
The structural basis of long-term potentiation in hippocampal synapses,  
revealed by EM-imaging of lanthanum-induced synaptic vesicle recycling. 

 
John E. Heuser 

Professor of Cell Biology, emeritus 
Department of Cell Biology and Physiology   

Washington University School of Medicine. St. Louis, MO. 
 

ABSTRACT: 
 
Hippocampal neurons in tissue-culture were exposed to the trivalent cation lanthanum for short 
periods (15 to 30 minutes) and prepared for electron microscopy (EM), to evaluate the 
stimulatory effects of this cation on synaptic ultrastructure. Not only were characteristic 
ultrastructural changes of exaggerated synaptic vesicle turnover seen within the presynapses 
of these cultures - - including synaptic vesicle depletion and proliferation of vesicle-recycling 
structures - - but the overall architecture of a large proportion of the synapses in the cultures 
was dramatically altered, due to large postsynaptic 'bulges' or herniations into the 
presynapses. Moreover, in most cases these postsynaptic herniations or protrusions produced 
by lanthanum were seen by EM to distort or break or 'perforate' the so-called postsynaptic 
densities (PSD's) that harbor receptors and recognition-molecules essential for synaptic 
function. These dramatic EM-observations lead us to postulate that such PSD-breakages or 
'perforations' could very possibly create essential substrates or 'tags' for synaptic growth, 
simply by creating fragmented free-edges around the PSD's, into which new receptors and 
recognition-molecules could be recruited more easily, and thus they could represent the 
physical substrate for the important synaptic-growth process known as "long-term potentiation" 
(LTP). All of this was created simply in hippocampal tissue-cultures, and simply by pushing 
synaptic vesicle recycling way beyond its normal limits with the trivalent cation lanthanum; but 
we argue in this report that such fundamental changes in synaptic architecture - - given that 
they can occur at all - - could also occur at the extremes of normal neuronal activity, which are 
presumed to lead to learning and memory. 

 
INTRODUCTION: 
 
Of all the important structural features of the synapse that have been viewed in the electron 
microscope over the decades, the one feature that has been the most correlated with LTP, and 
especially in the context of EM-preparations generated from hippocampal tissues that were 
experimentally manipulated into LTP-conditions, that one single feature would have to be the 
perforated postsynaptic density (or perforated PSD).  
 
It was the life's work of one of the leading electron microscopists of the hippocampus, Yuri 
Geinesman, to establish this correlation (Reference Set #1 (Geinesman).  Another top 
electron microscopist of the hippocampus, Kirsten Harris, reported perforated PSD's almost as 
often, but remained more agnostic about their role in hippocampal LTP (Reference Set #2 
(Harris).  Likewise, two other top EM-labs that published a lot on the hippocampus, Michael 
Stewart's in Milton Keynes, England, and Dominique Muller's in Geneva, Switzerland, reported 
finding perforated PSDs in many, many publications and also made outstanding contributions 
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toward understanding how these might be involved in LTP or 'synaptic learning' (Reference 
Set #3 (Stewart); Reference Set #4 (Muller). All this history culminated with the later, 
outstandingly beautiful cryo-EM work on this same topic, which came from Michael Frotscher's 
lab in Freiberg, Germany (Reference Set #5 (Frotscher). Along the way, and right up to the 
present day, many other EM-labs have weighed in with valuable correlative data and their own 
ideas on how LTP might come about (Reference Set #6 (Other EM-studies of hippo 
learning), and numerous reviews of perforated synapses have been published (although 
without any serious attempt to correlate them with learning or memory) (Reference Set #7 
(Petralia&Yao reviews).  
 
 At hippocampal synapses, the postsynaptic densities or PSD's are ordinarily disk-shaped 
entities that are generally located directly across from presynaptic neurotransmitter release-
sites Reference Set #8 (PSD basic structure). They generally appear almost continuous in 
thickness and density across the breadth of the disk, and even though recent close inspections 
have begun to suggest that each PSD-disk may have a sub-structure, and may be composed 
of sub-modules or 'nanomodules' Reference Set #9 (synaptic 'modules' via LM-viewing),  
these PSD-components pack closely enough together to create the general impression in the 
electron microscope (EM) of a continuous plaque or disk.  
 
‘Perforated’ PSDs, in contrast, are variable in outline. They look more like irregular and 
discontinuous patches in the EM, but they are presumed to be composed of the same 
components that are found in the more normal, continuous PSD-disks. Reviewing the 
aforementioned references, one can find a wide range of thoughts about them, everything from 
conclusions that such 'perforated' PSDs are in the process of division of one plaque into two 
(ultimately to form two different postsynaptic spines, in some of the bolder claims), to 
conclusions that they are simply a by-product of synaptic activity. But overall, 'perforated' 
PSDs have generally been interpreted as synapses-in-augmentation, as would be expected if 
they were the structural correlates of the synaptic enhancement that is presumed by everyone 
to be the fundamental basis of LTP Reference Set #10 (Background of Long Term 
Potentiation). 
 
In this report, we present serendipitous observations that could help to explain exactly how 
"bursts" of presynaptic activity could cause perforated PSDs to form, in the first place. 
Specifically, we argue that these bursts of presynaptic activity could create delays in the 
process of synaptic vesicle recycling, which could make the presynapse expand in surface 
area, and do in such a manner that it could actually strain and break the normal plaque-like 
PSD into a 'perforated' PSD.  
 
Our EM-images were obtained from primary (dissociated-cell) hippocampal cultures prepared 
by classical techniques Reference Set #11 (Methods for hippocampal slices & cultures).  
These were chemically stimulated via direct application of low doses (0.1mM) of the trivalent 
cation, lanthanum (La+++).  This magical trivalent cation has been used to stimulate 
spontaneous neurosecretion in many different preparations over the past half century 
Reference Set #12 (La++ stimulates all sorts of secretion), but still, no one knows exactly 
how or why it does so, especially because it is generally considered to be a "super-calcium" 
that actually blocks most calcium-channels, and thus blocks most calcium-evoked 
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neurosecretory phenomena, it doesn't stimulate them Reference Set #13 (La+++ blocks 
Ca++ channels). 
 
When we first faced this conundrum fifty years ago (the conundrum of why lanthanum blocks 
calcium-induced neurosecretion but hugely stimulates spontaneous transmitter release, in the 
form of huge bursts of miniature endplate potentials or "m.e.p.p.'s" at the NMJ), we simply 
could not explain it, but nevertheless we 'used' the phenomenon to deplete synaptic vesicles 
from frog neuromuscular junctions, and thus to expose for the first time the resultant 
membranous-transformations that turned out to represent synaptic vesicle recycling 
Reference Set #14 (Heuser&Miledi - discovery of SV recycling via La+++ stim). Our 
scientific colleagues in those days quickly followed suit, and also used lanthanum to show that 
a dramatic expansion of the presynaptic membrane can accompany this spontaneous 
lanthanum-induced transmitter discharge, due to a slow-down of synaptic vesicle recycling and 
accumulaton of vesicle membrane on the presynaptic surface Reference Set #15 (La+++ 
moves SV membrane to presynaptic surface). In fact, we intend to show here -- by classical 
thin-section EM -- that it is this presynaptic expansion which is most dramatic in hippocampal 
cultures, and furthermore, that the unique distortion(s) which this expansion creates on the 
postsynaptic side of hippocampal synapses can greatly help to explain how and why their 
PSD's can become perforated during enhanced synaptic activity. 
 
RESULTS: 
 
(See all Figures and their legends, for the demonstrations of the points made here.)  
 
1. Structural evidence of lanthanum's stimulatory-effects 
 
Fifty-seven separate experiments were performed with lanthanum on hippocampal cultures, 
adjusting the time of exposure (5-30 min), the dose of lanthanum (0.1mM-1mM), the level of 
calcium-counter ions (zero to 1mM), and the method of fixation for EM (glutaraldehyde in 
cacodylate buffer vs. in Hepes buffer).  Such classical dissociated-cell hippocampal cultures 
invariably display a huge range of synaptic types, only vaguely reflecting the characteristic and 
stereotypical forms of synapses observed in the intact hippocampus or in hippocampal slices 
Reference Set #11 (Methods for hippocampal slices & cultures, OP CIT).  Nevertheless, 
most of the synapses that manage to reform in such dissociated-cell cultures fall into two major 
categories: bouton-like (e.g., onto dendritic protrusions that are generally described as 
primitive 'spines'), and plague-like (e.g., directly onto the shafts of the primitive, disoriented 
dendrites in such cultures). The former types of synapses typically have single PSD plagues 
that are generally considered to be 'excitatory.' These are the so-called 'asymmetric' synapses, 
due to their relatively thick PSDs. The latter typically display 2 or 3 adjacent plaques in the 
dendritic shaft and are generally considered to be 'inhibitory' These are the so-called 
'symmetric' synapses, due to their relatively thin and often barely perceptible PSDs 
(Reference Set #8 (PSD basic structure) OP CIT). 
 
Lanthanum promptly changes the appearance of both bouton-like and plaque-like presynaptic 
terminals, replacing many of their synaptic vesicles with clathrin coated vesicles, even in the 
first 5-10 min after application, and at later times, leaves many of these presynaptic terminals 
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almost empty, or at best, partially filled with irregular membrane forms (plus residual clathrin 
coated vesicles and 'empty cages'). Essentially, these are the structural changes that we 
observed originally at the frog NMJ (Reference Set #14 (Heuser&Miledi - SV recycling in 
La+++) OP CIT), which initiated the whole idea that synaptic vesicle membrane could be 
recycled...structural changes that we have recently been able to show occur in mammalian 
NMJs, as well (Reference Set #16 (Heuser & Tenkova intro of ear-muscle NMJs).  
 
2. Consequences of lanthanum's stimulatory-effects projected onto the postsynapse 
 
Most unexpected, however, was the dramatic change in the overall configuration of these 
cultured synapses, a configuration that began to appear in lanthanum at 10 min, and peaked in 
abundance at 20 min, (and seemed to die down by 30 min). This was manifest as a discrete 
'bulge' of the postsynapse, directly into the midst of the presynaptic terminal. 
 
Generally, the postsynaptic protrusions observed in lanthanum occupy a considerable portion 
of the presynaptic cytoplasm, and draw a considerable mass of postsynaptic cytoplasm into 
them. In the EM, this bolus of cytoplasm generally appears featureless, or appears finely 
mesh-like in appearance. It does not look like an active, actin-based growth from the 
postsynapse, but more like a passive inclusion, only occasionally containing any recognizable 
postsynaptic membranous organelle. 
 
It is important to consider one clue as to how or why these protrusions form in the first place. 
This comes from closely examining the membrane of the presynapse that forms the protrusion 
(or we could say in the invagination, when considered from the presynaptic side).  It typically 
displays all the 'spikes' and 'clathrin-cage-fragments' seen in other regions of the presynapse 
that are undergoing rapid and abundant clathrin-coated vesicle formation. That is, it looks in 
the EM as if the presynaptic membrane is  "committed to endocytosis" in these involutions, or 
is "trying" to do endocytosis in the regions that have been drawn inwards into the protrusion.  
 
3. Unique positioning of the postsynaptic protrusions and distortions 
 
Perhaps the most important aspect of these postsynaptic protrusions in the present context, 
however - - that of considering their possible role in LTP - - is that they typically occur right in 
the midst of the PSD.  As a consequence, they occasionally drag portions of the PSD inward 
as they form, depositing these PSD fragments along the 'necks' of the invaginations. More 
often, however, PSD components appear to be excluded from these invaginations - to 
somehow "hang back" - such that the PSD becomes perforated or partitioned by the 
invagination. 
 
How or why these invaginations form right in the midst of the PSD - - rather than around its 
edges, for example, where one might imagine the membranes to be more 'flexible' - - is one of 
the great mysteries that emerges from this study, and remains to be answered. 
 
FIGURE LEGENDS: 
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Figure1. Upper panel shows a prototypical spine-synapse from a control hippocampal culture, 
a culture not stimulated at all. Abundant synaptic vesicles are collected on the presynaptic 
side, converging on a solid, disk- or plaque-like postsynaptic density (highlighted red, inside 
the postsynapse, which is highlighted blue in this and all subsequent figures).  Only a few 
clathrin-coated vesicles are present (highlighted yellow), and only at the periphery of the 
vesicle cluster. Lower panel shows, by way of contrast, a dramatically different spine-synapse 
from a hippocampal culture exposed to 0.1mM La+++ for 20 min @ 37ºC.  Synaptic vesicles 
are severely depleted, clathrin-coated vesicles (yellow) are unusually abundant, and the 
postsynapse (highlighted blue) has 'protruded' into the presynapse in several places, dragging 
along only fragments of the PSD (highlighted red). 
 
Figure2. Examples of dendritic-shaft synapses in hippocampal cultures exposed to 0.1mM 
La+++ for 10-20 min @ 37ºC. Synaptic vesicles are more or less depleted; but in all cases, 
clathrin coated vesicles (presumably involved in the recycling of synaptic vesicle membrane) 
are increased in abundance, especially along the borders of the postsynaptic 'protrusions' 
(highlighted blue).   Being shaft-synapses (thus presumably inhibitory or Grey's type II), the 
PSD's are not prominent in these fields and thus are not highlighted red.  
 
Figure3. Montage of several different postsynaptic 'protrusions' (or presynaptic 'hugs', 
depending on one's vantage-point) in hippocampal cultures exposed to 0.1mM La+++ for 10-
20 min @ 37ºC. Synaptic vesicles are more or less depleted, and clathrin coated vesicles 
(again highlighted yellow) are relatively abundant, and PSD's (highlighted red) are hanging 
back or are fragmented and 'holding on' to the edges of the postsynaptic protrusions.  
 
Figure4. Montage of cross-sections of several other postsynaptic 'protrusions' or presynaptic 
'hugs', from the same hippocampal cultures as in Fig. 3 (exposed to 0.1mM La+++ for 10-20 
min @ 37ºC). Again, it is quite apparent that synaptic vesicles are more or less depleted, 
compared to the relative abundance of clathrin-coated vesicles (highlighted yellow). Again, 
PSD's (highlighted red) appear to be relatively fragmented or absent from these deeper 
regions of the postsynaptic involutions. 
 
Figure5. Lower-magnification survey-views of hippocampal cultures exposed to 0.1mM La+++ 
for 10-20 min @ 37ºC), where only the particular dendrites that are involuting into their 
apposed synapses are highlighted blue (other dendrites are present in these fields, as well). 
These views were chosen specifically to demonstrate the old adage that George Palade, the 
great 'founder' of biological electron microscopy, always stressed:  namely, that if a structural 
feature could be found two or more times in one and the same field-of view in the electron 
microscope, then it must be generally present, and must be not an artifact.  Two postsynaptic 
'protrusions' are indicated by asterisks in each field.  
 
Figure6. "Anaglyph" 3-D views of additional synapses in hippocampal cultures exposed to 
0.1mM La+++ for 10-20 min @ 37ºC), from plastic blocks that were cut thicker (at 120-150nm), 
and photographed at +20º & -20º of tilt in the EM, then superimposed to make the 3-D 
'anaglyphs'. These require red/green 'anaglyph' glasses to fully appreciate, but even without, it 
is still readily apparent that synaptic vesicles are relatively depleted, coated vesicles are 
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relatively abundant (yellow), and postsynaptic densities are relatively fragmented (PSD's red, 
on dendrites highlighted blue).  
 
Figure7. Diagrammatic summary of the observations, interpretations, and hypotheses 
presented in this study, presented as 'twelve steps,' to paraphrase a term from popular culture. 
The diagram is self-explanatory, but many steps will need to be validated or explained 
mechanistically, by future work...especially the idea that enhanced endocytosis can cause a 
'break' in the presynaptic active zone (AZ), and that this break can propagate to the PSD to 
begin the process of perforation or intrusion or spinule-formation.  
 
DISCUSSION: 
 
1. Clues about how and why the postsynaptic protrusions develop. 
 
The hypothesis that emerges from these observations is that overly exuberant presynaptic 
expansion and attempts at endocytosis are 'deforming' their active zones and producing the 
inward membrane-bulges that perforate the PSD. Support for this hypothesis came from our 
attempts to duplicate the effects of lanthanum on these cultures with other sorts of chemical 
stimulation of them (either by the applying the excitatory neurotransmitter NMDA, or by 
elevating potassium to depolarize all the cells in the culture). But neither of these forms of 
stimulation induced any such protrusions or inward invaginations of their postsynapses, at all. 
The most they showed was the slight change in PSD-curvature that has been reported before 
Reference Set #17 (PSD curvature ∆s). We would argue that this was probably because the 
synapses in these NMDA or K+ stimulated cultures were not driven out of their "comfort 
zones," the zones where they could adequately compensate for their enhanced transmitter 
release (and their enhanced synaptic vesicle exocytosis) by commensurately accelerating their 
membrane recycling processes, so they stayed effectively 'in balance', and did not develop any 
net accumulation of synaptic vesicle membrane on their surfaces, and thus did not expand in 
surface-area (and consequently, did not attempt to "embrace" the postsynapse or support any 
postsynaptic protrusions).  
 
Indeed, we may learn someday that the most important reason for why lanthanum-stimulation 
is so effective at expanding the surfaces of nerve terminals and bringing out signs of synaptic 
vesicle recycling is that it somehow slows down this membrane recycling, at the same time 
that it stimulates transmitter-release, itself. This may someday be explained by several 
different mechanisms: for example, by some sort of 'stiffening' of the presynaptic membrane or 
by La+++ tending to 'glue' the presynaptic membrane to the extracellular matrix, or possibly by  
its blocking sodium and calcium-entry through the presynaptic membrane, which may in some 
way directly slow down some aspect of the recycling-process. Indeed, there is a large body of 
evidence which suggests that clathrin coated vesicle formation and/or synaptic vesicle 
recycling is somehow dependent on intracellular Ca++ being at just the right level (Reference 
Set #18 (Ca++-dependence of synaptic vesicle recycling).  In any case, it is abundantly 
clear from the present observations and from past work that lanthanum somehow creates a 
greater imbalance between exocytosis and endocytosis than any other form of synaptic 
stimulation, and consequently, produces the most enhanced accumulation of synaptic vesicle 
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membrane on the presynaptic surface, and thus, the greatest expansion of the presynaptic 
membrane. 
 
In this respect, these synaptic perturbations in lanthanum-stimulated hippocampal cultures 
show a remarkable parallel with the abundant, multiple, and florid invaginations of the 
presynaptic membrane that were seen so many decades ago in frog NMJ's treated with 
lanthanum (Reference Set #15 (La+++ moves SV membrane to presynaptic surface) 
OP CIT). These were also studded with endocytic profiles, and the thinking at that time was 
the same as today - - that lanthanum caused such an unremitting stimulation of the NMJ, that 
endocytosis became exhausted and 'blocked' at that point, or at least greatly slowed down, 
such that it left much of the discharged synaptic vesicle membrane on the surface of the 
presynaptic terminal, and thereby expanding that surface. A lot of good immunocytochemistry 
was done in the ensuing decades, which entirely supported this view (Reference Set #15, OP 
CIT). 
 
The important difference between the changes seen here, in lanthanum-stimulated 
hippocampal synapses, compared to the old NMJ observations, is that here the postsynapse 
proper is pulled into the presynapse. This cannot happen at the NMJ, where the presynapse is 
separated from the postsynapse by a thick and rigid basal lamina. Instead, at the NMJ the 
surrounding Schwann cell gets pulled into the invaginations -- or one could say, the Schwann 
cell ends up 'protruding' into the presynaptic terminal. ((In this regard, it is worth noting that we 
observed no such "drawing-inward" of surrounding glial processes in any of our lanthanum-
stimulated hippocampal cultures. This at least partly due to the simple fact that there are not 
very many glial processes around the synapses in our cultures, in the first place; and the few 
glial cells that do happen to be there may have very little 'give'.))  Quite different is the situation 
at all NMJs, where Schwann cells totally embrace the whole nerve terminal, except at its 
immediate contact with the muscle, and where the Schwann cells are highly redundant and 
'plastic', so they actively fill in any convolutions of the presynaptic membrane that develop 
during stimulation.  Interestingly, in the primary neuron cultures from the De Camilli lab, their 
endocytosis-inhibited genotypes show both glial and postsynaptic involutions when the 
synapses are stimulated (Reference Set #15a (De Camilli lab's endocytosis-retarded 
neuron-cultures)).  
 
2. Comparing classical postsynaptic "spinules" with the protrusions and distortions 
seen here in lanthanum 
 
There is no good reason to think that the so-called synaptic "spinules" described in many 
previous studies of hippocampal synapses (Reference Sets 1-4, OP CIT) can or should be 
differentiated from the fatter postsynaptic protrusions into the presynapse that we are 
describing here, as being the consequences of lanthanum-stimulation. Neither type of 
invagination contains any postsynaptic structure that would suggest they were 'active' 
invasions into the presynapse. In other words, neither type contains any signs of actin, nor any 
other cytoskeletal component that might suggest that they actively push their way into the 
presynapse. Instead, the EM’s presented here show clearly that both 'spinules' and their fatter 
counterparts invade regions of the presynapse that show all the signs of being engaged in 
clathrin-mediated endocytosis. As explained above, this dedication to endocytosis is reason 
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enough to understand why the presynapse should be involuted at those sites.  But it also 
suggests that the spinules and their fatter counterparts, the postsynaptic protrusions, are not 
actively splitting the PSDs as they invade the presynapse. Again, their lack of 
contractile/propulsive machinery would seem to rule this ou. Instead, this PSD-splitting 
appears to be a passive process, almost an inadvertent consequence of the presynaptic 
involution, itself (inadvertent, except that it perhaps was selected by nature to be the 
fundamental 'growth'-event of LTP !!)  
 
It is worth stressing here that both 'spinules' and the fatter protrusions display uniformly close 
approximations of pre- and post- membranes, in their midst - - the important point being that 
these are closer approximations than are observed at the AZ/PSD differentiations of the 
synapse per se, where so many spanning and attachment molecules are known to be located 
(and are known to be so abundant and strong that they can even hold the pre- and post- 
together during homogenization of nervous tissue) (Reference Set #8 (PSD basic structure), 
OP CIT). All these specific synaptic attachment-proteins have ~15-20nm spanning-lengths, 
which are greater than the pre-to-post membrane-separation seen at the 
protrusions/involutions under question (~10nm). Indeed, this 10nm separation-distance that we 
observe in all the protrusion-sites is the normal 'minimum' found everywhere in the neuropil of 
our hippocampal cultures - - e.g., between glia and neuronal elements, between 
undifferentiated neural elements and each other, etc., etc.. (Of course, this 'minimum' is not 
nearly close enough to suggest electrical coupling, or anything of that sort.) In any case, this is 
one more indication that the protrusions are not pulling in the PSDs and their associated 
attachment-proteins with them; rather, they are splitting the PSDs, and leaving these 
attachment-proteins behind. 
 
Here, we should add the qualification that despite the obvious structural parallels between 
synaptic spinules and their fatter counterparts displayed here, nothing in our studies to date 
would suggest that a precursor/product relationship exists between them. While both seem 
clearly to be exacerbated or accentuated by synaptic stimulation, the timing of this stimulation 
varies over several orders of magnitude (from just a few minutes in the present report of acute, 
ongoing chemical stimulation) to hours or longer, in previous studies characterizing the long-
term after-effects of LTP-induction, as listed above.  On other words, it is not (yet) possible to 
suggest that spinules grow into fatter protrusions as they invade, or that fat protrusions shrink 
down to spinules as they withdraw.  These possibilities await further experimental dissection 
and analysis. 
 
3. Conclusions and future perspectives 
 
The simple observations and interpretations offered here provide a rationale for why such 
discontinuous or broken-apart PSDs could very likely represent the physical substrate of the 
temporary "tagging" of synapses that is generally thought to be so important for initiating the 
whole process of LTP (Reference Set #19 (synaptic tagging in LTP). This initiation is 
thought to prepare the synapse for later, long-term enhancement via new protein synthesis, 
which is presumed by all, to be the consolidating event that culminates LTP (Reference Set 
#10 (Background of Long Term Potentiation), OP CIT). 
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The rationale would be that the breakup of solid plaques or disks of PSD would create new 
edges where "modules" or molecular components of postsynaptic receptors, channels, and 
signaling molecules could be added, to enlarge or even create completely new PSD-plaques. 
In other words, that the discontinuities and irregularities in the PSD created by the act of 
perforation, due to the exacerbation of synaptic vesicle recycling in the presynapse, would 
create additional (and new) free edges around the plaques - - which originally had, by the 
simple fact that they were disk-like - - had the minimum amount of free edges possible, for a 
given collection of receptors.   
 
The logical conclusion to draw from this, seems to us to be that newly-generated PSD "free 
edges" represent the synaptic "tags" that initiate LTP (Reference Set #19 (synaptic tagging 
in LTP) OP CIT).  Although we did not attempt in this report to provide the complete structural 
evidence for this hypothesis, we predict that it should soon become available from many of the 
new LM- and EM-methods that are being developed to 'tag' various pre- and postsynaptic 
proteins and protein-complexes (Reference Set #9 (synaptic 'modules' via LM-viewing) OP 
CIT). Here, we focused only on providing direct EM-images that demonstrated how (and why) 
enhanced bursts of presynaptic secretory-activity apparently create or cause the perforation of 
otherwise plaque-like postsynaptic densities, in the first place.  
 
MATERIALS AND METHODS 
 
I. Cell-culture 
Dissociated-cell hippocampal cultures were prepared from papain-dissociated hippocampi, 
which were harvested from embryonic day-20 rat fetuses, then plated onto confluent glial 
feeder-cultures on 22mm glass coverslips, and grown for 3-4 weeks before use. Throughout 
this growth-period, the culture-medium was half-exchanged 3x weekly with fresh medium 
containing MEM (with Earle’s salts, 6 g/l glucose, and 3.7 g/l sodium bicarbonate) 
supplemented with 5% (v/v) heat-inactivated horse serum, 2% (v/v) fetal bovine serum, and 2 
mM Glutamax (all from Life Technologies), plus 136 uM uridine and 54 uM 2-deoxy-5-fluoro-
uridine (from Sigma), plus N3-supplement from Sigma (which contains BSA, apotransferrin, 
putrescine, selenium, T3, insulin, progesterone, and corticosterone. (For further details, see 
Ransom et al., 1977, and Mayer et al., 1989, in Reference Set #11 (Methods for 
hippocampal slices & cultures).  Throughout this time, the coverslips were maintained in 
P35 culture-dishes in a 36ºC incubator with 10% CO2.       
 
II. Culture-treatments 
To conduct the experiments, the culture-dishes containing the coverslips were removed from 
the CO2 incubator and immediately washed with a bicarbonate- and phosphate-free 'Ringers' 
solution... (removing bicarbonate so that the cultures did not alkalinize in room air, with its low 
CO2, and removing phosphate so that the subsequent application of lanthanum did not just 
precipitate as La(PO4)3). Henceforth, they were maintained on a rotating platform in a 37°C 
waterbath. After three more washes in HCO3- and PO4-free 'Ringers,' for a total time of 12min, 
the cultures were then exposed to a 'Ringers' solution containing 0.1mM LaCl3 (with its usual 
CaCl2 reduced from the usual 2mM CaCl2 to only 1mM, to minimize any competition of Ca++ 
with the La+++.  Alternatively, cultures were treated for 5-15min at 37°C with high K+ (a 
'Ringers' containing 90mM KCl (whose osmolarity had been compensated by reducing the 
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concentration of NaCl)), or treated 5-10min at 37°C with 50–60μM of N-methyl-D-aspartic acid 
(NMDA) in normal HCO3-free 'Ringers,' but containing our usual 2mM of CaCl2 and 3mM of 
NaH2PO4.   
 
III. Fixation and processing  
Primary fixation was accomplished by replacing the Ringers solution in the culture-dishes with 
2% glutaraldehyde, freshly dissolved from a 50% stock (from EMS, Inc.) into a "substitute 
Ringer's," where the normal 5mM Hepes buffer concentration was increased 6x for fixation 
purposes (and NaCl was decreased commensurately, to keep the solution isotonic).  Most 
important at this point was to wash away the La+++ and restore the normal 2mM calcium in the 
medium, to prevent any La+++ precipitates in the extracellular spaces of the cultures. (Indeed, 
this 2mM calcium is maintained throughout primary fixation and postfixation, because we 
believe it helps to minimize cellular membrane deterioration.)   
 
Immediately after the exchange into the glutaraldehyde, the culture-dishes were placed on a 
vigorously rotating table, and the fixative was exchanged one or two more times, to ensure 
rapid and uniform fixation. (Even though this aldehyde fixation was probably complete in just a 
few minutes, we still left the cultures in fixative for another 1-2 hours, or even overnight, before 
initiating postfixation.) 
 
The sequence of postfixation was as follows. (This was all done at room temperature, because 
we believe that cooling biological membranes to 4ºC at any time during fixation damages 
cellular membranes.) First, the glutaraldehyde and Hepes buffer was washed away with 
100mM cacodylate buffer, with two exchanges over a period of at least 15-30 minutes. (This 
buffer always contained the same 2mM Ca++, in this and all subsequent steps, so it will 
henceforth be termed "Cacodylate-Ca".)  Next, the cultures were postfixed with 0.25% OsO4 
and 0.25% potassium ferocyanide in Cacodylate-Ca buffer (made up fresh, by mixing 0.5% 
OsO4 with 0.5% KFeCN6 immediately before use) for exactly 30 minutes, no longer.  Then, 
after washing away the OsO4 with fresh Cacodylate-Ca buffer (for 5-10 min), the cultures were 
"mordanted" with 0.5% tannic acid (mw 1700) in Cacodylate-Ca buffer (making sure to use a 
batch of tannic acid from EMS or from Polysciences that did not precipitate over time), for 30 
minutes only, no longer.  Finally, after washing away the tannate with fresh Cacodylate-Ca 
buffer, the pH over the cultures was dropped by a brief wash in 100mM acetate buffer at pH 
5.2, to prepare them for  "block-staining" with 0.5% uranyl acetate in this acetate buffer (pH 5.2 
being the natural pH of dissolved UA, anyway). Then, after this block-staining, they were very 
briefly washed again in acetate buffer to remove the UA, and finally progressively dehydrated 
with ethanol in the usual manner (sequential 5-10 min rinses in 50% 75%, 95%, and 100% 
ethanol).  
 
IV. Epoxy embedding and thin-sectioning 
Thereafter, the coverslips were removed from the P35 culture-dishes to polypropylene bottles, 
where they could be embedded in Araldite 502 epoxy resin (the old "English Araldite"), via an 
intermediate transfer from ethanol into propylene oxide, then into 2/3rds Araldite+1/3 propylene 
oxide, etc. (The bottles were needed because the propylene oxide would have dissolved the 
original P35 culture dishes). Finally, the fully infiltrated cultures still in their polypropylene 
bottles were covered with a 10-12mm deep layer of freshly-prepared Araldite 502 epoxy resin 
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and vacuum-embedded in a 70ºC vacuum-oven, using a strong mechanical-pump to draw off 
all air until the Araldite formed small bubbles (from release of residual propylene oxide and 
ethanol), and after re-admission of air, were left for 24-48 hours to fully polymerize. 
 
When fully hardened, the polypropylene bottles were removed the oven, broken with pliers to 
release the Araldite blocks, and the blocks were cut with a jeweler's saw into pieces 
appropriate for mounting at the desired orientation the ultramicrotome. Finally, the original 
glass coverslips on which the cultures were grown were dissolved off of the Araldite by a brief 
(5-10) min dip into full-strength hydrofluoric acid (47%HF), followed by plenty of washes.    
Blocks were initially sectioned at 0.5-1.0 micron and stained with 1% toluidine blue and 1% 
sodium borate in water for 15 sec on a hotplate, to examine in the LM and to orient further 
block-trimming for thin-sectioning. 
 
V. Electron Microscopy  
Thin sections were cut at 40nm to obtain the crispest views of membranes, at 90nm for best 
general overviews, and at 150-200nm to obtain 3-D information about the overall deployment 
of synapses in the cultures. Thin-sections were picked up on high-transmission fine-hexagonal 
200-mesh copper grids (made in England by Guilder, LTD, and sold in the US by Ladd 
Industries, cat. no. G200HHC), after the grids had been coated with a silver-thin film of 
Formvar, and then carbon-coated with by 10 sec of vacuum-evaporated carbon, for maximum 
specimen stability. Finally, sections were stained for 5 min drops of 1% lead citrate (in a closed 
dish with NaOH pellets around to prevent CO2-precipitation of the lead). 
 
They were then examined in a standard TEM operated at 80KV and mounted with the smallest 
available objective aperture, for maximum contrast (and maximum removal of chromatic 
aberration from the thicker sections).   They were photographed with the highest resolution 
digital camera possible, regardless of sensitivity, since such Araldite sections were essentially 
indestructible and could tolerate endless electron-bombardment.  (We generally used the AMT 
'BioSprint' 29 Megapixel Camera, due to its many superior operating features, as well as its 
very clear 6.5k x 4.5k images.)  The final digital images were processed and colorized with 
Photoshop, taking special advantage of its "high-pass" filter when very dark features happened 
to be located next to very light areas in the images, which made details hard to see. (We 
typically set the high-pass filter at 40 pixels for our 6500x4500 pixel AMT images, and layered 
this filtered image on top of the original image, at 50% density.) 
 
 
POSTSCRIPT:     
We find it absolutely marvelous that over forty-five years ago, Sally Tarrant and Aryeh 
Routtenberg, from Northwestern University's Neuroscience Laboratory in Chicago, had the 
prescience and foresight to add the following tiny and obscure footnote to a fine paper of 
theirs, a paper in which they described and discussed 'synaptic spinules' in the brains of rats 
they had prepped for EM by perfusion with Karnovsky's fixative**. That footnote said:  
 
P.S. "It is also possible that the 'synaptic spinule' represents an active synapse and that the 
presynaptic invagination represents the coalescence of synaptic vesicles and the coated 
vesicle a device for membrane recycling (Heuser and Reese, 1973). The spine apparatus 
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might contribute to the postsynaptic membrane as it protrudes into the presynaptic membrane 
invagination."     
 
**Tarrant SB & A. Routtenberg (1977)  
The 'synaptic spinule' in the dendritic spine: EM study of the hippocampal dentate gyrus.  
Tissue & Cell. 9: 461-473.     DOI: 10.1016/0040-8166(77)90006-4     PMID: 337572  
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