

The structural basis of long-term potentiation in hippocampal synapses, revealed by EM-imaging of lanthanum-induced synaptic vesicle recycling.

John E. Heuser
Professor of Cell Biology, emeritus
Department of Cell Biology and Physiology
Washington University School of Medicine. St. Louis, MO.

ABSTRACT:

Hippocampal neurons in tissue-culture were exposed to the trivalent cation lanthanum for short periods (15 to 30 minutes) and prepared for electron microscopy (EM), to evaluate the stimulatory effects of this cation on synaptic ultrastructure. Not only were characteristic ultrastructural changes of exaggerated synaptic vesicle turnover seen within the presynapses of these cultures -- including synaptic vesicle depletion and proliferation of vesicle-recycling structures -- but the overall architecture of a large proportion of the synapses in the cultures was dramatically altered, due to large postsynaptic 'bulges' or herniations into the presynapses. Moreover, in most cases these postsynaptic herniations or protrusions produced by lanthanum were seen by EM to distort or break or 'perforate' the so-called postsynaptic densities (PSD's) that harbor receptors and recognition-molecules essential for synaptic function. These dramatic EM-observations lead us to postulate that such PSD-breakages or 'perforations' could very possibly create essential substrates or 'tags' for synaptic growth, simply by creating fragmented free-edges around the PSD's, into which new receptors and recognition-molecules could be recruited more easily, and thus they could represent the physical substrate for the important synaptic-growth process known as "long-term potentiation" (LTP). All of this was created simply in hippocampal tissue-cultures, and simply by pushing synaptic vesicle recycling way beyond its normal limits with the trivalent cation lanthanum; but we argue in this report that such fundamental changes in synaptic architecture -- given that they can occur at all -- could also occur at the extremes of normal neuronal activity, which are presumed to lead to learning and memory.

INTRODUCTION:

Of all the important structural features of the synapse that have been viewed in the electron microscope over the decades, the one feature that has been the most correlated with LTP, and especially in the context of EM-preparations generated from hippocampal tissues that were experimentally manipulated into LTP-conditions, that one single feature would have to be the *perforated postsynaptic density* (or *perforated PSD*).

It was the life's work of one of the leading electron microscopists of the hippocampus, Yuri Geinesman, to establish this correlation (**Reference Set #1 (Geinesman)**). Another top electron microscopist of the hippocampus, Kirsten Harris, reported *perforated PSD*'s almost as often, but remained more agnostic about their role in hippocampal LTP (**Reference Set #2 (Harris)**). Likewise, two other top EM-labs that published a lot on the hippocampus, Michael Stewart's in Milton Keynes, England, and Dominique Muller's in Geneva, Switzerland, reported finding *perforated PSDs* in many, many publications and also made outstanding contributions

toward understanding how these might be involved in LTP or 'synaptic learning' (**Reference Set #3 (Stewart); Reference Set #4 (Muller)**). All this history culminated with the later, outstandingly beautiful cryo-EM work on this same topic, which came from Michael Frotscher's lab in Freiberg, Germany (**Reference Set #5 (Frotscher)**). Along the way, and right up to the present day, many other EM-labs have weighed in with valuable correlative data and their own ideas on how LTP might come about (**Reference Set #6 (Other EM-studies of hippoc learning)**), and numerous reviews of perforated synapses have been published (although without any serious attempt to correlate them with learning or memory) (**Reference Set #7 (Petralia&Yao reviews)**).

At hippocampal synapses, the postsynaptic densities or PSD's are ordinarily disk-shaped entities that are generally located directly across from presynaptic neurotransmitter release-sites **Reference Set #8 (PSD basic structure)**. They generally appear almost *continuous* in thickness and density across the breadth of the disk, and even though recent close inspections have begun to suggest that each PSD-disk may have a sub-structure, and may be composed of sub-modules or 'nanomodules' **Reference Set #9 (synaptic 'modules' via LM-viewing)**, these PSD-components pack closely enough together to create the general impression in the electron microscope (EM) of a continuous plaque or disk.

'Perforated' PSDs, in contrast, are variable in outline. They look more like irregular and discontinuous patches in the EM, but they are presumed to be composed of the same components that are found in the more normal, continuous PSD-disks. Reviewing the aforementioned references, one can find a wide range of thoughts about them, everything from conclusions that such 'perforated' PSDs are in the process of division of one plaque into two (ultimately to form two different postsynaptic spines, in some of the bolder claims), to conclusions that they are simply a by-product of synaptic activity. But overall, 'perforated' PSDs have generally been interpreted as synapses-in-augmentation, as would be expected if they were the structural correlates of the synaptic enhancement that is presumed by everyone to be the fundamental basis of LTP **Reference Set #10 (Background of Long Term Potentiation)**.

In this report, we present serendipitous observations that could help to explain exactly how "bursts" of presynaptic activity could cause perforated PSDs to form, in the first place. Specifically, we argue that these bursts of presynaptic activity could create delays in the process of synaptic vesicle recycling, which could make the presynapse expand in surface area, and do in such a manner that it could actually strain and break the normal plaque-like PSD into a 'perforated' PSD.

Our EM-images were obtained from primary (dissociated-cell) hippocampal cultures prepared by classical techniques **Reference Set #11 (Methods for hippocampal slices & cultures)**. These were chemically stimulated *via* direct application of low doses (0.1mM) of the trivalent cation, lanthanum (La⁺⁺⁺). This magical trivalent cation has been used to stimulate spontaneous neurosecretion in many different preparations over the past half century **Reference Set #12 (La++ stimulates all sorts of secretion)**, but still, no one knows exactly *how or why* it does so, especially because it is generally considered to be a "super-calcium" that actually *blocks* most calcium-channels, and thus blocks most calcium-evoked

neurosecretory phenomena, it doesn't *stimulate* them **Reference Set #13 (La⁺⁺⁺ blocks Ca⁺⁺ channels)**.

When we first faced this conundrum fifty years ago (the conundrum of why lanthanum blocks calcium-induced neurosecretion but hugely stimulates *spontaneous* transmitter release, in the form of huge bursts of miniature endplate potentials or "m.e.p.p.'s" at the NMJ), we simply could not explain it, but nevertheless we 'used' the phenomenon to deplete synaptic vesicles from frog neuromuscular junctions, and thus to expose for the first time the resultant membranous-transformations that turned out to represent synaptic vesicle recycling

Reference Set #14 (Heuser&Miledi - discovery of SV recycling via La⁺⁺⁺ stim). Our scientific colleagues in those days quickly followed suit, and also used lanthanum to show that a dramatic expansion of the presynaptic membrane can accompany this spontaneous lanthanum-induced transmitter discharge, due to a slow-down of synaptic vesicle recycling and accumulaton of vesicle membrane on the presynaptic surface **Reference Set #15 (La⁺⁺⁺ moves SV membrane to presynaptic surface)**. In fact, we intend to show here -- by classical thin-section EM -- that it is this presynaptic *expansion* which is most dramatic in hippocampal cultures, and furthermore, that the unique distortion(s) which this expansion creates on the postsynaptic side of hippocampal synapses can greatly help to explain *how and why* their PSD's can become perforated during enhanced synaptic activity.

RESULTS:

(See all Figures and their legends, for the demonstrations of the points made here.)

1. Structural evidence of lanthanum's stimulatory-effects

Fifty-seven separate experiments were performed with lanthanum on hippocampal cultures, adjusting the time of exposure (5-30 min), the dose of lanthanum (0.1mM-1mM), the level of calcium-counter ions (zero to 1mM), and the method of fixation for EM (glutaraldehyde in cacodylate buffer vs. in Hepes buffer). Such classical dissociated-cell hippocampal cultures invariably display a huge range of synaptic types, only vaguely reflecting the characteristic and stereotypical forms of synapses observed in the intact hippocampus or in hippocampal slices

Reference Set #11 (Methods for hippocampal slices & cultures, OP CIT). Nevertheless, most of the synapses that manage to reform in such dissociated-cell cultures fall into two major categories: bouton-like (e.g., onto dendritic protrusions that are generally described as primitive 'spines'), and plaque-like (e.g., directly onto the shafts of the primitive, disoriented dendrites in such cultures). The former types of synapses typically have single PSD plaques that are generally considered to be 'excitatory.' These are the so-called 'asymmetric' synapses, due to their relatively thick PSDs. The latter typically display 2 or 3 adjacent plaques in the dendritic shaft and are generally considered to be 'inhibitory' These are the so-called 'symmetric' synapses, due to their relatively thin and often barely perceptible PSDs

(Reference Set #8 (PSD basic structure) OP CIT).

Lanthanum promptly changes the appearance of both bouton-like and plaque-like presynaptic terminals, replacing many of their synaptic vesicles with clathrin coated vesicles, even in the first 5-10 min after application, and at later times, leaves many of these presynaptic terminals

almost empty, or at best, partially filled with irregular membrane forms (plus residual clathrin coated vesicles and 'empty cages'). Essentially, these are the structural changes that we observed originally at the frog NMJ (**Reference Set #14 (Heuser&Miledi - SV recycling in La+++) OP CIT**), which initiated the whole idea that synaptic vesicle membrane could be recycled...structural changes that we have recently been able to show occur in mammalian NMJs, as well (**Reference Set #16 (Heuser & Tenkova intro of ear-muscle NMJs)**).

2. Consequences of lanthanum's stimulatory-effects projected onto the postsynapse

Most unexpected, however, was the dramatic change in the overall configuration of these cultured synapses, a configuration that began to appear in lanthanum at 10 min, and peaked in abundance at 20 min, (and seemed to die down by 30 min). This was manifest as a discrete 'bulge' of the postsynapse, directly into the midst of the presynaptic terminal.

Generally, the postsynaptic protrusions observed in lanthanum occupy a considerable portion of the presynaptic cytoplasm, and draw a considerable mass of postsynaptic cytoplasm into them. In the EM, this bolus of cytoplasm generally appears featureless, or appears finely mesh-like in appearance. It does not look like an active, actin-based growth from the postsynapse, but more like a passive inclusion, only occasionally containing any recognizable postsynaptic membranous organelle.

It is important to consider one clue as to *how or why* these protrusions form in the first place. This comes from closely examining the membrane of the *presynapse* that forms the protrusion (or we could say in the *invagination*, when considered from the presynaptic side). It typically displays all the 'spikes' and 'clathrin-cage-fragments' seen in other regions of the presynapse that are undergoing rapid and abundant clathrin-coated vesicle formation. That is, it looks in the EM as if the presynaptic membrane is "committed to endocytosis" in these involutions, or is "trying" to do endocytosis in the regions that have been drawn inwards into the protrusion.

3. Unique positioning of the postsynaptic protrusions and distortions

Perhaps the most important aspect of these postsynaptic protrusions in the present context, however - - that of considering their possible role in LTP - - is that they typically occur *right in the midst* of the PSD. As a consequence, they occasionally drag portions of the PSD inward as they form, depositing these PSD fragments along the 'necks' of the invaginations. More often, however, PSD components appear to be excluded from these invaginations - to somehow "hang back" - such that the PSD becomes perforated or partitioned by the invagination.

How or why these invaginations form *right in the midst* of the PSD - - rather than around its edges, for example, where one might imagine the membranes to be more 'flexible' - - is one of the great mysteries that emerges from this study, and remains to be answered.

FIGURE LEGENDS:

Figure1. Upper panel shows a prototypical spine-synapse from a control hippocampal culture, a culture not stimulated at all. Abundant synaptic vesicles are collected on the presynaptic side, converging on a solid, disk- or plaque-like postsynaptic density (highlighted red, inside the postsynapse, which is highlighted blue in this and all subsequent figures). Only a few clathrin-coated vesicles are present (highlighted yellow), and only at the periphery of the vesicle cluster. Lower panel shows, by way of contrast, a dramatically different spine-synapse from a hippocampal culture exposed to 0.1mM La+++ for 20 min @ 37°C. Synaptic vesicles are severely depleted, clathrin-coated vesicles (yellow) are unusually abundant, and the postsynapse (highlighted blue) has 'protruded' into the presynapse in several places, dragging along only fragments of the PSD (highlighted red).

Figure2. Examples of dendritic-shaft synapses in hippocampal cultures exposed to 0.1mM La+++ for 10-20 min @ 37°C. Synaptic vesicles are more or less depleted; but in all cases, clathrin coated vesicles (presumably involved in the recycling of synaptic vesicle membrane) are increased in abundance, especially along the borders of the postsynaptic 'protrusions' (highlighted blue). Being shaft-synapses (thus presumably inhibitory or Grey's type II), the PSD's are not prominent in these fields and thus are not highlighted red.

Figure3. Montage of several different postsynaptic 'protrusions' (or presynaptic 'hugs', depending on one's vantage-point) in hippocampal cultures exposed to 0.1mM La+++ for 10-20 min @ 37°C. Synaptic vesicles are more or less depleted, and clathrin coated vesicles (again highlighted yellow) are relatively abundant, and PSD's (highlighted red) are hanging back or are fragmented and 'holding on' to the edges of the postsynaptic protrusions.

Figure4. Montage of cross-sections of several other postsynaptic 'protrusions' or presynaptic 'hugs', from the same hippocampal cultures as in Fig. 3 (exposed to 0.1mM La+++ for 10-20 min @ 37°C). Again, it is quite apparent that synaptic vesicles are more or less depleted, compared to the relative abundance of clathrin-coated vesicles (highlighted yellow). Again, PSD's (highlighted red) appear to be relatively fragmented or absent from these deeper regions of the postsynaptic involutions.

Figure5. Lower-magnification survey-views of hippocampal cultures exposed to 0.1mM La+++ for 10-20 min @ 37°C, where only the particular dendrites that are involuting into their apposed synapses are highlighted blue (other dendrites are present in these fields, as well). These views were chosen specifically to demonstrate the old adage that George Palade, the great 'founder' of biological electron microscopy, always stressed: namely, that if a structural feature could be found *two or more times in one and the same field-of view* in the electron microscope, then it must be generally present, and must be not an artifact. Two postsynaptic 'protrusions' are indicated by asterisks in each field.

Figure6. "Anaglyph" 3-D views of additional synapses in hippocampal cultures exposed to 0.1mM La+++ for 10-20 min @ 37°C, from plastic blocks that were cut thicker (at 120-150nm), and photographed at +20° & -20° of tilt in the EM, then superimposed to make the 3-D 'anaglyphs'. These require red/green 'anaglyph' glasses to fully appreciate, but even without, it is still readily apparent that synaptic vesicles are relatively depleted, coated vesicles are

relatively abundant (yellow), and postsynaptic densities are relatively fragmented (PSD's red, on dendrites highlighted blue).

Figure7. Diagrammatic summary of the observations, interpretations, and hypotheses presented in this study, presented as 'twelve steps,' to paraphrase a term from popular culture. The diagram is self-explanatory, but many steps will need to be validated or explained mechanistically, by future work...especially the idea that enhanced endocytosis can cause a 'break' in the presynaptic active zone (AZ), and that this break can propagate to the PSD to begin the process of perforation or intrusion or spinule-formation.

DISCUSSION:

1. Clues about how and why the postsynaptic protrusions develop.

The hypothesis that emerges from these observations is that overly exuberant presynaptic expansion and attempts at endocytosis are 'deforming' their active zones and producing the inward membrane-bulges that perforate the PSD. Support for this hypothesis came from our attempts to duplicate the effects of lanthanum on these cultures with other sorts of chemical stimulation of them (either by applying the excitatory neurotransmitter NMDA, or by elevating potassium to depolarize all the cells in the culture). But neither of these forms of stimulation induced any such protrusions or inward invaginations of their postsynapses, at all. The most they showed was the slight change in PSD-curvature that has been reported before **Reference Set #17 (PSD curvature Δ s)**. We would argue that this was probably because the synapses in these NMDA or K⁺ stimulated cultures were not driven out of their "comfort zones," the zones where they could adequately compensate for their enhanced transmitter release (and their enhanced synaptic vesicle exocytosis) by commensurately accelerating their membrane recycling processes, so they stayed effectively 'in balance', and did not develop any net accumulation of synaptic vesicle membrane on their surfaces, and thus did not expand in surface-area (and consequently, did not attempt to "embrace" the postsynapse or support any postsynaptic protrusions).

Indeed, we may learn someday that the most important reason for why lanthanum-stimulation is so effective at expanding the surfaces of nerve terminals and bringing out signs of synaptic vesicle recycling is that it somehow slows down this membrane recycling, at the same time that it stimulates transmitter-release, itself. This may someday be explained by several different mechanisms: for example, by some sort of 'stiffening' of the presynaptic membrane or by La⁺⁺⁺ tending to 'glue' the presynaptic membrane to the extracellular matrix, or possibly by its blocking sodium and calcium-entry through the presynaptic membrane, which may in some way *directly* slow down some aspect of the recycling-process. Indeed, there is a large body of evidence which suggests that clathrin coated vesicle formation and/or synaptic vesicle recycling is somehow dependent on intracellular Ca⁺⁺ being at just the right level (**Reference Set #18 (Ca⁺⁺-dependence of synaptic vesicle recycling)**). In any case, it is abundantly clear from the present observations and from past work that lanthanum somehow creates a greater imbalance between exocytosis and endocytosis than any other form of synaptic stimulation, and consequently, produces the most enhanced accumulation of synaptic vesicle

membrane on the presynaptic surface, and thus, the greatest expansion of the presynaptic membrane.

In this respect, these synaptic perturbations in lanthanum-stimulated hippocampal cultures show a remarkable parallel with the abundant, multiple, and florid invaginations of the presynaptic membrane that were seen so many decades ago in frog NMJ's treated with lanthanum (**Reference Set #15 (La+++ moves SV membrane to presynaptic surface) OP CIT**). These were *also* studded with endocytic profiles, and the thinking at that time was the same as today - - that lanthanum caused such an unremitting stimulation of the NMJ, that endocytosis became exhausted and 'blocked' at that point, or at least greatly slowed down, such that it left much of the discharged synaptic vesicle membrane on the surface of the presynaptic terminal, and thereby *expanding* that surface. A lot of good immunocytochemistry was done in the ensuing decades, which entirely supported this view (**Reference Set #15, OP CIT**).

The important difference between the changes seen here, in lanthanum-stimulated hippocampal synapses, compared to the old NMJ observations, is that here the *postsynapse proper* is pulled into the presynapse. This cannot happen at the NMJ, where the presynapse is separated from the postsynapse by a thick and rigid basal lamina. Instead, at the NMJ the surrounding Schwann cell gets pulled into the invaginations -- or one could say, the Schwann cell ends up 'protruding' into the presynaptic terminal. ((In this regard, it is worth noting that we observed no such "drawing-inward" of surrounding glial processes in any of our lanthanum-stimulated hippocampal cultures. This at least partly due to the simple fact that there are not very many glial processes around the synapses in our cultures, in the first place; and the few glial cells that do happen to be there may have very little 'give'.)) Quite different is the situation at all NMJs, where Schwann cells totally embrace the whole nerve terminal, except at its immediate contact with the muscle, and where the Schwann cells are highly redundant and 'plastic', so they actively fill in any convolutions of the presynaptic membrane that develop during stimulation. Interestingly, in the primary neuron cultures from the De Camilli lab, their endocytosis-inhibited genotypes show both glial and postsynaptic involutions when the synapses are stimulated (**Reference Set #15a (De Camilli lab's endocytosis-retarded neuron-cultures)**).

2. Comparing classical postsynaptic "spinules" with the protrusions and distortions seen here in lanthanum

There is no good reason to think that the so-called synaptic "spinules" described in many previous studies of hippocampal synapses (**Reference Sets 1-4, OP CIT**) can or should be differentiated from the *fatter* postsynaptic protrusions into the presynapse that we are describing here, as being the consequences of lanthanum-stimulation. *Neither* type of invagination contains any postsynaptic structure that would suggest they were 'active' invasions into the presynapse. In other words, *neither* type contains any signs of actin, nor any other cytoskeletal component that might suggest that they actively push their way into the presynapse. Instead, the EM's presented here show clearly that both 'spinules' and their fatter counterparts invade regions of the presynapse that show all the signs of being engaged in clathrin-mediated endocytosis. As explained above, this dedication to endocytosis is reason

enough to understand why the presynapse should be involuted at those sites. But it also suggests that the spinules and their fatter counterparts, the postsynaptic protrusions, are not *actively splitting* the PSDs as they invade the presynapse. Again, their lack of contractile/propulsive machinery would seem to rule this out. Instead, this PSD-splitting appears to be a *passive* process, almost an inadvertent consequence of the presynaptic involution, itself (inadvertent, except that it perhaps was selected by nature to be the fundamental 'growth'-event of LTP !!)

It is worth stressing here that both 'spinules' and the fatter protrusions display uniformly close approximations of pre- and post- membranes, in their midst -- the important point being that these are *closer* approximations than are observed at the AZ/PSD differentiations of the synapse *per se*, where so many spanning and attachment molecules are known to be located (and are known to be so abundant and strong that they can even hold the pre- and post-together during homogenization of nervous tissue) (**Reference Set #8 (PSD basic structure), OP CIT**). All these specific synaptic attachment-proteins have ~15-20nm spanning-lengths, which are *greater* than the pre-to-post membrane-separation seen at the protrusions/involutions under question (~10nm). Indeed, this 10nm separation-distance that we observe in all the protrusion-sites is the normal 'minimum' found everywhere in the neuropil of our hippocampal cultures -- e.g., between glia and neuronal elements, between undifferentiated neural elements and each other, etc., etc.. (Of course, this 'minimum' is not *nearly* close enough to suggest electrical coupling, or anything of that sort.) In any case, this is one more indication that the protrusions are not pulling in the PSDs and their associated attachment-proteins with them; rather, they are *splitting* the PSDs, and leaving these attachment-proteins behind.

Here, we should add the qualification that despite the obvious structural parallels between synaptic spinules and their fatter counterparts displayed here, nothing in our studies to date would suggest that a precursor/product relationship exists between them. While both seem clearly to be exacerbated or accentuated by synaptic stimulation, the *timing* of this stimulation varies over several orders of magnitude (from just a few minutes in the present report of acute, ongoing chemical stimulation) to hours or longer, in previous studies characterizing the long-term after-effects of LTP-induction, as listed above. On other words, it is not (yet) possible to suggest that spinules grow into fatter protrusions as they invade, or that fat protrusions shrink down to spinules as they withdraw. These possibilities await further experimental dissection and analysis.

3. Conclusions and future perspectives

The simple observations and interpretations offered here provide a rationale for why such discontinuous or broken-apart PSDs could very likely represent the physical substrate of the temporary "tagging" of synapses that is generally thought to be so important for *initiating* the whole process of LTP (**Reference Set #19 (synaptic tagging in LTP)**). This initiation is thought to prepare the synapse for later, long-term enhancement *via* new protein synthesis, which is presumed by all, to be the consolidating event that culminates LTP (**Reference Set #10 (Background of Long Term Potentiation), OP CIT**).

The rationale would be that the breakup of solid plaques or disks of PSD would create *new edges* where "modules" or molecular components of postsynaptic receptors, channels, and signaling molecules could be added, to enlarge or even create completely new PSD-plaques. In other words, that the discontinuities and irregularities in the PSD created by the act of perforation, due to the exacerbation of synaptic vesicle recycling in the presynapse, would create additional (and new) *free edges* around the plaques - - which originally had, by the simple fact that they were disk-like - - had the *minimum* amount of free edges possible, for a given collection of receptors.

The logical conclusion to draw from this, seems to us to be that newly-generated PSD "free edges" represent the synaptic "tags" that initiate LTP (**Reference Set #19 (synaptic tagging in LTP) OP CIT**). Although we did not attempt in this report to provide the complete structural evidence for this hypothesis, we predict that it should soon become available from many of the new LM- and EM-methods that are being developed to 'tag' various pre- and postsynaptic proteins and protein-complexes (**Reference Set #9 (synaptic 'modules' via LM-viewing) OP CIT**). Here, we focused only on providing direct EM-images that demonstrated how (and why) enhanced bursts of presynaptic secretory-activity apparently *create* or *cause* the perforation of otherwise plaque-like postsynaptic densities, in the first place.

MATERIALS AND METHODS

I. Cell-culture

Dissociated-cell hippocampal cultures were prepared from papain-dissociated hippocampi, which were harvested from embryonic day-20 rat fetuses, then plated onto confluent glial feeder-cultures on 22mm glass coverslips, and grown for 3-4 weeks before use. Throughout this growth-period, the culture-medium was half-exchanged 3x weekly with fresh medium containing MEM (with Earle's salts, 6 g/l glucose, and 3.7 g/l sodium bicarbonate) supplemented with 5% (v/v) heat-inactivated horse serum, 2% (v/v) fetal bovine serum, and 2 mM Glutamax (all from Life Technologies), plus 136 uM uridine and 54 uM 2-deoxy-5-fluorouridine (from Sigma), plus N3-supplement from Sigma (which contains BSA, apotransferrin, putrescine, selenium, T3, insulin, progesterone, and corticosterone. (For further details, see Ransom et al., 1977, and Mayer et al., 1989, in **Reference Set #11 (Methods for hippocampal slices & cultures)**). Throughout this time, the coverslips were maintained in P35 culture-dishes in a 36°C incubator with 10% CO₂.

II. Culture-treatments

To conduct the experiments, the culture-dishes containing the coverslips were removed from the CO₂ incubator and *immediately* washed with a bicarbonate- and phosphate-free 'Ringers' solution... (removing bicarbonate so that the cultures did not alkalinize in room air, with its low CO₂, and removing phosphate so that the subsequent application of lanthanum did not just precipitate as La(PO₄)₃). Henceforth, they were maintained on a rotating platform in a 37°C waterbath. After three more washes in HCO₃- and PO₄-free 'Ringers,' for a total time of 12min, the cultures were then exposed to a 'Ringers' solution containing 0.1mM LaCl₃ (with its usual CaCl₂ reduced from the usual 2mM CaCl₂ to only 1mM, to minimize any competition of Ca++ with the La+++. Alternatively, cultures were treated for 5-15min at 37°C with high K+ (a 'Ringers' containing 90mM KCl (whose osmolarity had been compensated by reducing the

concentration of NaCl)), or treated 5-10min at 37°C with 50–60 μ M of N-methyl-D-aspartic acid (NMDA) in normal HCO3-free 'Ringers,' but containing our usual 2mM of CaCl2 and 3mM of NaH2PO4.

III. Fixation and processing

Primary fixation was accomplished by replacing the Ringers solution in the culture-dishes with 2% glutaraldehyde, freshly dissolved from a 50% stock (from EMS, Inc.) into a "substitute Ringer's," where the normal 5mM Hepes buffer concentration was increased 6x for fixation purposes (and NaCl was decreased commensurately, to keep the solution isotonic). Most important at this point was to wash away the La+++ and restore the normal 2mM calcium in the medium, to prevent any La+++ precipitates in the extracellular spaces of the cultures. (Indeed, this 2mM calcium is maintained *throughout* primary fixation and postfixation, because we believe it helps to minimize cellular membrane deterioration.)

Immediately after the exchange into the glutaraldehyde, the culture-dishes were placed on a vigorously rotating table, and the fixative was exchanged one or two more times, to ensure rapid and uniform fixation. (Even though this aldehyde fixation was probably complete in just a few minutes, we still left the cultures in fixative for another 1-2 hours, or even overnight, before initiating postfixation.)

The sequence of postfixation was as follows. (This was all done at room temperature, because we believe that cooling biological membranes to 4°C at any time during fixation damages cellular membranes.) First, the glutaraldehyde and Hepes buffer was washed away with 100mM cacodylate buffer, with two exchanges over a period of at least 15-30 minutes. (This buffer always contained the same 2mM Ca++, in this and all subsequent steps, so it will henceforth be termed "Cacodylate-Ca".) Next, the cultures were postfixfixed with 0.25% OsO4 and 0.25% potassium ferrocyanide in Cacodylate-Ca buffer (made up fresh, by mixing 0.5% OsO4 with 0.5% KFeCN6 immediately before use) for exactly 30 minutes, no longer. Then, after washing away the OsO4 with fresh Cacodylate-Ca buffer (for 5-10 min), the cultures were "mordanted" with 0.5% tannic acid (mw 1700) in Cacodylate-Ca buffer (making sure to use a batch of tannic acid from EMS or from Polysciences that did not precipitate over time), for 30 minutes only, no longer. Finally, after washing away the tannate with fresh Cacodylate-Ca buffer, the pH over the cultures was dropped by a brief wash in 100mM acetate buffer at pH 5.2, to prepare them for "block-staining" with 0.5% uranyl acetate in this acetate buffer (pH 5.2 being the natural pH of dissolved UA, anyway). Then, after this block-staining, they were very briefly washed again in acetate buffer to remove the UA, and finally progressively dehydrated with ethanol in the usual manner (sequential 5-10 min rinses in 50% 75%, 95%, and 100% ethanol).

IV. Epoxy embedding and thin-sectioning

Thereafter, the coverslips were removed from the P35 culture-dishes to polypropylene bottles, where they could be embedded in Araldite 502 epoxy resin (the old "English Araldite"), via an intermediate transfer from ethanol into propylene oxide, then into 2/3rds Araldite+1/3 propylene oxide, etc. (The bottles were needed because the propylene oxide would have dissolved the original P35 culture dishes). Finally, the fully infiltrated cultures still in their polypropylene bottles were covered with a 10-12mm deep layer of freshly-prepared Araldite 502 epoxy resin

and vacuum-embedded in a 70°C vacuum-oven, using a strong mechanical-pump to draw off all air until the Araldite formed small bubbles (from release of residual propylene oxide and ethanol), and after re-admission of air, were left for 24-48 hours to fully polymerize.

When fully hardened, the polypropylene bottles were removed the oven, broken with pliers to release the Araldite blocks, and the blocks were cut with a jeweler's saw into pieces appropriate for mounting at the desired orientation the ultramicrotome. Finally, the original glass coverslips on which the cultures were grown were dissolved off of the Araldite by a brief (5-10) min dip into full-strength hydrofluoric acid (47%HF), followed by plenty of washes. Blocks were initially sectioned at 0.5-1.0 micron and stained with 1% toluidine blue and 1% sodium borate in water for 15 sec on a hotplate, to examine in the LM and to orient further block-trimming for thin-sectioning.

V. Electron Microscopy

Thin sections were cut at 40nm to obtain the crispest views of membranes, at 90nm for best general overviews, and at 150-200nm to obtain 3-D information about the overall deployment of synapses in the cultures. Thin-sections were picked up on high-transmission fine-hexagonal 200-mesh copper grids (made in England by Guilder, LTD, and sold in the US by Ladd Industries, cat. no. G200HHC), after the grids had been coated with a silver-thin film of Formvar, and then carbon-coated with by 10 sec of vacuum-evaporated carbon, for maximum specimen stability. Finally, sections were stained for 5 min drops of 1% lead citrate (in a closed dish with NaOH pellets around to prevent CO₂-precipitation of the lead).

They were then examined in a standard TEM operated at 80KV and mounted with the smallest available objective aperture, for maximum contrast (and maximum removal of chromatic aberration from the thicker sections). They were photographed with the highest resolution digital camera possible, regardless of sensitivity, since such Araldite sections were essentially indestructible and could tolerate endless electron-bombardment. (We generally used the AMT 'BioSprint' 29 Megapixel Camera, due to its many superior operating features, as well as its very clear 6.5k x 4.5k images.) The final digital images were processed and colorized with Photoshop, taking special advantage of its "high-pass" filter when very dark features happened to be located next to very light areas in the images, which made details hard to see. (We typically set the high-pass filter at 40 pixels for our 6500x4500 pixel AMT images, and layered this filtered image on top of the original image, at 50% density.)

POSTSCRIPT:

We find it absolutely marvelous that over forty-five years ago, Sally Tarrant and Aryeh Routtenberg, from Northwestern University's Neuroscience Laboratory in Chicago, had the prescience and foresight to add the following *tiny and obscure footnote* to a fine paper of theirs, a paper in which they described and discussed 'synaptic spinules' in the brains of rats they had prepped for EM by perfusion with Karnovsky's fixative**. That footnote said:

P.S. *"It is also possible that the 'synaptic spinule' represents an active synapse and that the presynaptic invagination represents the coalescence of synaptic vesicles and the coated vesicle a device for membrane recycling (Heuser and Reese, 1973). The spine apparatus*

might contribute to the postsynaptic membrane as it protrudes into the presynaptic membrane invagination."

**Tarrant SB & A. Routtenberg (1977)

The 'synaptic spinule' in the dendritic spine: EM study of the hippocampal dentate gyrus. Tissue & Cell. 9: 461-473. DOI: 10.1016/0040-8166(77)90006-4 PMID: 337572

ACKNOWLEDGEMENTS:

We especially thank Christine A. Winters (from the Laboratory of Neurobiology, NINDS, NIH) for kindly producing and supplying us with all the gorgeous and healthy hippocampal dissociated-cell cultures that were used in this study. We also thank Thomas S. Reese for providing work-space and reagents to carry out these experiments in his Laboratory of Neurobiology, NINDS, NIH. Finally, for our salary-support, we greatly thank Joshua Zimmerberg, head of the Section on Integrative Biophysics in the National Institute of Child Health and Human Development (NICHD).

Authors' contributions:

This is a solo-author manuscript. The author wrote, read and approved the final manuscript.

Funding:

Supported by National Institute of Neurological Disorders and Stroke (NINDS) intramural funds and National Institute of Child Health and Human Development (NICHD) intramural funds.

Availability of data and materials:

The electron micrographs and other datasets generated and/or analyzed during the current study are available from the corresponding author upon request.

Ethics approval and consent to participate:

The animal protocol under which this work was carried out was approved by the Animal Use and Care Committee of the National Institute of Neurological Disorders and Stroke (NINDS) (Animal protocol Number: ASP1159), and conforms to all NIH guidelines.

Competing interests:

The author declares that he has no competing interests.

REFERENCES:

Reference Set #1 (Yuri Geinisman)

Geinisman et al., 1986

Geinisman Y, de Toledo-Morrell L, Morrell F. (1986)

Aged rats need a preserved complement of perforated axospinous synapses

per hippocampal neuron to maintain good spatial memory.

Brain Res. 398: 266–275. DOI: 10.1016/0006-8993(86)91486-1 PMID: 3801904

Geinisman et al., 1987a

Geinisman Y, Morrell F, de Toledo-Morrell L.

Synapses on dendritic shafts exhibit a perforated postsynaptic density.

Brain Res. 1987 Oct 6;422(2):352-356.

DOI: 10.1016/0006-8993(87)90943-7 PMID: 3676794

Geinisman et al., 1987b

Geinisman Y, Morrell F, & de Toledo-Morrell L.

Axospinous synapses with segmented postsynaptic densities: a morphologically distinct synaptic subtype contributing to the number of profiles of 'perforated' synapses visualized in random sections.

Brain Res. 1987 Oct 13;423(1-2):179-88.

DOI: 10.1016/0006-8993(87)90838-9 PMID: 3676805

Geinisman et al., 1991

Geinisman Y, de Toledo-Morrell L, & Morrell F. (1991)

Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities.

Brain Res. 566: 77-88. DOI: 10.1016/0006-8993(91)91683-r PMID: 1814558

Geinisman et al., 1992a

Geinisman Y, Morrell F, & de Toledo-Morrell L. (1992)

Increase in the number of axospinous synapses with segmented postsynaptic densities following hippocampal kindling.

Brain Res. 569: 341-347 DOI: 10.1016/0006-8993(92)90649-t PMID: 1540834

Geinisman et al., 1992b

Geinisman Y, de Toledo-Morrell L, Morrell F, Persina IS, Rossi M. (1992)

Structural synaptic plasticity associated with the induction of long-term potentiation is preserved in the dentate gyrus of aged rats.

Hippocampus. 2: 445-456. DOI: 10.1002/hipo.450020412 PMID: 1308201

Geinisman, 1993a

Geinisman, Y (1993)

Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity.

Hippocampus. 3: 417-433. DOI: 10.1002/hipo.450030404 PMID: 8269034

Geinisman et al., 1993b

Geinisman Y, de Toledo-Morrell L, Morrell F, Heller RE, Rossi M, Parshall RF. (1993)

Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones.

Hippocampus. 3: 435-445. DOI: 10.1002/hipo.450030405 PMID: 8269035

[Geinisman et al., 1994](#)

Geinisman Y, deToledo-Morrell L, & Morrell F. (1994)

Comparison of structural synaptic modifications induced by long-term potentiation in the hippocampal dentate gyrus of young adult and aged rats.

Ann N Y Acad Sci. 747: 452-466. DOI:10.1111/j.1749-6632.1994.tb44428.x

PMID:7847690

[Geinisman et al., 1996](#)

Geinisman Y, Detoledo-Morrell L, Morrell F, Persina IS, Beatty MA.

Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation.

J Comp Neurol. 1996 May 6;368(3):413-423.

DOI: 10.1002/(SICI)1096-9861(19960506)368:3<413::AID-CNE7>3.0.CO;2-8

PMID: 8725348

[Geinisman, 2000](#)

Geinisman Y (2000)

Structural synaptic modifications associated with hippocampal LTP and behavioral learning.

Cereb Cortex. 10: 952-962. DOI: 10.1093/cercor/10.10.952 PMID: 11007546

Reference Set #2 (Kirsten Harris)

[Harris and Stevens, 1989](#)

Harris KM, & Stevens JK. (1989)

Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics.

J Neurosci. 1989 Aug;9(8):2982-97.

DOI: 10.1523/JNEUROSCI.09-08-02982.1989

PMCID: PMC6569708 PMID:2769375

[Chicurel and Harris, 1992](#)

Chicurel ME, & Harris KM. (1992)

Three-Dimensional Analysis of the Structure and Composition of CA3 Branched Dendritic Spines

and Their Synaptic Relationships With Mossy Fiber Boutons in the Rat Hippocampus.

325: pp169-182

J Comp Neurol. 325:169-182 DOI: 10.1002/cne.903250204 PMID: 1460112

[Spacek and Harris, 1997](#)

Spacek J, & Harris KM.

Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat.

J Neurosci. 1997 Jan 1;17(1):190-203.

DOI: 10.1523/JNEUROSCI.17-01-00190.1997

PMCID: PMC6793680 PMID: 8987748

Sorra et al., 1998

Sorra KE, Fiala JC, & KM Harris (1998)

Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation.

J Comp Neurol. 398:225-240. PMID: 9700568

Fiala et al., 2002

Fiala JC, Allwardt B, & KM Harris (2002)

Dendritic spines do not split during hippocampal LTP or maturation.

Nat Neurosci. 5:297-298.

DOI: 10.1038/nn830 PMID: 11896399

Harris et al., 2003

Harris KM, Fiala JC, & L. Ostroff (2003)

Structural changes at dendritic spine synapses during long-term potentiation.

Phil Trans R Soc Lond B (Biol Sci.) 358:745-748. DOI: 10.1098/rstb.2002.1254

PMCID: PMC1693146 PMID: 12740121

Spacek and Harris, 2004

Spacek J & KM Harris (2004)

Trans-endocytosis via spinules in adult rat hippocampus.

J Neurosci. 24: pp4233-4241. PMID:15115819

DOI: 10.1523/JNEUROSCI.0287-04.2004

Bourne and Harris, 2011

Bourne JN, Harris KM.

Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP.

Hippocampus. 2011 Apr;21(4):354-73.

DOI: 10.1002/hipo.20768

PMCID: PMC2891364 PMID: 20101601

Bailey et al, 2015

Bailey CH, Kandel ER & KM Harris (2015)

Structural Components of Synaptic Plasticity and Memory Consolidation.

Cold Spring Harb Perspect Biol. 7: a021758.

DOI: 10.1101/csdperspect.a021758

PMCID: PMC4484970 PMID: 26134321

Watson et al., 2016

Watson DJ, Ostroff L, Cao G, Parker PH, Smith H, & KM Harris (2016)

LTP enhances synaptogenesis in the developing hippocampus.

Hippocampus. 26:560-576. DOI: 10.1002/hipo.22536

PMCID: PMC4811749 PMID: 26418237

Reference Set #3 (Stewart)

[Popov et al., 2004](#)

Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML, Gabbott PL, Bliss TV, Stewart MG.

Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat.

Neuroscience. 2004;128(2):251-62. doi: 10.1016/j.neuroscience.2004.06.029.

[Dhanrajan et al., 2004](#)

Dhanrajan TM, Lynch MA, Kelly A, Popov VI, Rusakov DA, Stewart MG.

Expression of long-term potentiation in aged rats involves perforated synapses but dendritic spine branching results from high-frequency stimulation alone.

Hippocampus. 2004;14(2):255-264. DOI:10.1002/hipo.10172

PMID:15098730 PMCID:PMC3369534

[Stewart et al., 2005a](#)

Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, Peddie CJ, Rodriguez JJ, Cordero MI, Donohue HS, Gabbott PL, Popov VI. (2005)

Stress suppresses and learning induces plasticity in ca3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities.

Neuroscience Vol.131: pp43–54 DOI:10.1016/j.neuroscience.2004.10.031

PMID:15680690

[Stewart et.al., 2005b](#)

Stewart MG, Medvedev NI, Popov VI, Schoepfer R, Davies HA, Murphy K, Dallérac GM, Kraev IV, Rodríguez JJ. (2005)

Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices.

Eur J Neurosci. 21: 3368-3378. DOI:10.1111/j.1460-9568.2005.04174.x

PMID:16026474

[Medvedev et al., 2010](#)

Medvedev NI, Popov VI, Dallarac G, Davies HA, Laroche S, Kraev IV, Rodriguez Arellano JJ, Doyare V, Stewart MG.

Alterations in synaptic curvature in the dentate gyrus following induction of long-term potentiation, long-term depression, and treatment with the N-methyl-D-aspartate receptor antagonist CPP.

Neuroscience. 2010 Dec 1;171(2):390-7.

DOI: 10.1016/j.neuroscience.2010.09.014 PMID: 20849931

Reference Set #4 (Muller)

Stoppini et al., 1991

Stoppini L, Buchs PA, Muller D.
A simple method for organotypic cultures of nervous tissue.
J Neurosci Methods. 1991 Apr;37(2):173-82.
DOI: 10.1016/0165-0270(91)90128-m PMID: 1715499

Toni et al., 1999

Toni N, Buchs PA, Nikonenko I, Bron CR, & Muller D.
LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.
Nature. 1999 Nov 25;402(6760):421-5.
DOI: 10.1038/46574 PMID: 10586883

Luscher et al., 2000

Luscher C, Nicoll RA, Malenka RC, & D.Muller (2000)
Synaptic plasticity and dynamic modulation of the postsynaptic membrane
Nat Neurosci. 3:545-550.
DOI: 10.1038/75714 PMID: 10816309

Toni et al., 2001

Toni N, Buchs PA, Nikonenko I, Povilaitite P, Parisi L, & D. Muller (2001)
Remodeling of synaptic membranes after induction of long-term potentiation.
J Neurosci. 21:6245-6251. DOI: 10.1523/JNEUROSCI.21-16-06245.2001
PMCID: PMC6763190 PMID: 11487647

Reference Set #5 (Frotscher)

Zhao et al., 2012a

Zhao S, Studer D, Gruber W, Nestel S, Frotscher M. (2012)
Fine structure of hippocampal mossy fiber synapses following rapid high-pressure freezing.
Epilepsia. 53 Suppl 1:4-8. doi: 10.1111/j.1528-1167.2012.03469.x.
PMID: 22612803

Zhao et al., 2012b

Zhao S, Studer D, Chai X, Gruber W, Brose N, Nestel S, Young C, Rodriguez EP, Saetzler K, Frotscher M. (2012)
Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing.
J Comp Neurol. 520:2340-2351. doi: 10.1002/cne.23040.
PMID: 22237743

Zhao et al., 2012c

Zhao S, Studer D, Chai X, Gruber W, Brose N, Nestel S, Young C, Rodriguez EP, Saetzler K, Frotscher M. (2012)

Structural plasticity of spines at giant mossy fiber synapses.
Front Neural Circuits. 6: 103-134 doi: 10.3389/fncir.2012.00103.
PMID:23264762 PMCID:PMC3524460

Reference Set #6 (Other EM-studies of hippo learning)

[Tarrant and Routtenberg, 1977](#)

Tarrant SB & A. Routtenberg (1977)
The synaptic spinule in the dendritic spine:
electron microscopic study of the hippocampal dentate gyrus.
Tissue Cell. 9: 461-473. DOI: 10.1016/0040-8166(77)90006-4
PMID: 337572

[Calverley and Jones, 1987a](#)

Calverley RK, Jones DG.
A serial-section study of perforated synapses in rat neocortex.
Cell Tissue Res. 1987 Mar;247(3):565-72.
DOI: 10.1007/BF00215750 PMID: 3568103

[Calverley and Jones, 1987b](#)

Calverley RK, & Jones DG.
Determination of the numerical density of perforated synapses in rat neocortex.
Cell Tissue Res. 1987 May;248(2):399-407.
DOI: 10.1007/BF00218208 PMID: 3555836

[Petit et al., 1989](#)

T.L. Petit, J.C. LeBoutillier, E.J. Markus & N.W. Milgram (1989)
Synaptic Structural Plasticity following Repetitive Activation in the Rat Hippocampus.
Exp. Neurol. 105, 72-79
DOI: 10.1016/0014-4886(89)90173-8 PMID: 2744129

[Markus et al., 1994](#)

Markus EJ, Petit TL, LeBoutillier JC, & Brooks WJ. (1994)
Morphological Characteristics of the Synapse and Their Relationship to Synaptic Type:
An Electron Microscopic Examination of the Neocortex and Hippocampus of the Rat.
Synapse. 1994 May;17:6548-6558 DOI: 10.1002/syn.890170108
PMID: 8042147

[Neuhoff et al., 1999](#)

Neuhoff H, Roeper J, & Schweizer M.
Activity-dependent formation of perforated synapses
in cultured hippocampal neurons.
Eur J Neurosci. 1999 Dec;11(12):4241-50.
DOI: 10.1046/j.1460-9568.1999.00856.x PMID: 10594650

[Kennedy, 2016](#)

Kennedy MB
Synaptic Signaling in Learning and Memory.
Cold Spring Harb Perspect Biol. 2013 Dec 30;8(2):a016824.
DOI: 10.1101/cshperspect.a016824
PMCID: PMC4743082 PMID: 24379319

[Kennedy. 2018](#)
Kennedy MB
The Protein Biochemistry of the Postsynaptic Density in Glutamatergic Synapses
Mediates Learning in Neural Networks.
Biochemistry. 2018 Jul 10;57(27):4005-4009.
DOI: 10.1021/acs.biochem.8b00496
PMCID: PMC7879948 PMID: 29913061

[Sun et al., 2021](#)
Sun Y, Smirnov M, Kamasawa N, & Yasuda R
Rapid Ultrastructural Changes in the PSD and Surrounding Membrane after
Induction of Structural LTP in Single Dendritic Spines.
J Neurosci. 2021 Aug 18;41(33):7003-7014.
DOI: 10.1523/JNEUROSCI.1964-20.2021
PMCID: PMC8372018 PMID: 34266899

Reference Set #7 (Petralia&Yao reviews)

[Petralia et al., 2015](#)
Petralia RS, Wang YX, Mattson MP, Yao PJ.
Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related
Invaginating Projections.
Neuromolecular Med. 2015 Sep;17(3):211-40.
DOI: 10.1007/s12017-015-8358-6
PMCID: PMC4536166 PMID: 26007200

[Petralia et al., 2016](#)
Petralia RS, Wang YX, Mattson MP, & Yao PJ
The Diversity of Spine Synapses in Animals.
Neuromolecular Med. 2016 Dec;18(4):497-539.
DOI: 10.1007/s12017-016-8405-y
PMCID: PMC5158183 PMID: 27230661

[Petralia et al., 2017](#)
Petralia RS, Wang YX, Mattson MP, & Yao PJ
Invaginating Presynaptic Terminals in Neuromuscular Junctions,
Photoreceptor Terminals, and Other Synapses of Animals.
Neuromolecular Med. 2017 Sep;19(2-3):193-240.
DOI: 10.1007/s12017-017-8445-y
PMCID: PMC6518423 PMID: 28612182

Petralia et al, 2018

Petralia RS, Wang YX, Mattson MP, & Yao PJ
Invaginating Structures in Mammalian Synapses.
Front Synaptic Neurosci. 2018 Apr 5;10:4.
DOI: 10.3389/fnsyn.2018.00004
PMCID: PMC5895750 PMID: 29674962

Petralia et al., 2021

Petralia RS, Yao PJ, Kapogiannis D, & Wang YX
Invaginating Structures in Synapses - Perspective.
Front Synaptic Neurosci. 2021 May 24;13:685052.
DOI: 10.3389/fnsyn.2021.685052
PMCID: PMC8180840 PMID: 34108873

Reference Set #8 (PSD basic structure).

Gray, 1959

Gray EG (1959)
Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study.
J Anat. 1959 Oct;93(Pt 4):420-333.
PMCID: PMC1244535 PMID: 13829103

Gray, 1976

Gray EG. (1976)
Problems of understanding the substructure of synapses.
Prog Brain Res. 1976;45:207-234.
DOI:10.1016/S0079-6123(08)60992-9 PMID:1087737

Cohen et al, 1977

Cohen RS, Blomberg F, Berzins K, Siekevitz P.
The structure of postsynaptic densities isolated from dog cerebral cortex.
I. Overall morphology and protein composition.
J Cell Biol. 1977 Jul;74(1):181-203. DOI: 10.1083/jcb.74.1.181
PMCID: PMC2109867 PMID: 194906

Blomberg et al., 1977

Blomberg F, Cohen RS, Siekevitz P.
The structure of postsynaptic densities isolated from dog cerebral cortex.
II. Characterization and arrangement of some of the major proteins within the structure.
J Cell Biol. 1977 Jul;74(1):204-25. DOI: 10.1083/jcb.74.1.204
PMCID: PMC2109869 PMID: 406264

Cohen and Siekevitz, 1978

Cohen RS, Siekevitz P. (1978)

Form of the postsynaptic density. A serial section study.
J Cell Biol. 1978 Jul;78(1):36-46. DOI: 10.1083/jcb.78.1.36
PMCID: PMC2110167 PMID: 670296

[Carlin et al., 1980](#)

Carlin RK, Grab DJ, Cohen RS, Siekevitz P. (1980)
Isolation and characterization of postsynaptic densities from various brain regions:
enrichment of different types of postsynaptic densities.
J Cell Biol. 86:831-845. DOI: 10.1083/jcb.86.3.831
PMCID: PMC2110694 PMID: 7410481

[Dosemeci et al., 2001](#)

Dosemeci A, Tao-Cheng JH, Vinade L, Winters CA, Pozzo-Miller L, & Reese TS. (2001)
Glutamate-induced transient modification of the postsynaptic density.
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10428-32. doi:
10.1073/pnas.181336998. Epub 2001 Aug 21.

[Tao-Cheng et al., 2009](#)

Tao-Cheng JH, Dosemeci A, Gallant PE, Miller S, Galbraith JA, Winters CA,
Azzam R, & Reese TS.
Rapid turnover of spinules at synaptic terminals.
Neuroscience. 2009 Apr 21;160(1):42-50.
DOI: 10.1016/j.neuroscience.2009.02.031
PMCID: PMC2673145 PMID: 19248820

[High et al., 2015](#)

High B, Cole AA, Chen X & TS Reese (2015)
Electron microscopic tomography reveals discrete transcleft elements
at excitatory and inhibitory synapses.
Front Synaptic Neurosci. 7: 9. DOI: 10.3389/fnsyn.2015.00009
PMCID: PMC4461817 PMID: 26113817

[Reference Set #9 \(synaptic 'modules' via LM-viewing\)](#)

[MacGillavry et al., 2013](#)

MacGillavry HD, Song Y, Raghavachari S, & Blanpied TA.
Nanoscale scaffolding domains within the postsynaptic density concentrate
synaptic AMPA receptors.
Neuron 78, 615–622. DOI: 10.1016/j.neuron.2013.03.009
PMCID: PMC3668352 PMID: 23719161

[Broadhead et al., 2016](#)

Broadhead MJ, Horrocks MH, Zhu F, Muresan L, Benavides-Piccione R, DeFelipe J, Fricker
D,
Kopanitsa MV, Duncan RR, Klenerman D, Komiyama NH, Lee SF, & Grant SG. (2016)
PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits.

Sci Rep. 2016 Apr 25;6:24626. DOI:10.1038/srep24626
PMID:27109929 PMCID:PMC4842999

Zeng et al., 2016

Zeng M, Shang Y, Araki Y, Guo T, Huganir RL & M Zhang (2016)
Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.
Cell. 2016 Aug 25;166(5):1163-1175.e12. doi: 10.1016/j.cell.2016.07.008.
PMID: 27565345 PMCID: PMC5564291

Biederer et al., 2017

Biederer T, Kaeser PS, & Blanpied TA (2017)
Transcellular Nanoalignment of Synaptic Function.
Neuron. 2017 Nov 1;96(3):680-696.
DOI: 10.1016/j.neuron.2017.10.006
PMCID: PMC5777221 PMID: 29096080

Chen et al., 2018

Chen, H, Tang A & Blanpied, TA (2018)
Subsynaptic spatial organization as a regulator of synaptic strength and plasticity.
Current Opinion in Neurobiology, Vol.51: pp147–153
DOI: 10.1016/j.conb.2018.05.004
PMCID: PMC6295321 PMID: 29902592

Crosby et al., 2019

Crosby KC, Gookin SE, Garcia JD, Hahm KM, Dell'Acqua ML, & Smith KR. (2019)
Nanoscale Subsynaptic Domains Underlie the Organization
of the Inhibitory Synapse.
Cell Rep. 2019 Mar 19;26(12):3284-3297.e3. DOI: 10.1016/j.celrep.2019.02.070
PMCID: PMC6529211 PMID: 30893601

Trotter et al., 2019

Trotter JH, Hao J, Maxeiner S, Tsetsenis T, Liu Z, Zhuang X, & Sudhof TC (2019)
Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters.
J Cell Biol. 2019 Aug 5;218(8):2677-2698.
DOI: 10.1083/jcb.201812076
PMCID: PMC6683742 PMID: 31262725

Chen et al., 2020

Chen JH, Blanpied TA & Tang AH (2020)
Quantification of trans-synaptic protein alignment:
A data analysis case for single-molecule localization microscopy.
Methods. 2020 Mar 1;174:72-80. DOI: 10.1016/j.ymeth.2019.07.016
PMCID: PMC6980469 PMID: 31325491

Obashi et al., 2021

Obashi K, Taraska JW, & Okabe S (2021)

The role of molecular diffusion within dendritic spines in synaptic function.

J Gen Physiol. 2021 Apr 5;153(4):e202012814. DOI: 10.1085/jgp.202012814

PMCID: PMC7967910 PMID: 33720306

[Ramsey et al., 2021](#)

Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson

SM, Biederer T, & Blanpied TA (2021)

Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength.

Sci Adv. 2021 Aug 20;7(34):eabf3126. DOI: 10.1126/sciadv.abf3126

PMCID: PMC8378824 PMID: 34417170

[Wegner et al., 2022](#)

Wegner W, Steffens H, Gregor C, Wolf F, & Willig, KI (2022)

Environmental enrichment enhances patterning and remodeling of synaptic nanoarchitecture as revealed by STED nanoscopy.

Elife. 2022 Feb 23;11:e73603.

PMCID: PMC8903838 PMID: 35195066

Reference Set #10 (Background of Long Term Potentiation)

[Bliss and Lomo, 1973](#)

Bliss TV, & T. Lomo

Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.

J Physiol. 1973 Jul;232(2):331-56.

DOI: 10.1113/jphysiol.1973.sp010273

PMCID: PMC1350458 PMID: 4727084

[Bliss and Gardner-Medwin, 1973](#)

Bliss TV, Gardner-Medwin AR. (1973)

Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path.

J Physiol. 1973 Jul;232(2):357-74.

DOI: 10.1113/jphysiol.1973.sp010274

PMCID: PMC1350459 PMID: 4727085

[Lømo T \(2003\)](#)

The discovery of long-term potentiation.

Philos Trans R Soc Lond B (Biol Sci). 2003 Apr 29;358(1432):617-20.

DOI: 10.1098/rstb.2002.1226

PMCID: PMC1693150 PMID: 12740104

[Bailey et al, 2015](#)

Bailey CH, Kandel ER & KM Harris (2015)

Structural Components of Synaptic Plasticity and Memory Consolidation.

Cold Spring Harb Perspect Biol. 7: a021758.
DOI: 10.1101/cshperspect.a021758
PMCID: PMC4484970 PMID: 26134321

[Lømo, 2018](#)

T. Lømo (2018)
Discovering long-term potentiation (LTP) --
recollections and reflections on what came after.
Acta Physiol (Oxf). 2018 Feb;222(2).
DOI: 10.1111/apha.12921 PMID: 28719040

Reference Set #11 (Methods for hippocampal slices & cultures)

[Skrede and Westgaard, 1971](#)

Skrede KK, Westgaard RH.
The transverse hippocampal slice: a well-defined cortical structure maintained
in vitro.
Brain Res. 1971 Dec 24;35(2):589-93.
DOI: 10.1016/0006-8993(71)90508-7 PMID: 5135556

[Schwartzkroin and Wester, 1975](#)

Schwartzkroin PA, & Wester K.
Long-lasting facilitation of a synaptic potential following tetanization in the
in vitro hippocampal slice.
Brain Res. 1975 May 16;89(1):107-19.
DOI: 10.1016/0006-8993(75)90138-9 PMID: 167909

[Ransom et al., 1977](#)

Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N., and Nelson, P. G. (1977).
Mouse spinal cord in cell culture. I. Morphology and intrinsic neuronal
electrophysiologic properties.
J. Neurophysiol. 40, 1132–1150. DOI: 10.1152/jn.1977.40.5.1132
PMID: 333062

[Mayer et al., 1989](#)

Mayer ML, Vyklicky L Jr, & Westbrook GL.
Modulation of excitatory amino acid receptors by group IIB metal cations in
cultured mouse hippocampal neurones.
J Physiol. 1989 Aug;415:329-50.
DOI: 10.1113/jphysiol.1989.sp017724
PMCID: PMC1189179 PMID: 2561788

[Lu et al., 1998](#)

Lu Z, McLaren RS, Winters CA, & Ralston E.
Ribosome association contributes to restricting mRNAs to the cell body of

hippocampal neurons.

Mol Cell Neurosci. 1998 Dec;12(6):363-375.

DOI: 10.1006/mcne.1998.0723 PMID: 9888989

Scott et al., 2001

Scott DB, Blanpied TA, Swanson GT, Zhang C, & Ehlers MD.

An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing.

J Neurosci. 2001 May 1;21(9):3063-72. doi: 10.1523/JNEUROSCI.21-09-03063.2001.

Blanpied et al., 2002

Blanpied TA, Scott DB, & Ehlers MD.

Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines.

Neuron. 2002 Oct 24;36(3):435-49.

DOI: 10.1016/s0896-6273(02)00979-0 PMID: 12408846

Reference Set #12 (La++ stimulates all sorts of secretion)

Miledi, 1971

Miledi R. (1971)

Lanthanum ions abolish the "calcium response" of nerve terminals.

Nature. 1971 Feb 5; 229(5284):410-411.

DOI: 10.1038/229410a0 PMID: 4323456

Curtis et al., 1986

Curtis MJ, Quastel DM, & Saint DA.

Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals.

J Physiol. 1986 Apr;373:243-60.

DOI: 10.1113/jphysiol.1986.sp016045

PMCID: PMC1182535 PMID: 2875177

Coniglio et al., 1993

Coniglio LM, Hendricks GM, Parsons RL. (1993)

Effects of lanthanum at snake twitch and tonic muscle fibre endplates.

J Physiol. 1993 Jul;466:405-19.

PMCID: PMC1175485 PMID: 8410700

Powis et al., 1994

Powis DA, Clark CL, O'Brien KJ. (1994)

Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells.

Cell Calcium. 1994 Nov;16(5):377-390. DOI: 10.1016/0143-4160(94)90031-0

PMID: 7859252

[Powis and Clark, 1996](#)

Powis DA, & Clark CL.

A difference in the cellular mechanisms of secretion of adrenaline and noradrenaline revealed with lanthanum in bovine chromaffin cells.

Neurosci Lett. 1996 Jan 19;203(2):131-4.

DOI: 10.1016/0304-3940(95)12289-3 PMID: 8834111

[Lerner et al., 2006](#)

Lerner I, Trus M, Cohen R, Yizhar O, Nussinovitch I, Atlas D.

Ion interaction at the pore of Lc-type Ca²⁺ channel is sufficient to mediate depolarization-induced exocytosis.

J Neurochem. 2006 Apr;97(1):116-27. DOI: 10.1111/j.1471-4159.2006.03709.x

PMID: 16515555

[Chung et al., 2008](#)

Chung C, Deak F, Kavalali ET.

Molecular substrates mediating lanthanide-evoked neurotransmitter release in central synapses.

J Neurophysiol. 2008 Oct;100(4):2089-2100.

DOI: 10.1152/jn.90404.2008

PMCID: PMC2576212 PMID: 18715899

[Wasser and Kavalali, 2009](#)

Wasser CR, & Kavalali ET.

Leaky synapses: regulation of spontaneous neurotransmission in central synapses.

Neuroscience. 2009 Jan 12;158(1):177-188.

DOI: 10.1016/j.neuroscience.2008.03.028

PMCID: PMC2662333 PMID: 18434032

[Ramirez and Kavalali, 2011](#)

Ramirez DM, Kavalali ET.

Differential regulation of spontaneous and evoked neurotransmitter release at central synapses.

Curr Opin Neurobiol. 2011 Apr;21(2):275-82.

DOI: 10.1016/j.conb.2011.01.007

PMCID: PMC3092808 PMID: 21334193

Reference Set #13 (La⁺⁺⁺ blocks Ca⁺⁺ channels)

[dos Remedios, 1981](#)

Cristobal G. dos Remedios (1981)

Lanthanide ion probes of calcium-binding sites on cellular membranes.

Cell Calcium, Vol.2, pp29-51

doi.org/10.1016/0143-4160(81)90044-0

[Lansman, 1990](#)

Lansman JB (1990)

Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit.

J Gen Physiol. 1990 Apr;95(4):679-96.

DOI: 10.1085/jgp.95.4.679

PMCID: PMC2216337 PMID: 2159974

[Reichling and MacDermott, 1991](#)

Reichling DB, MacDermott AB.

Lanthanum actions on excitatory amino acid-gated currents and voltage-gated calcium currents in rat dorsal horn neurons.

J Physiol. 1991 Sep;441:199-218.

DOI: 10.1113/jphysiol.1991.sp018746

[Meir et al., 1998](#)

Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R,

Demirgoren S, Rahamimoff R. (1998)

Ion channels in presynaptic nerve terminals and control of transmitter release.

Physiol Rev. 1999 Jul;79(3):1019-88.

DOI: 10.1152/physrev.1999.79.3.1019

PMID: 10390521

[Powis et al., 1994](#)

Powis DA, Clark CL, O'Brien KJ. (1994)

Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells.

Cell Calcium. 1994 Nov;16(5):377-390. DOI: 10.1016/0143-4160(94)90031-0

PMID: 7859252

[Powis and Clark, 1996](#)

Powis DA, & Clark CL.

A difference in the cellular mechanisms of secretion of adrenaline and noradrenaline revealed with lanthanum in bovine chromaffin cells.

Neurosci Lett. 1996 Jan 19;203(2):131-4.

DOI: 10.1016/0304-3940(95)12289-3 PMID: 8834111

[Lerner et al., 2006](#)

Lerner I, Trus M, Cohen R, Yizhar O, Nussinovitch I, Atlas D.

Ion interaction at the pore of Lc-type Ca²⁺ channel is sufficient to mediate depolarization-induced exocytosis.

J Neurochem. 2006 Apr;97(1):116-27. DOI: 10.1111/j.1471-4159.2006.03709.x

PMID: 16515555

[Chung et al., 2008](#)

Chung C, Deak F, Kavalali ET.

Molecular substrates mediating lanthanide-evoked neurotransmitter release in central synapses.

J Neurophysiol. 2008 Oct;100(4):2089-2100.

DOI: 10.1152/jn.90404.2008

PMCID: PMC2576212 PMID: 18715899

[Wasser and Kavalali, 2009](#)

Wasser CR, & Kavalali ET.

Leaky synapses: regulation of spontaneous neurotransmission in central synapses.

Neuroscience. 2009 Jan 12;158(1):177-188.

DOI: 10.1016/j.neuroscience.2008.03.028

PMCID: PMC2662333 PMID: 18434032

[Ramirez and Kavalali, 2011](#)

Ramirez DM, Kavalali ET.

Differential regulation of spontaneous and evoked neurotransmitter release at central synapses.

Curr Opin Neurobiol. 2011 Apr;21(2):275-82.

DOI: 10.1016/j.conb.2011.01.007

PMCID: PMC3092808 PMID: 21334193

Reference Set #14 (Heuser&Miledi - discovery of SV recycling via La+++ stim)

[Heuser and Miledi, 1971](#)

Heuser, J & R. Miledi (1971)

Effects of lanthanum ions on function and structure of frog neuromuscular junctions.

Proc R Soc Lond B (Biol Sci). 1971 Dec 14;179(1056):247-60.

DOI: 10.1098/rspb.1971.0096 PMID: 4400214

[Heuser, 1976](#)

Heuser, J.E. 1976.

Morphology of synaptic vesicle discharge and reformation at the frog neuromuscular junction.

Chapter 3, pp. 51-115, in:

The Motor Innervation of Muscle, ed. S. Thesleff, Academic Press, London.

[Heuser, 1989a](#)

Heuser J (1989)

The role of coated vesicles in recycling of synaptic vesicle membrane.

Cell Biol Int Rep. 13:1063-1076.

DOI: 10.1016/0309-1651(89)90020-9 PMID: 2576862

[Heuser, 1989b](#)

Heuser JE (1989)

Review of electron microscopic evidence favouring vesicle exocytosis as the structural basis for quantal release during synaptic transmission.

Q J Exp Physiol. 74:1051-1069.
DOI:10.1113/expphysiol.1989.sp003333 PMID:2560556

Reference Set #15 (La+++ moves SV membrane to presynaptic surface)

von Wedel et al., 1981

von Wedel RJ, Carlson SS, & Kelly RB. (1981)
Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis.
Proc Natl Acad Sci U S A. Vol.78: pp1014-1018. DOI: 10.1073/pnas.78.2.1014
PMID: 7015327 PMCID: PMC319936

Jones et al., 1982

Jones RT, Walker JH, Stadler H, & Whittaker VP.
Immunohistochemical localization of a synaptic-vesicle antigen in a cholinergic neuron under conditions of stimulation and rest.
Cell Tissue Res. 1982;223(1):117-26.
DOI: 10.1007/BF00221503 PMID: 7066963

Segal et al., 1985

Segal JR, Ceccarelli B, Fesce R, & Hurlbut WP. (1985)
Miniature endplate potential frequency and amplitude determined by an extension of Campbell's theorem.
Biophys J. 47: 183-202. DOI: 10.1016/s0006-3495(85)83891-1
PMCID: PMC1435151 PMID: 3872137

Robitaille and Tremblay, 1987

Robitaille R, & Tremblay JP.
Incorporation of vesicular antigens into the presynaptic membrane during exocytosis at the frog neuromuscular junction: a light and electron microscopy immunochemical study.
Neuroscience. 1987 May;21(2):619-29.
DOI: 10.1016/0306-4522(87)90147-3 PMID: 3039406

Torri-Tarelli et al., 1987

Torri-Tarelli F, Haimann C, & Ceccarelli B.
Coated vesicles and pits during enhanced quantal release of acetylcholine at the neuromuscular junction.
J Neurocytol. 1987 Apr;16(2):205-14.
DOI: 10.1007/BF01795304 PMID: 2887639

Valtorta et al., 1988

Valtorta F, Jahn R, Fesce R, Greengard P, Ceccarelli B.
Synaptophysin (p38) at the frog neuromuscular junction: its incorporation into the axolemma and recycling after intense quantal secretion.
J Cell Biol. 1988 Dec;107(6 Pt 2):2717-27.
DOI: 10.1083/jcb.107.6.2717

PMCID: PMC2115663 PMID: 3144557

[Torri-Tarelli et al., 1990](#)

Torri-Tarelli F, Villa A, Valtorta F, De Camilli P, Greengard P, & Ceccarelli, B. Redistribution of synaptophysin and synapsin I during alpha-latrotoxin-induced release of neurotransmitter at the neuromuscular junction.

J Cell Biol. 1990 Feb;110(2):449-59.

DOI: 10.1083/jcb.110.2.449

PMCID: PMC2116013 PMID: 1967610

Reference Set #15a. (De Camilli lab's endocytosis-retarded neuron-cultures)

[Hayashi et al., 2008](#)

Hayashi M, Raimondi A, O'Toole E, Paradise S, Collesi C, Cremona O, Ferguson SM, De Camilli P. (2008)

Cell and stimulus dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons.

Proc Natl Acad Sci U S A. 105: 2175-2180. doi: 10.1073/pnas.0712171105.

PMID:18250322 PMCID:PMC2538894

((cf., Fig1B and accompanying Supplemental movie 1))

[Milosevic et al., 2011](#)

Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O'Toole E, Ferguson S, Cremona O, De Camilli P. (2011)

Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission.

Neuron. 72:587-601. doi:10.1016/j.neuron.2011.08.029.

PMID:22099461 PMCID:PMC3258500

((cf., Fig. 5N and Fig.7C))

[Wu et al., 2014](#)

Wu Y, O'Toole ET, Girard M, Ritter B, Messa M, Liu X, McPherson PS, Ferguson SM, & P De Camilli (2014)

A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis.

Elife. 2014 Jun 24;3:e01621. DOI:10.7554/elife.01621

PMID:24963135 PMCID:PMC4107917

((cf., Fig.6 and Fig.8))

Reference Set #16 (Heuser & Tenkova intro of ear-muscle NMJs)

[Heuser and Tenkova, 2020](#)

Heuser JE & TI Tenkova (2020)

Introducing a mammalian nerve-muscle preparation ideal for physiology and

microscopy, the transverse auricular muscle in the ear of the mouse.
Neuroscience. 439: 80-105. DOI: 10.1016/j.neuroscience.2019.07.028
PMID: 31351140

Reference Set #17 (PSD curvature Δ s)

Dyson and Jones, 1980

Dyson SE, & Jones DG. (1980)
Quantitation of terminal parameters and their inter-relationships in maturing central synapses: a perspective for experimental studies.
Brain Res. 183: 43-59. DOI: 10.1016/0006-8993(80)90118-3
PMID: 7357409

Markus and Petit, 1989

Markus EJ, & Petit TL. (1989)
Synaptic structural plasticity: role of synaptic shape.
Synapse. 3: 1-11. DOI:10.1002/syn.890030102
PMID:2645686

Petit et al., 1989

T.L. Petit, J.C. LeBoutillier, E.J. Markus & N.W. Milgram (1989)
Synaptic Structural Plasticity following Repetitive Activation in the Rat Hippocampus.
Exp. Neurol. 105, 72-79 DOI: 10.1016/0014-4886(89)90173-8
PMID: 2744129

Markus et al., 1994

Markus EJ, Petit TL, LeBoutillier JC, & Brooks WJ. (1994)
Morphological Characteristics of the Synapse and Their Relationship to Synaptic Type:
An Electron Microscopic Examination of the Neocortex and Hippocampus of the Rat.
Synapse. 1994 May;17:6548-6558 DOI: 10.1002/syn.890170108
PMID: 8042147

Tao-Cheng et al., 2007

Tao-Cheng JH, Gallant PE, Brightman MW, Dosemeci A, Reese TS. (2007)
Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain.
J Comp Neurol. 501: 731-740. DOI: 10.1002/cne.21276
PMID: 17299754

Tao-Cheng, 2019

Tao-Cheng JH (2019)
Stimulation induces gradual increases in the thickness and curvature of postsynaptic density of hippocampal CA1 neurons in slice cultures.
Mol Brain. 2019 May 3;12(1):44.
DOI: 10.1186/s13041-019-0468-x

PMCID: PMC6499976 PMID: 31053145

Reference Set #18 (Ca++-dependence of synaptic vesicle recycling)

[Henkel and Betz, 1995](#)

Henkel AW & Betz WJ.

Monitoring of black widow spider venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43.

Neuropharmacology. 1995 Nov;34(11):1397-406.

DOI: 10.1016/0028-3908(95)00126-q PMID: 8606789

[Neale et al., 1999](#)

Neale EA, Bowers LM, Jia M, Bateman KE, & Williamson LC.

Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal.

J Cell Biol. 1999 Dec 13;147(6):1249-60.

DOI: 10.1083/jcb.147.6.1249

PMCID: PMC2168097 PMID: 10601338

[Vogel et al., 1999](#)

Vogel SS, Smith RM, Baibakov B, Ikebuchi Y, Lambert NA.

Calcium influx is required for endocytotic membrane retrieval.

Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5019-24.

DOI: 10.1073/pnas.96.9.5019

PMCID: PMC21809 PMID: 10220411

[Teng and Wilkinson, 2003](#)

Teng H, Wilkinson RS.

"Delayed" endocytosis is regulated by extracellular Ca²⁺ in snake motor boutons.

J Physiol. 2003 Aug 15;551(Pt 1):103-14.

DOI: 10.1113/jphysiol.2003.041152

PMCID: PMC2343132 PMID: 12813154

[Zefirov et al., 2006](#)

Zefirov AL, Abdurakhmanov MM, Mukhamedyarov MA, Grigoryev PN.

The role of extracellular calcium in exo- and endocytosis of synaptic vesicles at the frog motor nerve terminals.

Neuroscience. 2006 Dec 28;143(4):905-10.

DOI: 10.1016/j.neuroscience.2006.08.025

PMID: 17000054

[Yao et al., 2009](#)

Yao CK, Lin YQ, Ly CV, Ohyama T, Haueter CM, Moiseenkova-Bell VY, Wensel TG, Bellen HJ.

A synaptic vesicle-associated Ca²⁺ channel promotes endocytosis and couples

exocytosis to endocytosis.
Cell. 2009 Sep 4;138(5):947-60.
DOI: 10.1016/j.cell.2009.06.033
PMCID: PMC2749961 PMID: 19737521

Morton et al., 2015
Morton A, Marland JR, & Cousin MA.
Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis.
J Neurochem. 2015 Aug;134(3):405-15.
DOI: 10.1111/jnc.13132
PMCID: PMC4950031 PMID: 25913068

Miyano et al, 2019
Miyano R, Miki T, & Sakaba T
Ca-dependence of synaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal.
J Physiol. 2019 Aug;597(16):4373-4386.
DOI: 10.1113/JP278040 PMID: 31294821

Bourgeois-Jaarsma et al., 2021
Bourgeois-Jaarsma Q, Miaja Hernandez P, & Groffen AJ.
Ca(2+) sensor proteins in spontaneous release and synaptic plasticity: Limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons.
Mol Cell Neurosci. 2021 Apr;112:103613.
DOI: 10.1016/j.mcn.2021.103613 PMID: 33753311

Jiang et al., 2021
Jiang ZJ, Li W, Yao LH, Saed B, Rao Y, Grewe BS, McGinley A, Varga K, Alford S, Hu YS, & Gong LW
TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis.
Elife. 2021 Sep 27;10:e66709. DOI: 10.7554/eLife.66709
PMCID: PMC8516418 PMID: 34569930

Reference Set #19 (synaptic tagging in LTP)

Frey and Morris, 1997
Frey U & RG Morris (1997)
Synaptic tagging and long-term potentiation.
Nature. 385: 533-536. DOI: 10.1038/385533a0
PMID: 9020359

Frey and Morris, 1998a
Frey U & Morris RG. (1998)

Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation.

Trends Neurosci. 1998 May;21(5):181-8. DOI: 10.1016/s0166-2236(97)01189-2
PMID: 9610879

[Frey and Morris, 1998b](#)

Frey U & RG Morris (1998)

Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP.
Neuropharmacology. 37: 545-552 DOI: 10.1016/s0028-3908(98)00040-9
PMID: 9704995

[Martin and Kosik, 2002](#)

Martin KC & Kosik KS (2002)

Synaptic tagging -- who's it?

Nat Rev Neurosci. 2002 Oct;3(10):813-20. DOI: 10.1038/nrn942
PMID: 12360325

[Redondo and Morris, 2011](#)

Redondo RL & RG Morris (2011)

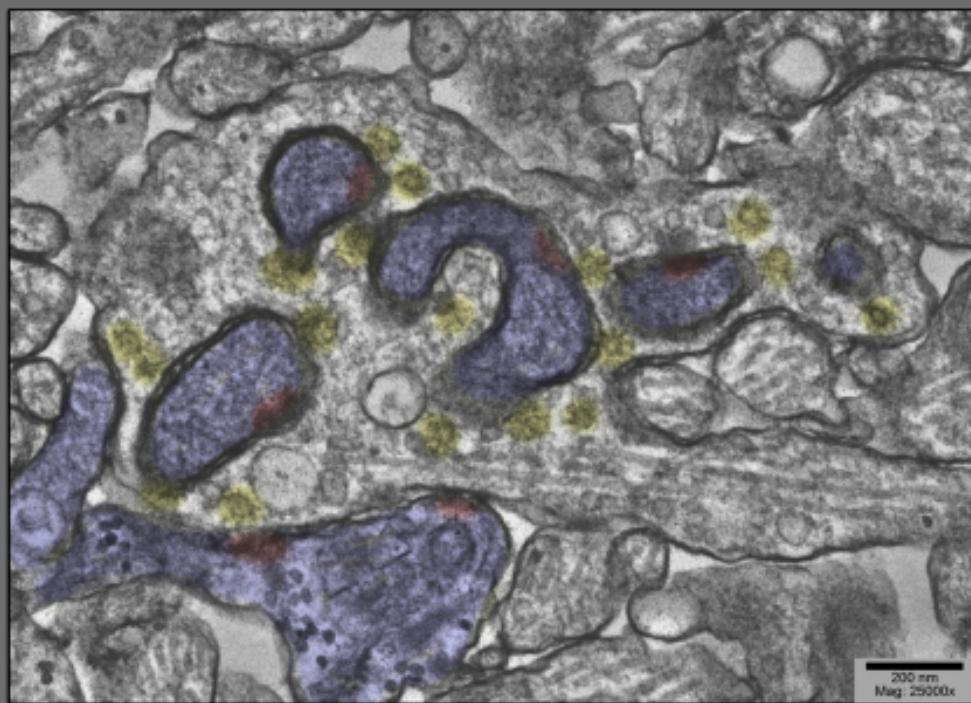
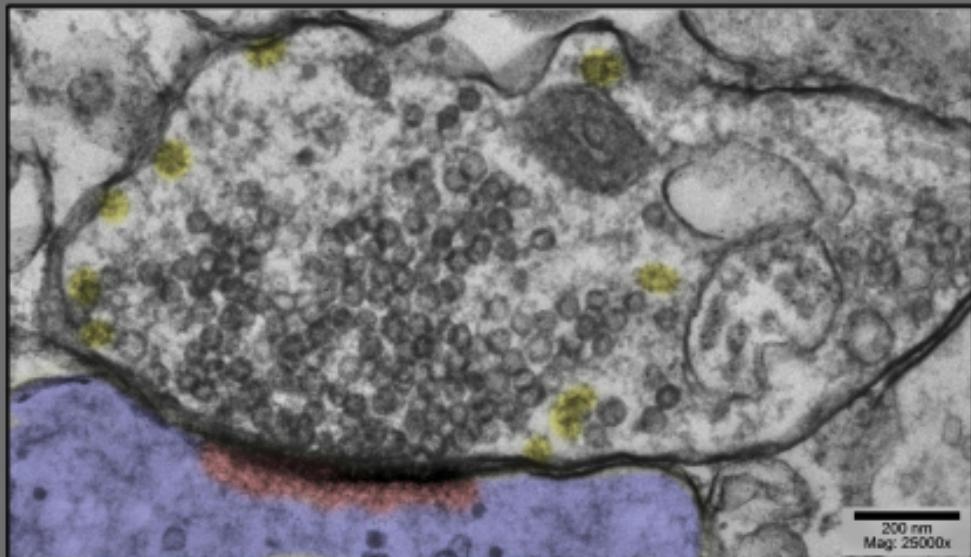
Making memories last: the synaptic tagging and capture hypothesis.
Nat Rev Neurosci. 12: 17-30. doi: 10.1038/nrn2963.

PMID: 21170072

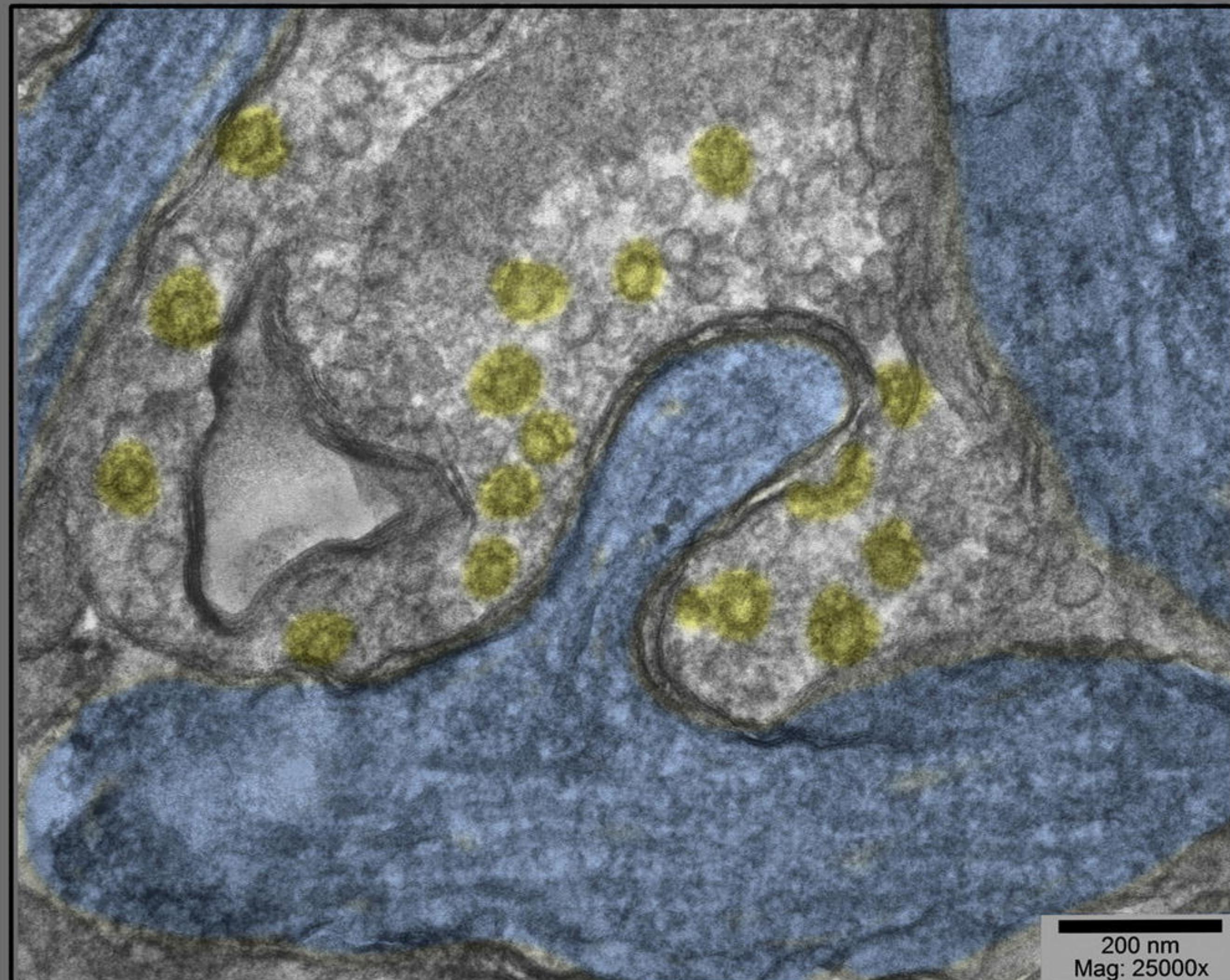
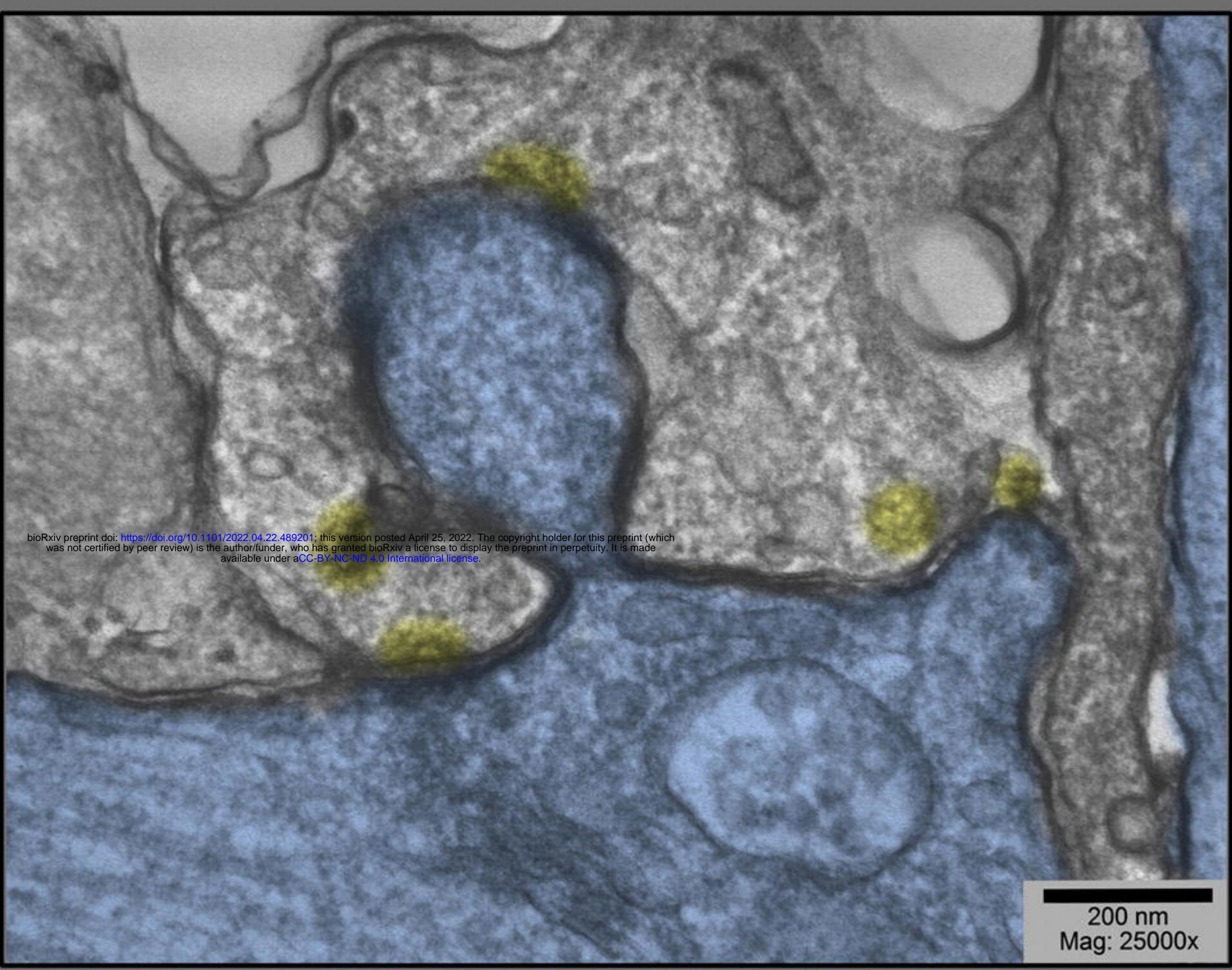
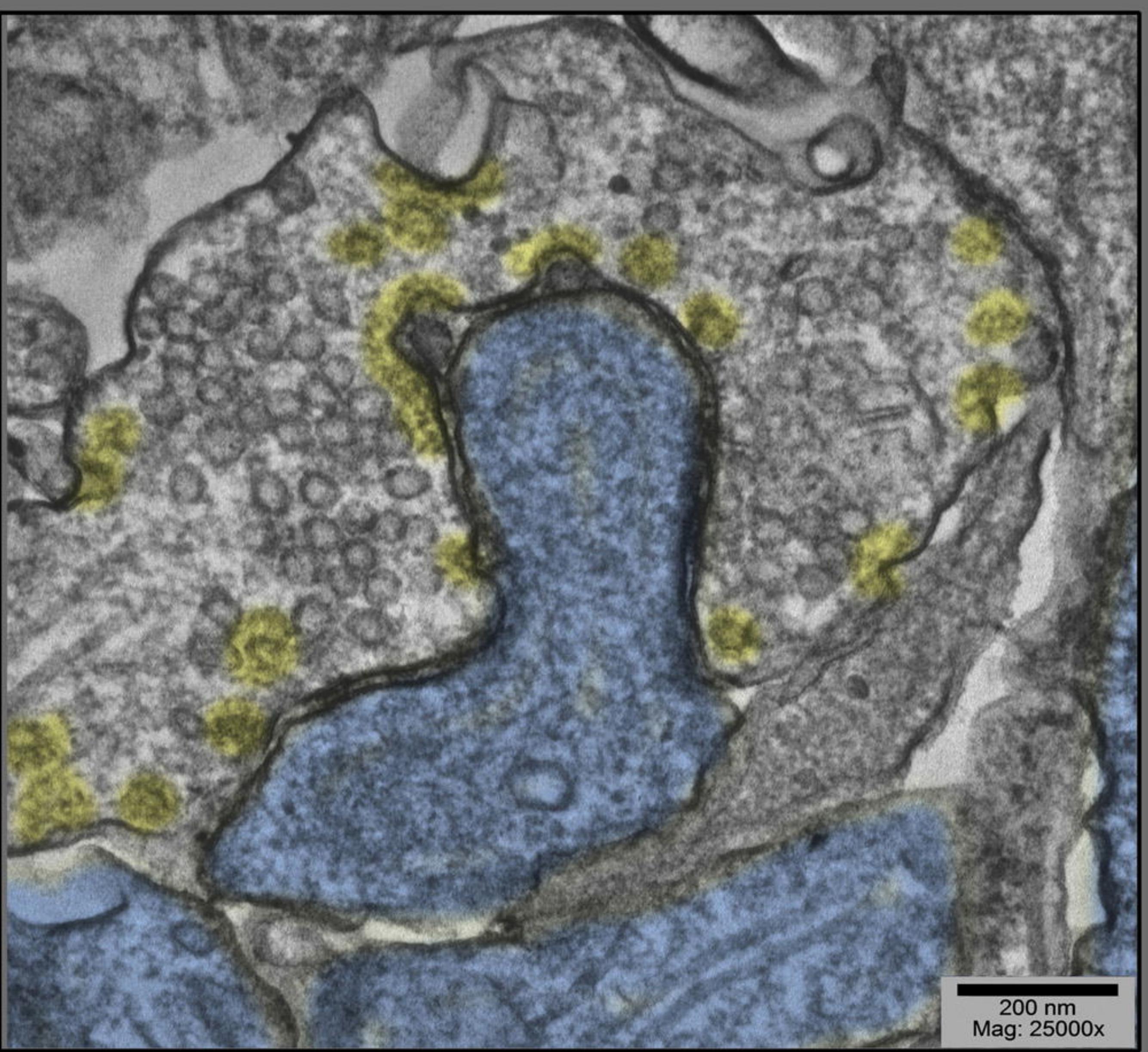
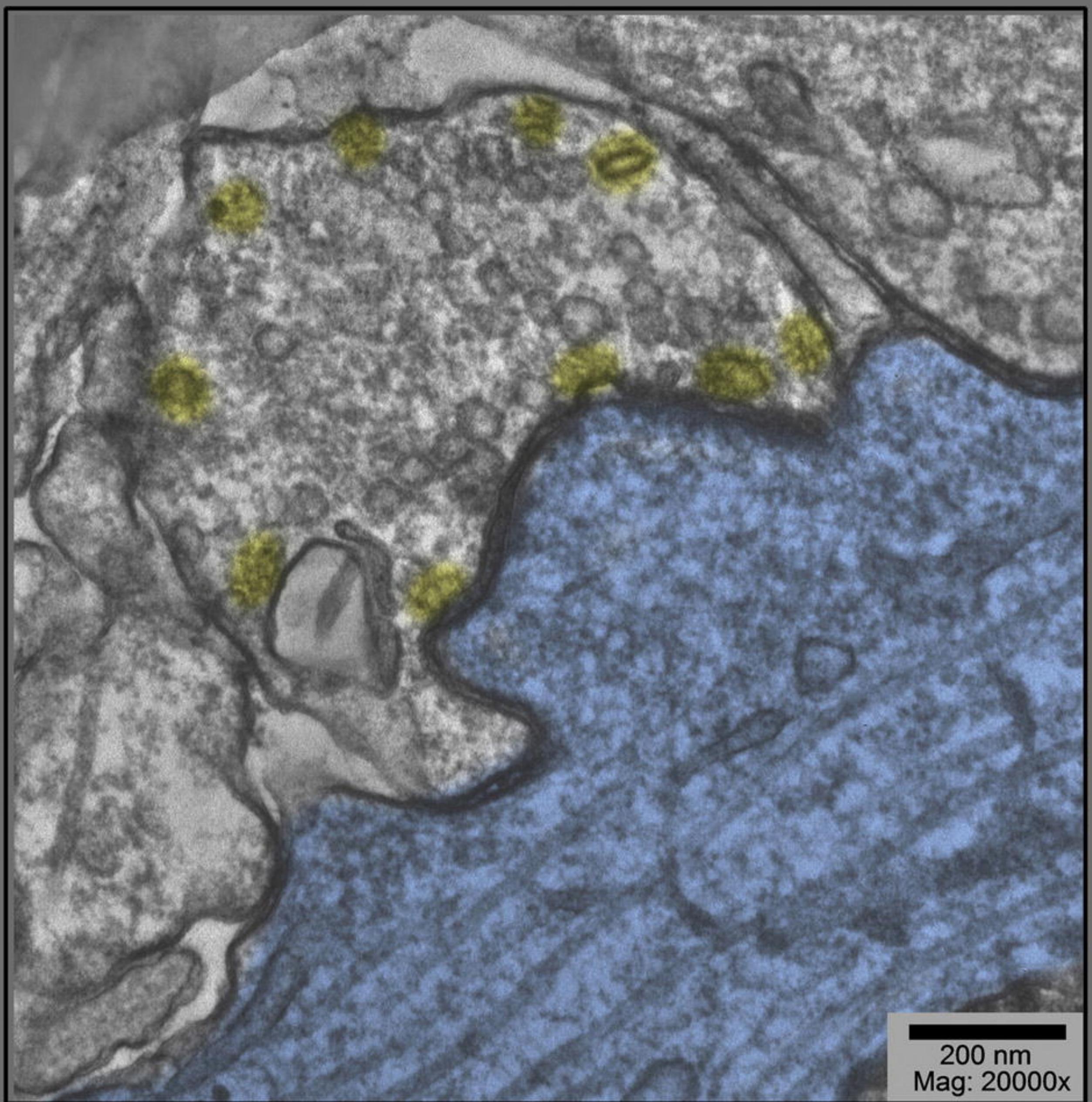
[Shires et al., 2012](#)

Shires KL, Da Silva BM, Hawthorne JP, Morris RG, & Martin SJ. (2012)

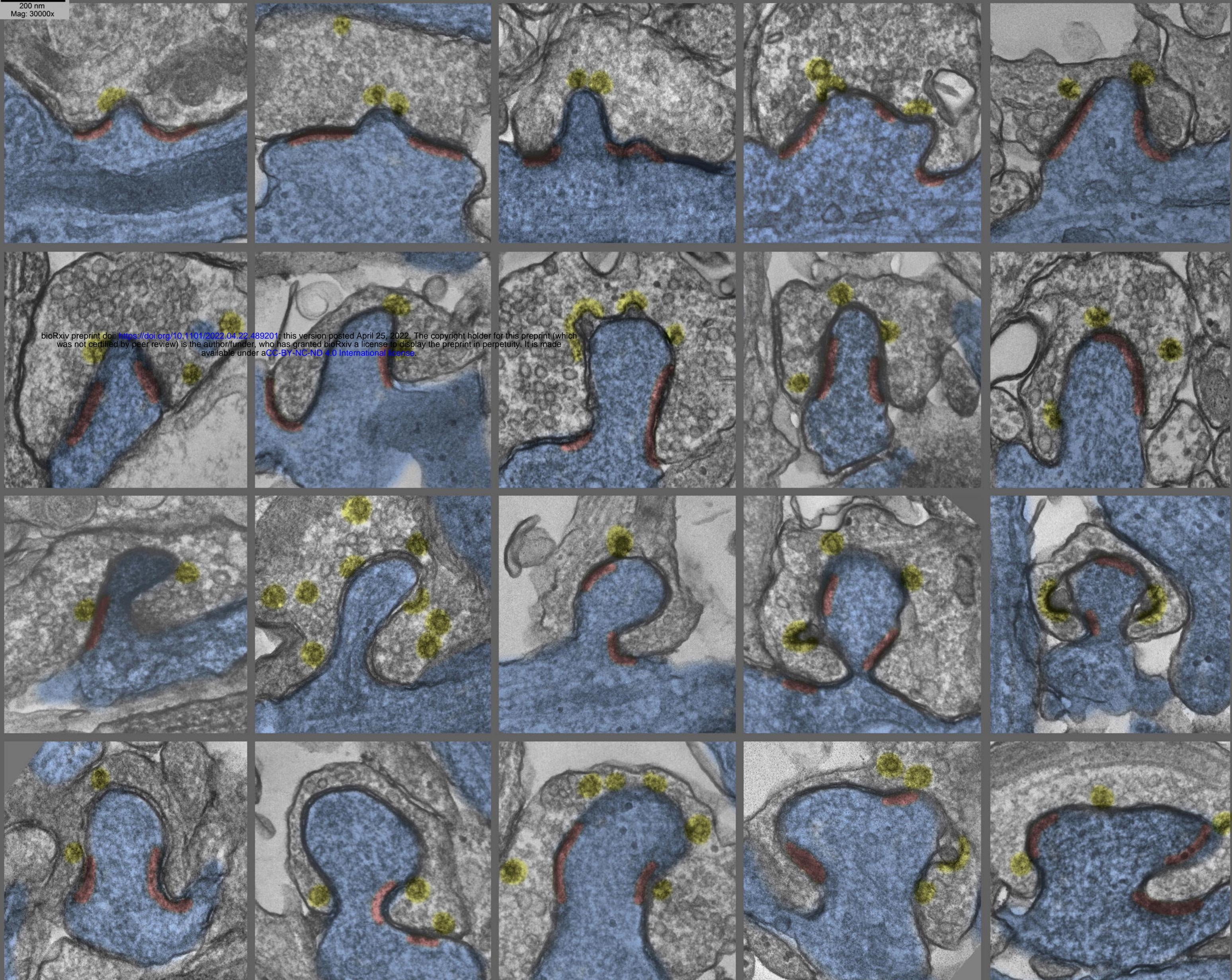
Synaptic tagging and capture in the living rat.

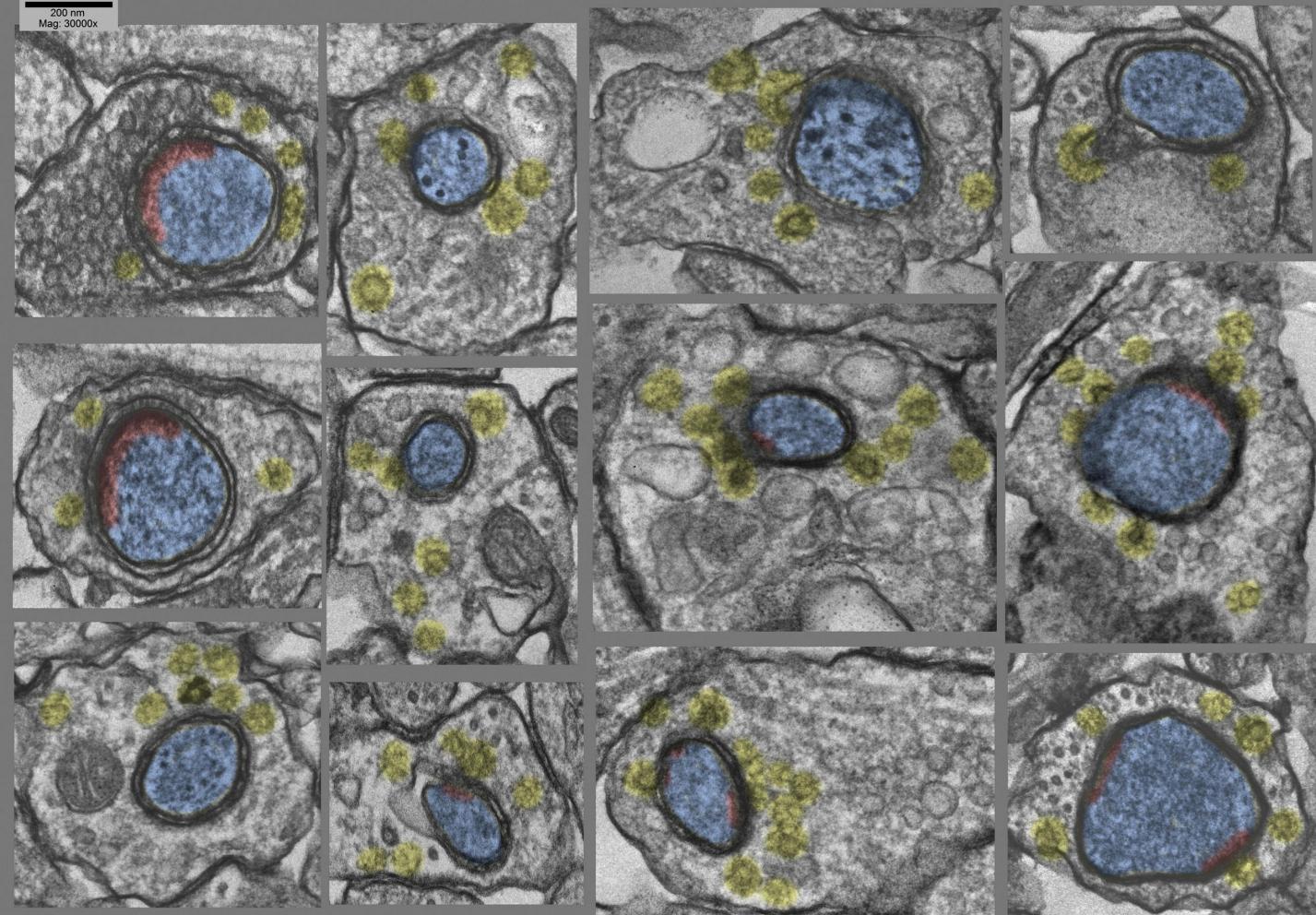


Nat Commun. 2012;3:1246. DOI: 10.1038/ncomms2250
PMCID: PMC3705498 PMID: 23212375

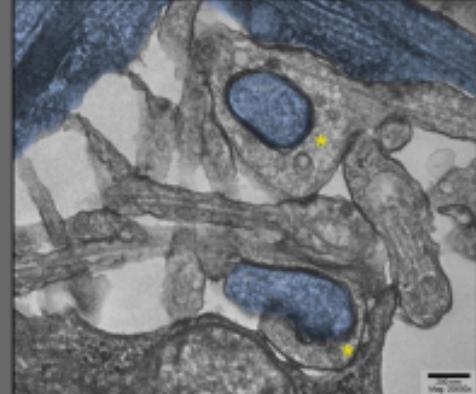
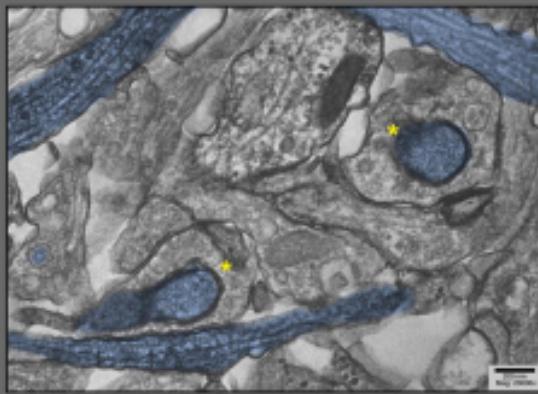
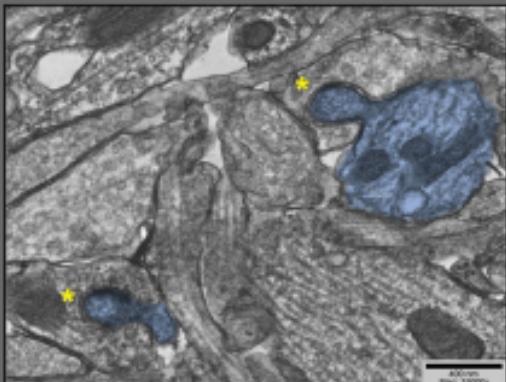
[Evans et al., 2021](#)

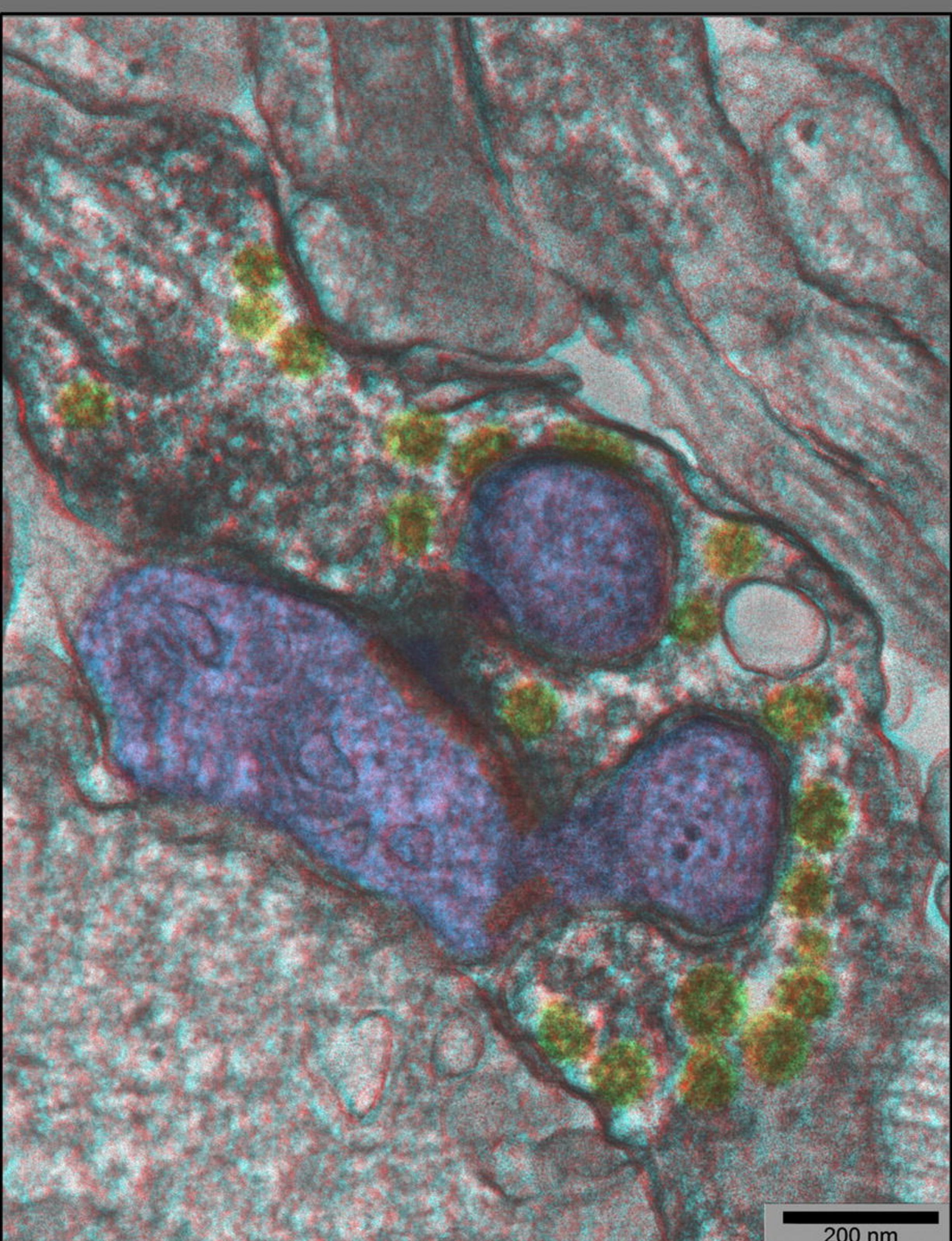
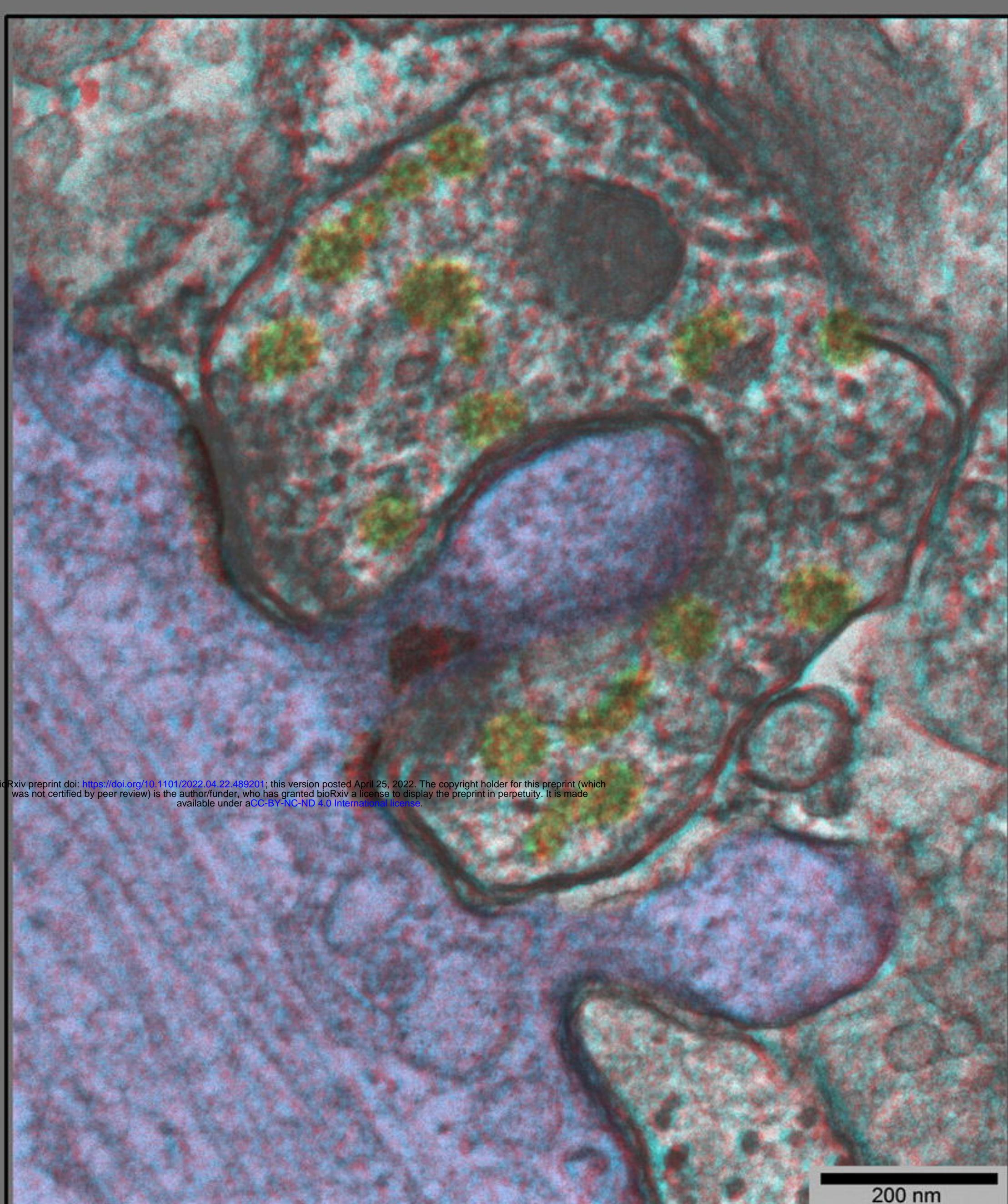
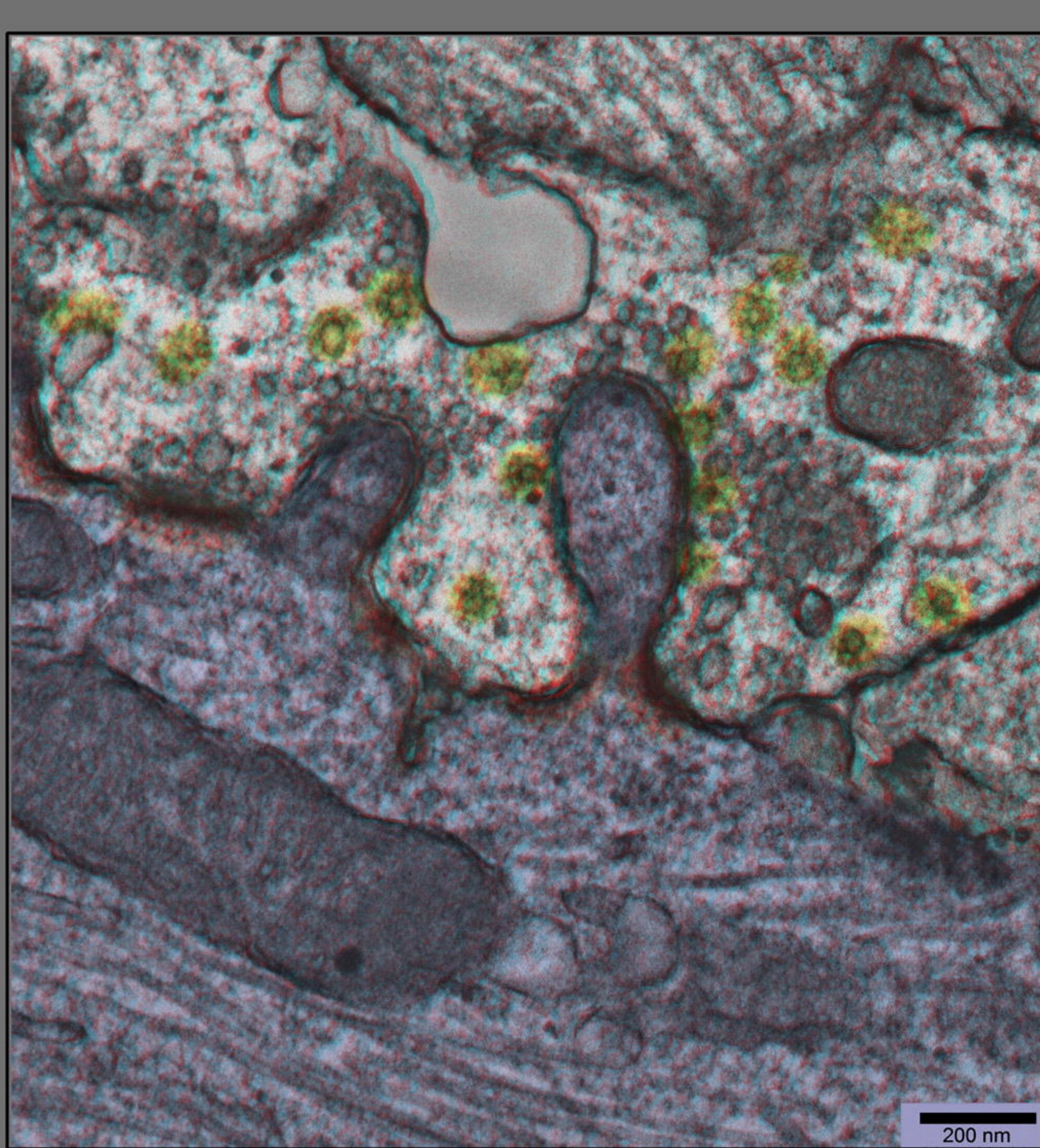
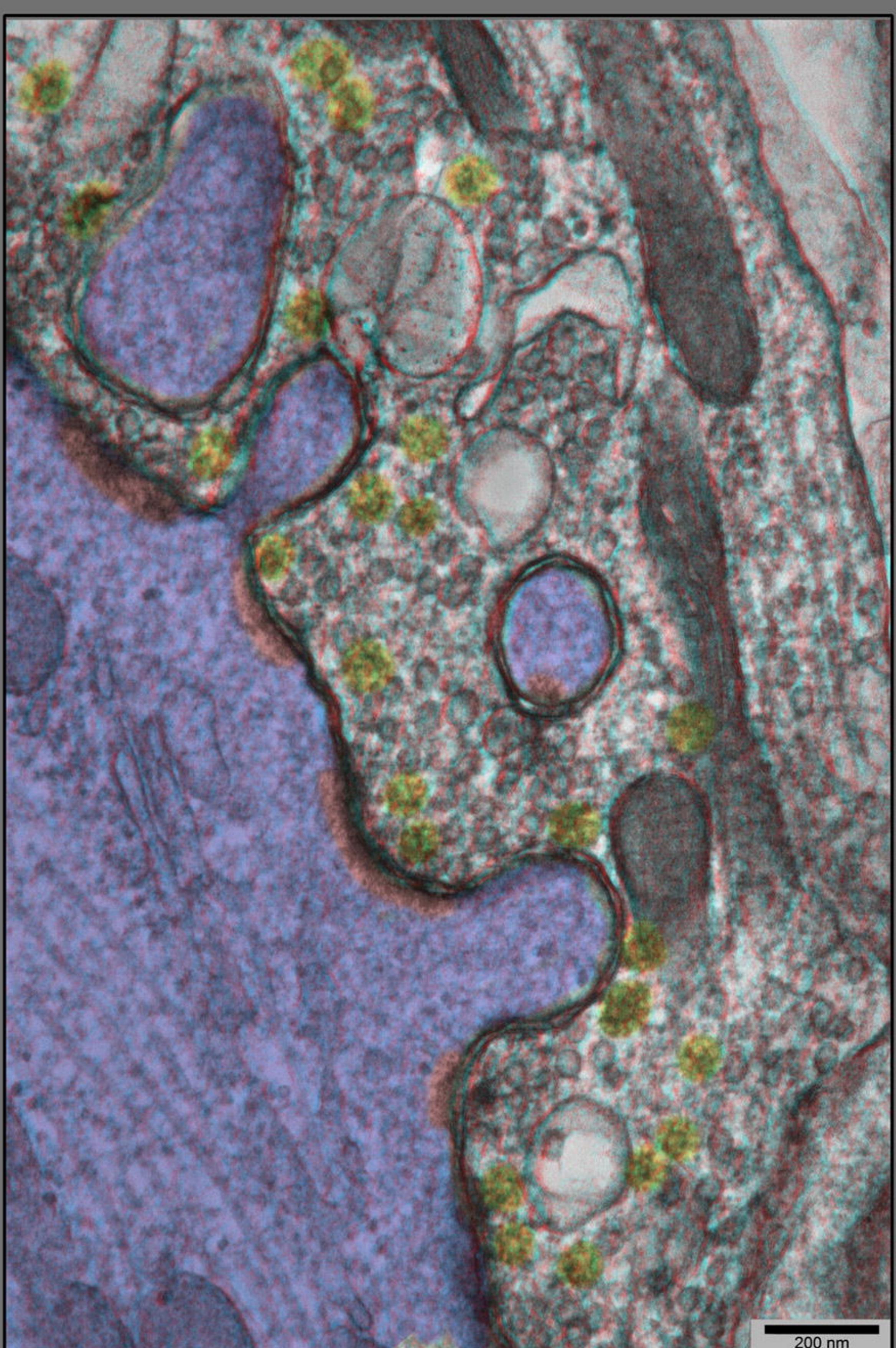




Evans HT, Blackmore D, Gotz J, Bodea LG. (2021)

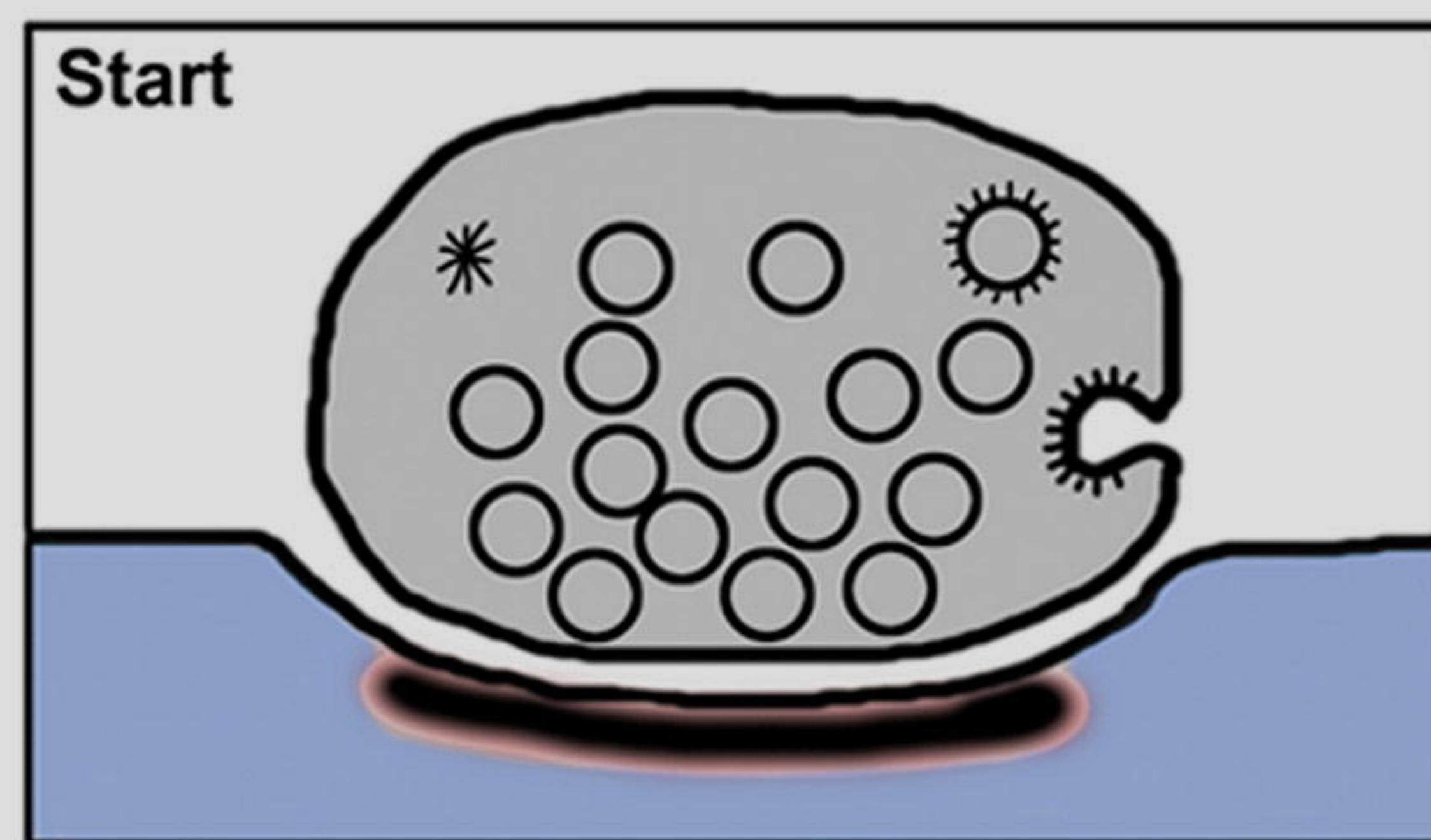
De novo proteomic methods for examining the molecular mechanisms underpinning long-term memory.

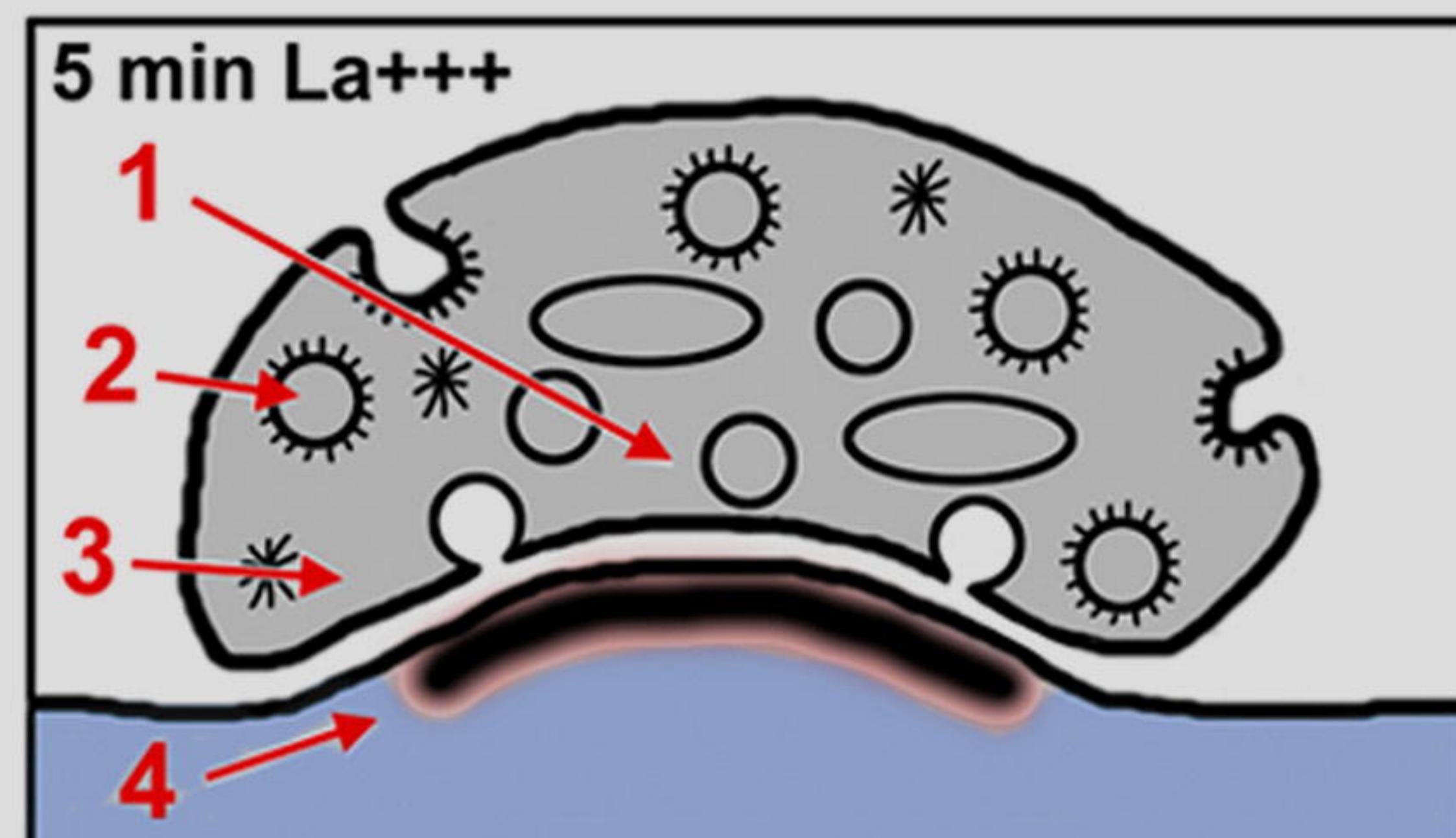

Brain Res Bull. 2021 Apr;169:94-103. DOI: 10.1016/j.brainresbull.2020.12.015
PMID: 33465403

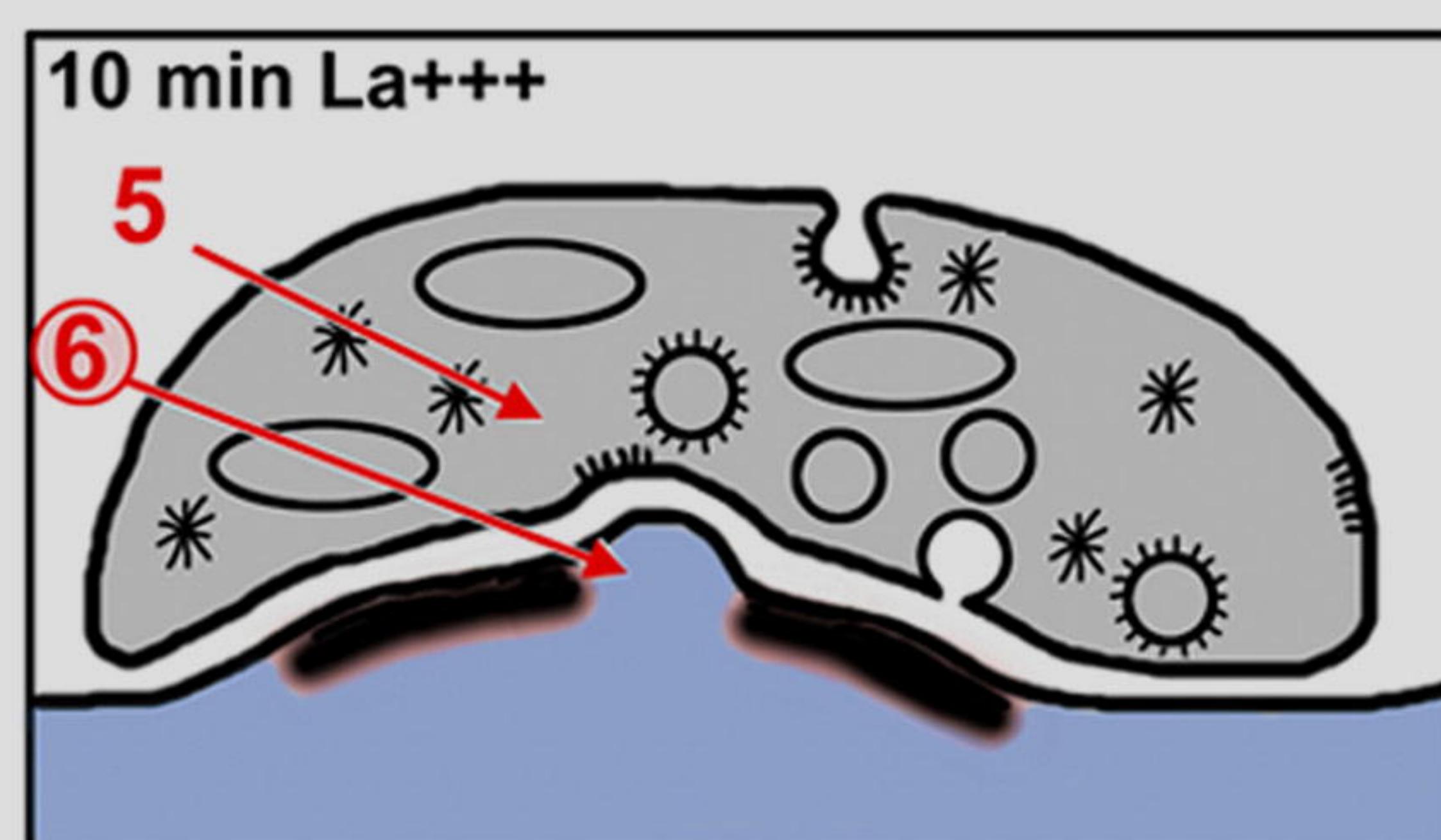

Figure 1. Upper panel shows a prototypical spine-synapse from a control hippocampal culture, a culture not stimulated at all. Abundant synaptic vesicles are collected on the presynaptic side, converging on a solid, disk- or plaque-like postsynaptic density (highlighted red, inside the postsynapse, which is highlighted blue in this and all subsequent figures). Only a few clathrin-coated vesicles are present (highlighted yellow), and only at the periphery of the vesicle cluster. Lower panel shows, by way of contrast, a dramatically different spine-synapse from a hippocampal culture exposed to 0.1mM La^{+++} for 20 min @ 37°C . Synaptic vesicles are severely depleted, clathrin-coated vesicles (yellow) are unusually abundant, and the postsynapse (highlighted blue) has 'protruded' into the presynapse in several places, dragging along only fragments of the PSD (highlighted red).

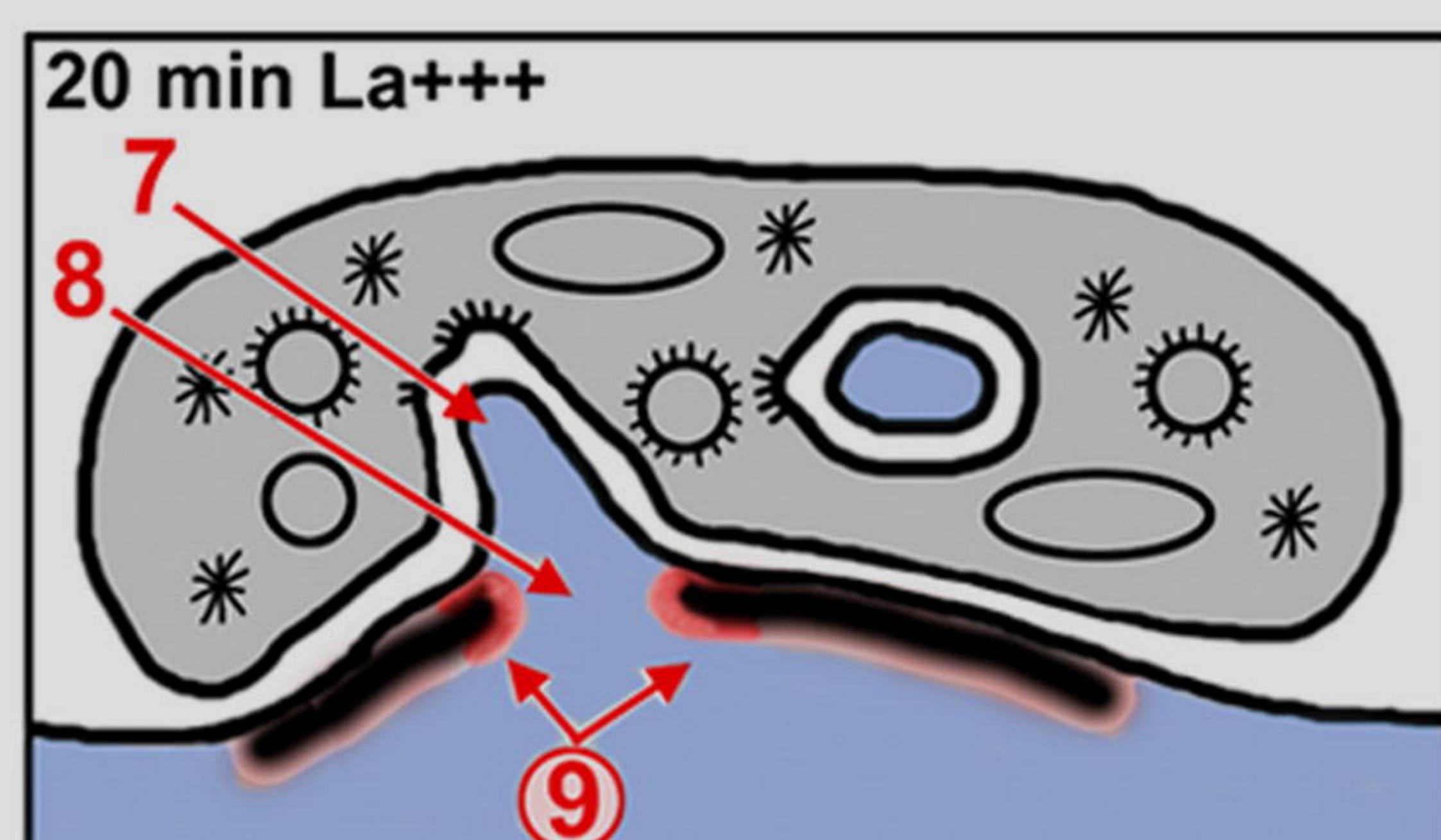



Figure 2. Examples of dendritic-shaft synapses in hippocampal cultures exposed to 0.1mM La⁺⁺⁺ for 10-20 min @ 37°C. Synaptic vesicles are more or less depleted; but in all cases, clathrin coated vesicles (presumably involved in the recycling of synaptic vesicle membrane) are increased in abundance, especially along the borders of the postsynaptic 'protrusions' (highlighted blue). Being shaft-synapses (thus presumably inhibitory or Grey's type II), the PSD's are not prominent in these fields and thus are not highlighted red.

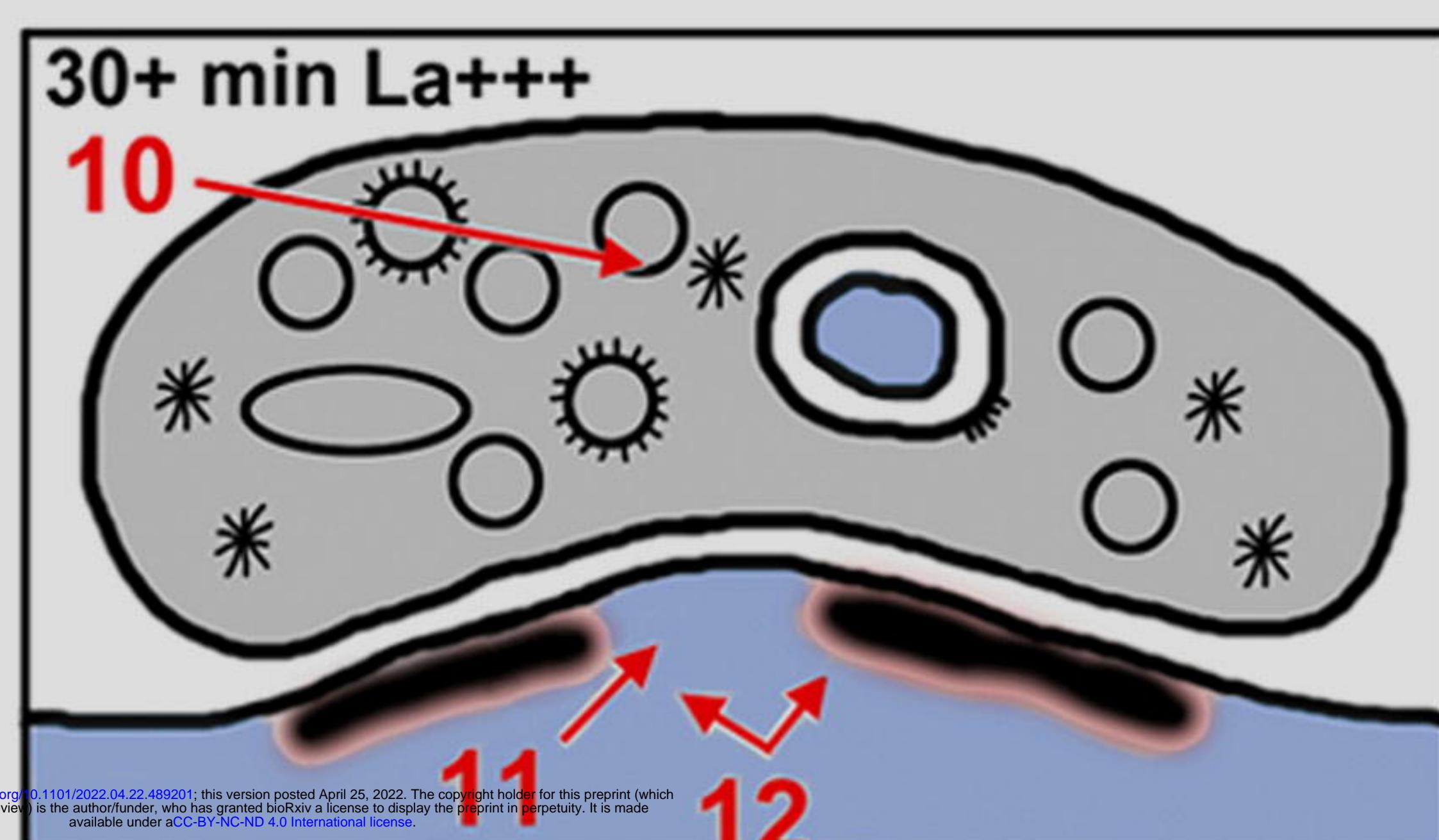




Figure 3. Montage of several different postsynaptic 'protrusions' (or presynaptic 'hugs', depending on one's vantage-point) in hippocampal cultures exposed to 0.1mM La⁺⁺⁺ for 10-20 min @ 37°C. Synaptic vesicles are more or less depleted, and clathrin coated vesicles (again highlighted yellow) are relatively abundant, and PSD's (highlighted red) are hanging back or are fragmented and 'holding on' to the edges of the postsynaptic protrusions.


Figure4. Montage of cross-sections of several other postsynaptic 'protrusions' or presynaptic 'hugs', from the same hippocampal cultures as in Fig. 3 (exposed to 0.1mM La⁺⁺⁺ for 10-20 min @ 37°C). Again, it is quite apparent that synaptic vesicles are more or less depleted, compared to the relative abundance of clathrin-coated vesicles (highlighted yellow). Again, PSD's (highlighted red) appear to be relatively fragmented or absent from these deeper regions of the postsynaptic involutions.


Figure 5. Lower-magnification survey-views of hippocampal cultures exposed to 0.1 mM La⁺⁺⁺ for 10-20 min @ 37°C), where only the particular dendrites that are involuting into their apposed synapses are highlighted blue (other dendrites are present in these fields, as well). These views were chosen specifically to demonstrate the old adage that George Palade, the great 'founder' of biological electron microscopy, always stressed: namely, that if a structural feature could be found two or more times in one and the same field-of-view in the electron microscope, then it must be generally present, and must be not an artifact. Two postsynaptic 'protrusions' are indicated by asterisks in each field.


Figure 6. "Anaglyph" 3-D views of additional synapses in hippocampal cultures exposed to 0.1mM La⁺⁺⁺ for 10-20 min @ 37°C, from plastic blocks that were cut thicker (at 120-150nm), and photographed at +20° & -20° of tilt in the EM, then superimposed to make the 3-D 'anaglyphs'. These require red/green 'anaglyph' glasses to fully appreciate, but even without, it is still readily apparent that synaptic vesicles are relatively depleted, coated vesicles are relatively abundant (yellow), and postsynaptic densities are relatively fragmented (PSD's red, on dendrites highlighted blue).


The Twelve Steps to LTP revealed by stimulating hippocampal cultures with lanthanum cations


- (1) Intense synaptic vesicle exocytosis
- (2) Presynaptic PM-expansion
- (3) Presynaptic PM-convolution
- (4) Postsynaptic distortion (PSD 'frown')

- (5) 'Crack' in AZ admits endocytic machinery
- (6) 'Crack' propagates to PSD & perforates it

- (7) Postsynapse expands through the perforation
- (8) PSD-fragments pushed apart by expansion
- (9) New edges of perforated PSD = sites for PSD-growth

- (10) Slow restoration of presynapse by endocytosis
- (11) PSD-fragments re-anneal
or keep expanding = LTP consolidation)
- (12) Separated PSD's initiate spine-splitting
and synaptic growth = long-term memory

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.489021; this version posted April 25, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 7. Diagrammatic summary of the observations, interpretations, and hypotheses presented in this study, presented as 'twelve steps,' to paraphrase a term from popular culture. The diagram is self-explanatory, but many steps will need to be validated or explained mechanistically, by future work...especially the idea that enhanced endocytosis can cause a 'break' in the presynaptic active zone (AZ), and that this break can propagate to the PSD to begin the process of perforation or intrusion or spinule-formation.