant in its
101 MADA motif (NRC2^{EEE}) to study the activation of the helper NLR NRC2. We found that upon
102 effector recognition, both Rpi-amr3 and Rpi-amr1 activate formation of a high-molecular weight
103 complex of NRC2, dependent on a functional ATP-binding motif in the Rpi-amr protein.
104 Intriguingly, some AVRamr3 homologs from other *Phytophthora* pathogens such as *P.*
105 *parasitica* can also activate NRC2 resistosome formation through Rpi-amr3. This finding could
106 be pivotal for breaking the restricted taxonomic functionality (RTF) of some *NLR* genes and
107 elevating disease resistance in crops that lack *NRC* genes (Tai *et al.*, 1999).

108

109 **Results**

110 **Rpi-amr3 and AVRamr3 form an NRC-independent protein complex**

111 Rpi-amr3 and Rpi-amr1 are canonical CC-NLRs in *S. americanum* that recognize *P. infestans*
112 effectors AVRamr3 and AVRamr1, respectively (Lin *et al.*, 2021; Lin *et al.*, 2020; Witek *et al.*,
113 2016; Witek *et al.*, 2021) (Fig 1A). Both AVRamr3 (Lin *et al.*, 2021) and AVRamr1 are RXLR
114 effectors with predicted WY domains (Fig EV1A-D) (Boutemy *et al.*, 2011). Multiple NRC NLRs
115 in *N. benthamiana* (*Nb*) support immune activation by Rpi-amr3 and Rpi-amr1 (Lin *et al.*, 2021;
116 Witek *et al.*, 2021) (Fig EV2A). Therefore, we chose transient *Agrobacterium* infiltration in *N.*
117 *benthamiana* as a model system to test the immune activation mechanism of Rpi-amr3 or Rpi-
118 amr1 via NRC2.

119 Previously, we reported that Rpi-amr3 and AVRamr3 associate *in planta* (Lin *et al.*, 2021), but
120 whether Rpi-amr1 associates with AVRamr1 was unknown. Additionally, how Rpi-amr3 and Rpi-
121 amr1 activate immunity upon effector recognition is also unknown. First, we tested whether Rpi-
122 amr3/AVRamr3 and Rpi-amr1/AVRamr1 associate to form high-molecular weight protein
123 complexes without NRC. Flag/HisFlag (HF)- and HA-tagged Rpi-amr1/3 was co-expressed with
124 V5-tagged AVRamr1/3 respectively (Fig 1B-D) in *nrc2/3/4* knockout *N. benthamiana* leaves to
125 avoid a hypersensitive response (HR) that would impair biochemical analysis (Wu *et al.*, 2020).
126 Then, immunoprecipitates of Rpi-amr1-Flag and Rpi-amr3-HF were analyzed with blue native-
127 PAGE to visualize changes in protein complex formation.

128 We used non-denaturing PAGE methods to monitor the presence of protein complexes that
129 differ in size compared to monomers. The use of Coomassie G250 dye in blue native-PAGE
130 enables protein complexes to migrate towards the anode according to their size (Wittig *et al.*,
131 2010). This method was used to identify composition of mitochondrial membrane protein

132 complexes and photosynthetic protein complexes in plants (Eubel *et al*, 2005). Recently, this
133 method has been widely used to identify oligomeric changes of NLRs in plants (Hu *et al*, 2020;
134 Jacob *et al.*, 2021; Li *et al*, 2019; Na Ayutthaya *et al*, 2020). We used the blue native-PAGE
135 method to investigate not only protein-protein interactions, but also the approximate size of
136 protein complexes *in vivo*. Rpi-amr1-Flag migrated to one major form independent of the
137 cognate effector AVRmr1 (Fig 1B). Rpi-amr1-Flag co-immunoprecipitated AVRmr1-V5, but
138 not AVRmr3-V5 (Fig 1C). We also tested interaction between Rpi-amr1 and AVRmr1 using
139 split-luciferase assays, which showed that Rpi-amr1 specifically interacts with AVRmr1, but not
140 with AVRmr3 (Fig EV2A). When Rpi-amr1-immunoprecipitated eluates were loaded onto blue
141 native-PAGE, two species of AVRmr1 could be detected. As AVRmr1 interacts with Rpi-amr1,
142 the slow-migrating form of AVRmr1 is likely in a protein complex with Rpi-amr1. However,
143 dissociation may occur after immunoprecipitation, which would explain an AVRmr1 signal at
144 ~60 kDa (Fig 1C).

145 Rpi-amr3-HF expression was stabilized upon co-expression with cognate effector AVRmr3
146 (Fig 1B). We detected a slow-migrating protein form of Rpi-amr3-HF when AVRmr3-V5 was
147 co-expressed (Fig 1B, Fig EV3, red asterisk). AVRmr3-V5 that had been co-
148 immunoprecipitated with Rpi-amr3-HF migrated as two different species on blue native-PAGE
149 (Fig 1C, Fig EV3B). However, when AVRmr3 was expressed alone, it migrated on the blue
150 native-PAGE predominantly at ~60 kDa (Fig EV4). This shows that AVRmr3 forms a protein
151 complex with Rpi-amr3 that migrates slower than either Rpi-amr3 and AVRmr3 alone.
152 However, neither slow-migrating forms were of the size expected of an Rpi-amr pentamer in
153 complex with a cognate effector, in contrast to the size of the ZAR1 resistosome (Hu *et al.*,
154 2020).

155 As Rpi-amr1 and Rpi-amr3 migrate slower than the monomer molecular weight of ~120 kDa in
156 the absence of cognate effector, we tested if Rpi-amr1 and Rpi-amr3 self-associate. We co-
157 expressed Rpi-amr1 or Rpi-amr3 fused with two different tags, Flag or HA, immunoprecipitated
158 Rpi-amr1-Flag or Rpi-amr3-HF and detected HA-tagged Rpi-amr signal (Fig 1D). Our results
159 revealed that both Rpi-amr1 and Rpi-amr3 have the capacity to self-associate. However, in
160 comparison to the majority of Rpi-amr1-Flag and Rpi-amr3-Flag protein that migrates with a size
161 of ~270 kDa, the co-immunoprecipitated Rpi-amr1-HA or Rpi-amr3-HA migrates slower in blue
162 native-PAGE at a size above ~450kDa (Fig 1B, D). This indicates that the majority of the Rpi-
163 amr1 or Rpi-amr3 protein does not self-associate *in vivo*. Furthermore, self-associating Rpi-
164 amr1 and Rpi-amr3 migrate with larger mass than the Rpi-amr1/AVRmr1 or Rpi-
165 amr3/AVRmr3 complexes (Fig 1C, D). Thus, the presence or absence of effector did not

166 change self-association of Rpi-amr1 and Rpi-amr3 (Fig 1D). This is consistent with effector-
167 independent self-association observed for other CC-NLRs, such as RPM1 and MLA1 (El Kasmi
168 *et al*, 2017; Maekawa *et al*, 2011). Therefore, we conclude that the majority of Rpi-amr1 and
169 Rpi-amr3 exist as monomers that form heterodimers with AVRamr1 or AVRamr3. However,
170 additional interactors with these proteins cannot be excluded. The role (if any) of self-associated
171 Rpi-amr1 or Rpi-amr3 remains unclear.

172 **NRC2 oligomerizes upon AVRamr3-dependent activation of Rpi-amr3 and AVRamr1-
173 dependent activation of Rpi-amr1**

174 Next, we tested whether NRCs oligomerize upon Rpi-amr3 and Rpi-amr1 activation. NRC2 and
175 NRC3 from *N. benthamiana* can both support Rpi-amr3 and Rpi-amr1, but NRC2 proteins
176 express better in transient assays compared to NRC3 (Derevnina *et al*, 2021). Therefore, we
177 used NRC2 from *N. benthamiana*. However, co-expression of NRC2-Myc with Rpi-amr3-HF and
178 AVRamr3-V5 in the *nrc2/3/4* *N. benthamiana* KO mutant led to HR in plants and subsequent
179 degradation of Rpi-amr3 and AVRamr3, which precluded further analysis (Fig EV3). To abolish
180 the cell death, we generated an NRC2 MADA mutant, in which the conserved leucine residues
181 (L9, L13, L17) of NRC2 were mutated into glutamates (NRC2^{EEE}); this NRC2^{EEE} mutant does
182 not lead to HR or protein degradation when co-expressed with Rpi-amr3/AVRamr3 in *nrc2/3/4*
183 KO *N. benthamiana* (Fig EV3). This enabled us to use NRC2^{EEE}-Myc to study the biochemical
184 changes resulting from AVRamr3-dependent Rpi-amr3 activation. Interestingly, co-expression
185 of NRC2^{EEE}-Myc did not alter protein migration patterns of Rpi-amr3-HF or AVRamr3-V5 on blue
186 native-PAGE (Fig 2A, Fig EV3B). The interaction between Rpi-amr3-HF and AVRamr3-V5 was
187 also independent of NRC2^{EEE}-Myc co-expression (Fig 2B, Fig EV3A). Next, using protein
188 lysates of Fig 2A, we observed that, in the pre-activation state, NRC2 migrates as a single
189 protein species. However, upon co-expression with Rpi-amr3 and AVRamr3, there was a
190 pronounced shift in migration of NRC2 protein to slower migrating form of ~ 900 kDa (Figure 2C,
191 red asterisk). There were no changes in the size of NRC2^{EEE}-Myc protein itself in SDS-PAGE
192 gels (Fig 2C). This suggests that NRC2 proteins undergo protein oligomerization when Rpi-
193 amr3 recognize AVRamr3.

194 To determine whether this phenomenon occurs with other sensor NLRs, we tested migration
195 change of NRC2 in blue native-PAGE upon Rpi-amr1 activation. As with Rpi-amr3/AVRamr3-
196 mediated NRC2 oligomerization, we observed high molecular weight complexes of NRC2^{EEE}-
197 Myc in the presence of AVRamr1 and Rpi-amr1, but not in the presence of AVRamr3 and Rpi-
198 amr1, a non-cognate effector of Rpi-amr1 (Fig 2D, E). Thus, we conclude that although Rpi-
199 amr3 and Rpi-amr1 are different sensor NLRs that recognize different effectors, AVRamr3 and

200 AVRamr1, respectively, the resulting change of NRC2 is strikingly similar. In the companion
201 paper by Contreras *et al.*, distinct sensor NLRs such as Bs2 and Rx also induce similar changes
202 in NRC2 protein migration on blue native-PAGE.

203 To confirm that the high-molecular weight complex of NRC2 observed upon Rpi-amr1/AVRamr1
204 or Rpi-amr3/AVRamr3-mediated activation was indeed NRC2, we conducted 2-dimensional
205 PAGE. We analysed protein extracts from Agro-infiltrated *N. benthamiana* leaf samples on blue
206 native-PAGE as a first dimension, and then performed SDS-PAGE as a second dimension
207 analysis to dissociate protein complexes into individual protein components (Fig 3A). Without
208 Rpi-amr3 activation, most of the NRC2^{EEE} protein migrated faster to ~240 kDa, and migration
209 patterns were similar for Rpi-amr3, with the majority of the NRC2^{EEE} and Rpi-amr3 proteins
210 detected in the faster migrating portion (Fig 3B). When AVRamr3 activated Rpi-amr3, NRC2^{EEE}-
211 Myc migrated with a significant shift to ~900 kDa (Fig 3C, red asterisk). Migration of Rpi-amr3
212 shifted towards ~480 kDa (Fig 3C, blue asterisk), but we did not observe co-migration of Rpi-
213 amr3 with NRC2 oligomer (Fig 3C) at any of the time points we investigated. Our results
214 indicate that the helper NLR NRC2 forms a high-molecular weight complex upon activation, that
215 does not contain the sensor NLR Rpi-amr3.

216 **The NB-ARC domain of Rpi-amr3 is required for NRC2 oligomerization upon AVRamr3-
217 dependent activation of Rpi-amr3**

218 The NB-ARC (Nucleotide-binding domain shared by APAF1, R protein and CED-4) domain of
219 NLRs is known to bind the β -phosphate group of ATP and is required for function (Tameling *et*
220 *al*, 2002; Wang *et al.*, 2019a; Wang *et al*, 2019b). In ZAR1, the replacement of ADP with ATP in
221 this NB-ARC domain is crucial for oligomerization (Wang *et al.*, 2019a; Wang *et al.*, 2019b). We
222 tested whether mutation of the ATP-binding activity of Rpi-amr3 impairs binding with its cognate
223 effector AVRamr3 or with NRC2 oligomerization. The K182 residue of Rpi-amr3 lies within the
224 P-loop and mutating this residue to alanine leads to loss of HR in the presence of AVRamr3 (Fig
225 4A). When Rpi-amr3-HF immunoprecipitated samples were used to perform blue native-PAGE,
226 Rpi-amr3^{K182A}-HF showed two major protein complexes, indistinguishable from wild-type Rpi-
227 amr3 (Fig 4B). Co-immunoprecipitated AVRamr3-V5 also migrated to a similar position in the
228 gel as Rpi-amr3-HF and Rpi-amr3^{K182A}-HF (Fig 4C). Therefore, interaction between Rpi-amr3
229 and AVRamr3 is not impaired by mutation in the P-loop of Rpi-amr3, indicating that sensor
230 NLR-effector interaction is necessary but insufficient for defense activation.

231 Next, we tested for NRC2 oligomerization upon co-expression of Rpi-amr3^{K182A}-HF and
232 AVRamr3-V5. Co-expression of AVRamr3-V5 with Rpi-amr3-HF, but not with Rpi-amr3^{K182A}-HF,

233 induces NRC2^{EEE}-Myc oligomerization (Fig 4D). Therefore, while sensor NLR-effector
234 interaction is insufficient for NRC2 activation, the ATP-binding motif of the sensor NLR is
235 required for activating NRC2. We also observed low-abundance NRC2 forms that migrate at
236 intermediate sizes when co-expressed with Rpi-amr3^{K182A}-HF, smaller than those seen upon
237 defense activation by a functional sensor NLR (Fig 4D). Conceivably, these might represent
238 intermediate states of NRC2 activation.

239 **Multiple AVRAmr3 alleles recognized by Rpi-amr3 trigger NRC2 oligomerization**

240 AVRAmr3 is a conserved RXLR effector found in multiple *Phytophthora* species. Rpi-amr3 can
241 recognize multiple homologs of AVRAmr3 from different *Phytophthora* species, including
242 AVRAmr3 from *P. parasitica* (Lin *et al.*, 2021) (Fig 5A). In contrast, AVRAmr3 from *P. capsici* is
243 not recognized by Rpi-amr3 (Fig 5A, Fig EV3A) (Lin *et al.*, 2021).

244 Here, to study whether other recognized AVRAmr3 homolog can also activate the NRC2
245 resistosome, we tested for NRC2 oligomerization upon Rpi-amr3 activation with AVRAmr3
246 alleles from different *Phytophthora* species. NRC2^{EEE}-Myc oligomerizes in the presence of Rpi-
247 amr3-HF with *P. infestans* and *P. parasitica* AVRAmr3-GFP (Fig 5B) but not with *P. capsici*
248 AVRAmr3-GFP. The non-recognized truncations of AVRAmr3 allele AVRAmr3-T9-V5 (Fig EV5A)
249 also did not induce NRC2 oligomerization (Fig EV5B). This shows that NRC2 oligomerization
250 always results upon recognition of AVRAmr3 alleles by Rpi-amr3.

251 Previously, we showed that the recognized alleles of AVRAmr3-GFP from *P. parasitica* could be
252 co-immunoprecipitated by Rpi-amr3-HF, whereas AVRAmr3-GFP from *P. capsici* could not be
253 co-immunoprecipitated (Lin *et al.*, 2021). To test whether recognized alleles of AVRAmr3 can
254 form a complex with Rpi-amr3, Rpi-amr3-HF was immunoprecipitated from samples co-
255 expressing AVRAmr3-GFP from *P. parasitica*, and *P. capsici*. When these immunoprecipitates
256 were analyzed by blue native-PAGE, *P. infestans* AVRAmr3-GFP and *P. parasitica* AVRAmr3-
257 GFP migrated similarly, at both ~66 kDa and ~300 kDa (Fig 5C, Fig EV5C). However, no
258 signals were detected for *P. capsici* AVRAmr3 on blue native-PAGE, as Rpi-amr3-HF could not
259 co-immunoprecipitate the *P. capsici* allele of AVRAmr3 (Fig 5C, Fig EV5C). Rpi-amr3-HF co-
260 expressed with non-recognized alleles of AVRAmr3 also migrated as single protein species on
261 blue native-PAGE (Fig EV5D), further confirming that non-recognized homolog or truncation of
262 AVRAmr3 do not interact with Rpi-amr3.

263

264 **Discussion**

265 Here, we report that effector-dependent sensor NLR activation leads to oligomerization of the
266 NRC2 helper NLR. NRC2 oligomerization is dependent on a functional P-loop in the sensor
267 NLR, and on the cognate recognized effector. However, at the time points we analyzed, the
268 sensor NLR does not itself oligomerize upon interaction with the recognized effector. This
269 indicates an important difference in mode of activation between the sensor NLR and the helper
270 NLR.

271 We used here the transient expression of the *S. americanum* sensor NLRs Rpi-amr1 and Rpi-
272 amr3 with their cognate effectors AVRamr1 and AVRamr3 from *P. infestans*. The *N.*
273 *benthamiana* NRC proteins can support HR upon AVRamr3 recognition by Rpi-amr3 and
274 AVRamr1 recognition by Rpi-amr1 (Lin *et al.*, 2021; Witek *et al.*, 2021). To prevent cell death
275 upon effector-dependent sensor NLR activation, we used *N. benthamiana* NRC2 mutated within
276 its N-terminal MADA motif. NRC4^{L9E} mutated at the MADA motif activated either in an effector-
277 dependent manner or by autoactive mutation forms punctate structures in the cell membranes
278 (Duggan *et al.*, 2021) . This implies that the N-terminal MADA motif mutation of L9E/L13E/L17E
279 of NRC2 is likely to only affect any possible channel activity and prevent cell death but should
280 not compromise oligomerization. Contreras *et al.* (2022) show that activation of NRC2^{EEE}-Myc
281 by Rx results in enhanced association with the membrane fraction.

282 We investigated changes in the properties of sensor and helper NLRs using blue native-PAGE.
283 This method uses the property of Coomassie G-250 to bind to the hydrophobic surfaces and
284 basic amino acid residues of protein complexes without dissociating the proteins (Wittig *et al.*,
285 2006). Due to this binding, the effect of isoelectric point of protein complexes on migration within
286 the polyacrylamide gel becomes negligible (Wittig & Schagger, 2008). This enables the
287 resolution of different protein complexes based on their size. However, the binding capacity of
288 Coomassie G-250 may vary depending on protein properties, and therefore estimation of the
289 mass of the bands observed in the blue native-PAGE is not completely reliable (Wittig *et al.*,
290 2010) . Nevertheless, blue native-PAGE is a useful method that enables detection of significant
291 changes in molecular weight of protein complexes, as we showed for NRC2 and for the Rpi-
292 amr3/AVRamr3 complex. Furthermore, using blue native-PAGE, we were able to distinguish
293 effector-independent Rpi-amr1 and Rpi-amr3 self-association from the effector-bound Rpi-amr1
294 or Rpi-amr3 protein complexes (Fig 1). This highlights the utility of blue native-PAGE in
295 distinguishing heterogeneous protein complexes *in vivo*.

296 NRC helper NLRs contain the conserved MADA motif also found in ZAR1 (Adachi *et al.*, 2019).
297 Many sensor NLRs in the NRC-dependent superclade lack the MADA motif including Rpi-amr1
298 and Rpi-amr3 (Witek *et al.*, 2016; Witek *et al.*, 2021). The MADA motif of ZAR1, which also

299 overlaps with the α -helix that protrudes upon effector-dependent conformational change, is
300 required for the funnel formation that leads to membrane localization and induction of cell death
301 (Wang *et al.*, 2019a). Therefore, absence of the MADA motif in sensor NLRs suggests that
302 sensor NLRs do not participate in resistosome formation and in potential channel formation in
303 the membrane.

304 Rpi-amr1 and Rpi-amr3 belong to the NRC-dependent superclade and both can use NRC2 to
305 execute cell death and resistance (Witek *et al*, 2021; Lin *et al*, 2021). We found that both Rpi-
306 amr1 and Rpi-amr3 interact with their cognate effector independent of NRC2, and this
307 interaction with cognate effector induces NRC2 oligomerization. The NRC2^{EEE}-Myc
308 oligomerization patterns resulting from Rpi-amr1 and Rpi-amr3 activation were indistinguishable
309 (Fig 2C, D). In a companion paper (Contreras *et al*, 2022), the NRC-dependent CC-NLRs Bs2
310 and Rx were also shown to activate NRC2 oligomerization into slower migrating forms
311 indistinguishable from what we report here. This indicates that NRC2 oligomerization to ~900
312 kDa is a universal mode of action for NRC-dependent Solanaceae sensor NLRs, and further
313 supports the conclusion that sensor NLRs are not included in the NRC2 resistosome. Our
314 analysis with 2D-PAGE provides further evidence that Rpi-amr3 is not incorporated in the NRC2
315 resistosome (Fig 3C).

316 The NB-ARC domain is required for NLR function (Tamelink *et al.*, 2002). The ATP-binding P-
317 loop motif is known to be required for activation of Rx (Bendahmane *et al*, 2002), another NRC-
318 dependent sensor NLR. We found that similar to Rx, the P-loop motif of Rpi-amr3 is required for
319 cell death. Oligomerization of NRC2^{EEE} in the presence of AVRamr3 and Rpi-amr3 was lost
320 when we tested the P-loop mutant of Rpi-amr3 (Rpi-amr3^{K182A}) (Fig 4D). However, we also
321 found that Rpi-amr3^{K182A}-HF retains its interaction with AVRamr3 (Fig 4B, C). Therefore, a
322 mutation in the P-loop region does not alter the sensor NLR's capacity to interact with its
323 cognate effector, but instead affects its downstream signaling that provokes oligomerization of
324 helper NLRs. Recent structural analysis of CC-NLRs shed further light on the role of the NB-
325 ARC domain in its oligomerization. The release of ADP in exchange for ATP is required for the
326 NB-ARC domain-mediated packing of both ZAR1 and Sr35 molecules into resistosomes
327 (Förderer *et al.*, 2022; Wang *et al.*, 2019a).

328 In mammalian cells, NLRC4 is activated by NAIP2-mediated recognition of bacterial flagellin, or
329 NAIP5/6-mediated recognition of bacterial PrgJ (Zhao *et al*, 2011). The NAIP is incorporated
330 into the inflammasome and co-migrates with NLRC4 in non-denaturing PAGE (Kofoed & Vance,
331 2011). Ligand-bound NAIP undergoes a conformational change that leads to interaction and
332 subsequent intermolecular autoactivation of NLRC4 (Hu *et al*, 2015; Zhang *et al*, 2015). This

333 may explain the near-complete conversion of NLRC4 molecules to inflammasome (Kofoed &
334 Vance, 2011). We also observed near complete conversion of the majority of NRC2 molecules
335 into oligomers (Fig 2C, D). This may indicate that the conformational change in NRC2 upon Rpi-
336 amr3 activation is similar to NLRC4 oligomerization. The conformational change of NRC2
337 induced by Rpi-amr3/AVRamr3 protein complex may trigger self-propagation of interaction and
338 formation of a complete NRC2 resistosome. On the other hand, in contrast to NAIP/NLRC4
339 inflammasome formation, our data, and the data of Contreras et al (companion paper), indicate
340 that the activated sensor NLR is not stably incorporated into the activated NRC2 complex (Fig 2,
341 Fig 3).

342 To explain these observations, we propose a simple model, in which a transient interaction of
343 activated Rpi-amr3 or Rpi-amr1 with NRC2 converts inactive NRC2 into activated NRC2 that
344 can activate additional NRC2 protomers, enabling NRC2 oligomerization. This model is
345 depicted in cartoon form in Figure 6. In the pre-activated state, the sensor NLRs, such as Rpi-
346 amr3 or Rpi-amr1, reside in the cells mainly as monomers. Conceivably, additional proteins,
347 such as chaperones, could be bound to these monomeric NLRs. Upon secretion of effectors
348 from various *Phytophthora* species into the plant cell, some effectors (AVRamr3 in Fig 6)
349 interact with their recognizing sensor NLR (Rpi-amr3 in Fig 6). The formation of a stable
350 complex between effector and NLR induces activation and/or conformational change of the
351 sensor NLRs. Then, the activated sensor NLR interacts transiently with the helper NRC2,
352 triggering a conformational change, perhaps in an analogous manner to that by which an
353 activated NAIP triggers a conformational change in NLRC4, but without stably incorporating the
354 sensor NLR. The activated NRC can interact with, activate, and oligomerize with additional NRC
355 molecules, without the need to retain the interaction with the sensor NLR. Therefore, the
356 transiently interacting complex of sensor and helper NLR might be expected to be very low in
357 abundance and very short-lived. The ATP-binding P-loop motif of the sensor NLR is required for
358 activation of NRC2, conceivably due to the conformational change of the NB-ARC domain in the
359 sensor NLR. By analogy with ZAR1(Wang et al., 2019a), the activated NRC2 may form a
360 pentamer. We were not able to observe interaction between sensor and helper NLRs at the time
361 points we tested. This is likely due to low abundance and short half-life of these protein
362 complexes. Moreover, we cannot exclude the possibility that there may be additional proteins or
363 molecules that mediate signaling between sensor NLRs Rpi-amr3 (and Rpi-amr1) with helper
364 NLR NRC2, and this possibility will be investigated in future work.

365 Previously, we reported that Rpi-amr3 can recognize AVRamr3 homologs from 9 different
366 *Phytophthora* species, including *P. infestans*, *P. parasitica*, *P. cactorum*, *P. palmivora*, *P.*

367 *megakarya*, *P. litchi*, *P. sojae*, *P. lateralis* and *P. pluvialis*. *Rpi-amr3* associates only with the
368 HR-triggering AVRmr3 homologs. We further showed that *Rpi-amr3* confers resistance against
369 *P. infestans*, *P. parasitica* and *P. palmivora* in transgenic *N. benthamiana* lines (Lin *et al*, 2021).
370 In this study, we revealed the mechanism of *Rpi-amr3* activation, and found that the recognized
371 AVRmr3 homologs from *P. infestans*, and *P. parasitica* (but not the non-recognized AVRmr3
372 homolog from *P. capsici*) can provoke the appearance of a ~900 kDa NRC2 resistosome
373 through *Rpi-amr3* (Fig 5B).

374 Unlike genes encoding surface immune receptors, e.g. *EFR*, which retain function when
375 transferred between plant families (Lacombe *et al*, 2010), a limiting factor of NLR gene-based
376 resistance engineering is restricted taxonomic functionality (RTF) (Tai *et al.*, 1999). In many
377 cases, *NLR*-encoding genes can only confer resistance in closely related plant species. For
378 example, the bacterial spot disease resistance gene *Bs2* from pepper is not functional in
379 *Arabidopsis* (Tai *et al*, 1999). The identification of the NRC network (Wu *et al.*, 2017) and our
380 finding on NRC activation might help to break RTF and enable breeders to deploy *NLR* genes
381 across different plant families. Many *Phytophthora* species that carry recognized AVRmr3
382 infect plant species that lack NRC genes, such as *P. palmivora* infecting cacao, *P. cactorum*
383 infecting strawberry and *P. sojae* infecting soybean. Co-delivery of *Rpi-amr3* and NRC genes
384 into these plants might help to protect them against these *Phytophthora* pathogens.

385

386 **Materials and Methods**

387 **Plant materials and growth conditions**

388 The wild-type *Nicotiana benthamiana* and *NRC2*, *NRC3* and *NRC4* knockout *N. benthamiana*
389 line *nrc2/3/4.210.4.3* were used in this study (Wu *et al.*, 2020). The plants were grown in a
390 controlled environment room (CER), with 16 hours photoperiod, at 22 °C and 45-65% humidity.

391 **Constructs**

392 To clone the genes with different tags, all the ORFs (open reading frames) without stop codon
393 were cloned into a golden gate compatible level 0 vector (pICSL01005). Then these were fused
394 with different C-terminus tags and shuffled into a binary vector pICSL86977OD (with 35S
395 promoter and Ocs Terminator). The C-terminus tags used in this study are C-HisFlag
396 (PICSL50001), C-V5 (PICSL50012), C-Myc (PICSL50010), C-HA (PICSL50009), C-GFP
397 (PICSL50008), C-3xFlag (PICSL50007), NLUC-Flag (pICSL50047) and CLUC-Flag

398 (pICSL50048). All the constructs used in this study are listed in Table S1. The NRC^{EEE}-Myc
399 construct was cloned into pJK268c (Kourelis *et al*, 2020).

400 **Agrobacterium infiltration**

401 The binary constructs were transformed into *Agrobacterium* strain GV3101-pMP90 and stored
402 in a -80 °C freezer with 20% glycerol. Two days before the *Agrobacterium* infiltration, the
403 constructs were streaked out on solid L medium plate (with kanamycin and rifampicin) and
404 grown in a 28 °C incubator. For the *Agrobacterium* infiltration, 1 mM acetosyringone were added
405 into the infiltration buffer (MgCl₂-MES, 10 mM MgCl₂ and 10 mM MES, pH 5.6), then the
406 *Agrobacterium* were re-suspended into infiltration buffer, the OD₆₀₀ was adjusted to 0.5 and the
407 infiltration was performed 1 h later. For GUS-V5, we used OD600 =0.1; When AVRamr1-V5 and
408 AVRamr3-V5 were used in a same experiment, we reduced the AVRamr3 construct to
409 OD600=0.2. For the co-expression experiments, the *Agrobacterium* suspension were equally
410 mixed before infiltration.

411 **HR assay**

412 For the HR assay, four-weeks old *N. benthamiana* were used, the constructs in *Agrobacterium*
413 were infiltrated or co-infiltrated into the abaxial surface of *N. benthamiana* leaves. The HR
414 phenotype were scored and the photos were taken 3-4 days post *Agrobacterium* infiltration (dpi).

415 **Split Luciferase assay**

416 The split-luciferase assay was described previously (Lin *et al.*, 2021). In brief, p35S::*Rpi-amr1*-
417 Cluc::OcsT and p35S::*Avramr1*-Nluc::OcsT constructs were made and transformed into
418 *Agrobacterium* strain GV3101-pMP90. p35S::*Rpi-amr3*-Cluc::OcsT and p35S::*Avramr3*-
419 Nluc::OcsT constructs were used as controls. The constructs were expressed or co-expressed
420 in *nrc2/3/4* knockout *N. benthamiana* plants, OD₆₀₀=0.5. The leaves were infiltrated with 0.4 mM
421 luciferin on 100mM sodium citrate buffer (pH 5.6) at 3dpi, then the leaves were picked for
422 imaging with NightOWL II LB 983 in Vivo Imaging System. Two leaves were used for each test
423 and three independent experiments were performed with same results.

424 **Structure prediction using AlphaFold**

425 Protein structure of AVRamr1 was predicted using AlphaFold and ColabFold (Jumper *et al*,
426 2021; Mirdita *et al*, 2022), via <https://github.com/deepmind/alphafold/>. The structure was
427 visualized with ChimeraX (Pettersen *et al*, 2021), developed by the Resource for Biocomputing,
428 Visualization, and Informatics at the University of California, San Francisco, with support from

429 National Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and
430 Computational Biology, National Institute of Allergy and Infectious Diseases.

431 **Protein extraction**

432 Agrobacterium-infiltrated leaves were sampled with cork borer at 3 dpi. Ten disks were collected
433 for each sample and put into 2-ml eppendorf tubes with 2 tungsten beads, which were
434 immediately frozen in liquid nitrogen. Frozen samples were then ground in Geno/Grinder®
435 (SPEX SamplePrep) at 1,200 rpm for 2 min. Protein extraction buffer (Tris-Cl pH 7.5 50 mM,
436 NaCl 50 mM, Glycerol 10%, MgCl₂ 5 mM, 10 mM DTT, 0.2% NP-40, protease inhibitor cocktail)
437 was added in equal volume across samples to ensure equal protein concentration.
438 Centrifugation was performed at 13,000 rpm for 15 min and 5 min subsequently to remove cell
439 debris. For subsequent blue native-PAGE analysis, sample aliquots were immediately frozen in
440 liquid nitrogen.

441 **Immunoprecipitation and elution**

442 Flag-M2 beads (Sigma, A2220) were added to the protein extract after centrifugation and
443 incubated at 4°C for 2 h. After incubation, washing step with protein extraction buffer was
444 performed 5 times (2 times with extraction buffer containing NP-40 0.4%, then 3 times with
445 extraction buffer containing NP-40 0.2%) to ensure removal of non-specific binding proteins. For
446 elution of proteins, 3xFlag peptide (Sigma, F4799) were added to beads at concentration of 0.2
447 mg/ml and incubated for 1 h. Sample aliquots were made for blue native-PAGE analysis and
448 were immediately frozen in liquid nitrogen.

449 **SDS-PAGE and immunoblot**

450 Protein samples were incubated at 70°C for 10 min after adding 3x SDS sample buffer (stock
451 concentration 30% glycerol, 3% SDS, 93.75 mM Tris-Cl pH 6.8, 0.06% bromophenol blue).
452 These samples were loaded on SDS-PAGE gels (8% or 12%) and run at 90V. After dye front
453 reached the end, these gels were transferred with TransBlot (Biorad) at conditions of 1.0 mA for
454 30 min onto PVDF membranes. Transferred membranes were blocked with 5% skim milk in
455 TBST, and antibodies were added subsequently and incubated overnight at 4°C. The following
456 antibodies were used; Flag-HRP (Sigma, A8592), Myc-HRP (Sigma, 16-213), V5-HRP (Sigma,
457 V2260), HA-HRP (Roche, 12013819001), and GFP-HRP (Abcam, ab6663). Signals were
458 detected using ECL substrates (Thermo Fisher, 34580). After detection, membranes were
459 stained with Ponceau S solution (Sigma, P7170) to use as loading control. PageRuler™
460 Prestained Protein Ladder (Thermo Scientific, 26616) was used as molecular weight markers.

461 **Blue native-PAGE**

462 Blue native-PAGE was performed as indicated by the manufacturer. Protein extracts and
463 immunoprecipitation (IP) eluates were added with 4x NativePAGE™ Sample Buffer
464 (Invitrogen™, BN2003) and NativePAGE™ 5% G-250 Sample Additive (Invitrogen™, BN2004)
465 to a final concentration of 0.125%. Then, samples were loaded on NativePAGE™ Novex® 3–12%
466 Bis-Tris Gels (Invitrogen™, BN1001) and run at 150 V in cathode buffer containing Coomassie
467 G-250 (by adding NativePAGE™ Cathode Buffer Additive to 1/200 dilution, Invitrogen™,
468 BN2002 to NativePAGE™ Running Buffer, Invitrogen™, BN2001). NativeMark™ Unstained
469 Protein Standard (Invitrogen™, LC0725) or SERVA Native Marker (SERVA, 39219.01) were
470 loaded to predict the size of detected protein species.

471 **2D-PAGE**

472 Samples were run on blue native-PAGE and gel strips were cut for each lane. Gel strips were
473 put in 15 ml conical tubes and incubated with 3x SDS sample buffer containing 50 mM DTT for
474 15 min. These gel strips are then loaded onto 8% SDS-PAGE resolution gel. Corresponding
475 protein extracts prepared for SDS-PAGE were loaded together to serve as control. After SDS-
476 PAGE, transfer to PVDF membranes and immunoblots were performed as described above.

477 **Acknowledgements**

478 We thank members of the Jones lab and the Kamoun lab for their helpful comments and
479 discussions. H.-K.A. thanks Adam Bentham for his support on protein structure prediction data
480 analysis. We would like to thank Timothy Wells, from Horticultural Services at John Innes
481 Centre, for excellent care of the plants. We also wish to thank Mark Youles in TSL Synbio for
482 his support with Golden Gate cloning. H.-K.A. was supported by the ERC Advanced Grant
483 “ImmunitybyPairDesign” and core funding to J.D.G.J. from the Gatsby Charitable Foundation.
484 X.L and A.C.O.A were supported by BBSRC grant BB/P021646/1 and the Gatsby Charitable
485 Foundation.

486

487 **Author Contributions**

488 H.-K.A., X.L., and J.D.G.J. conceptualized, wrote, reviewed and edited the manuscript.
489 Experiment and analysis were performed by H.-K.A., X.L. and A.C.O.A. Methodology was
490 developed by H.-K.A., with L.D. Resources were provided by M.C., J.K., and S.K. J.D.G.J.
491 supervised and secured funding for the project.

492

493 **Conflict of Interest**

494 S.K. receives funding from industry and has filed patents on NLR biology.

495

496

497 **References**

498 Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E,
499 Bozkurt TO, Maqbool A *et al* (2019) An N-terminal motif in NLR immune receptors is functionally
500 conserved across distantly related plant species. *Elife* 8

501 Barragan AC, Weigel D (2021) Plant NLR diversity: the known unknowns of pan-NLRomes.
502 *Plant Cell* 33: 814-831

503 Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function
504 mutants in a nucleotide binding site-leucine rich repeat protein encoded at the *Rx* locus of
505 potato. *Plant J* 32: 195-204

506 Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M, Wang J, Zou M, Deng Y *et al* (2021) The ZAR1
507 resistosome is a calcium-permeable channel triggering plant immune signaling. *Cell* 184: 3528-
508 3541 e3512

509 Boutemy LS, King SRF, Win J, Hughes RK, Clarke TA, Blumenschein TMA, Kamoun S,
510 Banfield MJ (2011) Structures of *Phytophthora* RXLR effector proteins: a conserved but
511 adaptable fold underpins functional diversity. *J Biol Chem* 286: 35834-35842

512 Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG (2019) Diverse
513 NLR immune receptors activate defence via the RPW8-NLR NRG1. *New Phytol* 222: 966-980

514 Cesari S, Bernoux M, Moncquet P, Kroj T, Dodds PN (2014) A novel conserved mechanism
515 for plant NLR protein pairs: the "integrated decoy" hypothesis. *Front Plant Sci* 5: 606

516 Collier SM, Hamel LP, Moffett P (2011) Cell death mediated by the N-terminal domains of a
517 unique and highly conserved class of NB-LRR protein. *Mol Plant Microbe Interact* 24: 918-931

518 Contreras MP, Pai H, Tumtas Y, Duggan C, Yuen LH, Cruces AV, Kourelis J, Ahn HK, Wu CH,
519 Bozkurt TO *et al* (2022) Sensor NLR immune proteins activate oligomerization of their NRC
520 helper. *BioRxiv*

521 Cooke LR, Schepers HTAM, Hermansen A, Bain RA, Bradshaw NJ, Ritchie F, Shaw DS,
522 Evenhuis A, Kessel GJT, Wander JGN *et al* (2011) Epidemiology and integrated control of
523 potato late blight in Europe. *Potato Research* 54: 183-222

524 Derevnina L, Contreras MP, Adachi H, Upson J, Vergara Cruces A, Xie R, Sklenar J, Menke
525 FLH, Mugford ST, MacLean D *et al* (2021) Plant pathogens convergently evolved to counteract
526 redundant nodes of an NLR immune receptor network. *PLoS Biol* 19: e3001136

527 Duggan C, Moratto E, Savage Z, Hamilton E, Adachi H, Wu CH, Leary AY, Tumtas Y, Rothery
528 SM, Maqbool A *et al* (2021) Dynamic localization of a helper NLR at the plant-pathogen
529 interface underpins pathogen recognition. *Proc Natl Acad Sci U S A* 118

530 El Kasmi F, Chung EH, Anderson RG, Li J, Wan L, Eitas TK, Gao Z, Dangl JL (2017) Signaling
531 from the plasma-membrane localized plant immune receptor RPM1 requires self-association of
532 the full-length protein. *Proc Natl Acad Sci U S A* 114: E7385-E7394

533 Eubel H, Braun HP, Millar AH (2005) Blue-native PAGE in plants: a tool in analysis of protein-
534 protein interactions. *Plant Methods* 1: 11

535 Feehan JM, Castel B, Bentham AR, Jones JD (2020) Plant NLRs get by with a little help from
536 their friends. *Curr Opin Plant Biol* 56: 99-108

537 Förderer A, Li E, Lawson A, Deng Y-n, Sun Y, Logemann E, Zhang X, Wen J, Han Z, Chang J
538 *et al* (2022) A wheat resistosome defines common principles of immune receptor channels.
539 *bioRxiv*: 2022.2003.2023.485489

540 Hu M, Qi J, Bi G, Zhou JM (2020) Bacterial effectors induce oligomerization of immune receptor
541 ZAR1 *in vivo*. *Mol Plant* 13: 793-801

542 Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J (2015)
543 Structural and biochemical basis for induced self-propagation of NLRC4. *Science* 350: 399-404

544 Huang S, Jia A, Song W, Hessler G, Meng Y, Sun Y, Xu L, Laessle H, Jirschitzka J, Ma S *et al*
545 (2022) Identification and receptor mechanism of TIR-catalyzed small molecules in plant
546 immunity. *bioRxiv*: 2022.2004.2001.486681

547 Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Y, Walton WG, Furzer OJ, Lietzan AD, Sunil S,
548 Kempthorn K *et al* (2021) Plant "helper" immune receptors are Ca(2+)-permeable nonselective
549 cation channels. *Science* 373: 420-425

550 Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants
551 and animals. *Science* 354

552 Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL (2019) Help wanted: helper NLRs and plant
553 immune responses. *Curr Opin Plant Biol* 50: 82-94

554 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates
555 R, Zidek A, Potapenko A *et al* (2021) Highly accurate protein structure prediction with AlphaFold.
556 *Nature* 596: 583-589

557 Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L, Zambounis
558 A, Panabieres F *et al* (2015) The Top 10 oomycete pathogens in molecular plant pathology. *Mol*
559 *Plant Pathol* 16: 413-434

560 Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NLRPs
561 determines inflammasome specificity. *Nature* 477: 592-595

562 Kourelis J, Contreras MP, Harant A, Adachi H, Derevnina L, Wu C-H, Kamoun S (2021) The
563 helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-
564 surface receptor Cf-4. *bioRxiv*: 2021.2009.2028.461843

565 Kourelis J, Malik S, Mattinson O, Krauter S, Kahlon PS, Paulus JK, van der Hoorn RAL (2020)
566 Evolution of a guarded decoy protease and its receptor in solanaceous plants. *Nat Commun* 11:
567 4393

568 Lee DH, Lee HS, Belkhadir Y (2021) Coding of plant immune signals by surface receptors. *Curr*
569 *Opin Plant Biol* 62: 102044

570 Lin X, Olave-Achury A, Heal R, Witek K, Karki HS, Song T, Wu C-h, Adachi H, Kamoun S,
571 Vleeshouwers VGAA *et al* (2021) Rpi-amr3 confers resistance to multiple Phytophthora species
572 by recognizing a conserved RXLR effector. *bioRxiv*: 2021.2006.2010.447899

573 Lin X, Song T, Fairhead S, Witek K, Jouet A, Jupe F, Witek AI, Karki HS, Vleeshouwers V, Hein
574 I *et al* (2020) Identification of Avramr1 from Phytophthora infestans using long read and cDNA
575 pathogen-enrichment sequencing (PenSeq). *Mol Plant Pathol* 21: 1502-1512

576 Ma S, Lapin D, Liu L, Sun Y, Song W, Zhang X, Logemann E, Yu D, Wang J, Jirschitzka J *et al*
577 (2020) Direct pathogen-induced assembly of an NLR immune receptor complex to form a
578 holoenzyme. *Science* 370

579 Maekawa T, Cheng W, Spiridon LN, Toller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA,
580 Somssich IE *et al* (2011) Coiled-coil domain-dependent homodimerization of intracellular barley
581 immune receptors defines a minimal functional module for triggering cell death. *Cell Host*
582 *Microbe* 9: 187-199

583 Martin R, Qi T, Zhang H, Liu F, King M, Toth C, Nogales E, Staskawicz BJ (2020) Structure of
584 the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. *Science* 370

585 Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND
586 (1999) Plant disease resistance genes encode members of an ancient and diverse protein
587 family within the nucleotide-binding superfamily. *Plant J* 20: 317-332

588 Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M (2022) ColabFold -
589 Making protein folding accessible to all. *bioRxiv*: 2021.2008.2015.456425

590 Na Ayutthaya PP, Lundberg D, Weigel D, Li L (2020) Blue native polyacrylamide gel
591 electrophoresis (BN-PAGE) for the analysis of protein oligomers in plants. *Curr Protoc Plant Biol*
592 5: e20107

593 Ngou BPM, Ding P, Jones JD (2022a) Thirty years of resistance: Zig-zag through the plant
594 immune system. *Plant Cell*

595 Ngou BPM, Heal R, Wyler M, Schmid MW, Jones JDG (2022b) Concerted expansion and
596 contraction of immune receptor gene repertoires in plant genomes. *bioRxiv*:
597 2022.2001.2001.474684

598 Pearn JR, Mestre P, Lu R, Malcuit I, Baulcombe DC (2005) NRG1, a CC-NB-LRR protein,
599 together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. *Curr*
600 *Biol* 15: 968-973

601 Qi T, Seong K, Thomazella DPT, Kim JR, Pham J, Seo E, Cho MJ, Schultink A, Staskawicz BJ
602 (2018) NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in
603 *Nicotiana benthamiana*. *Proc Natl Acad Sci U S A* 115: E10979-E10987

604 Saile SC, Jacob P, Castel B, Jubic LM, Salas-Gonzales I, Backer M, Jones JDG, Dangl JL, El
605 Kasmi F (2020) Two unequally redundant "helper" immune receptor families mediate
606 *Arabidopsis thaliana* intracellular "sensor" immune receptor functions. *PLoS Biol* 18: e3000783

607 Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ
608 (1999) Expression of the *Bs2* pepper gene confers resistance to bacterial spot disease in
609 tomato. *Proc Natl Acad Sci U S A* 96: 14153-14158

610 Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ
611 (2002) The tomato *R* gene products I-2 and MI-1 are functional ATP binding proteins with
612 ATPase activity. *Plant Cell* 14: 2929-2939

613 Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H,
614 Cano LM, Lokossou A, Kessel G *et al* (2011) Understanding and exploiting late blight resistance
615 in the age of effectors. *Annu Rev Phytopathol* 49: 507-531

616 Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J (2019a)
617 Reconstitution and structure of a plant NLR resistosome conferring immunity. *Science* 364

618 Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW *et al* (2019b)
619 Ligand-triggered allosteric ADP release primes a plant NLR complex. *Science* 364

620 Witek K, Jupe F, Witek AI, Baker D, Clark MD, Jones JD (2016) Accelerated cloning of a potato
621 late blight-resistance gene using RenSeq and SMRT sequencing. *Nat Biotechnol* 34: 656-660

522 Witek K, Lin X, Karki HS, Jupe F, Witek AI, Steuernagel B, Stam R, van Oosterhout C, Fairhead
523 S, Heal R *et al* (2021) A complex resistance locus in *Solanum americanum* recognizes a
524 conserved *Phytophthora* effector. *Nat Plants* 7: 198-208

525 Wittig I, Beckhaus T, Wumaier Z, Karas M, Schagger H (2010) Mass estimation of native
526 proteins by blue native electrophoresis: principles and practical hints. *Mol Cell Proteomics* 9:
527 2149-2161

528 Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. *Nat Protoc* 1: 418-428

529 Wittig I, Schagger H (2008) Features and applications of blue-native and clear-native
530 electrophoresis. *Proteomics* 8: 3974-3990

531 Wu CH, Abd-EI-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S (2017)
532 NLR network mediates immunity to diverse plant pathogens. *Proc Natl Acad Sci U S A* 114:
533 8113-8118

534 Wu CH, Adachi H, De la Concepcion JC, Castells-Graells R, Nekrasov V, Kamoun S (2020)
535 NRC4 gene cluster is not essential for bacterial flagellin-triggered immunity. *Plant Physiol* 182:
536 455-459

537 Wu CH, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. *Science*
538 360: 1300-1301

539 Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X (2019) Differential regulation
540 of TNL-mediated immune signaling by redundant helper CNLs. *New Phytol* 222: 938-953

541 Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL *et al* (2015)
542 Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated
543 polymerization. *Science* 350: 404-409

544 Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome
545 receptors for bacterial flagellin and type III secretion apparatus. *Nature* 477: 596-600

546

547 **Figures**

548 **Figure 1.** Rpi-amr1 and Rpi-amr3 form a protein complex with AVRamr1 and AVRamr3,
549 respectively.

550 A. Schematic model of NRC-dependent resistance by sensor NLRs Rpi-amr1, Rpi-amr3 and
551 cognate effectors AVRamr1 and AVRamr3, respectively. Each domain is labelled and
552 represented with a different color. CC, coiled-coil; NB-ARC, nucleotide binding domain shared
553 by APAF-1, R genes, CED-4; LRR, Leucine-rich repeat; SP, signal peptide.

554 B. Rpi-amr1 and Rpi-amr3 form protein complex(es) *in vivo*. Protein extracts from *N.*
555 *benthamiana* *nrc2/3/4* KO plants were immunoprecipitated with anti-Flag antibodies and loaded
556 on blue native-PAGE. Rpi-amr3 co-migrating with AVRamr3 is indicated (*).

557 C. AVRamr1 and AVRamr3 form a protein complex with Rpi-amr1 and Rpi-amr3, respectively.
558 Anti-FLAG immunoprecipitated samples from Fig 1B were detected for AVRamr1-V5 and
559 AVRamr3-V5. AVRamr1 co-migrating with Rpi-amr1 and AVRamr3 co-migrating with Rpi-amr3
560 is indicated (*).

561 D. Rpi-amr1 and Rpi-amr3 can self-associate *in vivo*. Flag-tag immunoprecipitated samples
562 from Fig 1B were visualized for Rpi-amr1-HA and Rpi-amr3-HA.

563 Data information: SDS-boiled input protein extract and IP eluate samples were loaded onto
564 SDS-PAGE as control. Ponceau staining serve as loading control. Molecular weight markers
565 are shown on the right. Experiments were done at least three times with similar results.

566

567 **Figure 2.** NRC2^{EEE} oligomerizes upon effector detection by Rpi-amr3 and Rpi-amr1.

568 A. NRC2^{EEE}-Myc does not change protein complex formation of Rpi-amr3 and AVRamr3. Blue
569 native-PAGE loading of protein extracts from *nrc2/3/4* KO *N. benthamiana* plants after
570 immunoprecipitation with anti-Flag antibody. Co-migration of Rpi-amr3-HF and AVRamr3-V5
571 are indicated (*). Same samples were loaded twice on a blue native-PAGE gel, transferred into
572 one membrane, and only the immunoblotting step was performed separately.

573 B. NRC2^{EEE}-Myc does not alter association between Rpi-amr3 and AVRamr3. Samples of Fig
574 2A were SDS-boiled and loaded on SDS-PAGE.

575 C. NRC2^{EEE}-Myc is oligomerized upon effector-dependent activation of Rpi-amr3. Protein
576 lysates from Fig 2A were loaded on blue native-PAGE. SDS-boiled protein lysate samples serve
577 as control for actual size of NRC2^{EEE}-Myc. Oligomerized NRC2^{EEE}-Myc is indicated (*).

578 D. NRC2^{EEE}-Myc oligomerizes upon effector-dependent activation of Rpi-amr1. Protein lysates
579 from *nrc2/3/4* knockout *N. benthamiana* plants were loaded on blue native-PAGE. Oligomerized
580 NRC2^{EEE}-Myc is indicated (*).

581 E. Samples from Fig 2D were SDS-boiled and loaded on SDS-PAGE. Protein accumulation of
582 Rpi-amr1-Flag, NRC2^{EEE}-Myc, AVRamr1-V5 and AVRamr3-V5 are shown.

583 Data information: Ponceau staining serve as loading control for panels B, C, and E. Molecular
584 weight markers are shown on the right. Experiments were done at least three times with similar
585 results.

586

587 **Figure 3.** Rpi-amr3 is not present in oligomerized NRC2 protein complex.

588 A. Experimental design for 2D-PAGE (blue native-PAGE/SDS-PAGE). Agro-infiltrated *nrc2/3/4*
589 KO *N. benthamiana* plants were collected at 3dpi for protein extraction. Protein extracts were
590 loaded on blue native-PAGE (1D) to separate high molecular weight (HMW) protein complexes
591 (hypothesized as a pentamer) from low molecular weight (LMW) protein complexes.
592 Subsequently, blue native-PAGE gels were loaded on SDS-PAGE (2D) for separation of protein
593 complexes into individual proteins.

594 B. NRC2^{EEE} and Rpi-amr3 migrate as monomers in the absence of effector. *N. benthamiana*
595 *nrc2/3/4* KO plants were transiently infiltrated with Rpi-amr3-HF, NRC2^{EEE}-Myc and GUS-V5
596 followed by 2D-PAGE. Molecular weight markers for blue native-PAGE are labelled on top, and
597 SDS-PAGE markers are labelled on the right. Ponceau S staining of rubisco large subunit
598 serves as control. NRC2^{EEE}-Myc protein complex between 146~242 kDa is indicated (*). Rpi-
599 amr3-HF protein complex between 146~242 kDa is also indicated (*).

700 C. *N. benthamiana* *nrc2/3/4* KO plants were transiently infiltrated with Rpi-amr3-HF, NRC2^{EEE}-
701 Myc and AVRamr3-V5 followed by 2D-PAGE. Molecular weight markers for blue native-PAGE
702 are labelled on top, and SDS-PAGE markers are labelled on the right. NRC2^{EEE}-Myc protein
703 complex >720 kDa is indicated (*). Rpi-amr3-HF protein complex ~480 kDa is also indicated (*).

704 Data information: Ponceau S staining of rubisco large subunit serves as control. Experiments
705 were repeated at least 3 times with similar results. Protein lysates boiled in SDS were loaded on
706 the same gel as control for size (SDS input).

707

708 **Figure 4.** P-loop of Rpi-amr3 is required for NRC2^{EEE} oligomerization.

709 A. P-loop of Rpi-amr3 is required for AVRamr3-dependent HR in *N. benthamiana*.
710 Representative leaf phenotype of HR (hypersensitive response) in wild-type *N. benthamiana*. At
711 least 20 leaves were tested, and rates of HR appearance are indicated in parentheses.
712 B. P-loop of Rpi-amr3 is dispensable for association with AVRamr3. Protein extracts from *N.*
713 *benthamiana nrc2/3/4* KO plants were immunoprecipitated with anti-Flag antibody and blue
714 native-PAGE was performed. Membranes were immunoblotted with anti-Flag.
715 C. AVRamr3 associates with both wild-type Rpi-amr3 and P-loop mutant Rpi-amr3^{K182A}. Protein
716 extracts from *N. benthamiana nrc2/3/4* KO plants were immunoprecipitated with anti-Flag
717 antibody and blue native-PAGE was performed. Membranes were immunoblotted with anti-V5.
718 E. NRC2^{EEE}-Myc requires functional P-loop of Rpi-amr3 for oligomerization. Protein lysates from
719 *N. benthamiana nrc2/3/4* KO plants were used to perform blue native-PAGE. Membranes were
720 immunoblotted with anti-Myc.
721 Data information: SDS-boiled samples of input protein extract and IP eluates were loaded onto
722 SDS-PAGE as control. Ponceau staining serves as loading control. Molecular weight markers
723 are shown on the right. Experiments were done at least three times with similar results.

724
725 **Figure 5.** Recognized AVRamr3 alleles from different *Phytophthora* species can trigger
726 oligomerization of NRC2^{EEE}.
727 A. Cartoon depicting different alleles of AVRamr3 from different *Phytophthora* species,
728 *Phytophthora infestans*, *P. capsici*, and *P. parasitica*. Recognition of the corresponding alleles
729 by Rpi-amr3, and thus occurrence of HR is indicated as + (recognition) or – (no recognition).
730 B. NRC2^{EEE}-Myc oligomerizes in recognition-dependent manner. Protein lysates from *N.*
731 *benthamiana nrc2/3/4* KO transiently expressing NRC2^{EEE}-Myc, Rpi-amr3-HF and AVRamr3
732 alleles from *P. infestans*, *P. capsici*, and *P. parasitica* were loaded on blue native-PAGE.
733 C. Recognition is correlated with interaction and protein complex formation of AVRamr3 with
734 Rpi-amr3. Protein extracts from Fig 5B were immunoprecipitated with anti-Flag antibody,
735 separated on blue native-PAGE, and AVRamr3-GFP proteins of *P. infestans*, *P. capsici*, and *P.*
736 *parasitica* were visualized.
737 Data information: SDS-boiled input and IP eluates were loaded onto SDS-PAGE as control.
738 Ponceau staining serves as loading control. Molecular markers are indicated on the right.
739 Experiments were done at least three times with similar results.

740 **Figure 6.** Model for activation of helper NLR NRC2 upon recognition of AVRAmr3 by Rpi-amr3.
741 Interaction with AVRAmr3 converts Rpi-amr3 into an activated form (indicated by an *) that can
742 interact with and activate NRC2 into an activated form that triggers activation of additional
743 NRC2 protomers, enabling assembly of an NRC2 resistosome.

744

745 **Expanded View Figures**

746 **Figure EV1.** AVRAmr1 is an RxLR effector with WY domains.

747 A. Predicted structure of AVRAmr1 indicate 3 WY domains. Protein structures were generated
748 using AlphaFold and visualized using ChimeraX software. Confidence level of b factors are
749 indicated in colours.

750 B. WY3 domain of AVRAmr1 shows conserved structure as well as the "WY" residues.
751 Conserved α -helices of WY domain and the tryptophan (220W) and tyrosine (252Y) residues
752 that comprise the hydrophobic core of the WY domains are indicated.

753 C. Predicted IDDT plot for AVRAmr1 structure prediction.

754 D. Predicted aligned error plot for AVRAmr1 structure prediction.

755

756 **Figure EV2.** AVRAmr1 interacts with Rpi-amr1 *in planta*.

757 A. Rpi-amr1 recognizes AVRAmr1 and induces HR. Wild-type *N. benthamiana* plants were
758 transiently infiltrated, and leaf samples were imaged at 5 dpi for HR. Experiment was performed
759 at least three times with similar results.

760 B. Rpi-amr1 interacts with AVRAmr1 *in planta*. Constructs with truncations of luciferase (Nluc or
761 Cluc) were transiently expressed in *nrc2/3/4* KO *N. benthamiana* plants and imaged at 3 dpi.

762

763 **Figure EV3.** Defense mechanisms initiated via NRC2-Myc, but not NRC2^{EEE}-Myc, lead to
764 degradation of Rpi-amr3 and AVRAmr3.

765 A. NRC2-Myc co-expression leads to degradation of Rpi-amr3 and AVRAmr3.
766 Immunoprecipitation with anti-Flag antibody of protein extracts in *nrc2/3/4* knockout *N.*
767 *benthamiana* plants. Aliquot of samples were SDS-boiled and loaded on SDS-PAGE.

768 B. IP Samples from Fig EV3A were loaded on blue native-PAGE. Rpi-amr3 and AVRAmr3
769 complex is indicated (*).

770 Data information: Ponceau staining serves as loading control for panel A. Molecular markers
771 are shown on the right. Similar results were observed at least three times.

772

773 **Figure EV4.** AVRmr3-V5 and NRC2^{EEE}-Myc are not affected by co-expression of each other.

774 Protein extracts from *nrc2/3/4* knockout *N. benthamiana* plants expressing AVRmr3-V5 and/or
775 NRC2^{EEE}-Myc were loaded on blue native-PAGE. Aliquot of the protein extracts that were
776 treated with SDS-boiling serve as control. Ponceau staining serves as loading control.
777 Molecular markers are indicated on the right. Experiments were repeated at three times with
778 similar results.

779

780 **Figure EV5.** Non-recognized alleles of AVRmr3 do not trigger NRC2 oligomerization and do
781 not interact with Rpi-amr3.

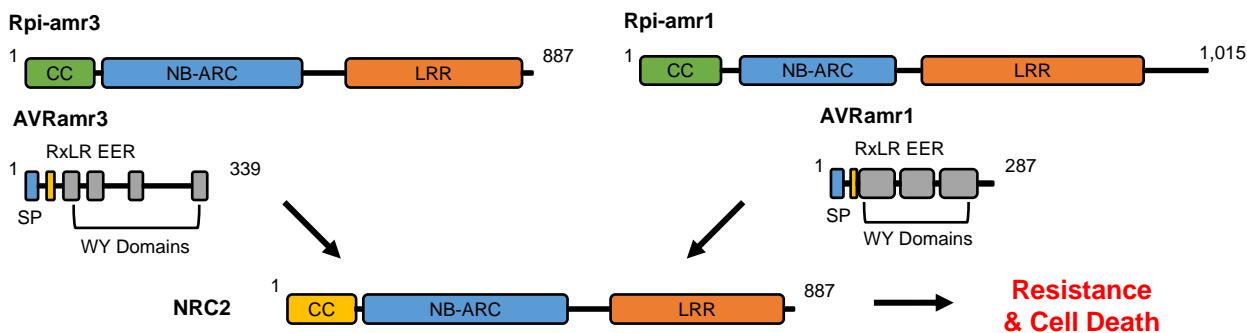
782 A. Schematic depiction of AVRmr3 from *Phytophthora infestans*, a truncated version of
783 AVRmr3 (AVRmr3 T9), and AVRmr3 from *P. capsici*. Recognition of the corresponding
784 AVRmr3 proteins by Rpi-amr3, and thus occurrence of HR is indicated as + (recognition) or –
785 (no recognition).

786 B. NRC2^{EEE}-Myc oligomerizes in recognition-dependent manner. Protein extracts from *N.*
787 *benthamiana* *nrc2/3/4* *KO* were loaded on blue-native PAGE.

788 C. Recognition is correlated with interaction and protein complex formation of AVRmr3 with
789 Rpi-amr3. Protein extracts from Fig EV3B were immunoprecipitated with anti-Flag antibody and
790 were loaded on blue native-PAGE.

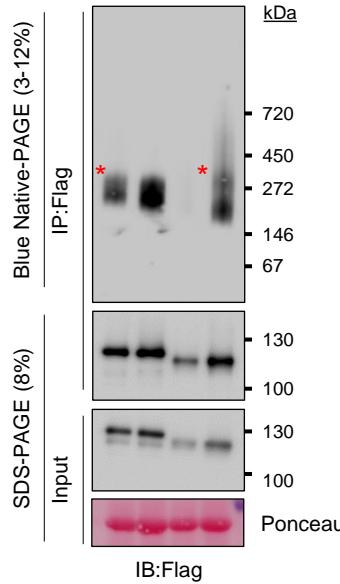
791 D. Recognition is correlated with interaction and protein complex formation of Rpi-amr3 with
792 AVRmr3. Protein extracts from Fig EV3B were immunoprecipitated with anti-Flag antibody and
793 were loaded on blue native-PAGE.

794 Data information: SDS-boiled input and IP eluates were loaded onto SDS-PAGE as control.
795 Ponceau staining serves as loading control. Molecular markers are indicated on the right.
796 Experiments were done at least three times with similar results. Ponceau loading for Fig EV5D
797 was same as with Fig EV5C.

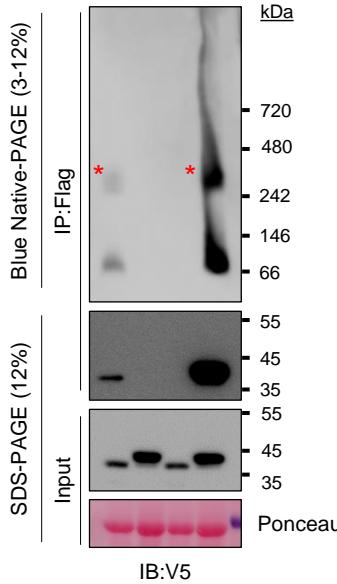

798

799 **Tables and their legends**

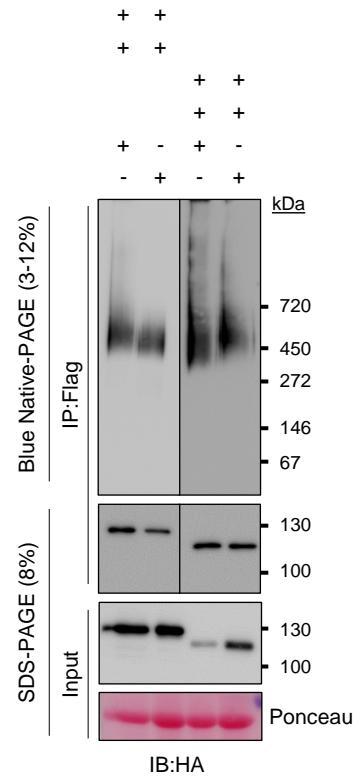
800 **Table S1.** Constructs used in this study.


Figure 1

A



B


Rpi-amr1-Flag	+	+
Rpi-amr1-HA	+	+
Rpi-amr3-HF	+	+
Rpi-amr3-HA	+	+
AVRAmr1-V5	+	-
AVRAmr3-V5	-	+
	-	-

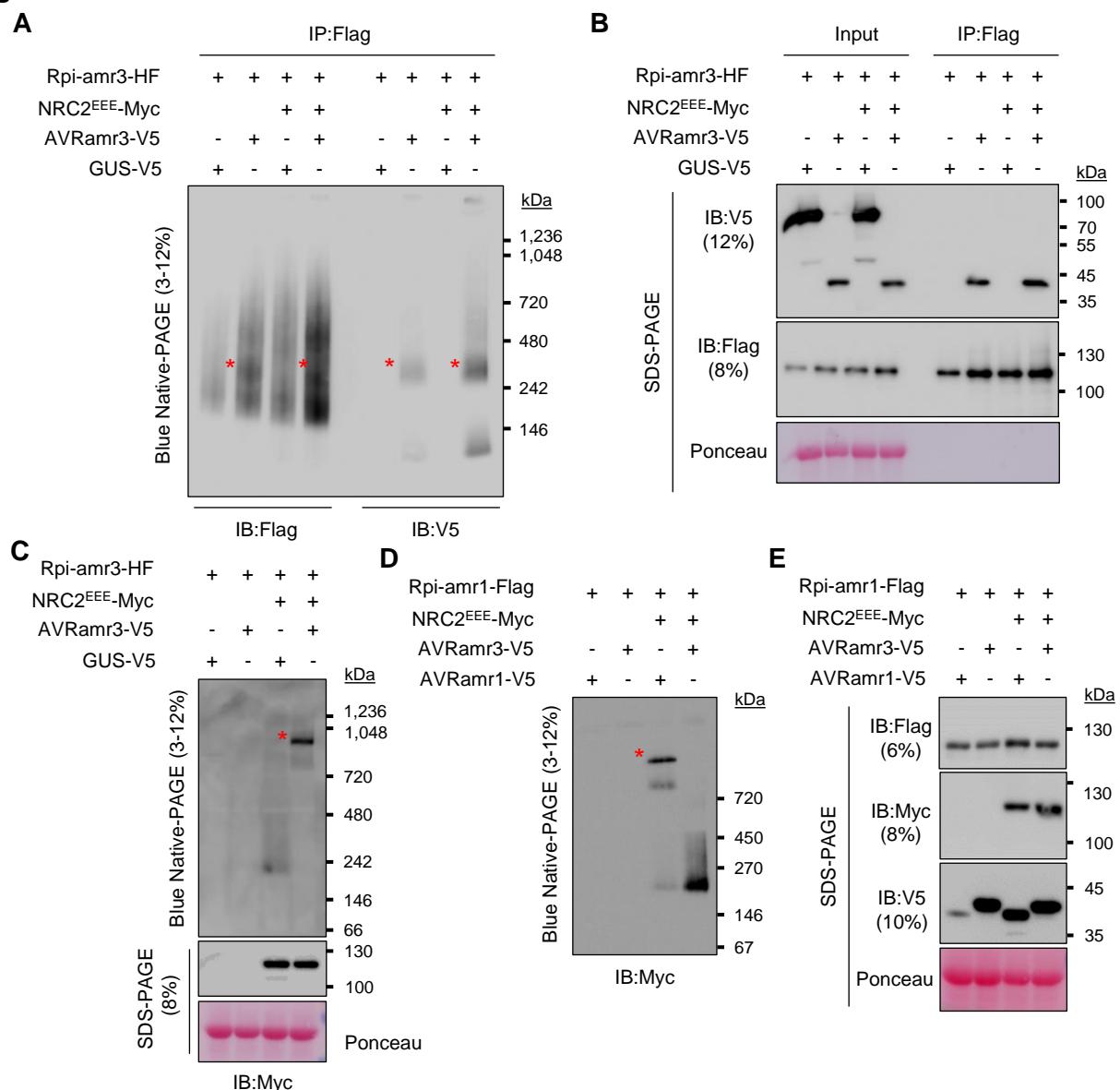
C

D

Resistance & Cell Death

Figure 1. Rpi-amr1 and Rpi-amr3 form a protein complex with AVRAmr1 and AVRAmr3, respectively.

A. Schematic model of NRC-dependent resistance by sensor NLRs Rpi-amr1, Rpi-amr3 and cognate effectors AVRAmr1 and AVRAmr3, respectively. Each domain is labelled and represented with a different color. CC, coiled-coil; NB-ARC, nucleotide binding domain shared by APAF-1, R genes, CED-4; LRR, Leucine-rich repeat; SP, signal peptide.


B. Rpi-amr1 and Rpi-amr3 form protein complex(es) *in vivo*. Protein extracts from *N. benthamiana* *nrc2/3/4* KO plants were immunoprecipitated with anti-Flag antibodies and loaded on blue native-PAGE. Rpi-amr3 co-migrating with AVRAmr3 is indicated (*).

C. AVRAmr1 and AVRAmr3 form a protein complex with Rpi-amr1 and Rpi-amr3, respectively. Anti-FLAG immunoprecipitated samples from Fig 1B were detected for AVRAmr1-V5 and AVRAmr3-V5. AVRAmr1 co-migrating with Rpi-amr1 and AVRAmr3 co-migrating with Rpi-amr3 is indicated (*).

D. Rpi-amr1 and Rpi-amr3 can self-associate *in vivo*. Flag-tag immunoprecipitated samples from Fig 1B were visualized for Rpi-amr1-HA and Rpi-amr3-HA.

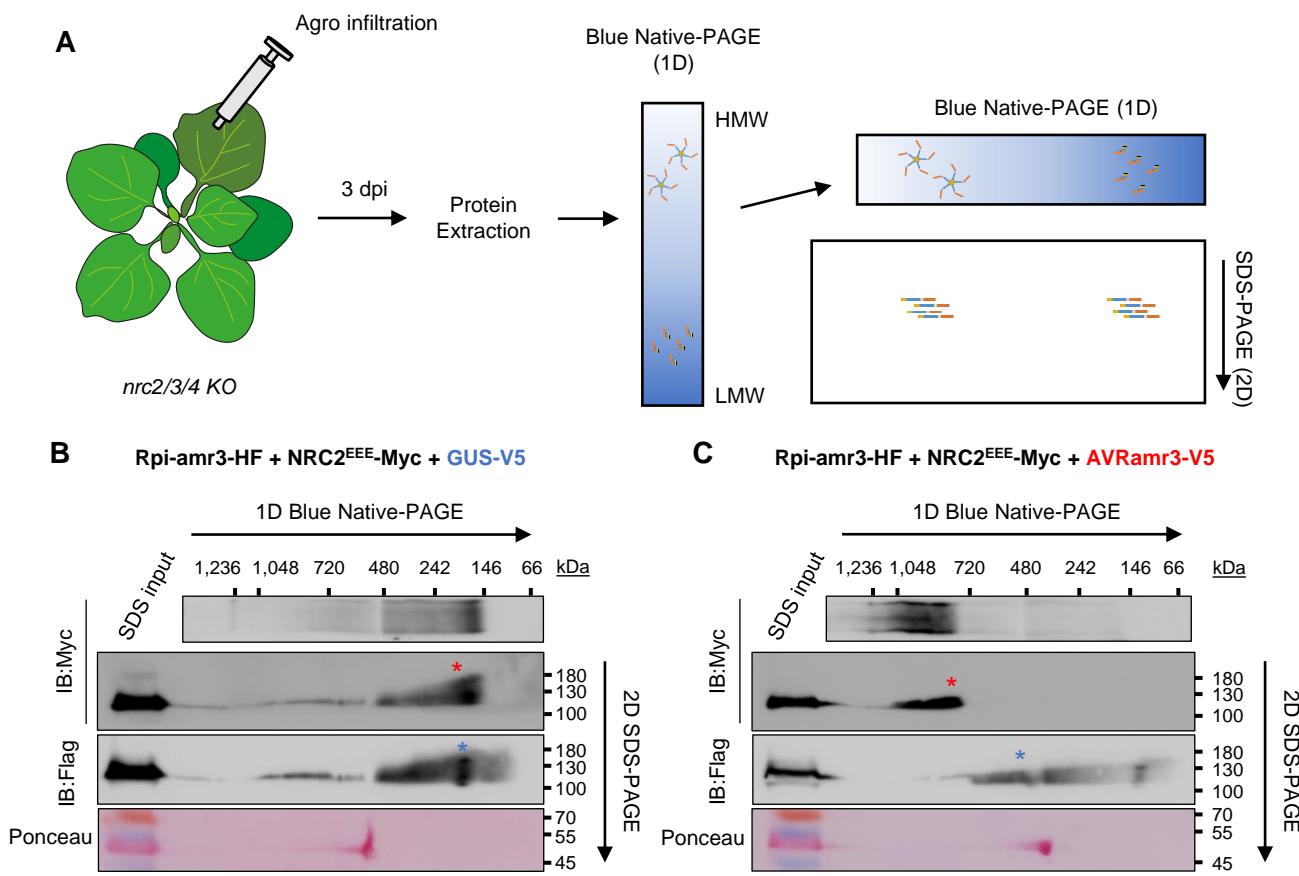
Data information: SDS-boiled input protein extract and IP eluate samples were loaded onto SDS-PAGE as control. Ponceau staining serve as loading control. Molecular weight markers are shown on the right. Experiments were done at least three times with similar results.

Figure 2

Figure 2. NRC2^{EEE} oligomerizes upon effector detection by Rpi-amr3 and Rpi-amr1.

A. NRC2^{EEE}-Myc does not change protein complex formation of Rpi-amr3 and AVRamr3. Blue native-PAGE loading of protein extracts from *nrc2/3/4 KO* *N. benthamiana* plants after immunoprecipitation with anti-Flag antibody. Co-migration of Rpi-amr3-HF and AVRamr3-V5 are indicated (*). Same samples were loaded twice on a blue native-PAGE gel, transferred into one membrane, and only the immunoblotting step was performed separately.

B. NRC2^{EEE}-Myc does not alter association between Rpi-amr3 and AVRamr3. Samples of Fig 2A were SDS-boiled and loaded on SDS-PAGE.


C. NRC2^{EEE}-Myc is oligomerized upon effector-dependent activation of Rpi-amr3. Protein lysates from Fig 2A were loaded on blue native-PAGE. SDS-boiled protein lysate samples serve as control for actual size of NRC2^{EEE}-Myc. Oligomerized NRC2^{EEE}-Myc is indicated (*).

D. NRC2^{EEE}-Myc oligomerizes upon effector-dependent activation of Rpi-amr1. Protein lysates from *nrc2/3/4* knockout *N. benthamiana* plants were loaded on blue native-PAGE. Oligomerized NRC2^{EEE}-Myc is indicated (*).

E. Samples from Fig 2D were SDS-boiled and loaded on SDS-PAGE. Protein accumulation of Rpi-amr1-Flag, NRC2^{EEE}-Myc, AVRamr1-V5 and AVRamr3-V5 are shown.

Data information: Ponceau staining serve as loading control for panels B, C, and E. Molecular weight markers are shown on the right. Experiments were done at least three times with similar results.

Figure 3

Figure 3. Rpi-amr3 is not present in oligomerized NRC2 protein complex.

A. Experimental design for 2D-PAGE (blue native-PAGE/SDS-PAGE). Agro-infiltrated *nrc2/3/4* KO *N. benthamiana* plants were collected at 3dpi for protein extraction. Protein extracts were loaded on blue native-PAGE (1D) to separate high molecular weight (HMW) protein complexes (hypothesized as a pentamer) from low molecular weight (LMW) protein complexes. Subsequently, blue native-PAGE gels were loaded on SDS-PAGE (2D) for separation of protein complexes into individual proteins.

B. NRC2^{EEE} and Rpi-amr3 migrate as monomers in the absence of effector. *N. benthamiana* *nrc2/3/4* KO plants were transiently infiltrated with Rpi-amr3-HF, NRC2^{EEE}-Myc and GUS-V5 followed by 2D-PAGE. Molecular weight markers for blue native-PAGE are labelled on top, and SDS-PAGE markers are labelled on the right. Ponceau S staining of rubisco large subunit serves as control. NRC2^{EEE}-Myc protein complex between 146–242 kDa is indicated (*). Rpi-amr3-HF protein complex between 146~242 kDa is also indicated (*).

C. *N. benthamiana* *nrc2/3/4* KO plants were transiently infiltrated with Rpi-amr3-HF, NRC2^{EEE}-Myc and AVRamr3-V5 followed by 2D-PAGE. Molecular weight markers for blue native-PAGE are labelled on top, and SDS-PAGE markers are labelled on the right. NRC2^{EEE}-Myc protein complex >720 kDa is indicated (*). Rpi-amr3-HF protein complex ~480 kDa is also indicated (*).


Data information: Ponceau S staining of rubisco large subunit serves as control. Experiments were repeated at least 3 times with similar results. Protein lysates boiled in SDS were loaded on the same gel as control for size (SDS input).

Figure 4

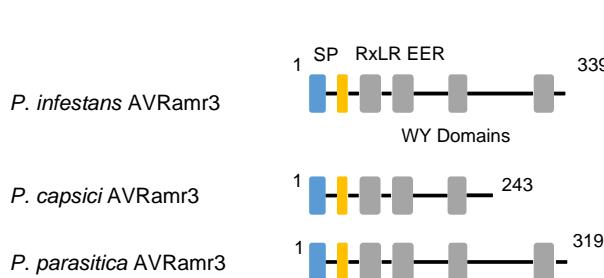
A

B **C** **D**

Figure 4. P-loop of Rpi-amr3 is required for NRC2^{EEE} oligomerization.

A. P-loop of Rpi-amr3 is required for AVRamr3-dependent HR in *N. benthamiana*. Representative leaf phenotype of HR (hypersensitive response) in wild-type *N. benthamiana*. At least 20 leaves were tested, and rates of HR appearance are indicated in parentheses.

B. P-loop of Rpi-amr3 is dispensable for association with AVRamr3. Protein extracts from *N. benthamiana* *nrc2/3/4* KO plants were immunoprecipitated with anti-Flag antibody and blue native-PAGE was performed. Membranes were immunoblotted with anti-Flag.


C. AVRamr3 associates with both wild-type Rpi-amr3 and P-loop mutant Rpi-amr3^{K182A}. Protein extracts from *N. benthamiana* *nrc2/3/4* KO plants were immunoprecipitated with anti-Flag antibody and blue native-PAGE was performed. Membranes were immunoblotted with anti-V5.

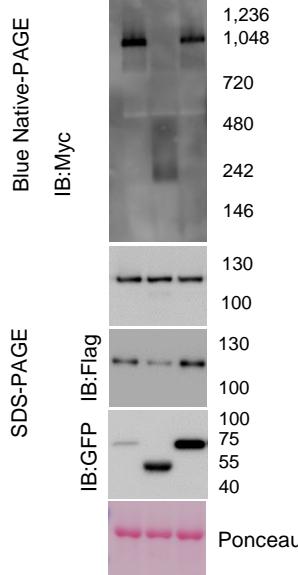
E. NRC2^{EEE}-Myc requires functional P-loop of Rpi-amr3 for oligomerization. Protein lysates from *N. benthamiana* *nrc2/3/4* KO plants were used to perform blue native-PAGE. Membranes were immunoblotted with anti-Myc.

Data information: SDS-boiled samples of input protein extract and IP eluates were loaded onto SDS-PAGE as control. Ponceau staining serves as loading control. Molecular weight markers are shown on the right. Experiments were done at least three times with similar results.

Figure 5

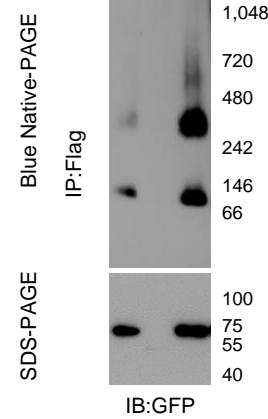
A

HR


+

-

+

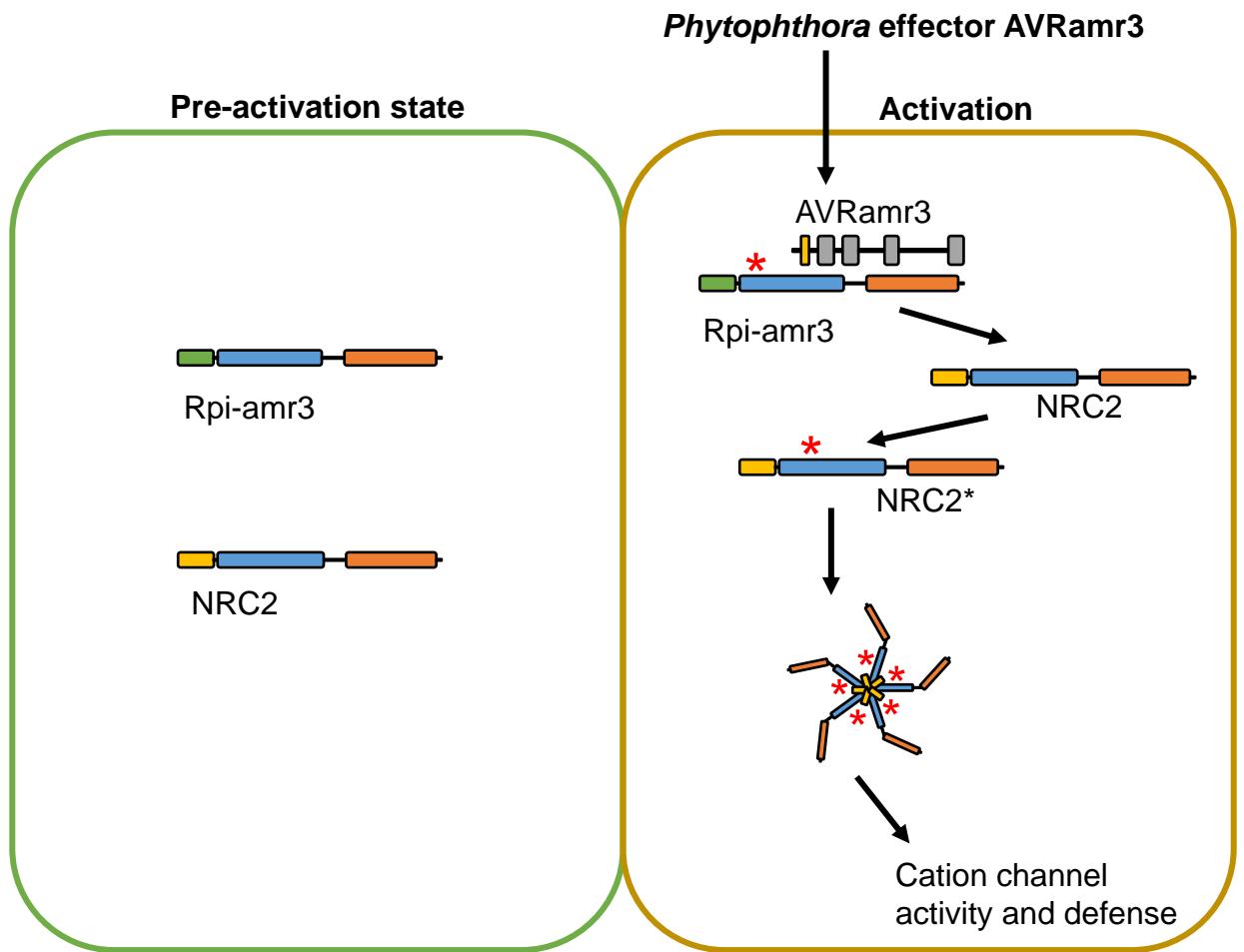

B

	NRC2 ^{EEE} -Myc	+	+	+
	Rpi-amr3-HF	+	+	+
<i>P. infestans</i> AVR3-GFP		+		
<i>P. capsici</i> AVR3-GFP			+	
<i>P. parasitica</i> AVR3-GFP				+

C

	NRC2 ^{EEE} -Myc	+	+	+
	Rpi-amr3-HF	+	+	+
<i>P. infestans</i> AVR3-GFP		+		
<i>P. capsici</i> AVR3-GFP			+	
<i>P. parasitica</i> AVR3-GFP				+

Figure 5. Recognized AVR3 alleles from different *Phytophthora* species can trigger oligomerization of NRC2^{EEE}.


A. Cartoon depicting different alleles of AVR3 from different *Phytophthora* species, *Phytophthora infestans*, *P. capsici*, and *P. parasitica*. Recognition of the corresponding alleles by Rpi-amr3, and thus occurrence of HR is indicated as + (recognition) or - (no recognition).

B. NRC2^{EEE}-Myc oligomerizes in recognition-dependent manner. Protein lysates from *N. benthamiana* *nrc2/3/4* KO transiently expressing NRC2^{EEE}-Myc, Rpi-amr3-HF and AVR3 alleles from *P. infestans*, *P. capsici*, and *P. parasitica* were loaded on blue native-PAGE.

C. Recognition is correlated with interaction and protein complex formation of AVR3 with Rpi-amr3. Protein extracts from Fig 5B were immunoprecipitated with anti-Flag antibody, separated on blue native-PAGE, and AVR3-GFP proteins of *P. infestans*, *P. capsici*, and *P. parasitica* were visualized.

Data information: SDS-boiled input and IP eluates were loaded onto SDS-PAGE as control. Ponceau staining serves as loading control. Molecular markers are indicated on the right. Experiments were done at least three times with similar results.

Figure 6

Figure 6. Model for activation of helper NLR NRC2 upon recognition of AVRamr3 by Rpi-amr3. Interaction with AVRamr3 converts Rpi-amr3 into an activated form (indicated by an *) that can interact with and activate NRC2 into an activated form that triggers activation of additional NRC2 protomers, enabling assembly of an NRC2 resistosome.