

¹ Active mechanics of sea star oocytes

² Peter J. Foster^{1,†,*}, Sebastian Fürthauer^{2,3,*}, Nikta Fakhri^{1,*}

³ ¹ Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

⁵ ² Institute for Applied Physics, TU Wien, A-1040 Wien, Austria

⁶ ³ Center for Computational Biology, Flatiron Institute, New York, NY, 10010, USA

⁷ [†] Present address: Department of Physics, Brandeis University, Waltham, MA, 02454, USA

⁸ ^{*} For correspondence; foster@brandeis.edu (PJF); fuerthauer@iap.tuwien.ac.at (SF); fakhri@mit.edu (NF)

⁹ Abstract

¹⁰ Actomyosin is a canonical example of an active material, driven out of equilibrium in part through
¹¹ the injection of energy by myosin motors. This influx of energy allows actomyosin networks to generate
¹² cellular-scale contractility, which underlies cellular processes ranging from division to migration.
¹³ While the molecular players underlying actomyosin contractility have been well characterized, how
¹⁴ cellular-scale deformation in disordered actomyosin networks emerges from filament-scale interactions
¹⁵ is not well understood. Here, we address this question *in vivo* using the meiotic surface
¹⁶ contraction wave of *Patiria miniata* oocytes. Using pharmacological treatments targeting actin
¹⁷ polymerization, we find that the cellular deformation rate is a nonmonotonic function of cortical
¹⁸ actin density peaked near the wild type density. To understand this, we develop an active fluid model
¹⁹ coarse-grained from filament-scale interactions and find quantitative agreement with the measured
²⁰ data. This model further predicts the dependence of the deformation rate on the concentration
²¹ of passive actin crosslinkers and motor proteins, including the surprising prediction that deformation
²² rate decreases with increasing motor concentration. We test these predictions through protein
²³ overexpression and find quantitative agreement. Taken together, this work is an important step for
²⁴ bridging the molecular and cellular length scales for cytoskeletal networks *in vivo*.

25 Introduction

26 Actomyosin networks are canonical examples of living active materials, which generate nonequilibrium
27 active stresses enabled by the energy injected by the system's constituent components [1–5].
28 While the mechanisms underling contractility in structurally ordered actomyosin networks, such as
29 in muscle sarcomeres, is well understood, the mechanisms underlying the contractility of disordered
30 actin networks such as the cortex remains poorly understood [6–8]. Contractility in disordered
31 actomyosin networks has been shown to depend not solely on myosin activity, but on the the ar-
32 chitecture [8, 9] and density [10] of the actin network. Additionally, a substantial body of work
33 in *in vitro* systems has demonstrated that in many cases F-actin and myosin alone are insufficient
34 for network contractility and that additional actin crosslinking proteins are required [11–15], though
35 an exception has been found at low pH where myosin itself can function as an effective crosslinker [16].
36

37 Understanding how the cellular-scale properties of actomyosin networks emerge from the filament-
38 scale interactions of the network's constituents is an open challenge. To generate contractile stresses,
39 the filament-scale symmetry between contraction and expansion must be broken [17]. A number of
40 microscopic models have been proposed for how this symmetry can be broken [8, 18]. One class
41 of models relies on polarity sorting - myosin accumulates at actin barbed ends, clustering barbed
42 ends together which in turn leads to isotropic contraction [19]. Myosin-2 end accumulation has been
43 demonstrated in a purified system [7], and this mechanism has been argued to give rise to contrac-
44 tion in microtubule networks [20–22]. Alternatively, contractility has been proposed to arise from
45 the nonlinear mechanical properties of F-actin, which can buckle under compression. In purified
46 systems, F-actin buckling has been seen to coincide with network contraction, [15, 23]. Finally, con-
47 tractility independent of myosin motor activity has been proposed for some structures, such as the
48 contractile F-actin shell that captures chromosomes during sea star oocyte meiosis [24–28]. However,
49 directly assessing the degree of myosin end accumulation or filament buckling *in vivo* presents an
50 experimental challenge due to the high density and small size of myosin and actin filaments, which
51 limits the ability to resolve individual motors and filaments using light microscopy.

52

53 Here, we consider the actomyosin-driven surface contraction wave of meiotic *Patiria miniata* oocytes
54 as a model for cellular contractility. Using pharmacological inhibitions targeting actin polymeriza-
55 tion dynamics, we find that cellular deformation during the contraction wave is not a monotonic
56 function of cortical actin density, but is instead peaked near the wild type density. To understand this
57 phenomenon, we utilize a recently developed theoretical framework for dense cytoskeletal networks
58 [29] that generalizes a model developed for microtubule networks [30] to allow for more elaborate
59 motor and crosslinker properties. Based on this, we develop an active fluid model coarse grained
60 from a microscopic description of actin, crosslinkers, and motors. This model makes quantitative
61 predictions for how the rate of oocyte deformation varies with the concentrations of passive active
62 crosslinkers and active motor proteins, namely that the radial deformation rate slightly increases
63 before decreasing as passive crosslinker concentration increases, and surprisingly, decrease with in-
64 creasing active motor concentration. We compare these predictions with experimental measurements
65 from oocytes overexpressing α -actinin or myosin regulatory light chain and find quantitative agree-
66 ment. Taken together, these results provide a step towards quantitatively bridging length scales,
67 from filament-level interactions to the emergent mechanics of actomyosin structures *in vivo*.

68 Results

69 Surface contraction wave dynamics

70 As a model process for actomyosin-driven contraction *in vivo*, we here consider the surface contrac-
71 tion wave preceding the first meiotic division in oocytes of the bat star *Patiria miniata* [31–33]. First
72 discovered in developing axolotl [34], surface contraction waves are found in a variety of large eggs

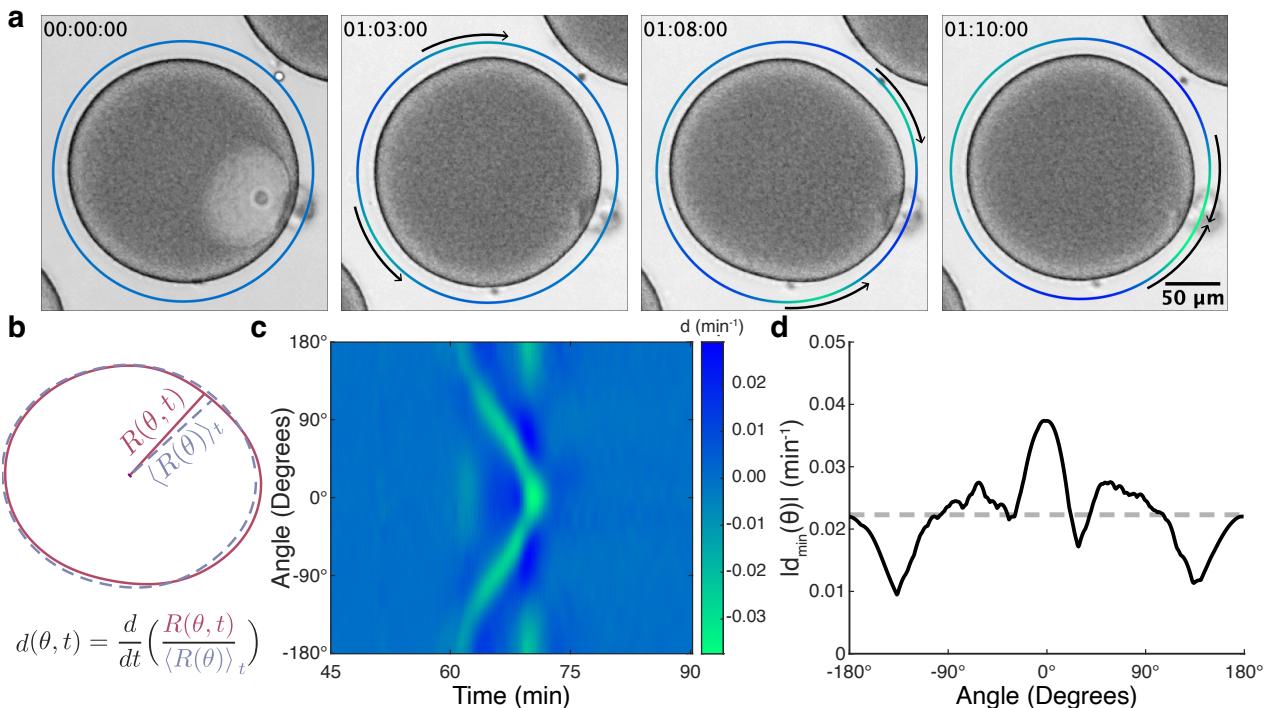


Figure 1: Surface contraction wave dynamics. (a) Timelapse of oocyte surface contraction wave. The outer circle color denotes $d(\theta, t)$, the radial deformation rate for each angle, colored as in c. Negative (green) values indicate contraction while positive (dark blue) values indicate expansion. Arrows indicate the direction of wave propagation. (b) Deformation rate calculation. For each angle at each time, the radial distance between the oocyte's centroid and outer contour was normalized by the time averaged radial distance before a time derivative was taken. (c) Kymograph of $d(\theta, t)$. The surface contraction wave is readily visualized as the converging lines of negative (green) values indicating contraction. (d) Solid line: Magnitude of the minimum deformation rate for each angle, $d_{\min}(\theta)$. Dashed line: d_c , the average value of $|d_{\min}(\theta)|$.

73 including those of the frog *Xenopus laevis* [35], barnacles [36], and ascidians [37]. In sea star oocytes,
 74 these waves are driven by a band of activated Rho that travels across the oocyte from the vegetal to
 75 animal pole, guided by a spatial gradient of cdk1-cyclinB [31, 33]. This traveling band of active Rho
 76 locally activates several downstream factors, including myosin via the ROCK pathway and the actin
 77 nucleator formin mDia1 [38]. These in turn lead to local contraction, resulting in a traveling surface
 78 contraction wave (SCW), whose arrival at the animal pole coincides with polar body extrusion [31,
 79 32] (Fig. 1a, Supplementary Video 1). Due to the ease of meiotic induction, the large, spherical
 80 shape of sea star oocytes, and the highly conserved nature of the actomyosin components [17], sea
 81 star oocytes are a powerful model system for the study of actomyosin contractility *in vivo*. While
 82 a surface contraction wave coincides with each meiotic division, we here consider the first surface
 83 contraction wave which takes place during meiosis I.

84
 85 We first quantified a characteristic radial deformation rate and the wave propagation speed during
 86 the SCW. To quantify the deformation rate, the distance between the oocyte's center and outer
 87 contour at each angle and time point, $R(\theta, t)$ was first normalized by the time averaged radial
 88 distance for that angle, $\langle R(\theta) \rangle_t$ and a time derivative was taken to compute the local deformation
 89 rate, $d(\theta, t)$ (Fig. 1b, see *Materials and Methods*). From kymographs of $d(\theta, t)$, the SCW can be
 90 readily visualized as a traveling line of negative values (Fig. 1c), and the propagation speed of the

91 wave can be measured from the slope of this line (see *Materials and Methods*). A characteristic
 92 deformation rate was calculated by first taking the magnitude of the minimum deformation rate for
 93 each angle, $|d_{min}(\theta)|$ (Fig. 1d, solid line) which was then averaged across angles to determine the
 94 characteristic deformation rate, $d_c = \langle |d_{min}(\theta)| \rangle_\theta$ (Fig. 1d, dashed line, see *Materials and Methods*).
 95 Control oocytes were found to have a mean wave propagation speed of $v = 47 \pm 4 \mu\text{m}/\text{min}$ (mean \pm
 96 s.e.m., $n=25$ oocytes), consistent with previous measurements [31], and a characteristic deformation
 97 rate of $d_c = 0.017 \pm 0.002 \text{ min}^{-1}$ (mean \pm s.e.m., $n=25$ oocytes).

98 **Characteristic deformation rate is maximum at intermediate cortical actin density**

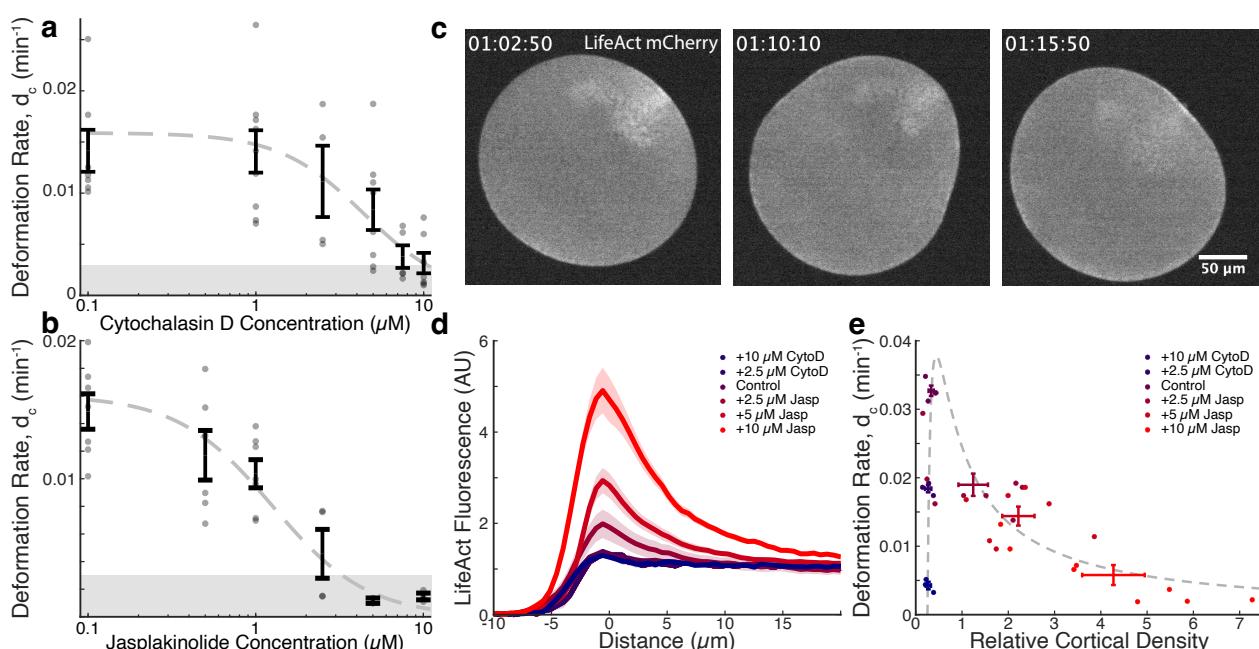


Figure 2: Characteristic deformation rate is maximized at intermediate actin density (a,b) Average characteristic deformation rate, d_c , as a function of cytochalasin D and jasplakinolide. Gray dots: measurements from individual oocytes. Black lines: average deformation rate \pm s.e.m. Gray regions: noise floor. Dashed line: IC₅₀ fits. Cytochalasin D experiments: $n=4$ to $n=9$ oocytes per treatment condition. Jasplakinolide experiments: $n=2$ to $n=7$ oocytes per treatment condition (c) LifeAct-mCherry imaging of F-actin localization during maturation (d) Average normalized radial line profiles of LifeAct-mCherry fluorescence for varying cytochalasin D and jasplakinolide concentrations (mean \pm s.e.m.). (e) Characteristic deformation rate, d_c , as a function of relative cortical density. Errorbars: mean \pm s.e.m. for each treatment condition. Grey dashed line: model fit

99 We next investigated how modulating actin density through perturbing actin turnover influences
 100 deformation dynamics during the SCW. We first considered the actin polymerization inhibitor cy-
 101 tochalasin D, which at high concentrations has been shown to inhibit deformation during the SCW
 102 [31]. Measurements of the characteristic deformation rate, d_c , and the wave speed, v , were repeated
 103 for oocytes treated with varying concentrations of cytochalasin D. As expected for an actomyosin-
 104 driven process, the characteristic deformation rate was found to monotonically decrease with in-
 105 creasing cytochalasin D concentration (Fig. 2a). Fitting a dose response curve yielded an IC₅₀ of
 106 $4.4 \pm 2.0 \mu\text{M}$ (fit value \pm 95% confidence interval, see *Materials and Methods*). For concentrations
 107 of cytochalasin D $\leq 5 \mu\text{M}$, where deformation during the SCW was large enough for the wave speed
 108 to be measured, no significant differences in wave speed were found between treatment conditions
 109 (Extended Data Figure 1), consistent with previous results arguing that the speed of the SCW is

110 set by the spatiotemporal dynamics of cdk1-cyclinB [31, 33].

111
112 We next considered the effects of jasplakinolide, which induces actin polymerization and stabilization
113 [39]. Surprisingly, we found a dose-dependent decrease in the characteristic deformation rate
114 (Fig. 2b). Fitting a dose response curve yielded an IC_{50} of $1.3 \pm 0.8 \mu\text{M}$ (fit value \pm 95% confidence
115 interval, see *Materials and Methods*). Thus, treatment with drugs which either suppress or promote
116 actin polymerization reduce the characteristic deformation rate during the SCW.

117
118 To quantitatively assess how these perturbations modulate actin density, we next overexpressed
119 and imaged LifeAct-mCherry and used its fluorescence intensity as a proxy for F-actin density (see
120 *Materials and Methods*). As expected, LifeAct-mCherry localized to the oocyte's periphery and
121 to the nuclear region shortly after the onset of nuclear envelope breakdown, (Fig. 2c), consistent
122 with F-actin's role in nuclear envelope breakdown in sea star oocytes [40, 41]. As time progresses,
123 the cortical LifeAct-mCherry signal globally decreases before locally increasing slightly during the
124 surface contraction wave (Fig. 2c, Supplementary Video 2).

125
126 To characterize the cortical actin density, line scans of LifeAct fluorescence were measured midway
127 between the animal and vegetal poles when the SCW passed through this region, and the inten-
128 sity profiles interior to the cell were fit to a decaying exponential function $I(r) = I_0 e^{-r/\lambda} + I_C$.
129 The relative cortical density (RCD) was then calculated from these fitting parameters as $RCD =$
130 $I_0/(I_C - I_{BG})$, where I_{BG} is the average fluorescence signal exterior to the cell (see *Materials and*
131 *Methods*). Measurements of the relative cortical density and characteristic radial deformation rate
132 were performed for individual oocytes treated with varying concentrations of cytochalasin D or jas-
133 plakinolide, allowing a direct comparison between the effects of these two treatments (Fig. 2d).
134 As anticipated from the measured dose response curves (Fig. 2a,b), we find that the characteristic
135 deformation rate is not a monotonic function of cortical actin density, but instead sharply increases
136 before slowly decreasing with increasing cortical actin density, with a peak near the wild-type density
137 (Fig. 2e).

138 **An active fluid model coarse-grained from microscopic interactions**

139 To understand the origin of the observed dependence of the radial deformation rate on actin density,
140 it is useful to first consider the force balance of the material on long timescales, which follows,

$$\nabla_j (\eta_{ijkl} \nabla_k \mathbf{v}_l + \Sigma^A \delta_{ij} + \mathcal{T}_{ij}) = 0 \quad (1)$$

141 where η_{ijkl} is the viscosity tensor where the nonzero elements take the form $\eta_{ijkl} = \eta \xi_{ijkl}$, where η is
142 the magnitude of the dominant component of the viscosity and ξ_{ijkl} encodes geometric information
143 and scalings, Σ_A is the active stress generated by interactions between actin filaments, molecular
144 motors, and passive crosslinkers, and \mathcal{T} is a passive stress arising from surface tension. Einstein's
145 convention of summation over repeated indices is implied. Eqn. 1 can be mapped to a thin spher-
146 ical shell of material (see Supplementary Information), yielding that the rate of deformation in
147 the radial direction scales with the active stress, Σ_A , and the inverse of the viscosity, η , and thus
148 $d \simeq \|\Sigma_A/\eta\|$. To obtain predictions for the dependence of η and Σ_A on the actin density, we adapted
149 a recently developed theoretical framework which allows a microscopic description of the system to
150 be coarse-grained into an emergent mechanical model [29]. An application of this general frame-
151 work to the actomyosin system considered here begins with a simplified microscopic description of
152 the system and considers three elements: actin filaments, passive crosslinkers, and molecular motors.

153
154 Molecular motors and passive crosslinkers exert forces between the filaments which they connect.
155 For passive crosslinkers, these forces are taken to be proportional to the velocity difference between
156 the points on the actin filament connected by the crosslinker. Thus, for a single crosslinker bound

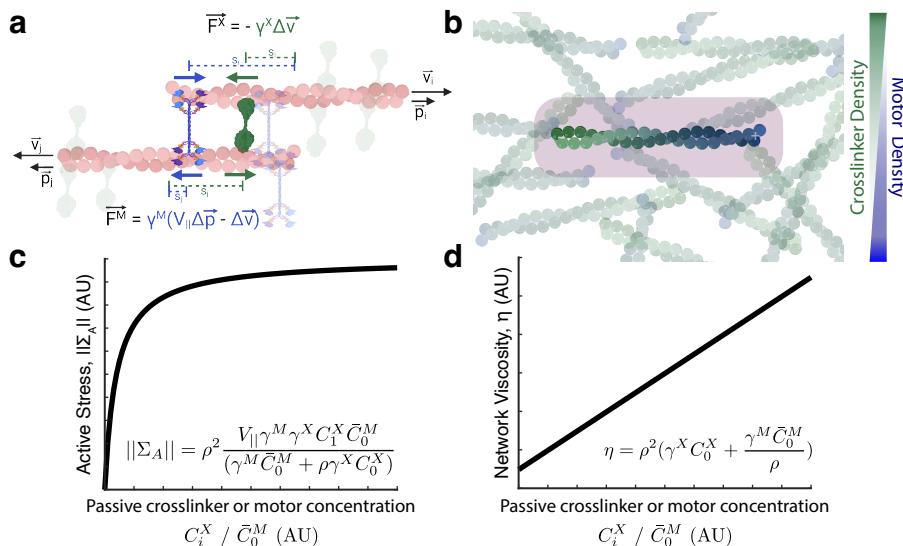


Figure 3: Active fluid model (a) Schematic of filament-scale forces between antiparallel actin filaments from individual motors (blue) and passive crosslinkers (green). (b) In the model considered in the main text, motors (blue) are uniformly distributed on actin filaments, while passive crosslinkers (green) accumulate near the filament end they motor walks away from. (c,d) Functional forms of the scalings of the active stress magnitude, $||\Sigma_A||$, (c) and the viscosity, η , (d) with the concentrations of either passive crosslinkers (C_i^X) or motors (\bar{C}_0^M).

157 between position s_i on the i -th actin filament and s_j on the j -th filament, the force exerted between
 158 filaments is given by

$$\mathbf{F}_{ij}^X = -\gamma^X (\mathbf{v}_i + s_i \dot{\mathbf{p}}_i - \mathbf{v}_j - s_j \dot{\mathbf{p}}_j), \quad (2)$$

159 where \mathbf{v}_i and \mathbf{p}_i are the velocity and direction of filament i , and γ^X describes the coupling strength
 160 (see Fig. 3a). When multiple passive crosslinkers are bound between filament pairs, the net force
 161 exerted between filaments becomes,

$$\mathbf{f}_{ij}^X = -\gamma^X c^X(s_i, s_j) (\mathbf{v}_i + s_i \dot{\mathbf{p}}_i - \mathbf{v}_j - s_j \dot{\mathbf{p}}_j), \quad (3)$$

162 where $c^X(s_i, s_j)$ is the number of passive crosslinkers that are bound between positions s_i and
 163 s_j , which can spatially vary along filaments. Motor molecules likewise contribute to the frictional
 164 coupling between filaments, but due to their stepping motion along filaments, exert additional active
 165 forces. The net force exerted by motors between filaments, \mathbf{f}_{ij}^M can be written as,

$$\mathbf{f}_{ij}^M = -\gamma^M c^M(s_i, s_j) \left(\mathbf{v}_i + s_i \dot{\mathbf{p}}_i - \mathbf{v}_j - s_j \dot{\mathbf{p}}_j + V_{||} (\mathbf{p}_i - \mathbf{p}_j) \right). \quad (4)$$

166 where the coefficient $V_{||}$ is the unloaded speed of the motor, γ^M is the motor friction, and $c^M(s_i, s_j)$
 167 is the density of motor molecules connecting two specific filament positions. We further postulate
 168 functional forms for the motor and crosslinker densities,

$$c^M(s_i, s_j) = C_0^M + (s_i + s_j) C_1^M \quad (5)$$

$$c^X(s_i, s_j) = C_0^X + (s_i + s_j) C_1^X$$

169 where C_0^M , C_0^X represent the number of uniformly bound motors and crosslinkers, and C_1^M and C_1^X
 170 capture nonuniformity of binding along filaments. Given Eqns. 3, 4, and 5, predictions for η and

171 Σ_A , can be derived by integrating over all possible configurations of motors and crosslinkers [29]
 172 (Fig. 3b, see Supplementary Information). The viscosity of the system is predicted to be

$$\eta \propto \rho^2 (\gamma^X C_0^X + \gamma^M C_0^M) \quad (6)$$

173 Furthermore, the active stress is predicted to be,

$$\Sigma_A \propto \rho^2 \gamma^M V_{||} \left(C_1^M - C_0^M \frac{\gamma^M C_1^M + \gamma^X C_1^X}{\gamma^M C_0^M + \gamma^X C_0^X} \right), ; \quad (7)$$

174 With this, the contraction rate is expected to be,

$$d = \frac{\Sigma_A}{\eta} = \gamma^M V_{||} \frac{C_1^M - C_0^M \frac{\gamma^M C_1^M + \gamma^X C_1^X}{\gamma^M C_0^M + \gamma^X C_0^X}}{\gamma^M C_0^M + \gamma^X C_0^X}. \quad (8)$$

175 To relate these results to our experimental findings we next need to specify how C^M and C^X change
 176 as a function of actin density, ρ . A number of simple microscopic models are possible, and we
 177 here consider a model where passive crosslinkers accumulate near the filament ends motors walk
 178 away from, while motors are uniformly distributed along filaments, i.e. $C_1^M = 0$ (see Supplemental
 179 Information for a discussion of other microscopic models). Such a configuration of passive crosslinkers
 180 is consistent with filament crosslinking by the Arp2/3 complex, which localizes to the pointed end
 181 of daughter filaments while nonmuscle myosin II walks towards the barbed end. We assume that
 182 the total number of bound passive crosslinkers is limited by the number of available binding sites,
 183 and thus the per filament amounts of passive crosslinkers C_0^X and C_1^X are independent of ρ . We
 184 further propose that binding of motors is limited by the available concentration of active motors in
 185 the system. Thus, as the system becomes denser and ρ increases, the amount C_0^M of motors per
 186 filament decreases, i.e. $C_0^M = \bar{C}_0^M / \rho$, where \bar{C}_0^M is a constant total amount of available motor. This
 187 finally leads to

$$||d|| = \frac{\alpha \rho}{(1 + \beta \rho)^2} \quad (9)$$

188 where $\alpha = V_{||} \frac{\gamma^X C_0^X}{\gamma^M \bar{C}_0^M}$, $\beta = \frac{\gamma^X C_0^X}{\gamma^M \bar{C}_0^M}$, and ρ is the actin density. We note that this mechanical model
 189 arises for a particular choice of microscopic model, and other choices of microscopic models that are
 190 consistent with the experimental measurements presented here lead to differing functional forms for
 191 the dependence of α and β on model parameters (see Discussion, Supplementary Information).

192
 193 We first asked whether the active fluid model reproduces the observed changes in the character-
 194 istic radial deformation rate as the cortical actin density is varied (Fig. 2e). To compare with
 195 experimental data, we correct for a constant offset in the measured cortical densities, ρ_0 , and fit

$$d_c = \frac{\alpha(\rho - \rho_0)}{(1 + \beta(\rho - \rho_0))^2} \quad (10)$$

196 Such an offset could potentially arise from a loss of global network contractility at finite density,
 197 perhaps due to a loss in network connectivity [14]. Fitting Eqn. 10. to the average characteristic
 198 radial deformation rate and relative cortical actin density for each treatment condition provides
 199 excellent quantitative agreement with the measured data (Fig. 2e) and provides measurements of
 200 the underlying model parameters, $\alpha = 0.8 \pm 1.0 \text{ min}^{-1}$, $\beta = 5.2 \pm 5.7$, and $\rho_0 = 0.25 \pm 0.04$ (fit
 201 values \pm 95% confidence intervals).

202 Testing the active fluid model through protein inhibition and overexpression

203 The active fluid model is based on a microscopic model where forces are generated by the activity
 204 of molecular motors. We first sought to test this assumption and confirm that myosin activity un-
 205 derlies deformation during the SCW by treatment with the myosin inhibitor blebbistatin, which has

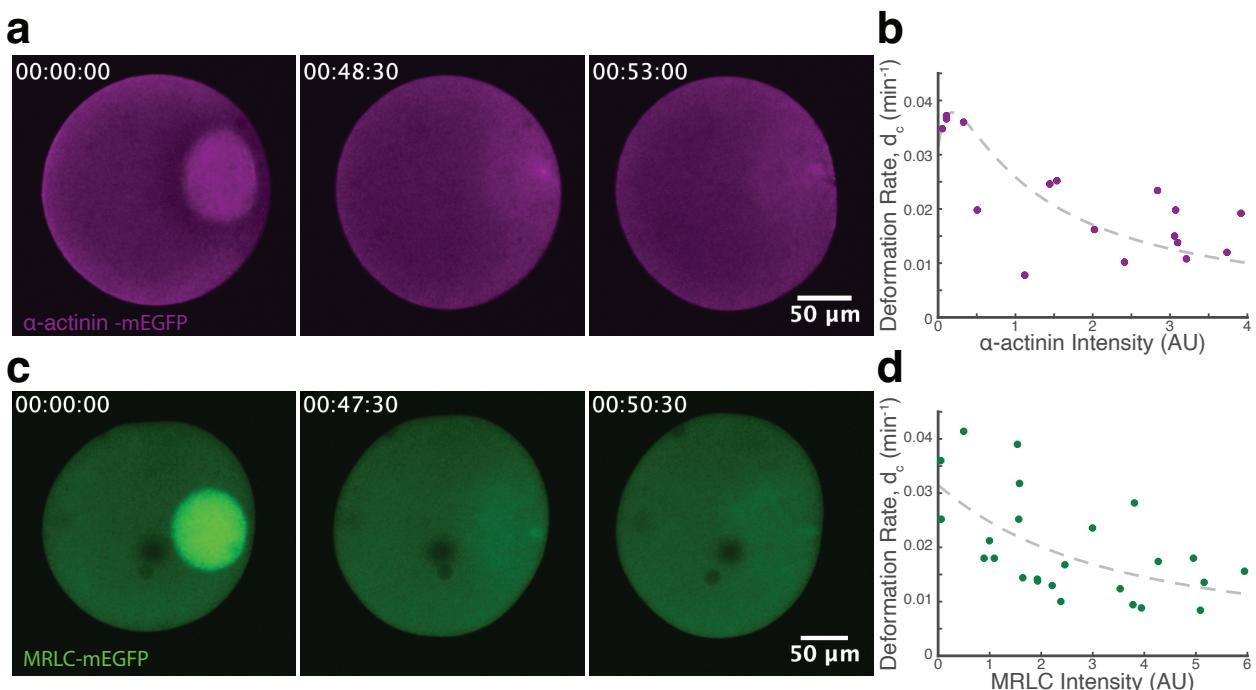


Figure 4: Crosslinker and motor overexpression to test active fluid model predictions. (a) Timecourse of SCW for an oocyte overexpressing α -actinin-mEGFP. (b) Characteristic deformation rate as a function of α -actinin-mEGFP intensity ($n=17$ oocytes). (c) Timecourse of SCW for an oocyte overexpressing MRLC-mEGFP. (d) Characteristic deformation rate as a function of MRLC-mEGFP intensity ($n=25$ oocytes). Grey dashed line: model fit

206 previously been shown to almost completely suppress contraction during the SCW [31]. We find
 207 that treatment with 200 μ M blebbistatin substantially decreases the characteristic deformation rate,
 208 consistent with myosin's role in driving contraction (Extended Data Figure 2).

209
 210 To further test the active fluid model, we next performed experiments increasing the concentration of
 211 either a passive actin crosslinking protein or an active motor. In the active fluid model, the viscosity,
 212 η , and the active stress magnitude, $||\Sigma_A||$ are predicted to scale differently when the concentrations
 213 of either passive crosslinker or active motors are varied (Fig. 3c,d, Eqns. 6, 7). The concentrations
 214 of passive crosslinkers and motor proteins enter the characteristic deformation rate through the
 215 coefficients α and β , which are both proportional to $\frac{C_i^X}{C_0^M}$. Thus, for a fractional change in the total
 216 passive crosslinker concentration, f , α and β are predicted to change as,

$$\begin{aligned}\tilde{\alpha} &= \alpha(1 + f) \\ \tilde{\beta} &= \beta(1 + f)\end{aligned}\quad (11)$$

217 To test this prediction, we overexpressed an actin crosslinking protein in untreated oocytes. While
 218 a variety of passive actin crosslinkers localize to the cortex [42], we here use α -actinin. Fluores-
 219 cent mEGFP-labeled *Patiria miniata* α -actinin [40] was overexpressed by injecting oocytes with the
 220 corresponding mRNA (see *Materials and Methods*), and we make use of the natural variability in
 221 protein expression level to assess changes in the characteristic radial deformation rate over a range
 222 of α -actinin concentrations.

223
 224 Characteristic deformation rates and the fluorescence signals of α -actinin-mEGFP, which we use as
 225 a proxy for α -actinin concentration, were measured for individual oocytes (Fig. 4a, Supplementary

226 Video 3). Overall, we find a general trend of decreasing deformation rate with increasing levels of
227 α -actinin overexpression, qualitatively consistent with the prediction of the active fluid model. To
228 quantitatively test the model, we take the actin density to be the previously measured wild-type
229 value, $\rho = \rho_{WT}$ and relate the measured α -actinin-mEGFP fluorescence signal to the fractional
230 change in passive crosslinker concentration as,

$$f = \chi_{actinin} I_{actinin} \quad (12)$$

231 Using values for α , β , and ρ_0 taken from the fit of characteristic deformation rate vs. relative cortical
232 density (Fig. 2e), Eqns. 10, 11, 12 were combined and fit to the experimental data, and found to
233 be in quantitative agreement, providing a measure of the sole fit parameter, $\chi_{actinin} = 7.5 \pm 2.8$ (fit
234 value \pm 95% confidence interval).

235
236 The active fluid model further predicts how the characteristic deformation rate should change with
237 the concentration of active motors. In this model, motors contribute both active forces and an
238 effective friction between sliding filaments. As such, changes in the concentration of motor proteins
239 are predicted to change both the emergent active stress and network viscosity. While for low motor
240 concentrations the model predicts that the deformation rate will increase with increasing motor con-
241 centration, at sufficiently high motor concentrations this model predicts that network viscosity will
242 grow faster than active stress, and hence the deformation rate will instead decrease with increasing
243 motor concentration (Fig. 4c,d).

244
245 To experimentally test this prediction, mEGFP-labeled *Patiria miniata* myosin regulatory light chain
246 (MRLC) was overexpressed in oocytes (Fig. 5c, Supplementary Video 4). MRLC overexpression
247 in *Patiria miniata* oocytes has previously been shown to increase the strength of the SCW [27, 31]
248 and to increase nonequilibrium activity in the cortex [43]. Following the same logic as for α -actinin
249 overexpression, we note that both α and β scale inversely with the per filament motor concentration,
250 and the measured MRLC-mEGFP fluorescence signal can be related to the fractional change in motor
251 concentration,

$$\bar{\alpha} = \frac{\alpha}{(1 + \chi_{MRLC} I_{MRLC})} \quad (13)$$
$$\bar{\beta} = \frac{\beta}{(1 + \chi_{MRLC} I_{MRLC})}$$

252 The characteristic deformation rate and MRLC-mEGFP fluorescence were measured for individ-
253 ual oocytes (see *Materials and Methods*) and the resulting data was fit to Eqns. 10, 13. Once
254 again, using only a single free fitting parameter, χ_{MRLC} , we find quantitative agreement between
255 the measured data and the prediction of the active fluid model (Fig. 4d), providing a measure of
256 $\chi_{MRLC} = 0.6 \pm 0.3$ (fit value \pm 95% confidence interval).

257
258 In the context of the active fluid model considered here, one key control parameter, $\zeta = \frac{\gamma^X C_0^X (\rho - \rho_0)}{\gamma^M C_0^M}$,
259 determines the sample composition that maximizes the deformation rate. By using the fit param-
260 eters α , β , $\chi_{actinin}$, and χ_{MRLC} , data for the actin density, α -actinin overexpression, and MRLC
261 overexpression experiments (Figs. 2e, 4b, and 4d) can be reparameterized and plotted as a function
262 of ζ . When plotted in this way, the data are found to collapse to the curve predicted by the active
263 fluid model (Fig. 5).

264 Discussion

265 Here, we used surface contraction waves in maturing sea star oocytes as a model to study actomyosin
266 contractility *in vivo*. By controlling cortical actin density, we find that the deformation rate is max-

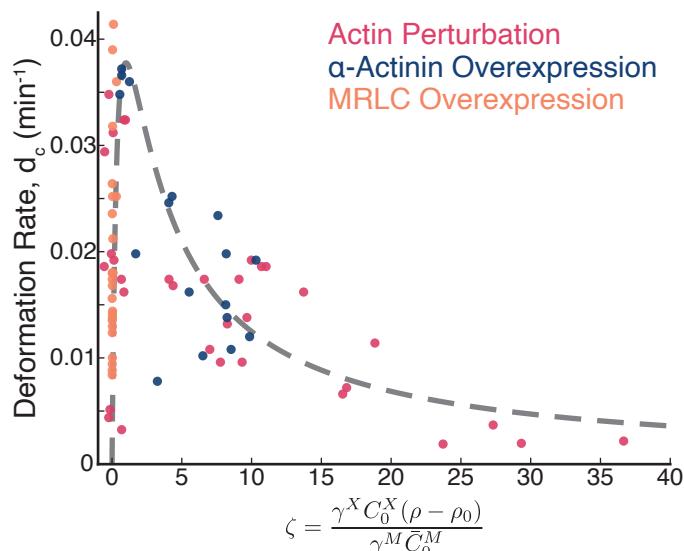


Figure 5: Using the fit parameters α , β , ρ_0 , $\chi_{actinin}$, and χ_{MRLC} , data from experiments with varying Relative Cortical Density (Fig. 2e), α -actinin-mEGFP concentration (Fig. 4b), and MRLC-mEGFP concentration (Fig. 4d) can be reparameterized and plotted as a function of the model parameter $\zeta = \frac{\gamma^X C_0^X (\rho - \rho_0)}{\gamma^M C_0^M}$. Upon replotted, the data collapse to a curve predicted by the active fluid model.

267 imum near the wild-type density and decreases when the cortical actin density is either increased or
 268 decreased. To understand this phenomenon, we developed an active fluid model coarse-grained from
 269 a microscopic description of the system. The model makes additional predictions for the dependence
 270 of the radial deformation rate on passive crosslinker and motor concentrations, which are in quan-
 271 titative agreement with experimental measurements. Finally, by using model parameters measured
 272 from fitting the active fluid model to the actin density, α -actinin overexpression, and MRLC over-
 273 expression data, data from all three sets of experiments could be reparameterized and plotted as
 274 a function of the same parameter, leading to data collapse to a curve predicted by the active fluid
 275 model.

276
 277 While here we focused on a microscopic model with an Arp2/3-like crosslinker and a uniformly
 278 distributed motor whose per-filament concentration scales inversely with actin density, we stress
 279 that other models are also consistent with the data presented here. These include models where
 280 passive crosslinkers are uniformly distributed on filaments while myosin accumulates towards the
 281 end it walks towards, as has been observed *in vitro* [7], and a combination of these models where
 282 myosin and passive crosslinkers accumulate at opposite ends. The unifying feature of these models
 283 is the broken symmetry between contraction and extension at the filament scale, which requires
 284 either an asymmetry in the driving force (due to the spatial localization of motors) or in the fric-
 285 tional coupling (due to the spatial localization of passive crosslinkers). Discriminating between these
 286 competing models *in vivo* is a challenge that will require measuring the localization asymmetry of
 287 motors and crosslinkers in the cortex.

288
 289 Similar to previous *in vitro* observations of contractile actomyosin [11, 12, 44], both the *in vivo* mea-
 290 surements and the active fluid model presented here show a decrease in network contractility with
 291 increasing crosslinker concentration. In contrast to previous work, the results here show that at high
 292 motor concentration, network contractility decreases, a qualitatively different behavior from both
 293 previous *in vitro* measurements [11, 45] and theoretical predictions from a filament buckling model
 294 [46], where the network contraction rate instead saturates with increasing motor concentration.

295 Network connectivity has been used to explain previous *in vitro* observations: at low connectivity
296 motor forces cannot propagate to larger scales [14], while at high connectivity network contractility
297 decreases due to either a substantial increase in network rigidity [1, 47] or to a decrease in filament
298 buckling [12, 46]. The active fluid model offers an alternative mechanism that can lead to this phe-
299 nomenon. At low crosslinker concentrations, active stress falls off faster than viscosity, and thus the
300 network deformation rate decreases. Measuring the network connectivity of *in vivo* actin cortices
301 is a challenge, and in the future electron microscopy could potentially be used to measure whether
302 or not our experimental results at low actin density are above the percolation threshold. At high
303 crosslinker concentration, the model predicts viscosity increases faster than active stress, and hence
304 the deformation rate decreases. This idea shares similarities with models where increased network
305 connectivity leads to high stiffness: both would emerge from a high degree of filament crosslinking.
306 An intriguing possibility is that both classes of models are limiting cases of a universal mechanical
307 framework. Exploring this possibility will be an exciting avenue for future research.

308
309 Finally, we note that in the system considered here, the deformation rate is maximal near the wild
310 type composition, and perturbing the system through changing the cortical actin density, α -actinin
311 concentration, or MRLC concentration largely only decreases the deformation rate. For the model
312 considered in the main text, the maximal deformation rate is given by $d_{max} = \frac{V_{||}C_1^X}{4C_0^X}$, implying
313 that increasing the deformation rate further would only be possible through either increasing the
314 relative asymmetry of crosslinker localization or increasing the motor walking speed. Increasing the
315 motor walking speed or changing the system composition would have energetic consequences and
316 energetic considerations can impose additional constraints in living nonequilibrium systems [48].
317 Understanding the energetic constraints of the emergent dynamics could further constrain possible
318 microscopic models, and would require going beyond network architecture towards a thermodynamic
319 description of such living active systems [5].

320 **Data and Code Availability**

321 All data that support the plots within this paper and other findings of this study are available from
322 the corresponding authors upon reasonable request. Images were analyzed using custom written
323 MATLAB code available at https://github.com/foster61012/Starfish_SCW.

324 **Competing Interests**

325 The authors declare no competing interests.

326 **Author Contributions**

327 P.J.F. and N.F. initiated the project and designed the experiments. P.J.F. performed the experiments
328 and analysed the experimental data. S.F. designed the active fluid model. All authors participated
329 in interpreting the experimental and theoretical results and in writing the manuscript.

330 **Acknowledgments**

331 This research was supported by the National Science Foundation CAREER Award to N.F.. P.J.F.
332 acknowledges support from the Gordon and Betty Moore Foundation as a Physics of Living Sys-
333 tems Fellow through grant no. GBMF4513. P.J.F. acknowledges support from the NSF MRSEC
334 DMR-2011846. S.F. acknowledges support from the Vienna Science and Technology Fund (WWTF)
335 and the City of Vienna through project VRG20-002. Fig. 3a,b and Fig. S2 were created with
336 BioRender.com.

337 **References**

- 338 1. Banerjee, S., Gardel, M. L. & Schwarz, U. S. The Actin Cytoskeleton as an Active Adaptive
339 Material. *Annu Rev Condens Matter Phys* **11**, 421–439 (2020).
- 340 2. Foster, P. J., Fürthauer, S., Shelley, M. J. & Needleman, D. J. From cytoskeletal assemblies to
341 living materials. *Curr. Opin. Cell Biol.* **56**, 109–114 (2019).
- 342 3. Marchetti, M. C. *et al.* Hydrodynamics of soft active matter. *Reviews Of Modern Physics* **85**,
343 1143–1189 (2013).
- 344 4. Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell
345 biology. *Nature reviews materials* **2**, 1–14 (2017).
- 346 5. Bowick, M. J., Fakhri, N., Marchetti, M. C. & Ramaswamy, S. Symmetry, Thermodynamics,
347 and Topology in Active Matter. *Phys. Rev. X* **12**, 010501 (Feb. 2022).
- 348 6. Lenz, M. Reversal of contractility as a signature of self-organization in cytoskeletal bundles.
349 *eLife* **9**, e51751 (2020).
- 350 7. Wollrab, V. *et al.* Polarity sorting drives remodeling of actin-myosin networks. *Journal of Cell
351 Science* **132**, jcs219717–14 (2018).
- 352 8. Koenderink, G. H. & Paluch, E. K. Architecture shapes contractility in actomyosin networks.
353 *Current Opinion in Cell Biology* **50**, 79–85 (2018).
- 354 9. Chugh, P. *et al.* Actin cortex architecture regulates cell surface tension. *Nature Cell Biology*
355 **19**, 689–697 (2017).
- 356 10. Feld, L. *et al.* Cellular contractile forces are nonmechanosensitive. *Science Advances* **6**, eaaz6997
357 (Apr. 2020).

358 11. Bendix, P. M. *et al.* A Quantitative Analysis of Contractility in Active Cytoskeletal Protein
359 Networks. *Biophysical Journal* **94**, 3126–3136 (2008).

360 12. Ennomani, H. *et al.* Architecture and Connectivity Govern Actin Network Contractility. *Cur-
361 rent Biology* **26**, 616–626 (Mar. 2016).

362 13. Tan, T. H. *et al.* Self-organized stress patterns drive state transitions in actin cortices. *Science
363 Advances* **4**, eaar2847 (2018).

364 14. Alvarado, J., Sheinman, M., Sharma, A., MacKintosh, F. C. & Koenderink, G. H. Molecular
365 motors robustly drive active gels to a critically connected state. *Nat. Phys.* **9**, 591–597 (Aug.
366 2013).

367 15. Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in
368 a biomimetic actomyosin cortex. *Proceedings Of The National Academy Of Sciences Of The
369 United States Of America* **109**, 20820–20825 (2012).

370 16. Köhler, S., Schmoller, K. M., Crevenna, A. H. & Bausch, A. R. Regulating contractility of the
371 actomyosin cytoskeleton by pH. *Cell Rep.* **2**, 433–439 (2012).

372 17. Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics
373 of actomyosin contractility. *Nature Reviews Molecular Cell Biology* **16**, 486–498 (2015).

374 18. Lenz, M. Geometrical Origins of Contractility in Disordered Actomyosin Networks. *Phys. Rev.
375 X* **4**, 041002 (2014).

376 19. Kruse, K. & Jülicher, F. Actively contracting bundles of polar filaments. *Phys. Rev. Lett.* **85**,
377 1778–1781 (2000).

378 20. Foster, P. J., Fürthauer, S., Shelley, M. J. & Needleman, D. J. Active contraction of microtubule
379 networks. *eLife* **4**, e10837 (2015).

380 21. Torisawa, T., Taniguchi, D., Ishihara, S. & Oiwa, K. Spontaneous Formation of a Globally
381 Connected Contractile Network in a Microtubule-Motor System. *Biophys. J.* **111**, 373–385
382 (2016).

383 22. Tan, R., Foster, P. J., Needleman, D. J. & McKenney, R. J. Cooperative Accumulation of
384 Dynein-Dynactin at Microtubule Minus-Ends Drives Microtubule Network Reorganization. *De-
385 velopmental Cell* **44**, 233–247 (2018).

386 23. Lenz, M., Thoresen, T., Gardel, M. L. & Dinner, A. R. Contractile units in disordered acto-
387 myosin bundles arise from F-actin buckling. *Physical Review Letters* **108**, 238107 (2012).

388 24. Chen, S., Markovich, T. & MacKintosh, F. C. Motor-Free Contractility in Active Gels. *Phys.
389 Rev. Lett.* **125**, 208101 (2020).

390 25. Chen, S., Markovich, T. & MacKintosh, F. C. Motor-free contractility of active biopolymer
391 networks. *arXiv preprint arXiv:2204.00222* (2022).

392 26. Lénárt, P. *et al.* A contractile nuclear actin network drives chromosome congression in oocytes.
393 *Nature* **436**, 812–818 (July 2005).

394 27. Bun, P., Dmitrieff, S., Belmonte, J. M., Nédélec, F. J. & Lénárt, P. A disassembly-driven mech-
395 anism explains F-actin-mediated chromosome transport in starfish oocytes. *eLife* **7**, e31469
396 (2018).

397 28. Kučera, O. *et al.* Anillin propels myosin-independent constriction of actin rings. *Nat. Commun.*
398 **12**, 4595 (2021).

399 29. Fürthauer, S., Needleman, D. J. & Shelley, M. J. A design framework for actively crosslinked
400 filament networks. *New Journal of Physics* **23**, 013012 (2021).

401 30. Fürthauer, S. *et al.* Self-straining of actively crosslinked microtubule networks. *Nature physics*
402 **15**, 1295–1300 (2019).

403 31. Bischof, J. *et al.* A cdk1 gradient guides surface contraction waves in oocytes. *Nature Communications* **8**, 1–10 (2017).

404

405 32. Klughammer, N. *et al.* Cytoplasmic flows in starfish oocytes are fully determined by cortical contractions. *PLoS Computational Biology* **14**, e1006588 (2018).

406

407 33. Wigbers, M. C. *et al.* A hierarchy of protein patterns robustly decodes cell shape information. *Nature Physics* **17**, 578–584 (2021).

408

409 34. Hara, K. Cinematographic observation of “surface contraction waves” (SCW) during the early cleavage of axolotl eggs. *Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen* **167**, 183–186 (1971).

410

411

412 35. Satoh, N. ‘Metachronous’ cleavage and initiation of gastrulation in amphibian embryos. *Development, Growth and Differentiation* **19**, 111–117 (1977).

413

414 36. Lewis, C. A. Ultrastructure of a fertilized barnacle egg (*Pollicipes polymerus*) with peristaltic constrictions. *Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen* **181**, 333–355 (1977).

415

416

417 37. Sardet, C., Speksnijder, J., Inoue, S. & Jaffe, L. Fertilization and ooplasmic movements in the ascidian egg. *Development* **105**, 237–249 (1989).

418

419 38. Narumiya, S., Tanji, M. & Ishizaki, T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. *Cancer and Metastasis Reviews* **28**, 65–76 (2009).

420

421 39. Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L. & Korn, E. D. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. *Journal of Biological Chemistry* **269**, 14869–14871 (1994).

422

423

424 40. Mori, M. *et al.* An Arp2/3 Nucleated F-Actin Shell Fragments Nuclear Membranes at Nuclear Envelope Breakdown in Starfish Oocytes. *Current Biology* **24**, 1421–1428 (2014).

425

426 41. Wesolowska, N. *et al.* Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. *eLife* **9**, e49774 (2020).

427

428 42. Chugh, P. & Paluch, E. K. The actin cortex at a glance. *Journal of Cell Science* **131**, jcs186254 (2018).

429

430 43. Tan, T. H. *et al.* Scale-dependent irreversibility in living matter. *arXiv*, arXiv:2107.05701v1 [physics.bio-ph] (2021).

431

432 44. Janson, L. W., Kolega, J. & Taylor, D. L. Modulation of contraction by gelation/solation in a reconstituted motile model. *J. Cell Biol.* **114**, 1005–1015 (1991).

433

434 45. Murrell, M. & Gardel, M. L. Actomyosin sliding is attenuated in contractile biomimetic cortices. *Mol. Biol. Cell* **25**, 1845–1853 (2014).

435

436 46. Belmonte, J. M., Leptin, M. & Nédélec, F. A theory that predicts behaviors of disordered cytoskeletal networks. *Mol. Syst. Biol.* **13**, 941 (2017).

437

438 47. Gardel, M. L. *et al.* Elastic behavior of cross-linked and bundled actin networks. *Science* **304**, 1301–1305 (2004).

439

440 48. Yang, X. *et al.* Physical bioenergetics: Energy fluxes, budgets, and constraints in cells. *Proc. Natl. Acad. Sci. U. S. A.* **118**, e2026786118 (June 2021).

441