

1 A transcriptional program shared across lineages underlies cell 2 differentiation during metazoan development

3 ¹⁺*Marina Ruiz-Romero, ^{1,4+}Cecilia C. Klein, ¹Sílvia Pérez-Lluch, ^{1,\$}Amaya Abad, ^{1,#}Alessandra
4 Breschi, ^{12*}Roderic Guigó

5

6

7 ¹Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST),
8 Dr. Aiguader 88, Barcelona 08003, Catalonia, Spain

9 ²Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain

10 ⁴ Departament de Genètica, Microbiologia i Estadística and Institute of Biomedicine (IBUB),
11 Universitat de Barcelona. Barcelona, Catalonia, Spain

12 [#] Current address: Tempus Labs, Inc.

13 \$ Current address: Center for Applied Medical Research (CIMA), University of Navarra and Institute of
14 Health Research of Navarra (IdiSNA), Pamplona, Spain.

15 +: these authors have contributed equally to this work.

16 * Corresponding authors: marina.ruiz@crg.eu, roderic.guigo@crg.eu

17

18

19

20

21

22

23

24

25

26

27 **Abstract**

28

29 **Background**

30 During development, most cells undergo striking changes in order to develop into functional
31 tissues. All along this process, the identity of each tissue arises from the particular combination
32 of regulatory transcription factors that specifically control the expression of relevant genes for
33 growth, pattern formation and differentiation. In this scenario, regulation of gene expression
34 turns out to be essential to determine cell fate and tissue specificity.

35

36 **Results**

37 To characterize the dynamic transcriptional profiles during cellular differentiation, we tracked
38 down the transcriptome of committed cells in different *Drosophila melanogaster* tissues and
39 compartments at a number of developmental stages. We found that during fly development,
40 temporal transcriptional changes shared across lineages are much larger than spatial lineage-
41 specific transcriptional changes, and that cellular differentiation is dominated by a transcriptional
42 program, common to multiple lineages, that governs the transition from undifferentiated to fully
43 differentiated cells independently from the differentiation end point. The program is under weak
44 epigenetic regulation, and it is characterized by downregulation of genes associated with cell
45 cycle, and concomitant activation of genes involved in oxidative metabolism. Largely orthogonal
46 to this program, tissue specific transcriptional programs, defined by a comparatively small
47 number of genes are responsible for lineage specification. Transcriptome comparisons with
48 worm, mouse and human, reveal that this transcriptional differentiation program is broadly
49 conserved within metazoans.

50

51 **Conclusions**

52 Our data provides a novel perspective to metazoan development, and strongly suggest a model,
53 in which the main transcriptional drive during cell type and tissue differentiation is the transition
54 from precursor undifferentiated to terminally differentiated cells, irrespective of cell type.

55

56 **Keywords**

57 Tissue differentiation, development, gene regulation, evolutionary conservation

58

59 **Background**

60

61 All pluricellular organisms develop from a single totipotent cell. In the course of development,
62 cells proliferate and commit to distinct cell fates to ultimately, through cell differentiation,
63 produce a plethora of cell types that combine in specialized tissues and organs. Such a diversity
64 of cell types, all sharing the same genome sequence, is the consequence of differential
65 expression of specific genes, which is driven by complex transcriptional and epigenetic
66 regulatory networks. The conventional view of differentiation explains cell fate commitment as a
67 linear and progressively restricted path that is distinctive for each specific cell type (based on
68 Waddington's diagram of epigenetic landscape (1)). In this model, the transition from a
69 proliferative state to a differentiated quiescent state is achieved through several cell fate
70 decisions driven by precise epigenetic regulatory programs. However, studies from the last
71 decades in cell reprogramming, transdifferentiation and regeneration have slightly changed this
72 view, by showing that adult cells retain a certain plasticity and that the differentiation process is
73 reversible to varying degrees, both *in vitro*, for example in the case of reprogramming inducible
74 pluripotent stem cells (iPS cells) and *in vivo*, for example in the case of dedifferentiation and
75 transdifferentiation after injury (reviewed in (2)).

76

77 In the past two decades, research into the regulatory mechanisms underneath cell fate
78 and tissue differentiation has been enormously facilitated by next generation sequencing (NGS)
79 technologies. Recent single cell sequencing technologies, in particular, have led to the
80 identification of specific gene expression profiles associated with tissues or cell types in adult
81 organisms or after *in vitro* differentiation (3–9).

82

83 Here, we analyze the development of *Drosophila melanogaster* --an experimentally
84 manageable model within metazoans-- to characterize the temporal and spatial transcriptional
85 programs that underlie tissue differentiation during animal development. In contrast to
86 previously published fly development transcriptional studies, here we specifically, label
87 primordial cells from imaginal discs --internal epithelial sacs in larvae that are committed to give
88 rise to specific tissues in adults (10)--, isolate them using fluorescence-activating cell sorting
89 (FACS), and profile their transcriptional state with RNA-seq at different developmental stages.
90 Differential gene expression analysis reveals that, in contrast to the prevalent view, a
91 transcriptional program common across cell lineages governs the transition from
92 undifferentiated to fully differentiated cells, dominating tissue specific programs, which are

93 defined by a comparatively low number of genes, and tend to be activated late during
94 development. Comparative transcriptomics analyses show that this program is substantially
95 conserved across metazoans.

96

97

98 **Results**

99

100 **Spatial and temporal transcriptional analysis of imaginal discs during *Drosophila*** 101 ***melanogaster* development**

102

103 During fly metamorphosis, imaginal tissues undergo cell differentiation and morphogenetic
104 rearrangement to give rise to adult functional appendages (**Fig. 1A**). To investigate the
105 molecular basis of this process, we interrogated the transcriptome of imaginal tissues at
106 different stages during terminal fly development. Within each tissue and developmental stage,
107 we selected the precursor cells that differentiate into the adult tissue. To track down precursor
108 cells, we used GFP reporter lines, in which GFP is driven by the promoter of genes specifically
109 expressed in a particular region of each tissue. Briefly, imaginal tissues were manually
110 dissected and disaggregated by trypsin treatment. After that, cells were collected by
111 fluorescence-activating cell sorting (FACS), RNA was extracted and processed for NGS (see
112 Methods and **Fig. 1B** and **Supplementary Fig. 1A,B**). Overall we generated RNA-Seq data
113 from eye, leg and wing from three different stages: third instar larvae (L3, around 110 h of
114 development), when cells are predetermined and committed to specific cell types in adult, but
115 they are still undifferentiated and keep proliferative capacity(10), early pupa (EP, around 120 h
116 of development), immediately after entering pupariation and coinciding with Ecdysone hormone
117 signaling peak, and late pupa (LP, around 192 h of development, corresponding to 72 h after
118 pupa formation), when tissues are fully differentiated and almost functional. In addition, we also
119 generated RNA-seq data for antenna and genitalia discs (male and female), for L3 and EP.
120 Finally, we produced RNA-seq for four wing compartments (anterior, posterior, ventral and
121 dorsal) for the three developmental stages. In total, considering two replicates per condition, we
122 generated RNA-Seq data for 54 samples. In addition, we generated H3K4me3 ChIP-Seq for
123 eye, leg and wing at these three developmental time points (two replicates per condition, 18
124 ChIP-Seq samples, in total).

125

126 From the RNA-Seq data, we estimated expression values for 17,158 annotated genes
127 (FlyBase gene annotation r6.05, summary statistics of RNA-seq samples in Methods, all data
128 available at <https://rnamaps.crg.es>). Genes with known tissue specific (11–15), or
129 developmental (16–18) transcriptional patterns behaved as expected (**Fig. 1C** and
130 **Supplementary Table 1**).

131
132
133 **A common transcriptional differentiation program is shared across tissues during fly**
134 **development**

135
136 Principal component analysis (PCA) and hierarchical clustering (**Fig.1D, Supplementary Fig.**
137 **2A, B**) show that samples cluster preferentially by developmental time than by tissue lineage.
138 That is, the transcriptomic profile of a given tissue at a specific stage of development is more
139 similar to the profile of other tissues at that stage, than to the same tissue in other
140 developmental stages. Using linear models (see Methods (19)), we estimated that the
141 proportion of the gene expression variance explained by the developmental time (41% on
142 average) is indeed much larger than that explained by the tissue (22%) (**Fig. 2A, B**). During fly
143 tissue differentiation, therefore, temporal changes of gene expression dominate over spatial
144 changes.

145
146 From a set of 9,334 genes that are expressed at least 5 TPMs in at least two samples,
147 we identified a set of 2,034 genes that change expression across tissues (eye, leg and wing)
148 and/or time points (Developmentally Dynamic Genes, DDGs, see Methods(20)). We classified
149 these genes in three categories: differentially expressed across developmental stages (stage
150 genes, SGs, 1,445 genes, consistently with the result above, the largest category), across
151 tissues (tissue genes, TGs, 345) and across both tissues and stages (tissue-stage genes,
152 TSGs, 255), **Supplementary Table 2**). Within SGs, we further classified genes as
153 downregulated or early differentiation genes (822 genes, 56%, preferentially expressed in L3
154 and EP), upregulated or late differentiation genes (571 genes, 39.5%, preferentially expressed
155 in LP), and peaking or metamorphosis entrance genes (52, 4.5%), which are upregulated at EP
156 in all tissues (**Fig. 2C** and **Supplementary Fig. 3A,B**). Early genes are associated with cell
157 cycle, gene regulation, RNA processing and translation processes; metamorphosis entrance
158 genes to endoplasmic reticulum localization and apoptosis signaling, and late genes are related
159 to cuticle formation and chitin metabolism (**Supplementary Fig. 3C**). Among the late genes, a

160 large fraction (324, 57%) are poorly characterized genes with no associated functions,
161 compared with 42% of metamorphosis entrance genes, and 27% of early genes. This could be
162 ascertainment bias, as most functional characterization studies in flies are performed in
163 developing, not in fully differentiated, animals.

164

165 TGs are enriched for the expected tissue-specific cell fate functional categories
166 (**Supplementary Fig. 3D**). Some of these genes are known to be essential to regulate cell
167 determination and tissue formation during development (e.g. *ey* and *gl* in eye). TGs correspond
168 broadly to genes that are already differentially expressed at L3, when cells within imaginal
169 tissues are undifferentiated, and remain differentially expressed all through development. TSGs,
170 in contrast, are genes activated in a tissue specific manner only at specific developmental time
171 points. We found that most TSGs are specifically activated in the transition from EP to LP,
172 driven mostly by an expansion of eye specific genes. This results in a larger number of tissue
173 specific genes at the terminal stage of differentiation associated to each tissue function (**Fig. 2D**
174 and **Supplementary Fig. 3E**). Transcriptional differences between tissues, therefore, increase
175 with developmental time (**Fig. 1D, 2D**), suggesting that an expansion of tissue regulatory
176 programs is needed for terminal tissue differentiation.

177

178 Overall, our results strongly suggest that during fly development, there is a temporal
179 transcriptional program common to all tissues that dominates over tissue specific transcriptional
180 programs, which are defined by a comparatively small number of genes. This program is of
181 fractal nature, as it can be observed at different organizational scales. Indeed, we produced and
182 analyzed expression data from the distinct compartments within wing imaginal discs. As with
183 tissues, variation of gene expression is much larger across developmental time than across
184 compartments (**Supplementary Fig. 4A,B,C**) and the transcriptional behavior of DDGs within
185 the wing imaginal discs replicates the behavior observed among imaginal discs during
186 development (**Supplementary Fig. 4D**).

187

188 We have investigated the epigenetic features underlying the fly temporal differentiation
189 program. We generated H3K4me3 ChIP-Seq profiles for eye, leg and wing differentiating
190 tissues and analyzed FAIRE-Seq data available for these tissues to assess chromatin
191 accessibility (21). We focused on the core promoters (+- 250bp from the transcription start sites,
192 TSS). Overall, we found most DDGs either in closed conformation and/or unmarked, or
193 unspecifically open and/or marked (**Fig. 3A, Supplementary Fig. 5A-D**), Chromatin

194 accessibility, and H3K4me3 marking in particular, mostly reflect, actually, the breadth of gene
195 expression. Genes with restricted expression (expression restricted to a single stage or/and
196 tissue) are in closed chromatin conformation or/and unmarked more often than genes with
197 widespread expression (**Fig. 3A, Supplementary Fig. 5A-E**). This is consistent with previous
198 reports that show absence of marking by canonically activating histone modifications in genes
199 regulated during fly development (15,22,23). The exception are early genes with restricted
200 expression patterns. These tend to be marked at early developmental stages and remain
201 marked in late differentiation, even when not being expressed.

202

203 These results suggest that the fly transcriptional developmental program is, broadly,
204 under weak promoter epigenetic regulation. We did find, however, a strong enrichment of
205 transcription factors (TFs) within TGs (20%) compared to SGs (6%) or TSGs (5%, Fisher's
206 Exact Test on Count Data, $p<0.001$) (**Fig. 3B,C**), suggesting that TFs play a comparatively
207 more important role in spatial than in temporal differentiation. Within SGs the number of TFs is
208 higher in early than in late genes, in concordance with previous observations during mammalian
209 development (24).

210

211

212 **A developmental gene regulatory network in fly differentiation**

213

214 Gene regulatory networks (GRNs) integrate information from transcriptional regulators and their
215 targets to provide a holistic view of the regulatory program of a particular biological process.
216 Previous studies have successfully used transcriptional-based GRN to model gene regulation
217 along developmental processes (12,25,26). Here, we used Weighted Correlation Network
218 Analysis (WGCNA) (27) to construct a differentiation co-expression network connecting
219 Developmentally Dynamic genes (DDGs) with their putative regulatory TFs. To identify reliable
220 TF-target pairs, we scanned for conserved TF binding motifs occurring in open chromatin
221 regions within the promoter regions of the target genes (see Methods for details,
222 **Supplementary Fig. 6A**).

223

224 The resulting GRN includes 1,656 nodes (1,485 DDGs and 229 TFs), and 14,039 edges
225 (**Fig. 4A, Supplementary Fig. 6B-F, Supplementary Fig. 7 A,B** and **Supplementary Table 3**).
226 The WGNA identified 15 regulatory clusters (**Fig. 4B, Supplementary Fig. 6G-I**), to which we
227 associated functional categories by GO enrichment analysis (**Fig. 4C, Supplementary Fig. 8**

228 and **Supplementary Table 3**). Clusters 1 to 3 form a super-cluster mostly composed of early
229 genes. Cluster 1 is functionally associated with regulation of gene expression (**Fig. 4C**,
230 **Supplementary Fig. 8**) and, as expected is the cluster with the highest number of interactions
231 (8,486, **Fig. 4D**). The TFs in the cluster include general transcriptional regulators, known to
232 have functions on chromatin structure and regulation of gene expression like BEAF-32, Dref, Z,
233 Dalao, BAP170 or Br; developmental chromatin remodelers such Trl, Pcl, Pho and Phol;
234 insulators like Cp190 and SuHw; TFs associated to imaginal disc morphogenesis, like Hth, Exd,
235 Sd, Da, Mad, Ets21C, Rn, Myc or Max; as well as TFs related to metabolic regulation, like
236 Bigmax, Foxo and ATF-2 (**Supplementary Fig. 7C**). Although these TFs bind many early
237 genes, interactions with late genes and TGs were also predicted. Clusters 2 and 3 are
238 functionally associated with cell cycle and translation, respectively. Clusters 4 and 5,
239 corresponding to very few peaking genes (**Supplementary Fig. 6H**) could also be included in
240 this super-cluster (**Fig. 4A**).
241

242 Clusters 6 to 9 form a second super-cluster mostly composed of late genes. Only one of
243 these, cluster 6, is preferentially regulating late genes, while the TFs within cluster 7 and 9 are
244 predicted to have high number of interactions also with early genes, suggesting potential
245 negative regulation (**Fig. 4C,D**). Among these TFs, many are activated through stress, immune
246 and hormonal signaling pathways, like dl, Gce, Hr4, Kay, Rel, Eip74EF, Eip75B and Eip93F;
247 and many are known or predicted to have repressor capacity. This hints at a possible link
248 between whole animal signaling and SGs. Signaling cascades, likely associated with
249 metamorphosis, could induce expression of TFs that may repress early genes and activate late
250 genes. Additionally, cluster 8 includes ten TFs: Abd-B, Awh, D, Gsb, Gsb-n, Lim1, Odd, Opa,
251 Retn, Sob, all known to play a role in development and patterning, that predominantly interact
252 with cell cycle genes (cluster 2, **Fig. 4D**).
253

254 Clusters 10 to 13 form a third super-cluster mainly composed of eye genes and eye late
255 genes. They are functionally associated with eye morphogenesis and neural fate. Among them,
256 cluster 12 is associated specifically with eye development, and includes eye fate regulators and
257 neurogenesis inductors predicted to preferentially bind eye genes (**Fig. 4D**). These include well
258 characterized genes like: ey, gl, mirr, toy, oc, pnt, ro, scrt, ttk, lola and so (**Supplementary Fig.**
259 **7D**). Some TFs inside these clusters, which are not necessarily expressed in a restricted
260 manner in the eye, are predicted to also bind several early genes. The same is observed for
261 TFs in cluster 14 (leg) and 15 (leg and/or wing, **Fig. 4D**), which form the fourth super-cluster.

262 These results point to a possible crosstalk in which tissue fate regulators mediate down-
263 regulation of early genes when tissues differentiate.

264

265 TF-target interactions tend to take place within super-clusters that are associated to
266 different temporal (early, late) and spatial (eye, leg-wing) niches (**Fig. 4D**), suggesting that the
267 temporal expression program is largely orthogonal, with some, but little, cross-talk with tissue
268 specific regulatory programs (**Fig. 4A,C,D**). Further plotting the network according to
269 betweenness centrality, in which highly connected nodes are placed in proximity irrespective of
270 the direction of the correlation (**Supplementary Fig.7A,B**), revealed that early genes are highly
271 connected with TFs regulating a large number of genes, while late genes are more sparsely
272 connected to their regulators, consistent with our observation that tissue specific expression
273 programs unfold late during development (**Fig. 1C, 2C,D**).

274

275 The GRN helps to functionally characterize the temporal differentiation program shared
276 across tissues. In this program, the transition from precursor to differentiated states is driven,
277 independent of cell type, by downregulation of genes associated with cell cycle (cluster 2), with
278 regulation of gene expression (cluster 1) and with translation (cluster 3), and by a concomitant
279 activation of genes involved in oxidative metabolism and other metabolic pathways (cluster 7),
280 and in (terminal) differentiation (cluster 6 and 8).

281

282

283 **The fly transcriptional differentiation program captures the transition from
284 undifferentiated to terminally differentiated cells, irrespective of the differentiation end
285 point**

286

287 To further corroborate our results, we have analyzed other fly developmental transcriptome
288 data, which is not from tissue isolated cells, but from the whole body and from specific tissues.
289 First, when analyzing data from carcass, central nervous system (CNS) and fat body available
290 for L3 and LP or adult(22,28), we found that the expression of SGs clearly differentiates early
291 from late stages (**Fig. 5A, Supplementary Fig. 9A**). This was true in particular for carcass and
292 CNS that, as imaginal discs, contain mostly undifferentiated cells in L3 and experience
293 differentiation during metamorphosis, while the fat body is already differentiated at L3 (review in
294 (29)).

295

296 Next, we have analyzed whole body RNA-seq data from the modENCODE project which
297 is available at much higher temporal resolution (28,30) (**Figure 5B**). We found that early
298 differentiation genes are highly upregulated at the beginning of embryogenesis, coinciding with
299 active proliferation state, and their expression decreases around mid embryogenesis, coinciding
300 with morphogenetic arrangements and organ primordia specification. On the contrary, late
301 differentiation genes appear upregulated from mid to late embryogenesis, and in larval and
302 pupa stages compared to early embryogenesis. As expected, when measured on the whole
303 organism, containing heterogeneous cell types in different states of differentiation, the shift
304 between early and late gene expression can not be detected comparing L3 and LP stages (**Fig.**
305 **5B** and **Supplementary Fig 9B**). This suggests that the fly developmental transcriptional
306 program is actually associated with cell differentiation, and that the endpoints of this program
307 (early and late genes) correspond to undifferentiated and fully differentiated cells, rather than to
308 specific chronological differentiation time points. In additional support of this, we have analyzed
309 RNA-Seq data available for different cell types from the *Drosophila* adult midgut (31). We found
310 that in undifferentiated or primordia cells (intestinal stem cells and enteroblasts, respectively)
311 early genes are up-regulated compared to differentiated cells (enterocytes and enteroendocrine
312 cells), in which late genes are up-regulated, instead (**Fig. Supplementary 9C**).
313
314

315 **The fly transcriptional differentiation program is conserved in metazoans**

316
317 To investigate whether the fly temporal differentiation program is conserved outside from
318 insects, we analyzed RNA-Seq data from diverse organs at different developmental time points
319 available for mouse, human, and worm (24,32). We identified the 1-to-many orthologs of the set
320 of fly early and late genes (**Supplementary Table 4**) in each of these species. In the case of
321 mouse, more than 80% of orthologs of fly early and late genes were classified identically by
322 Cardoso-Moreira et al. (24) in at least one of the mouse tissues (**Fig. 6A**). Consistent with
323 tissue specialization during development, also observed in *Drosophila*, while 38% of early
324 orthologs are downregulated through differentiation in all four tissues (325 out of 850), only 11%
325 of late orthologs are upregulated in the four tissues (42 out of 372, **Fig. 6A**). In agreement with
326 the metabolic changes observed during fly development, early and late mouse orthologs are
327 functionally associated to different metabolic pathways, including nucleic acid metabolism for
328 early genes orthologs and ion transport and lipid metabolism for late ones (**Fig. 6B**).
329

330 We used self-organizing maps (SOM) to cluster the orthologous genes in each species
331 based on the developmental gene expression data in that species (**Fig. 6C-E and**
332 **Supplementary Fig. 10**). In the case of mouse, orthologs of fly early and late genes
333 (corresponding to 850 and 372 fly genes, respectively) clearly cluster apart (**Fig. 6D**). In every
334 tissue analyzed, the gene expression trajectory during differentiation followed a similar path,
335 replicating that observed in the fly, with higher expression of early orthologs in the first time
336 points of development gradually transitioning to higher expression of late orthologs in the last
337 time points (**Fig. 6E**). While early orthologs have similar widely distributed expression patterns
338 in early development, late orthologs show tissue-specific specialization late in development.

339 Next, we further investigated whether the specific associations TF-target detected in the
340 fly GRN were conserved in the mouse. We computed the correlation of expression between
341 orthologous TFs and orthologous targets across mouse samples for each tissue separately.
342 Since for each fly TF-target pair there may be multiple mouse orthologs TF-target pairs, we
343 selected the mouse TF-target pair with the closest correlation to the fly TF-target pair,
344 irrespective of the direction of the correlation. In all tissues, we found the TF-target associations
345 (direction and strength) strongly correlated between fly and mouse (**Fig. 6F**). We believe that
346 the assumption that the best correlated pair is the one most likely to have kept the fly function in
347 the mouse after the subfunctionalization and neofunctionalization, expected to occur following
348 gene duplication, is the most sensible one. However, it may also lead to inflated correlation
349 values. Thus, we have recomputed the correlations when considering all orthologous pairs for
350 each fly TF-target pair. While the correlations are, as expected, weaker, they are still highly
351 significant (**Supplementary Fig. 11**).
352

353 We found similar results when analyzing human and worm developmental expression
354 data (**Supplementary Fig. 10**). We then identified the most conserved TF-target pairs: 77 pairs
355 in the fly (nine TFs, 68 targets, **Supplementary Table 5**) having correlations higher than 0.5 in
356 all species). Among these, the most conserved pairs include the Hox cofactor Exd and the TGF-
357 Beta related factors Mad and Med as TFs. These TFs are predicted to regulate several
358 transcriptional and chromatin factors across all metazoans, like the members of the Brahma
359 complex: *Brm*, *Bap60* and *Dalao*, *Row*, *Glo* and *CG1620*, some splicing factors like *Hel25E* and
360 *B52* and some cell cycle regulators like *Mapmodulin* and *Grp*. Also Max, the cofactor of Myc, is
361 in the list of most conserved pairs regulating *RpS30*, involved in translation, and *CG8209* (the
362 ortholog of *UBXN1*, a general negative regulator of protein metabolism.
363

364 These results, all together, strongly suggest that the fly transcriptional differentiation
365 program is largely conserved within the metazoan lineage.
366

367 Discussion

368 Cell determination and differentiation are fundamental to tissue and organ formation and
369 ultimately organism development. To characterize the molecular basis of these processes, we
370 profiled gene expression of imaginal tissues during fly organ differentiation. In contrast to
371 previous work (4,18,21,33,34), we specifically labeled primordial cells with GFP and tracked
372 them along development. This allowed us to monitor changes precisely associated to particular
373 cells while they undergo differentiation (**Fig 1A and Supplementary Fig. 1**). The data produced
374 here, therefore, is a valuable resource to investigate transcriptomic changes in fly development.

375 Our analyses of this data suggest that the transition from precursor undifferentiated to
376 terminally differentiated cells is the consequence of two, partially orthogonal, transcriptional
377 programs. First, the general down-regulation of early genes and activation of late genes, which
378 is common to all differentiating cells, independently from the differentiation end point. Second,
379 the late specialized activation of genes defining tissue fate (**Fig. 7A**). The temporal
380 differentiation program clearly dominates the spatial program, which is defined by a relatively
381 small number of genes. This suggests that the Waddington landscape is less steep, and the
382 valleys less deep than often assumed, contributing to explain why transdifferentiation from a
383 terminal cell type to another can be forced with relative ease, either directly or through de-
384 differentiation.

385 We have built a differentiation gene regulatory network (GRN, **Fig. 4**) to help
386 characterize these programs from the functional standpoint. We found that genes generically
387 downregulated during differentiation are preferentially associated with cell cycle, regulation of
388 gene expression and translation. Remarkably, most genes (~ 60%) generically up-regulated
389 during differentiation have not been functionally characterized yet. We identified a cluster,
390 however, in the fly differentiation GRN (cluster 7), mainly composed of late genes involved in
391 oxidative metabolism and ion transport. These include *Vha14-1*, *Vha36-1*, *Vha68-2*, *VhaAC45*
392 and *VhaM9.7* (35) that encode for subunits of vacuolar H⁺ ATPase; and genes related to other
393 metabolic pathways, like *mmy* (36), *Gs1* (37), *Mfe2* (38) among others (**Fig. 4 and**
394 **Supplementary Fig. 7**). White et al. (39) previously described a transcriptional metabolic
395 change associated with metamorphosis entrance in *Drosophila*, and hypothesized that this
396 could reflect tissues preparing for cell death, or consequence of the transition from an active
397 larval state to a sessile pupa one. However, recent insights in early embryogenesis and stem
398 cell (SC) differentiation (reviewed in (40)) indicate that in mammalian embryonic SCs (ESCs)

399 oxidative capacity is reduced and glycolysis-dependent anabolic pathways are enriched
400 whereas mitochondrial function and oxidative metabolism positively correlate with SC
401 differentiation. Thus, experimental evidences based on mammalian ESCs reprogramming and
402 differentiation indicate that transcriptional programs regulating stemness influence energy
403 metabolism and metabolic enzymes ((41–44) review in (40)). In agreement with this, we found
404 that mouse orthologues of the early and late gene sets are enriched for genes associated with
405 different metabolic pathways (**Fig. 6B**). Altogether, our results suggest that the fly transcriptional
406 differentiation program may be regulating metabolic changes necessary for tissue differentiation
407 (**Fig. 7A**). Metabolomic assays to characterize the metabolic fluxes occurring in imaginal
408 tissues through differentiation would help to assess this hypothesis.

409 The fly transcriptional differentiation program, thus, appears to be under weak direct
410 epigenetic regulation. Chromatin accessibility appears quite stable and unspecific for genes
411 regulated during fly development, according to previous publication (21) (**Supplementary Fig.**
412 **5C,E**), and it does not seem therefore to play a key direct regulatory role. However, it could still
413 play an indirect role through the regulation of certain key fate regulators in specific tissues. For
414 example, we found three eye TFs (Scrt, Oli and Hmx) showing open promoters specifically in
415 the eye. These genes are involved in eye and neural fate specification, and regulate multiple
416 genes according to our GRN. For instance, among Scrt direct targets there are essential eye
417 fate regulators like Ey, So and Pnt. Marking by H3K4me3, on the other hand, reflects mostly the
418 breadth, rather than the specificity, of gene expression (**Fig. 3, Supplementary Fig. 5**). We
419 specifically found, however, that genes exclusively expressed in L3, tend to maintain the mark in
420 LP. H3K4me3, thus, is not actively erased from the switched-off promoters of these genes.
421 While the consensus in the field is that H3K4me3 is a conserved hallmark of active promoters,
422 recent reports (reviewed in (45)) show that it is dispensable for gene activation; our results
423 further suggest that it may not be sufficient either to drive and/or maintain transcription.

424 In contrast, the fly GRN predicts regulatory TF-target interactions for 74% of the genes
425 regulated during differentiation (DDGs). This suggests that the combinatorial action of TFs on
426 open promoters are likely to play the leading role in the regulation of DDGs during cellular
427 differentiation (reviewed in (46,47)). Further studies on TF occupancy in promoters and
428 enhancers during imaginal tissues differentiation, as well as direct and indirect protein-protein
429 interactions between TFs, are required to fully understand the regulation of the transcriptional
430 output of DDGs.

431 We found that the fly transcriptional differentiation program is broadly conserved among
432 metazoans (from worm to humans) (**Fig. 6E,D and Supplementary Fig.10**). Specifically in the
433 fly, we found that temporal transcriptional changes common to multiple cell types, as they
434 transition from undifferentiated to fully differentiated types, dominate over cell types specific
435 transcriptional changes. It has been recently shown that also during mammalian organ
436 development there is a temporal transcriptional program common across tissues (24,26).
437 However, in this case, tissue specific transcriptional changes seem to predominate (24,26). This
438 does not necessarily reflect a true biological phenomenon, but could partially be the
439 consequence of the difficulties of measuring in systems of large complexity. First, mammalian
440 organs are composed of a large number of cell types and tissues, which do not necessarily
441 differentiate and mature in a synchronous manner, especially in late development. In contrast,
442 the fly organs, at least those analyzed here, (eye, leg and wing), are simpler, composed by a
443 reduced number of cell types (48–50), which, as a result of metamorphosis, mature in a more
444 synchronized manner. Second, as vertebrates suffered several rounds of whole genome
445 duplications, duplicated genes underwent different paths of neo- and sub-functionalization
446 (51,52), evolving divergent(53–55) or redundant regulatory profiles (56,57) and making difficult
447 to correctly identify TF-target interactions. In *Drosophila*, in contrast, reduced genome
448 complexity facilitates the identification of these interactions. This can actually be seen when
449 comparing the fly TF-target interactions in other species. Thus, in worm, with reduced genome
450 complexity compared to human and mouse, the drop in TF-target correlations when computed
451 over all orthologous TF-target pairs compared to the best pair is less dramatic than in the
452 mammalian species. Thus, the relative simplicity of the fly developmental system allows for the
453 discovery of general trends, which are obscured, and thus more difficult to detect, in more
454 complex (mammalian) systems.

455 Finally, further analysis at single cell level will contribute to understanding the temporal
456 and spatial transcriptome determinants of cellular differentiation.

457

458

459

460

461

462 **Conclusions**

463 In summary, we investigated the regulatory transcriptional programs underlying cell lineages
464 differentiation. Our results show that transcriptional changes occurring during cellular
465 differentiation are likely to predominantly reflect the progressive loss of pluripotency and the
466 gain of a mature metabolic state, as cells transition from undifferentiated to terminally
467 differentiated states. These changes are common to most cell types, and dominate those
468 underlying lineage specification and tissue specificity, which affect a relatively small number of
469 genes. A network of TFs regulates, mainly, the cell differentiation transcriptional program and
470 this GRN is conserved across metazoans during development. This novel gene regulatory
471 program will help to better understanding of many differentiation events, both, *in vivo* and *in*
472 *vitro*, and could contribute to the improvement of differentiation *in vitro* processes.

473

474

475 **Methods**

476

477 ***Drosophila melanogaster* strains**

478 Fly strains used for this study were: *nubbinGAL4;UAS-GFP* (selection of wing primordial cells),
479 *GMRGAL4;UAS-GFP* (selection of eye cells) and *p{GAW}rnGAL4-5;UAS-GFP* (selection of leg
480 cells and antenna cells), *enGAL4;UAS-GFP* (selection of anterior and posterior compartments in
481 wing), *apGAL4;UAS-GFP* (selection of ventral and dorsal compartments in wing),
482 *ubiRFP;p{GawB}C68a;UAS-GFP* (male and female genitalia discs). Flies were grown in
483 standard media at 25°C.

484

485 **Cell sorting, RNA isolation, library preparation and sequencing**

486 Imaginal tissues from third instar larvae (110-115h after egg laying), early-pupa (120-130h) and
487 late pharate (225-235h) were dissected in PBS 1x and incubated for 1h in a 10x trypsin solution
488 (Sigma T4174) at room temperature in a rotating wheel. Cells were vigorously pipetted and kept
489 on ice in Schneider's insect medium. To discard dead cells, DAPI was added to the sample at 1
490 µg/mL final concentration. Cells were sorted in a FACSaria (BD) with the 85 µm nozzle at the
491 Flow Cytometry Unit of the University Pompeu Fabra and the Centre for Genomic Regulation
492 (UPF-CRG, Barcelona, Spain). Cells of interest were collected for subsequent analyses

493 **(Supplementary Fig. 1B).** RNA from sorted cells was extracted with the ZR-RNA MicroPrep Kit
494 from Zymo Research following the manufacturer's instructions. Sequencing libraries were
495 prepared using TruSeq Stranded mRNA Library Preparation Kit from Illumina and following the
496 manufacturer's instructions. Sequencing was performed in a HiSeq sequencer from Illumina at
497 the Ultrasequencing Unit of the CRG. A minimum of 50 million paired-end 75 bp-long reads
498 were obtained per replicate and two replicates were performed per each tissue.

499

500 **RNA-seq experiments**

501 Stranded paired-end RNA-seq data for 27 samples in two bio-replicates were generated. The
502 raw data (FASTQ), mapped data (BAM) and lists of quantified elements are available
503 <https://rnamaps.crg.cat/>.

504

505 **RNA-seq data processing and analysis**

506 We processed the data using the in-house pipeline grape-nf (available at
507 <https://github.com/guigolab/grape-nf>). RNA-seq reads were aligned to the fly genome (dm6)
508 using STAR 2.4.0j(58) allowing up to 4 mismatches per paired alignment. We used the FlyBase
509 genome annotation r6.05(59,60). Only alignments for reads mapping to ten or fewer loci were
510 considered. On average 92% of reads were mapped and 85% of the initial number of reads
511 were uniquely mapped to the fly dm6 genome. Of these, 92% mapped to exonic regions.

512

513 Gene and transcripts were quantified in Transcripts Per Kilobase Million (TPMs) using RSEM
514 (61). TPM values were recomputed including only protein coding and long non coding genes
515 (13,920 and 2,470 genes, respectively). Only genes expressed at least 5 TPMs in two samples
516 were considered for subsequent analyses (9334 genes). TF annotation was obtained from
517 FlyFactorSurvey (<http://mccb.umassmed.edu/ffs>). Plots were made using d3js (available at
518 <https://d3js.org/>) and ggplot2(62) and R scripts (some available at
519 <https://github.com/abreschi/Rscripts>).

520

521 **Gene expression**

522

523 **Variance Decomposition**

524 For each gene, the total variance in expression across samples (total sum of squares, TSSg)
525 can be decomposed into three variances : variance across developmental stages (SSSg),
526 variance across tissues (SSTg), and the residual variance (SSRg) as in the ANOVA type of

527 analysis: $TSSg = SSSg + SSTg + SSSg:SSTg + SSRg$ (19) The relative contribution of each factor to
528 the total variance in gene expression can then be computed as the relative proportion of each
529 variance with respect to the total. We used a linear model, implemented using the function `lm()`
530 from R using the in-house wrapper available at
531 <https://github.com/abreschi/Rscripts/blob/master/anova.R> (19). The TPM matrix with both
532 replicates per sample was used for the analysis.

533

534 Profiling the gene expression and DDGs definition

535

536 To identify genes whose expression changes across fly differentiation we used different
537 methods to profile gene expression. First, we performed differential gene expression analysis
538 using EdgeR v3.22.5 (63) with stages and tissues as factors. The counts matrix with both
539 replicates per sample was used for the analysis. We required \log_2 fold change > 1 (at least two-
540 fold change) and $FDR < 0.01$. Contrasts of every tissue and stage were used to define tissue
541 and stage specific genes (18 contrast in total, herein called EdgeR tissue-stage). Second, to
542 identify tissue-specific genes, EdgeR was used with tissue as factor (tissue gene profiles) and
543 time-specific genes were classified for each tissue independently based on their trajectories
544 (stage gene profiles: up-regulation, down-regulation, peaking or bending). Briefly, we focused
545 on profiles with at least two-fold change and identified monotonic up-regulations and down-
546 regulations; peaking profiles were defined as monotonic increases followed by monotonic
547 decreases, bending profiles as the opposite (script: `classification.log2.pl`) (64). Third, we used
548 the percentage of contribution from variance decomposition to identify genes for which the sum
549 of tissue and stage contribution explains at least 70% of variation of expression.

550 Finally, genes classified as differentially expressed in at least two of the three methods used ((9)
551 edgeR tissue-stage, gene profiles, either across tissues or stages, and variance decomposition)
552 were considered Developmental Dynamic Genes (DDGs).

553 In detail, EdgeR tissue-stage results were used to classify all gene sets: stage genes
554 (differentially expressed in all the tissues in a particular stage/s), tissue genes (differentially
555 expressed in all stages in a particular tissue/s and tissue-stage (differentially expressed in
556 particular tissue and stage). Gene profiles through developmental stages were used to define
557 stage genes and tissue-stage genes, while gene profiles across tissues were used to define
558 tissue genes. Following variance decomposition classification: stage genes have stage-
559 explained variation at least two fold greater than tissue-explained variation, tissue genes have
560 tissue-explained variation at least two fold greater than stage-explained variation and tissue-

561 stage were the rest of genes above the 70% cut-off. Groups with less than 5 genes were
562 discarded. **Supplementary Table 6** summarizes the number of genes obtained from each
563 analysis.

564 **Restricted vs widespread gene classification**

565 Restricted genes show expression levels equal or higher than 5 TPMs only in the precise
566 tissue/developmental stage where they are considered differentially expressed. The remaining
567 differentially expressed genes are classified as widespread.

568

569 **GO term enrichment analysis**

570 The GO term enrichment analysis for biological processes hierarchy was performed separately
571 for each set of genes, with respect to all DDGs used as background. The enrichment is tested
572 with the hypergeometric test implemented in the R package GOstats v2.44.0 (65). FlyBase gene
573 IDs are converted to entrez gene IDs via the R package org.Dm.eg.db v3.4.1 ([Bioconductor -](#)
574 [org.Dm.eg.db](#)), and mapped to gene ontology through the R package GO.db v3.4.1
575 ([Bioconductor - GO.db](#)).

576

577 **Epigenetic regulation**

578

579 **FAIRE-Seq data processing and classification**

580 For each gene, we define the promoter as the sequence within a window of 250 bp upstream
581 and downstream from the transcription start site (TSS). All TSSes annotated for the genes were
582 considered for classification, but only the genes with all TSSes equally classified were
583 considered for later analyses. FAIRE-Seq data was obtained from NCBI GEO database
584 GSE38727 (21), replicates with higher signal-to-noise ratio were selected for the analysis. Data
585 was processed using the in-house chip-nf pipeline (<https://github.com/guigolab/chip-nf>). Reads
586 were continuously mapped to the fly genome (dm6) with up to two mismatches using the GEM
587 mapper (66). Only alignments for reads mapping to 10 or fewer loci were reported. Duplicated
588 reads were removed using Picard (<http://broadinstitute.github.io/picard/>). Peak calling was
589 performed using MACS2 (67), only peaks with $fdr < 0.1$ were considered. Promoters were
590 classified as specific when open chromatin peaks overlapping the promoter are present only in
591 specific tissue and/or stage, as close when no open chromatin peaks overlap the promoter and
592 as non specific when overlapping peaks are present in several tissues or stages.

593

594 **H3K4me3 Chromatin Immunoprecipitation**

595 Chromatin from antenna, eye, leg and wing at three stages of development (L3, EP and LP)
596 was fixed with FA1% at RT for 10 min and sonicated with a Diagenode Bioruptor for 15 minutes
597 at high intensity with ON/OFF alternate pulses of 30 second. Sheared chromatin was aliquoted
598 and flash frozen in liquid nitrogen. Chromatin immunoprecipitation assays were performed
599 following iChIP(68) protocol with some modifications. Abcam antibody Abcam_ab8895 was
600 used to immunoprecipitate H3K4me3 attached chromatin. Data was processed using the in-
601 house chip-nf pipeline (<https://github.com/guigolab/chip-nf>). Reads were continuously mapped
602 to the fly genome (dm6) with up to two mismatches using the GEM mapper (66). Only
603 alignments for reads mapping to 10 or fewer loci were reported. Duplicated reads were removed
604 using Picard (<http://broadinstitute.github.io/picard/>). Peak calling was performed using MACS2
605 (67) , only peaks with $fdr < 0.1$ were considered. The intersection of peaks called in both
606 replicates were used for the analysis. The intersection of such peaks with accessible promoters,
607 described in section "FAIRE-Seq data processing and classification" was used for the
608 epigenetic analysis of promoter regions. The intersection of peaks was performed using
609 BEDtools (69) intersectBed v2.17.0.

610

611 **Gene Regulatory network**

612

613 **Promoter open chromatin and motif search**

614 As previous studies demonstrate that FAIRE-enriched regions(21,70,71) are bound by multiple
615 regulatory factors, we used FAIRE-Seq data of fly from the same tissues and developmental
616 stages we used for our analyses to identified putative regulators of DDGs. FAIRE-enriched
617 regions overlapping DDGs promoters (window of 250 bp upstream and downstream from the
618 transcription start site (TSS)) and open at least in the respective tissue and/or developmental
619 stage where the gene is differentially expressed were selected for TF binding motif search. In
620 the case of eye late pupa, for which data was not available, peak should be present in eye or
621 CNS at L3 or in late pupa in any other tissue. The overlap between FAIRE-enriched regions and
622 promoters was computed using BEDTools intersectBed v2.17.0 (69). We ran FIMO (72) using
623 all available fly transcription factor (TF) motif matrices from MEME suite (73) against the FAIRE-
624 enriched regions on DDGs promoters. We found conserved motifs for 238 fly TFs in the
625 promoters of 1991 DDGs. Only TFs expressed at least 5 TPMs in two of the experiments were
626 kept for building the network.

627

628 **Sequence conservation and experimental data filtering**

629 To predict binding sites in DDGs promoters every motif was inspected for conservation using
630 the dm6 27-way multiple alignment (23 *Drosophila* species} sequences, house fly, *Anopheles*
631 mosquito, honey bee and red flour beetle) and the phastCons measurement of evolutionary
632 conservation from the UCSC Genome Browser (74,75). PhastCons scores in this window are
633 averaged from the bigwig file with the bwtool software(76) and this average is taken as a
634 measure of promoter sequence conservation. Alignment coverage should be at least 80% of
635 initial fly input sequence in at least 10 species (at least one species further than
636 *D.pseudoobscura*). Average phastCons over the motif region should be greater than 0.5.

637

638 **Gene co-expression regulatory network**

639 To build the fly gene co-expression regulatory network (GRN), we computed the correlation of
640 expression between DDGs and potential regulatory TFs across all the samples produced here
641 (including those from the wing compartments, the antenna and the genitalia). To generate GRN
642 for DDGs, the R package WGCNA was used (27). We used expression values of DDGs and
643 775 fly TFs across the 27 samples generated in this study. Using default parameters of WGCNA
644 package, that is: hierarchical clustering (hclust R function) and Dynamic tree cut R package (77)
645 we identified fifteen clusters of expression (clusters with Pearson's correlation coefficient higher
646 than 0.85 were merged), and interactions were filtered first by coefficient of correlation
647 (connection weight higher than 0.1) and then, by presence of a TF conserved motif in the
648 accessible TSS promoter of the DDG. Software Cytoscape 3.8.0 was used for network
649 visualization (78). Nodes were displayed according to Edge-weighted Spring-Embedded Layout
650 analysis of TF-target correlation of expression (Pearson's correlation coefficient between TF
651 and target expression, averaged between replicates, calculated across the 27 samples) or the
652 nodes Betweenness centrality (measure of the amount of influence a node has over the flow of
653 information in a graph calculated as the number of times a node acts as a bridge along the
654 shortest path between two other nodes). Node size was adjusted depending on node
655 closeness centrality (average shortest path length from the node to every other node in the
656 network, it indicates how close a node is to all other nodes). Edges were colored according to
657 TF-target correlation of expression (Pearson's correlation coefficient mentioned above). Edge
658 transparency was adjusted depending on TF-target weight (similarity measure considering
659 levels of expression, averaged between replicates, across the 27 samples used for network
660 generation).

661

662 **Conservation of differentiation regulatory program in metazoans**

663 Fly gene identifiers were mapped to mouse, human, and worm orthologs using Ensembl79
664 (<http://mar2015.archive.ensembl.org>) (79). Genes mapping to one or more orthologs in each
665 species were analyzed in a fly-oriented manner.
666 Transcriptional profiling of mouse and human were obtained from ArrayExpress (E-MTAB-6798,
667 and E-MTAB-6814) (24). Worm data was obtained from NCBI BioProject database
668 (PRJNA477006) (32). The profile of gene expression of orthologs of *Drosophila* early and late
669 genes along tissue development was analyzed using self-organizing maps (R package kohonen
670 v3.0.8) (80,81). Orthologs that mapped into both early and late fly genes were excluded from all
671 analyses. We compared the profiles of gene expression of fly early and late genes with the
672 mouse orthologs based on the gene profile classification provided by the authors (24).
673
674

675 **Declarations**

676 **Ethics approval and consent to participate**

677 Not applicable

678 **Consent for publication**

679 Not applicable

680 **Availability of data and materials**

681 The datasets generated and analyzed during the current study from fly are available in the Array
682 Express (<https://www.ebi.ac.uk/arrayexpress/>) repository, under accession number E-MTAB-
683 10879 (for RNA-Seq samples) (<http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10879>);
684 and under accession number E-MTAB-11307
685 (<https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11307>) (for ChIP-Seq data).
686 All the fly generated data is also available through the RNAmaps dashboard
687 (<https://rnamaps.crg.cat/>).

688 The datasets analyzed during the current study from fly modENCODE are available in
689 modENCODE portal repository (www.modencode.org) (28,30).

690 The datasets analyzed during the current study from fly midgut cell types is available in NCBI
691 GEO repository under accession number GSE61361 (31).

692 The datasets analyzed during the current study from fly FAIRE-Seq data is available in NCBI
693 GEO repository under accession number GSE38727 (21).

694 The datasets analyzed during the current study from mouse and human development are
695 available in the from ArrayExpress (<https://www.ebi.ac.uk/arrayexpress/>) repository, under
696 accession number E-MTAB-6798 and E-MTAB-6814 (24).

697 The dataset analyzed during the current study from worm development is available in the NCBI
698 BioProject database repository under accession number PRJNA477006 (32).

699

700 **Competing interests**

701 The authors declare that they have no competing interests.

702 **Funding**

703 This work was supported by the European Community under the FP7 program (ERC-2011-
704 AdG-294653-RNA-MAPS to R.G.), by the Spanish Ministry of Economy, Industry and
705 Competitiveness (MEIC) (BIO2011-26205 to R.G) to the EMBL partnership and the Centro de
706 Excelencia Severo Ochoa and by the CERCA Programme (Generalitat de Catalunya).

707 **Author's contributions**

708 R.G. conceived the project. M.R-R. and R.G designed the study. C.C.K, M.R-R. and A.B.
709 performed the computational analyses. S.P-L., M.R-R. and A.A. performed the RNA-Seq
710 experiments. S.P-L. and M.R-R. performed the ChIP-Seq experiments. M.R-R., C.C.K and R.G.
711 wrote the manuscript with the contribution of all authors. All authors read and approved the final
712 manuscript.

713 **Acknowledgements**

714 We thank Emilio Palumbo for his help with pipeline development and data processing, Bruna R.
715 Correa, Ramil Nurtdinov and Beatrice Borsari for helpful discussions about the data and the
716 manuscript and Romina Garrido for administrative assistance. We also thank the CRG
717 Genomics Unit and the CRG/UPF Flow Cytometry Unit (Barcelona, Spain).

718

719 References

720

721 1. Waddington CH. The Strategy of the Genes: a discussion of some aspects of theoretical
722 biology [Internet]. The Strategy of the Genes. 1957 [cited 2020 Jul 10]. Available from:
723 https://books.google.es/books?id=odl1AwAAQBAJ&source=gbs_similarbooks

724 2. Rajagopal J, Stanger BZ. Plasticity in the Adult: How Should the Waddington Diagram Be
725 Applied to Regenerating Tissues? *Developmental Cell*. 2016.

726 3. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome
727 of the human brain. *Nature*. 2011;478(7370):483–9.

728 4. Li JJ, Huang H, Bickel PJ, Brenner SE. Comparison of *D. melanogaster* and *C. elegans*
729 developmental stages, tissues, and cells by modENCODE RNA-seq data. *Genome Res*
730 [Internet]. 2014 Jul [cited 2019 Aug 6];24(7):1086–101. Available from:
731 <http://www.ncbi.nlm.nih.gov/pubmed/24985912>

732 5. van de Leemput J, Boles NC, Kiehl TR, Corneo B, Lederman P, Menon V, et al.
733 CORTECON: A temporal transcriptome analysis of in vitro human cerebral cortex
734 development from human embryonic stem cells. *Neuron* [Internet]. 2014 Jul 2 [cited 2020
735 Jul 10];83(1):51–68. Available from: <https://pubmed.ncbi.nlm.nih.gov/24991954/>

736 6. Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene
737 expression across human tissues. *Nature* [Internet]. 2017 Oct 11 [cited 2020 Jul
738 10];550(7675):204–13. Available from: www.gtexportal.org

739 7. Li Y, Wang R, Qiao N, Peng G, Zhang K, Tang K, et al. Transcriptome analysis reveals
740 determinant stages controlling human embryonic stem cell commitment to neuronal cells.
741 *J Biol Chem* [Internet]. 2017 Dec 1 [cited 2020 Jul 10];292(48):19590–604. Available
742 from: <https://pubmed.ncbi.nlm.nih.gov/28972157/>

743 8. Li B, Qing T, Zhu J, Wen Z, Yu Y, Fukumura R, et al. A Comprehensive Mouse
744 Transcriptomic BodyMap across 17 Tissues by RNA-seq. *Sci Rep* [Internet]. 2017 Dec 1
745 [cited 2020 Jul 10];7(1):1–10. Available from: www.nature.com/scientificreports

746 9. Semrau S, Goldmann JE, Soumillon M, Mikkelsen TS, Jaenisch R, Van Oudenaarden A.
747 Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating
748 embryonic stem cells. *Nat Commun* [Internet]. 2017 Dec 1 [cited 2020 Jul 10];8(1):1–16.
749 Available from: www.nature.com/naturecommunications

750 10. García-Bellido A. Pattern reconstruction by dissociated imaginal disk cells of *Drosophila*
751 *melanogaster*. *Dev Biol*. 1966;

752 11. Klebes A, Biehs B, Cifuentes F, Kornberg TB. Expression profiling of *Drosophila* imaginal

753 discs. *Genome Biol* [Internet]. 2002 [cited 2020 Jul 10];3(8):research0038.1. Available
754 from: [/pmc/articles/PMC126232/?report=abstract](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC126232/?report=abstract)

755 12. Potier D, Davie K, Hulselmans G, NavalSanchez M, Haagen L, Huynh-Thu VA, et al.
756 Mapping Gene Regulatory Networks in *Drosophila* Eye Development by Large-Scale
757 Transcriptome Perturbations and Motif Inference. *Cell Rep*. 2014;

758 13. Jasper H, Benes V, Atzberger A, Sauer S, Ansorge W, Bohmann D. A genomic switch at
759 the transition from cell proliferation to terminal differentiation in the *Drosophila* eye. *Dev
760 Cell* [Internet]. 2002 Oct 1 [cited 2020 Jul 10];3(4):511–21. Available from:
761 <http://www.cell.com/article/S1534580702002976/fulltext>

762 14. Michaut L, Flister S, Neeb M, White KP, Certa U, Gehring WJ. Analysis of the eye
763 developmental pathway in *Drosophila* using DNA microarrays. *Proc Natl Acad Sci U S A
764 [Internet]*. 2003 Apr 1 [cited 2020 Jul 10];100(7):4024–9. Available from:
765 www.ncbi.nlm.nih.gov/geo

766 15. Pérez-Lluch S, Blanco E, Tilgner H, Curado J, Ruiz-Romero M, Corominas M, et al.
767 Absence of canonical marks of active chromatin in developmentally regulated genes. *Nat
768 Genet*. 2015;47(10).

769 16. O'keefe DD, Thomas SR, Bolin K, Griggs E, Edgar BA, Buttitta LA. Combinatorial control
770 of temporal gene expression in the *Drosophila* wing by enhancers and core promoters
771 [Internet]. 2012 [cited 2020 Jul 10]. Available from: <http://www.biomedcentral.com/1471-2164/13/498>

773 17. Arbeitman MN, Krasnow MA, Furlong EEM, Imam F, Johnson E, Null BH, et al. Gene
774 expression during the life cycle of *Drosophila melanogaster*. *Science* (80-). 2002;

775 18. Ren N, Zhu C, Lee H, Adler PN. Gene expression during *Drosophila* wing morphogenesis
776 and differentiation. *Genetics*. 2005;171(2):625–38.

777 19. Breschi A, Djebali S, Gillis J, Pervouchine DD, Dobin A, Davis CA, et al. Gene-specific
778 patterns of expression variation across organs and species. *Genome Biol* [Internet]. 2016
779 [cited 2019 Aug 5];17(1):151. Available from:
780 <http://www.ncbi.nlm.nih.gov/pubmed/27391956>

781 20. Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential
782 expression analysis of digital gene expression data. *Bioinforma Appl NOTE* [Internet].
783 2010 [cited 2020 Jul 10];26(1):139–40. Available from: <http://bioconductor.org>

784 21. McKay DJ, Lieb JD. A Common Set of DNA Regulatory Elements Shapes *Drosophila*
785 Appendages. *Dev Cell*. 2013;

786 22. Negre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, et al. A cis-regulatory map

787 of the *Drosophila* genome. *Nature* [Internet]. 2011;471(7339):527–31. Available from:
788 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21430782

790 23. Hödl M, Basler K. Transcription in the absence of histone H3.2 and H3K4 methylation.
791 *Curr Biol* [Internet]. 2012 Dec 4 [cited 2021 Sep 9];22(23):2253–7. Available from:
792 <https://pubmed.ncbi.nlm.nih.gov/23142044/>

793 24. Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, et al. Gene
794 expression across mammalian organ development. *Nature*. 2019;

795 25. Janssens J, Aibar S, Taskiran II, Ismail JN, Gomez AE, Aughey G, et al. Decoding gene
796 regulation in the fly brain. *Nat* 2022 6017894 [Internet]. 2022 Jan 5 [cited 2022 Feb
797 3];601(7894):630–6. Available from: <https://www.nature.com/articles/s41586-021-04262-z>

798 26. He P, Williams BA, Trout D, Marinov GK, Amrhein H, Berghella L, et al. The changing
799 mouse embryo transcriptome at whole tissue and single-cell resolution. *Nature* [Internet].
800 2020 Jul 30 [cited 2020 Sep 8];583(7818):760–7. Available from:
801 <https://doi.org/10.1038/s41586-020-2536-x>

802 27. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network
803 analysis. *BMC Bioinformatics*. 2008 Dec 29;9:559.

804 28. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, et al. The
805 developmental transcriptome of *Drosophila melanogaster*. *Nature* [Internet].
806 2012;471(7339):473–9. Available from:
807 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21179090

808 29. Yafei Zhang YX. Fat Body Development and its Function in Energy Storage and Nutrient
809 Sensing in *Drosophila melanogaster*. *J Tissue Sci Eng*. 2014;06(01).

810 30. Roy S, Ernst J, Kharchenko P V., Kheradpour P, Negre N, Eaton ML, et al. Identification
811 of functional elements and regulatory circuits by *Drosophila* modENCODE. *Science* (80-)
812 [Internet]. 2010 Dec 24 [cited 2020 Sep 16];330(6012):1787–97. Available from:
813 www.sciencemag.org/cgi/content/science.1196914/DC1

814 31. Dutta D, Dobson AJ, Houtz PL, Gläßer C, Revah J, Korzelius J, et al. Regional Cell-
815 Specific Transcriptome Mapping Reveals Regulatory Complexity in the Adult *Drosophila*
816 Midgut. *Cell Rep* [Internet]. 2015 Jul 14 [cited 2020 Sep 16];12(2):346–58. Available from:
817 <https://pubmed.ncbi.nlm.nih.gov/26146076/>

818 32. Warner AD, Gevirtzman L, Hillier LDW, Ewing B, Waterston RH. The *C. elegans*
819 embryonic transcriptome with tissue, time, and alternative splicing resolution. *Genome*
820

821 Res. 2019;29(6):1036–45.

822 33. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of
823 programmed cell death in *Drosophila*. *Science* (80-) [Internet]. 1994;264(5159):677–83.
824 Available from:
825 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8171319

826 34. Quiquand M, Rimesso G, Qiao N, Suo S, Zhao C, Slattery M, et al. New regulators of
827 *Drosophila* eye development identified from temporal transcriptome changes. *Genetics*
828 [Internet]. 2021 Apr 15 [cited 2022 Feb 4];217(4). Available from:
829 [/pmc/articles/PMC8049564/](https://pmc/articles/PMC8049564/)

830 35. Allan AK, Du J, Davies SA, Dow JAT. Genome-wide survey of V-ATPase genes in
831 *Drosophila* reveals a conserved renal phenotype for lethal alleles [Internet]. Vol. 22,
832 *Physiological Genomics*. *Physiol Genomics*; 2005 [cited 2020 Sep 17]. p. 128–38.
833 Available from: <https://pubmed.ncbi.nlm.nih.gov/15855386/>

834 36. Humphreys GB, Jud MC, Monroe KM, Kimball SS, Higley M, Shipley D, et al. Mummy, A
835 UDP-N-acetylglucosamine pyrophosphorylase, modulates DPP signaling in the
836 embryonic epidermis of *Drosophila*. *Dev Biol* [Internet]. 2013 Sep 15 [cited 2020 Sep
837 17];381(2):434–45. Available from: [/pmc/articles/PMC3775589/?report=abstract](https://pmc/articles/PMC3775589/?report=abstract)

838 37. Caggese C, Barsanti P, Viggiano L, Bozzetti MP, Caizzi R. Genetic, molecular and
839 developmental analysis of the glutamine synthetase isozymes of *Drosophila*
840 *melanogaster*. *Genetica* [Internet]. 1994 Jun [cited 2020 Sep 17];94(2–3):275–81.
841 Available from: <https://pubmed.ncbi.nlm.nih.gov/7896146/>

842 38. Haataja TJK, Koski MK, Hiltunen JK, Glumoff T. Peroxisomal multifunctional enzyme type
843 2 from the fruitfly: Dehydrogenase and hydratase act as separate entities, as revealed by
844 structure and kinetics. *Biochem J* [Internet]. 2011 May 1 [cited 2020 Sep 17];435(3):771–
845 81. Available from: <https://pubmed.ncbi.nlm.nih.gov/21320074/>

846 39. White KP, Rifkin SA, Hurban P, Hogness DS. Microarray analysis of *Drosophila*
847 development during metamorphosis. *Science* (80-) [Internet]. 1999 Dec 10 [cited 2020
848 Jul 10];286(5447):2179–84. Available from: <http://science.sciencemag.org/>

849 40. Folmes CDL, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell
850 homeostasis and differentiation [Internet]. Vol. 11, *Cell Stem Cell*. NIH Public Access;
851 2012 [cited 2020 Sep 18]. p. 596–606. Available from:
852 [/pmc/articles/PMC3593051/?report=abstract](https://pmc/articles/PMC3593051/?report=abstract)

853 41. Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, et al.

855 Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to
856 facilitate nuclear reprogramming. *Cell Metab* [Internet]. 2011 Aug 3 [cited 2022 Feb
857 3];14(2):264–71. Available from: <https://pubmed.ncbi.nlm.nih.gov/21803296/>

858 42. Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The
859 metabolome of induced pluripotent stem cells reveals metabolic changes occurring in
860 somatic cell reprogramming. *Cell Res* [Internet]. 2012 Jan [cited 2022 Feb 3];22(1):168–
861 77. Available from: <https://pubmed.ncbi.nlm.nih.gov/22064701/>

862 43. Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, et al.
863 Mitochondrial complex III ROS regulate adipocyte differentiation. *Cell Metab* [Internet].
864 2011 Oct 5 [cited 2022 Feb 3];14(4):537–44. Available from:
865 <https://pubmed.ncbi.nlm.nih.gov/21982713/>

866 44. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial
867 oxidative metabolism is required for the cardiac differentiation of stem cells. *Nat Clin
868 Pract Cardiovasc Med* [Internet]. 2007 Feb [cited 2022 Feb 3];4 Suppl 1(Suppl 1).
869 Available from: <https://pubmed.ncbi.nlm.nih.gov/17230217/>

870 45. Morgan MAJ, Shilatifard A. Reevaluating the roles of histone-modifying enzymes and
871 their associated chromatin modifications in transcriptional regulation. *Nat Genet* [Internet].
872 2020 Dec 1 [cited 2021 Sep 9];52(12):1271–81. Available from:
873 <https://pubmed.ncbi.nlm.nih.gov/33257899/>

874 46. Spitz F, Furlong EEM. Core promoter Transcription factors: from enhancer binding to
875 developmental control. *Nat Publ Gr* [Internet]. 2012 [cited 2021 Jul 8];13:613. Available
876 from: www.nature.com/reviews/genetics

877 47. Inukai S, Kock KH, Bulyk ML. Transcription factor–DNA binding: beyond binding site
878 motifs. *Curr Opin Genet Dev* [Internet]. 2017 Apr 1 [cited 2022 Feb 3];43:110. Available
879 from: [/pmc/articles/PMC5447501/](http://pmc/articles/PMC5447501/)

880 48. Cagan R. Chapter 5 Principles of Drosophila Eye Differentiation. Vol. 89, *Current Topics
881 in Developmental Biology*. NIH Public Access; 2009. p. 115–35.

882 49. Currie DA, Milnert MJ, Evans CW. The growth and differentiation in vitro of leg and wing
883 imaginal disc cells from *Drosophila melanogaster*. Vol. 102, *Development*. 1988.

884 50. Kiger JA, Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Green MM. Tissue
885 Remodeling During Maturation Of The *Drosophila* Wing. *Dev Biol* [Internet]. 2007 Jan 1
886 [cited 2022 Feb 3];301(1):178. Available from: [/pmc/articles/PMC1828914/](http://pmc/articles/PMC1828914/)

887 51. DeLuna A, Vetsigian K, Shores N, Hegreness M, Colón-González M, Chao S, et al.
888 Exposing the fitness contribution of duplicated genes. *Nat Genet*. 2008 May

889 13;40(5):676–81.

890 52. Otto SP, Yong P. 16 The evolution of gene duplicates. Vol. 46, *Advances in Genetics*.
891 Academic Press; 2002. p. 451–83.

892 53. Gu X, Zhang Z, Huang W. Rapid evolution of expression and regulatory divergences after
893 yeast gene duplication. *Proc Natl Acad Sci U S A*. 2005 Jan 18;102(3):707–12.

894 54. Acharya D, Ghosh TC. Global analysis of human duplicated genes reveals the relative
895 importance of whole-genome duplicates originated in the early vertebrate evolution. *BMC
896 Genomics*. 2016 Jan 22;17(1).

897 55. Li WH, Yang J, Gu X. Expression divergence between duplicate genes [Internet]. Vol. 21,
898 *Trends in Genetics*. 2005 [cited 2020 Apr 24]. p. 602–7. Available from:
899 <http://www.ncbi.nlm.nih.gov/pubmed/16140417>

900 56. Dean EJ, Davis JC, Davis RW, Petrov DA. Pervasive and Persistent Redundancy among
901 Duplicated Genes in Yeast. McVean G, editor. *PLoS Genet* [Internet]. 2008 Jul 4 [cited
902 2020 Apr 24];4(7):e1000113. Available from:
903 <http://dx.plos.org/10.1371/journal.pgen.1000113>

904 57. Vavouri T, Semple JI, Lehner B. Widespread conservation of genetic redundancy during
905 a billion years of eukaryotic evolution. Vol. 24, *Trends in Genetics*. 2008. p. 485–8.

906 58. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast
907 universal RNA-seq aligner. *Bioinformatics* [Internet]. 2013 Jan [cited 2020 Sep
908 16];29(1):15–21. Available from: <https://pubmed.ncbi.nlm.nih.gov/23104886/>

909 59. Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, et al. FlyBase:
910 establishing a Gene Group resource for *Drosophila melanogaster*. *Nucleic Acids Res*
911 [Internet]. 2016 [cited 2022 Feb 3];44(D1):D786–92. Available from:
912 <https://pubmed.ncbi.nlm.nih.gov/26467478/>

913 60. Larkin A, Marygold SJ, Antonazzo G, Attrill H, dos Santos G, Garapati P V, et al.
914 FlyBase: updates to the *Drosophila melanogaster* knowledge base. *Nucleic Acids Res*
915 [Internet]. 2021 Jan 8 [cited 2021 Oct 1];49(D1):D899–907. Available from:
916 <https://academic.oup.com/nar/article/49/D1/D899/5997437>

917 61. Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or
918 without a reference genome. *BMC Bioinformatics* [Internet]. 2011 Aug 4 [cited 2020 Sep
919 16];12(1):323. Available from:
920 <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-323>

921 62. Wickham H. *ggplot2*. Springer New York; 2009.

922 63. Chen Y, McCarthy D, Ritchie M, Robinson M, Smyth GK. *edgeR*: differential expression

923 analysis of digital gene expression data User ' s Guide. 2016;(April).

924 64. Borsari B, Abad A, C. Klein C, Nurtinov R, Esteban A, Palumbo E, et al. Dynamics of
925 gene expression and chromatin marking during cell state transition. [cited 2021 Sep 9];
926 Available from: <https://www.biorxiv.org/content/10.1101/2020.11.20.391524v1.full.pdf>

927 65. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association.
928 Bioinformatics [Internet]. 2007 [cited 2022 Feb 4];23(2):257–8. Available from:
929 <https://pubmed.ncbi.nlm.nih.gov/17098774/>

930 66. Marco-Sola S, Sammeth M, Guigó R, Ribeca P. The GEM mapper: fast, accurate and
931 versatile alignment by filtration. Nat Methods [Internet]. 2012 Dec [cited 2022 Feb
932 4];9(12):1185–8. Available from: <https://pubmed.ncbi.nlm.nih.gov/23103880/>

933 67. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based
934 analysis of ChIP-Seq (MACS). Genome Biol [Internet]. 2008 Sep 17 [cited 2021 Dec
935 9];9(9). Available from: <https://pubmed.ncbi.nlm.nih.gov/18798982/>

936 68. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al.
937 Immunogenetics. Chromatin state dynamics during blood formation. Science [Internet].
938 2014 [cited 2020 Sep 16];345(6199):943–9. Available from:
939 [/pmc/articles/PMC4412442/?report=abstract](https://pmc/articles/PMC4412442/?report=abstract)

940 69. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
941 features. Bioinformatics [Internet]. 2010 Mar 15 [cited 2021 Dec 9];26(6):841–2. Available
942 from: <https://academic.oup.com/bioinformatics/article/26/6/841/244688>

943 70. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted
944 Isolation of Regulatory Elements) isolates active regulatory elements from human
945 chromatin. Genome Res [Internet]. 2007 Jun 1 [cited 2021 May 17];17(6):877–85.
946 Available from:
947 <http://www.genome.org/cgi/doi/10.1101/gr.5533506.;www.genome.orgwww.genome.org>

948 71. Song M, Zhang Y, Katzaroff AJ, Edgar BA, Buttitta L. Hunting complex differential gene
949 interaction patterns across molecular contexts. Nucleic Acids Res [Internet]. 2014 Jan 29
950 [cited 2014 Feb 21]; Available from: <http://www.ncbi.nlm.nih.gov/pubmed/24482443>

951 72. Grant CE, Bailey TL, Noble WS. FIMO: Scanning for occurrences of a given motif.
952 Bioinformatics. 2011;

953 73. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res
954 [Internet]. 2015 Jul 1 [cited 2021 Oct 1];43(W1):W39–49. Available from:
955 <https://academic.oup.com/nar/article/43/W1/W39/2467905>

956 74. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al.

957 Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.

958 Genome Res [Internet]. 2005 Aug 1 [cited 2020 Sep 16];15(8):1034–50. Available from:

959 www.genome.org

960 75. C T, GP B, J C, H C, M D, C E, et al. The UCSC Genome Browser database: 2017

961 update. Nucleic Acids Res [Internet]. 2017 [cited 2021 Oct 1];45(D1). Available from:

962 <https://pubmed.ncbi.nlm.nih.gov/27899642/>

963 76. Pohl A, Beato M. B: A tool for bigWig files. Bioinformatics [Internet]. 2014 Jun 1 [cited 2020 Sep 16];30(11):1618–9. Available from: <http://cromatina.crg.eu/>

964 77. Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the

965 Dynamic Tree Cut package for R. Bioinformatics [Internet]. 2008 Mar [cited 2022 Feb

966 3];24(5):719–20. Available from: <https://pubmed.ncbi.nlm.nih.gov/18024473/>

967 78. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A

968 software Environment for integrated models of biomolecular interaction networks.

969 Genome Res [Internet]. 2003 Nov [cited 2020 Sep 16];13(11):2498–504. Available from:

970 [/pmc/articles/PMC403769/?report=abstract](https://pmc/articles/PMC403769/?report=abstract)

971 79. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, et al. Ensembl 2016.

972 Nucleic Acids Res [Internet]. 2016 [cited 2020 Sep 16];44(D1):D710–6. Available from:

973 [/pmc/articles/PMC4702834/?report=abstract](https://pmc/articles/PMC4702834/?report=abstract)

974 80. Wehrens R, Buydens LMC. Self- and super-organizing maps in R: The kohonen package.

975 J Stat Softw [Internet]. 2007 Oct 8 [cited 2020 Sep 16];21(5):1–19. Available from:

976 <https://www.jstatsoft.org/index.php/jss/article/view/v021i05/v21i05.pdf>

977 81. Wehrens R, Kruisselbrink J. Flexible self-organizing maps in kohonen 3.0. J Stat Softw

978 [Internet]. 2018 Oct 1 [cited 2020 Sep 16];87(7):1–18. Available from:

979 <https://www.jstatsoft.org/index.php/jss/article/view/v087i07/v87i07.pdf>

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994 **Figure legends**

995

996

997 **Fig. 1 Transcriptional profiling of *Drosophila melanogaster* imaginal discs.** (A) Overview
998 of tissues, wing compartments and developmental stages profiled along this work. (B) Workflow
999 of the RNA-Seq data generation. Briefly, imaginal tissues are manually dissected,
1000 disaggregated with trypsin treatment and sorted to collect the cells of interest (i.e., the precursor
1001 cells that differentiate into the adult tissues) from each imaginal disc. After that, RNA is
1002 extracted and processed for library preparation. (C) Expression profiles of genes with known
1003 tissue or stage specific expression patterns. (D) Principal component analysis (PCA) based on
1004 the expression of the 1,000 most variable genes across tissues and developmental stages.
1005 Gene expression is computed as log10-normalized Transcripts Per Kilobase Million (TPMs) with
1006 pseudocount of 0.01. Only genes with at least 5 TPMs in at least two samples were considered.
1007 PC1 separates the early and the late stages. PC2 separates neural and non-neural tissues.
1008 PC3 separates the late stage in the eye from the rest of the samples.

1009

1010 **Fig 2. Gene expression dynamics along fly development.** (A) Proportion of the variance in
1011 gene expression explained by tissue (x-axis) and by developmental stage (y-axis). Each dot
1012 corresponds to one of the 9,334 genes that are expressed at least 5 TPMs in at least two
1013 samples). Genes changing expression across tissues and/or developmental stages
1014 (Developmentally Dynamic Genes, DDGs) along fly development are highlighted in grey
1015 (differentially expressed across stages, SGs), pink (differentially expressed across tissues, TGs)
1016 and purple (differentially expressed across tissues and stages, TSGs). (B) Proportion of gene
1017 expression variance explained by tissue, stage and the interaction between the two. (C)
1018 Expression of Developmentally Dynamic Genes (DDGs) along fly development. Gene
1019 expression values are normalized to z-score values. (D) Dynamics of genes differentially
1020 expressed across tissues (TGs) and across tissues and stages (TSGs) represented as a
1021 Sankey diagram. At each developmental stage, we represent the genes that are differentially
1022 expressed in each tissue and those that are not (yellow). The arrows represent the number of
1023 genes that transition from one developmental stage to the next one and from not differentially to
1024 differentially expressed in a given tissue (or vice versa). Many tissue specific genes are already
1025 differentially expressed at L3 (TGs), but many which are not differentially expressed at this
1026 developmental stage become tissue specific at LP (TSGs). There is, in particular, a large
1027 expansion of eye specific genes. Overall, the transcriptome diverges as tissues become
1028 specified.

1029

1030 **Fig. 3. Regulation of DDGs.** **(A)** Epigenetic regulation of DDGs. The innermost circle labels
1031 genes according to DDGs classification; the second circle displays the breadth of gene
1032 expression (profile class), and the third circle displays H3K4me3 marking. **(B and C)** Percentage
1033 of TFs in DDGs categories.

1034

1035 **Fig. 4. *Drosophila* gene regulatory network (GRN).** **(A)** GRN. Edges are colored according
1036 to TF-target Pearson's correlation coefficient (red > 0.3 , blue < -0.3). While most correlations
1037 are positive, negative interactions are predicted between early and late gene clusters as well as
1038 between clusters corresponding to different tissues. Node size reflects node closeness centrality
1039 (that is, how close a node is to all other nodes). Nodes are colored according to DDG
1040 classification. **(B)** Network clusters. Proportion of DDG categories and TFs in each cluster. The
1041 class column indicates the most abundant DDGs category within each cluster. **(C)** GRN. Nodes
1042 are colored according to the clusters to which the genes belong and the GO categories
1043 associated. **(D)** Connectivity between clusters. Arrows indicate directionality from TFs to targets.
1044 The width of the arrows is proportional to the number of TF-target pairs. For ease in
1045 interpretation, we have included inner colored bars, representing the target's clusters.

1046

1047 **Figure 5. Gene expression dynamics of SGs in tissues and whole animals during fly**
1048 **development.** **(A)** Principal component analysis (PCA) of SGs based on modENCODE tissue
1049 data (CNS and fat body from L3 and LP and carcass from L3 and adult) and the imaginal tissue
1050 data produced here at L3, EP and LP. **(B)** Expression of SGs in modENCODE whole animals
1051 from embryo to adult stages, and in the imaginal tissues monitored here at L3, EP and LP.

1052

1053 **Fig. 6. Conservation of the *Drosophila* GRN in mouse.** **(A)** Venn diagrams (left panels)
1054 showing the number of fly early and late genes, the orthologs of which are also classified as
1055 early and late during mouse development according to Cardoso-Moreira et al. (24) The bar plots
1056 (right panels) show the early and late orthologs classified by expression profile in mouse tissues
1057 according to Cardoso-Moreira et al.(24) **(B)** GO term enrichment analysis of early and late
1058 orthologs in mouse. **(C)** Mouse orthologs of fly early and late genes are clustered using self-
1059 organizing maps (SOM) based on the RNA-seq derived expression from a number of organs
1060 during mouse development (brain, heart, kidney and liver from embryo 10.5/11.5 days through 3
1061 days post-natal stage). **(D)** SOM clustering of mouse orthologs of fly early and late genes. Each
1062 cell corresponds to a gene cluster. We are considering 12x12 cells, each containing between 2
1063 and 23 genes. The grey intensity of cells denotes the proportion of early (light grey) versus late

1064 (dark grey) genes in the cell/cluster. Early and late orthologs cluster separately regarding gene
1065 expression along mouse organ development. Early genes cluster preferentially on the left part of
1066 the SOM representation, while late genes cluster on the right. **(E)** Changes in expression along
1067 mouse development in brain, heart, kidney and liver of early and late orthologs. **(F)** Scatter plots
1068 of the correlation in fly and in mouse of TF-target pair. The correlations have been computed
1069 independently in each fly-mouse ortholog tissue. When multiple mouse orthologous targets are
1070 found for the same orthologous TF, the TF-target pair with the closest correlation is employed.
1071 Pearson's correlation coefficient (cc) between fly and mouse correlations is shown on the top of
1072 the plot, p-values of the correlations are 1.09^{e-317} for brain and 0 for heart, kidney and liver.
1073 (Figure partially created with BioRender.com).

1074

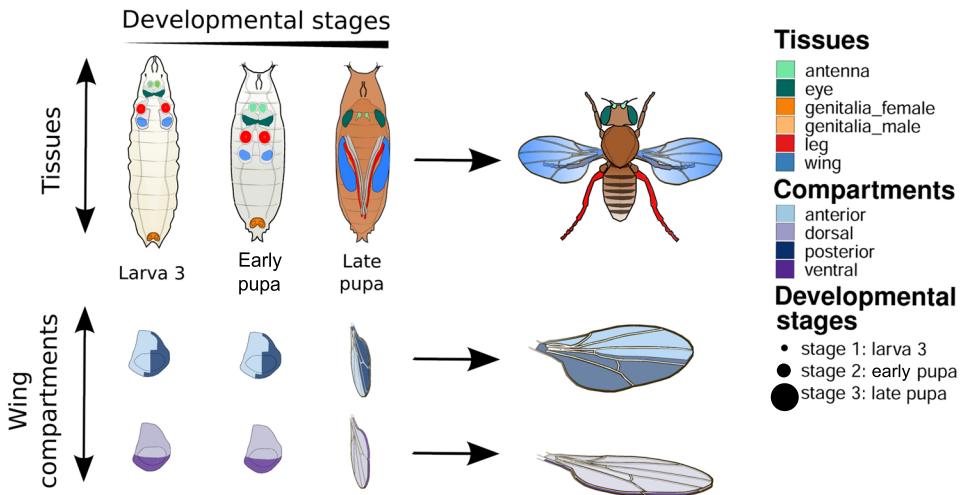
1075 **Fig. 7. Model of gene regulation in *Drosophila* differentiation.**

1076 **(A)** General view of tissue differentiation (e.g. eye differentiation, green). Differentiation requires
1077 a transcriptional switch from early genes (light grey) towards late genes (dark grey) that could
1078 be mediated by stress, hormonal signals or other uncharacterized systemic and external signals
1079 (??). Gene expression, translation and cell cycle genes decrease while cuticle, organism
1080 differentiation, oxidative metabolic genes and functionally uncharacterized genes (??) are up-
1081 regulated upon differentiation. Eye genes, mainly involved in cell fate regulation, are expressed
1082 from precursor cells to fully differentiated ones along the process. Eye specific TFs regulate eye
1083 genes as well as TSGs. Early eye genes (green) are associated with axon guidance function
1084 and late eye genes are related to synaptic transmission and nervous system development
1085 functions. Negative regulation occurs between early and late genes and among tissue-specific
1086 TFs.

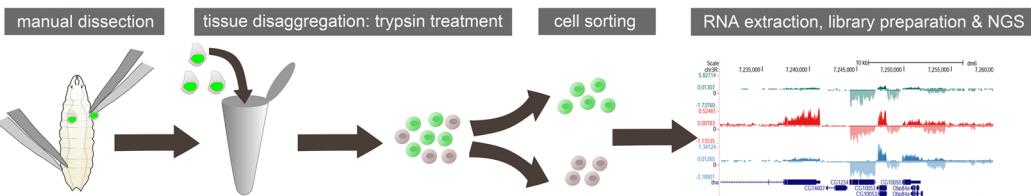
1087

1088

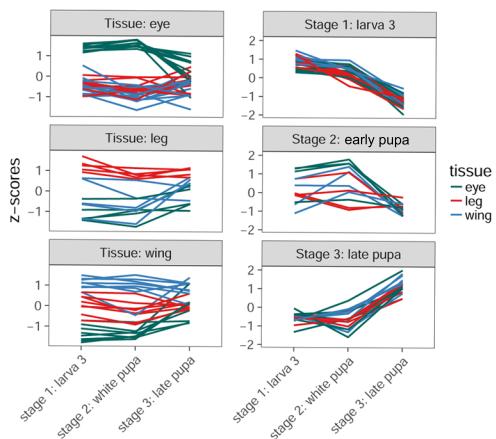
A



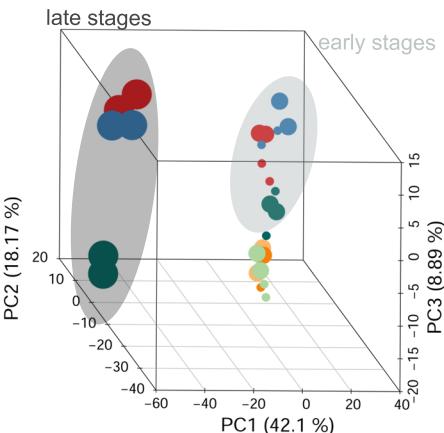
B



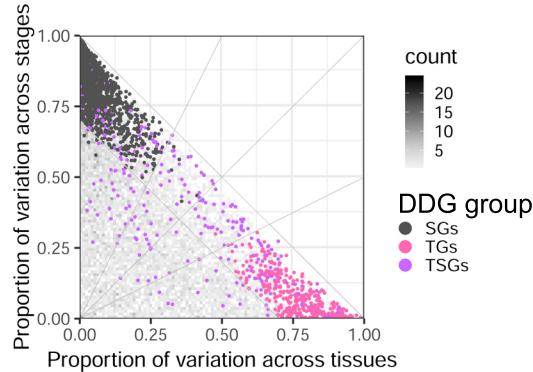
C



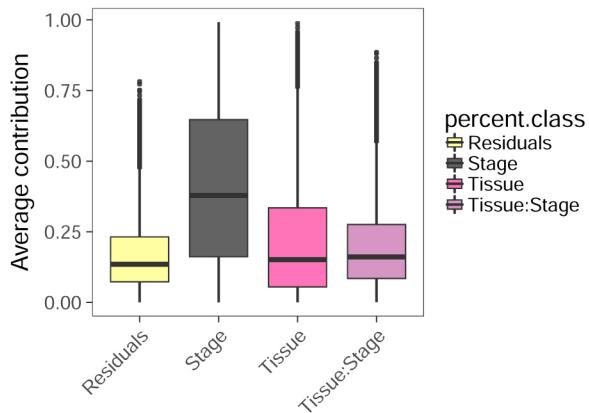
D



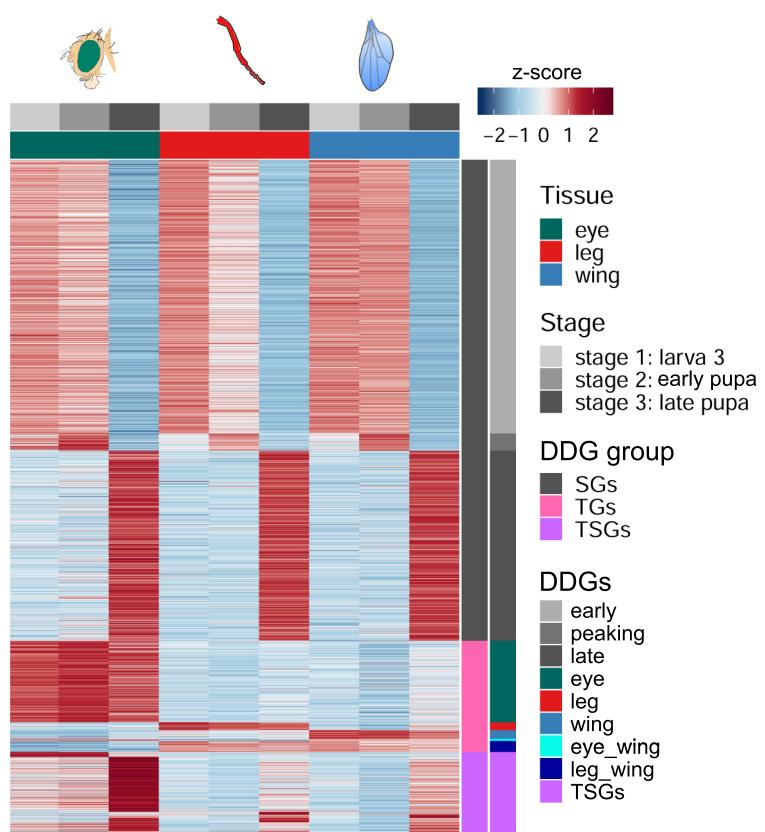
A



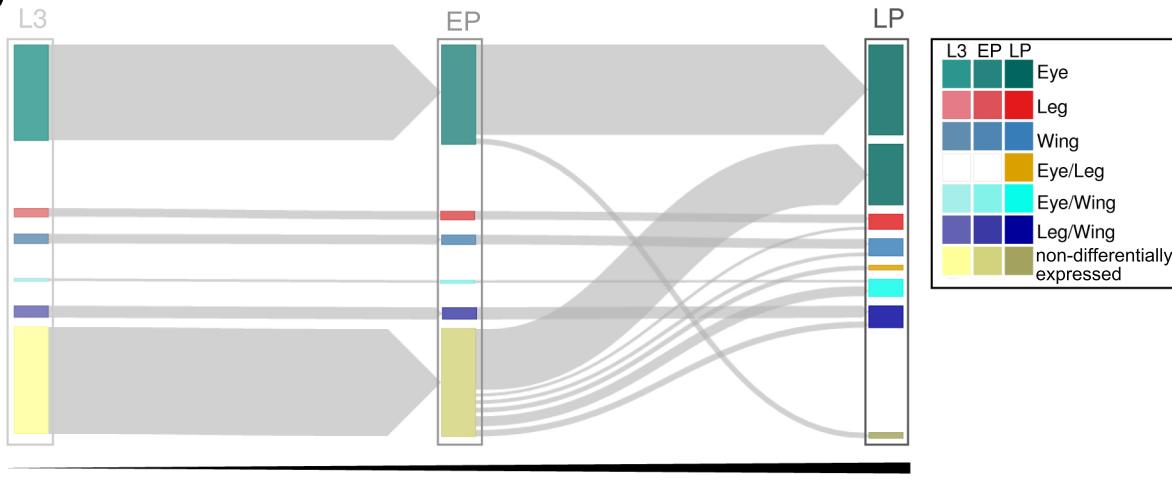
B



C

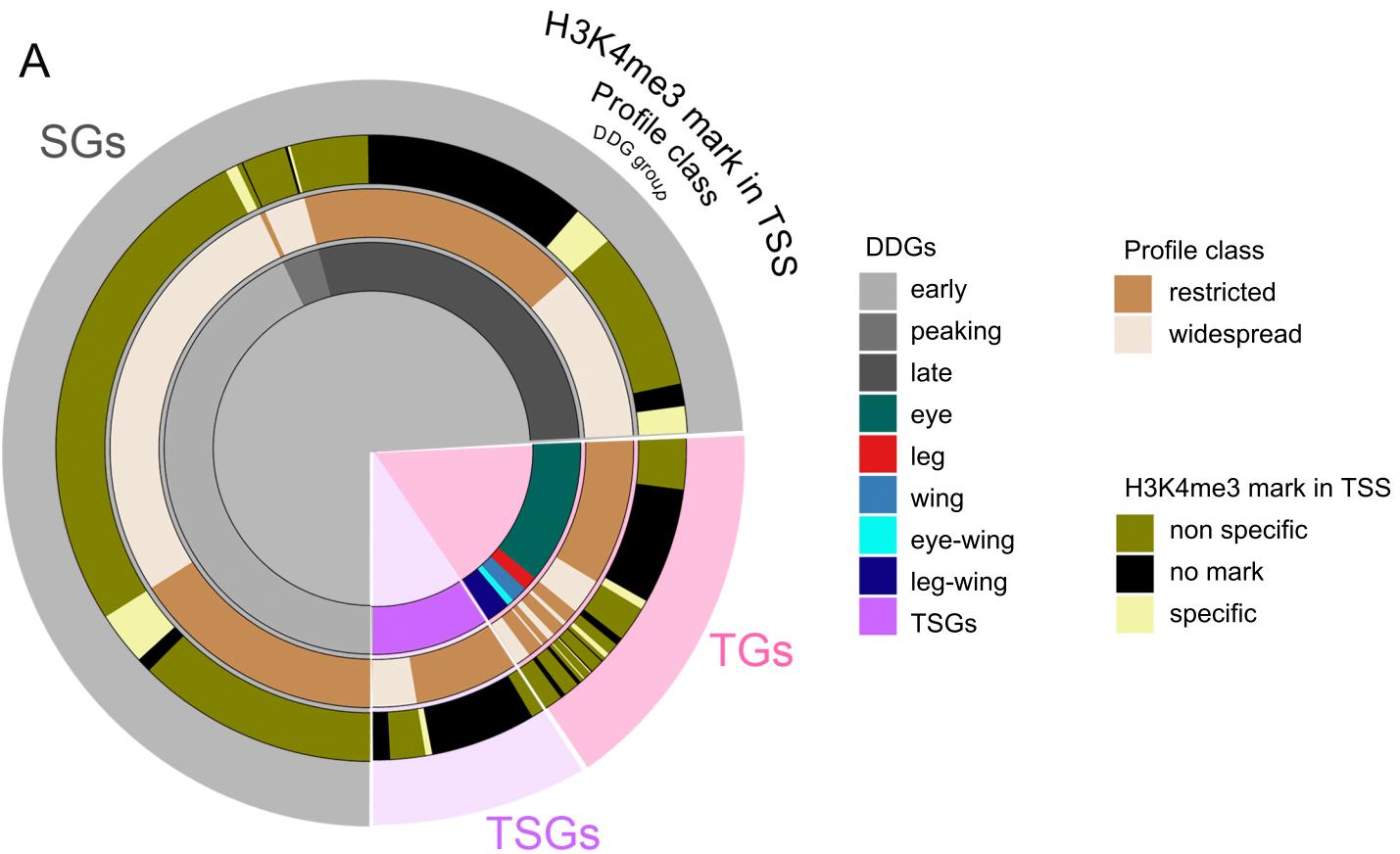


D

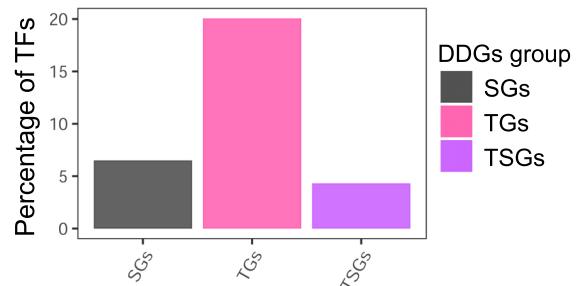


Developmental stages

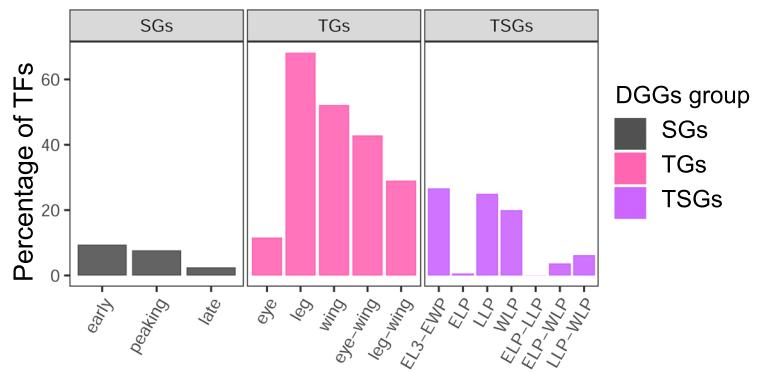
A

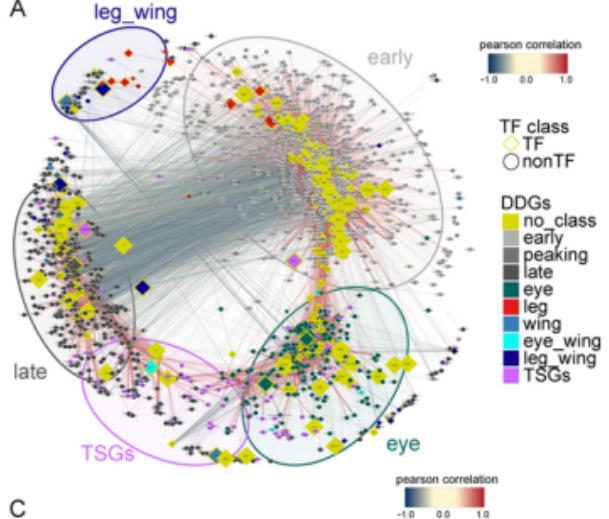
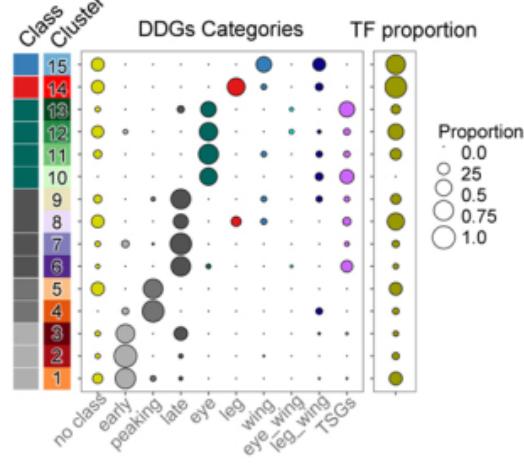
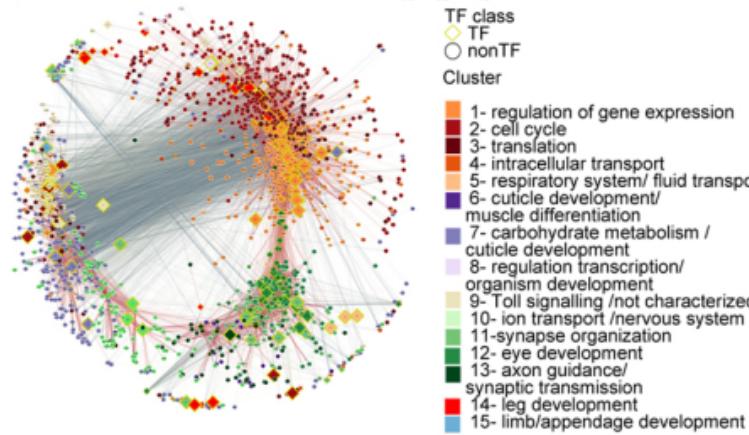
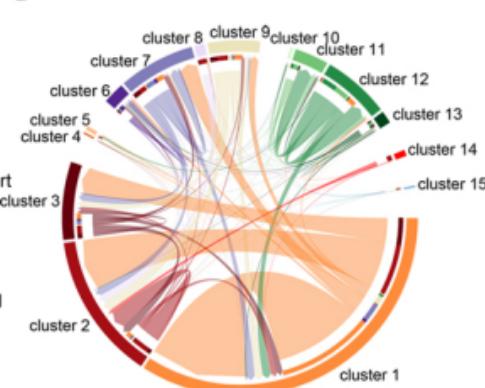


B

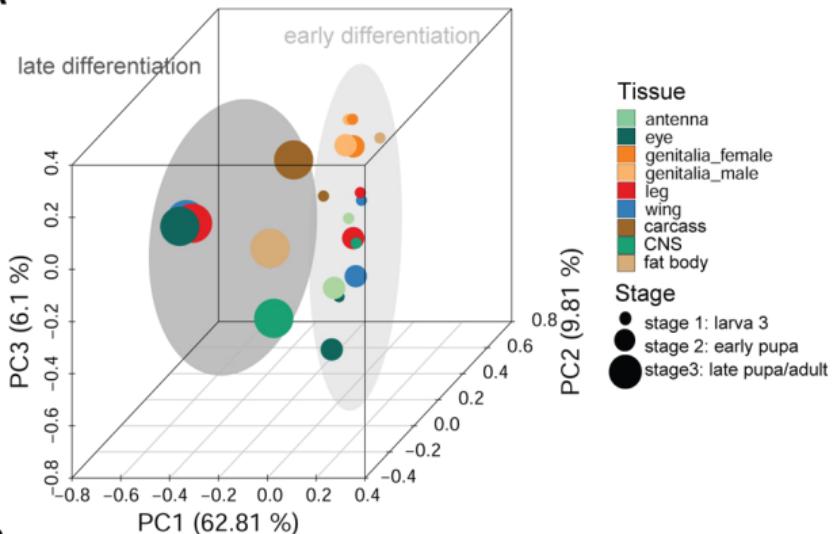


C

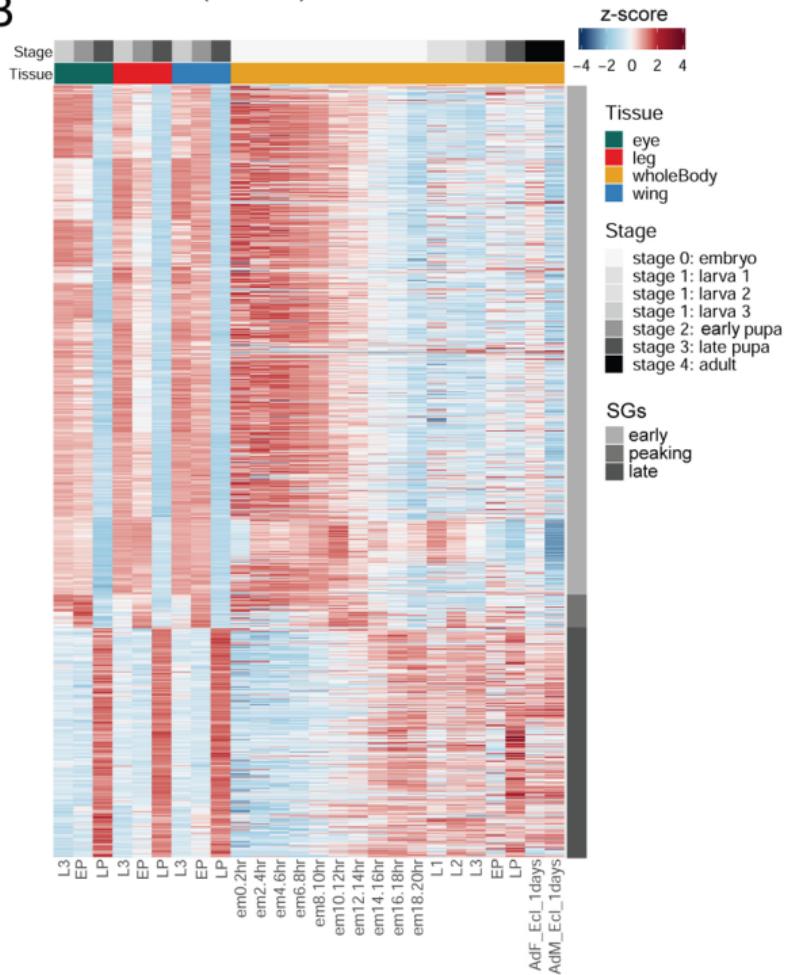


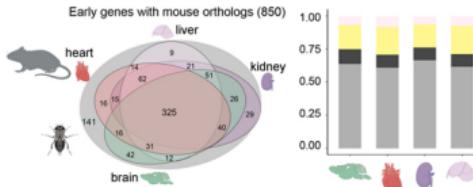
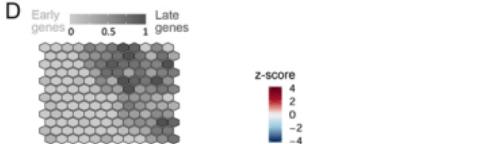
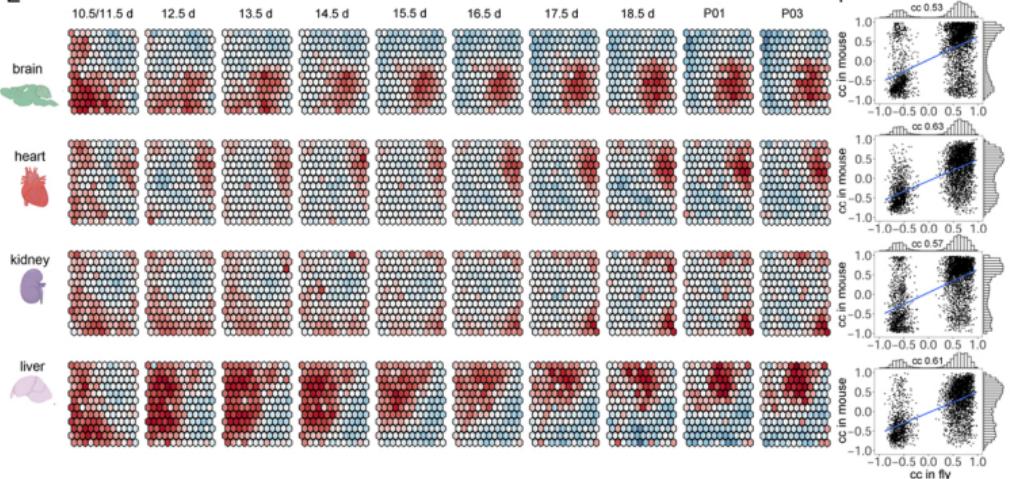
A**B****C****D**

A



B



A**B****C****D****E****F**

A

