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Abstract

Background

During development, most cells undergo striking changes in order to develop into functional
tissues. All along this process, the identity of each tissue arises from the particular combination
of regulatory transcription factors that specifically control the expression of relevant genes for
growth, pattern formation and differentiation. In this scenario, regulation of gene expression

turns out to be essential to determine cell fate and tissue specificity.

Results

To characterize the dynamic transcriptional profiles during cellular differentiation, we tracked
down the transcriptome of committed cells in different Drosophila melanogaster tissues and
compartments at a number of developmental stages. We found that during fly development,
temporal transcriptional changes shared across lineages are much larger than spatial lineage-
specific transcriptional changes, and that cellular differentiation is dominated by a transcriptional
program, common to multiple lineages, that governs the transition from undifferentiated to fully
differentiated cells independently from the differentiation end point. The program is under weak
epigenetic regulation, and it is characterized by downregulation of genes associated with cell
cycle, and concomitant activation of genes involved in oxidative metabolism. Largely orthogonal
to this program, tissue specific transcriptional programs, defined by a comparatively small
number of genes are responsible for lineage specification. Transcriptome comparisons with
worm, mouse and human, reveal that this transcriptional differentiation program is broadly

conserved within metazoans.

Conclusions
Our data provides a novel perspective to metazoan development, and strongly suggest a model,
in which the main transcriptional drive during cell type and tissue differentiation is the transition

from precursor undifferentiated to terminally differentiated cells, irrespective of cell type.
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Background

All pluricellular organisms develop from a single totipotent cell. In the course of development,
cells proliferate and commit to distinct cell fates to ultimately, through cell differentiation,
produce a plethora of cell types that combine in specialized tissues and organs. Such a diversity
of cell types, all sharing the same genome sequence, is the consequence of differential
expression of specific genes, which is driven by complex transcriptional and epigenetic
regulatory networks. The conventional view of differentiation explains cell fate commitment as a
linear and progressively restricted path that is distinctive for each specific cell type (based on
Waddington’s diagram of epigenetic landscape (1)). In this model, the transition from a
proliferative state to a differentiated quiescent state is achieved through several cell fate
decisions driven by precise epigenetic regulatory programs. However, studies from the last
decades in cell reprogramming, transdifferentiation and regeneration have slightly changed this
view, by showing that adult cells retain a certain plasticity and that the differentiation process is
reversible to varying degrees, both in vitro, for example in the case of reprogramming inducible
pluripotent stem cells (iPS cells) and in vivo, for example in the case of dedifferentiation and

transdifferentiation after injury (reviewed in (2)).

In the past two decades, research into the regulatory mechanisms underneath cell fate
and tissue differentiation has been enormously facilitated by next generation sequencing (NGS)
technologies. Recent single cell sequencing technologies, in particular, have led to the
identification of specific gene expression profiles associated with tissues or cell types in adult

organisms or after in vitro differentiation (3—-9).

Here, we analyze the development of Drosophila melanogaster --an experimentally
manageable model within metazoans-- to characterize the temporal and spatial transcriptional
programs that underlie tissue differentiation during animal development. In contrast to
previously published fly development transcriptional studies, here we specifically, label
primordial cells from imaginal discs --internal epithelial sacs in larvae that are committed to give
rise to specific tissues in adults (10)--, isolate them using fluorescence-activating cell sorting
(FACS), and profile their transcriptional state with RNA-seq at different developmental stages.
Differential gene expression analysis reveals that, in contrast to the prevalent view, a
transcriptional program common across cell lineages governs the transition from

undifferentiated to fully differentiated cells, dominating tissue specific programs, which are
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93 defined by a comparatively low number of genes, and tend to be activated late during
94  development. Comparative transcriptomics analyses show that this program is substantially
95  conserved across metazoans.

96

97

98 Results

99

100 Spatial and temporal transcriptional analysis of imaginal discs during Drosophila
101 melanogaster development

102

103 During fly metamorphosis, imaginal tissues undergo cell differentiation and morphogenetic
104 rearrangement to give rise to adult functional appendages (Fig. 1A). To investigate the
105 molecular basis of this process, we interrogated the transcriptome of imaginal tissues at
106 different stages during terminal fly development. Within each tissue and developmental stage,
107  we selected the precursor cells that differentiate into the adult tissue. To track down precursor
108 cells, we used GFP reporter lines, in which GFP is driven by the promoter of genes specifically
109 expressed in a particular region of each tissue. Briefly, imaginal tissues were manually
110 dissected and disaggregated by trypsin treatment. After that, cells were collected by
111  fluorescence-activating cell sorting (FACS), RNA was extracted and processed for NGS (see
112  Methods and Fig. 1B and Supplementary Fig. 1A,B). Overall we generated RNA-Seq data
113 from eye, leg and wing from three different stages: third instar larvae (L3, around 110 h of
114  development), when cells are predetermined and committed to specific cell types in adult, but
115 they are still undifferentiated and keep proliferative capacity(10)), early pupa (EP, around 120 h
116  of development), immediately after entering pupariation and coinciding with Ecdysone hormone
117  signaling peak, and late pupa (LP, around 192 h of development, corresponding to 72 h after
118 pupa formation), when tissues are fully differentiated and almost functional. In addition, we also
119 generated RNA-seq data for antenna and genitalia discs (male and female), for L3 and EP.
120 Finally, we produced RNA-seq for four wing compartments (anterior, posterior, ventral and
121  dorsal) for the three developmental stages. In total, considering two replicates per condition, we
122  generated RNA-Seq data for 54 samples. In addition, we generated H3K4me3 ChIP-Seq for
123 eye, leg and wing at these three developmental time points (two replicates per condition, 18
124  ChlIP-Seq samples, in total).

125
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126 From the RNA-Seq data, we estimated expression values for 17,158 annotated genes
127 (FlyBase gene annotation r6.05, summary statistics of RNA-seq samples in Methods, all data

128 available at https://rnamaps.crg.es). Genes with known tissue specific (11-15), or

129 developmental (16-18) transcriptional patterns behaved as expected (Fig. 1C and
130 Supplementary Table 1).

131

132

133 A common transcriptional differentiation program is shared across tissues during fly
134  development

135

136  Principal component analysis (PCA) and hierarchical clustering (Fig.1D, Supplementary Fig.
137  2A, B) show that samples cluster preferentially by developmental time than by tissue lineage.
138 That is, the transcriptomic profile of a given tissue at a specific stage of development is more
139 similar to the profile of other tissues at that stage, than to the same tissue in other
140 developmental stages. Using linear models (see Methods (19)), we estimated that the
141  proportion of the gene expression variance explained by the developmental time (41% on
142  average) is indeed much larger than that explained by the tissue (22%) (Fig. 2A, B). During fly
143  tissue differentiation, therefore, temporal changes of gene expression dominate over spatial
144  changes.

145

146 From a set of 9,334 genes that are expressed at least 5 TPMs in at least two samples,
147  we identified a set of 2,034 genes that change expression across tissues (eye, leg and wing)
148 and/or time points (Developmentally Dynamic Genes, DDGs, see Methods(20)). We classified
149 these genes in three categories: differentially expressed across developmental stages (stage
150 genes, SGs, 1,445 genes, consistently with the result above, the largest category), across
151  tissues (tissue genes, TGs, 345) and across both tissues and stages (tissue-stage genes,
152 TSGs, 255), Supplementary Table 2). Within SGs, we further classified genes as
153 downregulated or early differentiation genes (822 genes, 56%, preferentially expressed in L3
154  and EP), upregulated or late differentiation genes (571 genes, 39.5%, preferentially expressed
155 in LP), and peaking or metamorphosis entrance genes (52, 4.5%), which are upregulated at EP
156 in all tissues (Fig. 2C and Supplementary Fig. 3A,B). Early genes are associated with cell
157 cycle, gene regulation, RNA processing and translation processes; metamorphosis entrance
158 genes to endoplasmic reticulum localization and apoptosis signaling, and late genes are related

159 to cuticle formation and chitin metabolism (Supplementary Fig. 3C). Among the late genes, a
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160 large fraction (324, 57%) are poorly characterized genes with no associated functions,
161 compared with 42% of metamorphosis entrance genes, and 27% of early genes. This could be
162 ascertainment bias, as most functional characterization studies in flies are performed in
163  developing, not in fully differentiated, animals.

164

165 TGs are enriched for the expected tissue-specific cell fate functional categories
166 (Supplementary Fig. 3D). Some of these genes are known to be essential to regulate cell
167 determination and tissue formation during development (e.g. ey and gl in eye). TGs correspond
168 broadly to genes that are already differentially expressed at L3, when cells within imaginal
169 tissues are undifferentiated, and remain differentially expressed all through development. TSGs,
170 in contrast, are genes activated in a tissue specific manner only at specific developmental time
171  points. We found that most TSGs are specifically activated in the transition from EP to LP,
172  driven mostly by an expansion of eye specific genes. This results in a larger number of tissue
173  specific genes at the terminal stage of differentiation associated to each tissue function (Fig. 2D
174 and Supplementary Fig. 3E). Transcriptional differences between tissues, therefore, increase
175 with developmental time (Fig. 1D, 2D), suggesting that an expansion of tissue regulatory
176  programs is needed for terminal tissue differentiation.

177

178 Overall, our results strongly suggest that during fly development, there is a temporal
179 transcriptional program common to all tissues that dominates over tissue specific transcriptional
180 programs, which are defined by a comparatively small number of genes. This program is of
181 fractal nature, as it can be observed at different organizational scales. Indeed, we produced and
182  analyzed expression data from the distinct compartments within wing imaginal discs. As with
183  tissues, variation of gene expression is much larger across developmental time than across
184  compartments (Supplementary Fig. 4A,B,C) and the transcriptional behavior of DDGs within
185 the wing imaginal discs replicates the behavior observed among imaginal discs during
186 development (Supplementary Fig. 4D).

187

188 We have investigated the epigenetic features underlying the fly temporal differentiation
189 program. We generated H3K4me3 ChlIP-Seq profiles for eye, leg and wing differentiating
190 tissues and analyzed FAIRE-Seq data available for these tissues to assess chromatin
191  accessibility (21). We focused on the core promoters (+- 250bp from the transcription start sites,
192 TSS). Overall, we found most DDGs either in closed conformation and/or unmarked, or

193 unspecifically open and/or marked (Fig. 3A, Supplementary Fig. 5A-D), Chromatin
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194  accessibility, and H3K4me3 marking in particular, mostly reflect, actually, the breadth of gene
195 expression. Genes with restricted expression (expression restricted to a single stage or/and
196 tissue) are in closed chromatin conformation or/and unmarked more often than genes with
197  widespread expression (Fig. 3A, Supplementary Fig. 5A-E). This is consistent with previous
198 reports that show absence of marking by canonically activating histone modifications in genes
199 regulated during fly development (15,22,23). The exception are early genes with restricted
200 expression patterns. These tend to be marked at early developmental stages and remain
201  marked in late differentiation, even when not being expressed.

202

203 These results suggest that the fly transcriptional developmental program is, broadly,
204 under weak promoter epigenetic regulation. We did find, however, a strong enrichment of
205 transcription factors (TFs) within TGs (20%) compared to SGs (6%) or TSGs (5%, Fisher's
206 Exact Test on Count Data, p<0.001) (Fig. 3B,C), suggesting that TFs play a comparatively
207  more important role in spatial than in temporal differentiation. Within SGs the number of TFs is
208 higher in early than in late genes, in concordance with previous observations during mammalian
209 development (24).

210

211

212 A developmental gene regulatory network in fly differentiation

213

214  Gene regulatory networks (GRNSs) integrate information from transcriptional regulators and their
215 targets to provide a holistic view of the regulatory program of a particular biological process.
216  Previous studies have successfully used transcriptional-based GRN to model gene regulation
217 along developmental processes (12,25,26). Here, we used Weighted Correlation Network
218 Analysis (WGCNA) (27) to construct a differentiation co-expression network connecting
219 Developmentally Dynamic genes (DDGs) with their putative regulatory TFs. To identify reliable
220 TF-target pairs, we scanned for conserved TF binding motifs occurring in open chromatin
221 regions within the promoter regions of the target genes (see Methods for details,
222  Supplementary Fig. 6A).

223

224 The resulting GRN includes 1,656 nodes (1,485 DDGs and 229 TFs), and 14,039 edges
225 (Fig. 4A, Supplementary Fig. 6B-F, Supplementary Fig. 7 A,B and Supplementary Table 3).
226  The WGNA identified 15 regulatory clusters (Fig. 4B, Supplementary Fig. 6G-l), to which we

227  associated functional categories by GO enrichment analysis (Fig. 4C, Supplementary Fig. 8


https://doi.org/10.1101/2022.04.22.489139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.489139; this version posted April 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

228 and Supplementary Table 3). Clusters 1 to 3 form a super-cluster mostly composed of early
229 genes. Cluster 1 is functionally associated with regulation of gene expression (Fig. 4C,
230 Supplementary Fig. 8) and, as expected is the cluster with the highest number of interactions
231 (8,486, Fig. 4D). The TFs in the cluster include general transcriptional regulators, known to
232  have functions on chromatin structure and regulation of gene expression like BEAF-32, Dref, Z,
233 Dalao, BAP170 or Br; developmental chromatin remodelers such Trl, Pcl, Pho and Phol;
234 insulators like Cp190 and SuHw; TFs associated to imaginal disc morphogenesis, like Hth, Exd,
235 Sd, Da, Mad, Ets21C, Rn, Myc or Max; as well as TFs related to metabolic regulation, like
236  Bigmax, Foxo and ATF-2 (Supplementary Fig. 7C). Although these TFs bind many early
237 genes, interactions with late genes and TGs were also predicted. Clusters 2 and 3 are
238 functionally associated with cell cycle and translation, respectively. Clusters 4 and 5,
239 corresponding to very few peaking genes (Supplementary Fig. 6H) could also be included in
240 this super-cluster (Fig. 4A).

241

242 Clusters 6 to 9 form a second super-cluster mostly composed of late genes. Only one of
243  these, cluster 6, is preferentially regulating late genes, while the TFs within cluster 7 and 9 are
244  predicted to have high number of interactions also with early genes, suggesting potential
245  negative regulation (Fig. 4C,D). Among these TFs, many are activated through stress, immune
246  and hormonal signaling pathways, like dl, Gce, Hr4, Kay, Rel, Eip74EF, Eip75B and Eip93F;
247 and many are known or predicted to have repressor capacity. This hints at a possible link
248 between whole animal signaling and SGs. Signaling cascades, likely associated with
249  metamorphosis, could induce expression of TFs that may repress early genes and activate late
250 genes. Additionally, cluster 8 includes ten TFs: Abd-B, Awh, D, Gsb, Gsb-n, Lim1, Odd, Opa,
251 Retn, Sob, all known to play a role in development and patterning, that predominantly interact
252  with cell cycle genes (cluster 2, Fig. 4D).

253

254 Clusters 10 to 13 form a third super-cluster mainly composed of eye genes and eye late
255  genes. They are functionally associated with eye morphogenesis and neural fate. Among them,
256  cluster 12 is associated specifically with eye development, and includes eye fate regulators and
257  neurogenesis inductors predicted to preferentially bind eye genes (Fig. 4D). These include well
258 characterized genes like: ey, gl, mirr, toy, oc, pnt, ro, scrt, ttk, lola and so (Supplementary Fig.
259 7D). Some TFs inside these clusters, which are not necessarily expressed in a restricted
260 manner in the eye, are predicted to also bind several early genes. The same is observed for

261 TFs in cluster 14 (leg) and 15 (leg and/or wing, Fig. 4D), which form the fourth super-cluster.


https://doi.org/10.1101/2022.04.22.489139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.489139; this version posted April 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

262 These results point to a possible crosstalk in which tissue fate regulators mediate down-
263  regulation of early genes when tissues differentiate.

264

265 TF-target interactions tend to take place within super-clusters that are associated to
266  different temporal (early, late) and spatial (eye, leg-wing) niches (Fig. 4D), suggesting that the
267 temporal expression program is largely orthogonal, with some, but little, cross-talk with tissue
268  specific regulatory programs (Fig. 4A,C,D). Further plotting the network according to
269  betweenness centrality, in which highly connected nodes are placed in proximity irrespective of
270  the direction of the correlation (Supplementary Fig.7A,B), revealed that early genes are highly
271  connected with TFs regulating a large number of genes, while late genes are more sparsely
272  connected to their regulators, consistent with our observation that tissue specific expression
273  programs unfold late during development (Fig. 1C, 2C,D).

274

275 The GRN helps to functionally characterize the temporal differentiation program shared
276  across tissues. In this program, the transition from precursor to differentiated states is driven,
277 independent of cell type, by downregulation of genes associated with cell cycle (cluster 2), with
278  regulation of gene expression (cluster 1) and with translation (cluster 3), and by a concomitant
279  activation of genes involved in oxidative metabolism and other metabolic pathways (cluster 7),
280 andin (terminal) differentiation (cluster 6 and 8).

281

282

283 The fly transcriptional differentiation program captures the transition from
284  undifferentiated to terminally differentiated cells, irrespective of the differentiation end
285 point

286

287  To further corroborate our results, we have analyzed other fly developmental transcriptome
288  data, which is not from tissue isolated cells, but from the whole body and from specific tissues.
289  First, when analyzing data from carcass, central nervous system (CNS) and fat body available
290 for L3 and LP or adult(22,28), we found that the expression of SGs clearly differentiates early
291 from late stages (Fig. 5A, Supplementary Fig. 9A). This was true in particular for carcass and
292 CNS that, as imaginal discs, contain mostly undifferentiated cells in L3 and experience
293 differentiation during metamorphosis, while the fat body is already differentiated at L3 (review in
294  (29)).

295


https://doi.org/10.1101/2022.04.22.489139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.489139; this version posted April 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

296 Next, we have analyzed whole body RNA-seq data from the modENCODE project which
297 is available at much higher temporal resolution (28,30)) (Figure 5B). We found that early
298 differentiation genes are highly upregulated at the beginning of embryogenesis, coinciding with
299 active proliferation state, and their expression decreases around mid embryogenesis, coinciding
300 with morphogenetic arrangements and organ primordia specification. On the contrary, late
301 differentiation genes appear upregulated from mid to late embryogenesis, and in larval and
302 pupa stages compared to early embryogenesis. As expected, when measured on the whole
303 organism, containing heterogeneous cell types in different states of differentiation, the shift
304 between early and late gene expression can not be detected comparing L3 and LP stages (Fig.
305 5B and Supplementary Fig 9B). This suggests that the fly developmental transcriptional
306 program is actually associated with cell differentiation, and that the endpoints of this program
307 (early and late genes) correspond to undifferentiated and fully differentiated cells, rather than to
308 specific chronological differentiation time points. In additional support of this, we have analyzed
309 RNA-Seq data available for different cell types from the Drosophila adult midgut (31). We found
310 that in undifferentiated or primordia cells (intestinal stem cells and enteroblasts, respectively)
311  early genes are up-regulated compared to differentiated cells (enterocytes and enteroendocrine
312  cells), in which late genes are up-regulated, instead (Fig. Supplementary 9C).

313

314

315 The fly transcriptional differentiation program is conserved in metazoans

316

317 To investigate whether the fly temporal differentiation program is conserved outside from
318 insects, we analyzed RNA-Seq data from diverse organs at different developmental time points
319 available for mouse, human, and worm (24,32). We identified the 1-to-many orthologs of the set
320 of fly early and late genes (Supplementary Table 4) in each of these species. In the case of
321 mouse, more than 80% of orthologs of fly early and late genes were classified identically by
322  Cardoso-Moreira et al. (24) in at least one of the mouse tissues (Fig. 6A). Consistent with
323  tissue specialization during development, also observed in Drosophila, while 38% of early
324  orthologs are downregulated through differentiation in all four tissues (325 out of 850), only 11%
325  of late orthologs are upregulated in the four tissues (42 out of 372, Fig. 6A). In agreement with
326 the metabolic changes observed during fly development, early and late mouse orthologs are
327  functionally associated to different metabolic pathways, including nucleic acid metabolism for
328 early genes orthologs and ion transport and lipid metabolism for late ones (Fig. 6B).

329

10
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330 We used self-organizing maps (SOM) to cluster the orthologous genes in each species
331 based on the developmental gene expression data in that species (Fig. 6C-E and
332 Supplementary Fig. 10). In the case of mouse, orthologs of fly early and late genes
333  (corresponding to 850 and 372 fly genes, respectively) clearly cluster apart (Fig. 6D). In every
334 tissue analyzed, the gene expression trajectory during differentiation followed a similar path,
335 replicating that observed in the fly, with higher expression of early orthologs in the first time
336  points of development gradually transitioning to higher expression of late orthologs in the last
337 time points (Fig. 6E). While early orthologs have similar widely distributed expression patterns
338 in early development, late orthologs show tissue-specific specialization late in development.

339 Next, we further investigated whether the specific associations TF-target detected in the
340 fly GRN were conserved in the mouse. We computed the correlation of expression between
341  orthologous TFs and orthologous targets across mouse samples for each tissue separately.
342  Since for each fly TF-target pair there may be multiple mouse orthologs TF-target pairs, we
343  selected the mouse TF-target pair with the closest correlation to the fly TF-target pair,
344  irrespective of the direction of the correlation. In all tissues, we found the TF-target associations
345  (direction and strength) strongly correlated between fly and mouse (Fig. 6F). We believe that
346 the assumption that the best correlated pair is the one most likely to have kept the fly function in
347 the mouse after the subfunctionalization and neofunctionalization, expected to occur following
348 gene duplication, is the most sensible one. However, it may also lead to inflated correlation
349 values. Thus, we have recomputed the correlations when considering all orthologous pairs for
350 each fly TF-target pair. While the correlations are, as expected, weaker, they are still highly
351  significant (Supplementary Fig. 11).

352

353 We found similar results when analyzing human and worm developmental expression
354 data (Supplementary Fig. 10). We then identified the most conserved TF-target pairs: 77 pairs
355 in the fly (nine TFs, 68 targets, Supplementary Table 5) having correlations higher than 0.5 in
356 all species). Among these, the most conserved pairs include the Hox cofactor Exd and the TGF-
357 Beta related factors Mad and Med as TFs. These TFs are predicted to regulate several
358 transcriptional and chromatin factors across all metazoans, like the members of the Brahma
359 complex: Brm, Bap60 and Dalao, Row, Glo and CG1620, some splicing factors like Hel25E and
360 B52 and some cell cycle regulators like Mapmodulin and Grp. Also Max, the cofactor of Myc, is
361 in the list of most conserved pairs regulating RpS30, involved in translation, and CG8209 (the
362  ortholog of UBXN1, a general negative regulator of protein metabolism.

363

11
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364 These results, all together, strongly suggest that the fly transcriptional differentiation
365  program is largely conserved within the metazoan lineage.
366

12
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367 Discussion

368 Cell determination and differentiation are fundamental to tissue and organ formation and
369 ultimately organism development. To characterize the molecular basis of these processes, we
370 profiled gene expression of imaginal tissues during fly organ differentiation. In contrast to
371  previous work (4,18,21,33,34), we specifically labeled primordial cells with GFP and tracked
372  them along development. This allowed us to monitor changes precisely associated to particular
373  cells while they undergo differentiation (Fig 1A and Supplementary Fig. 1). The data produced

374  here, therefore, is a valuable resource to investigate transcriptomic changes in fly development.

375 Our analyses of this data suggest that the transition from precursor undifferentiated to
376 terminally differentiated cells is the consequence of two, partially orthogonal, transcriptional
377  programs. First, the general down-regulation of early genes and activation of late genes, which
378 is common to all differentiating cells, independently from the differentiation end point. Second,
379 the late specialized activation of genes defining tissue fate (Fig. 7A). The temporal
380 differentiation program clearly dominates the spatial program, which is defined by a relatively
381 small number of genes. This suggests that the Waddington landscape is less steep, and the
382 valleys less deep than often assumed, contributing to explain why transdifferentiation from a
383 terminal cell type to another can be forced with relative ease, either directly or through de-
384  differentiation.

385 We have built a differentiation gene regulatory network (GRN, Fig. 4) to help
386 characterize these programs from the functional standpoint. We found that genes generically
387 downregulated during differentiation are preferentially associated with cell cycle, regulation of
388 gene expression and translation. Remarkably, most genes (~ 60%) generically up-regulated
389 during differentiation have not been functionally characterized yet. We identified a cluster,
390 however, in the fly differentiation GRN (cluster 7), mainly composed of late genes involved in
391 oxidative metabolism and ion transport. These include Vhal4-1, Vha36-1, Vha68-2, VhaAC45
392 and VhaM9.7 (35) that encode for subunits of vacuolar H+ ATPase; and genes related to other
393 metabolic pathways, like mmy (36), Gsl (37), Mfe2 (38) among others (Fig. 4 and
394  Supplementary Fig. 7). White et al. (39) previously described a transcriptional metabolic
395 change associated with metamorphosis entrance in Drosophila, and hypothesized that this
396 could reflect tissues preparing for cell death, or consequence of the transition from an active
397 larval state to a sessile pupa one. However, recent insights in early embryogenesis and stem

398 cell (SC) differentiation (reviewed in (40)) indicate that in mammalian embryonic SCs (ESCs)
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399 oxidative capacity is reduced and glycolysis-dependent anabolic pathways are enriched
400 whereas mitochondrial function and oxidative metabolism positively correlate with SC
401  differentiation. Thus, experimental evidences based on mammalian ESCs reprogramming and
402  differentiation indicate that transcriptional programs regulating stemness influence energy
403 metabolism and metabolic enzymes ((41-44) review in (40)). In agreement with this, we found
404  that mouse orthologues of the early and late gene sets are enriched for genes associated with
405  different metabolic pathways (Fig. 6B). Altogether, our results suggest that the fly transcriptional
406  differentiation program may be regulating metabolic changes necessary for tissue differentiation
407  (Fig. 7A). Metabolomic assays to characterize the metabolic fluxes occurring in imaginal

408 tissues through differentiation would help to assess this hypothesis.

409 The fly transcriptional differentiation program, thus, appears to be under weak direct
410 epigenetic regulation. Chromatin accessibility appears quite stable and unspecific for genes
411  regulated during fly development, according to previous publication (21) (Supplementary Fig.
412 5C,E), and it does not seem therefore to play a key direct regulatory role. However, it could still
413 play an indirect role through the regulation of certain key fate regulators in specific tissues. For
414  example, we found three eye TFs (Scrt, Oli and Hmx) showing open promoters specifically in
415 the eye. These genes are involved in eye and neural fate specification, and regulate multiple
416  genes according to our GRN. For instance, among Scrt direct targets there are essential eye
417  fate regulators like Ey, So and Pnt. Marking by H3K4me3, on the other hand, reflects mostly the
418 breadth, rather than the specificity, of gene expression (Fig. 3, Supplementary Fig. 5). We
419  specifically found, however, that genes exclusively expressed in L3, tend to maintain the mark in
420 LP. H3K4me3, thus, is not actively erased from the switched-off promoters of these genes.
421  While the consensus in the field is that H3K4me3 is a conserved hallmark of active promoters,
422  recent reports (reviewed in (45)) show that it is dispensable for gene activation; our results

423  further suggest that it may not be sufficient either to drive and/or maintain transcription.

424 In contrast, the fly GRN predicts regulatory TF-target interactions for 74% of the genes
425  regulated during differentiation (DDGs). This suggests that the combinatorial action of TFs on
426  open promoters are likely to play the leading role in the regulation of DDGs during cellular
427  differentiation (reviewed in (46,47)). Further studies on TF occupancy in promoters and
428  enhancers during imaginal tissues differentiation, as well as direct and indirect protein-protein
429 interactions between TFs, are required to fully understand the regulation of the transcriptional
430  output of DDGs.
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431 We found that the fly transcriptional differentiation program is broadly conserved among
432  metazoans (from worm to humans) (Fig. 6E,D and Supplementary Fig.10). Specifically in the
433 fly, we found that temporal transcriptional changes common to multiple cell types, as they
434  transition from undifferentiated to fully differentiated types, dominate over cell types specific
435 transcriptional changes. It has been recently shown that also during mammalian organ
436  development there is a temporal transcriptional program common across tissues (24,26).
437  However, in this case, tissue specific transcriptional changes seem to predominate (24,26). This
438 does not necessarily reflect a true biological phenomenon, but could partially be the
439 consequence of the difficulties of measuring in systems of large complexity. First, mammalian
440 organs are composed of a large number of cell types and tissues, which do not necessarily
441  differentiate and mature in a synchronous manner, especially in late development. In contrast,
442  the fly organs, at least those analyzed here, (eye, leg and wing), are simpler, composed by a
443  reduced number of cell types (48-50), which, as a result of metamorphosis, mature in a more
444  synchronized manner. Second, as vertebrates suffered several rounds of whole genome
445  duplications, duplicated genes underwent different paths of neo- and sub-functionalization
446  (51,52), evolving divergent(53-55) or redundant regulatory profiles (56,57) and making difficult
447 to correctly identify TF-target interactions. In Drosophila, in contrast, reduced genome
448  complexity facilitates the identification of these interactions. This can actually be seen when
449  comparing the fly TF-target interactions in other species. Thus, in worm, with reduced genome
450 complexity compared to human and mouse, the drop in TF-target correlations when computed
451  over all orthologous TF-target pairs compared to the best pair is less dramatic than in the
452  mammalian species. Thus, the relative simplicity of the fly developmental system allows for the
453 discovery of general trends, which are obscured, and thus more difficult to detect, in more

454  complex (mammalian) systems.

455 Finally, further analysis at single cell level will contribute to understanding the temporal

456  and spatial transcriptome determinants of cellular differentiation.

457

458

459

460
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461

462 Conclusions

463 In summary, we investigated the regulatory transcriptional programs underlying cell linages
464  differentiation. Our results show that transcriptional changes occurring during cellular
465  differentiation are likely to predominantly reflect the progressive loss of pluripotency and the
466 gain of a mature metabolic state, as cells transition from undifferentiated to terminally
467  differentiated states. These changes are common to most cell types, and dominate those
468 underlying lineage specification and tissue specificity, which affect a relatively small number of
469 genes. A network of TFs regulates, mainly, the cell differentiation transcriptional program and
470 this GRN is conserved across metazoans during development. This novel gene regulatory
471  program will help to better understanding of many differentiation events, both, in vivo and in
472  vitro, and could contribute to the improvement of differentiation in vitro processes.

473
474

475 Methods
476

477  Drosophila melanogaster strains

478  Fly strains used for this study were: nubbinGAL4;UAS-GFP (selection of wing primordial cells),
479 GMRGAL4;UAS-GFP (selection of eye cells) and p{GAW}NGAL4-5;UAS-GFP (selection of leg
480 cells and antenna cells), enGAL4;UAS-GFP (selection of anterior and posterior compartments in
481 wing), apGAL4;UAS-GFP (selection of ventral and dorsal compartments in wing),
482  ubiRFP;p{GawB}C68a;UAS-GFP (male and female genitalia discs). Flies were grown in
483  standard media at 25°C.

484

485  Cell sorting, RNA isolation, library preparation and sequencing

486  Imaginal tissues from third instar larvae (110-115h after egg laying), early-pupa (120-130h) and
487 late pharate (225-235h) were dissected in PBS 1x and incubated for 1h in a 10x trypsin solution
488 (Sigma T4174) at room temperature in a rotating wheel. Cells were vigorously pipetted and kept
489 on ice in Schneider’s insect medium. To discard dead cells, DAPI was added to the sample at 1
490 upg/mL final concentration. Cells were sorted in a FACSAria (BD) with the 85 um nozzle at the
491  Flow Cytometry Unit of the University Pompeu Fabra and the Centre for Genomic Regulation

492 (UPF-CRG, Barcelona, Spain). Cells of interest were collected for subsequent analyses
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493  (Supplementary Fig. 1B). RNA from sorted cells was extracted with the ZR-RNA MicroPrep Kit
494  from Zymo Research following the manufacturer's instructions. Sequencing libraries were
495  prepared using TruSeq Stranded mRNA Library Preparation Kit from lllumina and following the
496  manufacturer’s instructions. Sequencing was performed in a HiSeq sequencer from lllumina at
497  the Ultrasequencing Unit of the CRG. A minimum of 50 million paired-end 75 bp-long reads
498  were obtained per replicate and two replicates were performed per each tissue.

499

500 RNA-seq experiments

501 Stranded paired-end RNA-seq data for 27 samples in two bio-replicates were generated. The
502 raw data (FASTQ), mapped data (BAM) and lists of quantified elements are available
503  https://rnamaps.crg.cat/.

504

505 RNA-seq data processing and analysis

506 We processed the data wusing the in-house pipeline grape-nf (available at
507 https://github.com/guigolab/grape-nf). RNA-seq reads were aligned to the fly genome (dm6)
508 using STAR 2.4.0j(58) allowing up to 4 mismatches per paired alignment. We used the FlyBase
509 genome annotation r6.05(59,60). Only alignments for reads mapping to ten or fewer loci were
510 considered. On average 92% of reads were mapped and 85% of the initial number of reads
511  were uniquely mapped to the fly dm6 genome. Of these, 92% mapped to exonic regions.

512

513 Gene and transcripts were quantified in Transcripts Per Kilobase Million (TPMs) using RSEM
514  (61). TPM values were recomputed including only protein coding and long non coding genes
515 (13,920 and 2,470 genes, respectively). Only genes expressed at least 5 TPMs in two samples
516 were considered for subsequent analyses (9334 genes). TF annotation was obtained from

517  FlyFactorSurvey (http://mccb.umassmed.edu/ffs). Plots were made using d3js (available at

518  https://d3js.org/) and ggplot2(62) and R scripts (some available at
519  https://github.com/abreschi/Rscripts).

520

521  Gene expression

522

523  Variance Decomposition

524  For each gene, the total variance in expression across samples (total sum of squares, TSSQ)
525 can be decomposed into three variances : variance across developmental stages (SSSg),

526  variance across tissues (SSTg), and the residual variance (SSRg) as in the ANOVA type of
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527 analysis: TSSg=SSSg+SSTg+SSSQ:SSTg+SSRg(19) The relative contribution of each factor to
528 the total variance in gene expression can then be computed as the relative proportion of each
529  variance with respect to the total. We used a linear model, implemented using the function Im()
530 from R using the in-house wrapper available at
531  https://github.com/abreschi/Rscripts/blob/master/anova.R (19). The TPM matrix with both

532  replicates per sample was used for the analysis.

533

534  Profiling the gene expression and DDGs definition

535

536 To identify genes whose expression changes across fly differentiation we used different
537 methods to profile gene expression. First, we performed differential gene expression analysis
538 using EdgeR v3.22.5 (63) with stages and tissues as factors. The counts matrix with both
539 replicates per sample was used for the analysis. We required log2 fold change > 1 (at least two-
540 fold change) and FDR < 0.01. Contrasts of every tissue and stage were used to define tissue
541  and stage specific genes (18 contrast in total, herein called EdgeR tissue-stage). Second, to
542 identify tissue-specific genes, EdgeR was used with tissue as factor (tissue gene profiles) and
543 time-specific genes were classified for each tissue independently based on their trajectories
544  (stage gene profiles: up-regulation, down-regulation, peaking or bending). Briefly, we focused
545  on profiles with at least two-fold change and identified monotonic up-regulations and down-
546 regulations; peaking profiles were defined as monotonic increases followed by monotonic
547  decreases, bending profiles as the opposite (script: classification.log2.pl) (64). Third, we used
548 the percentage of contribution from variance decomposition to identify genes for which the sum
549  of tissue and stage contribution explains at least 70% of variation of expression.

550 Finally, genes classified as differentially expressed in at least two of the three methods used (
551 edgeR tissue-stage, gene profiles, either across tissues or stages, and variance decompaosition)
552  were considered Developmental Dynamic Genes (DDGS).

553 In detail, EdgeR tissue-stage results were used to classify all gene sets: stage genes
554  (differentially expressed in all the tissues in a particular stage/s), tissue genes (differentially
555  expressed in all stages in a particular tissue/s and tissue-stage (differentially expressed in
556  particular tissue and stage). Gene profiles through developmental stages were used to define
557  stage genes and tissue-stage genes, while gene profiles across tissues were used to define
558 tissue genes. Following variance decomposition classification: stage genes have stage-
559 explained variation at least two fold greater than tissue-explained variation, tissue genes have

560 tissue-explained variation at least two fold greater than stage-explained variation and tissue-
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561 stage were the rest of genes above the 70% cut-off. Groups with less than 5 genes were
562 discarded. Supplementary Table 6 summarizes the number of genes obtained from each
563 analysis.

564  Restricted vs widespread gene classification

565 Restricted genes show expression levels equal or higher than 5 TPMs only in the precise
566  tissue/developmental stage where they are considered differentially expressed. The remaining
567 differentially expressed genes are classified as widespread.

568

569 GO term enrichment analysis

570 The GO term enrichment analysis for biological processes hierarchy was performed separately
571  for each set of genes, with respect to all DDGs used as background. The enrichment is tested

572  with the hypergeometric test implemented in the R package GOstats v2.44.0 (65). FlyBase gene

573 IDs are converted to entrez gene IDs via the R package org.Dm.eg.db v3.4.1 (Bioconductor -
574  org.Dm.eqg.db), and mapped to gene ontology through the R package GO.db v3.4.1
575  (Bioconductor - GO.db).

576

577  Epigenetic regulation

578

579 FAIRE-Seq data processing and classification

580 For each gene, we define the promoter as the sequence within a window of 250 bp upstream
581 and downstream from the transcription start site (TSS). All TSSes annotated for the genes were
582 considered for classification, but only the genes with all TSSes equally classified were
583 considered for later analyses. FAIRE-Seq data was obtained from NCBI GEO database
584  GSE38727 (21), replicates with higher signal-to-noise ratio were selected for the analysis. Data

585 was processed using the in-house chip-nf pipeline (https://github.com/guigolab/chip-nf). Reads

586  were continuously mapped to the fly genome (dm6) with up to two mismatches using the GEM
587 mapper (66). Only alignments for reads mapping to 10 or fewer loci were reported. Duplicated

588 reads were removed using Picard (http://broadinstitute.qgithub.io/picard/). Peak calling was

589 performed using MACS2 (67), only peaks with fdr < 0.1 were considered. Promoters were
590 classified as specific when open chromatin peaks overlapping the promoter are present only in
591  specific tissue and/or stage, as close when no open chromatin peaks overlap the promoter and
592  as non specific when overlapping peaks are present in several tissues or stages.

593

594  H3K4me3 Chromatin Immunoprecipitation

19


https://doi.org/10.1101/2022.04.22.489139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.489139; this version posted April 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

595 Chromatin from antenna, eye, leg and wing at three stages of development (L3, EP and LP)
596  was fixed with FA1% at RT for 10 min and sonicated with a Diagenode Bioruptor for 15 minutes
597  at high intensity with ON/OFF alternate pulses of 30 second. Sheared chromatin was aliquoted
598 and flash frozen in liquid nitrogen. Chromatin immunoprecipitation assays were performed
599 following iChIP(68) protocol with some modifications. Abcam antibody Abcam_ab8895 was
600 used to immunoprecipitate H3K4me3 attached chromatin. Data was processed using the in-
601 house chip-nf pipeline (https://github.com/guigolab/chip-nf). Reads were continuously mapped
602 to the fly genome (dm6) with up to two mismatches using the GEM mapper (66). Only
603 alignments for reads mapping to 10 or fewer loci were reported. Duplicated reads were removed
604 using Picard (http://broadinstitute.github.io/picard/). Peak calling was performed using MACS2
605 (67) , only peaks with fdr < 0.1 were considered. The intersection of peaks called in both
606 replicates were used for the analysis. The intersection of such peaks with accessible promoters,
607 described in section "FAIRE-Seq data processing and classification" was used for the
608 epigenetic analysis of promoter regions. The intersection of peaks was performed using
609 BEDtools (69) intersectBed v2.17.0.

610

611 Gene Regulatory network

612

613 Promoter open chromatin and motif search

614  As previous studies demonstrate that FAIRE-enriched regions(21,70,71) are bound by multiple
615 regulatory factors, we used FAIRE-Seq data of fly from the same tissues and developmental
616 stages we used for our analyses to identified putative regulators of DDGs. FAIRE-enriched
617 regions overlapping DDGs promoters (window of 250 bp upstream and downstream from the
618 transcription start site (TSS)) and open at least in the respective tissue and/or developmental
619 stage where the gene is differentially expressed were selected for TF binding motif search. In
620 the case of eye late pupa, for which data was not available, peak should be present in eye or
621 CNS at L3 orin late pupa in any other tissue. The overlap between FAIRE-enriched regions and
622  promoters was computed using BEDTools intersectBed v2.17.0 (69). We ran FIMO (72) using
623  all available fly transcription factor (TF) motif matrices from MEME suite (73) against the FAIRE-
624  enriched regions on DDGs promoters. We found conserved motifs for 238 fly TFs in the
625 promoters of 1991 DDGs. Only TFs expressed at least 5 TPMs in two of the experiments were
626  kept for building the network.

627

628 Sequence conservation and experimental data filtering
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629 To predict binding sites in DDGs promoters every motif was inspected for conservation using
630 the dm6 27-way multiple alignment (23 Drosophila species} sequences, house fly, Anopheles
631 mosquito, honey bee and red flour beetle) and the phastCons measurement of evolutionary
632  conservation from the UCSC Genome Browser (74,75). PhastCons scores in this window are
633 averaged from the bigwig file with the bwtool software(76) and this average is taken as a
634 measure of promoter sequence conservation. Alignment coverage should be at least 80% of
635 initial fly input sequence in at least 10 species (at least one species further than
636  D.pseudoobscura). Average phastCons over the motif region should be greater than 0.5.

637

638 Gene co-expression regulatory network

639 To build the fly gene co-expression regulatory network (GRN), we computed the correlation of
640 expression between DDGs and potential regulatory TFs across all the samples produced here
641 (including those from the wing compartments, the antenna and the genitalia). To generate GRN
642 for DDGs, the R package WGCNA was used (27). We used expression values of DDGs and
643 775 fly TFs across the 27 samples generated in this study. Using default parameters of WGCNA
644  package, that is: hierarchical clustering (hclust R function) and Dynamic tree cut R package (77)
645 we identified fifteen clusters of expression (clusters with Pearson’s correlation coefficient higher
646 than 0.85 were merged), and interactions were filtered first by coefficient of correlation
647  (connection weight higher than 0.1) and then, by presence of a TF conserved motif in the
648 accessible TSS promoter of the DDG. Software Cytoscape 3.8.0 was used for network
649  visualization (78). Nodes were displayed according to Edge-weighted Spring-Embedded Layout
650 analysis of TF-target correlation of expression (Pearson’s correlation coefficient between TF
651 and target expression, averaged between replicates, calculated across the 27 samples) or the
652 odes Betweenness centrality (measure of the amount of influence a node has over the flow of
653 information in a graph calculated as the number of times a node acts as a bridge along the
654  shortest path between two other nodes). Node size was adjusted depending on node
655 closeness centrality (average shortest path length from the node to every other node in the
656  network, it indicates how close a node is to all other nodes). Edges were colored according to
657  TF-target correlation of expression (Pearson’s correlation coefficient mentioned above). Edge
658 transparency was adjusted depending on TF-target weight (similarity measure considering
659 levels of expression, averaged between replicates, across the 27 samples used for network
660 generation).

661

662 Conservation of differentiation regulatory program in metazoans
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663 Fly gene identifiers were mapped to mouse, human, and worm orthologs using Ensembl79

664  (http://mar2015.archive.ensembl.org) (79). Genes mapping to one or more orthologs in each

665  species were analyzed in a fly-oriented manner.

666  Transcriptional profiling of mouse and human were obtained from ArrayExpress (E-MTAB-6798,
667 and E-MTAB-6814) (24). Worm data was obtained from NCBI BioProject database
668 (PRJINA477006) (32). The profile of gene expression of orthologs of Drosophila early and late
669 genes along tissue development was analyzed using self-organizing maps (R package kohonen
670 v3.0.8) (80,81). Orthologs that mapped into both early and late fly genes were excluded from all
671 analyses. We compared the profiles of gene expression of fly early and late genes with the
672 mouse orthologs based on the gene profile classification provided by the authors (24).

673
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994 Figure legends

995

996

997  Fig. 1 Transcriptional profiling of Drosophila melanogaster imaginal discs. (A) Overview

998  of tissues, wing compartments and developmental stages profiled along this work. (B) Workflow
999 of the RNA-Seq data generation. Briefly, imaginal tissues are manually dissected,
1000 disaggregated with trypsin treatment and sorted to collect the cells of interest (i.e., the precursor
1001 cells that differentiate into the adult tissues) from each imaginal disc. After that, RNA is
1002 extracted and processed for library preparation. (C) Expression profiles of genes with known
1003 tissue or stage specific expression patterns. (D) Principal component analysis (PCA) based on
1004 the expression of the 1,000 most variable genes across tissues and developmental stages.
1005 Gene expression is computed as log10-normalized Transcripts Per Kilobase Million (TPMs) with
1006  pseudocount of 0.01. Only genes with at least 5 TPMs in at least two samples were considered.
1007 PC1 separates the early and the late stages. PC2 separates neural and non-neural tissues.
1008 PC3 separates the late stage in the eye from the rest of the samples.

1009

1010 Fig 2. Gene expression dynamics along fly development. (A) Proportion of the variance in
1011 gene expression explained by tissue (x-axis) and by developmental stage (y-axis). Each dot
1012 corresponds to one of the 9,334 genes that are expressed at least 5 TPMs in at least two
1013 samples). Genes changing expression across tissues and/or developmental stages
1014  (Developmentally Dynamic Genes, DDGs) along fly development are highlighted in grey
1015 (differentially expressed across stages, SGs), pink (differentially expressed across tissues, TGS)
1016 and purple (differentially expressed across tissues and stages, TSGs). (B) Proportion of gene
1017 expression variance explained by tissue, stage and the interaction between the two. (C)
1018 Expression of Developmentally Dynamic Genes (DDGs) along fly development. Gene
1019 expression values are normalized to z-score values. (D) Dynamics of genes differentially
1020 expressed across tissues (TGs) and across tissues and stages (TSGs) represented as a
1021 Sankey diagram. At each developmental stage, we represent the genes that are differentially
1022  expressed in each tissue and those that are not (yellow). The arrows represent the number of
1023  genes that transition from one developmental stage to the next one and from not differentially to
1024  differentially expressed in a given tissue (or vice versa). Many tissue specific genes are already
1025 differentially expressed at L3 (TGs), but many which are not differentially expressed at this
1026 developmental stage become tissue specific at LP (TSGs). There is, in particular, a large
1027 expansion of eye specific genes. Overall, the transcriptome diverges as tissues become
1028  specified.
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1030 Fig. 3. Regulation of DDGs. (A) Epigenetic regulation of DDGs. The innermost circle labels
1031 genes according to DDGs classification; the second circle displays the breadth of gene
1032  expression (profile class), and the third circle displays H3K4me3 marking. (B and C) Percentage
1033  of TFs in DDGs categories.

1034

1035 Fig. 4. Drosophila gene regulatory network (GRN). (A) GRN. Edges are colored according
1036 to TF-target Pearson’s correlation coefficient (red > 0.3, blue < -0.3). While most correlations
1037  are positive, negative interactions are predicted between early and late gene clusters as well as
1038 between clusters corresponding to different tissues. Node size reflects node closeness centrality
1039 (that is, how close a node is to all other nodes). Nodes are colored according to DDG
1040 classification. (B) Network clusters. Proportion of DDG categories and TFs in each cluster. The
1041 class column indicates the most abundant DDGs category within each cluster. (C) GRN. Nodes
1042 are colored according to the clusters to which the genes belong and the GO categories
1043  associated. (D) Connectivity between clusters. Arrows indicate directionality from TFs to targets.
1044  The width of the arrows is proportional to the number of TF-target pairs. For ease in
1045 interpretation, we have included inner colored bars, representing the target’s clusters.

1046

1047  Figure 5. Gene expression dynamics of SGs in tissues and whole animals during fly
1048 development. (A) Principal component analysis (PCA) of SGs based on modENCODE tissue
1049 data (CNS and fat body from L3 and LP and carcass from L3 and adult) and the imaginal tissue
1050 data produced here at L3, EP and LP. (B) Expression of SGs in modENCODE whole animals
1051 from embryo to adult stages, and in the imaginal tissues monitored here at L3, EP and LP.

1052

1053 Fig. 6. Conservation of the Drosophila GRN in mouse. (A) Venn diagrams (left panels)
1054  showing the number of fly early and late genes, the orthologs of which are also classified as
1055 early and late during mouse development according to Cardoso-Moreira et al. (24) The bar plots
1056 (right panels) show the early and late orthologs classified by expression profile in mouse tissues
1057 according to Cardoso-Moreira et al.(24) (B) GO term enrichment analysis of early and late
1058  orthologs in mouse. (C) Mouse orthologs of fly early and late genes are clustered using self-
1059 organizing maps (SOM) based on the RNA-seq derived expression from a number of organs
1060  during mouse development (brain, heart, kidney and liver from embryo 10.5/11.5 days through 3
1061 days post-natal stage). (D) SOM clustering of mouse orthologs of fly early and late genes. Each
1062 cell corresponds to a gene cluster. We are considering 12x12 cells, each containing between 2

1063 and 23 genes. The grey intensity of cells denotes the proportion of early (light grey) versus late
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1064  (dark grey) genes in the cell/cluster. Early and late orthologs cluster separately regarding gene
1065 expression along mouse organ development. Early genes cluster preferentially on the left part of
1066 the SOM representation, while late genes cluster on the right. (E) Changes in expression along
1067 mouse development in brain, heart, kidney and liver of early and late orthologs. (F) Scatter plots
1068  of the correlation in fly and in mouse of TF-target pair. The correlations have been computed
1069 independently in each fly-mouse ortholog tissue. When multiple mouse orthologous targets are
1070 found for the same orthologous TF, the TF-target pair with the closest correlation is employed.
1071 Pearson’s correlation coefficient (cc) between fly and mouse correlations is shown on the top of
1072  the plot, p-values of the correlations are 1.09°%' for brain and 0 for heart, kidney and liver.
1073  (Figure partially created with BioRender.com).

1074

1075 Fig. 7. Model of gene regulation in Drosophila differentiation.

1076  (A) General view of tissue differentiation (e.g. eye differentiation, green). Differentiation requires
1077  a transcriptional switch from early genes (light grey) towards late genes (dark grey) that could
1078 be mediated by stress, hormonal signals or other uncharacterized systemic and external signals
1079 (??). Gene expression, translation and cell cycle genes decrease while cuticle, organism
1080 differentiation, oxidative metabolic genes and functionally uncharacterized genes (??) are up-
1081 regulated upon differentiation. Eye genes, mainly involved in cell fate regulation, are expressed
1082  from precursor cells to fully differentiated ones along the process. Eye specific TFs regulate eye
1083 genes as well as TSGs. Early eye genes (green) are associated with axon guidance function
1084 and late eye genes are related to synaptic transmission and nervous system development
1085 functions. Negative regulation occurs between early and late genes and among tissue-specific
1086  TFs.

1087

1088
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