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Abstract

Pathogens found within local environments are a major cause of morbidity and mortality. This is particularly

true in Indonesia, where infectious diseases such as malaria or dengue are a significant part of the disease

burden. Unequal investment in medical funding throughout Indonesia, particularly in rural areas, has

resulted in under-reporting of cases, making surveillance challenging. Here, we use transcriptome data

from 117 healthy individuals living on the islands of Mentawai, Sumba, and the Indonesian side of New

Guinea Island to explore which pathogens are present within whole blood. We detect a range of taxa

within RNA-sequencing data generated from whole blood and find that two pathogens—Flaviviridae and

Plasmodium—are the most predominantly abundant, both of which are most pronounced in the easternmost

island within our Indonesian dataset. We also compare the Indonesian data to two other cohorts from

Mali and UK and find a distinct microbiome profile for each group. This study provides a framework for

RNA-seq as a possible retrospective surveillance tool and an insight to what makes up the transient human

blood microbiome.
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Introduction

Pathogens are a major cause of morbidity and mortality, especially in the Global South [1–3]. Current

knowledge of which taxa are present within remote regions of the world, along with how they impact

health outcomes, remains limited. Not only is surveillance complex in these settings, but identifying which

pathogens are responsible for disease symptoms can be challenging. For instance, although a pathogen

may be identified in a population, it might not be the causative agent of disease due to indistinguishable

symptoms and cross-reactivity of multiple pathogens [4]. Having a more detailed understanding of which

pathogens are the major causes of morbidity across different global populations can focus elimination efforts

on specific pathogens and aid in more targeted disease therapeutics.

Blood transcriptome data can be used to empirically test which blood-borne pathogens are present

within an individual. Along with pathogenic organisms that infect blood cells, such as arthropod-borne

pathogens [5,6] and various viruses [7, 8], emerging research has shown that even bacteria and fungi can

release DNA and RNA into blood [9]. For example, commensal bacteria [10, 11], viruses [12, 13], fungi [14],

and archaea [15] have all been identified independently in multiple studies of human blood. While not

yet common, the use of blood as a surveillance tool is growing. For instance, Kafetzopoulou et al. [16]

used plasma samples from Lassa fever patients to identify the emergence of new strains, while two recent

studies used whole blood samples from critically endangered mammals [17] and songbirds [18] to aid in the

characterisation of diverse blood parasites.

Still, the topic of whether consistent microbial communities exist across healthy individuals remains

highly debatable. Recent studies have found no evidence of a core microbiome circulating in the blood of

healthy individuals [19]. This suggests that the blood microbiome is more transient in nature, comprising

of either commensal microbes translocated from other body sites or those involved in pathogenic activity

and other disease states [20]. However, not enough studies have been done to confirm whether this lack of a

core microbiome is also consistent in regions where infectious diseases are endemic.

Indonesia is a country with large numbers of endemic and emerging infectious diseases [21], making

it a crucially important location to monitor and understand the effects of pathogens on human hosts.

While several endemic diseases have been successfully reduced or eliminated in Indonesia [22], pathogen

abundance can still be high in more rural areas, which tend to have less access to medical resources [22–24].

We have previously sampled individuals from three remote islands in Indonesia—Mentawai, Sumba, and

the Indonesian side of New Guinea Island—and showed that individuals from the easternmost side of

Indonesia (New Guinea Island) show widespread differences in immune gene expression levels compared
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to individuals from western (Mentawai) or central (Sumba) Indonesian islands [25]. While some of this

variation is likely attributable to the different genetic ancestries of individuals in these islands [25, 26],

another significant contributor may be environmental differences, such as pathogenic load. Indeed, both

Plasmodium falciparum and Plasmodium vivax are detectable at low levels within whole blood of some of

these individuals [27], with a higher Plasmodium abundance within individuals from New Guinea Island.

This observation suggests that pathogen loads are variable across the country, and that a non-targeted,

transcriptomic approach can be used to capture these differences.

To characterise blood-borne microorganisms within Indonesia, this study utilises transcriptomic data

collected from whole blood within these three previously described groups: the peoples of Mentawai and

Sumba, and the Korowai. These populations span a gradient from west to east across Indonesia, thus

capturing pathogens along the main geographical axis of the country. Unlike more populous regions within

Indonesia, these three islands serve as models to understand pathogen load in areas with limited resources

and where reporting and traditional surveillance methods can be challenging. This can therefore provide a

valuable resource from under-represented areas.
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Methods

Datasets

The Indonesian dataset consists of 101 base-pair, paired-end RNA-seq data from the whole blood of 117

healthy individuals living on the Indonesian islands of Sumba (n = 49), Mentawai (n = 48), and on the

Indonesian side of New Guinea Island (n = 20, as described in [25]; all Indonesian data are available from

the European Genome-phenome Archive study EGAS00001003671). All collections and analyses followed

protocols for the protection of human subjects established by institutional review boards at the Eijkman

Institute (EIREC #90 and #126); the analyses in this publication were additionally approved by University

of Melbourne’s Human Ethics Advisory Group (1851639.1). In the original Natri et al. study, additional 6

libraries were generated to serve as technical replicates between sequencing batches, however for our study

we only retained the replicate with the highest read depth. Samples for the dataset were collected using

Tempus Blood RNA Tubes (Applied Biosystems) and RNA-Seq libraries were prepared using Illumina’s

Globin-Zero Gold rRNA Removal Kit. Samples were then sequenced on an Illumina HiSeq 2500, resulting

in an average read depth of 30 million read pairs per individual (Supplementary File 1).

To compare the Indonesian dataset to other global populations, we searched for multiple publicly

available transcriptomic datasets of whole blood from self-described healthy human donors. To control

for technical covariates, we limited ourselves to datasets prepared using a globin depletion method and

collected using Tempus Blood RNA Tubes, the same process followed by our own Indonesian dataset. We

identified two publicly available datasets as controls. The first dataset comes from Tran et al. [28, 29], and

consists of 101-bp human whole blood RNA-seq data, hereafter referred to as the Mali study. As described

in [29], samples were collected from individuals living in the rural village of Kalifabougou, Mali, an area

where there is a high rate of seasonal P. falciparum transmission. Raw sequence reads for this study were

downloaded from SRA study GSE52166 and only samples which were collected pre-infection (n = 54)

were used. The second dataset comes from Singhania et al. [30] consisting of 75-bp human whole blood

RNA-seq data, collected from volunteers at the MRC National Institute for Medical Research in London,

UK, hereafter referred to as the UK study. Raw sequence reads for this study were downloaded from SRA

study GSE107991 and only healthy control samples (n = 12; all of European ethnicity) were used.
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RNA sequencing data processing

To investigate the metatranscriptome of whole blood, we put all reads through a stringent quality control

pipeline. RNA-seq reads from all datasets went through an initial sample quality analysis using FastQC

v. 0.11.5 [31]. To ensure reads were of high quality and free from artefacts, leading and trailing bases

below a Phred quality score of 20 were removed and universal Illumina adapter sequences were trimmed

(TruSeq3-PE.fa) using Trimmomatic v. 0.36 [32]. For comparisons between the Indonesian, Malian, and

UK populations, the Malian and Indonesian datasets were trimmed to 75-bp, which is the read length of

the UK dataset. We did this to control for differences in mappability and taxa identification associated

with read length.

Paired-end RNA-seq reads were first aligned to the human genome (GRCh38, Ensembl release 90: August

2017) with STAR v. 2.5.3a [33] using the two-pass alignment mode and default parameters, and only reads

that did not map to the human genome were retained for further analysis. This step was performed to reduce

the total library size to only pathogen candidates, and significantly decreases subsequent processing time.

Unmapped sequencing reads were then processed using KneadData v. 0.7.4, which uses BMTagger [34] and

Tandem Repeats Finder (TRF) [35] to remove human contaminant reads and tandem repeats, respectively.

Using Kneaddata, BMtagger and TRF were run with default parameters. This resulted in a mean of 39,863

and 58,424 reads per sample for the 101-bp (Supplementary Table 1) and 75-bp (Supplementary Table 2)

Indonesian datasets, respectively. For the 75-bp Malian (Supplementary Table 3) and UK (Supplementary

Table 4) datasets, this resulted in a mean of 300,123 and 422,404 reads per sample, respectively.

Mapping and metagenomic classification

Processed metagenomic reads were mapped using KMA v. 1.2.21 [36] against a filtered NCBI nt reference

database, where artificial sequences and environmental sequences without valid taxonomic IDs were

excluded [37] (downloaded on June 28, 2019 from https://researchdata.edu.au/indexed-reference-databases-

kma-ccmetagen/1371207). We mapped paired-end reads using default settings and the following additional

flags: -ef (extended features) was used to calculate reads as the total number of fragments, -1t1 was used for

one read to one template (no splicing allowed in the reads), and -apm was set to p which rewards pairing of

reads. After mapping, we performed read classification using CCMetagen v. 1.2.2 [38] with default settings

for paired-end reads. Read depth was calculated using the number of fragments with the read depth set to

1 so that we could analyse all possible matches. For the Indonesian dataset, these steps resulted in a mean

of 6,480 reads per sample, which dropped to 4,579 when we trimmed reads to 75-bp (Supplementary Table
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2). For the 75-bp Malian (Supplementary Table 3) and UK (Supplementary Table 4) datasets, this resulted

in a mean of 8,129 and 15,494 reads, respectively.

Data filtering

After removing singletons to prevent spurious identification of taxa, we filter out reads mapped to the

kingdoms Viridiplantae as these likely represented misassignments or poor quality annotation (Supplementary

Figure 1, A-D) and further investigated the metazoan reads. We found that the majority of these mapped

to the phylum Chordata (Supplementary Figure 1, E-H). We therefore decided to discard all reads mapping

to Metazoa from subsequent analysis, as BLAST analysis of confirmed that these were reads that mapped

equally well to the human genome. In addition, we also chose to remove taxa with no taxonomic rank

assigned at the superkingdom level, as these taxa could not be linked to any known species. After removing

Viridiplantae, Metazoa, and taxa with no taxonomic rank assigned at the superkingdom level, we obtained a

mean of 905 reads in the Indonesian dataset (a mean of 694 for the 75-bp Indonesian reads; Supplementary

Table 2), 546 for the 75-bp Malian dataset (Supplementary Table 3), and 5,230 for the 75-bp UK dataset

(Supplementary Table 4; Supplementary Figure 2).

Sample clustering

To correct for uneven library depth between samples and the compositional nature of microbiome data [39],

we applied a center log ratio (CLR) transformation [40] to the taxa abundance matrix when performing

principal component analysis (PCA). Since a high number of zeros were present in the data, which CLR

transformation is sensitive to [41], we chose to merge the abundance matrix at the phylum level. For

this reason, we also performed analyses at the phylum level for all subsequent analyses utilising CLR-

transformation. Throughout, analyses are reported at the taxonomic level at which they were carried out,

unless otherwise noted.

Differential abundance testing and diversity estimation

We used ANOVA-like differential expression (ALDEx2) [42–44] to test for differences in species composition

between populations, which applies CLR-transformation to correct for uneven library depth and data

compositionality [43]. We performed differential abundance testing at the phylum level using the default

Welch’s t-test and default 128 Monte Carlo simulations. For alpha and beta diversity estimates, we used

count abundances at the phylum level without removing singletons using the package DivNet v. 0.3.6 [45],
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which expects the presence of singletons in order to model species richness [45].

Code for all analyses is available at https://gitlab.svi.edu.au/muhamad.fachrul/indo blood microbiome

Results

The blood microbiome of Indonesians

To provide a more comprehensive understanding of the blood microbiome of remote populations within

Indonesia, we analysed unmapped reads from previously published whole blood transcriptomes, collected

from 117 Indonesian individuals living on the islands of Mentawai (MTW) in western Indonesia, and Sumba

(SMB) in central Indonesia, as well as the Korowai (KOR), a group living on the Indonesian side of New

Guinea Island. The human samples have been extensively described [25,26]. After extensive quality control,

we obtained a mean library size of 6,480 taxonomically informative reads after the removal of singletons

(range: 2,212 - 48,471; Supplementary Table 1). We assigned these reads to a total of 50 taxa across all

phylogenetic levels, including 25 distinct taxa at the family level. As reads were predominantly assigned to

Metazoan taxa, including Homo sapiens, further filtering was done; this resulted in an average of 3,923

reads across 27 samples that passed filtering, mapping to 15 distinct taxa at family level. Plasmodiidae

(54.5% of the total read pool across all individuals) and Flaviviridae (40.8% of reads) were families with

most reads assigned (Figure 1A). To control for sparsity in the abundance matrix, which is crucial when

performing CLR-transformation [41], we also analysed the abundance of taxa at the phylum level in tests

applying a CLR transformation to the data. Analysis of microbial reads at the phylum level resulted in the

identification of 9 taxa, with Apicomplexa (54.3% of reads, within which 99.9% of reads mapped to the

family Plasmodiidae), Kitrinoviricota (41% of reads, within which 100% of reads mapped to Flaviviridae),

Ascomycota (1.6% of reads), and Pseudomonadota (0.8% of reads) making up the majority. These estimates

of Apicomplexa load are higher than our previous estimates of Plasmodium burden [27], where we used a

different, more conservative approach. We observed that the microbiome composition varied substantially

between islands. In Korowai and Sumba populations, the majority of samples had reads assigned to either

Apicomplexa (71.3% and 67.3% of reads) or Kitrinoviricota (28.1% of and 26.6% of reads, respectively),

whereas majority of reads in Mentawai samples mapped to Kitrinoviricota (91.8%).

PCA of the CLR-transformed taxonomic matrix showed sample clustering clearly driven by the phyla

Apicomplexa (Figure 1B) and Kitrinoviricota (Figure 1C). We found that PC1, which captured over 40% of

the variation, separated individuals by their abundance of either of these pathogens, as well as separating
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Fig 1: The blood metatranscriptome of the Indonesian populations. A) Circular barplot showing relative
abundance (as percentage of reads) of the detected taxa within each individual in the Indonesian dataset,
resolved at the family level. Bacteria are shown in blue, eukaryotes in orange, and viruses in green. KOR =
Korowai; MTW = Mentawai; SMB = Sumba. Taxon labels include both phylum and family information.
B) Principal component analysis of the CLR-normalised taxa abundance data at the phylum level. Plotting
shapes indicate population while log1 Plasmodiidae abundance is indicated in orange and C) green for
Flaviviridae.

the Korowai from most of the populations of Mentawai and Sumba (Figure 1B and C). PC2 could further

be seen to separate samples with a high abundance of Apicomplexa from samples with a high abundance of
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Kitrinoviricota (Figure 1B and C).

Microbiome diversity between island populations

As we are interested in whether there are observable differences in blood microbiomes between Indonesian

island populations, we next performed differential abundance testing between the three groups using the

ALDEx2 package [42–44]. Despite Apicomplexa having the largest abundance differences between sites,

differential abundance testing at the phylum level did not result in significant differences in between islands,

either before or after BH adjustment (Figure 2A, B, and C).
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Fig 2: Blood microbiomes are not statistically different between island populations. A) Volcano plot of
BH-adjusted p-values from Welch’s t-test and the effect size for each taxa at the phylum level, in Korowai
versus Mentawai B) Korowai versus Sumba and C) Mentawai versus Sumba. D) Bray-Curtis distance
estimates for each population comparison at the phylum level.

The diversity and types of microbes within human tissues can be an indicator of the overall health of

an individual, and of a population [11,46]. We therefore analysed levels of alpha (within individual) and

beta (between individual) diversity within the three islands using DivNet [45], again at the phylum level.
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We found that while alpha diversity estimates were overall comparably lower in individuals from Korowai

and Mentawai than in individuals from Sumba, they were still lowest in individuals from the Korowai

population. This was true for both estimates of Shannon diversity (median Shannon KOR = 0.006; MTW

= 0.023; SMB = 0.304; Supplementary Figure 3A) and inverse Simpson diversity indices (mean inverse

Simpson KOR = 0.001; MTW = 0.005; SMB = 0.19; Supplementary Figure 3B). This observation was

likely driven by the high abundance of Apicomplexa reads amongst the Korowai, which account for the

majority of the available read pool in these individuals, and therefore drive overall diversity rates down.

Other than within Korowai population, we found that most comparisons between populations resulted in

similarly high estimates of Bray-Curtis dissimilarity (Figure 2D), which again mostly reflects the sparsity of

the dataset, even between samples of the same island group.

Microbiomes are distinct between global populations

To test whether blood microbiomes in Indonesia differ from those of other global populations, we also

analysed microbiome data from two other publicly available datasets of whole blood transcriptomes. This

includes 54 healthy individuals living in Kalifabougou, Mali [28,29], which represents the microbiome of

individuals living in rural environments, and 12 healthy individuals collected from the city of London in

the United Kingdom [30], representing the blood microbiome of individuals living in a highly urbanised

environment. Similar to our Indonesian datasets, Kalifabougou is a malaria-endemic region and the majority

of residents engage in subsistence farming practices [47].

After processing of reads as above, we obtained a mean library size of 15,494 reads (range: 4,493 -

33,711) for the UK dataset (Supplementary Table 4) and 8,129 (range: 1,637 - 180,484) for the Malian

dataset (Supplementary Table 3) after the removal of singletons, respectively. This difference in depths

is attributable to different numbers of reads being filtered out at different processing stages in the three

datasets, as all three had similar starting read depths. All datasets lost significant numbers of reads when

we filter reads assigned to either Viridiplantae or Metazoa (Supplementary Tables 1-4; Supplementary

Figure 2). In the UK dataset, we identified a total of 101 distinct taxa across all phylogenetic levels. The

majority of reads assigned to the bacterial phylum Pseudomonadota (81.2% of the total read pool across

all individuals) and the fungal phylum Basidiomycota (11.2% of reads; Supplementary Figure 4). Within

the Malian dataset, we found 41 distinct taxa across all phylogenetic levels, the majority of which were

Actinomycetota (41.2% of reads), followed by Artverviricota (18.4% of reads), Apicomplexa (10.7% of reads),

Kitrinoviricota (9.6% of reads), Bacillota (5.9% of reads), and Ascomycota (4.2% of reads; Supplementary
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Figure 4). Although there is a substantial difference in read depths between all three data sets, saturation

curves show systematic similarity in diversity between the Indonesian and Mali samples (Supplementary

Figure 5).

We performed differential abundance testing between the Indonesian, Malian, and UK datasets. Only

Actinomycetota (FDR adjusted Welch’s t-test p = 0.026) was found to be significantly differentially

abundant between Malian and Indonesian individuals (Figure 3A; Supplementary Table 5). Kitrinoviricota

was found to be significantly differentially abundant prior to FDR correction (Welch’s t-test p = 0.011;

Supplementary Table 5). When comparing blood microbiomes between the UK and Indonesian populations,

we found 2 differentially abundant phyla, the most significant being Pseudomonadota and Kitrinoviricota,

the former more abundant in the UK population and the latter in the Indonesian population (FDR adjusted

Welch’s t-test p = 3.76 × 10−9 and 0.02, respectively; Figure 3B; Supplementary Table 6).

We next repeated differential abundance testing using only the Korowai as the Indonesian comparison

group due to them containing the most pathogenic reads. We found that the comparisons yielded very

similar results, with only Actinomycetota being significantly differentially abundant between Mali and

Korowai samples (FDR adjusted Welch’s t-test p = 0.036; Supplementary Table 7) and Pseudomonadota

between UK and Korowai samples (FDR adjusted Welch’s t-test p = 3.2 × 10−6; Supplementary Figure 6;

Supplementary Table 8).

To identify overall trends between whole blood microbiomes of Indonesians and that of other populations,

we next performed PCA on the CLR-transformed abundance matrix containing the Indonesian, UK, and

Malian samples. Microbiomes clearly differed between countries as shown in PCs 1-2, yielding a separate

cluster for each dataset (Figure 3C). PC2 in particular separated the Malian samples from the rest, with a

clearer separation from the UK samples. This was recapitulated by the Bray-Curtis distance estimates,

where population comparisons with Malian samples showed the greatest dissimilarity (Supplementary

Figure 7). PCs 3 and 4 did not show any clear clustering of the populations and instead were driven by

Plasmodiidae (Figure 3D) and Flaviviridae loads (Figure 3E).

Finally, to understand species richness in blood microbiomes between populations, we again analysed

levels of alpha diversity in each of the three global datasets. We found that the UK samples had the lowest

Shannon (mean Shannon = 0.195; Figure 3F) and inverse Simpson diversity values (mean inverse Simpson

= 0.098; Figure 3G), followed by individuals from Mali (mean Shannon = 0.208, mean inverse Simpson =

0.11), then Indonesia (mean Shannon = 0.27, mean inverse Simpson = 0.116). We also note that the UK

population has the highest sequencing depth out of the three populations (Supplementary Table 4) and
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Fig 3: Taxa differences between Indonesian individuals and other global populations. A) Volcano plot
of BH adjusted p-values from Welch’s t-test for each phyla in Malian versus Indonesian individuals and
B) UK versus Indonesian individuals. Taxa with a BH-corrected p-value below 0.05 for are coloured
by superkingdom (blue: bacteria; green: viruses). C) Principal components (PCs) 1 and 2 of the CLR-
normalised taxa abundance data at the phylum level, colored by population. D) PCs 3 and 4 of the same
data colored by Plasmodiidae and E) Flaviviridae loads. F) Violin plots of Shannon diversity and G) inverse
Simpson diversity for each population.

consequently the greatest power to detect rare taxa, and therefore these estimates likely reflect true rates of

lower diversity within the UK population.

Discussion

Our understanding of pathogens found within remote regions of Indonesia, along with their impact on

gene expression, is limited. Here, we have investigated to what extent microbial taxa can be detected

within whole blood, and whether a core blood microbiome could be profiled. We did not detect taxa that

constitute a core Indonesian whole blood microbiome, yet found evidence of strong pathogenic signals. This

is consistent with recent findings of how the blood of healthy individuals do not support a consistent core

microbial community [19]. We found evidence for the presence of eukaryotes and viruses, all of which have

previously been characterised in blood transcriptomes [48]. This study supports a growing body of research

suggesting that rather than being a sterile environment, a variety of taxa reside transiently within whole

blood, and understanding their occurrence may facilitate better understanding of diseases and conditions in

different populations.

Despite our attempts to remove contaminant human reads and tandem repeats prior to classification, we

still identified significant numbers of reads mapping to Homo sapiens and had to filter out reads mapping

to Metazoa. This reflects the issue raised by a recent study where Gihawi et al. reanalyzed a large-scale

tumor microbiome study and found most bacterial reads to be misclassified human reads, largely due to the

human genome being excluded from the classification reference database [49]. They also highlighted how

the inclusion of draft bacterial genomes, which are often contaminated with human reads, contributed to

the overestimation of bacterial species. Our results serve as another example of the importance of careful

quality control measures to minimize false assignment of microbial reads, particularly by including the

human genome and when possible using only complete microbial genomes during the classification process.

Despite not finding a core whole blood microbiome in the population, we identified two phyla that were

dominant in multiple samples, namely Apicomplexa (driven nearly exclusively by the family Plasmodiidae)
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and Kitrinoviricota (driven by the family Flaviviridae). From taxonomic profiling, we could attribute

Kitrinoviricota viral signals to the family Flaviviridae, which is a family of viruses primarily found in

mosquitos and ticks, and is responsible for multiple human illnesses including Dengue in Indonesia [50–52].

Around 3.6% of the reads could be further specified as belonging to the Pegivirus genus, yet we were unable

to refine this assignment for the majority of the reads. The Pegivirus genus includes the human pegivirus

(HPgV-1), a non-cytopathic lymphotropic virus previously associated with increased potential risk of

lymphoma and reduction of disease progression caused by HIV-1 during co-infection [53]. For Apicomplexa,

we could attribute 99.9% of reads to the family Plasmodiidae, of which Plasmodium falciparum and

Plasmodium vivax are endemic throughout Indonesia [54].

Of all the Indonesian island populations in this study, we found that the Korowai had the highest

abundance of the two pathogens. The Indonesian side of New Guinea Island is documented to have the

highest rates of malaria in Indonesia, contributing up to 94% of all national cases [55–57], as well as the

lowest number of healthcare facilities [58]; our results corroborate existing observations of a high endemic

pathogen load within this region.

We also profiled and compared the blood microbiome of Malian and UK populations to the Indonesian

samples. Bray-Curtis distance estimates showed that the Indonesian, Malian, and UK populations had high

levels of dissimilarity from one another (Supplementary Figure 7). We also found differences in diversity

between Indonesian and Malian populations (rural) compared to the UK (urban). Alpha diversity indices

were higher in Malian and Indonesian populations, although the UK population had the highest read depth

out of all three populations; diversity in the UK samples was driven primarily by bacterial taxa whereas

the other two sites were characterised by widespread presence of pathogen-derived reads. Previous studies

have reported similar findings when it comes to diversity between rural and urban populations: the Hadza,

a small hunter gatherer group in Tanzania was found to have more diverse gut microbiomes than Italian

urban controls [59]. Another study comparing gut microbiomes of rural and urban environments found that

urban microbiomes were distinct, and that urbanisation led to a loss of certain bacterial taxa [60].

Our findings are limited by the fact that all three datasets we considered were generated by different

groups in different places, where biological variations might be affected by differences during sampling and

processing. Although our total sample sizes for the Indonesian samples are high—which is rare in studies of

underrepresented populations, or more broadly, populations outside an urban, ”western” environment—our

total read depth is low, limiting the taxa we can detect in the population. Indeed, out of all three global

populations, the Indonesian dataset had the lowest read depth (Supplementary Figure 5). However, in
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opportunistic studies such as this, meeting the conditions required for high sequencing depth is rare;

sequencing depth of unmapped reads is sensitive to multiple factors, including sequencing platform, sample

collection and processing strategy, and only two publicly available datasets that we could find met the

requirements needed to withstand total microbiome depletion.

Mounting evidence suggests that some microorganisms are common inhabitants of whole blood yet are

likely originating from the gut and oral cavities [61,62], as well as representing leakage from other parts

of the body. We found stronger evidence of this in our analyses of the Malian and UK datasets. Taxa

of the Actinomycetota phylum were found to be the most abundant in the Malian cohort, and around

84.6% of which could be further specified as Corynebacterium tuberculostearicum: a bacterium commonly

found on human skin that is generally harmless, yet may play a role in skin health and disease [63, 64].

In the UK cohort Pseudomonadota was found to be the most abundant, up to 51.3% of which could be

further specified as Enterobacteriaceae, a bacterial family that encompasses species commonly found in

the human gut such as E. coli and linked to inflammatory bowel disease [65]. Additionally, up to 25.%

of the Pseudomonadota reads were also defined as part of Xanthomonadaceae, a bacterial family that

has been previously reported to colonize various hosts including the human skin [66, 67]. Interestingly,

the water-borne Xanthomonadaceae has also been reported as contaminants in DNA extraction kits and

reagents (”kitomes”), including in a study identifying the placental microbiome [68].This further challenges

the notion of a core human blood microbiome; our findings reaffirm how the blood microbiome is comprised

of transient microbiota originating from other body sites and/or from pathogenic infections, and how as a

diagnostic medium how it may be hindered by limitations and variations of technical aspects.

A better understanding of which pathogens affect remote populations is crucial. Whole blood is one

of the most abundant tissue types in RNA-seq analysis due to its relative ease of collection [69], and

therefore its ability to provide information on environmental factors influencing disease phenotypes is ripe

for investigation. In Indonesia, this is particularly important; Indonesia has a growing number of emerging

infections [2, 21], however proper surveillance in rural areas remains limited. Our study demonstrates the

use of whole blood RNA for microbiome-based diagnostic purposes that perhaps may be more suited in a

retrospective context. Profiling microbiome from whole blood RNA may not be the most efficient approach

as a first-line diagnostic tool due to the time-intensive process it requires. Nevertheless, this study provides

valuable retrospective surveillance information on blood-borne microorganisms within the region, which is a

valuable step in understanding and eventually limiting the spread of endemic and emerging diseases. Extra

care should be taken to understand the influences on both environmental and technical factors while using
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such approach for pathogen detection.
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Supplementary materials

Supplementary Figure 1 Summary of reads mapping to filtered taxa for the Indonesian (101BP and

trimmed 75BP), Malian (75BP), and UK (75BP) populations. A-D) Reads mapping to the Viridiplantae

E-H) and Metazoa.

Supplementary Figure 2 Read depth per individual library across all filtering steps.

Supplementary Figure 3 Alpha diversity estimates for Indonesian island populations. A) Estimates of

Shannon and B) inverse Simpson diversity within each population (median in blue text). KOR = Korowai;

MTW = Mentawai; SMB = Sumba

Supplementary Figure 4 Relative abundance of the top 20 taxa within the Indonesian, Malian, and

UK dataset at the superkingdom, phylum, and family level. Bacteria are shown in blue, eukaryotes in red,

and viruses in green.

Supplementary Figure 5 Rarefaction curves of species saturation per individual at varying read depths

for the Indonesian, Malian, and UK populations.
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Supplementary Figure 6 Taxa differences between samples from Korowai and other global populations.

A) Volcano plot of BH adjusted p-values from Welch’s t-test for each phyla in the Korowai versus Malian

populations and B) Korowai versus UK populations. Taxa with a BH-corrected p-value below 0.05 for are

coloured by superkingdom (blue: bacteria).

Supplementary Figure 7 Bray-Curtis distance estimates for Indonesian, Malian, and UK population

comparisons at the phylum level (mean in red text).

Supplementary Table 1 Read depth of each individual in the Indonesian dataset (101BP) after each

filtering step.

Supplementary Table 2 Read depth of each individual in the Indonesian dataset (75BP) after each

filtering step.

Supplementary Table 3 Read depth of each individual in the Malian dataset (75BP) after each filtering

step.

Supplementary Table 4 Read depth of each individual in the UK dataset (75BP) after each filtering

step.

Supplementary Table 5 Differential abundance analysis results (Welch’s t-test BH-adjusted p = 0.05)

at the phylum level between Malian and Indonesian datasets.

Supplementary Table 6 Differential abundance analysis results (Welch’s t-test BH-adjusted p = 0.05)

at the phylum level between UK and Indonesian datasets.

Supplementary Table 7 Differential abundance analysis results (Welch’s t-test BH-adjusted p = 0.05)

at the phylum level between Malian and Korowai samples.

Supplementary Table 8 Differential abundance analysis results (Welch’s t-test BH-adjusted p = 0.05)

at the phylum level between UK and Korowai samples.
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Supplementary Figure 1: Summary of reads mapping to filtered taxa for the Indonesian (101BP and
trimmed 75BP), Malian (75BP), and UK (75BP) populations. A-D) Reads mapping to the Viridiplantae
E-H) and Metazoa.
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Supplementary Figure 2: Read depth per individual library across all filtering steps.
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Supplementary Figure 3: Alpha diversity estimates for Indonesian island populations. A) Estimates of
Shannon and B) inverse Simpson diversity within each population (median in blue text). KOR = Korowai;
MTW = Mentawai; SMB = Sumba
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Supplementary Figure 4: Relative abundance of the top 20 taxa within the Indonesian, Malian, and UK
dataset at the superkingdom, phylum, and family level. Bacteria are shown in blue, eukaryotes in red, and
viruses in green.
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Supplementary Figure 5: Rarefaction curves of species saturation per individual at varying read depths for
the Indonesian, Malian, and UK populations.
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Supplementary Figure 6: Taxa differences between samples from Korowai and other global populations.
A) Volcano plot of BH adjusted p-values from Welch’s t-test for each phyla in the Korowai versus Malian
populations and B) Korowai versus UK populations. Taxa with a BH-corrected p-value below 0.05 for are
coloured by superkingdom (blue: bacteria).
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Supplementary Figure 7: Bray-Curtis distance estimates for Indonesian, Malian, and UK population
comparisons at the phylum level (mean in red text).
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