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Abstract:

Having varied approaches to the design and manufacture of vaccines is critical in being able
to respond to worldwide needs and to newly emerging pathogens. Virus-like particle (VLP)
vaccines form the basis of two of the most successful licensed vaccines (against hepatitis B
virus (HBV) and human papillomavirus). They are produced by recombinant expression of
viral structural proteins, which self-assemble into immunogenic nanoparticles. VLPs can also
be modified to present unrelated antigens, and here we describe a universal ‘bolt-on’ vaccine
platform (termed VelcroVax) where the capturing VLP and the target antigen (hapten) are
produced separately. We utilise a modified HBV core (HBcAg) VLP, with surface expression
of a high-affinity binding sequence (Affimer) directed against a SUMO tag and use this to
capture SUMO-tagged gpl glycoprotein from the arenavirus, Junin virus (JUNV). Using this
model system, we have solved high-resolution structures of VelcroVax VLPs, and shown that
the VelcroVax-JUNV gpl complex induces superior humoral immune responses compared to
the non-complexed viral protein. We propose that this system could be modified to present a
range of haptens and therefore form the foundation of future rapid-response vaccination

strategies.
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Introduction:

The need for safe and effective vaccines to be developed rapidly and distributed globally has
been highlighted over the last two years. Vaccines have been developed for more than 20
different pathogens, and more than 15 additional organisms are recognised by the World
Health Organization (WHO) as priority pathogens with epidemic or pandemic potential.
Although the WHO endeavours to accelerate the development of vaccines for these priority
pathogens for use in low- and middle-income countries (LMICs), there are significant
challenges to their development and deployment!. These include safety, efficacy and the need
to maintain a cold chain when delivering vaccines to remote areas. Importantly, the availability
of vaccines in endemic regions is essential to control the spread of pathogens and facilitate

the prevention of future global pandemics.

The list of pathogens with epidemic or pandemic potential varies among global authorities.
The National Institute of Allergy and Infectious Disease (NIAID) priority list includes some new
world arenaviruses, including Junin virus (JUNV), which causes a potentially lethal
haemorrhagic disease known as Argentine haemorrhagic fever (AHF)?3. JUNV is transmitted
via rodents (Calomys musculinus) and contracted via contact with infected excretions or
aerosols. Outbreaks of AHF in the 1960s and 1970s resulted in thousands of deaths and had
case fatality rates between 15-30%%®. Total cases decreased in the following decades and
have fallen substantially since the introduction of a live attenuated vaccine in affected regions
of Argentina®®. Despite the success of this vaccine, as with all attenuated virus vaccines, there

remain safety concerns regarding the potential for reversion to a pathogenic form.

The advancement of technologies used for vaccine production and purification have
contributed to the generation of safer vaccines. For example, virus-like particle (VLP) vaccines
for hepatitis B virus (HBV) and human papillomavirus (HPV) have shown exemplary safety
and efficacy®°. Most recently, recombinant non-replicating viral vectors and RNA vaccines
have been produced rapidly and also show impressive safety and efficacy profiles!*13,
Critically, in contrast to attenuated vaccines, inactivated, subunit, polysaccharide, RNA or
toxoid vaccines are non-replicative, so do not pose the risk of reversion to a pathogenic form.
This makes recombinant technologies the most attractive approach for the development of

safer next-generation vaccines.

The efficacy of subunit vaccines can be enhanced when the subunit exists as a nanopatrticle.
Nanoparticles may be naturally occurring (VLPs), artificially formed**® or modified biological
chimeras’*%, Indeed, chimeric VLP technology has allowed the deployment of the first
licensed anti-malaria vaccine, Mosquirix'®2?°. The success of this vaccine suggests that a

chimeric VLP approach is both tractable and suitable for improving responses against
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73 challenging immunogens, however, it took over 30 years for Mosquirix to be licensed!®?!,
74  Alternative approaches for modifying VLPs have been investigated to increase the diversity of
75 vaccine platforms. The approach we have pursued relies upon the surface display of a
76  capturing molecule (e.g. antibody, nanobody) on a nanoparticle carrier, which is able to bind
77 and display an antigen of interest (hapten) tagged with an appropriate sequence. Poorly
78 immunogenic haptens displayed on nanoparticles are more effectively recognised by dendritic
79  cells (DCs). In addition, nanopatrticle size (30-100 nm) can influence T helper bias and T helper
80 epitopes from protein-based nanoparticles can contribute to anti-hapten immunity, thus

81  humoral responses generated are likely to be higher affinity and more diverse??-2¢,

82  Here, we describe a vaccine system in which a carrier nanoparticle and hapten are produced
83  separately. We have developed a modified HBV core (HBcAg) VLP, termed VelcroVax, with
84  surface expression of a SUMO-Affimer. Affimers are produced by phage display approaches,
85 are small (~13 kDa) and can be expressed in a range of systems?’. We used these VLPs to
86  capture the SUMO-tagged JUNV glycoprotein, gpl. Using this model system, we characterise
87  VelcroVax structurally and functionally, using comparative immunisation trials to determine
88  whether JUNV gp1l coupling to VLPs alters the immune response generated. We propose that
89 this system may be modified for a range of haptens and could form the foundation of future

90 rapid-response vaccination strategies.
91

92  Methods:

93  Generation of HBcAg VLPs in yeast

94  Genes encoding either HBcAg or VelcroVax were introduced downstream of the AOX1
95  promoter within the pPinkHC expression vector (ThermoFisher Scientific). The VelcroVax
96 sequence consists of a fused HBcAg dimer with the SUMO-Affimer sequence introduced
97  within the first major immunodominant region (MIR) of this dimer. A Gly-Ser linking sequence
98 was used to provide flexibility to this domain, and for consistency this Gly-Ser linker was
99  presentin all HBcAg subunits used here. Similar to previously described protocols?, plasmids
100 were linearised with Aflll and electroporated into PichiaPink strain 1 (Invitrogen), then
101 transformed yeast were plated on adenine dropout (PAD) media and incubated at 28°C for 3-
102  5days. To screen for expression, colonies were selected at random and inoculated into 5 mL
103 YPD media (10 g/L yeast extract, 5 g/L peptone, 20 g/L Dextrose) before incubation at 28°C,
104 250 rpm for 48 hours. Cells were pelleted at 1,500 rcf and resuspended in 1 mL YPM (10 g/L
105  yeast extract, 5 g/L peptone, 2% v/v methanol). Cultures were incubated at 28°C, 250 rpm for

106 72 hours, and supplemented with 1 or 2% v/v methanol every 24 hours (VelcroVax and HBcAg
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107  expressions, respectively). Cells were collected at 48 hours and assessed for scFv production
108 by western blot.

109  For large-scale production, a glycerol stock of VelcroVax- or HBcAg-expressing P. pastoris
110  was used to inoculate 5 mL YPD and incubated at 28°C for 48 hours at 250 rpm before
111 inoculation into 200 mL of YPD and incubation for a further 48 hours at 28°C, 250 rpm. Cells
112  were pelleted at 1,500 rcf and resuspended in 200 mL YPM (1 or 2% v/v methanol, as above)
113  before incubation at 28°C, 250 rpm for 72 hours. Media were supplemented with methanol
114  every 24 hours. Cells were pelleted at 4,000 rcf and resuspended in 30 mL EDTA-free
115  breaking buffer (50 mM NasPOa, 5% v/v glycerol, pH 7.4) with cOmplete EDTA-free protease
116  inhibitor cocktail (Roche).

117  VLP purification and quantitation

118 Toisolate VLPs from P. pastoris, cells were disrupted at 40 kpsi and supplemented with 1 mM
119  MgCI and 250 units denarase (c-LEcta) before incubation at room temperature for 2 hours
120  with agitation. Samples were clarified at 4,000 rcf and clarified supernatant was precipitated
121  overnight at 4°C with 20% v/v saturated ammonium sulphate solution (structural studies) or
122 8% w/v PEG-8000 (immunogenicity and antigenicity studies). Precipitated material was
123 pelleted at 4,000 rcf for 30 minutes and re-suspended in 30 mL PBS. Insoluble material was
124 removed by centrifugation at 10,000 rcf. The soluble material was pelleted through a 30%
125  sucrose cushion at 150,000 rcf for 3.5 hours. Pellets were resuspended in 1 mL PBS and
126  separated on a 15-45% sucrose gradient at 50,000 rcf for 12 hours. 1 mL fractions were
127  collected manually (top down) and assessed for the presence of HBcAg-reactive proteins by
128  western blot with mAb 10E11 using standard protocols. The protein content of fractions was
129 assessed directly by BCA assay (Pierce, ThermoFisher Scientific), or the VLPs were
130 concentrated, and buffer exchanged using 100k mwco PES concentrator columns (Pierce,
131  Thermo Scientific) before quantification by BCA assay. To purify VLPs for structural analysis,

132 this protocol was slightly modified, as described in Snowden et al. (2021)%.
133  Electron microscopy

134  To prepare samples for negative stain EM, carbon-coated 300-mesh copper grids (Agar
135  Scientific, UK) were glow-discharged under air (10 mA, 30 s) before applying 3 uL sample for
136 30 s. Excess liquid was wicked away, then grids were washed two to four times with 10 pL
137  distilled H>O. Staining was then performed with 1 — 2% uranyl acetate solution (UA). UA was
138  applied (10 pL) and immediately wicked away, then an additional 10 pL UA was applied and
139  allowed to incubate for 30 s prior to blotting and leaving to air dry. Imaging was performed
140 using either (i) an FEI Tecnai G2-spirit with LaBe electron source, operating at 120 kV and

141  equipped with a Gatan Ultra Scan 4000 CCD camera, with a calibrated object sampling of
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142 0.48 nm/pixel, or (ii) an FEI Tecnai F20 with field emission gun, operating at 200 kV and
143  equipped with an FEI CETA camera, with a calibrated object sampling of 0.418 nm/pixel.

144  For cryoEM, samples were vitrified as described in Snowden et al (2021)?°. Briefly, ultrathin
145  continuous carbon-coated lacey carbon 400-mesh copper grids (Agar Scientific, UK) were
146  glow discharged in air (10 mA, 30 s), then 3 pL sample were applied to the grid surface for
147 30 s in a humidity-controlled chamber (8°C, 80% relative humidity). Excess liquid was
148  removed by blotting (1.0 — 4.0 s) before plunge freezing in liquid nitrogen-cooled liquid ethane
149  using a LEICA EM GP plunge freezing device (Leica Microsystems, Germany). Imaging was
150 performed using an FEI Titan Krios transmission EM (ABSL, University of Leeds) operating at
151 300 kV, with a calibrated object sampling of 1.065 A/pixel. Full data collection parameters are
152  provided in Table S1.

153  Image processing

154  Image processing was performed using the Relion 3.0 and Relion 3.1 pipelines®®3,
155  MotionCor2%? was used to correct any motion-induced blurring in raw micrographs, then CTF
156  parameters were estimated using Gctf®3. A small subset of VLPs (both T =4 and T = 3*) was
157  manually selected and used to generate 2D class averages, used as templates for automated
158 picking of the entire dataset. Initially, ~250,000 particles (including contaminants and
159 erroneously selected areas of carbon) were extracted and 2x down-sampled for 2D
160 classification, with CTFs ignored until the first peak. All classes resembling VLPs (~130,000
161  particles) were taken forward for additional 2D classification without CTFs ignored until the
162  first peak, at which point two independent particle stacks were created and re-extracted
163  without down-sampling: one for T = 4 VLPs and one for T = 3* VLPs (each containing ~50,000
164  particles). 3D refinement was performed separately for each particle stack, based on initial
165 models generated de novo in Relion, with symmetry imposed (11 for T = 4, C5 for T = 3*).
166  Where appropriate, map resolution and quality were improved by iterative cycles of CTF
167 refinement, Bayesian polishing and 3D refinement with a solvent mask applied and flattened
168  Fourier shell correlation (FSC) calculations. Maps were sharpened using a solvent-excluding
169 mask and a nominal resolution determined using the ‘gold standard’ FSC criterion (FSC =
170  0.143) (Figure S2, Table S2), then local resolution was calculated and a local resolution-

171  filtered map generated in Relion.

172 For T = 4 VLPs, focussed classification was performed in an attempt to resolved Affimer
173 density, using a protocol described previously?®3+3¢, Briefly, SPIDER3’ was used to generate
174  a cylindrical mask which was manually placed above a four-helix bundle using UCSF
175 Chimera®. A soft-edge was added to the mask in Relion. T = 4 VLP particles and their

176  associated orientational information from a symmetrised 3D refinement were used to generate

5
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177  a symmetry-expanded particle stack using the relion_symmetry_expand tool. This data was
178  then subjected to masked 3D classification without alignments, with a regularisation parameter
179 of 40.

180  Model building and refinement

181  Atomic models were built into the density maps for both T = 4 and T = 3* VLPs. Firstly, a
182  homology model was generated using SWISS-MODEL®®. Copies of this model were fitted into
183  density for each quasi-equivalent position within the T = 4 and T = 3* VLP asymmetric units
184  using UCSF Chimera®, and unresolved segments of the peptide backbone were removed.
185  Models were then inspected and manually refined in Coot*° before automated refinement in
186  Phenix*! to improve model-to-map fit and atomic geometry. This process was repeated
187 iteratively, with at least one iteration performed with a symmetrised atomic model to avoid
188  erroneous placement of atomic coordinates in density from adjacent asymmetric units. Model

189  validation (Table S2) was performed using MolProbity*2.
190  Structure analysis and visualisation

191  Visualisation of structural data was performed in UCSF Chimera®, UCSF ChimeraX* and
192  PyMOL (The PyMOL Molecular Graphics System, Version 2.1, Schrédinger, LLC). RMSD
193  calculations were performed using the ‘MatchMaker’ tool in UCSF Chimera, with default

194  settings.
195  Generation of recombinant JUNV gpl

196  The sequence encoding amino acids 87-231 of JUNV gpl (GenBank AC052428) was PCR-
197 amplified and cloned into a pHLsec vector* containing a C-terminal SUMO tag (GenBank
198 AVL26008.1) and hexahistidine tag. The JUNV gpl-SUMO construct was transfected into
199  human embryonic kidney (HEK) 293T cells, grown in roller bottles for transient expression®.
200 Four days post-transfection, cell supernatant was supplemented with NaCl (700 mM), Tris
201  pH 8.0 (20 mM) and imidazole (15 mM). JUNV gpl was purified by immobilized metal affinity
202  chromatography, using a 5-mL HisTrap Excel column (Cytiva), followed by size-exclusion
203  chromatography (SEC) with a Superdex 200 increase 10/300 GL column (Cytiva) equilibrated
204  with 15 mM Tris (pH 8.0), 200 mM NaCl, and 0.5 mM EDTA. The JUNV gp1l containing peak
205  was further purified over a 1-mL HiITRAP Q (HP) column (Cytiva) using a 30 mM Tris pH 8.0
206  running buffer and a linear, 0-500 mM NaCl gradient. The JUNV gp1l was re-purified by SEC

207  (as above). Following concentration, protein samples were snap-frozen and stored at -80 °C.
208

209
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210 ELISA to detect antigen capture

211  The capture of SUMO-tagged JUNV gpl by VelcroVax was assessed by ELISA. Plates were
212 coated with 50 pL 2 pg/mL of wt HBcAg VLP, VelcroVax or PBS and incubated overnight at
213 4°C. Plates were blocked with 2% skim-milk powder in PBS 0.1% Tween-20 and JUNV gpl
214  was added to wells at 1000, 500 and 250 ng/mL, PBS was used as a negative control. Plates
215  were incubated at 37°C for 1 hour before being washed. The presence of JUNV gpl was
216  determined using a 1:2000 dilution of mouse anti-JUNV gp1 (obtained through BEI Resources,
217 NIAID, NIH: Monoclonal Anti-Junin Virus, Clone OD01-AA09 (immunoglobulin G, Mouse), NR-
218  2567). After incubation, plates were washed and 50 pL of anti-mouse HRP was added to wells
219  (Sigma). Plates were incubated for a further hour at 37°C, before a final wash step and the
220  addition of 100 pL/well Sigmafast OPD (Sigma). After 15 minutes, 50 pL of 3M HCI was added
221  to wells to stop the reaction and the OD was determined at 492 nm. Data was graphed as
222 mean OD 492 nm with SEM (GraphPad Prism).

223 Immunisation

224 Groups of 7 female BALB/c mice were purchased from Charles River UK at 5 weeks of age.
225  Mice were housed for 2 weeks before the initiation of experimental procedures, at which point
226  a sample of pre-immune sera was collected (approximately 50 uL total blood volume) via the
227  tail vein. Mice were then immunised three times at two-week intervals subcutaneously in the
228  rear upper flank with a total volume of 100 uL per dose. Vaccines were composed of 1 ug of
229  VLP (HBcAg or VelcroVax) and 1 pg of JUNV gpl in the presence of 2.5 nmol CpG ODN1668
230  (Invivogen). Samples were assembled 24 hours pre-immunisation to facilitate SUMO-linked
231 conjugation of JUNV gpl to VLP and stored at 4°C until used. All vaccine components were
232 tested for endotoxin content and immunisations contained less than 2.5 EU/dose (Pierce LAL
233  Chromogenic Endotoxin Quantitation kit, Thermo Scientific). Serum samples were collected
234  ondays 13 and 27 (as above) (Fig S5). On day 41 final blood samples were taken via cardiac
235  puncture while mice were euthanised under sodium pentobarbitone. All animals were housed
236  under specific pathogen-free conditions and monitored for wellbeing. All animal procedures
237 were performed in strict accordance with UK Home Office guidelines, under licence
238  PP2876504 granted by the Secretary of State for the Home Office which approved the work
239  described, in accordance with local ethical guidelines and internal committee approval for
240 animal welfare at NIBSC. This study conforms to all relevant ethical regulations for animal
241 work in the UK.

242 Antibody titration and isotyping

243 Antibody titres were assessed by indirect ELISA. To this end, 96-well EIA plates were coated

244 with 50 pL 2 pg/mL target protein. Serum samples were assessed against HBcAg, VelcroVax
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245  and JUNV gpl. Plates were blocked with 2% skim-milk powder in PBS 0.1% Tween-20 before
246  the addition of duplicate dilutions of antisera at 1:250-4000 or a PBS-only negative control and
247  incubated at 37°C for 1 hour. Plates were washed and 50 pL of rabbit anti-mouse HRP was
248 added at 1:2000 dilution (Sigma). Plates were incubated at 37°C for 1 hour, washed and
249  incubated with 100 pL Sigmafast OPD (Sigma) for 15 minutes. Reactions were stopped with
250 the addition of 50 uL 3M HCI and optical density read at 492 nm. Data was graphed as a box
251  and whisker plot and the mean OD from PBS-negative wells depicted as a dotted line along

252  the graph for reference (GraphPad Prism).

253  To determine the isotypes of antibodies generated by immunisation, plates were coated and
254  blocked, as above. Sera were diluted 1:125 and 50 pL of sera or a PBS-only negative control
255  were added to duplicate wells, before incubation at 37°C for 1 hour. Plates were washed and
256 50 pL of isotype-specific goat anti-mouse antibody was added at 1:1000 dilution (Sigma).
257  Plates were incubated at 37°C for 1 hour before being washed and adding 50 pL of anti-goat
258 HRP (Sigma). After a final 1-hour incubation, plates were washed and developed with OPD,
259  as above. The OD 492 nm of negative control wells (no sera) was deducted from the isotype-
260  specific signal and mean OD graphed on a bar chart (GraphPad Prism).

261  Generating pseudovirus

262  Previously described protocols were used to generate JUNV pseudovirus with minimal
263  modification®. Briefly, HEK293T/17 cells were seeded at 30% density and incubated overnight
264  to allow growth to 50-60% confluence at time of transfection. The following day DNA
265 transfections were carried out by combining 1 pug p8.91 plasmid, with 1.5 pug Pcsflw*’ and
266 1.5 g of pCAGGS-JUNV gp in 100 pL of Opti-MEM (Gibco) in a standard microcentrifuge
267  tube, separately 12 pL of 1 mg/mL 25,000 mw linear PEI was diluted in 100 pL of Opti-MEM
268  (Gibco). Tubes were incubated at RT for 5 minutes before PEI mix was added to DNA. The
269  combined mixture was incubated at RT for 15 minutes before being added dropwise to culture
270 media. Plates were incubated for 72 hours at 37°C, 5% CO, at which point media was
271  harvested and filtered through a 0.45 um PES filter.

272 Pseudovirus titration

273  Harvested cell supernatant containing JUNV pseudovirus was titrated as previously described
274  with minimal modification using RD cells*. Briefly, in a 96-well white plate (Greiner Bio-One)
275 50 pL of pseudovirus-containing supernatant was added per well following a 2-fold serial
276  dilution. Dilutions were added to wells containing 1x10* RD cells/well and incubated for 72
277  hours at 37°C, 5% CO.. The relative luminescence units (RLU) were measured using the

278  Bright-Glo (Promega) luciferase system.
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279  Neutralisation assay

280  Triplicate wells of diluted serum and 1x10° RLU of JUNV pseudovirus were added to wells of
281 a 96-well white opaque plate in a final volume of 100 pL. Plates were incubated for 1 h at
282  37°C, 5% CO. in a humidified incubator, and 1x10* RD cells were added to each well. Plates
283  were incubated for 72 h before RLU was recorded, as above. For 1:100 diluted serum raw
284  data is graphed, for 1:10 diluted samples percentage neutralisation was determined relative

285  to positive (no antibody) and negative (no pseudovirus) wells.
286

287 Results:

288  Generation of VelcroVax

289  HBcAg monomers assemble into paired dimers, which further assemble to form T = 3 (90
290 dimers) and T = 4 (120 dimers) symmetric particles. Within each dimer the C-terminal end of
291  one monomer is in proximity to the N-terminal end of the other partner (Fig 1A). The genetic
292  fusion of these monomers using a sequence encoding a Gly-Ser linker ensures that the
293  genetically fused pairs will dimerise within the assembled VLP, termed tandem HBCAg
294  (tHBcAg). We inserted a sequence encoding a SUMO-Affimer into the major immunodominant
295 region (MIR) of the first HBcAg monomer within the tandem construct (Fig 1B). This
296  organisation ensures that within each HBcAg dimer, one MIR will contain a SUMO-Affimer
297  and the other will not, functionally minimising the likelihood of steric clashes within this region.
298  This construct, with the SUMO-Affimer within the MIR of the first HBcCAg monomer within a

299  fused dimer, is the first example of the VelcroVax system.

300 To determine whether the introduction of a SUMO-Affimer sequence within the MIR of a
301 tandem HBcAg construct was compatible with particle formation, we utilised P. pastoris as an
302  expression system. Samples of wt HBcAg or VelcroVax were produced in P. pastoris and
303 separated along a 15-45% sucrose gradient (Fig 1C). Western blot analysis using anti-HBcAg
304 antibody 10E11 indicated that both wt HBcAg and VelcroVax particles were present within the
305 gradient. For both particle types, signal peaked around fraction 8, indicating that both wt
306 HBcAg and VelcroVax effectively form VLPs in this system. Particle morphology was

307 confirmed by negative stain EM (Fig S1).
308 Structural characterisation of VelcroVax

309 To characterise VelcroVax structurally and assess the impact of SUMO-Affimer insertion, we
310 generated high-resolution structures of VelcroVax VLPs. Notably, as a result of the tandem

311  arrangement of VelcroVax, the T = 3* configuration does not conform to icosahedral
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312 symmetry. Each VelcroVax subunit comprises two connected HBcAg monomers, only one of
313  which is modified with an Affimer, generating an imbalance between what would be true
314  icosahedral asymmetric units (Fig S3A). As such, this configuration was termed T = 3* rather
315 than T = 3, and five-fold (C5) symmetry was imposed during image processing rather than
316  icosahedral symmetry (I11), which was imposed for the T = 4 VLP. Freshly purified VLPs were
317 used for cryoEM data collection, and structures were determined for both T = 4 (at 2.9 A

318  resolution) and T = 3* (at 3.6 A resolution) configurations (Fig 2, Fig S2).

319 In general, VelcroVax showed a high level of structural similarity to unmodified HBcAg. For
320 comparison, the atomic model for T = 4 VelcroVax was aligned with the best-matched subunit
321  from a 2.8 A resolution cryoEM structure of a T = 4 HBcAg VLP (PDB: 70D4%). An RMSD
322 value calculated between equivalent Co atoms was only ~1.5 A, and visual inspection
323  revealed a high degree of overlap (Fig 2A). Most of the variation appeared to localise to the
324  four-helix bundles, as might be expected given the proximity of this region to the inserted
325  Affimer in VelcroVax.

326  Although the majority of the VLP was well resolved, density for the SUMO-Affimer was not
327 evident in reconstructions of either T = 4 or T = 3* VelcroVax VLPs. However, at low contour
328 levels, weak, diffuse density was visible above four-helix bundles. Forboth T=4and T = 3*
329  VLPs, maps low-pass filtered to 10 A revealed additional density above the four-helix bundles
330 consistent with the expected size of the Affimer (Fig 3), confirming that Affimers were likely

331  present, but were not resolved to high resolution.

332 In an attempt to resolve Affimer density, data for the T = 4 configuration of VelcroVax was
333  subjected to symmetry expansion and focussed 3D classification, using a mask to isolate the
334  region above the four-helix bundle. However, while there was considerable variation between
335 classes, none of the classes contained well-resolved Affimer density (Fig S4), confirming the
336  high level of variability in Affimer positioning. Because of its unique symmetrical properties
337 and therefore much more limited chance of success, focussed classification was not attempted
338 for T = 3* data.

339  Generation and capture of JUNV gpl

340 To determine whether VelcroVax retained a functional Affimer and thus was a suitable
341 candidate for future immunisation work, we investigated the ability of VelcroVax particles to
342  capture a SUMO-tagged antigen. Given its importance as a target for neutralising antibody
343  responses®®®, we elected to use the gpl subcomponent of the arenavirus gpl spike from
344 JUNV as a candidate immunogen. We firstly produced and purified C-terminally SUMO-
345 tagged JUNV gpl from HEK293T cells. The glycoprotein was purified with successive rounds
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346  of IMAC and SEC (Fig 4A), and SDS-PAGE followed by Coomassie blue staining verified the
347  presence of glycoprotein within the peak fraction (Fig 4B). The binding of SUMO-tagged JUNV
348 gpl to VelcroVax was assessed by indirect ELISA. After coating EIA plates with PBS, wt
349 HBcAg VLPs or VelcroVax overnight, wells were blocked, and glycoprotein was added. A
350 JUNV gpl specific antibody was used to detect the glycoprotein within each well. No JUNV
351 gpl was detected in the wells coated with PBS, or wt HBcAg. However, wells coated with

352  VelcroVax bound JUNV gpl in a concentration-dependent manner (Fig 4C).
353  Comparative immunisation

354  To compare the immunological consequences of immunisation with free glycoprotein with that
355 presented on VLPs, immunisation trials were carried out in BALB/c mice. To this end, two
356  groups of 7 mice were immunised three times at two-week intervals with JUNV gp1 mixed with
357  wt HBcAg VLPs or bound to VelcroVax. Immunisations were administered subcutaneously in
358 the presence of 2.5 nmol CpG ODN1668 and serum samples were collected between boosts,

359  and two weeks after the final dose was administered (Fig S5).

360 Serum samples collected at completion of the immunisation series were assessed for the
361  presence of IgG antibodies directed against HBcAg, VelcroVax, and JUNV gpl (Fig 5A). Mice
362  immunised with the wt HBcAg and JUNV gpl generated antibodies reactive with HBCcAg at
363 titres greater than 1:4000. Although VelcroVax VLPs retain one unmodified HBcAg monomer
364  per subunit, the antibodies generated against wt HBcAg recognised VelcroVax particles
365  poorly. Similarly, the group immunised with wt HBcAg and JUNV gp1l did not generate high
366 titre anti-gpl antibodies. However, mice immunised with VelcroVax and JUNV gp1 generated
367 antibodies which efficiently recognised JUNV gpl and VelcroVax but not wt HBcAg (Fig 5a).

368  To better understand the T helper (Th) bias of the immune responses generated we carried
369  out antigen-specific isotyping of immune sera. Plates were coated with antigen and blocked
370 as described above. Antisera were added to wells and incubated before the addition of
371  isotype-specific detection antibodies. Both HBcAg and VelcroVax induced high levels of both
372 1gGl and IgG2a, suggesting a balance between Thl and Th2 type responses (Fig 5B).
373 Interestingly, despite the balanced response generated against HBcAg in the HBCAg
374  immunisation group, the unbound JUNV gpl-specific antibodies induced were almost
375  exclusively IgG1, indicating a strong Th2 bias directed against the glycoprotein. In contrast
376  the anti-JUNV gpl antibodies generated by VelcroVax-JUNV gpl immunisation were
377 balanced between IgG1l and IgG2a (Fig 5B), a potentially important characteristic for the

378 development of effective viral vaccines.

379  We further assessed whether there was an isotype-specific bias in the responses against the

380 peptide or glycan components of JUNV gpl. We incubated the glycoprotein with or without
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381 PNGaseF overnight before assessment by isotype-specific ELISA. While deglycosylation
382  reduced the overall reactivity of antisera with JUNV gp1, there was no significant shift in the
383  isotype preference (p = 0.3437) (Fig S6). No direct neutralisation of pseudovirus was detected
384  using sera from either immunisation group at 1:100 dilution (Fig S7A). At a higher serum
385  concentration (1:10) limited neutralisation was detected in some serum samples, and the
386  VelcroVax group showed higher direct neutralisation at 1:10 dilution compared to the wt
387 HBcAg immunisation group (P = 0.01), although mean neutralisation was just 24.89%.
388  Additionally, neutralisation did not correlate with total reactive antibody titre (Fig S7B & S7C)
389  orisotype (qualitative).

390
391 Discussion:

392 There is a global need for rapid development of vaccines that are adaptable to emerging
393  pathogens and deliverable at low cost for use in LMICs. One approach to achieve this goal
394 relies upon the development of a common carrier protein modified to present different haptens.
395 Thus, a single carrier may be utilised as the foundation for vaccines against a range of
396  pathogens, reducing vaccine development time and cost. To this end, we synthesised a carrier
397 nanoparticle based upon the HBcAg protein, containing an adapter sequence to allow the
398  post-purification coupling of haptens to VLPs. This hanopatrticle forms the basis of a modifiable
399  vaccine strategy. In addition to characterising the nanoparticle structurally, we selected JUNV
400 gplasanexemplar hapten and determined the functional implications of hapten-VLP coupling
401  on JUNV gpl immunogenicity.

402 HBcAg VLPs are formed from monomers assembled into dimers, with 90 (T = 3) or 120 (T =
403  4) of these dimers assembling to form particles approximately 30 and 34 nm in diameter,
404  respectively®®. These particles are arranged with external facing N-termini, a long helical
405  region followed by a flexible surface exposed loop (MIR), and another helical region leading
406  to an internal facing C-terminal end (Fig 1A). The genetic fusion of two monomers results in a
407 tandem HBcAg construct®®, and the introduction of an anti-SUMO Affimer?’ into the first MIR
408  of this tandem construct forms the basis of our VLP capture system, VelcroVax (Fig 1B).
409  Expression of HBcAg or VelcroVax in P. pastoris results in the efficient formation of VLPs,
410 each having diameters consistent with the formation of both T = 3 and T = 4 symmetric
411  particles (Fig 1C, Fig S1).

412  There are several published structures of wt and mutant HBcAg particles; however, no high-
413  resolution structures exist of tandem HBcAg VLPs. Using VelcroVax particles produced in
414  P. pastoris, we generated high-resolution structures of T = 3* and T = 4 symmetric particles,

415  with the proportions of both particle configurations found to be approximately equal. The T =
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416  3* reconstruction was less well resolved than the T = 4 reconstruction, likely because only
417  five-fold symmetry was imposed during refinement to account for the unique symmetrical
418 arrangement of T = 3* particles (Fig 2, Fig S2, Fig S3A). Both the T = 3*and T = 4
419  reconstructions had clearly resolved density for residues corresponding to the helices of both
420 HBcAg molecules within the tandem VelcroVax sequence. Unsurprisingly, given the presence
421  of flexible linking sequences, the SUMO-Affimer, the second MIR, and the internal Gly-Ser-
422  linker lacked defined density. The fact that each fused dimer could occupy one of two
423  orientations, leading to four unique arrangements per asymmetric unit for the T = 4 particle,
424  also likely contributed to the poorly defined density of these regions (Fig S3B). Focussed
425  classification yielded no improvement in Affimer density, and particles were distributed
426  relatively evenly between focussed classes, suggesting a high level of variability and flexibility
427  in this region, as expected (Fig S4). When a low-pass filter was applied to both T=3*and T
428 = 4 reconstructions, amorphous density was present above the four-helix bundles of the
429  capsid, consistent with the presence of the Affimer (Fig 3). Given the difficulty in resolving
430 flexible/mobile regions of the VLP at high resolution, we were unable to determine structurally

431  whether Affimers displayed on the surface of particles retained a native fold.

432  Therefore, to determine whether Affimers expressed in the context of VLPs retained
433  functionality we mixed SUMO-tagged JUNV gpl with VelcroVax and assessed binding by
434  ELISA (Fig 4). After confirming binding between VelcroVax VLPs and JUNV gp1, we carried
435 out an immunisation trial using the complexed particles. The gpl of JUNV forms a
436  subcomponent of the trimeric gp spike displayed on the envelope surface and facilitates
437  recognition of transferrin receptor 1 during host-cell entry®"8, suggesting it may be suitable
438  for the generation of directly neutralising antibodies. Importantly, rabbits immunised with 3
439 doses of JUNV gpl and adjuvant (80 ug/dose, GERBU Adjuvant P) generated 90%
440 neutralisation at 1:20 serum dilution®. Another study suggested JUNV gp1l can elicit directly
441  neutralising antibodies in mice, though this required three doses of 50 pg JUNV gpl in the
442  presence of complete Freund’'s adjuvant®, which is approximately 50x the glycoprotein
443  amount used here. Together these data suggest that antibodies directed against JUNV gpl
444  can be induced, though this does not appear to be particularly efficient and may require
445  presentation as a part of the higher order gp. A commonality among JUNV neutralising
446  antibodies is the presence of receptor-mimicking tyrosine residues (Ng et al, 2020).
447  Interestingly, these tyrosine residues primarily arise in the CDRH3 region of neutralising
448  antibodies, and these regions have the potential for greater diversity in species which utilise
449  somatic gene conversion during antibody maturation®. Somatic gene conversion has been
450  well documented in birds, sheep and rabbits; however, in humans and mice this mechanism

451  has not been extensively reported®® and its relative role is unclear. Presentation of JUNV gp1
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452 in the context of a nanoparticle vaccine may improve the maturation potential of antibodies

453  directed against the glycoprotein subunit.

454  Nanoparticle vaccines are superior to isolated protein immunogens for several reasons. Their
455 size (30-100 nm) facilitates improved recognition, uptake and enhanced antigen
456  presentation'®2324 and their repetitive structure enhances the crosslinking of receptors on B
457  cells, which functionally improves signalling and is coupled with a shift in the cytokine milieu
458 leading to a more balanced Th1/Th2 type response?®. While the antibodies generated from
459  immunisation only neutralised pseudovirus at low levels (Fig S7), the coupling of JUNV gp1l to
460  VelcroVax both increased anti-JUNV gpl antibody titres and generated a balanced Th1/Th2
461  response, as indicated by antibody isotypes (Fig 5). The stimulation of IgG2 antibodies has
462  been associated with viral clearance in vaccination for influenza and thus the stimulation of
463  Thi-type antibody may be desirable in vaccines seeking to limit disease severity®?. As is the
464  case with most peptide immunogens, this balance was not observed for the uncoupled JUNV
465  gpl immunisation group where anti-gpl antibodies were predominantly IgG1 (Th2) (Fig 5b).

466  Similar to previous studies using JUNV gpl as an immunogen, vaccination with JUNV gpl
467  coupled to VelcroVax failed to induce high-titre directly neutralising antibodies. Importantly,
468  the broad response generated by the VelcroVax-JUNV gpl complex indicates a more effective
469  presentation of the target antigen when compared to unbound antigen. This broad response
470 is generally desirable and, similar to responses directed against other viruses, may contribute
471  to immunological protection in the absence of efficient direct neutralisation®?®. We therefore
472  propose that the VelcroVax platform offers an adaptable system for future VLP vaccine
473  applications.

474
475
476
477
478
479
480
481
482

483
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709  Figure 1. Generation of HBcAg and VelcroVax in Pichia pastoris. (A) X-ray crystal
710  structure of a HBcAg dimer (PDB: 1QGT“8). The locations of the C-terminal end of monomer
711 1 and N-terminal end of monomer 2, and the major immunodominant regions (MIR), are
712  indicated. (B) Organisation of HBcAg, tandem HBcAg, and VelcroVax constructs with amino
713  acid positions indicated. Representation depicts MIR, arginine-rich repeat (RRR), glycine-
714  serine linking sequence (GS) and the insertion site of a SUMO Affimer within the MIR of the
715  first of the fused HBcAg monomers. (C) Anti-HBcAg western blot of gradient purified HBcAg
716  and VelcroVax particles produced in Pichia pastoris, probed with 10E11, representative

717  figures, n = 3.
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Figure 2: Structural characterisation of VelcroVax VLPs. Full and sectional isosurface
representations of density maps for (A) T =4 and (B) T = 3* VelcroVax VLPs, filtered by local
resolution, shown at the same contour level and coloured according to the same radial
colouring scheme. In each case an expanded view of an individual asymmetric unit (T = 4 —
11 symmetry; T = 3* — C5 symmetry) and corresponding atomic models are shown. For the T
= 4 asymmetric unit, the VelcroVax atomic model (green) is overlaid with the cryoEM structure
of wt HBCcAg (grey, PDB: 70D4%°),
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Figure 3: Affimer density in low-pass filtered VelcroVax VLP reconstructions. Sections
of local resolution-filtered density maps for (A) T =4 and (B) T = 3* VelcroVax VLPs following
application of a 10-A low-pass filter. Amorphous Affimer density (orange highlight) is visible
above VelcroVax four-helix bundles. (C) Atomic model for a single VelcroVax monomer
(green) with a SUMO-Affimer homology model (orange) manually positioned above the four-
helix bundle, indicating the expected position of the Affimer based on the density shown in
(A,B).
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Figure 4: Generation of JUNV gp1l and interaction with VelcroVax. SUMO-tagged JUNV
gpl was produced in HEK293T cells and patrtially purified before processing through a final
round of SEC. (A) Representative SEC elution profile for recombinantly derived JUNV gp1l.
(B) Reducing Coomassie-stained SDS-PAGE of SEC-purified JUNV gpl with pertinent
molecular mass standard sizes indicated in kDa. (C) ELISA was used to assess binding of
HBcAg or VelcroVax to SUMO-tagged JUNV gpl. Particles coated on plates were
subsequently incubated with JUNV gpl and probed with anti-JUNV gpl clone OD01-AAQ9,
followed by incubation with anti-mouse HRP. Plates were incubated with OPD and the OD

was read at 492 nm, graphed mean + SEM, n = 3 in duplicate.
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786  Figure 5: Reactive antibody titres and isotypes. Antisera generated by immunisation of
787  mice with HBcAg and JUNV gpl or VelcroVax and JUNV gpl were assessed for (A) total
788  reactive titres with HBcAg, VelcroVax, and JUNV gpl. Sera were assessed at dilutions
789  between 1:250-4000, n = 7 in duplicate, graphed mean, 25" and 75" percentile with minimum
790 and maximum ODs indicated. (B) Sera were subsequently assessed for isotype-specific
791  reactivity with HBcAg, VelcroVax, and JUNV gpl. Sera were assessed at 1:125 dilution, n =
792 7 in duplicate, graphed mean and SEM.

793
794
795
796
797
798

799

26


https://doi.org/10.1101/2022.04.22.489148
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.489148; this version posted April 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

800 Supplementary material:

VelcroVax

801

802

803  Figure S1: Characterisation of unmodified HBcAg and VelcroVax by negative stain EM.
804  Representative micrographs of unmodified HBcAg (WT) and VelcroVax. For each, scale bars

805  represent 200 nm (full micrograph) or 50 nm (expanded inset).
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Figure S2: VelcroVax cryoEM data collection and image processing. (A) Representative
micrograph from VelcroVax cryoEM dataset. Scale bar indicates 100 nm. (B) Representative
class averages from 2D classification of VelcroVax patrticles, including both T=4 and T = 3*
VLPs. (C) Fourier shell correlation (FSC) plots for final reconstructions of T =4 (left) and T = 3*
(right) VLPs. Nominal resolutions are indicated, and were determined using the FSC = 0.143
criterion with high-resolution noise substitution to correct for any overfitting (black line,

‘corrected’).
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Figure S3: Inherent asymmetry within VelcroVax subunits. (A) Schematic illustrating how
the tandem nature of VelcroVax does not conform to icosahedral symmetry in the T = 3*
arrangement. Each VelcroVax monomer is formed from a tandem HBc subunit (green) linked
by a flexible linker (beige) and a single Affimer (orange). This does not fit within the strict
asymmetric unit (pink) of a true T = 3 VLP. (B) VelcroVax subunits can be incorporated into
the asymmetric unit (here, T = 4) in either direction, leading to variation in the position of the
Affimers. This results in blurring of Affimer density when particles are averaged to generate
cryoEM reconstructions of VelcroVax VLPs.
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Figure S4: Focussed classification failed to resolve Affimer density. (A) Focussed
classification was performed with a cylindrical mask (grey) positioned above a four-helix
bundle from the reconstruction of VelcroVax in the T = 4 arrangement. (B) All classes from
focussed classification, with the proportion of sub-particles assigned to each class indicated.
Classes are shown oriented in the same way as the mask shown in the inset in (A).
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Figure S5: Immunisation schedule. Two groups of 7 female BALB/c mice were immunised
three times at two-week intervals with a total of 2 ug protein, according to the above schedule.
Vaccines were composed of 1 ug JUNV gpl, 1 ug VLP (HBcAg or VelcroVax), 2.5 nmol CpG
ODN 1668 in a total volume of 200 uL. Intermittent blood samples were collected on day 13

and 27. At the conclusion of the experiment mice were humanely sacrificed, blood was

collected via cardiac puncture while animals were under terminal anaesthesia.
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Figure S6: Glycan-specific antibody isotype. JUNV gp1 untreated or deglycosylated using
PNGaseF. (A) Deglycosylation was confirmed using Coomassie stained SDS-PAGE. (B)
Antisera generated from the immunisation of mice with HBcAg with JUNV gpl or VelcroVax
with JUNV gpl were assessed for isotype-specific reactivity against glycosylated or
deglycosylated JUNV gpl. Sera were assessed at 1:125 dilution, n = 7 in duplicate, graphed

mean and SEM.
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Fig S7. Pseudovirus neutralisation. JUNV pseudovirus was produced with a firefly

luciferase reporter and used to transduce RD cells. (A) The ability of immune serum to directly

neutralise 1x10° RLU pseudovirus was assessed at 1:100 dilution. Data graphed showing

average RLU of duplicate wells from individual animals, mean RLU/50 yL (n=7) £SEM. (B

and C) Sera was tested for pseudovirus neutralisation at 1:10 dilution and graphed as %

neutralisation relative to a non-serum containing control. Neutralisation from individual animals

was graphed against total JUNV gpl reactive titre at 1:250 dilution (complete reactive titres in

Figure 5). Graphed mean values from duplicate pseudovirus neutralisation wells from

individual animals, and mean OD 492 nm from n = 3 duplicate JUNV gpl ELISA.
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904 Table S1: CryoEM data collection parameters for VelcroVax.

905
VelcroVax
Microscope FEI Titan Krios
Detector mode Linear
Camera Falcon Il
Voltage (kV) 300
Pixel size (A) 1.065
Nominal magnification 75,000x
Exposure time (s) 1.3
Total dose (e/A?) 60
Number of fractions 40
Defocus range (um) -0.8t0 -3.0
Number of micrographs 3,643
Acquisition software Thermo Scientific EPU
906
907
908
909
910
911
912
913
914
915
916
917
918
919
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920 Table S2: Quantitative parameters and validation statistics related to cryoEM image

921 processing and model building.

Model T=4 T=3*
EMDB ID EMD-XXXXX EMD-XXXXX
PDB ID PDB-XXXX PDB-XXXX
CryoEM map processing
Symmetry imposed 11 C5
Number of particles 49,489 51,376
contributing to map
Map resolution 2.9 3.6
(FSC =0.143) (A)
Map resolution range at 29-34 3.4-51
atomic coordinates (A)
Map sharpening B factor -143 -183
(A?)
Residues modelled A: 1-75; 195— A: 1-76; 195-255; 285-357; 375-431.
255; 285-358; B: 1-76; 195-255; 285-359; 372—431.
375-431. C: 1-76; 192-255; 285-358; 375-431.
B: 1-76; 195— D: 1-75; 195-255; 285-358; 375-431.
255; 285-360; E: 1-76; 195-255; 285-358; 375-431.
372-431. F: 1-76; 195-255; 285-356; 377—431.
G: 1-76; 195-255; 285-358; 375-431.
H: 1-76; 195-254; 285-360; 372—431.
l: 1-75; 195-255; 285-360; 373—431.
J: 1-76; 195-255; 285-356; 375-431.
K: 1-76; 195-255; 285-358; 375-431.
L: 1-76; 199-255; 285-360; 372—-431.
M: 1-76; 195-255; 285-358; 375-431.
N: 1-76; 195-255; 285-360; 373-431.
O: 1-76; 195-255; 285-358; 375-431.
P: 1-76; 195-255; 285-358; 375-431.
Q: 1-76; 195-255; 285-360; 372-431.
R: 1-76; 195-255; 285-358; 375-431.
RMSD
Bond lengths (A) 0.0076 0.0068
Bond angles (9 1.13 1.11
Validation
All-atom clashscore 2.44 3.19
MolProbity score 1.12 1.38
Rotamer outliers (%) 0.21 0.21
Ramachandran plot
Favoured (%) 97.52 96.04
Allowed (%) 2.48 3.96
Outliers (%) 0.00 0.00

922
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