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Genetic background is a major driver of phenotypic variability in pluripotent stem cells
(PSCs). Most studies of variation in PSCs have relied on transcript abundance as the
primary molecular readout of cell state. However, little is known about how proteins, the
primary functional units in the cell, vary across genetically diverse PSCs, how protein
abundance relates to variation in other cell characteristics, and how genetic background
confers these effects. Here we present a comprehensive genetic study characterizing the
pluripotent proteome of 190 unique mouse embryonic stem cell lines (mESCs) derived
from genetically heterogeneous Diversity Outbred (DO) mice. The quantitative proteome
is highly variable across DO mESCs, and we identified differentially activated
pluripotency-associated pathways in the proteomics data that were not evident in
transcriptome data from the same cell lines. Comparisons of protein abundance to
transcript levels and chromatin accessibility show broad co-variation across molecular
layers and variable correlation across samples, with some lines showing high and others
low correlation between these multi-omics datasets. Integration of these three molecular
data types using multi-omics factor analysis revealed shared and unique drivers of
quantitative variation in pluripotency-associated pathways. QTL mapping localized the
genetic drivers of this quantitative variation to a number of genomic hotspots, and
demonstrated that multi-omics data integration consolidates the influence of genetic
signals shared across molecular traits to increase QTL detection power and overcome
the limitations inherent in mapping individual molecular features. This study reveals
transcriptional and post-transcriptional mechanisms and genetic interactions that
underlie quantitative variability in the pluripotent proteome, and in so doing provides a
regulatory map for mouse ESCs that can provide a rational basis for future mechanistic
studies, including studies of human PSCs.

Introduction

Pluripotent stem cells (PSCs) hold great potential for
modeling human disease and advancing regenerative
medicine (Hamazaki et al., 2017), but variation in the
derivation, stability, and differentiation of individual cell
lines impedes progress toward these goals (Ortmann and
Vallier, 2017; Volpato and Webber, 2020). Genetic
background contributes significantly to phenotypic variation
in human and mouse PSCs (Czechanski et al.,, 2014;
Ortmann and Vallier, 2017). Systems genetics experiments
can identify the loci that harbor genetic variants, and can
associate phenotypic variability with regulatory networks
that are affected by these variants (Byers et al., 2022;
Carcamo-Orive et al., 2017; Kilpinen et al., 2017; Mirauta
et al., 2020; Panopoulos et al., 2017; Skelly et al., 2020).

Most studies addressing phenotypic variability in PSCs
have focused on transcriptional regulation using measures
of chromatin state and transcript abundance, due in part to

the relatively low cost of RNA and DNA sequencing.
However, cellular phenotypes are largely determined by
proteins, and the effects from genetic variation on
chromatin states and ftranscripts may be buffered,
amplified, or even reversed by post-transcriptional
processes acting on protein abundance (Chick et al., 2016;
Mirauta et al., 2020). Previous studies in cell and animal
models have found a surprising level of disagreement
between protein and transcript abundance (Buccitelli and
Selbach, 2020; Gygi et al., 1999; Maier et al., 2009; Vogel
and Marcotte, 2012); this high discordance was also
observed in differentiating mouse embryonic stem cells
(mESCs; (van den Berg et al., 2017)). Genetic analyses
suggest that stoichiometric buffering acting on protein
complexes may attenuate transcriptional variation of
complex-forming proteins in adult mouse tissues (Chick et
al., 2016; Keele et al., 2021), and translational output was
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recently shown to provide strong feedback on chromatin
state and transcription to drive self-renewal in mESCs
(Bulut-Karslioglu et al., 2018). These findings suggest that
post-transcriptional regulation of protein abundance may
play a significant role in pluripotency maintenance and
differentiation in PSCs.

We previously derived a panel of mESCs from Diversity
Outbred mice (DO mESCs). The DO mice are an outbred
population derived from eight inbred founder strains with
high genetic diversity, and a population structure that is
optimized for genetic mapping and causal variant
discovery (Churchill et al., 2012; Skelly et al., 2020). We
maintained DO mESCs in sensitized culture conditions to
amplify genetic differences in the pluripotent ground state
and analyzed transcriptome and chromatin state data to
map genetic modifiers underlying this variability (Skelly et
al., 2020). We demonstrated that genetic variation
influences  chromatin  accessibility and transcript
abundance to alter the stability of the ground state, as
measured by markers of pluripotency and capacity for self-
renewal (Skelly et al., 2020). We showed that genetic
background can bias differentiation propensity of mESCs
through its effects on Wnt signaling activity (Ortmann et al,,
2020). These studies demonstrated the power of this
resource for discovery of genetic drivers and molecular
mechanisms that underlie variation in the maintenance of
the pluripotent ground state and differentiation propensity
of mESCs.

In the current study we expand on the previous work by
investigating how genetic effects are mediated by the
proteome. We quantified proteins by multiplexed mass
spectrometry across the same panel of DO mESC lines.
As with our previous analysis of chromatin accessibility
and transcript abundance, we find the quantitative
proteome to be highly variable across these cell lines.
Genetic mapping analysis identified significant protein
quantitative trait loci (pQTL) for 20% of all measured
proteins. One third of the pQTL appear to uniquely affect
protein abundance independently from transcript levels —
presumably through post-transcriptional mechanisms.
Thus, these signatures of genetic effects on proteins were
not detected in our earlier analysis of transcript
abundance. The remaining pQTL colocalize with previously
identified QTL for transcript abundance (eQTL) and/or
chromatin  accessibility  (caQTL), consistent  with
transcriptional regulation. We applied multi-omics factor
analysis (MOFA) to identify latent factors that account for
the variability in gene regulatory signatures across these
three layers of molecular data (Argelaguet et al., 2018).
Genetic mapping of the latent factors identified previously
reported QTL “hotspots” as well as novel regulatory loci.
We show that multi-omics integration increases power to
detect genetic drivers of broad regulatory signatures
compared to QTL mapping of individual molecular traits.
We further show how genetic variation affects
transcriptional and post-transcriptional gene regulation to
drive variation in ground state pluripotency. The resulting
regulatory map for mouse ESCs can provide a rational

basis for future mechanistic studies, including studies of
human PSCs.

Results

The pluripotent proteome of genetically diverse mESCs

We applied multiplexed mass spectrometry to quantify
relative protein abundance in 190 unique DO mESC lines
(Fig 1A). In total, we detect 7,432 proteins in at least half
and 4,794 proteins in all the cell lines. The list of proteins
detected in mESCs is overrepresented for those involved
in cellular metabolism (e.g., organic acid metabolic
process), post-transcriptional processes (e.g., translation,
mRNA processing), and protein complexes (e.g.,
spliceosome, proteasome). By contrast, transmembrane
proteins and transcription factors are overrepresented
among the genes showing expression in the RNA-seq data
but not detected in the proteomics data (Table S1).
Transmembrane proteins contain both hydrophilic and
hydrophobic subunits making them less soluble (Schey et
al.,, 2013) and therefore harder to isolate in untargeted
proteomics analysis. In addition, the probability of detecting
an individual protein is dependent on its transcript
abundance (Fig S1A); expressed genes at the lower
threshold for transcript abundance (average count = 1)
have a protein detection rate of less than 60% (Fig 1B).
This includes transcription factors, which as a group exhibit
lower mean transcript abundance, presumably resulting in
lower levels of detectable protein (Fig S1B). By contrast,
proteins encoded by genes with high transcript
expression—a group that includes many ribosomal and
mitochondrial proteins—are detected at a much higher rate
(>90%) (Fig 1B). Of note, ribosomal genes segregate high
genetic diversity in the DO which makes short read
alignment to them particularly challenging, and the
observed dip in protein detection rate for the highest
expressed genes is likely due to read alignment errors
causing inflated transcript abundance estimates for some
ribosomal genes.

The mESC proteome is highly variable across cell lines
(Fig S1D, E), and the highest sample-level correlations are
observed between replicate lines and those derived from
related individuals, consistent with genetic effects.
Principal Component Analysis (PCA) points to
chromosomal sex as the largest component of variance
across samples (12.2%, Fig 1C), and sexually dimorphic
expression of X-linked proteins drives most of this
variation. This expression bias is likely due to gene dosage
effects from two active X chromosomes in XX mESCS
(Epstein et al., 1978; Kratzer and Gartler, 1978). Overall,
more than half of all proteins expressed in DO mESCs
exhibit variable expression linked to sex (n = 4,106 /
7,432, p < 0.05), including pluripotency factors SOX2,
ESRRB, KLF2, KLF4, SALL4, UTF1, NR5A2 and LIN28A
(Kalkan et al., 2017). To identify pathways and biological
processes that vary across cell lines, we performed gene
set variation analysis (GSVA) (Hanzelmann et al., 2013).
GSVA is an unsupervised method that estimates variation
in the activity (expression) of annotated gene sets across a
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population. The resulting enrichment scores can be used modification and chromatin remodeling in comparison to
to compare groups of samples, or as traits themselves for  female cell lines, consistent with previous studies (Schulz
downstream analyses and genetic mapping. For example, et al., 2014; Werner et al., 2017) (Fig 1D). We find that
female and male samples vary in many cellular processes ribosome biogenesis genes are overrepresented in
and protein complexes (Table S2); male cell lines show  weightings of the first principal component, with higher
higher enrichment for DNA methylation, histone abundance in male cell lines compared to female lines (p <

A Chromatin
Accessibility
A/l Q Blastocyst . i ; gj’g‘rf’a‘s
C57BL/6) S— e
12951/SvIm] ¢ 3 a— Q l = 7
NOD/ShiLt) = outbreeding P ‘t:éi_ , Expression
NZO/HILY) S & - @b e &@A
CAST/E === . ey | Do NG
PWK/Ph) S b S F— =
WSB/Ei) S . Abundance
DO mice DO ESCs | I
B c C sex ©® Female Male
Q
g oo 150-
3
c 0.8 ;\; 100- _
Q N & ®
€07 s 50 \I%ﬁ“,
& a 0- o ‘
0 O o
506 ® o [’y
§0'5 o - L 400 ;e e
0 10 10° 10 4100 -50 0 50 100 150
o Average transcript abundance PC1 (12.2%)
romatin ibosome rotein -
D DNA Ch t Rib: Prot ADP
methylation remodeling biogenesis ribosylation
1.0- 1.0- 1.0- 1.0- —=
— — — T
o
o 0.5- 0.5- 0.5- 0.5-
Q .8
wn
- -
e .
QE) 0.0- 0.0- N 0.0- 0.0- H
c
o
=
g -0.5- -0.5- -0.5- -0.5-
-1.0- -1.0- -1.0- -1.0-
F M F M F M Alt  Het Ref
SeX sex Sex Lifr genotype

Figure 1. Overview of the quantitative proteome in genetically diverse mESC lines.

(A) Nearly 200 embryonic stem cell lines were established from blastocysts of Diversity Outbred mice, and quantified using
ATAC-seq, RNA-seq, and multiplexed mass spectrometry; 163 lines have all three measures.

(B) Protein detection rate is linked to transcript abundance. The probability of a gene to have protein abundance
measurement given its average transcript abundance among 174 mESCs with both transcriptome and proteome data.

(C) Principal component analysis reveals sex as a significant source of variation among DO mESC proteomes. PC1 and PC2
for 190 mESCs are plotted and colored by sex.

(D) Enrichment scores obtained from GSVA for Gene Ontology Biological Processes (GO:BP) showing significant differences
between mESCs with different sexes and genotypes at the Lifr locus are plotted. GO:BP DNA methylation, chromatin
remodeling and ribosome biogenesis show significantly higher enrichment in males in comparison to females and, protein
ADP-ribosylation shows significantly higher enrichment in mESCs with at least one copy of the reference allele in comparison
to ones carrying two copies of the alternative allele at the Lifr locus (two-way anova followed by Tukey’s HSD, *: p value <
0.05, ****: p value < 0.00005).
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5 x 104) (Fig 1D). Male cell lines also showed higher
abundance of proteins in complexes involved in chromatin
remodeling and ribosome biogenesis (p < 5 x 104),
consistent with findings from other proteome analyses
(Keele et al., 2021; Romanov et al., 2019). In addition, the
proteomes of cell lines with different genotypes at the Lifr
locus, where those with the reference allele have
increased stability in the pluripotent state (Skelly et al.,
2020), differ significantly in several biological processes
(Table S2). For example, cell lines with at least one copy of
the reference Lifr allele showed higher abundance of
proteins with regulatory roles in ADP-ribosylation, the
transfer of ADP-ribose moieties (derived from NAD) to
protein amino acids (Fig 1D). This post-translational
histone modification is catalyzed by poly-ADP-ribose
polymerases, two of which (PARP1/ARTD1,
PARP7/TIPARP) have been shown in mESCs to occupy
and maintain an active epigenetic state at key naive
pluripotency genes including Nanog, Oct4/Pou5f1, Sox2,
and Rex1/Zfp42 (Roper et al., 2014). GSVA enrichment of
ADP-ribosylation proteins as well as several other
pluripotency and differentiation pathways are observed
only in the proteomics data and not evident in the
transcriptome GSVA results (pathways highlighted in Table
S2).

Extracellular proteins are overrepresented among the
most variable proteins, while members of protein
complexes are overrepresented among the least variable
proteins. These include chaperonin containing T (CCT)
complex; minichromosome maintenance (MCM) complex;
proteasome; and spliceosome (false discovery rate [FDR]
< 0.05). The overrepresentation of these functional groups
of proteins is not simply due to having low or high
abundance or lacking variability (Fig S1F). Targets of the
transcription factor REX1, a marker of naive pluripotency
(Kalkan et al., 2017), are also overrepresented among the
least variable proteins, despite REX1 protein itself being
highly variable across ESCs (Fig S1G). REX1 is known to
act as a repressor (Guallar et al., 2012), and the lowest

C 1
] . . .
S |1 ‘
©
7] R
o . A ‘
8 0.0 . o0 of l. oo le
cytoplasmic ribosoma
-0.5 small subunit

REX1-expressing mESC lines may still exceed a threshold
required to efficiently repress its target genes.
Alternatively, the effects of variable REX1 protein
abundance on downstream targets may be buffered.
Reports in the literature indicate that REX1 may be
dispensable for pluripotency maintenance (Masui et al.,
2008), which would support the existence of compensatory
mechanisms.

To further characterize the influence of physical
interactions on protein abundance, we looked at the
covariation among complex-forming proteins. Members of
protein complexes have a lower median coefficient of
variation (CV) than non-complex forming proteins,
suggesting that physical interactions on the whole act to
dampen the variation in protein abundance (Fig S2A). We
observed that complex-forming proteins tended to covary
in their abundance more than proteins that are not known
to physically interact (Fig S2B), in line with previous
studies (Romanov et al., 2019). We quantified this
covariation, or “cohesiveness”, of complexes using median
pairwise Pearson correlation between complex members;
higher median correlation indicates tighter co-regulation of
subunits and a stable maintenance of stoichiometry. We
ranked protein complexes by their cohesiveness and
observed that the most stable 10% of complexes (n = 17)
were associated with the cell cycle, protein modification,
and translation machinery—consistent with our analysis of
individual proteins and published proteome studies of
human and mouse cell lines and tissues (Hansson and
Krijgsveld, 2013; Ori et al., 2016; Romanov et al., 2019)
(Fig 2). Several complexes involved in protein trafficking
and transcriptional regulation are also highly cohesive. By
comparison, the least cohesive 10% of complexes is
enriched for those associated with chromatin remodeling.
Sex differences in complex cohesiveness are also
observed; for example, protein constituents of the
cytoplasmic small and large ribosomal subunits, the
mitochondrial small ribosomal subunit, and HOPS complex
are significantly more cohesive in XY than XX mESCs (p
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Figure 2. Protein subunit cohesiveness varies considerably among 164 complexes in DO mESC lines.

For each complex, pairwise Pearson correlations were calculated between all protein subunits and summarized as a
boxplot. Boxplots are ordered and colored based on their median pairwise correlation, with more cohesive complexes on
the left. Specific examples of the stable (most cohesive 10%) and variable (least cohesive 10%) complexes are highlighted.
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<5 x 104) (Fig S2C). The molecular basis of these sex
differences remains to be established; however, they are
also observed in adult mouse liver (Keele et al., 2021) and
heart proteomes (Gyuricza et al., 2022), and are therefore
unlikely to play a unique role in establishing or maintaining
pluripotency.

Cohesiveness is associated with the fidelity of a
complex’s constituent proteins. Complexes tend to be
more cohesive if they consist of protein subunits that
contribute to no or few other complexes (n < 3) and less
cohesive if they contain more promiscuous protein
subunits that contribute to many other complexes (up to
10) (Fig S2D). We identified 51 proteins that each
contribute to at least 3 distinct complexes, and we
assessed their covariation with members of each complex.
Some of these promiscuous proteins show no preference
among their annotated complexes, as evidenced by similar
co-abundance to members across all complexes, while
others show preferential membership to—or strict
avoidance of—specific complexes in DO mESCs (Fig
S2E). Examples of each include: CDK8, which shows high
agreement with subunits of all three complexes it belongs
to (median Pearson correlation coefficient [ = 0.2), and
HDACS3, which only shows high agreement with the
HDAC3/NCOR complex (median r = 0.2) but not the Rpd3L
(median r = -0.06), Emerin C32 (median r = -0.07), or
Emerin regulatory complexes (median r = -0.03). Beta
Actin (ACTB) isoforms appear to prefer different
complexes in mESCs, with ACTB-208 showing higher
agreement to members of the P2X7 receptor signaling and
emerin complexes (median r = 0.2), and ACTB-201
showing higher agreement to members of the BAF
complex (median r = 0.2). These findings of differential
complex cohesiveness cannot be seen in the transcript
data. Further studies are needed to elucidate the molecular
mechanisms underlying promiscuous complex members’
preferences and their potential functional impacts on
stability of the ground state.

Protein abundance co-varies with chromatin accessibility
and transcript abundance

The pluripotent state is established and maintained by
a gene regulatory cascade that orchestrates changes
across multiple molecular layers from chromatin
accessibility to transcript and protein abundance (Nichols
and Smith, 2009). To better understand these multi-layered
regulatory interactions and to identify proteins with
potentially important roles, we looked at the covariation of
proteins with measures of chromatin accessibility (ATAC-
seq) and transcript abundance (RNA-seq) across our panel
of genetically diverse DO mESCs.

We compared protein abundance (n = 7,148) to
chromatin accessibility (n = 99,159 peaks) and found that
many proteins were most highly correlated with chromatin
accessibility in the region proximal to their protein-
encoding gene (Fig S3A), consistent with our earlier
observation of high concordance between transcript
abundance and local open chromatin (Skelly et al., 2020)
and likely indicative of transcriptional regulation. We

identified 37 proteins whose abundance co-varied with
chromatin accessibility genome-wide at 100 or more
ATAC-seq peaks (abs(r) > 0.5; evident as horizontal bands
in Fig S3A), which suggests that these proteins may play a
role in chromatin remodeling and gene regulation. The list
includes both well-characterized pluripotency regulators
and proteins with no previously reported role in
pluripotency maintenance (Table S3). For example, the
abundance of ID1, a transcription factor critical in the
maintenance of ES cell self-renewal and regulation of
lineage commitment (Romero-Lanman et al, 2012),
covaries significantly (positively and negatively) with
chromatin accessibility at 112 ATAC-seq peaks across the
genome (Fig 3A). Other proteins with potential roles in
pluripotency maintenance include: AHDC1, a putative
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Figure 3: The quantitative proteome co-varies with
chromatin accessibility and the transcriptome.

(A) ID1 protein abundance shows high correlation to many
chromatin regions across the genome. Circos plot showing
ATAC-seq peaks where chromatin accessibility is positively
(red) and negatively (blue) correlated with ID1 protein
abundance (n = 112, abs(correlation) >0.5).

(B) DO mESCs show a wide range of correlations between their
transcriptome and proteome. Histogram of Pearson correlation
coefficients between the transcriptome and proteome of DO
mESC cell lines with matching genotypes (n = 174).

(C) Genes show variable agreement between transcript and
protein abundance in DO mESCs. Histogram depicting the
distribution of pairwise Pearson correlation coefficients between
transcript and protein abundance of genes with characteristic
GO terms overrepresented in each category annotated
underneath in matching colors (green: significantly positively
correlated, orange: significantly negatively correlated, purple:
genes with little or no correlation).
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DNA-binding protein previously shown to physically
interact with TCF7L1 (TCF3), a transcription factor
involved in pluripotency regulation (Moreira et al., 2018;
Wray et al., 2011); and UHRF2, a ubiquitin ligase identified
as a target of epigenetic control during self-renewal
(Walker et al., 2010). For almost half of these proteins, we
find that their covarying ATAC-seq peaks are
overrepresented in binding sites active in ESCs for TRP53
(n = 28) and naive pluripotency factors NANOG, ESRRB,
and PRDM14 (n =19, 18, 16 at FDR < 0.05) (Kalkan et al.,
2017). Many of these covarying chromatin peaks are
proximal to genes involved in cellular response to leukemia
inhibitory factor (LIF), providing further evidence for their
roles in establishing and/or maintaining pluripotency (FDR
< 0.05). Notably, only six of the 37 genes covary with
chromatin accessibility for both protein and transcript
abundance, while 29 exhibit protein-specific correlations to
chromatin, consistent with post-transcriptional regulation of
these chromatin modifying proteins (Table S3).

We next examined the concordance between protein
and transcript abundance in DO mESC lines. For genes
where we detect both (n = 7,241), protein and transcript
abundance are broadly positively correlated in their
magnitude and variance (r = 0.5, p < 2.2e-16, Fig S3B, C).
Similar studies in human iPSCs found that many proteins
that varied in abundance did not show variation in their
cognate RNAs (Mirauta et al., 2020). We see a similar
trend for a small number of proteins (n = 180) where
protein abundance is highly variable across cell lines
without similar variation at the transcript level. On the other
extreme, genes with high variation in transcript abundance
but lacking variation at the protein level (n = 111) were
overrepresented for ribosomal proteins. Surprisingly, the
overall agreement between protein and transcript levels
within a cell line appears to vary considerably across the
DO mESCs (r range 0.1 - 0.6) (Fig 3B). We ruled out
sample mix-ups as a potential reason for the low
concordance in some cell lines (Fig 3B), and even the
lowest observed sample correlation is still well above a null
distribution of correlation values from permuted sample
assignments (Fig S3D). Looking at individual genes across
DO mESC lines, we see a wide range of variation in the
correlation between protein and transcript levels, where
many are highly positively correlated while others are
negatively correlated (Fig 3C). The larger group of genes
showing positive transcript-protein correlation (n = 5,530, r
> 0.16, p < 0.05) are over-represented for proteins involved
in X-linked inheritance, lipid metabolism, and membrane
proteins (Fig 3C). The smaller group of genes with
significantly negatively correlated transcript and protein
levels (n = 82, r < -0.16, p <0.05) are enriched for those
with roles in cellular respiration and mitochondrial
translation (Fig 3C). The list of genes exhibiting little or no
correlation in their transcript and protein levels (abs(r) <
0.05, n = 498) are enriched for functions associated with
mRNA splicing and cytoplasmic translation (Fig 3C).
Stronger correlation of transcript and protein abundance is
seen for genes that do not form protein complexes (Fig
S3E), further supporting the idea that complexes place

physical constraints on protein abundance that can serve
to buffer against transcriptional variation (Chick et al.,
2016; Keele et al., 2021).

Genetic characterization of the pluripotent proteome

Variation in protein abundance across DO mESC lines
appears to be driven at least in part by genetic
background, with more than 90% of measured proteins
estimated to have non-zero heritability (median h2 = 0.25).
To identify specific genomic loci underlying this quantitative
variation in individual proteins, we performed protein
quantitative trait locus (pQTL) mapping. For over 20% of
expressed proteins (n = 1,555 / 7,432) we detected one or
more pQTL, with a total of 1,677 pQTL (LOD > 7.5,
permutation genome-wide p < 0.05, corresponding to an
FDR = 0.058) (Fig 4A). Of these, nearly two-thirds (n =
1,056) are local and map to within 5 Mb of the
corresponding protein-encoding gene. We found many
fewer distant pQTL (n = 621) that map outside of the local
genomic window. As with previous pQTL studies of similar
size in DO mice (Chick et al., 2016; Gyuricza et al., 2022),
local pQTL tend to be more significant than distant pQTL
(local median LOD = 10.8; distant median LOD = 7.9), and
for over 80% of genes that have a local pQTL, we also
detected an eQTL for the cognate transcript. For most of
these local eQTL-pQTL pairs, the founder strain allele
effects at the peak SNP are highly correlated (75% of local
pairs are significant at FDR < 0.05; median r = 0.9),
consistent with a single causal variant driving both
transcript and protein abundance (Fig 4B). Correlation
between chromatin accessibility (caQTL) and co-mapping
local pQTL is more variable, with some proximal caQTL
showing strong correlation of allele effects and others
showing little or even negative correlation to local pQTL.
For example, a chromatin region within the promoter of
Bspry, a gene linked to pluripotency in mESCs and early
embryonic development (lkeda et al., 2012), has a local
caQTL with highly concordant founder allele effects on
Bspry transcript and protein abundance (Fig 4C, top). Anti-
correlated local caQTL include a variable region in the
promoter of the gene Tfcp2/1 which encodes a
transcription factor that has critical roles in maintenance of
naive pluripotency (Qiu et al., 2015; Ye et al., 2013). The
founder allele effects at this caQTL are nearly opposite to
those for the Tfcp2/1 local eQTL and pQTL (r = -0.8 for
both caQTL-eQTL and caQTL-pQTL pairs) (Fig 4C,
bottom). Both strongly positively and negatively correlated
local effects may still implicate a single causal variant but
have different molecular mechanisms, e.g., a promoter
variant bound by a repressor could explain the anti-
correlated caQTL and pQTL for Tfcp2l1, whereas
uncorrelated founder effects implicate multiple causal
variants having distinct, unrelated effects on chromatin
accessibility and transcript/protein abundance.

Local pQTL likely reflect cis-regulatory or
nonsynonymous coding variants, whereas distant pQTL
are ftrans effects and likely mediated through another
protein such as a transcription factor. Distant pQTL are not
uniformly distributed across the genome and co-locate at
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pQTL “hotspots”, as we previously observed for caQTL
and eQTL in DO mESCs (Skelly et al., 2020). We identified
three pQTL hotspots on Chromosomes (Chrs) 4, 9, and 15
(Fig 4D), two of which (Chrs 4 and 15) were previously
mapped as caQTL and/or eQTL (Skelly et al., 2020) while
the Chr 9 hotspot uniquely affects protein levels (Table
S4). The identity of the causal gene underlying the Chr 9
pQTL remains to be established, but targets of this pQTL-
specific hotspot are enriched for proteins involved in
translation initiation. This hotspot has not been detected in
pQTL analyses of adult DO tissues, and may point to a
post-transcriptional regulatory mechanism that is unique to
pluripotent mMESCs. By contrast, we previously discovered
a caQTL-eQTL hotspot on Chr 15 with shared
transcriptional effects on hundreds of transcripts and
chromatin peaks; the Chr 15 pQTL hotspot maps to the
same region and exhibits similar properties. Indeed, we
observe the same founder allele effects and we identified

that map to this locus (Fig S4A, B), consistent with
previous findings for caQTL and eQTL (Skelly et al., 2020).
We were unable to detect LIFR protein in our mass
spectrometry data likely because it is a transmembrane
protein with low solubility (Schey et al., 2013). Among the
32 significant pQTL at this hotspot, 14 are found only for
proteins, including TCF7L1, a regulator of exit from
pluripotency (Kalkan and Smith, 2014). While these unique
pQTL could reflect post-transcriptional effects from LIFR,
we find it more likely that transcript abundance for these
genes is affected by variation in Lifr expression but the
eQTL failed to reach our detection threshold. Likewise, of
the 107 protein-coding genes with significant Chr 15
eQTLs we identified previously, only 9 are detected here
as significant pQTLs. Again, many of these are likely false
negatives due to the stringent genome-wide detection
threshold. Finally, we treated our protein GSVA sample
enrichment scores (Table S2) as quantitative traits for

Lifr transcript as the top candidate mediator for most pQTL  mapping, and find that the protein ADP-ribosylation
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Figure 4: Genetic characterization of the pluripotent proteome.

(A) Genetic mapping identifies 1,677 significant pQTL (LOD >7.5, permutation genome-wide p < 0.05, FDR = 0.06) where 1,056
are local (within 5Mb of the protein coding gene, seen on the diagonal) and 621 are distant (off the diagonal). pQTL are plotted
across the genome where the x-axis shows the location of the pQTL and the y-axis shows the midpoint of the protein coding gene.
(B) Majority of co-mapping eQTL and pQTL show high agreement in haplotype effects. Histogram of pairwise Pearson correlation
coefficients between inferred allele effects from eQTL and pQTL scans for each gene with a co-mapping QTL. The bars are

colored by the significance of the pairwise correlation.

(C) Examples of significant pQTL where the influence of genetic variation is seen at all three molecular layers are shown. On the
left, LOD scores obtained from genome scans using chromatin accessibility (caQTL), transcript (¢QTL) and protein abundance
(pQTL) of the associated gene is plotted with the protein coding gene location annotated on the x-axis. On the right, haplotype
effects obtained from the caQTL, eQTL and pQTL peaks are shown.

(D) Histogram depicting the number of total distant pQTL at hotspots across the genome.

(E) An example of physical interaction propagating the effects of genetic variation is plotted. On the left, genome scan showing
LOD scores across the genome for proteins RPA1, RPA2 and RPAS is shown with the location of Rpa3 gene annotated on the x-
axis. On the right, the inferred founder allele effects at the pQTL peak for all three genes are shown.

(F) Graphical overview of the different groups of pQTL where the genetic variation (QTL) influences one or more molecular layers.
Molecular layers lacking any impact (i.e., no QTL above LOD >5 with matching haplotype effects) are depicted in gray.
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pathway maps with a near significant QTL on proximal Chr
15 (LOD = 7.4, FDR = 0.06) that is best mediated by Lifr
transcript abundance (Fig S4C), confirming and explaining
its correlation to Lifr genotype in Figure 1D.

Physical interactions among proteins can propagate or
buffer the effects of transcriptional variation on protein
abundance (Chick et al., 2016; Keele et al., 2021; Mirauta
et al., 2020). This “stoichiometric buffering” significantly
affects proteins that bind in stable complexes and likely
accounts for their increased covariation and lower
heritability in DO mESCs. As a result, we map fewer pQTL
for protein complex members, consistent with previous
reports (Keele et al., 2021). We find abundant evidence for
stoichiometric buffering of protein complexes, for example
in ribosomal and chromatin remodeling complexes where
subunits vary little in their protein abundance—and
consequently do not map with any pQTL—despite varying
considerably in their transcript abundance and mapping
with many significant eQTL. In addition, we observe protein
complexes that vary extensively across DO mESCs and
have significant pQTL. Local genetic variation affecting a
single subunit can propagate to other members of the
complex. For example, the replication complex, with
subunits RPA1, RPA2, and RPA3, co-map to a pQTL on
Chr 6 and have concordant founder allele effects (Fig 4E).
The Rpa3 gene is located nearby, and Rpa3 transcript
levels are affected by a local eQTL that exhibits the same
founder allele effects, suggesting that the causal variant
acts in cis and influences transcript abundance of Rpa3
and protein abundance of all three subunits. Indeed,
mediation analysis identifies RPA3 protein abundance to
be the best candidate mediator for the RPA1 and RPA2
pQTL. However, rather than RPA3 being an active
regulator of RPA1 and RPA2, the local variant likely
adversely affects its expression and causes it to be the
limiting subunit of the complex, leading to stoichiometric
buffering of the two other complex members.

The impacts of genetic variants on protein abundance
can be broadly classified by their genomic location and
whether they are most likely to affect transcriptional or
post-transcriptional processes (Fig 4f). Most local pQTL
appear to stem from transcriptional variants acting in cis to
affect local chromatin accessibility and/or transcript
abundance of the protein-encoding gene; 60% (n = 1,589)
of all pQTL but 84% (n = 1,008) of local pQTL show similar
genetic effects across all three molecular layers (caQTL +
eQTL + pQTL; n = 483) or at least chromatin accessibility
(caQTL + pQTL, n = 80) or transcript abundance (eQTL +
pQTL; n = 288). On the other hand, pQTL that uniquely
affect protein abundance are largely distant (75% of all
unique pQTL are distant; n = 476) and mediation analysis
suggests these trans effects can stem from physical
interactions between binding partners and complex
members. For the small number of local pQTL that affect
abundance of the protein but not its cognate transcript (n =
157), these post-transcriptional effects may be due to
protein-coding variants that alter translation efficiency or
stability of the protein. Overall, these data demonstrate that
the high variability in the proteome observed across DO

mESC lines is also highly heritable, with many of the
genetic variants driving protein-level differences showing
concordant effects upstream on transcript abundance and
even local chromatin accessibility. Moreover, protein-
specific pQTL are also abundant and demonstrate the
importance of post-transcriptional regulation and physical
interactions among proteins of the quantitative proteome in
mESCs. A list of all significant pQTL from this study can be
found in Supplemental Table S5.

Integration of the proteome with the chromatin landscape
and transcriptome reveals signatures spanning multiple
layers of biological regulation

The extensive co-variation observed within and among
the mESC proteome, transcriptome, and chromatin
accessibility, along with numerous shared QTL that appear
to affect more than one of these regulatory layers, suggest
the presence of one or more overarching regulatory
signatures that co-vary among the genetically diverse DO
mESC lines. To characterize these sources of variation
more fully, we applied multi-omics factor analysis (MOFA,
(Argelaguet et al., 2018)) to integrate and map our three
genomic data sets onto a smaller set of latent factors—
akin to principal components—that explain a significant
proportion of the variation across mESC lines. For this
analysis, we included a subset of the 15,000 most variable
regions of open chromatin along with the complete sets of
expressed transcripts (n = 14,405) and proteins (n =
7,432). We identified 23 latent factors that capture variation
within and across the multi-omics data (Fig 5A) (Table S6).
Several of the latent factors correlate with biological
variables that we previously identified as major drivers of
variation, including chromosomal sex (Factors 1, 10, 16,
18, 20; FDR < 0.05) and genotype at the Lifr locus (Factors
3, 8, 14, 18, 22; (Skelly et al., 2020)). Factors differ in the
degree of variation they explain both within and across
datasets, and seven factors capture variability spanning at
least two or more layers of genomic data. For example,
Factor 4 captures 5.4% of the observed variation in
transcript abundance but also explains 0.33% of variation
in chromatin accessibility (Fig 5A). Factor 4 combines
information across hundreds of transcripts with thousands
of chromatin sites (Fig S5A). Other factors capture
variation across all three layers. For example, Factor 14
explains a small amount of variation for thousands of
chromatin peaks (1.7%), transcripts (0.8%), and proteins
(0.6%) (Fig S5A). In all, the 23 MOFA factors explain 27%,
41%, and 36% of the variation in chromatin accessibility,
transcript, and protein abundance, respectively.

We further dissected the regulatory signatures
captured by each MOFA factor through functional
annotation of their molecular drivers. This included
enrichment of biological processes and pathways among
protein and transcript drivers ranked by factor weights, and
overrepresentation of transcription factor binding sites in
the genomic sequences underlying chromatin peaks.
Significantly, for seven of the 23 factors, we find
overrepresentation of binding sites associated with the
core pluripotency factors NANOG, SOX2 and OCT4 in the
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Figure 5. MOFA reveals broad regulatory signatures that encompass multiple layers of data.

(A) MOFA yielded 23 latent factors that capture variation in one or more layers of genomic data. For each factor, percent of
variation explained in chromatin accessibility, transcript abundance, and protein abundance is displayed as a heatmap, as is
the correlation of each factor to experimental covariates including sex and genotype at the Lifr locus. Heatmap on the right
indicates overrepresentation of pluripotency regulator binding sites (NANOG, OCT4 (Pou5f1) and SOX2) among the top

chromatin drivers of each factor.

(B) Depiction of QTL mapping with MOFA factors to identify the genetic modifiers driving variation across three molecular

layers.

(C) For all expressed proteins, the pQTL LOD score calculated at the Chr 15 QTL peak is plotted on the y-axis relative to the
protein’s contribution (factor weight) to MOFA Factor 3 on the x-axis. Proteins with absolute factor weights less than 0.1 were
filtered. Correlation between allele effects at the Chr 15 pQTL for individual proteins to allele effects of the Factor 3 QTL.
Individual genes that mapped with a significant QTL (LOD > 7.5) are colored gray, and highlight that many proteins contribute
substantially to Factor 3 and show high agreement in allele effects at the Chr 15 QTL (dark red and blue), despite not mapping

individually with a significant QTL at that locus.

(D) For all expressed transcripts, the eQTL LOD score at the Chr 10 QTL peak is plotted on the y-axis relative to that
transcript’s contribution to Factor 4 on the x-axis. Again, transcripts with absolute factor weights less than 0.1 were filtered, and
individual points are as described in panel C. Many transcripts contribute to Factor 4 and have correlated allele effects at the
Chr 10 QTL, despite individually failing to map with a significant Chr 10 eQTL.

sequences of their top ATAC-seq peak drivers. For three
factors, including Factor 3, we find enrichment for genes
involved in the regulation of pluripotency maintenance,
such as response to LIF. Together, this functional evidence
shows that MOFA factors are capturing variation across
the molecular datasets that is relevant to pluripotency
maintenance.

Twenty-two of the 23 MOFA factors have a non-zero
heritability (median h2 = 0.5) indicating a strong genetic
contribution to their observed variability in the DO mESC
lines. To identify genetic loci and causal genes driving
these MOFA factors, we treated each factor as a
quantitative trait and performed QTL mapping and
mediation analysis (Fig 5B). We mapped 10 significant
QTL across six factors (Table 1). Five of these QTL
colocalize with molecular QTL hotspots described above,

including Factor 3, which mapped to the Lifr locus (Skelly
et al., 2020) (Fig 5A). The MOFA analysis identified
additional transcripts and proteins that individually did not
have significant association with the Chr 15 QTL but were
significant contributors to Factor 3. Examination of their
individual eQTL and pQTL showed evidence for sub-
threshold genetic association and allele effects that are
consistent with regulation by the Lifr locus (Fig 5C). MOFA
Factor 4, which captures a large amount of variation in
transcript abundance, mapped to the eQTL hotspot on Chr
10. Genes mapping to this QTL include those that are
upregulated in the rare 2-cell like cell state (2CLC) and are
predicted to be regulated by Duxf3 (Skelly et al., 2020).
Based on their contribution to Factor 4 and shared genetic
effects at the locus, we identified additional target genes
known to be upregulated in the 2CLC state (n = 13)
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including Zscan4e and Tcstvl that individually lack
significant QTL (Fig 5D) (Hendrickson et al., 2017).
Mediation analysis identifies Gm20625 transcript
abundance as the best candidate regulator for this MOFA
factor QTL on Chr 10 (mediation LOD drop 12 — 1.6),
contradicting our previous best candidate Duxf3 (Skelly et
al., 2020), which in the current expanded analysis appears
less likely to be the Chr 10 regulator (mediation LOD drop
12 — 10). Further, we identified two single nucleotide
variants near Gm20625 (rs49316493, rs265937729) that
reside in annotated regulatory regions active in ESCs and
that both have a founder strain genotype pattern matching
the observed genetic effects at the QTL. These data
implicate Gm20625—a gene model predicted to encode a
IncRNA—as potentially playing a regulatory role in the
transition between the mESC and 2CLC states. Finally,
we mapped novel regulatory loci for two of the MOFA
factors (Table 1), including a significant Chr 16 QTL for
Factor 14 which influences hundreds of features across all
three molecular layers. Mediation analysis fails to identify
strong transcript or protein candidates at these novel loci,
suggesting that one or more may be due to causal variants
that affect the structure or function of the regulatory protein
(e.g., missense variant) rather than its abundance in
mESCs.

Altogether, these examples highlight the power of
multi-omics data integration and factor analysis (MOFA) to
reveal higher-order regulatory signatures, identify
additional genes as targets (Factor 3) and mediators
(Factor 4) of previously mapped QTL hotspots, and
discover novel loci that influence variation across all three
molecular layers (Factors 12 and 14).

Discussion

We carried out a comprehensive genetic
characterization of the pluripotent proteome in ESCs using
mass spectrometry to quantify 7,432 proteins across 190
Diversity Outbred mESC lines. These data reveal that the
proteome is highly variable across cell lines. Genetic
background and sex are major drivers of this variation. We
previously identified significant sex differences in gene
expression stemming largely from X Chromosome dosage
(Skelly et al.,, 2020), and here we find that these
differences are carried through to the protein level (Schulz
et al.,, 2014; Werner et al,, 2017). Gene Set Variation
Analysis (GSVA) identified multiple pluripotency and
differentiation pathways that vary in activity across ESCs,
including tRNA modification (Bornelév et al., 2019);
regulation of histone acetylation (Gonzales-Cope et al.,
2016), intermediate filament organization (Romero et al.,
2022), glutathione biosynthesis (Gu et al., 2016; Jagust et
al., 2020; Xin et al., 2019), Golgi vesicle transport (Cruz et
al., 2018), hippo signaling (Frum et al., 2018; Sun et al.,
2020), and JUN kinase activation (Li et al., 2019) (Table
S2). Of note, variation in these pathways is uniquely
observed in the proteomics data.

Protein abundance is highly heritable, and we mapped
pQTL for more than 20% of all detected proteins. Most of

Table 1. MOFA Factor QTL details for peaks above genome
wide significance threshold calculated individually for each
factor. Loci that were previously observed as molecular QTL
hotspots are denoted in the “Type” column.

MOFA QTL Peak Peak LOD

Factor Chromosome Position (Mbp) Score Typs
Factor 3 15 8.50 8.4 caQTL, eQTL
Factor 4 10 60.63 11.6 eQTL
Factor 12 4 141.24 6.3 New

5 101.63 6.2 New

6 48.98 6.5 New

16 22.31 7.6 New
Factor 13 13 65.38 41.7 caQTL,eQTL
Factor 14 4 147.94 16.5 caQTL,eQTL

16 65.30 6.4 New
Factor 23 8 41.92 7.9 caQTL

these pQTL map close to the protein-encoding gene (local
pQTL) and are also detected with concordant allele effects
for gene transcripts and local chromatin accessibility. We
found 680 protein coding genes with significant local eQTL
that do not have corresponding local pQTL even at a
relaxed threshold, which could indicate buffering against
transcriptional variation. Post-transcriptional buffering is
most evident among the 621 distant pQTL. We found
evidence for stoichiometric buffering among the members
of the replication complex, where genetic variation
influencing one subunit (RPA3) is propagated to other
members (RPA1, RPA2). These unique distant pQTL
reveal post-transcriptional genetic interactions that are not
detectable in transcriptome data, adding further support to
recent findings of the importance of post-transcriptional
regulation in pluripotency maintenance (Chen and Hu,
2017).

Comparison of protein abundance to our earlier genetic
study of transcript abundance and chromatin accessibility
(Skelly et al., 2020) revealed extensive co-variation across
molecular layers. We utilized multi-omics factor analysis
(MOFA) to integrate the proteomics data with chromatin
accessibility and transcript abundance to explore this co-
variation more thoroughly and summarized the three data
sets into 23 latent factors. Characterization of the MOFA
factors revealed shared variation in gene regulatory
signatures influencing pluripotency maintenance and
correlated with chromosomal sex and genotype at the Lifr
locus. Genetic mapping and mediation of the MOFA
factors identified candidate regulatory genes underlying
these multi-omics signatures. We mapped QTL for MOFA
factors that colocalize to both known molecular QTL
hotspots and novel loci. We identified new genes as
putative targets for QTL hotspots based on their significant
contributions to MOFA factors and concordant allele
effects between molecular and MOFA QTL. With advances
in technology and decreases in cost, multi-omics profiling
has emerged as a popular tool for studying gene
regulation. As demonstrated here and elsewhere,
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integration across multiple layers of genomic data can
increase our power to detect regulatory signatures
underlying cell state and developmental progression (Ma et
al., 2020).

Our study revealed protein variation in several known
regulators of pluripotency and lineage differentiation,
underscoring the variability of the pluripotent state across
these genetically diverse mESC lines that may span cell
states ranging from totipotent 2C-like cells to those that are
poised for differentiation to one or more cell lineages. For
example, TFCP2L1 is a well-characterized marker of naive
pluripotency with high levels of genetically driven protein
variation across these cell lines. Previous work has
suggested that differences in differentiation capacity and
developmental progression can originate directly at the
naive state (Ortmann et al., 2020). How the genetic
variation and variable gene regulatory states observed
among DO mESCs affect their ability to differentiate into
various cell lineages remains largely unexplored. Future
studies will seek to characterize if and how these
molecular QTL in mESCs act to bias cell fate decisions or
transcriptional regulation in downstream cell lineages.
Analysis with bulk molecular measurements has yielded
important biological insights, however small differences in
the relative proportions of specific cell types (e.g., 2C-like
cells) among mESC lines may be obscured in bulk data.
Future studies using single cell genomics methods will be
required to measure the extent to which cellular
heterogeneity contributes to the phenotypic variability
observed across genetically diverse ESCs. While single
cell transcriptomics and chromatin profiing are now
reasonably mature technologies, our study indicates that
the picture may remain incomplete without the addition of
single cell proteomics data.
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Methods

Diversity Outbred mESC lines

Mouse embryonic stem cell lines were derived from male and female Diversity Outbred mice (JR #009376, The Jackson
Laboratory) and maintained at Predictive Biology, Inc. as previously described (Skelly et al., 2020). For proteomics analysis,
~100,000 cryopreserved DO mESCs from each line were sent from Predictive Biology to the Gygi Lab at Harvard Medical
School.

Diversity Outbred mESC RNA-seq

Raw RNA-seq data was retrieved (ArrayExpress: E-MTAB-7728) and analyzed as previously described (Skelly et al., 2020),
but using both paired-end sequencing reads instead of single end. Briefly, we aligned paired-end 75 bp reads with bowtie
v1.1.2 (Langmead et al., 2009) to a pooled "8-way" transcriptome containing strain-specific isoform sequences from all eight
DO founder strains, then resolved multi-mapping reads and estimated transcript- and gene-level abundance for each sample
using the EMASE method as implemented in gbrs v0.1.6 (Choi et al., 2020; Raghupathy et al., 2018). Genes with a median
TPM (transcripts per million) value smaller than 0.5 or zero value (i.e., not expressed) in more than half of the samples were
filtered. Next, we normalized gene-level counts to the upper quartile value to account for differences in library size and then
applied the ComBAT function from R/sva package to remove batch effects caused by library preparation (Johnson et al.,
2007). For QTL mapping, we transformed normalized values to rank normal scores using rankZ normalization as
implemented in the DOQTL R package (Gatti et al., 2014). Finally, sample mix-ups were resolved by comparing the
genotypes inferred from the RNA-seq data using gbrs v0.1.6 (http://churchill-lab.github.io/gbrs/) to genotypes inferred from
DNA microarrays (GigaMUGA platform, Neogen Geneseek).

Diversity Outbred mESC ATAC-seq

Normalized ATAC-seq peak values from Skelly et al., (2020) were further processed using the ComBAT function in the R/sva
package to remove any potential batch effects caused by library preparation (Johnson et al., 2007). Normalized, batch-
corrected peak values were used in all correlation analyses. For QTL mapping, these values were further transformed to
rank normal scores using the rankZ function from the DOQTL package (Gatti et al., 2014). For annotation of ATAC-seq
peaks we utilized the ChlPseeker R package (Yu et al., 2015).

Multiplexed quantitative proteomics analysis of DO mESCs

Sample preparation for proteomics analysis

Frozen cell pellets were resuspended in 8 M Urea, 200 mM EPPS, pH 8.5, with protease inhibitor, and lysed by passing
through a 21-gauge needle with syringe. After centrifugation at 13,000 rpm at 4°C for 10min, supernatant was used for
further analysis. BCA assay was performed to determine protein concentration of each sample. Samples were reduced in
5 mM TCEP for 15min, alkylated with 10 mM iodoacetamide for 15min, and quenched with 15 mM DTT for 15min. 200 pg
protein was chloroform-methanol precipitated and re-suspended in 200 pyL 200 mM EPPS (pH 8.5). Protein was digested
by Lys-C at a 1:100 protease-to-peptide ratio overnight at room temperature with gentle shaking. Trypsin was used for
further digestion for 6 hours at 37°C at 1:100. 100 uL of each sample were aliquoted. 30 pL acetonitrile (ACN) was added
into each sample to 30% final volume. 200 yg TMT reagent (126, 127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C,
131N) in 10 yL ACN was added to each sample. After 1 hour of labeling, 2 pyL of each sample was combined, desalted,
and analyzed using mass spectrometry. TMT labeling efficiency was calculated and over 99%. After quenching using 0.3%
hydroxylamine, 10 samples in each TMT were combined and fractionated with basic pH reversed phase (BPRP) high
performance liquid chromatography (HPLC), collected onto a 96 six well plate and combined for 24 fractions in total.
Twelve fractions were desalted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)
(Navarrete-Perea et al., 2018).

Liquid chromatography and tandem mass spectrometry

For the BPRP fractions, mass spectrometric data were collected on an Orbitrap Fusion mass spectrometer coupled to a
Proxeon NanoL.C-1200 UHPLC. The 100 um capillary column was packed with 35 cm of Accucore 50 resin (2.6 um, 150A;
ThermoFisher Scientific). The mobile phase was 5% acetonitrile, 0.125% formic acid (A) and 95% acetonitrile, 0.125%
formic acid (B). The data were collected using a DDA-SPS-MS3 method. Each fraction was eluted using a 150 min method
over a gradient from 6% to 30% B. Peptides were ionized with a spray voltage of 2,600 kV. The instrument method
included Orbitrap MS1 scans (resolution of 1.2 x105; mass range 350-1400 m/z; automatic gain control (AGC) target
5x105, max injection time of 100 ms and ion trap MS2 scans (CID collision energy of 35%; AGC target 2x104; rapid scan
mode; max injection time of 120 ms). MS3 precursors were fragmented by HCD and analyzed using the Orbitrap (NCE
65%, AGC 1 x105, maximum injection time 150 ms, resolution was 5 x104 at 400 Th). Detailed parameters for MS2 and
MS3 are embedded in the RAW files.
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Mass spectrometry data analysis

Mass spectra were processed using a Sequest-based pipeline (Huttlin et al., 2010). Spectra were converted to mzXML
using a modified version of ReAdW.exe. Database search included all entries from an indexed Ensembl database version
90 (downloaded:10/09/2017). This database was concatenated with one composed of all protein sequences in the
reversed order. Searches were performed using a 50 ppm precursor ion tolerance for total protein level analysis. The
product ion tolerance was set to 0.9 Da. TMT tags on lysine residues and peptide N termini (+229.163 Da) and
carbamidomethylation of cysteine residues (+57.021 Da) were set as static modifications, while oxidation of methionine
residues (+15.995 Da) was set as a variable modification. In addition, for phosphopeptide analysis, phosphorylation
(+79.966 Da) on serine, threonine, and tyrosine are included as variable modifications. Peptide-spectrum matches (PSMs)
were adjusted to a 1% false discovery rate (FDR). PSM filtering was performed using a linear discriminant analysis (LDA).
For TMT-based reporter ion quantitation, we extracted the summed signal-to-noise (S:N) ratio for each TMT channel and
found the closest matching centroid to the expected mass of the TMT reporter ion. For protein-level comparisons, PSMs
were identified, quantified, and collapsed to a 1% peptide false discovery rate (FDR) and then collapsed further to a final
protein-level FDR of 1%, which resulted in a final peptide level FDR of <0.1%. Moreover, protein assembly was guided by
principles of parsimony to produce the smallest set of proteins necessary to account for all observed peptides. Proteins
were quantified by summing reporter ion counts across all matching PSMs. PSMs with poor quality, MS3 spectra with less
than 10 TMT reporter ion channels missing, MS3 spectra with TMT reporter summed signal-to-noise of less than 100 or
having no MS3 spectra were excluded from quantification. Each reporter ion channel was summed across all quantified
proteins and normalized assuming equal protein loading of all 10 samples. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with dataset identifiers
PXD033001.

Protein abundance estimation

Protein abundances were estimated as described previously (Keele et al., 2021). Briefly, peptides that contain
polymorphisms were filtered and batch effects were removed from the filtered peptide data using a linear mixed model fit
with the R/Ime4 package (Bates et al., 2014). Finally, protein abundances were estimated and normalized using the
processed peptide data as described in detail in Keele et al., (2021). Proteins missing values in more than 50% of the
samples were removed from further analysis.

Statistical Analysis and Genetic Mapping

Code availability

All analyses and figures were generated with the R statistical programming language and are available at the following web
resource (link here) and github (link here). Unless otherwise stated R/tidyr package was used for data processing, R/ggplot2
for plotting and R/pheatmap for heatmap plots.

Gene annotations and id matching across data sets

Transcript abundance data was annotated to Ensembl gene identifiers, proteomics data was annotated to Ensembl protein
identifiers, and ATAC-seq data was annotated to Ensembl gene ids using ChipSeeker R package. We used ENSEMBL v98
to add gene annotations such as MGl symbol, gene location, and gene biotype. MGl symbol was used as the identifier for all
downstream analysis such as overrepresentation and gene set enrichment.

Correlation Analysis

We used the rcorr function from the R/Hmisc package to calculate Pearson correlations. Individual p-values were adjusted for
multiple testing using the p.adjust function in R/base and specifying the Benjamini-Hochberg ("BH") option to estimate the
false discovery rate (FDR).

Sample-to-sample correlation for protein abundance: For proteome-to-proteome comparisons, we used the abundance of
7,432 proteins across 190 cell lines. To compare chromatin accessibility profiles to the proteome, we used 36,859 ATAC-
seq peaks annotated to 6,865 proteins and their corresponding protein abundances in 163 cell lines for which ATAC-seq,
transcriptomics and proteomics were profiled. Similarly, for comparing the transcriptome to the proteome across 174 cell
lines that had both RNA-seq and proteomics data, we used the overlapping set of 7,241 genes with both transcript and
protein abundance measures.

Correlation between chromatin accessibility and protein abundance: Pairwise Pearson correlations were calculated
between the abundance of 7,148 autosomal proteins and the chromatin accessibility of 99,159 autosomal ATAC-seq
peaks across 163 cell lines for which ATAC-seq, transcriptomics and proteomics were profiled.

Correlation between transcript and protein abundance for individual genes: Pairwise Pearson correlations were calculated
for 7,241 genes with both transcript and protein abundance measures across 174 cell lines that had both RNA-seq and
proteomics data.
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Correlation between complex member and non-complex member proteins: The list of complex member proteins was
retrieved from (Romanov et al., 2019) which includes protein complexes manually curated using CORUM and COMPLEAT
databases. Pairwise Pearson correlations between protein abundances of complex member and non-complex member
genes were calculated for complexes with five or more subunits (n = 164) excluding proteins with significant pQTL to leave
out large genetic effects that may not be shared among complex members.

Gene Set Enrichment and Over-representation Analysis

We performed over-representation analysis using the ‘gost’ function in the gProfiler2 package in R (Raudvere et al., 2019)
using an appropriate universal background on a case-by-case basis and ‘fdr’ option for p-value correction. For example,
when looking at the functional enrichments in proteins with high variation all genes identified in proteomics were used
whereas only the shared set of genes between RNA-seq and proteomics was used when looking at genes with positive
correlation between transcript and protein abundance. For gene set enrichment analysis, we used the WebsGestaltR R
package (Liao et al., 2019). To identify overrepresentation of genomic regions we utilized R package LOLA (Sheffield and
Bock, 2016) which looks at the overlap between user data sets and public genomic data sets like transcription factor binding
sites from ENCODE and the CODEX database. Following instructions of the R/LOLA package the p-values were transformed
to g-values using the R/qvalue package to get FDR values.

Gene Set Variation Analysis

We performed Gene Set Variation Analysis using the R/Bioconductor package GSVA (Hanzelmann et al., 2013). Gene
Ontology terms with gene symbols were retrieved from MGl
(http://www.informatics.jax.org/gotools/data/input/MGlgenes_by_GOid.txt) which included 8,436 GO Biological Process,
3,355 GO Molecular Function and 1,077 GO Cellular Component gene sets. List of protein complexes and subunits was
retrieved from (Romanov et al., 2019) which includes protein complexes manually curated using CORUM and COMPLEAT
databases. Enrichment scores were calculated using the abundance of 7,432 proteins across 190 cell lines for each gene set
with at least 5 overlapping proteins. Next, we evaluated the significance of enrichment scores across experimental covariates
using a two-way ANOVA (~ sex + Lifr genotype + sex:Lifr genotype) where individual p-values were corrected for multiple
testing using the p.adjust function in R/base and specifying the Benjamini-Hochberg ("BH") option and followed by Tukey’s
HSD using R/rstatix package for pairwise comparisons. Categories that showed significance in both statistical tests were
reported with the p-value obtained from Tukey’s HSD.

Quantitative Trait Locus Mapping

Genetic mapping was performed using a linear-mixed model implemented as the ‘scan1’ function in R/qtl2 package (Broman
et al., 2019). We mapped using the normalized, transformed values with sex as a covariate and the Leave One Chromosome
Out (loco) option for kinship correction (Gatti et al., 2014). To estimate genome-wide significance, we permuted genotypes
1000 times while maintaining the relationship between the phenotype and covariates. For each permutation we retained the
maximum LOD score in order to generate a null distribution for the test statistic (Churchill and Doerge, 1994). To calculate
thresholds for pQTL, we repeated this permutation strategy for all proteins and estimated a significance cutoff at LOD > 7.5
(alpha = 0.05), and a suggestive cutoff at LOD > 6. False discovery rates (g-values) were determined for each permutation-
derived p-value with R/Qvalue software, using the bootstrap method to estimate Ty and the default A tuning parameters
(Storey et al., 2004). Support intervals for each QTL were defined by the 95% Bayesian credible interval (Sen and Churchill,
2001). We call a QTL 'local' if the QTL peak is within 5Mbp to the midpoint of its corresponding gene and 'distal' if otherwise.
Founder allele effects were estimated as best linear unbiased predictors (BLUPs) at the QTL using scaniblup function in
R/qtl2 package. Previous work has estimated the genome-wide significance threshold at 7.6 and 7.5 for chromatin
accessibility QTL (caQTL) and expression QTL (eQTL) respectively (Skelly et al., 2020). To identify overlaps with significant
pQTL, we used a relaxed threshold of LOD > 5 for caQTL and eQTL. They were classified as shared if the QTL peaks were
within +/-5Mb of the significant pQTL peak and the absolute correlation between haplotype effects was higher than 0.5.

Defining QTL Hotspots

We first identified distal QTL that reach genome-wide permutation-based threshold (p < 0.05; LOD 7.5). Next, we applied a
sliding window method to identify hotspots as described in Skelly et al., 2020. Briefly, we counted the number of distal QTL
within 1cM windows (0.25 cM shift) across the genome and selected the top 0.5% of bins with the most distant pQTL (0.5%
bin threshold = 8 distant pQTLs). Final coordinates for each hotspot were determined using the Bioconductor package
'GenomicRanges' to merge adjacent bins into a single region (Lawrence et al., 2013).

Mediation Analysis

We used mediation analysis to identify regions of open chromatin, transcript, and protein abundance that were likely to be the
causal mediator of a caQTL, eQTL, or pQTL. Mediation analysis was performed using the 'intermediate' package in R
(https://github.com/simecek/intermediate) by regressing each target (T) on a mediator (M) at the QTL (Q) and adjusting for
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covariates. We applied the 'double-lod-diff' method to reduce the effects of missing values. For mediation of QTL with the
matching data type we used the full sample set, e.g., pQTL mediation by proteins (Qpor. — Proteiny — Proteint) were done
using all the 190 samples. On the other hand, mediation across data types were done on common set of samples e.g., for
mediation between protein and transcript (Qpar. — Transcriptw — Proteint | Qeqr. — Proteiny — Transcriptr) only the 174
samples with both protein and transcript measurements were used. To assess the significance of a LOD drop, we mediated
the QTL against all of the mediator data, converted the recorded LOD scores to normal scores, and checked if the score fell
below 6 standard deviations from the mean (Chick et al., 2016). Mediators were further filtered to narrow down top
candidates to include genes with midpoints that are found within 5Mb of the QTL peak.

Data Integration and Multi-Omics Factor Analysis

For data integration we used Multi-Omics Factor Analysis (MOFA) implemented in Python (mofapy2) and in R (MOFA2)
(Argelaguet et al., 2018). MOFA integrates multi-omics data sets in an unsupervised fashion using a factor analysis model
and infers a number of interpretable latent factors. All transcripts (n = 14,405), proteins (n = 7,432) and the most variable
15,000 ATAC-seq peaks based on total variance were used for integration from 163 cell lines with all three molecular
measurements. All three datasets were log transformed using base R function log1p before modeling with MOFA. For model
generation, we modified the following options from default: we set number of factors to 30, number of maximum iterations to
10,000, convergence mode to “slow” and scale views option to TRUE. The model with the best convergence based on the
evidence lower bound statistic (ELBO) was saved for further analysis. Next, factors that showed a significant correlation to
the total number of expressed features and that didn’t explain more than 1% variation in at least one data set were removed
resulting in 23 latent factors. We calculated the proportion of variance explained by factor per data set and the correlation
between factors and experimental covariates using built-in functions in the MOFA2 R package. Functional characterization of
MOFA Factors was done using the R/LOLA package for top ATAC-seq peak drivers and the R/WebsGestaltR package for
transcripts and proteins. Top ATAC-seq drivers were obtained using the base R boxplot.stats function where the outliers
correspond to data points that lie outside 1.5 times the interquartile range. MOFA factor weights were used to rank genes in
enrichment analysis for transcripts and proteins. QTL mapping, mediation and permutation analysis with factors were done
as described above using genotype probabilities from the 163 samples used in MOFA.
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Supplemental Tables

Table S1. Over-represented annotations among lists of detected and undetected proteins.
Table S2. Results from Gene Set Variation Analysis.

Table S3. List of proteins with correlation to ATAC-seq peaks.

Table S4. List of pQTL hotspots and their target proteins.

Table S5. List of all significant pQTL in Diversity Outbred mESCs.

Table S6. Lists of molecular features and their weights for each of 23 MOFA factors.

Supplemental Figures

A

oy)
@]

Anova, p <2.26-16 Anova, p = 0.00059
Anova, p = 6.56-06

T-test, p = 5.26-06

o
[

T-test, p <2.2¢-16 T-test, p = 0.00019

1e+06 - 1e+06-

N
v

1e+03- 1e+03 -

©
V

1e+00- 1e+00-

Average transcript abundance
Average transcript abundance
Average protein abundance

IN
'

' ' ' ' ' '
Detected Not detected Not a TF TF Not a TF TF

D E

120-

80-

count

40-

o

. § 0- -
5.0 7.510.0125 0.01 0.10 1.00
Mean Variance

1.00-

£o0.10-

b

50 75 100 125 50 75 100 125
Mean protein abundance Mean protein abundance

Variance in protein abundance
[ ]
Variance in protein abundance

°
2

Figure S1. (A) Genes where protein abundance is detected have a significantly higher mean transcript abundance (One way
ANOVA, followed by t-test). Average transcript abundance of protein coding genes (n = 12,732) that are detected (TRUE, n = 7,240)
and not detected (FALSE, n = 5,492) in the proteomics data are plotted. (B, C) TFs show a significantly lower mean for both
transcript and protein abundance in comparison to other genes (One way ANOVA, followed by t-test). Average transcript and protein
abundance of protein coding genes that are transcription factors (TF) and not transcription factors (Not a TF) are plotted. (D, E)
Protein abundance is highly variable across DO mESCs. Histograms showing the mean abundance and variance per protein plotted
for 7,342 proteins across 190 DO mESC lines. (F) Mean abundance and variance plotted for all proteins (gray) with proteins
identified as part of "Extracellular region” and "ECM protein™ GO Terms in most variable proteins (top 5t percentile %CV), in
overrepresentation analysis, highlighted in blue. (G) Mean abundance and variance plotted for all proteins with proteins identified as
"REX1 Target' in TRANSFAC database in least variable proteins (bottom 5t percentile %CV), in overrepresentation analysis,
highlighted in blue and REX1 (Zfp42) highlighted in purple.
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Figure S2. (A) Proteins that are part of a complex show less variation. Boxplots depicting % coefficient of variation of protein
abundance for genes that are complex members and not complex members. (B) Proteins that physically interact show higher
pairwise correlation in abundance than non-interacting proteins. Density distributions of pairwise Pearson correlations between
complex forming proteins and others are plotted. (C) Sex influences the co-regulation of complex subunits. Boxplots of
pairwise Pearson correlations among complex subunits with significant differences between male and female cell lines are
shown (One way ANOVA followed by Tukey’s HSD, ****: p value < 0.00005) (D) Variable complexes are more likely to have
promiscuous subunits that are part of more than 2 complexes. Pairwise Pearson correlation coefficients plotted for all subunits
that are part of stable (upper 10th percentile, most cohesive) and variable (lower 10th percentile, least cohesive) complexes
where the proteins are colored by the number of complexes they belong to. (E) Promiscuous proteins vary in preference of
complexes. Boxplots of median pairwise Pearson correlations of complex subunits across various complexes they are part of
are plotted. The complex subunits are separated into two categories based on the total number of complexes they belong to.
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Figure S3. (A) A heatmap of Pearson correlation coefficients between protein abundance and chromatin accessibility across
the genome. Proteins encoded on the sex chromosomes were excluded from the analysis to limit sex effects due to X gene
dosage. Correlation between all autosomal proteins and accessibility at ATAC-seq peaks were calculated. For plotting, proteins
and chromatin regions are grouped in 5 Kb bins and the points are colored and sized by the maximum correlation value in each
bin. (B, C) Scatterplots showing mean and coefficient of variation (% CV) for transcript and protein abundance for genes with
both measurements (n = 7,241). (D) Genetically identical cell lines show significantly higher correlation than what is expected
by chance between the transcriptome and proteome. Violin plots overlaid with boxplots depicting the distribution of Pearson
correlation coefficients between the transcriptome and proteome of genetically identical mMESCs (blue) and the null distribution
generated through 1000 permutations where the sample names are randomized (black). (E) Genes that do not form complexes
show significantly higher correlation between transcript and protein abundance. Boxplot comparing the pairwise Pearson
correlation coefficients between transcript and protein abundance for genes that are part of protein complexes (TRUE) and that
do not form complexes (FALSE).
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Figure S4. (A) The allelic split observed in previously described eQTL hotspot on chromosome 15 is also observed for the
pQTL hotspot. Heatmap showing haplotype effects at suggestive distant pQTL peaks (LOD > 6) within the chromosome 15
hotspot. (B) Mediation analysis identifies Lifr transcript abundance as the best mediator for chromosome 15 pQTL hotspot.
Decrease in LOD scores due to mediation is plotted for the top five mediators in the region for the suggestive distant pQTL.
The points are colored and sized according to LOD difference. For 61/131 suggestive distant pQTL peaks in the region, Lifr
transcript abundance leads to the largest drop in LOD when included as a covariate in the genetic mapping model. (C)
Genetic mapping with GSVA scores of GO term Protein ADP-Ribosylation identifies a near significant QTL on chromosome
15 with similar haplotype effects to the chromosome 15 molecular QTL hotspot. On the left, genome scan showing LOD
scores is plotted for chromosome 15. On the right, inferred haplotype effects at the QTL peak is plotted.
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Figure S5. Heatmaps showing the number of features in each data set with abs(weight) > 0.01 for 23 MOFA Factors.
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