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Genetic background is a major driver of phenotypic variability in pluripotent stem cells 
(PSCs). Most studies of variation in PSCs have relied on transcript abundance as the 
primary molecular readout of cell state. However, little is known about how proteins, the 
primary functional units in the cell, vary across genetically diverse PSCs, how protein 
abundance relates to variation in other cell characteristics, and how genetic background 
confers these effects. Here we present a comprehensive genetic study characterizing the 
pluripotent proteome of 190 unique mouse embryonic stem cell lines (mESCs) derived 
from genetically heterogeneous Diversity Outbred (DO) mice. The quantitative proteome 
is highly variable across DO mESCs, and we identified differentially activated 
pluripotency-associated pathways in the proteomics data that were not evident in 
transcriptome data from the same cell lines. Comparisons of protein abundance to 
transcript levels and chromatin accessibility show broad co-variation across molecular 
layers and variable correlation across samples, with some lines showing high and others 
low correlation between these multi-omics datasets. Integration of these three molecular 
data types using multi-omics factor analysis revealed shared and unique drivers of 
quantitative variation in pluripotency-associated pathways. QTL mapping localized the 
genetic drivers of this quantitative variation to a number of genomic hotspots, and 
demonstrated that multi-omics data integration consolidates the influence of genetic 
signals shared across molecular traits to increase QTL detection power and overcome 
the limitations inherent in mapping individual molecular features. This study reveals 
transcriptional and post-transcriptional mechanisms and genetic interactions that 
underlie quantitative variability in the pluripotent proteome, and in so doing provides a 
regulatory map for mouse ESCs that can provide a rational basis for future mechanistic 
studies, including studies of human PSCs. 

Introduction 
Pluripotent stem cells (PSCs) hold great potential for 

modeling human disease and advancing regenerative 
medicine (Hamazaki et al., 2017), but variation in the 
derivation, stability, and differentiation of individual cell 
lines impedes progress toward these goals (Ortmann and 
Vallier, 2017; Volpato and Webber, 2020). Genetic 
background contributes significantly to phenotypic variation 
in human and mouse PSCs (Czechanski et al., 2014; 
Ortmann and Vallier, 2017). Systems genetics experiments 
can identify the loci that harbor genetic variants, and can 
associate phenotypic variability with regulatory networks 
that are affected by these variants (Byers et al., 2022; 
Carcamo-Orive et al., 2017; Kilpinen et al., 2017; Mirauta 
et al., 2020; Panopoulos et al., 2017; Skelly et al., 2020).   

Most studies addressing phenotypic variability in PSCs 
have focused on transcriptional regulation using measures 
of chromatin state and transcript abundance, due in part to 

the relatively low cost of RNA and DNA sequencing. 
However, cellular phenotypes are largely determined by 
proteins, and the effects from genetic variation on 
chromatin states and transcripts may be buffered, 
amplified, or even reversed by post-transcriptional 
processes acting on protein abundance (Chick et al., 2016; 
Mirauta et al., 2020). Previous studies in cell and animal 
models have found a surprising level of disagreement 
between protein and transcript abundance (Buccitelli and 
Selbach, 2020; Gygi et al., 1999; Maier et al., 2009; Vogel 
and Marcotte, 2012); this high discordance was also 
observed in differentiating mouse embryonic stem cells 
(mESCs; (van den Berg et al., 2017)). Genetic analyses 
suggest that stoichiometric buffering acting on protein 
complexes may attenuate transcriptional variation of 
complex-forming proteins in adult mouse tissues (Chick et 
al., 2016; Keele et al., 2021), and translational output was 
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recently shown to provide strong feedback on chromatin 
state and transcription to drive self-renewal in mESCs 
(Bulut-Karslioglu et al., 2018). These findings suggest that 
post-transcriptional regulation of protein abundance may 
play a significant role in pluripotency maintenance and 
differentiation in PSCs.  

We previously derived a panel of mESCs from Diversity 
Outbred mice (DO mESCs). The DO mice are an outbred 
population derived from eight inbred founder strains with 
high genetic diversity, and a population structure that is 
optimized for genetic mapping and causal variant 
discovery (Churchill et al., 2012; Skelly et al., 2020). We 
maintained DO mESCs in sensitized culture conditions to 
amplify genetic differences in the pluripotent ground state 
and analyzed transcriptome and chromatin state data to 
map genetic modifiers underlying this variability (Skelly et 
al., 2020). We demonstrated that genetic variation 
influences chromatin accessibility and transcript 
abundance to alter the stability of the ground state, as 
measured by markers of pluripotency and capacity for self-
renewal (Skelly et al., 2020). We showed that genetic 
background can bias differentiation propensity of mESCs 
through its effects on Wnt signaling activity (Ortmann et al., 
2020). These studies demonstrated the power of this 
resource for discovery of genetic drivers and molecular 
mechanisms that underlie variation in the maintenance of 
the pluripotent ground state and differentiation propensity 
of mESCs. 

In the current study we expand on the previous work by 
investigating how genetic effects are mediated by the 
proteome. We quantified proteins by multiplexed mass 
spectrometry across the same panel of DO mESC lines. 
As with our previous analysis of chromatin accessibility 
and transcript abundance, we find the quantitative 
proteome to be highly variable across these cell lines. 
Genetic mapping analysis identified significant protein 
quantitative trait loci (pQTL) for 20% of all measured 
proteins. One third of the pQTL appear to uniquely affect 
protein abundance independently from transcript levels – 
presumably through post-transcriptional mechanisms. 
Thus, these signatures of genetic effects on proteins were 
not detected in our earlier analysis of transcript 
abundance. The remaining pQTL colocalize with previously 
identified QTL for transcript abundance (eQTL) and/or 
chromatin accessibility (caQTL), consistent with 
transcriptional regulation. We applied multi-omics factor 
analysis (MOFA) to identify latent factors that account for 
the variability in gene regulatory signatures across these 
three layers of molecular data (Argelaguet et al., 2018). 
Genetic mapping of the latent factors identified previously 
reported QTL “hotspots” as well as novel regulatory loci. 
We show that multi-omics integration increases power to 
detect genetic drivers of broad regulatory signatures 
compared to QTL mapping of individual molecular traits. 
We further show how genetic variation affects 
transcriptional and post-transcriptional gene regulation to 
drive variation in ground state pluripotency. The resulting 
regulatory map for mouse ESCs can provide a rational 

basis for future mechanistic studies, including studies of 
human PSCs. 

Results 

The pluripotent proteome of genetically diverse mESCs 
We applied multiplexed mass spectrometry to quantify 

relative protein abundance in 190 unique DO mESC lines 
(Fig 1A). In total, we detect 7,432 proteins in at least half 
and 4,794 proteins in all the cell lines. The list of proteins 
detected in mESCs is overrepresented for those involved 
in cellular metabolism (e.g., organic acid metabolic 
process), post-transcriptional processes (e.g., translation, 
mRNA processing), and protein complexes (e.g., 
spliceosome, proteasome). By contrast, transmembrane 
proteins and transcription factors are overrepresented 
among the genes showing expression in the RNA-seq data 
but not detected in the proteomics data (Table S1). 
Transmembrane proteins contain both hydrophilic and 
hydrophobic subunits making them less soluble (Schey et 
al., 2013) and therefore harder to isolate in untargeted 
proteomics analysis. In addition, the probability of detecting 
an individual protein is dependent on its transcript 
abundance (Fig S1A); expressed genes at the lower 
threshold for transcript abundance (average count = 1) 
have a protein detection rate of less than 60% (Fig 1B). 
This includes transcription factors, which as a group exhibit 
lower mean transcript abundance, presumably resulting in 
lower levels of detectable protein (Fig S1B). By contrast, 
proteins encoded by genes with high transcript 
expression—a group that includes many ribosomal and 
mitochondrial proteins—are detected at a much higher rate 
(>90%) (Fig 1B). Of note, ribosomal genes segregate high 
genetic diversity in the DO which makes short read 
alignment to them particularly challenging, and the 
observed dip in protein detection rate for the highest 
expressed genes is likely due to read alignment errors 
causing inflated transcript abundance estimates for some 
ribosomal genes. 

The mESC proteome is highly variable across cell lines 
(Fig S1D, E), and the highest sample-level correlations are 
observed between replicate lines and those derived from 
related individuals, consistent with genetic effects. 
Principal Component Analysis (PCA) points to 
chromosomal sex as the largest component of variance 
across samples (12.2%, Fig 1C), and sexually dimorphic 
expression of X-linked proteins drives most of this 
variation. This expression bias is likely due to gene dosage 
effects from two active X chromosomes in XX mESCS 
(Epstein et al., 1978; Kratzer and Gartler, 1978). Overall, 
more than half of all proteins expressed in DO mESCs 
exhibit variable expression linked to sex (n = 4,106 / 
7,432, p < 0.05), including pluripotency factors SOX2, 
ESRRB, KLF2, KLF4, SALL4, UTF1, NR5A2 and LIN28A 
(Kalkan et al., 2017). To identify pathways and biological 
processes that vary across cell lines, we performed gene 
set variation analysis (GSVA) (Hänzelmann et al., 2013). 
GSVA is an unsupervised method that estimates variation 
in the activity (expression) of annotated gene sets across a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2022. ; https://doi.org/10.1101/2022.04.22.489216doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.22.489216
http://creativecommons.org/licenses/by-nc-nd/4.0/


population. The resulting enrichment scores can be used 
to compare groups of samples, or as traits themselves for 
downstream analyses and genetic mapping. For example, 
female and male samples vary in many cellular processes 
and protein complexes (Table S2); male cell lines show 
higher enrichment for DNA methylation, histone 

modification and chromatin remodeling in comparison to 
female cell lines, consistent with previous studies (Schulz 
et al., 2014; Werner et al., 2017) (Fig 1D). We find that 
ribosome biogenesis genes are overrepresented in 
weightings of the first principal component, with higher 
abundance in male cell lines compared to female lines (p < 

                           
Figure 1. Overview of the quantitative proteome in genetically diverse mESC lines.   
(A) Nearly 200 embryonic stem cell lines were established from blastocysts of Diversity Outbred mice, and quantified using 
ATAC-seq, RNA-seq, and multiplexed mass spectrometry; 163 lines have all three measures.  
(B) Protein detection rate is linked to transcript abundance. The probability of a gene to have protein abundance 
measurement given its average transcript abundance among 174 mESCs with both transcriptome and proteome data. 
(C) Principal component analysis reveals sex as a significant source of variation among DO mESC proteomes. PC1 and PC2 
for 190 mESCs are plotted and colored by sex. 
(D) Enrichment scores obtained from GSVA for Gene Ontology Biological Processes (GO:BP) showing significant differences 
between mESCs with different sexes and genotypes at the Lifr locus are plotted. GO:BP DNA methylation, chromatin 
remodeling and ribosome biogenesis show significantly higher enrichment in males in comparison to females and, protein 
ADP-ribosylation shows significantly higher enrichment in mESCs with at least one copy of the reference allele in comparison 
to ones carrying two copies of the alternative allele at the Lifr locus (two-way anova followed by Tukey’s HSD, *: p value < 
0.05, ****: p value < 0.00005).   
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5 x 10-4) (Fig 1D). Male cell lines also showed higher 
abundance of proteins in complexes involved in chromatin 
remodeling and ribosome biogenesis (p < 5 x 10-4), 
consistent with findings from other proteome analyses 
(Keele et al., 2021; Romanov et al., 2019). In addition, the 
proteomes of cell lines with different genotypes at the Lifr 
locus, where those with the reference allele have 
increased stability in the pluripotent state (Skelly et al., 
2020), differ significantly in several biological processes 
(Table S2). For example, cell lines with at least one copy of 
the reference Lifr allele showed higher abundance of 
proteins with regulatory roles in ADP-ribosylation, the 
transfer of ADP-ribose moieties (derived from NAD) to 
protein amino acids (Fig 1D). This post-translational 
histone modification is catalyzed by poly-ADP-ribose 
polymerases, two of which (PARP1/ARTD1, 
PARP7/TIPARP) have been shown in mESCs to occupy 
and maintain an active epigenetic state at key naïve 
pluripotency genes including Nanog, Oct4/Pou5f1, Sox2, 
and Rex1/Zfp42 (Roper et al., 2014). GSVA enrichment of 
ADP-ribosylation proteins as well as several other 
pluripotency and differentiation pathways are observed 
only in the proteomics data and not evident in the 
transcriptome GSVA results (pathways highlighted in Table 
S2). 

Extracellular proteins are overrepresented among the 
most variable proteins, while members of protein 
complexes are overrepresented among the least variable 
proteins. These include chaperonin containing T (CCT) 
complex; minichromosome maintenance (MCM) complex; 
proteasome; and spliceosome (false discovery rate [FDR] 
< 0.05). The overrepresentation of these functional groups 
of proteins is not simply due to having low or high 
abundance or lacking variability (Fig S1F). Targets of the 
transcription factor REX1, a marker of naïve pluripotency 
(Kalkan et al., 2017), are also overrepresented among the 
least variable proteins, despite REX1 protein itself being 
highly variable across ESCs (Fig S1G). REX1 is known to 
act as a repressor (Guallar et al., 2012), and the lowest 

REX1-expressing mESC lines may still exceed a threshold 
required to efficiently repress its target genes. 
Alternatively, the effects of variable REX1 protein 
abundance on downstream targets may be buffered. 
Reports in the literature indicate that REX1 may be 
dispensable for pluripotency maintenance (Masui et al., 
2008), which would support the existence of compensatory 
mechanisms.  

To further characterize the influence of physical 
interactions on protein abundance, we looked at the 
covariation among complex-forming proteins. Members of 
protein complexes have a lower median coefficient of 
variation (CV) than non-complex forming proteins, 
suggesting that physical interactions on the whole act to 
dampen the variation in protein abundance (Fig S2A). We 
observed that complex-forming proteins tended to covary 
in their abundance more than proteins that are not known 
to physically interact (Fig S2B), in line with previous 
studies (Romanov et al., 2019). We quantified this 
covariation, or “cohesiveness”, of complexes using median 
pairwise Pearson correlation between complex members; 
higher median correlation indicates tighter co-regulation of 
subunits and a stable maintenance of stoichiometry. We 
ranked protein complexes by their cohesiveness and 
observed that the most stable 10% of complexes (n = 17) 
were associated with the cell cycle, protein modification, 
and translation machinery—consistent with our analysis of 
individual proteins and published proteome studies of 
human and mouse cell lines and tissues (Hansson and 
Krijgsveld, 2013; Ori et al., 2016; Romanov et al., 2019) 
(Fig 2). Several complexes involved in protein trafficking 
and transcriptional regulation are also highly cohesive. By 
comparison, the least cohesive 10% of complexes is 
enriched for those associated with chromatin remodeling. 
Sex differences in complex cohesiveness are also 
observed; for example, protein constituents of the 
cytoplasmic small and large ribosomal subunits, the 
mitochondrial small ribosomal subunit, and HOPS complex 
are significantly more cohesive in XY than XX mESCs (p 

 
Figure 2. Protein subunit cohesiveness varies considerably among 164 complexes in DO mESC lines.  
For each complex, pairwise Pearson correlations were calculated between all protein subunits and summarized as a 
boxplot. Boxplots are ordered and colored based on their median pairwise correlation, with more cohesive complexes on 
the left. Specific examples of the stable (most cohesive 10%) and variable (least cohesive 10%) complexes are highlighted.  
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< 5 x 10-4) (Fig S2C). The molecular basis of these sex 
differences remains to be established; however, they are 
also observed in adult mouse liver (Keele et al., 2021) and 
heart proteomes (Gyuricza et al., 2022), and are therefore 
unlikely to play a unique role in establishing or maintaining 
pluripotency. 

Cohesiveness is associated with the fidelity of a 
complex’s constituent proteins. Complexes tend to be 
more cohesive if they consist of protein subunits that 
contribute to no or few other complexes (n ≤ 3) and less 
cohesive if they contain more promiscuous protein 
subunits that contribute to many other complexes (up to 
10) (Fig S2D). We identified 51 proteins that each 
contribute to at least 3 distinct complexes, and we 
assessed their covariation with members of each complex. 
Some of these promiscuous proteins show no preference 
among their annotated complexes, as evidenced by similar 
co-abundance to members across all complexes, while 
others show preferential membership to—or strict 
avoidance of—specific complexes in DO mESCs (Fig 
S2E). Examples of each include: CDK8, which shows high 
agreement with subunits of all three complexes it belongs 
to (median Pearson correlation coefficient [r] = 0.2), and 
HDAC3, which only shows high agreement with the 
HDAC3/NCOR complex (median r = 0.2) but not the Rpd3L 
(median r = -0.06), Emerin C32 (median r = -0.07), or 
Emerin regulatory complexes (median r = -0.03). Beta 
Actin (ACTB) isoforms appear to prefer different 
complexes in mESCs, with ACTB-208 showing higher 
agreement to members of the P2X7 receptor signaling and 
emerin complexes (median r = 0.2), and ACTB-201 
showing higher agreement to members of the BAF 
complex (median r = 0.2). These findings of differential 
complex cohesiveness cannot be seen in the transcript 
data. Further studies are needed to elucidate the molecular 
mechanisms underlying promiscuous complex members’ 
preferences and their potential functional impacts on 
stability of the ground state. 

Protein abundance co-varies with chromatin accessibility 
and transcript abundance 

The pluripotent state is established and maintained by 
a gene regulatory cascade that orchestrates changes 
across multiple molecular layers from chromatin 
accessibility to transcript and protein abundance (Nichols 
and Smith, 2009). To better understand these multi-layered 
regulatory interactions and to identify proteins with 
potentially important roles, we looked at the covariation of 
proteins with measures of chromatin accessibility (ATAC-
seq) and transcript abundance (RNA-seq) across our panel 
of genetically diverse DO mESCs.  

We compared protein abundance (n = 7,148) to 
chromatin accessibility (n = 99,159 peaks) and found that 
many proteins were most highly correlated with chromatin 
accessibility in the region proximal to their protein-
encoding gene (Fig S3A), consistent with our earlier 
observation of high concordance between transcript 
abundance and local open chromatin (Skelly et al., 2020) 
and likely indicative of transcriptional regulation. We 

identified 37 proteins whose abundance co-varied with 
chromatin accessibility genome-wide at 100 or more 
ATAC-seq peaks (abs(r) > 0.5; evident as horizontal bands 
in Fig S3A), which suggests that these proteins may play a 
role in chromatin remodeling and gene regulation. The list 
includes both well-characterized pluripotency regulators 
and proteins with no previously reported role in 
pluripotency maintenance (Table S3). For example, the 
abundance of ID1, a transcription factor critical in the 
maintenance of ES cell self-renewal and regulation of 
lineage commitment (Romero-Lanman et al., 2012), 
covaries significantly (positively and negatively) with 
chromatin accessibility at 112 ATAC-seq peaks across the 
genome (Fig 3A). Other proteins with potential roles in 
pluripotency maintenance include: AHDC1, a putative 

 
Figure 3: The quantitative proteome co-varies with 
chromatin accessibility and the transcriptome.  
(A) ID1 protein abundance shows high correlation to many 
chromatin regions across the genome. Circos plot showing 
ATAC-seq peaks where chromatin accessibility is positively 
(red) and negatively (blue) correlated with ID1 protein 
abundance (n = 112, abs(correlation) >0.5).  
(B) DO mESCs show a wide range of correlations between their 
transcriptome and proteome. Histogram of Pearson correlation 
coefficients between the transcriptome and proteome of DO 
mESC cell lines with matching genotypes (n = 174).  
(C) Genes show variable agreement between transcript and 
protein abundance in DO mESCs. Histogram depicting the 
distribution of pairwise Pearson correlation coefficients between 
transcript and protein abundance of genes with characteristic 
GO terms overrepresented in each category annotated 
underneath in matching colors (green: significantly positively 
correlated, orange: significantly negatively correlated, purple: 
genes with little or no correlation).  
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DNA-binding protein previously shown to physically 
interact with TCF7L1 (TCF3), a transcription factor 
involved in pluripotency regulation (Moreira et al., 2018; 
Wray et al., 2011); and UHRF2, a ubiquitin ligase identified 
as a target of epigenetic control during self-renewal 
(Walker et al., 2010). For almost half of these proteins, we 
find that their covarying ATAC-seq peaks are 
overrepresented in binding sites active in ESCs for TRP53 
(n = 28) and naïve pluripotency factors NANOG, ESRRB, 
and PRDM14 (n = 19, 18, 16 at FDR < 0.05) (Kalkan et al., 
2017). Many of these covarying chromatin peaks are 
proximal to genes involved in cellular response to leukemia 
inhibitory factor (LIF), providing further evidence for their 
roles in establishing and/or maintaining pluripotency (FDR 
< 0.05). Notably, only six of the 37 genes covary with 
chromatin accessibility for both protein and transcript 
abundance, while 29 exhibit protein-specific correlations to 
chromatin, consistent with post-transcriptional regulation of 
these chromatin modifying proteins (Table S3).  

We next examined the concordance between protein 
and transcript abundance in DO mESC lines. For genes 
where we detect both (n = 7,241), protein and transcript 
abundance are broadly positively correlated in their 
magnitude and variance (r = 0.5, p < 2.2e-16, Fig S3B, C). 
Similar studies in human iPSCs found that many proteins 
that varied in abundance did not show variation in their 
cognate RNAs (Mirauta et al., 2020). We see a similar 
trend for a small number of proteins (n = 180) where 
protein abundance is highly variable across cell lines 
without similar variation at the transcript level. On the other 
extreme, genes with high variation in transcript abundance 
but lacking variation at the protein level (n = 111) were 
overrepresented for ribosomal proteins. Surprisingly, the 
overall agreement between protein and transcript levels 
within a cell line appears to vary considerably across the 
DO mESCs (r range 0.1 - 0.6) (Fig 3B). We ruled out 
sample mix-ups as a potential reason for the low 
concordance in some cell lines (Fig 3B), and even the 
lowest observed sample correlation is still well above a null 
distribution of correlation values from permuted sample 
assignments (Fig S3D). Looking at individual genes across 
DO mESC lines, we see a wide range of variation in the 
correlation between protein and transcript levels, where 
many are highly positively correlated while others are 
negatively correlated (Fig 3C). The larger group of genes 
showing positive transcript-protein correlation (n = 5,530, r 
> 0.16, p < 0.05) are over-represented for proteins involved 
in X-linked inheritance, lipid metabolism, and membrane 
proteins (Fig 3C). The smaller group of genes with 
significantly negatively correlated transcript and protein 
levels (n = 82, r < -0.16, p <0.05) are enriched for those 
with roles in cellular respiration and mitochondrial 
translation (Fig 3C). The list of genes exhibiting little or no 
correlation in their transcript and protein levels (abs(r) < 
0.05, n = 498) are enriched for functions associated with 
mRNA splicing and cytoplasmic translation (Fig 3C). 
Stronger correlation of transcript and protein abundance is 
seen for genes that do not form protein complexes (Fig 
S3E), further supporting the idea that complexes place 

physical constraints on protein abundance that can serve 
to buffer against transcriptional variation (Chick et al., 
2016; Keele et al., 2021).  

Genetic characterization of the pluripotent proteome 
Variation in protein abundance across DO mESC lines 

appears to be driven at least in part by genetic 
background, with more than 90% of measured proteins 
estimated to have non-zero heritability (median h2 = 0.25). 
To identify specific genomic loci underlying this quantitative 
variation in individual proteins, we performed protein 
quantitative trait locus (pQTL) mapping. For over 20% of 
expressed proteins (n = 1,555 / 7,432) we detected one or 
more pQTL, with a total of 1,677 pQTL (LOD > 7.5, 
permutation genome-wide p < 0.05, corresponding to an 
FDR = 0.058) (Fig 4A). Of these, nearly two-thirds (n = 
1,056) are local and map to within ±5 Mb of the 
corresponding protein-encoding gene. We found many 
fewer distant pQTL (n = 621) that map outside of the local 
genomic window. As with previous pQTL studies of similar 
size in DO mice (Chick et al., 2016; Gyuricza et al., 2022), 
local pQTL tend to be more significant than distant pQTL 
(local median LOD = 10.8; distant median LOD = 7.9), and 
for over 80% of genes that have a local pQTL, we also 
detected an eQTL for the cognate transcript. For most of 
these local eQTL-pQTL pairs, the founder strain allele 
effects at the peak SNP are highly correlated (75% of local 
pairs are significant at FDR < 0.05; median r = 0.9), 
consistent with a single causal variant driving both 
transcript and protein abundance (Fig 4B). Correlation 
between chromatin accessibility (caQTL) and co-mapping 
local pQTL is more variable, with some proximal caQTL 
showing strong correlation of allele effects and others 
showing little or even negative correlation to local pQTL. 
For example, a chromatin region within the promoter of 
Bspry, a gene linked to pluripotency in mESCs and early 
embryonic development (Ikeda et al., 2012), has a local 
caQTL with highly concordant founder allele effects on 
Bspry transcript and protein abundance (Fig 4C, top). Anti-
correlated local caQTL include a variable region in the 
promoter of the gene Tfcp2l1 which encodes a 
transcription factor that has critical roles in maintenance of 
naïve pluripotency (Qiu et al., 2015; Ye et al., 2013). The 
founder allele effects at this caQTL are nearly opposite to 
those for the Tfcp2l1 local eQTL and pQTL (r = -0.8 for 
both caQTL-eQTL and caQTL-pQTL pairs) (Fig 4C, 
bottom). Both strongly positively and negatively correlated 
local effects may still implicate a single causal variant but 
have different molecular mechanisms, e.g., a promoter 
variant bound by a repressor could explain the anti-
correlated caQTL and pQTL for Tfcp2l1, whereas 
uncorrelated founder effects implicate multiple causal 
variants having distinct, unrelated effects on chromatin 
accessibility and transcript/protein abundance. 

Local pQTL likely reflect cis-regulatory or 
nonsynonymous coding variants, whereas distant pQTL 
are trans effects and likely mediated through another 
protein such as a transcription factor. Distant pQTL are not 
uniformly distributed across the genome and co-locate at 
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Figure 4: Genetic characterization of the pluripotent proteome.  
(A) Genetic mapping identifies 1,677 significant pQTL (LOD >7.5, permutation genome-wide p < 0.05, FDR = 0.06) where 1,056 
are local (within 5Mb of the protein coding gene, seen on the diagonal) and 621 are distant (off the diagonal). pQTL are plotted 
across the genome where the x-axis shows the location of the pQTL and the y-axis shows the midpoint of the protein coding gene.  
(B) Majority of co-mapping eQTL and pQTL show high agreement in haplotype effects. Histogram of pairwise Pearson correlation 
coefficients between inferred allele effects from eQTL and pQTL scans for each gene with a co-mapping QTL. The bars are 
colored by the significance of the pairwise correlation.  
(C) Examples of significant pQTL where the influence of genetic variation is seen at all three molecular layers are shown. On the 
left, LOD scores obtained from genome scans using chromatin accessibility (caQTL), transcript (eQTL) and protein abundance 
(pQTL) of the associated gene is plotted with the protein coding gene location annotated on the x-axis. On the right, haplotype 
effects obtained from the caQTL, eQTL and pQTL peaks are shown.  
(D) Histogram depicting the number of total distant pQTL at hotspots across the genome.  
(E) An example of physical interaction propagating the effects of genetic variation is plotted. On the left, genome scan showing 
LOD scores across the genome for proteins RPA1, RPA2 and RPA3 is shown with the location of Rpa3 gene annotated on the x-
axis. On the right, the inferred founder allele effects at the pQTL peak for all three genes are shown.  
(F) Graphical overview of the different groups of pQTL where the genetic variation (QTL) influences one or more molecular layers. 
Molecular layers lacking any impact (i.e., no QTL above LOD >5 with matching haplotype effects) are depicted in gray. 

pQTL “hotspots”, as we previously observed for caQTL 
and eQTL in DO mESCs (Skelly et al., 2020). We identified 
three pQTL hotspots on Chromosomes (Chrs) 4, 9, and 15 
(Fig 4D), two of which (Chrs 4 and 15) were previously 
mapped as caQTL and/or eQTL (Skelly et al., 2020) while 
the Chr 9 hotspot uniquely affects protein levels (Table 
S4). The identity of the causal gene underlying the Chr 9 
pQTL remains to be established, but targets of this pQTL-
specific hotspot are enriched for proteins involved in 
translation initiation. This hotspot has not been detected in 
pQTL analyses of adult DO tissues, and may point to a 
post-transcriptional regulatory mechanism that is unique to 
pluripotent mESCs. By contrast, we previously discovered 
a caQTL-eQTL hotspot on Chr 15 with shared 
transcriptional effects on hundreds of transcripts and 
chromatin peaks; the Chr 15 pQTL hotspot maps to the 
same region and exhibits similar properties. Indeed, we 
observe the same founder allele effects and we identified 
Lifr transcript as the top candidate mediator for most pQTL 

that map to this locus (Fig S4A, B), consistent with 
previous findings for caQTL and eQTL (Skelly et al., 2020). 
We were unable to detect LIFR protein in our mass 
spectrometry data likely because it is a transmembrane 
protein with low solubility (Schey et al., 2013). Among the 
32 significant pQTL at this hotspot, 14 are found only for 
proteins, including TCF7L1, a regulator of exit from 
pluripotency (Kalkan and Smith, 2014). While these unique 
pQTL could reflect post-transcriptional effects from LIFR, 
we find it more likely that transcript abundance for these 
genes is affected by variation in Lifr expression but the 
eQTL failed to reach our detection threshold. Likewise, of 
the 107 protein-coding genes with significant Chr 15 
eQTLs we identified previously, only 9 are detected here 
as significant pQTLs. Again, many of these are likely false 
negatives due to the stringent genome-wide detection 
threshold. Finally, we treated our protein GSVA sample 
enrichment scores (Table S2) as quantitative traits for 
mapping, and find that the protein ADP-ribosylation 
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pathway maps with a near significant QTL on proximal Chr 
15 (LOD = 7.4, FDR = 0.06) that is best mediated by Lifr 
transcript abundance (Fig S4C), confirming and explaining 
its correlation to Lifr genotype in Figure 1D. 

Physical interactions among proteins can propagate or 
buffer the effects of transcriptional variation on protein 
abundance (Chick et al., 2016; Keele et al., 2021; Mirauta 
et al., 2020). This “stoichiometric buffering” significantly 
affects proteins that bind in stable complexes and likely 
accounts for their increased covariation and lower 
heritability in DO mESCs. As a result, we map fewer pQTL 
for protein complex members, consistent with previous 
reports (Keele et al., 2021). We find abundant evidence for 
stoichiometric buffering of protein complexes, for example 
in ribosomal and chromatin remodeling complexes where 
subunits vary little in their protein abundance—and 
consequently do not map with any pQTL—despite varying 
considerably in their transcript abundance and mapping 
with many significant eQTL. In addition, we observe protein 
complexes that vary extensively across DO mESCs and 
have significant pQTL. Local genetic variation affecting a 
single subunit can propagate to other members of the 
complex. For example, the replication complex, with 
subunits RPA1, RPA2, and RPA3, co-map to a pQTL on 
Chr 6 and have concordant founder allele effects (Fig 4E). 
The Rpa3 gene is located nearby, and Rpa3 transcript 
levels are affected by a local eQTL that exhibits the same 
founder allele effects, suggesting that the causal variant 
acts in cis and influences transcript abundance of Rpa3 
and protein abundance of all three subunits. Indeed, 
mediation analysis identifies RPA3 protein abundance to 
be the best candidate mediator for the RPA1 and RPA2 
pQTL. However, rather than RPA3 being an active 
regulator of RPA1 and RPA2, the local variant likely 
adversely affects its expression and causes it to be the 
limiting subunit of the complex, leading to stoichiometric 
buffering of the two other complex members. 

The impacts of genetic variants on protein abundance 
can be broadly classified by their genomic location and 
whether they are most likely to affect transcriptional or 
post-transcriptional processes (Fig 4f). Most local pQTL 
appear to stem from transcriptional variants acting in cis to 
affect local chromatin accessibility and/or transcript 
abundance of the protein-encoding gene; 60% (n = 1,589) 
of all pQTL but 84% (n = 1,008) of local pQTL show similar 
genetic effects across all three molecular layers (caQTL + 
eQTL + pQTL; n = 483) or at least chromatin accessibility 
(caQTL + pQTL, n = 80) or transcript abundance (eQTL + 
pQTL; n = 288). On the other hand, pQTL that uniquely 
affect protein abundance are largely distant (75% of all 
unique pQTL are distant; n = 476) and mediation analysis 
suggests these trans effects can stem from physical 
interactions between binding partners and complex 
members. For the small number of local pQTL that affect 
abundance of the protein but not its cognate transcript (n = 
157), these post-transcriptional effects may be due to 
protein-coding variants that alter translation efficiency or 
stability of the protein. Overall, these data demonstrate that 
the high variability in the proteome observed across DO 

mESC lines is also highly heritable, with many of the 
genetic variants driving protein-level differences showing 
concordant effects upstream on transcript abundance and 
even local chromatin accessibility. Moreover, protein-
specific pQTL are also abundant and demonstrate the 
importance of post-transcriptional regulation and physical 
interactions among proteins of the quantitative proteome in 
mESCs. A list of all significant pQTL from this study can be 
found in Supplemental Table S5.   

Integration of the proteome with the chromatin landscape 
and transcriptome reveals signatures spanning multiple 
layers of biological regulation 

The extensive co-variation observed within and among 
the mESC proteome, transcriptome, and chromatin 
accessibility, along with numerous shared QTL that appear 
to affect more than one of these regulatory layers, suggest 
the presence of one or more overarching regulatory 
signatures that co-vary among the genetically diverse DO 
mESC lines. To characterize these sources of variation 
more fully, we applied multi-omics factor analysis (MOFA, 
(Argelaguet et al., 2018)) to integrate and map our three 
genomic data sets onto a smaller set of latent factors—
akin to principal components—that explain a significant 
proportion of the variation across mESC lines. For this 
analysis, we included a subset of the 15,000 most variable 
regions of open chromatin along with the complete sets of 
expressed transcripts (n = 14,405) and proteins (n = 
7,432). We identified 23 latent factors that capture variation 
within and across the multi-omics data (Fig 5A) (Table S6). 
Several of the latent factors correlate with biological 
variables that we previously identified as major drivers of 
variation, including chromosomal sex (Factors 1, 10, 16, 
18, 20; FDR < 0.05) and genotype at the Lifr locus (Factors 
3, 8, 14, 18, 22; (Skelly et al., 2020)). Factors differ in the 
degree of variation they explain both within and across 
datasets, and seven factors capture variability spanning at 
least two or more layers of genomic data. For example, 
Factor 4 captures 5.4% of the observed variation in 
transcript abundance but also explains 0.33% of variation 
in chromatin accessibility (Fig 5A). Factor 4 combines 
information across hundreds of transcripts with thousands 
of chromatin sites (Fig S5A). Other factors capture 
variation across all three layers. For example, Factor 14 
explains a small amount of variation for thousands of 
chromatin peaks (1.7%), transcripts (0.8%), and proteins 
(0.6%) (Fig S5A). In all, the 23 MOFA factors explain 27%, 
41%, and 36% of the variation in chromatin accessibility, 
transcript, and protein abundance, respectively. 

We further dissected the regulatory signatures 
captured by each MOFA factor through functional 
annotation of their molecular drivers. This included 
enrichment of biological processes and pathways among 
protein and transcript drivers ranked by factor weights, and 
overrepresentation of transcription factor binding sites in 
the genomic sequences underlying chromatin peaks. 
Significantly, for seven of the 23 factors, we find 
overrepresentation of binding sites associated with the 
core pluripotency factors NANOG, SOX2 and OCT4 in the 
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sequences of their top ATAC-seq peak drivers. For three 
factors, including Factor 3, we find enrichment for genes 
involved in the regulation of pluripotency maintenance, 
such as response to LIF. Together, this functional evidence 
shows that MOFA factors are capturing variation across 
the molecular datasets that is relevant to pluripotency 
maintenance. 

Twenty-two of the 23 MOFA factors have a non-zero 
heritability (median h2 = 0.5) indicating a strong genetic 
contribution to their observed variability in the DO mESC 
lines. To identify genetic loci and causal genes driving 
these MOFA factors, we treated each factor as a 
quantitative trait and performed QTL mapping and 
mediation analysis (Fig 5B). We mapped 10 significant 
QTL across six factors (Table 1). Five of these QTL 
colocalize with molecular QTL hotspots described above, 

including Factor 3, which mapped to the Lifr locus (Skelly 
et al., 2020) (Fig 5A). The MOFA analysis identified 
additional transcripts and proteins that individually did not 
have significant association with the Chr 15 QTL but were 
significant contributors to Factor 3. Examination of their 
individual eQTL and pQTL showed evidence for sub-
threshold genetic association and allele effects that are 
consistent with regulation by the Lifr locus (Fig 5C). MOFA 
Factor 4, which captures a large amount of variation in 
transcript abundance, mapped to the eQTL hotspot on Chr 
10. Genes mapping to this QTL include those that are 
upregulated in the rare 2-cell like cell state (2CLC) and are 
predicted to be regulated by Duxf3 (Skelly et al., 2020). 
Based on their contribution to Factor 4 and shared genetic 
effects at the locus, we identified additional target genes 
known to be upregulated in the 2CLC state (n = 13) 

 
Figure 5. MOFA reveals broad regulatory signatures that encompass multiple layers of data.  
(A) MOFA yielded 23 latent factors that capture variation in one or more layers of genomic data. For each factor, percent of 
variation explained in chromatin accessibility, transcript abundance, and protein abundance is displayed as a heatmap, as is 
the correlation of each factor to experimental covariates including sex and genotype at the Lifr locus. Heatmap on the right 
indicates overrepresentation of pluripotency regulator binding sites (NANOG, OCT4 (Pou5f1) and SOX2) among the top 
chromatin drivers of each factor.  
(B) Depiction of QTL mapping with MOFA factors to identify the genetic modifiers driving variation across three molecular 
layers.  
(C) For all expressed proteins, the pQTL LOD score calculated at the Chr 15 QTL peak is plotted on the y-axis relative to the 
protein’s contribution (factor weight) to MOFA Factor 3 on the x-axis. Proteins with absolute factor weights less than 0.1 were 
filtered. Correlation between allele effects at the Chr 15 pQTL for individual proteins to allele effects of the Factor 3 QTL. 
Individual genes that mapped with a significant QTL (LOD > 7.5) are colored gray, and highlight that many proteins contribute 
substantially to Factor 3 and show high agreement in allele effects at the Chr 15 QTL (dark red and blue), despite not mapping 
individually with a significant QTL at that locus.  
(D) For all expressed transcripts, the eQTL LOD score at the Chr 10 QTL peak is plotted on the y-axis relative to that 
transcript’s contribution to Factor 4 on the x-axis. Again, transcripts with absolute factor weights less than 0.1 were filtered, and 
individual points are as described in panel C. Many transcripts contribute to Factor 4 and have correlated allele effects at the 
Chr 10 QTL, despite individually failing to map with a significant Chr 10 eQTL. 
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including Zscan4e and Tcstv1 that individually lack 
significant QTL (Fig 5D) (Hendrickson et al., 2017). 
Mediation analysis identifies Gm20625 transcript 
abundance as the best candidate regulator for this MOFA 
factor QTL on Chr 10 (mediation LOD drop 12 → 1.6), 
contradicting our previous best candidate Duxf3 (Skelly et 
al., 2020), which in the current expanded analysis appears 
less likely to be the Chr 10 regulator (mediation LOD drop 
12 → 10). Further, we identified two single nucleotide 
variants near Gm20625 (rs49316493, rs265937729) that 
reside in annotated regulatory regions active in ESCs and 
that both have a founder strain genotype pattern matching 
the observed genetic effects at the QTL. These data 
implicate Gm20625—a gene model predicted to encode a 
lncRNA—as potentially playing a regulatory role in the 
transition between the mESC and 2CLC states. Finally, 
we mapped novel regulatory loci for two of the MOFA 
factors (Table 1), including a significant Chr 16 QTL for 
Factor 14 which influences hundreds of features across all 
three molecular layers. Mediation analysis fails to identify 
strong transcript or protein candidates at these novel loci, 
suggesting that one or more may be due to causal variants 
that affect the structure or function of the regulatory protein 
(e.g., missense variant) rather than its abundance in 
mESCs.  

Altogether, these examples highlight the power of 
multi-omics data integration and factor analysis (MOFA) to 
reveal higher-order regulatory signatures, identify 
additional genes as targets (Factor 3) and mediators 
(Factor 4) of previously mapped QTL hotspots, and 
discover novel loci that influence variation across all three 
molecular layers (Factors 12 and 14). 

Discussion 

We carried out a comprehensive genetic 
characterization of the pluripotent proteome in ESCs using 
mass spectrometry to quantify 7,432 proteins across 190 
Diversity Outbred mESC lines. These data reveal that the 
proteome is highly variable across cell lines. Genetic 
background and sex are major drivers of this variation. We 
previously identified significant sex differences in gene 
expression stemming largely from X Chromosome dosage 
(Skelly et al., 2020), and here we find that these 
differences are carried through to the protein level (Schulz 
et al., 2014; Werner et al., 2017). Gene Set Variation 
Analysis (GSVA) identified multiple pluripotency and 
differentiation pathways that vary in activity across ESCs, 
including tRNA modification (Bornelöv et al., 2019); 
regulation of histone acetylation (Gonzales-Cope et al., 
2016), intermediate filament organization (Romero et al., 
2022), glutathione biosynthesis (Gu et al., 2016; Jagust et 
al., 2020; Xin et al., 2019), Golgi vesicle transport (Cruz et 
al., 2018), hippo signaling (Frum et al., 2018; Sun et al., 
2020), and JUN kinase activation (Li et al., 2019) (Table 
S2). Of note, variation in these pathways is uniquely 
observed in the proteomics data. 

Protein abundance is highly heritable, and we mapped 
pQTL for more than 20% of all detected proteins. Most of 

these pQTL map close to the protein-encoding gene (local 
pQTL) and are also detected with concordant allele effects 
for gene transcripts and local chromatin accessibility. We 
found 680 protein coding genes with significant local eQTL 
that do not have corresponding local pQTL even at a 
relaxed threshold, which could indicate buffering against 
transcriptional variation. Post-transcriptional buffering is 
most evident among the 621 distant pQTL. We found 
evidence for stoichiometric buffering among the members 
of the replication complex, where genetic variation 
influencing one subunit (RPA3) is propagated to other 
members (RPA1, RPA2). These unique distant pQTL 
reveal post-transcriptional genetic interactions that are not 
detectable in transcriptome data, adding further support to 
recent findings of the importance of post-transcriptional 
regulation in pluripotency maintenance (Chen and Hu, 
2017). 

Comparison of protein abundance to our earlier genetic 
study of transcript abundance and chromatin accessibility 
(Skelly et al., 2020) revealed extensive co-variation across 
molecular layers. We utilized multi-omics factor analysis 
(MOFA) to integrate the proteomics data with chromatin 
accessibility and transcript abundance to explore this co-
variation more thoroughly and summarized the three data 
sets into 23 latent factors. Characterization of the MOFA 
factors revealed shared variation in gene regulatory 
signatures influencing pluripotency maintenance and 
correlated with chromosomal sex and genotype at the Lifr 
locus. Genetic mapping and mediation of the MOFA 
factors identified candidate regulatory genes underlying 
these multi-omics signatures. We mapped QTL for MOFA 
factors that colocalize to both known molecular QTL 
hotspots and novel loci. We identified new genes as 
putative targets for QTL hotspots based on their significant 
contributions to MOFA factors and concordant allele 
effects between molecular and MOFA QTL. With advances 
in technology and decreases in cost, multi-omics profiling 
has emerged as a popular tool for studying gene 
regulation. As demonstrated here and elsewhere, 

Table 1. MOFA Factor QTL details for peaks above genome 
wide significance threshold calculated individually for each 
factor. Loci that were previously observed as molecular QTL 
hotspots are denoted in the “Type” column.  
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integration across multiple layers of genomic data can 
increase our power to detect regulatory signatures 
underlying cell state and developmental progression (Ma et 
al., 2020). 

Our study revealed protein variation in several known 
regulators of pluripotency and lineage differentiation, 
underscoring the variability of the pluripotent state across 
these genetically diverse mESC lines that may span cell 
states ranging from totipotent 2C-like cells to those that are 
poised for differentiation to one or more cell lineages. For 
example, TFCP2L1 is a well-characterized marker of naïve 
pluripotency with high levels of genetically driven protein 
variation across these cell lines. Previous work has 
suggested that differences in differentiation capacity and 
developmental progression can originate directly at the 
naïve state (Ortmann et al., 2020). How the genetic 
variation and variable gene regulatory states observed 
among DO mESCs affect their ability to differentiate into 
various cell lineages remains largely unexplored. Future 
studies will seek to characterize if and how these 
molecular QTL in mESCs act to bias cell fate decisions or 
transcriptional regulation in downstream cell lineages. 
Analysis with bulk molecular measurements has yielded 
important biological insights, however small differences in 
the relative proportions of specific cell types (e.g., 2C-like 
cells) among mESC lines may be obscured in bulk data. 
Future studies using single cell genomics methods will be 
required to measure the extent to which cellular 
heterogeneity contributes to the phenotypic variability 
observed across genetically diverse ESCs. While single 
cell transcriptomics and chromatin profiling are now 
reasonably mature technologies, our study indicates that 
the picture may remain incomplete without the addition of 
single cell proteomics data.  
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Methods 

Diversity Outbred mESC lines 
Mouse embryonic stem cell lines were derived from male and female Diversity Outbred mice (JR #009376, The Jackson 
Laboratory) and maintained at Predictive Biology, Inc. as previously described (Skelly et al., 2020). For proteomics analysis, 
~100,000 cryopreserved DO mESCs from each line were sent from Predictive Biology to the Gygi Lab at Harvard Medical 
School.  
 
Diversity Outbred mESC RNA-seq 
Raw RNA-seq data was retrieved (ArrayExpress: E-MTAB-7728) and analyzed as previously described (Skelly et al., 2020), 
but using both paired-end sequencing reads instead of single end. Briefly, we aligned paired-end 75 bp reads with bowtie 
v1.1.2 (Langmead et al., 2009) to a pooled ''8-way'' transcriptome containing strain-specific isoform sequences from all eight 
DO founder strains, then resolved multi-mapping reads and estimated transcript- and gene-level abundance for each sample 
using the EMASE method as implemented in gbrs v0.1.6 (Choi et al., 2020; Raghupathy et al., 2018). Genes with a median 
TPM (transcripts per million) value smaller than 0.5 or zero value (i.e., not expressed) in more than half of the samples were 
filtered. Next, we normalized gene-level counts to the upper quartile value to account for differences in library size and then 
applied the ComBAT function from R/sva package to remove batch effects caused by library preparation (Johnson et al., 
2007). For QTL mapping, we transformed normalized values to rank normal scores using rankZ normalization as 
implemented in the DOQTL R package (Gatti et al., 2014). Finally, sample mix-ups were resolved by comparing the 
genotypes inferred from the RNA-seq data using gbrs v0.1.6 (http://churchill-lab.github.io/gbrs/) to genotypes inferred from 
DNA microarrays (GigaMUGA platform, Neogen Geneseek). 
 
Diversity Outbred mESC ATAC-seq 
Normalized ATAC-seq peak values from Skelly et al., (2020) were further processed using the ComBAT function in the R/sva 
package to remove any potential batch effects caused by library preparation (Johnson et al., 2007). Normalized, batch-
corrected peak values were used in all correlation analyses.  For QTL mapping, these values were further transformed to 
rank normal scores using the rankZ function from the DOQTL package (Gatti et al., 2014). For annotation of ATAC-seq 
peaks we utilized the ChIPseeker R package (Yu et al., 2015). 
 
Multiplexed quantitative proteomics analysis of DO mESCs 
 

Sample preparation for proteomics analysis 
Frozen cell pellets were resuspended in 8 M Urea, 200 mM EPPS, pH 8.5, with protease inhibitor, and lysed by passing 
through a 21-gauge needle with syringe. After centrifugation at 13,000 rpm at 4°C for 10min, supernatant was used for 
further analysis. BCA assay was performed to determine protein concentration of each sample. Samples were reduced in 
5 mM TCEP for 15min, alkylated with 10 mM iodoacetamide for 15min, and quenched with 15 mM DTT for 15min. 200 µg 
protein was chloroform-methanol precipitated and re-suspended in 200 µL 200 mM EPPS (pH 8.5). Protein was digested 
by Lys-C at a 1:100 protease-to-peptide ratio overnight at room temperature with gentle shaking. Trypsin was used for 
further digestion for 6 hours at 37°C at 1:100. 100 μL of each sample were aliquoted. 30 µL acetonitrile (ACN) was added 
into each sample to 30% final volume. 200 µg TMT reagent (126, 127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C, 
131N) in 10 µL ACN was added to each sample. After 1 hour of labeling, 2 µL of each sample was combined, desalted, 
and analyzed using mass spectrometry. TMT labeling efficiency was calculated and over 99%. After quenching using 0.3% 
hydroxylamine, 10 samples in each TMT were combined and fractionated with basic pH reversed phase (BPRP) high 
performance liquid chromatography (HPLC), collected onto a 96 six well plate and combined for 24 fractions in total. 
Twelve fractions were desalted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) 
(Navarrete-Perea et al., 2018). 
 
Liquid chromatography and tandem mass spectrometry 
For the BPRP fractions, mass spectrometric data were collected on an Orbitrap Fusion mass spectrometer coupled to a 
Proxeon NanoLC-1200 UHPLC. The 100 µm capillary column was packed with 35 cm of Accucore 50 resin (2.6 μm, 150Å; 
ThermoFisher Scientific). The mobile phase was 5% acetonitrile, 0.125% formic acid (A) and 95% acetonitrile, 0.125% 
formic acid (B). The data were collected using a DDA-SPS-MS3 method. Each fraction was eluted using a 150 min method 
over a gradient from 6% to 30% B. Peptides were ionized with a spray voltage of 2,600 kV. The instrument method 
included Orbitrap MS1 scans (resolution of 1.2 x105; mass range 350−1400 m/z; automatic gain control (AGC) target 
5x105, max injection time of 100 ms and ion trap MS2 scans (CID collision energy of 35%; AGC target 2x104; rapid scan 
mode; max injection time of 120 ms). MS3 precursors were fragmented by HCD and analyzed using the Orbitrap (NCE 
65%, AGC 1 x105, maximum injection time 150 ms, resolution was 5 x104 at 400 Th). Detailed parameters for MS2 and 
MS3 are embedded in the RAW files. 
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Mass spectrometry data analysis 
Mass spectra were processed using a Sequest-based pipeline (Huttlin et al., 2010). Spectra were converted to mzXML 
using a modified version of ReAdW.exe. Database search included all entries from an indexed Ensembl database version 
90 (downloaded:10/09/2017). This database was concatenated with one composed of all protein sequences in the 
reversed order. Searches were performed using a 50 ppm precursor ion tolerance for total protein level analysis. The 
product ion tolerance was set to 0.9 Da. TMT tags on lysine residues and peptide N termini (+229.163 Da) and 
carbamidomethylation of cysteine residues (+57.021 Da) were set as static modifications, while oxidation of methionine 
residues (+15.995 Da) was set as a variable modification. In addition, for phosphopeptide analysis, phosphorylation 
(+79.966 Da) on serine, threonine, and tyrosine are included as variable modifications. Peptide-spectrum matches (PSMs) 
were adjusted to a 1% false discovery rate (FDR). PSM filtering was performed using a linear discriminant analysis (LDA). 
For TMT-based reporter ion quantitation, we extracted the summed signal-to-noise (S:N) ratio for each TMT channel and 
found the closest matching centroid to the expected mass of the TMT reporter ion. For protein-level comparisons, PSMs 
were identified, quantified, and collapsed to a 1% peptide false discovery rate (FDR) and then collapsed further to a final 
protein-level FDR of 1%, which resulted in a final peptide level FDR of <0.1%. Moreover, protein assembly was guided by 
principles of parsimony to produce the smallest set of proteins necessary to account for all observed peptides. Proteins 
were quantified by summing reporter ion counts across all matching PSMs. PSMs with poor quality, MS3 spectra with less 
than 10 TMT reporter ion channels missing, MS3 spectra with TMT reporter summed signal-to-noise of less than 100 or 
having no MS3 spectra were excluded from quantification. Each reporter ion channel was summed across all quantified 
proteins and normalized assuming equal protein loading of all 10 samples. The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with dataset identifiers 
PXD033001. 
 
Protein abundance estimation  
Protein abundances were estimated as described previously (Keele et al., 2021). Briefly, peptides that contain 
polymorphisms were filtered and batch effects were removed from the filtered peptide data using a linear mixed model fit 
with the R/lme4 package (Bates et al., 2014). Finally, protein abundances were estimated and normalized using the 
processed peptide data as described in detail in Keele et al., (2021). Proteins missing values in more than 50% of the 
samples were removed from further analysis. 
 

Statistical Analysis and Genetic Mapping 

Code availability 
All analyses and figures were generated with the R statistical programming language and are available at the following web 
resource (link here) and github (link here). Unless otherwise stated R/tidyr package was used for data processing, R/ggplot2 
for plotting and R/pheatmap for heatmap plots. 
 
Gene annotations and id matching across data sets 
Transcript abundance data was annotated to Ensembl gene identifiers, proteomics data was annotated to Ensembl protein 
identifiers, and ATAC-seq data was annotated to Ensembl gene ids using ChipSeeker R package. We used ENSEMBL v98 
to add gene annotations such as MGI symbol, gene location, and gene biotype. MGI symbol was used as the identifier for all 
downstream analysis such as overrepresentation and gene set enrichment. 
  
Correlation Analysis 
We used the rcorr function from the R/Hmisc package to calculate Pearson correlations. Individual p-values were adjusted for 
multiple testing using the p.adjust function in R/base and specifying the Benjamini-Hochberg ("BH") option to estimate the 
false discovery rate (FDR). 

Sample-to-sample correlation for protein abundance: For proteome-to-proteome comparisons, we used the abundance of 
7,432 proteins across 190 cell lines. To compare chromatin accessibility profiles to the proteome, we used 36,859 ATAC-
seq peaks annotated to 6,865 proteins and their corresponding protein abundances in 163 cell lines for which ATAC-seq, 
transcriptomics and proteomics were profiled. Similarly, for comparing the transcriptome to the proteome across 174 cell 
lines that had both RNA-seq and proteomics data, we used the overlapping set of 7,241 genes with both transcript and 
protein abundance measures.  
Correlation between chromatin accessibility and protein abundance: Pairwise Pearson correlations were calculated 
between the abundance of 7,148 autosomal proteins and the chromatin accessibility of 99,159 autosomal ATAC-seq 
peaks across 163 cell lines for which ATAC-seq, transcriptomics and proteomics were profiled. 
Correlation between transcript and protein abundance for individual genes: Pairwise Pearson correlations were calculated 
for 7,241 genes with both transcript and protein abundance measures across 174 cell lines that had both RNA-seq and 
proteomics data. 
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Correlation between complex member and non-complex member proteins: The list of complex member proteins was 
retrieved from (Romanov et al., 2019) which includes protein complexes manually curated using CORUM and COMPLEAT 
databases. Pairwise Pearson correlations between protein abundances of complex member and non-complex member 
genes were calculated for complexes with five or more subunits (n = 164) excluding proteins with significant pQTL to leave 
out large genetic effects that may not be shared among complex members.  

 
Gene Set Enrichment and Over-representation Analysis 
We performed over-representation analysis using the ‘gost’ function in the gProfiler2 package in R (Raudvere et al., 2019) 
using an appropriate universal background on a case-by-case basis and ‘fdr’ option for p-value correction. For example, 
when looking at the functional enrichments in proteins with high variation all genes identified in proteomics were used 
whereas only the shared set of genes between RNA-seq and proteomics was used when looking at genes with positive 
correlation between transcript and protein abundance. For gene set enrichment analysis, we used the WebsGestaltR R 
package (Liao et al., 2019). To identify overrepresentation of genomic regions we utilized R package LOLA (Sheffield and 
Bock, 2016) which looks at the overlap between user data sets and public genomic data sets like transcription factor binding 
sites from ENCODE and the CODEX database. Following instructions of the R/LOLA package the p-values were transformed 
to q-values using the R/qvalue package to get FDR values.  
  
Gene Set Variation Analysis 
We performed Gene Set Variation Analysis using the R/Bioconductor package GSVA (Hänzelmann et al., 2013). Gene 
Ontology terms with gene symbols were retrieved from MGI 
(http://www.informatics.jax.org/gotools/data/input/MGIgenes_by_GOid.txt) which included 8,436 GO Biological Process, 
3,355 GO Molecular Function and 1,077 GO Cellular Component gene sets. List of protein complexes and subunits was 
retrieved from (Romanov et al., 2019) which includes protein complexes manually curated using CORUM and COMPLEAT 
databases. Enrichment scores were calculated using the abundance of 7,432 proteins across 190 cell lines for each gene set 
with at least 5 overlapping proteins. Next, we evaluated the significance of enrichment scores across experimental covariates 
using a two-way ANOVA (~ sex + Lifr genotype + sex:Lifr genotype) where individual p-values were corrected for multiple 
testing using  the p.adjust function in R/base and specifying the Benjamini-Hochberg ("BH") option and followed by Tukey’s 
HSD using R/rstatix package for pairwise comparisons. Categories that showed significance in both statistical tests were 
reported with the p-value obtained from Tukey’s HSD.    
 
Quantitative Trait Locus Mapping 
Genetic mapping was performed using a linear-mixed model implemented as the ‘scan1’ function in R/qtl2 package (Broman 
et al., 2019). We mapped using the normalized, transformed values with sex as a covariate and the Leave One Chromosome 
Out (loco) option for kinship correction (Gatti et al., 2014). To estimate genome-wide significance, we permuted genotypes 
1000 times while maintaining the relationship between the phenotype and covariates. For each permutation we retained the 
maximum LOD score in order to generate a null distribution for the test statistic (Churchill and Doerge, 1994). To calculate 
thresholds for pQTL, we repeated this permutation strategy for all proteins and estimated a significance cutoff at LOD > 7.5 
(alpha = 0.05), and a suggestive cutoff at LOD > 6. False discovery rates (q-values) were determined for each permutation-
derived p-value with R/Qvalue software, using the bootstrap method to estimate π0 and the default λ tuning parameters 
(Storey et al., 2004). Support intervals for each QTL were defined by the 95% Bayesian credible interval (Sen and Churchill, 
2001). We call a QTL 'local' if the QTL peak is within 5Mbp to the midpoint of its corresponding gene and 'distal' if otherwise. 
Founder allele effects were estimated as best linear unbiased predictors (BLUPs) at the QTL using scan1blup function in 
R/qtl2 package. Previous work has estimated the genome-wide significance threshold at 7.6 and 7.5 for chromatin 
accessibility QTL (caQTL) and expression QTL (eQTL) respectively (Skelly et al., 2020). To identify overlaps with significant 
pQTL, we used a relaxed threshold of LOD > 5 for caQTL and eQTL. They were classified as shared if the QTL peaks were 
within +/-5Mb of the significant pQTL peak and the absolute correlation between haplotype effects was higher than 0.5. 
 
Defining QTL Hotspots 
We first identified distal QTL that reach genome-wide permutation-based threshold (p < 0.05; LOD 7.5). Next, we applied a 
sliding window method to identify hotspots as described in Skelly et al., 2020. Briefly, we counted the number of distal QTL 
within 1cM windows (0.25 cM shift) across the genome and selected the top 0.5% of bins with the most distant pQTL (0.5% 
bin threshold ≥ 8 distant pQTLs). Final coordinates for each hotspot were determined using the Bioconductor package 
'GenomicRanges' to merge adjacent bins into a single region (Lawrence et al., 2013). 
 
Mediation Analysis 
We used mediation analysis to identify regions of open chromatin, transcript, and protein abundance that were likely to be the 
causal mediator of a caQTL, eQTL, or pQTL. Mediation analysis was performed using the 'intermediate' package in R 
(https://github.com/simecek/intermediate) by regressing each target (T) on a mediator (M) at the QTL (Q) and adjusting for 
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covariates. We applied the 'double-lod-diff' method to reduce the effects of missing values. For mediation of QTL with the 
matching data type we used the full sample set, e.g., pQTL mediation by proteins (QpQTL → ProteinM → ProteinT) were done 
using all the 190 samples. On the other hand, mediation across data types were done on common set of samples e.g., for 
mediation between protein and transcript (QpQTL → TranscriptM → ProteinT | QeQTL → ProteinM → TranscriptT) only the 174 
samples with both protein and transcript measurements were used. To assess the significance of a LOD drop, we mediated 
the QTL against all of the mediator data, converted the recorded LOD scores to normal scores, and checked if the score fell 
below 6 standard deviations from the mean (Chick et al., 2016). Mediators were further filtered to narrow down top 
candidates to include genes with midpoints that are found within 5Mb of the QTL peak.  
  
Data Integration and Multi-Omics Factor Analysis 
For data integration we used Multi-Omics Factor Analysis (MOFA) implemented in Python (mofapy2) and in R (MOFA2) 
(Argelaguet et al., 2018). MOFA integrates multi-omics data sets in an unsupervised fashion using a factor analysis model 
and infers a number of interpretable latent factors. All transcripts (n = 14,405), proteins (n = 7,432) and the most variable 
15,000 ATAC-seq peaks based on total variance were used for integration from 163 cell lines with all three molecular 
measurements. All three datasets were log transformed using base R function log1p before modeling with MOFA. For model 
generation, we modified the following options from default: we set number of factors to 30, number of maximum iterations to 
10,000, convergence mode to “slow” and scale views option to TRUE. The model with the best convergence based on the 
evidence lower bound statistic (ELBO) was saved for further analysis. Next, factors that showed a significant correlation to 
the total number of expressed features and that didn’t explain more than 1% variation in at least one data set were removed 
resulting in 23 latent factors. We calculated the proportion of variance explained by factor per data set and the correlation 
between factors and experimental covariates using built-in functions in the MOFA2 R package. Functional characterization of 
MOFA Factors was done using the R/LOLA package for top ATAC-seq peak drivers and the R/WebsGestaltR package for 
transcripts and proteins. Top ATAC-seq drivers were obtained using the base R boxplot.stats function where the outliers 
correspond to data points that lie outside 1.5 times the interquartile range. MOFA factor weights were used to rank genes in 
enrichment analysis for transcripts and proteins. QTL mapping, mediation and permutation analysis with factors were done 
as described above using genotype probabilities from the 163 samples used in MOFA.  
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Supplemental Tables 

Table S1. Over-represented annotations among lists of detected and undetected proteins. 

Table S2. Results from Gene Set Variation Analysis. 

Table S3. List of proteins with correlation to ATAC-seq peaks. 

Table S4. List of pQTL hotspots and their target proteins. 

Table S5. List of all significant pQTL in Diversity Outbred mESCs. 

Table S6. Lists of molecular features and their weights for each of 23 MOFA factors. 

Supplemental Figures 

                            
Figure S1. (A) Genes where protein abundance is detected have a significantly higher mean transcript abundance (One way 
ANOVA, followed by t-test). Average transcript abundance of protein coding genes (n = 12,732) that are detected (TRUE, n = 7,240) 
and not detected (FALSE, n = 5,492) in the proteomics data are plotted. (B, C) TFs show a significantly lower mean for both 
transcript and protein abundance in comparison to other genes (One way ANOVA, followed by t-test). Average transcript and protein 
abundance of protein coding genes that are transcription factors (TF) and not transcription factors (Not a TF) are plotted. (D, E) 
Protein abundance is highly variable across DO mESCs. Histograms showing the mean abundance and variance per protein plotted 
for 7,342 proteins across 190 DO mESC lines. (F) Mean abundance and variance plotted for all proteins (gray) with proteins 
identified as part of `Extracellular region` and `ECM protein` GO Terms in most variable proteins (top 5th percentile %CV), in 
overrepresentation analysis, highlighted in blue. (G) Mean abundance and variance plotted for all proteins with proteins identified as 
`REX1 Target` in TRANSFAC database in least variable proteins (bottom 5th percentile %CV), in overrepresentation analysis, 
highlighted in blue and REX1 (Zfp42) highlighted in purple. 
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Figure S2. (A) Proteins that are part of a complex show less variation. Boxplots depicting % coefficient of variation of protein 
abundance for genes that are complex members and not complex members. (B) Proteins that physically interact show higher 
pairwise correlation in abundance than non-interacting proteins. Density distributions of pairwise Pearson correlations between 
complex forming proteins and others are plotted. (C) Sex influences the co-regulation of complex subunits. Boxplots of 
pairwise Pearson correlations among complex subunits with significant differences between male and female cell lines are 
shown (One way ANOVA followed by Tukey’s HSD, ****: p value < 0.00005) (D) Variable complexes are more likely to have 
promiscuous subunits that are part of more than 2 complexes. Pairwise Pearson correlation coefficients plotted for all subunits 
that are part of stable (upper 10th percentile, most cohesive) and variable (lower 10th percentile, least cohesive) complexes 
where the proteins are colored by the number of complexes they belong to. (E) Promiscuous proteins vary in preference of 
complexes. Boxplots of median pairwise Pearson correlations of complex subunits across various complexes they are part of 
are plotted. The complex subunits are separated into two categories based on the total number of complexes they belong to. 
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Figure S3. (A) A heatmap of Pearson correlation coefficients between protein abundance and chromatin accessibility across 
the genome. Proteins encoded on the sex chromosomes were excluded from the analysis to limit sex effects due to X gene 
dosage. Correlation between all autosomal proteins and accessibility at ATAC-seq peaks were calculated. For plotting, proteins 
and chromatin regions are grouped in 5 Kb bins and the points are colored and sized by the maximum correlation value in each 
bin. (B, C) Scatterplots showing mean and coefficient of variation (% CV) for transcript and protein abundance for genes with 
both measurements (n = 7,241). (D) Genetically identical cell lines show significantly higher correlation than what is expected 
by chance between the transcriptome and proteome. Violin plots overlaid with boxplots depicting the distribution of Pearson 
correlation coefficients between the transcriptome and proteome of genetically identical mESCs (blue) and the null distribution 
generated through 1000 permutations where the sample names are randomized (black). (E) Genes that do not form complexes 
show significantly higher correlation between transcript and protein abundance. Boxplot comparing the pairwise Pearson 
correlation coefficients between transcript and protein abundance for genes that are part of protein complexes (TRUE) and that 
do not form complexes (FALSE).  
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Figure S4. (A) The allelic split observed in previously described eQTL hotspot on chromosome 15 is also observed for the 
pQTL hotspot. Heatmap showing haplotype effects at suggestive distant pQTL peaks (LOD > 6) within the chromosome 15 
hotspot. (B) Mediation analysis identifies Lifr transcript abundance as the best mediator for chromosome 15 pQTL hotspot. 
Decrease in LOD scores due to mediation is plotted for the top five mediators in the region for the suggestive distant pQTL. 
The points are colored and sized according to LOD difference. For 61/131 suggestive distant pQTL peaks in the region, Lifr 
transcript abundance leads to the largest drop in LOD when included as a covariate in the genetic mapping model. (C) 
Genetic mapping with GSVA scores of GO term Protein ADP-Ribosylation identifies a near significant QTL on chromosome 
15 with similar haplotype effects to the chromosome 15 molecular QTL hotspot. On the left, genome scan showing LOD 
scores is plotted for chromosome 15. On the right, inferred haplotype effects at the QTL peak is plotted. 
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Figure S5. Heatmaps showing the number of features in each data set with abs(weight) > 0.01 for 23 MOFA Factors.  
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