

Jointly analyzing the association of human milk nutrients with cognition and temperament traits during the first 6 months of life

1 Tengfei Li^{1, 2}, Tinu M. Samuel³, Ziliang Zhu⁴, Brittany Howell⁵, Seoyoon Cho⁴, Kristine
2 Baluyot², Heather Hazlett⁶, Jed T. Elison⁷, Di Wu⁸, Jonas Hauser⁹, Norbert Sprenger⁹, Hongtu
3 Zhu^{2,4}, Weili Lin^{1,2,*}

4 ¹Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

5 ²Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC,
6 USA

7 ³Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland.

8 ⁴Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

9 ⁵Fralin Biomedical Research Institute at VTC, Department of Human Development and Family
10 Science, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA

11 ⁶Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,
12 USA

13 ⁷Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA

14 ⁸Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North
15 Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

16 ⁹Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland

17 *** Correspondence:**

18 Weili Lin, Ph.D.

19 Biomedical Research Imaging Center

20 University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

21 E-mail: weili_lin@med.unc.edu

22 **Keywords:** human milk, cognition and temperament, Mullen Scales of Early Learning, IBQ,
23 receptive language, Surgency, ARA, DHA

24 **Abstract**

25 Early dietary exposure via human milk (HM) components offers a window of opportunity to support
26 cognitive and temperamental development. While several studies have focused on associations of few
27 pre-selected HM components with cognition and temperament, it is highly plausible that HM
28 components synergistically and jointly support cognitive and behavioral development in early life.
29 We aimed to discern the combined associations of a wide array of HM nutrients with cognition and
30 temperament during the first six months of life and explore if there were persistent effects up to 18
31 months old, when HM is the primary source of an infant's nutrition. The Mullen Scales of Early
32 Learning and Infant Behavior Questionnaires-Revised were used to assess cognition and
33 temperament, respectively, of fifty-four exclusively/predominantly breastfed infants in the first 6

34 months of life, whose follow-ups were conducted at 6-9, 9-12 and 12-18 months old. HM samples
35 were obtained from the mothers of the participants at less than 6 months of life and analyzed for fatty
36 acids (total monounsaturated fatty acids, polyunsaturated fatty acid, total saturated fatty acid (TSFA),
37 arachidonic acid (ARA), docosahexaenoic acid (DHA), ARA/DHA, omega-6/omega-3
38 polyunsaturated fatty acids ratio (n-6/n-3)), phospholipids (phosphatidylcholine,
39 phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin) and choline (free choline,
40 phosphocholine (PCho), glycerophosphocholine). Feature selection was performed to select nutrients
41 associated with cognition and temperament, respectively. The combined effects of selected nutrients
42 were analyzed using multiple regression. A positive association between the arachidonic acid (ARA)
43 and surgency was observed ($p = 0.024$). Significant effect of DHA, n-6/n-3, PE and TSFA
44 concentrations on receptive language ($R^2 = 0.39$, $p = 0.025$), and the elevated ARA, PCho, and PI
45 with increased surgency ($R^2 = 0.43$, $p = 0.003$) was identified, suggesting that DHA and ARA may
46 have distinct roles for temperament and language functions. Furthermore, the exploratory association
47 analyses suggest that the effects of HM nutrients on R.L. and surgency may persist beyond the first 6
48 months of life, particularly surgency at 12-18 months ($p = 0.002$). Our studies highlighted that
49 various HM nutrients work together to support the development of cognition and temperament traits
50 during early infancy.

51 **1 INTRODUCTION**

52 Human milk (HM) has been considered the best and primary source of nutrients for infants
53 particularly during the first 6 months of life. HM contains a wide variety of nutrients, bioactive
54 components, immunological compounds, and commensal bacteria which are vital for infants'
55 survival, health, immunity, brain maturation, and cognitive and temperament development (1, 2).
56 Associations between breastfeeding (BF) and improved child cognitive functions have been widely
57 documented (3); exclusive BF promotes infant receptive language (4) and executive function (5) later
58 in life. BF also has a significant effect on temperament development. Children who were exclusively
59 breastfed had higher surgency and regulation, a trait reflecting inclination towards high levels of
60 positive affect (6), and lower negative affectivity than those who were formula-fed (7). BF duration
61 might be negatively associated with infant fussiness and positively associated with infant
62 unpredictability (8) although these influences on the infant may be mediated by maternal sensitivity
63 (9).

64 Preclinical and human studies thus far have largely focused on three main classes of nutrients in HM,
65 namely the fatty acids, phospholipids, and choline/choline metabolites, separately regarding their
66 effects on early cognitive development. Docosahexaenoic acid (DHA) and arachidonic acid (ARA),
67 two of the long-chain polyunsaturated fatty acids (LCPUFAs), are believed to be involved in infant
68 brain structural and cognitive development (10). It was reported that DHA and ARA supplementation
69 can improve memory and problem-solving scores of preterm infants (11). In contrast, the potential
70 effects of total saturated fatty acid (TSFA) are controversial. Some argued that increased saturated fat
71 intake was associated with impaired ability to maintain multiple task sets in working memory and to
72 flexibly modulate cognitive operations, particularly when faced with greater cognitive challenges
73 (12). Phospholipids have also long been shown positively associated with brain cognitive processes
74 (13). As major components of biological membranes and particularly abundant in the nervous system
75 (14), phospholipids could act on the hypothalamic-pituitary-adrenal axis (13) and the microbiota-gut-
76 brain axis (15) to exert their beneficial effects on the brain. Choline provides substrates for
77 phosphatidylcholine and sphingomyelin formation, which are essential for neuronal and other cellular
78 membranes, potentially improving signal transduction and brain development (16). Regarding how
79 aforementioned HM nutrients may be associated with temperament traits, few significant findings

80 have been reported. For example, the total Omega-3 LCPUFA was reported to be associated with
81 infant negative affectivity, but this was not significant at an individual level for DHA,
82 Eicosapentaenoic acid (EPA), or Eicosatetraenoic acid (ETA), the three components of the Omega-3
83 LCPUFA (17). The endocannabinoids, a class of ARA derivatives, were shown critically important
84 for motivational processes, emotion, stress responses, pain, and energy balance (18).

85 Despite the well-recognized importance of HM on infant health, most of the above studies, focused
86 only on the effects of an individual HM nutrient or class of nutrients. Nutrients in HM form a
87 biological system (19); single nutrient supplementations are usually overly simplistic, ignoring the
88 existence of other nutrients and their interplays within such a system. While jointly analyzing the
89 micronutrient effects such as vitamins and iron was performed decades ago (20), this has rarely been
90 investigated for the HM nutrients described above. To this end, we aimed to first jointly examine the
91 overall effects of the three major classes of HM nutrients (fatty acids, phospholipids, and choline) on
92 cognition and temperament traits during the first 6 months of life and second to determine if the
93 effects persist up to 18 months of age.

94 **2 MATERIALS AND METHODS**

95 A subset of infants (n=54) enrolled in the Baby Connectome Project - Enriched (BCP-E) study (21)
96 who were exclusively/predominantly breastfed (fed less than 4 teaspoons or 20g per day of non-
97 formula and complementary foods/liquids (water, apple juice, etc.)) and younger than 6 months old
98 (chronological mean age: 4.43 ± 0.83 months) were included. Children were returned for follow-up
99 visits up to 18 months of age.

100 Subject recruitment and data collection were conducted by two institutions (University of North
101 Carolina at Chapel Hill, Chapel Hill, NC and University of Minnesota, Twin Cities, MN). All study
102 activities were approved by the Institutional Review Boards of the two universities. Informed consent
103 was obtained from parents prior to enrolling in the study. The inclusion criteria included: birth at
104 gestational age 37–42 weeks; birth weight appropriate for gestational age; and absence of major
105 pregnancy and delivery complications. The exclusion criteria were: adopted infant; birth weight <
106 2,000 grams; abnormal MR in previous MR imaging; contraindication for MRI; neonatal hypoxia (10
107 minute APGAR < 5); chromosomal or major congenital abnormality; illness requiring NICU stay > 2
108 days; significant medical illness or developmental delay, or significant medical and/or genetic
109 conditions affecting growth, development, or cognition (including visual/hearing impairment); the
110 presence of a first degree relative with autism, intellectual disability, schizophrenia, or bipolar
111 disorder; or maternal preeclampsia, placental abruption, HIV status, and alcohol or illicit drug use
112 during pregnancy.

113 We used R version 3.6.3 for all the following statistical analyses. We fixed significance level $\alpha = 0.05$
114 and corrected for regression model significance with Benjamini-Hochberg False Discovery Rate
115 (FDR) adjustment.

116 **2.1 Human Milk Collection and Macronutrient Analyses**

117 HM samples were collected at each visit from the second feed of the day whenever possible and from
118 the right breast using a hospital-grade, electric Medela Symphony breast pump. Mothers were
119 instructed to completely express the contents of their right breast to ensure that the collected HM was
120 representative of nutrients received by the infant across a full feed. The collected HM samples were
121 vortexed at maximum speed for 2 minutes, whose volume and weight were measured and recorded
122 with special attention to avoid bubbles. Subsequently, 3mL of HM was used for mid-infrared

123 spectroscopic analyses using the MIRIS Human Milk Analyzer. This step was to ensure that the total
124 fat content (as an indicator of the quality of milk sampling) fell within the expected range. Finally, an
125 aliquot of the minimum 30mL of volume was transferred from the collection bottle to a 50mL glass
126 beaker. Using a repeating pipette and an appropriate tip, eleven aliquots of 1mL were made in 1mL
127 Eppendorf tubes, and nine aliquots of 2mL were made in 2mL Eppendorf tubes for storage in a -80
128 °C freezer within 30 minutes from the end of the time of collection.

129 **2.2 Fatty acids, Phospholipids and Choline Analyses**

130 A representative 1mL aliquot of collected HM was shipped on dry ice to Nestle Research Center
131 (Switzerland) for analyses of fatty acids (FAs) and phospholipids whereas choline was analyzed at
132 UNC-Chapel Hill. Specifically, direct quantifications of FAs were accomplished using gas
133 chromatography as detailed in (22) and the total monounsaturated fatty acids (TMUFA), total
134 polyunsaturated fatty acids (TPUFA), TSFA, ARA, DHA, and ARA to DHA ratio (ARA/DHA),
135 Omega-6/omega-3 polyunsaturated fatty acids ratio (n-6/n-3) were obtained. In contrast, analyses of
136 phospholipids were accomplished using high-performance liquid chromatography coupled with a
137 mass spectrometer detector (23), which yielded phosphatidylcholine (PC), phosphatidylethanolamine
138 (PE), phosphatidylinositol (PI), and sphingomyelin (SPH). Finally, quantification of choline and
139 choline metabolites was performed using liquid chromatography-stable isotope dilution-multiple
140 reaction monitoring mass spectrometry (LC-SID-MRM/MS). Chromatographic separations were
141 performed on an Acquity HILIC 1.6 μ m 2.1 \times 50mm column (Waters Corp, Milford, USA) using a
142 Waters ACQUITY UPLC system and free choline, phosphocholine (PCho), and
143 glycerophosphocholine (GPC) were obtained.

144 **2.3 Assessments of Cognition and Temperament**

145 Two measures, namely the Mullen Scales of Early Learning (MSEL) and Infant Behavior
146 Questionnaires-Revised (IBQ-R) (23), were employed to assess cognition and temperament,
147 respectively. The MSEL includes five subscales: fine motor (F.M.), gross motor (G.M.), visual
148 reception (V.R.), receptive language (R.L.), and expressive language (E.L.). An early learning
149 composite (E.L.C) score considered as the Developmental Quotient of infants was calculated by
150 summing the T-scores of all subdomains excluding G.M. The MSEL was administered by trained
151 staff at every visit. In contrast, the IBQ-R is a widely used 14-scale parent report measure designed
152 to assess infant temperament. To reduce the number of variables, three factors were extracted by
153 using three linear weighted averages of the 14 subscales. Specifically, we incorporated the weights of
154 three latent factors reported in the exploratory factor analysis results of Gartstein and Rothbart (24),
155 and obtained three personal traits, namely, surgency/extraversion (SUR), negative affectivity (NEG),
156 and orienting/regulation (REG). The subscale items included in the above three factors and loading
157 scales are provided in **Supplementary Table 1**. In our study, the MSEL or IBQ-R assessments in the
158 first 6 months were obtained within 30 days from the collection of HM samples.

159 **2.4 Statistical Modeling for Associations Analyses in the First 6 Months of Life**

160 All HM nutrient concentrations were first normalized with mean zero and unit variance. Marginal
161 association analysis between each individual nutrient and each subdomain of MSEL and IBQ-R
162 scores were carried out by a linear regression of each subdomain score on each nutrient. Since
163 nutrients could vary with postpartum duration, to ensure that age does not contribute to our analyses,
164 age was included as a controlled variable. Other confounding factors including sex, data collection
165 site and household income (if < 75k) were also controlled in the above linear model and the

166 standardized regression coefficient was obtained between each nutrient and each MSEL/IBQ-R
167 score. Household incomes of two infants were missing and imputed with the overall average.

168 To evaluate the potential combined and conditional effects of HM nutrients in association with
169 MSEL and IBQ-R, and to deal with the collinearity among the HM nutrients, the correlation matrix
170 among all nutrients was calculated. Subsequently, nutrients were clustered into several subgroups
171 based on their correlation using the single linkage clustering analysis (SLCA) (25). The SLCA
172 approach was chosen since it offers intuitive interpretations of the results; all pairs of nutrients
173 exhibiting correlation coefficients greater than a predefined threshold T_c were combined into one sub-
174 group. The optimal number of clusters was determined by maximizing the Dunn index (26).
175 Furthermore, in order to minimize redundancy and collinearity (27), the best subset selection model
176 (28) was employed by selecting at most one nutrient from each cluster with the highest adjusted R^2 .
177 The chosen nutrients were then used as the main effects and MSEL or IBQ-R obtained within 30
178 days before or after the collection of HM samples as the outcomes for the regression model to
179 uncover the potential associations. The overall significance was reported using the ANOVA F
180 statistics in comparison to the reduced baseline model. More detailed description on SLCA and the
181 statistical models are relegated to **Supplementary information 4** and **5**. To assess if the identified
182 nutrients predict cognitive and temperament scores of new subjects, multiple regression models with
183 the above selected nutrients were evaluated by squared cross validation (CV) errors and prediction
184 correlations through 100 repetitions of five-fold CV.

185 **2.5 Model evaluation on follow-up visits beyond 6 months**

186 To evaluate if the identified associations of HM components and cognition/temperament persisted
187 beyond the first 6 months of life in the same subjects, subjects with follow-up visits were binned into
188 three age groups: 6-9 months, 9-12 months and 12-18 months. Each observation within each age
189 group corresponded to a unique subject. The regression models trained above (as in **Supplementary**
190 **Table 5**) were used to predict MSEL and IBQ-R scores (predicted scores), respectively. The
191 correlation and p-value based on Pearson's t-test between the predicted and observed scores were
192 evaluated.

193 **3 RESULTS**

194 Of the 54 subjects, cognition was assessed using MSEL in 38 subjects (4.64 ± 0.89 months; 12
195 males) whereas temperament using IBQ-R in 42 subjects (4.48 ± 0.73 months; 16 males) and both
196 were available in 26 subjects (4.81 ± 0.71 months; 9 males). After the initial assessments, follow-up
197 assessments of MSEL were available in 27, 34, and 25 subjects at 6-9 (7.63 ± 0.87 months; 9 males),
198 9-12 (10.5 ± 0.97 months; 10 males) and 12-18 months old (14.02 ± 1.08 months; 8 males),
199 respectively. In contrast, IBQ-R was obtained from 7, 7, and 27 subjects between 6-9 (mean:
200 243.9 ± 12.3 days), 9-12 (mean: 341.1 ± 18.8 days) and 12-18 (mean: 13.34 ± 0.79 months) months,
201 respectively (**Figure 1**; **Table 1**). Detailed demographic information on infant and their mothers
202 including infant age, sex, anthropometrics, measured breast milk gross composition like fat,
203 carbohydrates, proteins and energy, as well as household income and mother's education are
204 summarized in **Table 1**, respectively.

205 The scatterplot of the 14 nutrients is shown in **Figure 2** and their individual concentrations are
206 summarized in **Table 2**. Among these nutrients, DHA decreases ($p < 0.002$) while ARA/DHA ratio
207 ($p < 0.03$) increases with postpartum age. Since some of the subjects only had MSEL but not IBQ-R
208 or vice versa during the first 6 months of life, the mean values of each nutrient from the MSEL
209 dataset and the IBQ-R dataset were compared using the two-sided two-sample t-test. No significant

210 differences were observed (**Supplementary Figure 1**; all raw $p \geq 0.4$), suggesting that there is no
211 selection bias of the mean nutrient concentrations. In addition, the MSEL and IBQ-R scores are
212 provided in **Supplementary Tables 2 and 3**, respectively, which are within the normal ranges of
213 both scales.

214 While the main focus of our study was to jointly analyze a wide array of HM nutrients in association
215 with cognition and temperament in typically developing children, the marginal associations of each
216 nutrient with MSEL and IBQ-R scores are shown in **Table 3** (the heatmap is shown in
217 **Supplementary Figure 2**). A significant association between ARA and SUR ($r = 0.54, p = 0.0006$,
218 adjusted $p = 0.024$, 95% CI = [0.25, 0.83]) was observed. Several other nutrients including TSFA (r
219 = 0.35, $p = 0.035$, 95% CI = [0.03, 0.68]), TPUFA ($r = 0.35, p = 0.031$, 95% CI = [0.03, 0.67]) and
220 PCho ($r = 0.46, p = 0.003$, 95% CI = [0.17, 0.76]) was positively associated with SUR; TPUFA ($r =$
221 0.32, $p = 0.046$, 95% CI = [0.007, 0.64]), and ARA ($r = 0.39, p = 0.015$, 95% CI = [0.08, 0.70]) was
222 associated with REG. In addition, marginal negative associations between G.M. and TSFA
223 (standardized regression coefficient $r = -0.40, p = 0.01$ and 95% confidence interval (CI) = [-0.71, -
224 0.08]) and TMUFA ($r = -0.38, p = 0.02$ and 95% CI = [-0.70, -0.05]) and a positive association
225 between DHA and R.L. ($r = 0.38, p = 0.049$ and 95% CI = [0.002, 0.76]) were observed, although all
226 of these associations did not pass the FDR control due to limited sample size.

227 We further tested if HM nutrients are correlated. Evidently, many of the HM nutrients were highly
228 correlated (**Figure 3A** and **Supplementary Table 4**). In particular, the nutrients in the phospholipid
229 family were highly correlated. As outlined above, to minimize collinearity, the single linkage
230 clustering analysis was used to cluster highly correlated nutrients into one group and the Dunn index
231 was used to determine the optimal number of clusters. The optimal number of cluster was 7, which
232 exhibited the largest Dunn index (**Table 4**). Note that the optimal clustering result was stable for
233 $0.53 < T_c \leq 0.69$. In addition, the memberships of groups 1 – 3 were stable independent of the T_c
234 for $0.53 < T_c \leq 0.77$. The minimum spanning tree, representing the smallest sum of distances to
235 touch all vertices of the graph of the optimal clustering results are shown in **Figure 3B** and detailed
236 information is given in **Supplementary information 4**.

237 Significant combined associations of HM nutrients were observed for R.L. (MSEL) and SUR (IBQ-
238 R) summarized in **Figure 4A**. Specifically, for receptive language, the final linear regression model
239 includes DHA, n-6/n-3 ratio, PE and TSFA (-) and R-squared = 0.39 (adjusted $p = 0.025$), where the
240 information provided in the parentheses indicates the sign of the coefficients and positive otherwise.
241 In contrast, for SUR, the model includes ARA, PI and PCho with R-squared = 0.43, and adjusted $p =$
242 0.003. Finally, a positive association between ARA and REG with R-squared = 0.23 and adjusted p
243 = 0.03 was observed. The scatter plots of the combined associations between the experimentally
244 obtained and fitted R.L. and SUR using the identified association model are shown in **Figures 4B**
245 and **4C**, respectively. More detailed coefficients, confidence intervals, and p-values for each model
246 are shown in **Supplementary Table 5**. In addition, the scatter plots of the associations between each
247 of the selected nutrients for R.L., SUR, and REG are shown in **Supplementary Figure 3**.
248 Furthermore, 5-fold CV between the observed and predicted MSEL and IBQ-R scores were
249 conducted. The boxplots of Pearson's correlations between the observed and predicted MSEL and
250 IBQ-R scores from 100 random splits of 5-fold CV are shown in **Figure 5A**. The boxplots imply that
251 in 99% and 91% cases of the 100 random splits of CV repetitions, the correlation between the
252 observed and predicted R.L. scores and SUR were significant, respectively, whereas in most cases
253 the association with the observed REG was not significant. These results showed a stronger
254 prediction power of R.L. and SUR but not REG. The observed (x-axis) versus the predicted R.L.
255 (**Figure 5B**) and SUR (**Figure 5C**) of the 100 times' predictions are also provided. The mean and the

256 95% confidence interval of prediction correlations (based on the random splits of CV) were 0.434
257 and [0.349, 0.501] for the R.L. and 0.409 [0.281, 0.509] for the SUR. These results showed model
258 robustness of predictions against training data perturbations.

259 Finally, we conducted exploratory analyses for predicting the two outcome measures at the follow-up
260 observations using results obtained < 6 months old. With limited sample sizes for IBQ-R at the 6-9
261 and 9-12 months follow-up visits (**Table 1**; **Figure 1**), the IBQ-R analyses were only performed for
262 the 12-18 months age group whereas MSEL was conducted for all the three age bins. The correlation
263 coefficients and p-values for each age bin of MSEL and SUR at 12-18 months are provided in **Table**
264 **5**. Evidently, the associations between predicted and observed R.L. decrease with age with the best
265 performance at 6-9 months ($p = 0.07$. **Figure 6A**). In contrast, a significant association between
266 predicted and observed SUR at 12-18 months was observed ($p=0.002$. **Figure 6B**).

267 **4 DISCUSSION**

268 The HM produced by each mother for her infant has a unique composition and contains a myriad of
269 different lipids, vitamins, minerals, bioactive carbohydrates, proteins, and immune factors that evolve
270 in tandem with the growth and developmental needs of the infant (29). In addition, maternal diet and
271 lifestyle can also affect HM composition especially the lipid components (30). While several studies
272 have shown positive associations of HM bioactives and nutrients with brain development (21, 31),
273 most of them have largely considered one or only few nutrients. Christian, et al. (19) recently
274 pointed out that these approaches may be overly simplistic and failed to consider the complex
275 synergetic effects of HM nutrients on infant development and health. They advocated the need of a
276 paradigm shift by considering HM nutrients as a biological system in future studies aiming to discern
277 the benefits of HM nutrients. To this end, we collected HM samples, concurrently assessed cognition
278 and temperament of BF infants, utilized advanced statistical models to jointly consider 14 widely
279 evaluated HM nutrients spanning over the three families: choline, fatty acids, and phospholipids, and
280 reported combined associations between HM nutrients and cognition/temperament during the first 6
281 months of life. Furthermore, whether the effects of identified nutrients during the first 6 months
282 persist through to 1.5 years old were also evaluated.

283 **4.1 HM nutrients in the first six postnatal months**

284 An analysis of the temporal trends in HM nutrients over the first six postnatal months revealed that
285 DHA exhibited a significant negative age effect and choline remained relatively stable, consistent
286 with those reported previously (32). In contrast, while the phospholipids were stable with age, several
287 studies have reported an increase over lactation (32, 33). HM DHA/total fat content was highly
288 variable (ranging 0.08% to 0.71 %) with a median concentration of 0.19%, which is below the
289 worldwide average (0.37%) and those reported from South-East Asian regions (32, 34).
290 Nevertheless, lower levels of HM DHA/total fat have been reported in the North American region
291 (35), possibly due to low habitual intake of seafood in the inland areas, and that levels are strongly
292 impacted by maternal DHA intake (36). In addition, the median HM ARA/total fat of 0.60% in our
293 cohort was higher compared to the global average (0.55 %), leading to a higher ARA/DHA ratio
294 (3.24) when compared to that reported in the literature (1.5 – 2) (37). The HM n-6/n-3 fatty acid
295 ratio in our study (mean 10.57), while comparable to some geographies, was higher than others (38),
296 suggesting differences either in body fat composition and mobilization of fat stores or dietary habits
297 such as consumption of LA-rich vegetable oils (39). Levels of most PLs (PC and PE) in our study
298 were comparable to those reported from Singapore (32). We observed higher concentrations of free
299 choline and GPC, but lower levels of PCho, compared to reports from Canada and Cambodia (40),

300 possibly due to differences in dietary choline intake and amounts of choline available from the
301 maternal circulation. Taken together and comparing with other studies, our findings highlight that
302 several HM nutrients may show geographical differences across regions reflecting differences in diet
303 and lifestyle.

304 **4.2 Combined effects of HM nutrients on cognition and temperament**

305 The potential interplay between nutrients and early brain development has been widely recognized
306 (41). Our brains undergo rapid development during the first years of life by establishing new
307 synapses (synaptogenesis), removing excessive synapses (pruning), myelination (42), and forming
308 highly complex yet efficient brain functional networks enabling the performance of cognitive tasks
309 and social behaviors (43). During these dynamic and highly energy-demanding brain developmental
310 processes, appropriate nutrient supply is key for healthy neurodevelopment in infancy. Our results
311 show that while each individual content of PE, DHA, n-6/n-3, or TSFA does not show significant
312 association on its own (**Table 3**), a combined effect is observed on receptive language (R.L.). In
313 contrast, ARA by itself is significantly associated with SUR (adjusted $p=0.024$) whereas neither
314 PCho nor PI is (**Table 3**). Nevertheless, the three nutrients ARA, PCho, and PI combined exhibit an
315 improved association and predictive performance with SUR in terms of elevated model significance,
316 decreased AIC, and CV errors. Importantly, we also observed a significant association between ARA
317 and REG. This finding differs from the marginal associations shown in **Table 3** where no
318 associations were observed between REG and ARA after FDR correction. Largely, this finding is
319 not surprising. Specifically, FDR correction was employed for the marginal associations to control
320 for 14 nutrients and subscales of scores. In contrast, since multiple regression was employed with
321 features selected using approaches outlined above, FDR correction was only employed to control for
322 subscales of scores but not for the 14 nutrients. Instead, 5-fold cross validation was used to evaluate
323 the possibility of overfitting. Indeed, CV results yield that the identified association between (PE,
324 DHA, n-6/n-3, TSFA) and R.L. and (ARA, PCho, and PI) and SUR were robust but not between
325 ARA and REG. Therefore, cautions should be taken when interpreting the association between ARA
326 and REG. Future studies with a larger sample size are warranted to further evaluate the association
327 between ARA and REG.

328 Two key findings of our study deserve additional discussion. First, while MSEL assesses five
329 domains of cognition, significant associations were only observed between HM nutrients and
330 receptive language in our study. Several studies have previously evaluated the potential associations
331 between individual HM nutrients and infants' language ability. However, thus far the results are
332 inconsistent and sometimes controversial. Although DHA has been reported to improve language
333 ability, a recent comprehensive review by Gawlik et al. (44) has concluded that the current evidence
334 of DHA supplementation on language development is limited and non-conclusive. Ramos et al. (45)
335 reported that a higher ratio of the linoleic (n6 fatty acid) to the alpha-linolenic acid (n3 fatty acid)
336 could exert beneficial effects for R.L. in HM fed preterm infants. However, their results are contrary
337 to the body of literature showing that n-6/n-3 ratio in the maternal blood and diet is negatively
338 associated with vocabulary and verbal fluency of their infants (46, 47). While the effect of PE on
339 language abilities have not been specifically reported in the literature, the Milk Fat Globule
340 Membrane (MFGM), which is a diverse mixture of bioactive components including phospholipids,
341 has been shown to improve visual function, language, and motor domains in both term and preterm
342 infants (48, 49). Our results show that none of the HM nutrients when evaluated individually
343 exhibited significant associations with infants' language ability; however, a combined effect of PE,
344 DHA, n-6/n-3, and TSFA is identified on R.L., underscoring the importance of considering the strong
345 dependency between HM nutrients and the power of jointly analyzing multiple nutrients.

346 Second, while there is a consensus that temperament traits emerge early in life and have a strong
347 genetic and neurobiological basis (50), what is less understood is the role of BF and HM nutrients in
348 shaping these offspring behavioral traits. Our study highlights that HM nutrients may be associated
349 with specific temperament traits in infancy. Notably, HM ARA (adjusted $p=0.024$) alone (but not
350 DHA) and the combined effects of ARA, PCho, and PI exhibited a significant association with SUR,
351 which includes high-intensity pleasure, smiling and laughter, perceptual sensitivity, vocal reactivity,
352 and activity. Tallima and Ridi reported that the downstream metabolites of ARA such as eicosanoids,
353 or endocannabinoids play a critical role in brain reward signaling, motivational processes, emotion,
354 stress responses, and pain (18), which may further shape infants' behavioral traits. While no study
355 has specifically looked at HM choline levels and infant behavior, PC supplementation during
356 pregnancy was shown to result in fewer attention problems and less social withdrawal at 40 months
357 of infant age by normalizing the development of cerebral inhibition (51). Equally, supplementation of
358 MFGM, rich in phospholipids, in early life was shown to be associated with fewer parent-reported
359 behavioral problems in their children and improved behavioral regulation (52). Nevertheless, our
360 results differ from the recent findings of Hahn-Holbrook et al (2019) who showed that higher n-3
361 PUFAs in HM (more specifically ALA which is a precursor of DHA), but not any of the n-6 PUFAs,
362 was associated with significantly less sadness and distress to limitations (17). It is plausible that
363 differences in experimental design (varying ages among subjects in our cohort vs all assessed at 3
364 months old by Hahn-Holbrook) and the limited sample size in our study may have contributed to the
365 different findings. Nevertheless, comparing the HM nutrients associated with receptive language and
366 SUR in our study, it appears that there may be distinct LCPUFA roles (DHA vs ARA) for
367 temperament and language functions, respectively. Future studies with a larger sample size are
368 warranted to determine if ARA or its metabolites have a distinct role from that of DHA on behavioral
369 development.

370 **4.3 Exploratory Analyses on the Effects of HM nutrients beyond the first 6 months of life**

371 The regression models elucidating potential relations between HM components and
372 cognition/temperament during the first 6 months of life were evaluated on subjects whose follow-up
373 MSEL and IBQ-R were available 6-18 months of age. Using association analyses, the correlation
374 between the predicted and observed SUR scores was significant at 12-18 months of age ($r = 0.58, p =$
375 0.002), and there is a potential association yet not significant ($p = 0.07$) between the predicted and
376 observed R.L. at 6-9 months. These results suggests that the MSEL or SUR scores beyond 6 months
377 can be possibly predicted using the derived regression models encompassing the combined effects of
378 HM nutrients from the first 6 months of life. Although the limited sample sizes for SUR at the 6-9
379 and 9-12 months made it difficult to determine if the findings observed at 12-18 months also present
380 during the two age periods, our results appear to suggest that the effects of HM on temperament
381 persist longer than that of R.L., since the association of SUR is quite strong at 12-18 months, while
382 the association of R.L. exhibits a trend toward significant during 6-9 months ($p=0.07$) but continues
383 decreasing at 9-12 and 12-18 months. It is, however, worth noting that other unobserved confounders
384 could affect the future scores, such as type of confounding factors (amount and variety), solid food
385 intakes, and environmental stimulations. As a result, the effects of nutrients that infants received < 6
386 months on cognition/temperament could diminish with age. Nevertheless, our results suggest that the
387 SUR is less affected by unobserved confounders and thus be more predictable from baseline. In-
388 depth investigation in future studies is needed to confirm our results.

389 **4.4 Conclusions**

390 The development of cognitive and behavioral functioning is complex and likely involves the
391 interplay of social, psychological, and biological factors. Nevertheless, HM nutrients such as
392 LCPUFAs, choline, and phospholipids may be modifiable contributors to cognitive and behavioral
393 development, especially during the early BF period. Our results provide evidence that specific
394 nutrients in HM may act together to support cognitive and behavioral traits. However, these findings
395 warrant replication in larger cohorts of BF infants with longitudinal follow-up for more definitive
396 behavioral phenotyping, by controlling maternal diet and lifestyle, an in-depth understanding of the
397 mechanisms by which HM nutrients jointly affect developmental trajectories, and careful
398 examination of the synergistic effects, if any, of these nutrients on functional outcomes.

399 **5 DATA AVAILABILITY STATEMENT**

400 Data described in the manuscript, codebook, and analytic code will be made available upon request
401 pending application and approval by the authors.

402 **6 CONFLICT OF INTEREST**

403 TS, JH and NS are employees of Société des Produits Nestlé SA, Switzerland.

404 WL is a consultant of and received travel support from Nestlé SA, Switzerland.

405 TL, ZZ, SC, KB, BH, HH, JE, HZ, NS, DW, no conflicts of interest.

406 **7 AUTHOR CONTRIBUTIONS**

407 BH, JE and WL designed the research. KB, BH, HH, JE, and WL conducted research. TL, TS, ZZ,
408 SC, DW and WL analyzed data or performed statistical analysis. TL, TS and WL wrote the paper.
409 TL, TS, ZZ, SC, KB, BH, HH, JE, HZ, JH, NS, DW and WL had primary responsibility for final
410 content. All authors have read and approved the final version of the manuscript.

411 **8 FUNDING**

412 The sources of support including grants, fellowships, and gifts of materials. This study was supported
413 in part by NIH grants (U01MH110274 (Lin, Elison); R01MH116527 (Li); R01MH086633 (Zhu);
414 and MH104324-03S1 (Elison)); MH015755 (Howell trainee); and a grant (Lin) from Nestlé Product
415 Technology Center-Nutrition, Société des Produits Nestlé S.A., Switzerland. Analysis of choline and
416 related metabolites was performed by the Metabolism and Metabolomics Core at UNC Chapel Hill
417 (NIDDK P30DK056350-21). Howell is an iTHRIV Scholar. The iTHRIV Scholars Program is
418 supported in part by the National Center for Advancing Translational Sciences of the National
419 Institutes of Health under Award Numbers UL1TR003015 and KL2TR003016.

420 **9 ACKNOWLEDGMENTS**

421 We acknowledge Giuffrida Francesca and Tavazzi Isabelle for analyses of HM Phospholipids. We
422 acknowledge Neutron for the analyses of fatty acids.

REFERENCES

1. Hobbs M, Jahan M, Ghorashi SA, Wang B. Current perspective of sialylated milk oligosaccharides in mammalian milk: implications for brain and gut health of newborns. *Foods*. 2021;10(2).
2. Oliveros E, Martín MJ, Torres-Espínola FJ, Segura-Moreno MT, Ramírez M, Santos A, et al. Human milk levels of 2'-fucosyllactose and 6'-sialyllactose are positively associated with infant neurodevelopment and are not impacted by maternal BMI or diabetic status. *Journal of Nutrition & Food Sciences*. 2021;4(1):100024.
3. Horta BL, Loret de Mola C, Victora CG. Breastfeeding and intelligence: a systematic review and meta-analysis. *Acta Paediatr*. 2015;104(467):14-9.
4. Belfort MB R-SS, Kleinman KP, Guthrie LB, Bellinger DC, Taveras EM, Gillman MW, Oken E. Infant feeding and childhood cognition at ages 3 and 7 Years: effects of breastfeeding duration and exclusivity. *JAMA Pediatry*. 2013;167:836-44.
5. Rochat TJ, Houle B, Stein A, Coovadia H, Coutsoudis A, Desmond C, et al. Exclusive breastfeeding and cognition, executive function, and behavioural disorders in primary school-aged children in rural South Africa: a cohort analysis. *PLoS Med*. 2016;13(6):e1002044.
6. Kotelnikova Y, Mackrell SVM, Jordan PL, Hayden EP. Longitudinal Associations Between Reactive and Regulatory Temperament Traits and Depressive Symptoms in Middle Childhood. *J Clin Child Adolesc Psychol*. 2015;44(5):775-86.
7. Lauzon-Guillain B, Wijndaele K, Clark M, Acerini CL, Hughes IA, Dunger DB, et al. Breastfeeding and infant temperament at age three months. *PLoS One*. 2012;7(1):e29326.
8. Taut C, Kelly A, Zgaga L. The association between infant temperament and breastfeeding duration: a cross-sectional study. *Breastfeed Med*. 2016;11:111-8.
9. Jonas W, Atkinson L, Steiner M, Meaney MJ, Wazana A, Fleming AS, et al. Breastfeeding and maternal sensitivity predict early infant temperament. *Acta Paediatr*. 2015;104(7):678-86.
10. M. C. Finding the magic formula: should polyunsaturated fatty acids be used to supplement infant formula. *Nutrition Noteworthy*. 2002;5(1).
11. Henriksen C, Haugholt K, Lindgren M, Aurvåg AK, Rønnestad A, Grønn M, et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. *Pediatrics American Academy of Pediatrics*. 2008;121:1137-45.
12. Khan NA, Raine LB, Drollette ES, Scudder MR, Hillman CH. The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility. *Appetite*. 2015;93:51-6.
13. Schverer M, O'Mahony SM, O'Riordan KJ, Donoso F, Roy BL, Stanton C, et al. Dietary phospholipids: Role in cognitive processes across the lifespan. *Neurosci Biobehav Rev*. 2020;111:183-93.

14. Bozek K, Wei Y, Yan Z, Liu X, Xiong J, Sugimoto M, et al. Organization and evolution of brain lipidome revealed by large-scale analysis of human, chimpanzee, macaque, and mouse tissues. *Neuron*. 2015;85(4):695-702.
15. Norris GH, Jiang C, Ryan J, Porter CM, Blesso CN. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. *J Nutr Biochem*. 2016;30:93-101.
16. Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. *FASEB J*. 2018;32(4):2172-80.
17. Hahn-Holbrook J, Fish A, Glynn LM. Human milk Omega-3 fatty acid composition is associated with infant temperament. *Nutrients*. 2019;11(12).
18. Tallima H, El Ridi R. Arachidonic acid: physiological roles and potential health benefits - a review. *J Adv Res*. 2018;11:33-41.
19. Christian P, Smith ER, Lee SE, Vargas AJ, Bremer AA, Raiten DJ. The need to study human milk as a biological system. *Am J Clin Nutr*. 2021;113(5):1063-72.
20. Lynch SR. Interaction of iron with other nutrients. *Nutr Rev*. 1997;55(4):102-10.
21. Cho S, Zhu Z, Li T, Baluyot K, Howell BR, Hazlett HC, et al. Human milk 3'-Sialyllactose is positively associated with language development during infancy. *Am J Clin Nutr*. 2021;114(2):588-97.
22. Cruz-Hernandez C, Goeuriot S, Giuffrida F, Thakkar SK, Destaillats F. Direct quantification of fatty acids in human milk by gas chromatography. *J Chromatogr A*. 2013;1284:174-9.
23. Tavazzi I, Fontannaz P, Lee LY, Giuffrida F. Quantification of glycerophospholipids and sphingomyelin in human milk and infant formula by high performance liquid chromatography coupled with mass spectrometer detector. *J Chromatogr B Analyt Technol Biomed Life Sci*. 2018;1072:235-43.
24. Gartstein MA, Rothbart MK. Studying infant temperament via the Revised Infant Behavior Questionnaire. *Infant behavior and development*. 2003;26(1):64-86.
25. Gower JC, Ross GJS. Minimum spanning trees and single linkage cluster analysis. *Journal of the Royal Statistical Society Series C*. 1969;18:54-64.
26. Dunn JC. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. *Journal of Cybernetics*. 1973;3(3):32-57.
27. Song Q, Ni J, Wang G. A fast clustering-based feature subset selection algorithm for high-dimensional data. *IEEE transactions on knowledge and data engineering*. 2013;25(1):1-14.
28. Miller AJ. *Subset selection in regression*. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2002.
29. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: A review on its composition and bioactivity. *Early Hum Dev*. 2015;91(11):629-35.
30. Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. *Am J Clin Nutr*. 2014;99(3):734S-41S.
31. Berger PK, Plows JF, Jones RB, Alderete TL, Yonemitsu C, Poulsen M, et al. Human milk oligosaccharide 2'-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. *PLoS One*. 2020;15(2):e0228323.

32. Thakkar SK, Giuffrida F, Cristina CH, De Castro CA, Mukherjee R, Tran LA, et al. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. *Am J Hum Biol.* 2013;25(6):770-9.
33. Ma L, Liu X, MacGibbon AK, Rowan A, McJarrow P, Fong BY. Lactational changes in concentration and distribution of ganglioside molecular species in human breast milk from Chinese mothers. *Lipids.* 2015;50(11):1145-54.
34. Ruan C, Liu X, Man H, Ma X, Lu G, Duan G, et al. Milk composition in women from five different regions of China: the great diversity of milk fatty acids. *J Nutr.* 1995;125(12):2993-8.
35. Fu Y, Liu X, Zhou B, Jiang AC, Chai L. An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. *Public Health Nutr.* 2016;19(15):2675-87.
36. Makrides M, Neumann MA, Gibson RA. Effect of maternal docosahexaenoic acid (DHA) supplementation on breast milk composition. *Eur J Clin Nutr.* 1996;50(6):352-7.
37. Delplanque B, Gibson R, Koletzko B, Lapillonne A, Strandvik B. Lipid quality in infant nutrition: current knowledge and future opportunities. *J Pediatr Gastroenterol Nutr.* 2015;61(1):8-17.
38. Khor GL, Tan SS, Stoutjesdijk E, Ng KWT, Khouw I, Bragt M, et al. Temporal changes in breast milk fatty acids contents: a case study of malay breastfeeding women. *Nutrients.* 2020;13(1).
39. Martin MA, Lassek WD, Gaulin SJ, Evans RW, Woo JG, Geraghty SR, et al. Fatty acid composition in the mature milk of Bolivian forager-horticulturalists: controlled comparisons with a US sample. *Matern Child Nutr.* 2012;8(3):404-18.
40. Wiedeman AM, Whitfield KC, March KM, Chen NN, Kroeun H, Sokhoing L, et al. Concentrations of water-soluble forms of choline in human milk from lactating women in Canada and Cambodia. *Nutrients.* 2018;10(3).
41. Prado EL, Dewey KG. Nutrition and brain development in early life. *Nutr Rev.* 2014;72(4):267-84.
42. Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The cellular and molecular landscapes of the developing human central nervous system. *Neuron.* 2016;89(2):248-68.
43. Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. *Science.* 2013;342(6158):1238411.
44. Gawlik NR, Anderson AJ, Makrides M, Kettler L, Gould JF. The influence of DHA on language development: A review of randomized controlled trials of DHA supplementation in pregnancy, the neonatal period, and infancy. *Nutrients.* 2020;12(10).
45. Ramos T, Méio MDBB, Morsch DS, Moreira MEL, Carmo MDGTD, Sichieri R, et al. Preterm infant language development: a role for breast milk fatty acids. *Journal of Human Growth and Development.* 2013;23(3):270-5.
46. Jonathan. EM-CCSGBJY, inserm. b, Barbara fDAMFAdL-GBCM-AH. The dietary n6:n3 fatty acid ratio during pregnancy is inversely associated with child neurodevelopment in the EDEN mother-child cohort. *The Journal of nutrition.* 2013;143(9):1481-8.
47. Kim H, Kim H, Lee E, Kim Y, Ha EH, Chang N. Association between maternal intake of n-6 to n-3 fatty acid ratio during pregnancy and infant neurodevelopment at 6 months of age: results of the MOCEH cohort study. *Nutr J.* 2017;16(1):23.

HM affects cognition and temperament

48. Li F, Wu SS, Berseth CL, Harris CL, Richards JD, Wampler JL, et al. Improved Neurodevelopmental outcomes associated with bovine milk fat globule membrane and lactoferrin in infant formula: a randomized, controlled trial. *J Pediatr.* 2019;215:24-31 e8.
49. Brink LR, Lonnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. *J Nutr Biochem.* 2020;85:108465.
50. Shiner RL, Buss KA, McClowry SG, Putnam SP, Saudino KJ, Zentner M. What is temperament now? Assessing progress in temperament research on the twenty-fifth anniversary of Goldsmith et al. (1987). *Child Development Perspectives.* 2012;6(4):436-44.
51. Ross RG, Hunter SK, Hoffman MC, McCarthy L, Chambers BM, Law AJ, et al. Perinatal phosphatidylcholine supplementation and early childhood behavior problems: evidence for CHRNA7 moderation. *American Journal of Psychiatry.* 2016;173(5):509-16.
52. Veereman-Wauters G, Staelens S, Rombaut R, Dewettinck K, Deboutte D, Brummer RJ, et al. Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. *Nutrition.* 2012;28(7-8):749-52.

Table 1 Characteristics of the participants and HM samples¹

	All subjects	MSEL < 6 m	MSEL 6-9 m	MSEL 9-12 m	MSEL 12-18 m	IBQ-R < 6 m	IBQ-R 12-18 m	
Numbers of Subjects	54	38	27	34	25	42	27	
Sex (male)	19 (35.2%)	12 (31.6%)	9 (33.3%)	10 (29.4%)	8 (32%) (38.1%)	16 (40.7%)	4	
Age (months)	4.43 (0.83)	4.64 (0.89)	7.63 (0.87)	10.5 (0.97)	14.02 (1.08)	4.48 (0.73)	13.34 (0.79)	
Birth length (cm)	52.35 (2.50)	52.29 (2.35)	51.85 (2.18)	52.26 (2.49)	52.27 (2.20)	52.32 (2.45)	52.51 (2.47)	
Gestation ages (days)	278.5 (8.2)	278.5 (8.2)	277.0 (6.7)	278.3 (8.6)	275.3 (7.2)	274.2 (6.5)	274.2 (6.5)	
Birth weight (g)	3630 (420)	3548 (399)	3469 (396)	3534 (419)	3523 (415)	3619 (428)	3611 (388)	
Weight at visit (g)	6818 (1081)	6872 (1244)	8649 (1658)	9396 (1379)	10115 (1160)	6936 (824)	10280 (1284)	
Height at visit (cm)	63.81 (4.54)	64.14 (5.15)	68.47 (6.10)	72.98 (4.70)	75.90 (6.64)	64.62 (4.27)	76.38 (8.24)	
	Fat (g/100mL)	4.73 (1.54)	4.74 (1.48)	4.67 (1.32)	4.60 (1.20)	4.80 (1.74)	4.70 (1.72)	4.41 (1.30)
	Carbohydrate (g/100mL)	7.09 (0.29)	7.05 (0.28)	7.05 (0.26)	7.06 (0.28)	7.11 (0.26)	7.12 (0.29)	7.19 (0.30)
Human Milk	Energy (kcal/100mL)	75.99 (13.55)	76.06 (13.03)	75.35 (11.63)	74.80 (10.61)	76.61 (15.29)	75.79 (15.16)	73.42 (11.66)
	Protein (g/100mL)	0.71 (0.17)	0.71 (0.16)	0.70 (0.18)	0.71 (0.16)	0.69 (0.14)	0.69 (0.17)	0.72 (0.21)
	< 75k	18 (33.3%)	13 (34.2%)	7 (25.9%)	12 (35.3%)	8 (32.0%)	14 (33.3%)	9 (33.3%)
House -hold Income (n)	75k – 150k	28 (51.9%)	18 (47.4%)	15 (55.6%)	17 (50.0%)	13 (52.0%)	23 (54.8%)	16 (59.3%)
	150k <	6 (11.1%)	5 (13.2%)	4 (14.8%)	3 (8.8%)	3 (12.0%)	5 (11.9%)	2 (7.4%)
	Not Answer	2 (3.7%)	2 (5.3%)	1 (3.7%)	2 (5.9%)	1 (4.0%)	0 (0.0%)	0 (0.0%)
	< grad	27 (50.0%)	15 (39.5%)	9 (33.3%)	14 (41.2%)	12 (48.0%)	23 (54.7%)	17 (63.0%)
	≥ grad	26 (48.1%)	22 (57.9%)	18 (66.6%)	19 (55.9%)	13 (52.0%)	19 (45.2%)	10 (37.0%)
Maternal Education	Not Available	1 (1.9%)	1 (2.6%)	0 (0.0%)	1 (2.9%)	0 (0.0%)	0 (0.0%)	0 (0.0%)

¹ Provided are the means with standard deviations or percentages (with %) in parentheses.

Table 2: Concentration values of the 14 HM nutrients in the first 6 postpartum months

Nutrients	Mean	Median	Std.	(Lower) 5%	(Upper) 95%
TSFA (g/100ml)	1.54	1.43	0.59	0.76	2.64
TMUFA (g/100ml)	1.32	1.21	0.53	0.69	2.19
TPUFA (g/100ml)	0.64	0.6	0.26	0.33	1.03
n-6/n-3	10.57	10.14	2.27	7.39	14.37
ARA (mg/100ml)	20.07	19.15	6.32	12.21	33.99
DHA (mg/100ml)*	8.35	7.09	5.14	2.58	18.14
ARA/Total Fat (%)	0.60	0.60	0.15	0.40	0.80
DHA/Total Fat (%)	0.24	0.19	0.14	0.11	0.52
ARA/DHA*	3.24	3.2	1.73	1.01	6.15
PC (mg/100ml)	4.99	4.6	2.58	1.93	10.51
PE (mg/100ml)	7.53	6.4	3.98	3.45	16.39
PI (mg/100ml)	3.06	2.94	1.19	1.24	5
SPH (mg/100ml)	7.7	7.66	3.61	1.86	14.19
Choline (mcmol/l)	216.49	173.5	140.47	72.5	530.45
PCho (mcmol/l)	448.85	439.56	235.64	120.85	834.8
GPC (mcmol/l)	568.53	528.62	192.07	335.08	931.9

*: indicates significant changes with postpartum age

Table 3 Standardized regression coefficients of the HM nutrients with the MSEL (top) and IBQ-R factors (bottom), respectively¹.

	E.L.C.	G.M.	V.R.	F.M.	R.L.	E.L.
TSFA	-0.25	-0.40 (0.01²)	-0.07	-0.21	-0.24	-0.19
TMUFA	-0.15	-0.38 (0.02)	-0.07	-0.15	-0.12	-0.08
TPUFA	-0.22	-0.27	-0.18	-0.11	-0.19	-0.09
n-6/n-3	0.10	0.14	0.23	-0.06	0.02	0.05
ARA	-0.06	-0.25	-0.08	0.00	-0.11	0.06
DHA	0.25	-0.08	0.02	0.14	0.38 (0.049)	0.07
ARA/DHA	-0.13	0.20	-0.14	-0.15	-0.09	0.06
PC	0.05	-0.28	-0.03	-0.11	0.22	-0.03
PE	0.04	-0.22	-0.14	-0.26	0.17	0.26
PI	-0.16	-0.19	-0.05	-0.21	-0.13	-0.11
SPH	-0.30	-0.26	-0.37	-0.31	-0.13	-0.10
Choline	0.03	0.09	0.03	-0.07	-0.10	0.29
PCho	-0.02	-0.03	0.03	-0.23	0.20	-0.09
GPC	-0.05	0.07	0.21	-0.10	-0.23	0.06

	SUR	NEG	REG
TSFA	0.35 (0.035)	0.24	0.09
TMUFA	0.28	0.19	0.28
TPUFA	0.35 (0.031)	0.18	0.32 (0.046)
n-6/n-3	0.00	-0.12	0.06
ARA	0.54 (0.0006)*	0.30	0.39 (0.015)
DHA	0.15	0.24	0.12
ARA/DHA	0.02	-0.12	-0.07
PC	0.24	0.17	0.23
PE	0.38	0.23	0.23
PI	0.26	0.23	0.09
SPH	0.09	0.12	0.07
Choline	-0.19	-0.13	-0.07
PCho	0.46 (0.003)	0.05	0.18
GPC	0.09	0.22	0.11

¹ Confounding factors: age, sex, site and household income (if < 75k) were controlled.

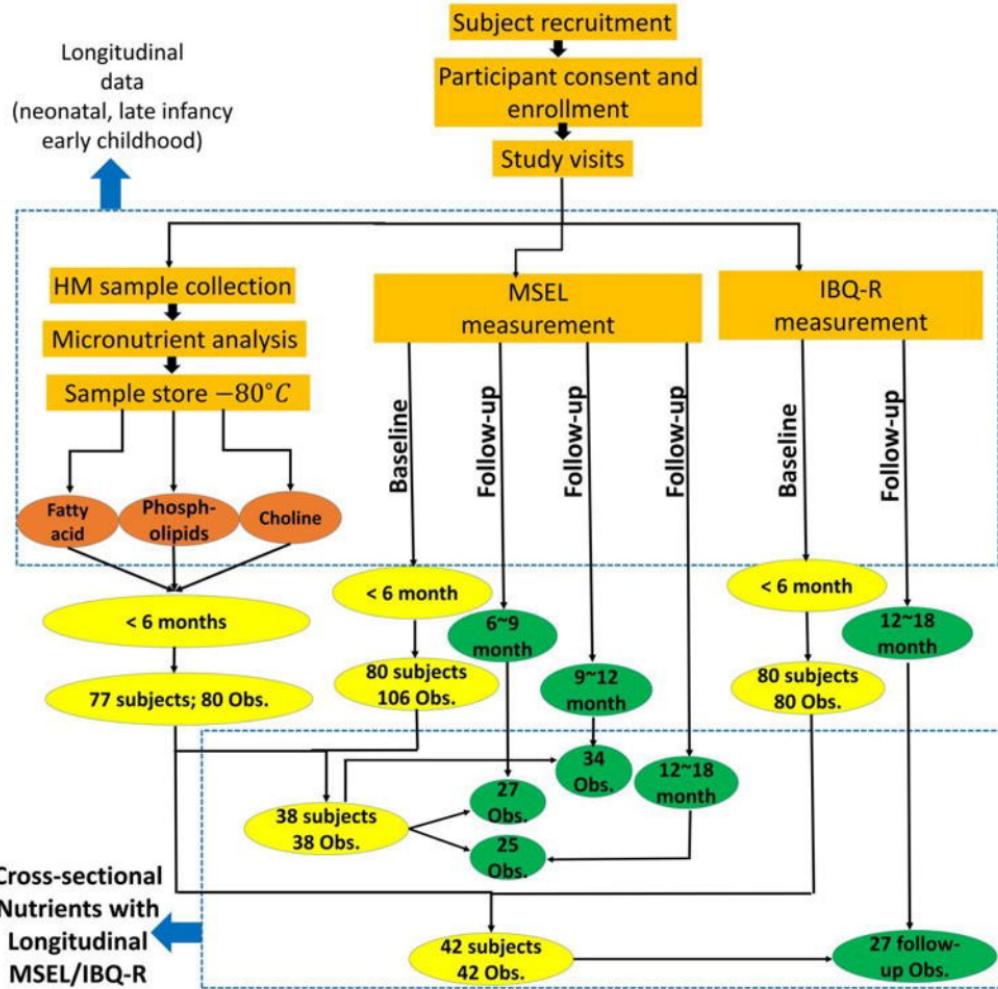
² Statistics in bold italic are standardized coefficients with raw p (in parentheses) < 0.05.

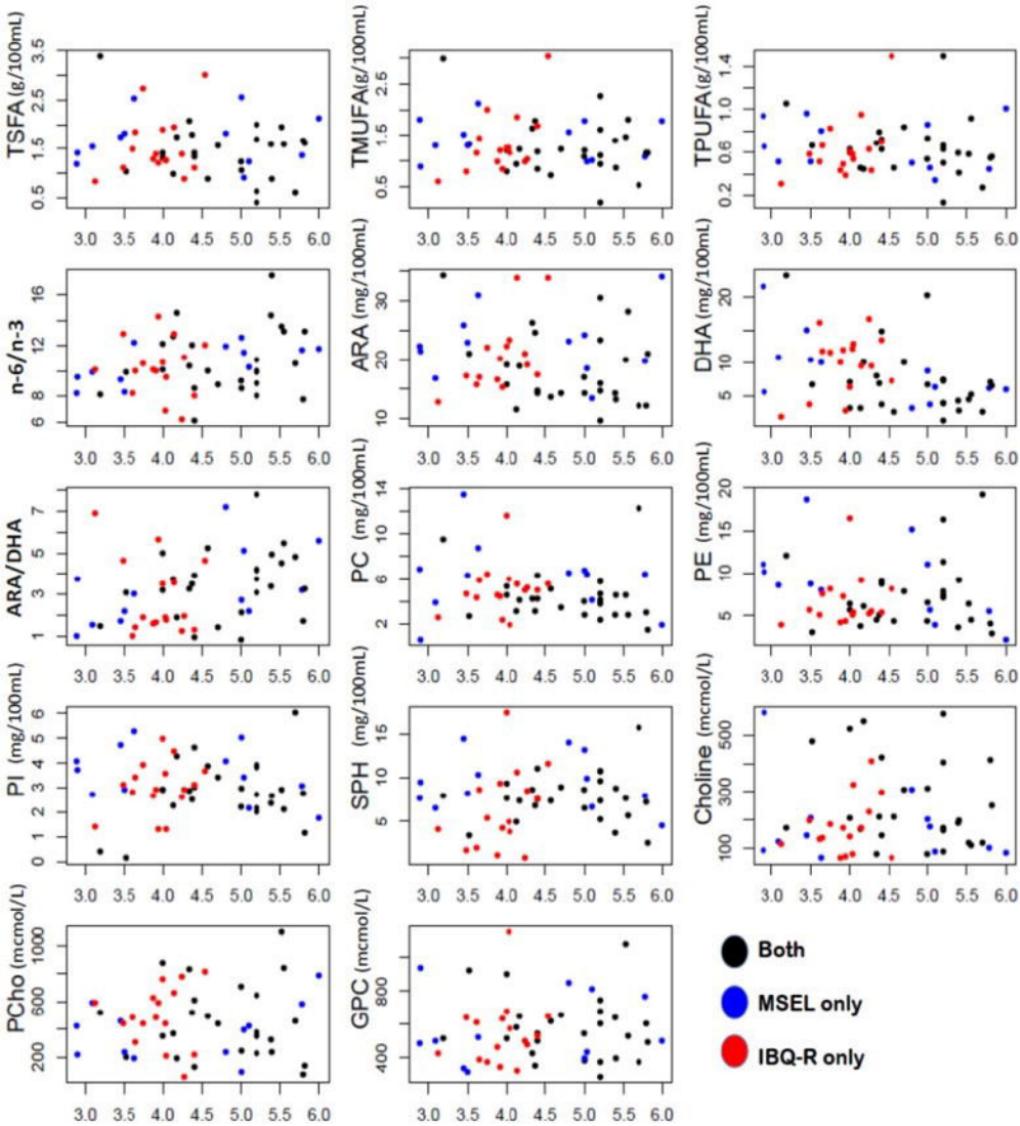
* indicates adjusted p < 0.05 after FDR correction.

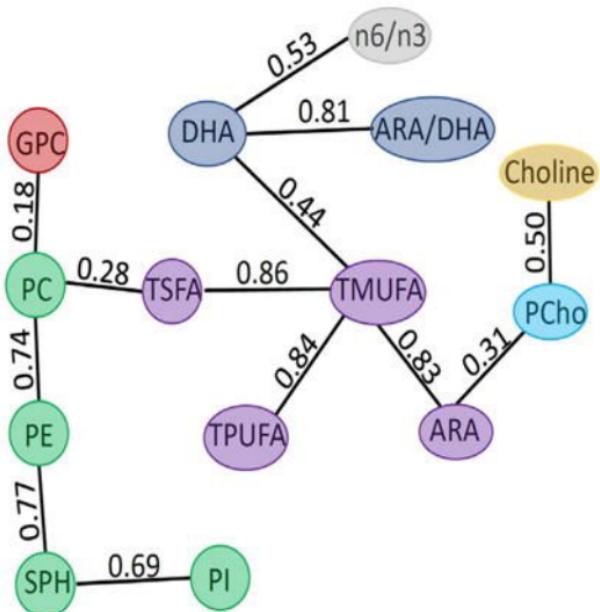
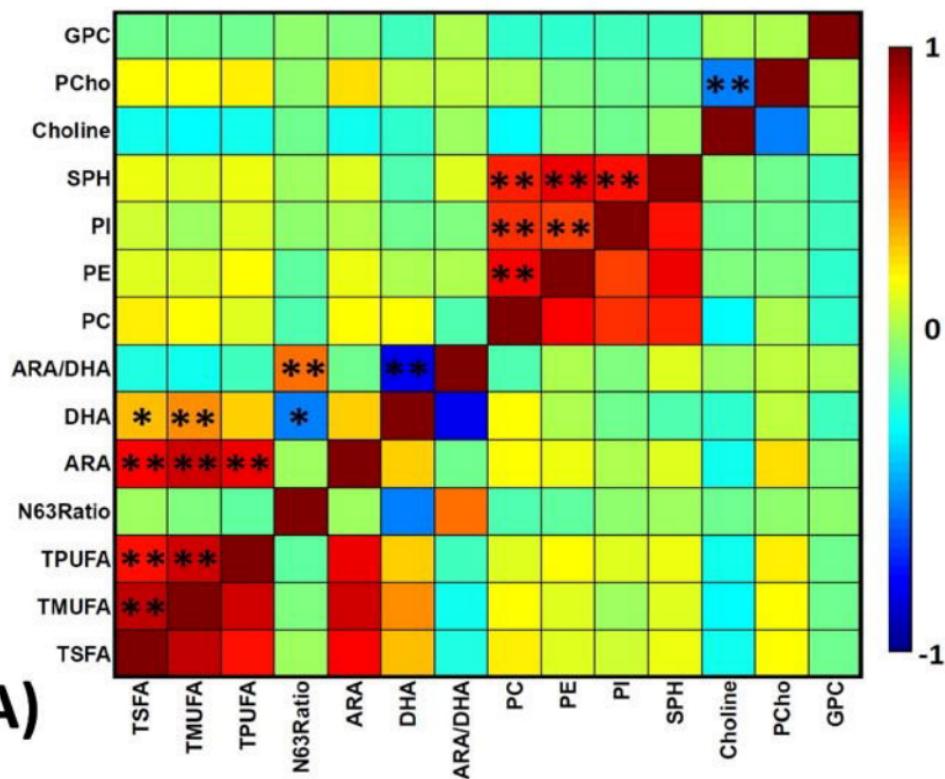
Table 4 Correlation and grouping of the 14 nutrients.

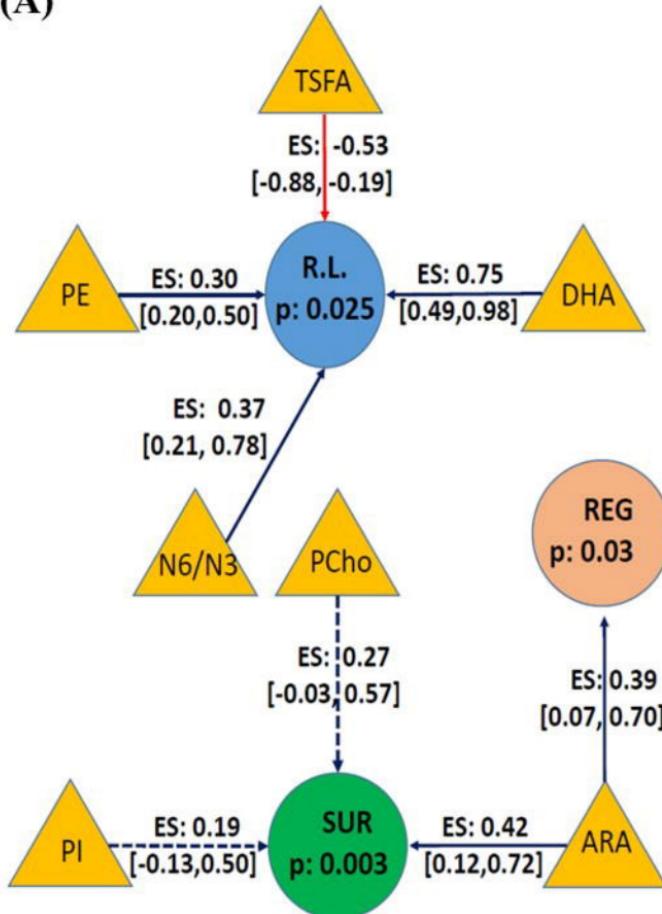
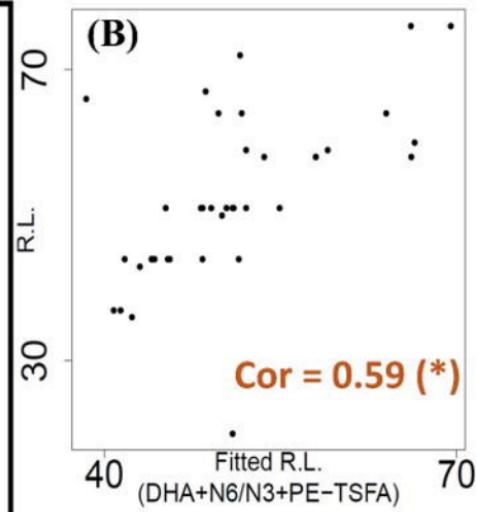
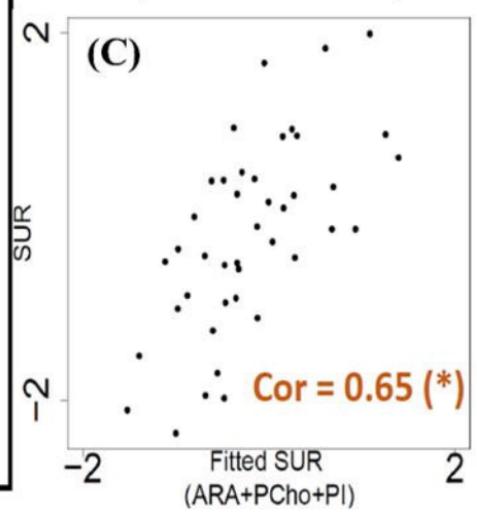
	Scheme 1	Scheme 2	Scheme 3
	$0.53 < Tc^1 \leq 0.69$	$0.69 < Tc \leq 0.74$	$0.74 < Tc \leq 0.77$
Group 1	TSFA, TMUFA, TPUFA, ARA	TSFA, TMUFA, TPUFA, ARA	TSFA, TMUFA, TPUFA, ARA
Group 2	n-6/n-3	n-6/n-3	n-6/n-3
Group 3	DHA, ARA/DHA	DHA, ARA/DHA	DHA, ARA/DHA
Group 4	PC,PE,PI,SPH	PC, PE, SPH	PE, SPH
Group 5	GPC	Choline	Choline
Group 6	PCho	PCho	PCho
Group 7	Choline	GPC	GPC
Group 8	-	PI	PC
Group 9	-	-	PI
Dunn index	0.64	0.44	0.41

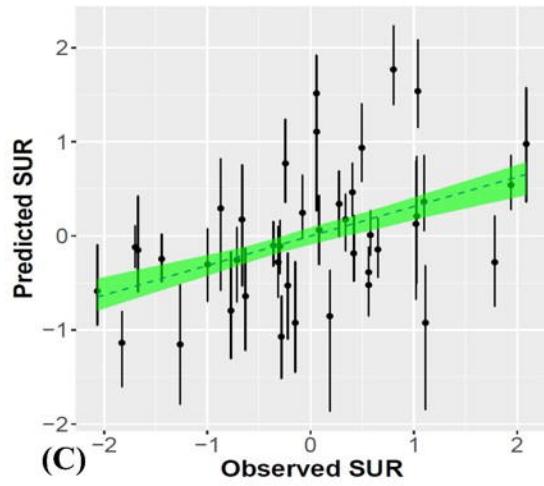
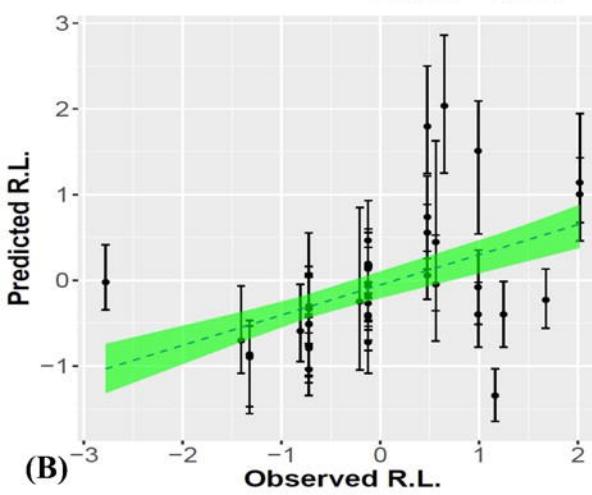
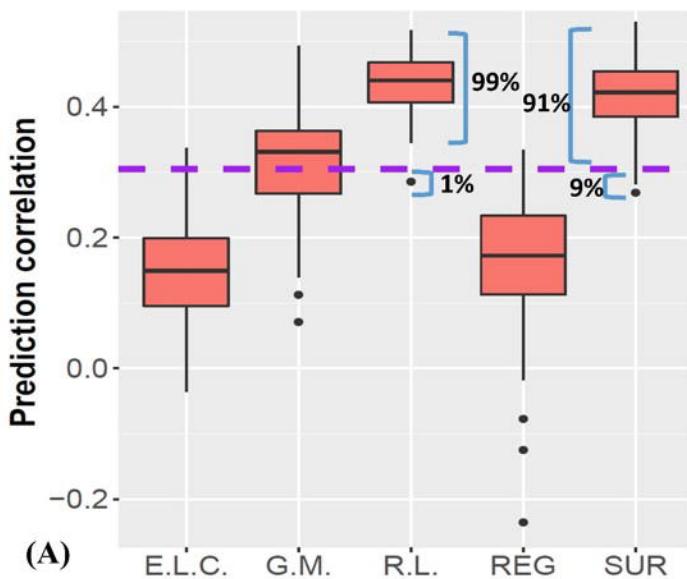
¹Tc: The threshold values for the correlation coefficients.

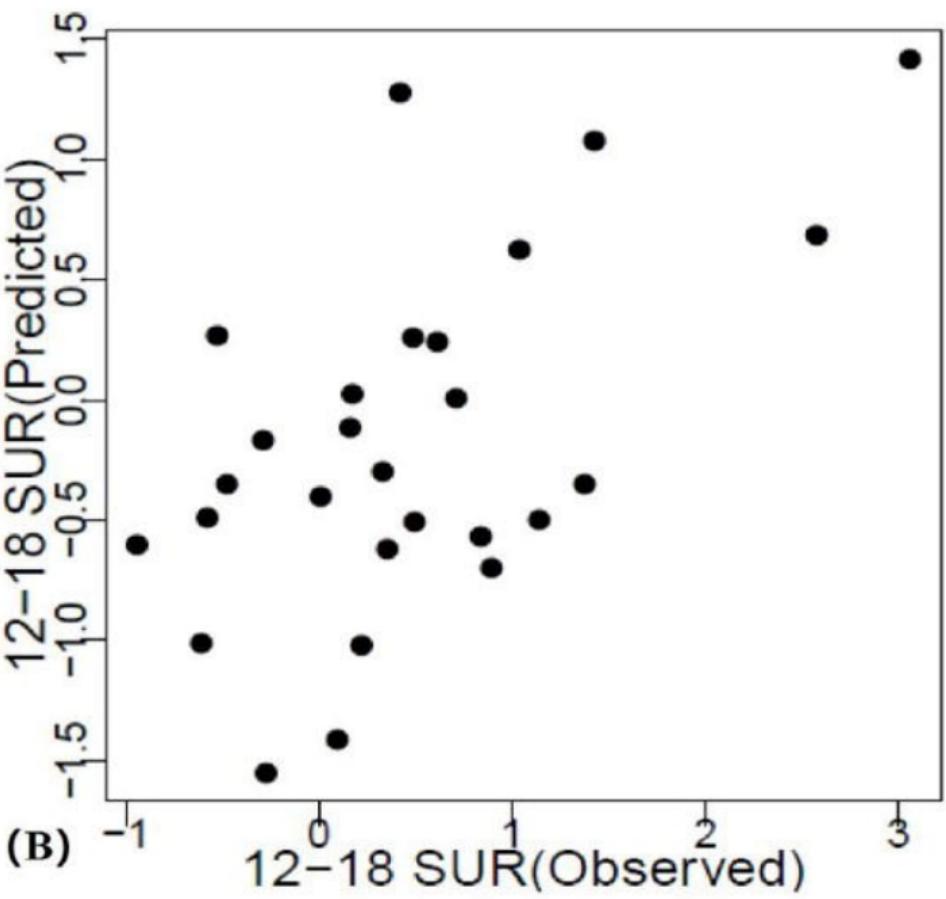
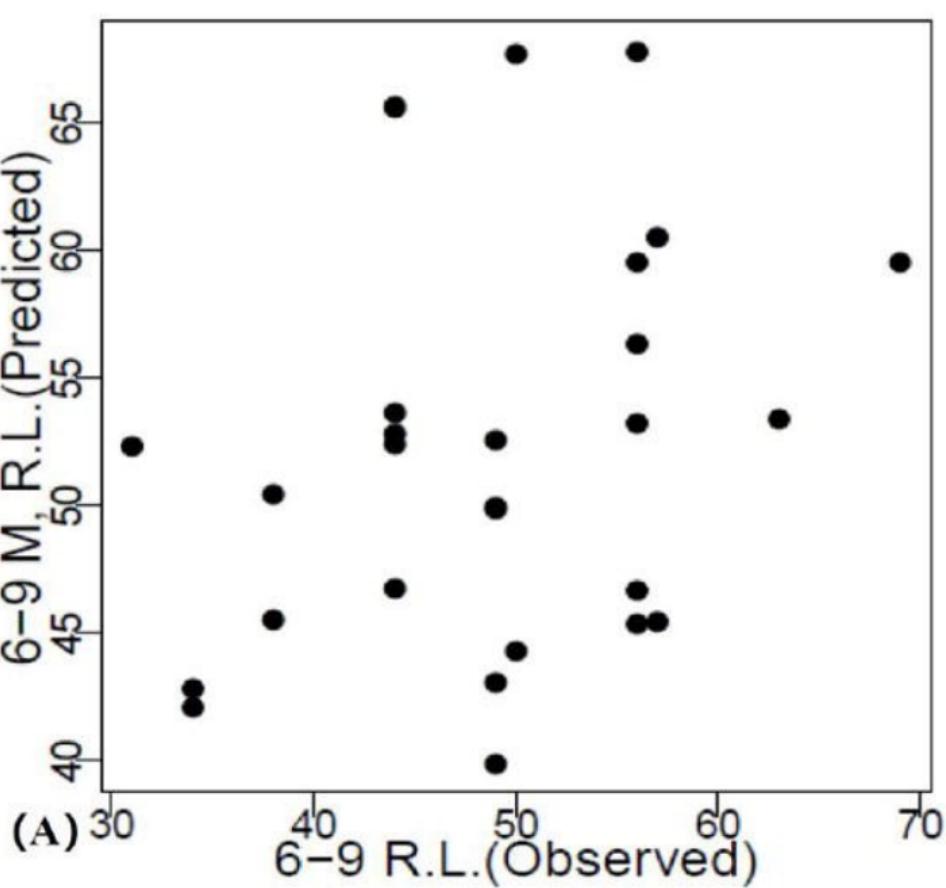

Table 5: Correlation between the predicted and observed R.L. and SUR at follow-up.


Compare	RL 6-9m		RL 9-12m		RL 12-18		SUR 12-18¹	
	<i>r</i> =	0.35	<i>r</i> =	0.14	<i>r</i> =	-0.21	<i>r</i> =	0.58
	<i>p</i> =	0.07	<i>p</i> =	0.43	<i>p</i> =	0.32	<i>p</i> =	0.002



¹ Results with the p-values less than 0.05 are shown in italic bolded text.




Legends for figures




- **Figure 1.** Study flowchart provides the overall experimental details.
- **Figure 2.** Scatterplots of the 14 nutrients with age in months (x-axis) for subjects assessed with MSEL (blue circles), IBQ-R (red circles) and both (black circles), respectively. TMUFA, total monounsaturated fatty acids; TPUFA, polyunsaturated fatty acid; TSFA, saturated fatty acid; ARA, arachidonic acid; DHA, docosahexaenoic acid; ARA/DHA, the ARA-to-DHA ratio; n-6/n-3, the Omega-6/Omega-3 polyunsaturated fatty acids ratio; PC, phospholipids; PE, phosphatidylethanolamine; PI, phosphatidylinositol; SPH, sphingomyelin; Choline, free choline; PCho, phosphocholine; GPC, Glycerophosphocholine; SUR, surgency; NEG, negative affectivity; REG, regulation.
- **Figure 3.** Relations between nutrients. **(A)** Pearson correlation between each pair of the 14 nutrients, where the asterisk (*) and double asterisks (**) represented a raw $p < 0.05$ and the adjusted $p < 0.05$, respectively, using the standard Pearson Correlation test and the FDR correction. **(B)** The minimum spanning tree, where colors represent different clusters and the numbers represent the correlation coefficients between a given pair of nutrient. Note the optimal clustering result is stable for $0.53 < T_c \leq 0.69$. In addition, the minimum spanning tree shows that the strongest correlation between the clusters (PC, PI, PE, SPH) and (TSFA, TMUPA, TPUFA, ARA) is between TSFA and PC (0.28). It implies that only when $T_c \leq 0.28$ these two clusters will merge together, while PCho and Choline are more close in the sense that these two will merge when $T_c \leq 0.50$.
- **Figure 4.** **(A)** The identified conditional of HM nutrients (filled triangles) on receptive language score (filled blue circles) and SUR (filled green circles) using linear regression. The blue and red arrows represent positive and negative associations, respectively. The corresponding effect size, confidence interval of coefficients for each association, and FDR corrected p-values for the regression model are provided. Dotted lines indicate the regression coefficient of the covariate is not significant but the inclusion of the corresponding nutrient improves model fitting with a higher adjusted R2. **(B)** The association between the experimentally obtained R.L. and the combined effect of selected HM nutrients DHA, n-6/n-3, PC, and TSFA (fitted R.L.). **(C)** The association between the experimentally obtained SUR and the combined effect of selected HM nutrients ARA, PCho, and PI (fitted SUR). Pearson's correlation between the fitted and observed measurements are included in panels **B** and **C** with (*) indicating adjusted $p < 0.05$.
- **Figure 5.** Prediction results for linear regression models from 100 random splits of 5-fold CV. **(A)** shows the boxplots of 100 Pearson's correlations between the observed and predicted MSEL (E.L.C., G.M., and R.L.) and IBQ-R factors (REG and SUR) using linear regression, respectively, based on 100 repetitions of CVs. The purple dashed line represents the significance threshold of the correlation at $\alpha=0.05$ with $n=38$ subjects. **(B)** and **(C)** show the observed R.L. (left) and SUR (right) versus the predicted R.L. and SUR of the 100 times' predictions, respectively. The dashed lines and the green areas show the mean and the 95% confidence intervals of the fitted linear slopes between the observed and predicted observations.
- **Figure 6.** Association of the predicted and observed R.L. and SUR at the follow-up ages. **(A)** Predicted versus observed R.L. at 9-12 months. **(B)** Predicted versus observed SUR at 12-18 months.

(A)**(B)****(C)**

