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ABSTRACT

Global high-throughput profiling of oncogenic signaling pathways by phosphoproteomics is
increasingly being applied to cancer specimens. Such quantitative unbiased phosphoproteomic
profiling of cancer cells identifies oncogenic signaling cascades that drive disease initiation and
progression; pathways that are often invisible to genomics sequencing strategies. Therefore,
phosphoproteomic profiling has immense potential for informing individualized anti-cancer
treatments. However, complicated and extensive sample preparation protocols, coupled with
intricate chromatographic separation techniques that are necessary to achieve adequate
phosphoproteomic depth, limits the clinical utility of these techniques. Traditionally,
phosphoproteomics is performed using isobaric tagged based quantitation coupled with TiO;
enrichment and offline prefractionation prior to nLC-MS/MS. However, the use of isobaric tags
and offline HPLC limits the applicability of phosphoproteomics for the analysis of individual
patient samples in real-time. To address these limitations, here we have optimized a new
protocol, phospho-Heavy-labeled-spiketide FAIMS Stepped-CV DDA (pHASED). pHASED
maintained phosphoproteomic coverage yet decreased sample preparation time and complexity
by eliminating the variability associated with offline prefractionation. pHASED employed online
phosphoproteome deconvolution using high-field asymmetric waveform ion mobility
spectrometry (FAIMS) and internal phosphopeptide standards to provide accurate label-free
guantitation data. Compared with our traditional tandem mass tag (TMT) phosphoproteomics
workflow and optimized using isogenic FLT3-mutant acute myeloid leukemia (AML) cell line
models (n=18/workflow), pHASED halved total sample preparation, and running time (TMT=10
days, pHASED=5 days) and doubled the depth of phosphoproteomic coverage in real-time

(phosphopeptides = 7,694 pHASED, 3,861 TMT). pHASED coupled with bioinformatic analysis
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91 predicted differential activation of the DNA damage and repair ATM signaling pathway in
92  sorafenib-resistant AML cell line models, uncovering a potential therapeutic opportunity that
93  was validated using cytotoxicity assays. Herein, we optimized a rapid, reproducible, and flexible
94  protocol for the characterization of complex cancer phosphoproteomes in real-time, highlighting

95 the potential for phosphoproteomics to aid in the improvement of clinical treatment strategies.

96 Word Count: 298

97 KEYWORDS: Phosphoproteomics, drug targets, oncogenic signaling, acute myeloid leukemia,
98 cancer, pHASED, ATM, kinase signaling, clinical phosphoproteomics, resistance, therapy,

99  combination therapy

100
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101 INTRODUCTION

102 Mass spectrometry approaches for global high-throughput quantitation of cellular
103  phosphoproteomes have been increasingly applied to cancer specimens as they provide powerful
104  tools for the identification of signaling pathways including kinases, phosphatases and cell cycle
105 regulators that drive disease initiation and progression (1-3). Deregulation of kinase and
106  phosphatase activity plays a critical role in cancer development and relapse (4-7), highlighting
107  kinases as important therapeutic targets in the clinic (8, 9). This is particularly the case for FLT3
108  kinase-driven acute myeloid leukemia (AML) patients. The FLT3 receptor tyrosine kinase is
109  recurrently mutated in AML patients and is a target for FLT3 inhibitor therapy. The most
110 common mutations are internal tandem duplications (ITD) and kinase domain mutations (e.g.
111 D835). Resistance to FLT3 inhibitor therapy is often associated with the emergence of dual
112  FLT3-ITD/D835 mutations, however the pathways mediating drug resistance are yet to be fully
113 characterized (3, 5, 6). Therefore, phosphoproteomic profiling of the activated kinases
114  responsible for driving downstream oncogenic signaling cascades using cancer patients’
115  specimens in real-time, provides an opportunity to repurpose clinically relevant therapeutic
116  interventions (10-14), and thus aid in the development of individualized treatment strategies that

117  may improve overall survival.

118 Several methods have been developed for the quantitative characterization of phosphoproteins
119 in complex biological samples using shotgun proteomics (15-18). Stable isotope-labeling
120  strategies such as tandem mass tag (TMT) approaches have become increasingly popular due to
121  the capability to multiplex analysis of up to 18 complex matrices simultaneously. TMT protocols
122  enable samples to be pooled prior to nano liquid chromatography—tandem mass spectrometry

123  (nLC-MS/MS) therefore saving instrument time and reducing technical variations in the
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124 workflow. However, the highly complex nature of cancer phosphoproteomes necessitates that
125  TMT protocols are coupled with phosphopeptide enrichment and sample pre-fractionation prior
126  to nLC-MS/MS analysis in order to achieve adequate phosphoproteome resolution. Additionally,
127  the high cost of reagents, fixed number of samples, and sample preparation time and complexity
128  combine to limit the utility of TMT protocols for the ad hoc assessment of patient specimens in

129  real-time.

130 Label-free quantitation (LFQ) strategies provide quantitative phosphoproteomic data without
131 the use of isotopic-tags, mainly through the direct inference of protein abundance using the
132  measured intensity of detected peptides, or indirect inference based on the number of
133  phosphopeptide-spectrum matches (PSMs) obtained for each protein (19). LFQ protocols have
134  the capacity to overcome some of the TMT-workflow limitations by reducing the complexity of
135  sample preparation, saving both time and on costly reagents. Additionally, there is no limit to the
136  number of matrices to be analyzed, thus enabling the comparison of larger sets of samples than
137  when using label-based approaches. Such strategies therefore hold obvious appeal in the context
138  of highly aggressive forms of cancer in which the design of appropriate treatment strategies is
139  time-sensitive, and hence the ability to rapidly perform phosphoproteomic profiling on a high
140  number of samples is of critical importance. However, label-free strategies have their own
141 limitations, which include the inherent variability of individual sample preparation and loading,
142 and the requisite number of replicates. Additionally, chromatographic conditions and the
143  semirandom nature of data acquisition also have an impact on sample reproducibility (20). The
144  addition (spike-in) of known concentrations of standard heavy-labeled exogenous
145  phosphopeptides for sample normalization however, can help to overcome some of these

146 limitations (16, 21), and therefore provides a strategy to normalize protein expression and
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147  phosphorylation abundance from different cancer specimens analyzed at any time. Additionally,
148 by interfacing phosphopeptide enrichment with separation via FAIMS prior to high-resolution
149  mass spectrometry (MS) the collection of single-shot proteomic data is possible without the need
150  to perform conventional two-dimensional liquid chromatography (2D-LC) approaches (22), and
151  provides deep phosphoproteomic coverage to identify cancer-associated drug targets, in real-

152  time.

153 In seeking to combine the salient features of these analytical modalities, here we report the
154  optimization of a new protocol that employs online phosphoproteome deconvolution in tandem
155 with LFQ in the presence of internal control heavy-labeled standards. This protocol was
156  developed to identify kinases driving disease progression and therapy resistance in real-time. To
157  determine the pre-clinical utility of this approach, pHASED was applied to isogenic FLT3-

158  mutant AML cell lines resistant to the tyrosine kinase inhibitor sorafenib.
159 EXPERIMENTAL PROCEDURES
160  Cell Culture

161  Murine hematopoietic progenitor FDC-P1 cells were stably transduced with either human
162  wildtype (WT) FLT3, FLT3-ITD, FLT3-D835Y, FLT3-D835V, FLT3-ITD/D835V, or FLT3-
163  ITD/D835Y by retroviral transduction (6), confirmed by standard Sanger sequencing (Suppl
164  Materials and Methods). FDC-P1 FLT3-transduced lines were maintained in standard culture
165  conditions (5% CO,, 37°C) in DMEM medium (Thermo Fisher Scientific) with the addition of
166  10% FBS, and 20mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid). A total of
167 50 ng/mL human FLT3-ligand (Biolegend) was added to FLT3-WT cells, whereas FLT3-mutant

168 lines are factor-independent and were therefore maintained in growth factor free media. All cell
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169 lines were routinely confirmed to be free of mycoplasma contamination using a MycoAlert

170  mycoplasma detection kit (Lonza; Basel, Switzerland).

171  Sample Preparation and Protein Extraction

172  TMT-based phosphopeptide quantification — Snap frozen transduced FDC-P1 cells expressing
173  human wildtype-FLT3 and AML associated FLT3-mutations were lysed in 100 pL of ice-cold
174 0.1 M Na,COgs, pH 11.3 containing protease and phosphatase inhibitors (Sigma, cat. #P8340-
175 5ML, and #4906837001 respectively), by sonication (2 x 20 s cycles, 100% output power) (as
176  described (23-25)). Protein concentration was determined using a Bicinchoninic acid (BCA)
177  protein estimation assay, as per manufacturer’s instructions (Thermo Fisher Scientific). Protein
178  samples were then diluted in 6 M Urea/2 M Thiourea and reduced using 10 mM dithiothreitol
179  (DTT) by incubation for 30 min at room temperature (RT). Reduced cysteine residues were then
180 alkylated using 20 mM iodoacetamide by incubation for 30 min at RT in the dark. Enzymatic
181  digestion was achieved using Trypsin/Lys-C mixture (Promega) at an enzyme-to-substrate ratio
182  of 1:50 (w/w) and incubated for 3 h at RT. Triethylammonium bicarbonate (TEAB, 50 mM, pH
183  7.8) was then added to dilute urea concentration below 1 M, and samples were incubated
184  overnight at RT. Lipid precipitation was performed using formic acid and trichloroacetic acid
185 (TCA). Briefly, a final concentration of 2% formic acid was added to each sample, prior to
186  centrifugation at 14,000 g for 10 min. Remaining lipopeptides were then precipitated with 20%
187  (w/w) TCA and incubated on ice for at least 1 h prior to centrifugation. Pellets were washed with
188 ice cold 0.01 M hydrochloric acid (HCI)/90% acetone and supernatants containing peptides were
189  combined. Peptides were desalted using Oasis HLB solid phase extraction (SPE) cartridges and a
190  VisiprepTM SPE Vacuum Manifold (12-port model; Sigma). The SPE cartridges were activated

191  using 100% acetonitrile (ACN) and equilibrated using 0.1% trifluoroacetic acid (TFA). Acidified
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192  samples (pH < 3) were loaded onto SPE cartridges with liquid passed through the solid phase
193  dropwise using vacuum pressure. The cartridges were washed with 0.1% TFA followed by
194  sequential elution of peptides using 60% ACN/0.1% TFA and 80% ACN/0.1% TFA. Eluted
195 peptides were then resuspended in TEAB (50 mM, pH 8) and quantitated using a peptide
196  fluorescence assay kit (Thermo Fisher Scientific). 100 ug from each of the samples were
197 individually labeled using tandem mass tags (Supplemental Table S1; TMT-10plex 3 x Kits,
198  Thermo Fisher Scientific, Bremen DE, Germany) and mixed at a 1:1 ratio. Phosphopeptides were
199 isolated from the proteome using titanium dioxide (TiO,) as previously described (11) before
200  offline hydrophilic interaction liquid chromatography (HILIC) using a Dionex Ultimate

201  3000RSLC nanoflow HPLC System (Thermo Fisher Scientific).

202 pHASED - peptide preparation was performed the same as for TMT and peptides desalted as
203  above. Following activation and equilibration, SPE cartridges were blocked with 33 pg of
204 trypsin-digested bovine serum albumin (BSA) peptides prior to sample clean-up. Peptides were
205  sequentially eluted using 60% ACN/0.1% TFA, and 80% ACN/0.1% TFA, and the eluates were
206  quantified using a Qubit 2.0 Fluorometer, as per manufacturer’s instructions (Thermo Fisher
207  Scientific). A total of 200 pg of peptide per sample was utilized for TiO, enrichment. Spike-in
208  heavy-labeled phosphorylated peptides (Supplemental Table S2; including individually tyrosine,
209  threonine or serine phosphorylated heavy-labeled spiketides, 8 fmol/200 ug of sample) were
210 added as internal controls. Phosphopeptide enrichment was modified based on previous protocols
211 (11, 13, 18). In brief, each peptide sample was suspended in 80% ACN, 5% TFA, and 1 M
212  glycolic acid (loading buffer). TiO, beads were added at 0.6 mg per 100 pg peptide (w/w), and
213  samples were mixed at RT for 15 min. The supernatant was incubated with half the amount of

214  fresh TiO, beads, and resultant supernatants containing non-phosphorylated peptides (non-
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215 modified = NM fraction) were removed and stored. The two sets of beads with bound
216  phosphopeptides were pooled using 100 uL of loading buffer, followed by sequential washing
217  with 80% ACN/1% TFA, and 10% ACN/0.1% TFA. Phosphopeptides were eluted with 28%
218 ammonia hydroxide solution (1% v/v, pH 11.3) then passed through a C8 stage tip to remove
219  residual beads (18). Phosphopeptides were lyophilized completely prior to resuspension in 2%

220  ACN/0.1% TFA for nLC-MS/MS analysis.

221  Nanoflow Liquid Chromatography Tandem Mass Spectrometry Mass Spectrometry (nLC-

222 MSMS)

223 TMT-based phosphopeptide quantification — LC tandem mass spectrometry (MS/MS) was
224 performed on 9 phosphopeptide enriched HILIC fractions using a Q-Exactive Plus hybrid
225 quadrupole-Orbitrap MS system (Thermo Fisher Scientific) coupled to a Dionex Ultimate
226  3000RSLC nanoflow HPLC system (Thermo Fisher Scientific). Approximately 700 ng of
227  phosphopeptide per HILIC fraction were loaded onto an Acclaim PepMap100 C18 75 um x 20
228 mm trap column (Thermo Fisher Scientific) for pre-concentration and online desalting.
229  Separation was then achieved using an EASY-Spray PepMap C18 75 um x 25 cm column
230  (Thermo Fisher Scientific) employing a linear gradient from 5 to 35% acetonitrile at 300 nL/min
231  over 127 min. The Q-Exactive Plus MS System (Thermo Fisher Scientific) was operated in full
232  MS/data- dependent acquisition MS/MS mode (DDA). The Orbitrap mass analyzer was used at a
233  resolution of 70,000, to acquire full MS with an m/z range of 380-2000, incorporating a target
234  automatic gain control value of 1e® and maximum fill times of 50 ms. The 20 most intense
235 multiply charged precursors were selected for higher-energy collision dissociation (HCD)

236  fragmentation with a normalized collisional energy of 32. MS/MS fragments were measured at


https://doi.org/10.1101/2022.04.22.489124
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.22.489124; this version posted April 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Global Phosphoproteomic Profiling Using pHASED
237  an Orbitrap resolution of 35,000 using an automatic gain control target of 5e> and maximum fill

238  times of 120 ms.

239 pHASED - reverse phase nanoflow LC-MS/MS was performed using a Dionex Ultimate
240  3000RSLC nanoflow high-performance liquid chromatography system coupled with an Orbitrap
241  Exploris 480 MS equipped with a front-end FAIMS Interface (Thermo Fisher Scientific).
242  Approximately 700 ng of phosphopeptide per CV were loaded onto an Acclaim PepMap 100
243 C18 75 um x 20 mm trap column for pre-concentration and online de-salting. Separation was
244 then achieved using an EASY-Spray PepMap C18 75 um x 25 cm, employing a gradient of 0-
245  35% solvent B (solvent A = 0.1% formic acid, solvent B = 90% ACN, 0.1% formic acid) at a
246  flow rate of 250 nL/min over 75 min. The mass spectrometer was operated in positive mode with
247  the FAIMS Pro interface. Four compensation voltages (CV; -70, -60, -50, -40) were individually
248  run for each biological triplicate. Full MS/data dependent acquisition (DDA) was performed
249  using the following parameters: Orbitrap mass analyzer set at a resolution of 60,000, to acquire
250  full MS with an m/z range of 350-1200, incorporating a standard automatic gain control target of
251  1e® and maximum injection time of 50 ms. The 20 most intense multiply charged precursors
252  were selected for higher-energy HCD with a collisional energy of 30. MS/MS fragments were
253  measured at an Orbitrap resolution of 15,000 incorporating a normalized automatic gain control

254  target of 250% and a maximum injection time of 120 ms.
255  Data Processing and Bioinformatic Analysis

256  Data analysis was performed using Proteome Discoverer (Thermo Fisher Scientific). Sequest HT
257 was used to search against UniProt Mus musculus database (25,280 sequences, downloaded
258  30/05/20 for TMT; 17,462 sequences, downloaded 23/03/21 for pHASED) and Homo sapiens

259 FLT3 FASTA file containing WT and mutant FLT3 sequences (3 sequences, downloaded
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260  21/02/20 in both experiments). Database searching parameters included up to two missed
261  cleavages, precursor mass tolerance set to 10 ppm and fragment mass tolerance of 0.02 Da.
262  Cysteine carbamidomethylation was set as a fixed modification while dynamic modifications
263 included oxidation (M), phosphorylation (S, T, Y), acetylation (K), methylation (K) and
264  deamidation (N, Q). In addition, N-terminus TMT6plex was set as fixed modifications for TMT-
265 labeled samples. Interrogation of the database was performed to evaluate the false discovery rate
266 (FDR) of peptide identification based on g-values estimated from the target-decoy search
267  approach using Percolator. An FDR rate of 1% was set at the peptide level to filter out target
268  peptide spectrum matches over the decoy-peptide spectrum matches. Additionally for pHASED
269  samples, heavy-labeled 13C(6)15N(2) (K), and 13C(6)15N(4) (R) modifications were included
270  as dynamic modifications to identify spiked-in heavy-labeled phospho-spiketides. To account for
271  variations in sample injection, reporter ion abundances were normalized to total peptide amount
272  for the TMT-labeled protocol, and the spiked-in heavy-labeled phosphopeptides included as
273  FASTA file for pHASED (Suppl Fig. S1). For quantification and comparison, each ratio was

274  transformed to log2 scale (log?2 ratio).

275  Experimental Design and Statistical Rationale

276  Phosphoproteomic data analysis was performed using six FDC-P1 isogenic cell lines (n=3
277  biological replicates). Four compensation voltages (CV; -70, -60, -50, -40) were individually
278 analyzed for each biological replicate. Differentially expressed phosphopeptides and
279  phosphorylation sites were defined as those with a significant (p<0.05) log2 fold change >0.25 or
280 <-0.25. Differences between sample groups were analyzed by unpaired Student’s t-tests or one-

281 way ANOVA and considered significant when p<0.05. Graphical data was analyzed and
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282  prepared using Perseus (1.6.2.2), String (11.5), CytoScape (3.9.1), and GraphPad Prism (9.0.1).

283  Results are presented as mean values £ SEM.
284  Ingenuity Pathway Analysis

285  Ingenuity Pathway Analysis software (IPA; Qiagen) was used to analyze each phosphoproteomic
286  dataset (as previously described (11, 13)). Canonical pathways, upstream regulators, and disease

287  and function analyses were generated and assessed based on p-value.
288  Kinase-Substrate Enrichment Analysis

289  Kinase-Substrate Enrichment Analysis (KSEA App, version 1.0) (26) was used to analyze
290  phosphorylated sites based on PhosphoSitePlus (27) kinase-substrate dataset, and a p <0.05 cut-

291  off.
292  Cytotoxicity Assays

293  Cell lines were treated with the FLT3 inhibitor sorafenib (Selleckchem) (28), and ATM inhibitor
294  KU-60019 (Selleckchem) (29) either alone or in combination. Cells were seeded into 96 well
295 plates at 2e* cells per well, and viability following treatments was measured using Resazurin
296  (excitation 544 nm, emission 590 nm; 0.6 mM Resazurin, 78 uM Methylene Blue, 1 mM
297  potassium hexacyanoferrate (111), 1 mM potassium hexacyanoferrate (I1) trihydrate (Sigma),
298  dissolved in sterile phosphate buffered saline). Synergy of dose-response and combined effect of

299  the two drugs were assessed using the method of Bliss independence model (30).
300 RESULTS

301 pHASED reduced sample preparation time by half whilst providing improved phosphopeptide

302  quantification compared to the TMT workflow
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303  The new label-free phosphoproteomic enrichment and MS protocol ‘pHASED’ described herein,
304  couples phosphopeptide enrichment strategies optimized by Engholm-Keller et.al., (2012) (18)
305 and LFQ using heavy-labeled internal phospho-spiketides and FAIMS interface optimized by
306  Alexander et.al., (2018) (22), to decrease sample preparation time and increase phosphoproteome
307  deconvolution and coverage for the analysis of samples in real-time (Fig. 1). We performed
308 initial comparison of our optimized pHASED with traditional TMT phosphoproteomic protocols
309  using six isogenic cell line models of FLT3-mutant AML in biological triplicate (Table 1; n = 36
310 samples). The sample preparation in pHASED saves time due to the substitution of TMT-
311  labeling with the spike-in of heavy-labeled phospho-spiketides of known concentration in order
312  to normalize sample injection and phosphopeptide quantitation. We replaced offline HILIC for
313 online deconvolution using FAIMS interface employing external stepping of four different
314  compensation voltages (CV; -70, -60, -50, -40) over a 75 min gradient. Individual sample
315 injection per CV provided more flexibility to the experiment, however, increased LC-MS/MS
316 time by 1.4 days (2 days TMT; 4 days pHASED). This longer instrument time however, is
317  compensated by the reduction of sample preparation time by half, requiring an overall ~5 days

318  for completion of pHASED experiment, whereas ~10 days are required for TMT (Fig. 1A, 1B).

319 To determine the utility of each protocol, we examined the PSMs of each experiment (Fig. 2).
320  Analysis of the charge states (Fig. 2A) and precursor ion mass-to-charge ratios (m/z) (Fig. 2B)
321  for the two protocols demonstrated that our traditional TMT approach identified a higher
322  percentage of +2 and +3 charged precursor ions, ranging between 400-700 m/z, whereas
323  pHASED identified a greater number of +4, +5, and +6 precursors and higher m/z ratios (700-
324  1200). The fractionation profile of the four CVs applied in pHASED were analyzed by

325  comparing the PSMs acquired in each CV (Fig. 2C-F). More unique PSMs were identified in
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326  lower CVs, such as -70V and -60V compared to -50V and -40V (Fig. 2C). Interestingly, similar
327 FAIMS distributions were seen for phosphopeptides as previously reported for studies
328 employing FAIMS to characterize the non-modified proteome (22). For most charge states, the
329  lower the CV the lower the average m/z (Fig. 2D, 2E), except for +6 charged precursors, which
330 showed similar average m/z across CVs (Fig. 2E). Analysis of the overlapping distributions of
331 common and unique phosphoproteins identified showed deep phosphoproteome coverage across

332 all four CVs (Fig. 2F) (31).

333 To examine the reproducibility of the quantification achieved using TMT and pHASED we
334  performed Pearson Correlation analysis of the biological replicates (n=3) across each cell line
335 (n=6) (Fig. 3). Correlation was performed by plotting normalized phosphopeptide abundances
336  from each biological replicate per sample in a correlation matrix. This analysis revealed
337 increased quantification reproducibility in all biological replicates of samples analyzed with
338 pHASED (Fig. 3A, 3C) in comparison to the TMT protocol (Fig. 3B, 3C), which presented a
339  moderate correlation between replicates and samples. These results indicate that, in our hands,
340 pHASED performed as a more consistent phosphopeptide quantification tool, and therefore may

341  vyield more biologically relevant data.

342  pHASED provided in-depth phosphoproteome coverage

343 Our TMT approach identified 1,958 phosphoproteins and 3,861 phosphorylated peptides
344  (FDR 1%), whereas a total of 1,587 phosphoproteins and 7,694 phosphorylated peptides were
345  identified using pHASED (FDR 1%) (Fig. 4A, Supplemental Tables S3, S4). Both protocols
346  identified similar S:T:Y ratios, in accordance with previous findings reporting a phosphorylation
347  ratio of 86:12:2 (%) (32). The overall success of phosphopeptide enrichment for each experiment

348  was 72% for TMT, and 93% for pHASED (Fig. 4A), indicating good enrichment efficiency in
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349  both experiments. Furthermore, pHASED identified an overall higher number of multi-
350 phosphorylated peptides (2,800 singly-, 1,348 doubly-, and 323 triply- phosphorylated peptides,
351 FDR 1%) compared to our traditional TMT approach (2,069 singly-, 334 doubly-, and 11 triply-
352  phosphorylated peptides, FDR 1%) (Fig. 4B). Notably, overall increased phosphoprotein
353  coverage and identification of more peptides per protein was achieved by pHASED (Fig. 4C,
354  4D). Comparison between identified phosphoprotein accessions across all datasets showed a

355  47% overlap between pHASED and TMT (Fig. 4E, and Supplemental Table S5).

356 Both pHASED and TMT identified similar numbers of hydrophobic peptides, with both
357  protocols preferencing the identification of hydrophilic phosphopeptides (Fig. 4F). For
358 quantification, normalization of TMT samples was achieved based on total peptide amount per
359 TMT channel, whereas each sample analyzed by pHASED was normalized with spike-in
360 phospho-spiketides of known concentration. Measured abundance ratios were then transformed
361 to log2 scale (log2 ratio). The distribution of phosphopeptide log2 fold-changes comparing FLT3
362  mutant sample to FLT3-wt cell lines measured by pHASED showed a greater dynamic range
363  than those measured by TMT-based quantification (Fig. 4G), with a mean of log2 fold-change
364  closer to O for all cell lines in the TMT approach compared to pHASED (mean log2 1.29;

365  p=0.0002).

366  pHASED identified relevant therapeutic drug targetsin drug resistant AML

367 pHASED and TMT identified similar numbers of phosphoproteins with kinase activity (Fig.
368 4H; 1% FDR). In accordance with our previous findings of divergencies between the number of
369 identified phosphoproteins in TMT compared to pHASED (Fig. 4E), 39% of kinases were
370 identified to be common to both analyses (Supplemental Tables S6-8). Despite differences, the

371  numbers of kinases identified showed that both protocols were effective for the identification of
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372  clinically relevant drug targets that could potentially aid in the design of treatment strategies for
373  cancer patients. Analysis of the phosphorylation profile of kinases identified in FLT3-ITD,
374 resistant FLT3-ITD/D835V, and resistant FLT3-ITD/D835Y cell lines was performed to
375  investigate the clinical utility of pHASED, and results were compared to our TMT approach
376  (Fig. 5). FLT3-ITD mutations are seen in approximately 27% of AML patients at diagnosis and
377  are associated with a high risk of relapse (3). Resistance to commonly used FLT3 inhibitors
378 including sorafenib (33-39) (Supplemental Table S9) occurs following FLT3-ITD+ AML cells
379 acquiring a secondary point mutation in the kinase domain of FLT3 (FLT3-1TD/D835V and
380 FLT3-ITD/D835Y, henceforth referred to as “double mutant”). Cytotoxicity assays using the
381  FLT3 inhibitor sorafenib confirmed the resistant phenotype of FLT3-ITD/D835V and FLT3-
382 ITD/D835Y mutants (Fig. 5A), which presented an average 47-fold increase in sorafenib I1Csp in
383  comparison to FLT3-1TD cell lines (ICso 4.2 uM, 2.7 pM, 0.073 pM, FLT3-ITD/D835V, FLT3-
384 ITD/D835Y and FLT3-ITD respectively). pHASED identified a significantly increased number
385  of kinases that showed differential phosphorylation in both resistant cell lines in comparison to
386 the TMT approach, particularly in FLT3-ITD/D835Y mutants (Fig 5B; p=0.0009). In addition,
387 analysis of kinases showing significantly altered phosphorylation in double mutants compared
388  with FLT3-ITD cells (log2 +/- 0.25; p<0.05) showed greater dynamic range via pHASED

389  compared to TMT (Fig. 5C).

390 Protein-protein interaction network analysis of kinases identified in TMT and pHASED (log2
391  +/-0.25) revealed the enrichment of clustered kinases associated with signaling pathways that are
392  known to be commonly deregulated in cancer (Fig. 5D-G). Both datasets identified kinases
393  associated with, Signal Transduction, RAF (40) and ERK/MAPK (41) signaling (Fig. 5D-G), in

394 line with previous studies that show potent activation of this oncogenic signaling pathway drives
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395  resistance to sorafenib (42). In addition, across resistance models, pHASED identified kinases
396  responsible for controlling cell cycle and p53 signaling (43) (Fig. 5D, 5E), whereas TMT

397 identified kinases associated with NFKB signaling (44) (Fig 5F, 5G).

398 pHASED identified divergent DNA damage and repair pathways associated with sorafenib

399 resisgancein FLT3-mutant AML

400 Kinase-substrate enrichment analysis (KSEA) of TMT and pHASED datasets comparing
401 resistant to diagnosis cells, predicted activation of oncogene RAC-alpha serine/threonine-protein
402  kinase (AKT1), cell cycle regulators Cyclin dependent kinase 16 (CDK16), Polo-like kinase 2/3
403  (PLK2, PLK3), Serine/threonine-protein kinase VRK1/2 (VRKZ1/2), and Serine/threonine-protein
404  kinase Kist (UHMK1); and DNA damage sensor and repair associated DNA-dependent protein
405 kinase (PRKDC, or DNA-PK) (Fig. 6A, Supplemental Tables S10, S11). Furthermore, IPA
406  analysis of canonical pathways associated with resistance (Fig. 6B, Supplemental Tables S12,
407  S13) uncovered cell cycle regulation (Cell cycle control of Chromosomal Replication, G1/S and
408  G2/M checkpoints, and Cyclins and Cell Cycle Regulation), and DNA damage and repair (ATM,
409 NER, p53 and BRCA1, p-value <0.001) signaling as among the most significant enriched
410 canonical pathways in resistant cell lines. Both mutants were also enriched for FLT3, and AML
411  associated signaling pathways such as ERK/MAPK, JAK/STAT, mTOR, and PI3K/AKT,

412  although with less statistical power (increased p-value <0.05).

413 The Serine/threonine protein kinase (ATM) regulates response to DNA damage caused by
414  double-strand breaks (DSBs) (13). ATM is member of the phosphoinositide 3-kinase (PI3K)-
415  related protein kinase (PIKK) family, and signals through DNA damage response kinases ATR,
416 DNA-PKcs and Nonsense Mediated MRNA Decay Associated PI3K Related Kinase (SMG1)

417 (45, 46). One potent mechanism of increased DSBs is via the excess production of reactive
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418  oxygen species (ROS). Increased ROS production by the NADPH oxidase (NOX) family of
419  enzymes in acute leukemias, particularly FLT3-ITD AML, has been increasingly studied over
420 the last few years, and highlights that elevated ROS is a mechanism conferring survival
421  advantages in FLT3-mutant AML (47-50). Given ATM signaling was predicted to be one of the
422  top ranked canonical pathways driving the DNA damage repair and response pathways in
423  resistant cells (Fig. 6B), we chose to analyze this pathway to test the biological utility of the
424 phosphoproteomic analysis generated via pHASED in FLT3-1TD/D835V and FLT3-ITD/D835Y

425  mutant cells.

426 Analysis of ATM (Fig. 6C) and DSB repair phosphoproteins (Fig 6D, 6E) in resistant models
427  using pHASED, revealed divergent phosphorylation profiles. In FLT3-1TD/D835V mutant cells,
428 pHASED only identified significantly increased phosphorylation of DSB repair pathway
429  phosphoprotein UBA1 (S4) (log2 0.59; p=0.037) (Fig. 6D). Whereas, in FLT3-ITD/D835Y
430 mutant cells, pHASED identified significantly increased phosphorylation of phosphoproteins
431  downstream of ATM kinase signaling including CDKNZ1A (S78) (log2 1.62; p=0.034), TOPBP1
432  (S862, S863) (log2 1.00; p=0.048) and TRIM28 (S594) (log2 2.06; p=0.04) (Fig. 6C).
433  Additionally, increased phosphorylation of three phosphopeptides for SFR1 (S67, S83, S99; S67,
434 S71, S83, S87, S99, S103; and S115) (log2 1.93, p=0.003; log2 1.88 p=0.010; and log2 2.02
435 p=0.028, respectively), DYRK1A (Y321) (log2 0.88; p=0.03), two phosphopeptides for
436  NUCKSI (S58, S61; and S181) (log2 4.07, p=0.0009; and log2 1.28, p=0.04, respectively), and
437 PDS5B (S1356) (log2 1.84; p=0.022) were identified in FLT3-ITD/D835Y mutant cells,
438  highlighting the unique mechanisms of DNA repair regulation in this resistance model (Fig. 6E).
439  These data add further evidence to pathway analysis divergencies shown using KSEA (Fig. 6A)

440 and IPA canonical pathways association analysis comparing the double mutants (Fig. 6A).
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441  Combined inhibition of ATM and FLT3 showed synergigtic effect in sorafenib-resistant cell lines

442 Combination cytotoxicity analysis using the ATM inhibitor KU-60019 (29) in combination
443  with the FLT3 inhibitor sorafenib (28) was highly synergistic, particularly in cells harboring the
444  sorafenib resistance mutation FLT3-1TD/D835Y (Fig. 7). In accordance with pathway prediction
445  bioinformatic analyses (Fig. 6), FLT3-ITD/D835Y mutant cells showed increased sensitivity to
446  the combination, resensitizing cells to sorafenib (Fig. 7A, Bliss synergy analysis score 12.42;
447  0.062 uM sorafenib, 1.25 uM KU-60019); whereas FLT3-1TD/D835V mutant cells showed
448  maximal synergy at higher doses (Fig. 7B, Bliss score 10.71; 500 nM sorafenib, 2.5 uM KU-
449  60019). The combined inhibition of ATM and FLT3 signaling was only additive in FLT3-ITD
450 mutant cells (Bliss score 5.20) with these cells highly sensitive to sorafenib alone (Fig. 5A, 7C).
451  To test the in vitro preclinical benefits using physiological concentrations of sorafenib, cell
452  survival comparisons were performed at 0.062 pM sorafenib. Again, these data confirmed the
453  increased synergistic effects of combined ATM and FLT3 inhibition in FLT3-ITD/D835Y
454  mutant cells (Fig. 7D) compared with FLT3-1TD/D835V mutant cells (Fig. 7E). Together, these
455 results confirm that ATM inhibition plays a role in the resensitization of FLT3-ITD/D835 mutant
456  resistant cells to sorafenib, validating the pHASED phosphoproteomic prediction of the

457  important role ATM signaling plays in signaling downstream of the FLT3-1TD/D835Y mutation.

458

459 DISCUSSION

460 Proteomics and phosphoproteomics have been acknowledged as being among the most
461  effective strategies to predict drug sensitivities (1, 51). However, we are yet to establish

462  phosphoproteomic profiling in the clinical setting, or even to provide such as an additive
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463  resource to genomically predicted therapeutic strategies; the establishment of which would
464  represent a pivotal advance in precision-medicine treatment regimens. Clinical
465  phosphoproteomic profiling also has enormous potential to identify treatment targets that are
466 invisible to genomics approaches, or to be used as an indicator of prognosis in the de novo and
467  refractory settings, in real-time. Indeed, the optimization of pHASED reported herein, goes some
468  way to moving phosphoproteomics from the discovery laboratory to that of the well-equipped
469  pathologist. Importantly, the reduced complexity and sample preparation time of pHASED
470  provides users with the capacity to prepare and sequence the phosphoproteomics of any
471  biological system in less than a week. Furthermore, pHASED provided accurate LFQ and online
472  deconvolution using FAIMS, whilst maintaining deep phosphoproteomic coverage without the

473  need for offline 2D-LC techniques.

474 FAIMS was initially and elegantly optimized to provide single-shot LC-MS/MS results
475  that compared favorably with 2D-LC fractionation experiments (22). Specifically, FAIMS was
476  first reported in the context of analyzing the non-modified proteome of a cell line established
A77  from a chronic myelogenous leukemia patient (K562). In this study, the use of six CVs during a
478  six-hour single-shot FAIMS experiment identified 8,007 non-modified proteins; comparable to
479  the 7,776 non-modified proteins identified by the use of four 2D-LC fractionated samples, each
480 analyzed for 1.5 h. Here, we have optimized 5 h of FAIMS using four CVs identifying 1,587
481  quantified phosphoproteins using pHASED, compared to nine 2D-LC fractions sequenced over

482  ~19 h, which identified and quantified 1,958 phosphoproteins using a TMT approach.

483 Although TMT identified more unique phosphoproteins than pHASED, it is well
484  established that the use of isobaric tags can compromise identification efficiency due to peptide

485  ratio compression artifacts caused by coeluting ions alongside that of the precursor ion of the
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486  peptide of interest; a phenomenon that interferes with MS2 based reporter ion quantitation (19,
487  52). Hence, this can limit the dynamic range of quantitation, and can often underrepresent the
488  Dbiological variability that exists between samples, especially for low abundant proteins (11, 53).
489  Furthermore, the use of isobaric tags alters charge states during electrospray ionization (54), with
490 the cleavage and loss of isobaric tags during MS2 generating fragment ions that complicate
491  spectral interpretation by database searching algorithms (55), contributing to reduced
492  identification efficiency. This was again evidenced by comparing phosphopeptide changes in
493  FLT3-mutant AML models (n=5) with that of isogenic cell lines transduced to express the wt-
494  FLT3 receptor (n=1), where the log2 fold-change of the TMT experiment was 0, compared with
495 pHASED which showed an average log2 fold-change of 1.29 (p=0.0002). The biological
496  differences revealed by pHASED further highlight the observation that knock in of each of the
497  FLT3-mutations induced autonomous growth of isogenic cell lines, whereas cell lines transduced
498  to express the wt-FLT3 receptor, required supplementation of growth factors to maintain growth

499  and survival (5, 6, 56).

500 It was also of interest to note that pHASED identified more unique phosphosites per
501  phosphoprotein compared to TMT. The biological context of this result was investigated by
502 analyzing signaling pathways identified by both MS approaches to determine whether the
503 increased number of identified phosphosites provided molecular insights relevant to the
504  dissection of therapeutic vulnerabilities. Indeed, using both TMT and pHASED, IPA predicted
505 ATM signaling to show increased activity in both FLT3-ITD/D835V and FLT3-ITD/D835Y
506  double mutant cell line models compared to cells harboring FLT3-ITD mutations alone. ATM
507 plays a functional role in the cellular response to DNA DSBs. Here it protects the cell against

508 genotoxic stress, but, in cancer cells, helps to drive resistance to anticancer therapies thus
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509 favoring leukemic growth and survival (57). Therefore, it is unsurprising that ATM signaling
510 may play a role in resistance to sorafenib in cells harboring double mutant FLT3-ITD/D835.
511  However, sorafenib is not only a potent inhibitor of wt-FLT3 and FLT3-ITD, but also inhibits
512  other receptor tyrosine kinases including VEGFR, PDGFR, KIT and RET, as well as
513  downstream serine/threonine kinases including RAF/MEK/ERK (28). Indeed, in sorafenib-
514  resistant double mutant FLT3-1TD/D835 cells, significantly increased MEK/ERK signaling was
515  predicted when compared with the phosphoproteomes of FLT3-ITD mutant cells, thereby
516  helping to explain the 47-fold increase in ICsy seen between the cell types. In glioma cells, ATM
517  inhibitors increased radiotherapy sensitivity (29, 58, 59), with ATM signaling through the
518 RAF/MEK/ERK pathway critical for radiation-induced ATM activation, suggestive of a
519  regulatory feedback loop between ERK and ATM (60). Sorafenib dose-dependently induced the
520 generation of ROS in tumor cells in vitro and in vivo (61), and hence it is highly possible that in
521 FLT3-ITD/D835 double mutants, RAF/MEK/ERK signaling through ATM helps to maintain
522  proliferation and promote DNA repair, even under situations of genotoxic stress induced by high

523  dose sorafenib.

524 pHASED identified more significant phosphorylation changes in ATM substrates in
525 FLT3-ITD/D835Y cells compared to FLT3-ITD/D835V cells (p<0.05). Combination
526  cytotoxicity assays revealed significantly increased synergy between sorafenib and the ATM
527  inhibitor KU-60019 at physiologically relevant doses (most strikingly in FLT3-ITD/D835Y
528 cells) providing a treatment paradigm for patients harboring sorafenib resistance. The increased
529  phosphosite coverage arising from pHASED analyses potentially provides a more accurate

530 indication of the regulation of the ATM signaling pathway, and hence highlights mechanisms
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531 promoting resistance to sorafenib (12); information that can be exploited to tailor effective

532  preclinical treatment strategies.

533 Although pHASED may afford the opportunity to perform an unrestricted number of
534  analyses (of benefit in the clinical setting where cancer diagnosis may not follow a predictable
535  schedule), there remains important questions on how phosphoproteomics would be practically
536  implemented as a clinical decision-making tool. For example, consideration needs to be given to
537  sample processing time and the methods of patient sample collection; the phosphoproteome of
538 leukemic blasts isolated from the bone marrow will differ from that sequenced from leukemic
539  Dblasts isolated from peripheral blood. Additionally, the steps taken to enrich leukemic blasts
540 following bone marrow trephine biopsy or phlebotomy are to be considered as alterations in
541  signaling pathway activity can be influenced simply by the culture media used, or even the type
542  of blood tube used at the time of sample collection (25), necessitating optimization and
543  standardization of workflows. Importantly, for phosphoproteomics to aid in the treatment of
544  cancer, the assessment of which pathways should be targeted and by which drugs needs to be
545  evaluated under clinical trial conditions, like those testing whole genome sequencing (WGS) and
546  RNA sequencing (RNAseq) strategies, in order to ensure robust recommendations can be made

547  given phospho/proteomic data generated via pHASED (62).

548 In summary, the data obtained in the present study provides a novel method for LFQ of
549  high-throughput phosphoproteomic data that maintains deep phosphoproteomic coverage without
550 the need for complex 2D-LC strategies. pHASED provides the flexibility to analyze samples as
551  they present and is not limited by the number of analyses that can be performed. Reduced time
552 and complexity in sample preparation, and the optimization of online phosphoproteome

553  deconvolution using a stepped CV FAIMS interface, provided accurate and reproducible
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554  phosphoproteomes of complex cancer cells in less than a week. Moreover, pHASED successfully
555 identified novel drug targets and potential therapeutic strategies to treat AML models resistant to
556  therapies used in the clinic; optimized technologies that we hope will help in the rapid
557  characterization of highly aggressive forms of cancer, as an important step towards improving

558 treatment outcomes for cancer sufferers.
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796  FIGURE CAPTIONS

797 Figure 1. Overview of sample preparation and instrument workflow to compare
798 quantitative phosphoproteomics using TMT and pHASED. Proteins were extracted from
799  target cell lines and digested into peptides. A) One hundred micrograms of peptide/sample was
800 labeled with TMT 10-plex isobaric tags, mixed 1:1, and enriched for phosphopeptides prior to
801 offline HILIC fractionation and analysis on a Q Exactive Orbitrap MS. B) In the optimized
802 pHASED workflow, two hundred micrograms of digested peptides were separated for
803  enrichment. Known concentrations of spike-in heavy labeled phosphopeptides were added to
804  each sample prior to phosphopeptide enrichment, and enriched phosphopeptides were then
805 injected into an Orbitrap Exploris 480 coupled with a FAIMS interface using four different

806  compensation voltages (CVs; -70V, -60V, -50V and -40V). Figure created with BioRender.com.

807  Figure 2. Acquisition profile of phosphopeptide-spectrum matches (PSMs) resulting from
808 TMT compared to pHASED. A) Percentage of charge states of all peptide ions selected for
809 MS/MS in TMT and pHASED experiments. B) Distribution of precursor ions identified in each
810  experiment, stratified according to m/z. C) Percentage of PSMs identified in each CV. D)
811  Average m/z of all PSM features acquired in each CV. E) Average m/z of PSM features for
812  charge states acquired in each CV. F) Venn distribution of unique phosphoprotein accessions
813 identified in CVs -70V, -60V, -50V and -40V shows overall coverage of common and unique

814  acquisitions detected in each CV. Venn diagram created with InteractiVVenn.

815 Figure 3. Quantification reproducibility between biological replicates TMT and pHASED
816  experiments. Pearson correlation profiles for biological replicates (n=3) of six isogenic models
817  of acute myeloid leukemia analyzed by A) TMT, and B) pHASED label-free experiments. C)

818  Heatmap comparison of all three correlation scores achieved by from isogenic cell line for TMT
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819 and pHASED. Correlation was performed using normalized abundances in Perseus, and graphs

820  were plotted using GraphPad Prism 8.4.3.

821 Figure 4. Analysis of phosphoproteome coverage and phosphopeptide characteristics
822 identified using TMT compared with pHASED. A) Summary of MS acquisition comparing
823 TMT and pHASED experiments. B) Number of single and multi-phosphorylated peptides
824  identified in each experiment comparing TMT and pHASED. C) Phosphoprotein coverage
825 comparing TMT and pHASED experiments. D) Number of phosphopeptides per protein
826  identified in TMT and pHASED experiments. E) Overlap of phosphoprotein accessions
827  comparing TMT and pHASED experiments. F) GRAVY score of peptides identified in each
828 TMT and pHASED experiment irrespective of PTMs. G) Median distribution of log2 ratios for
829  phosphopeptide changes in FLT3 mutants (S2-S6) compared to FLT3-wt (S1) in TMT and
830 pHASED experiments. H) Number of phosphorylated master protein kinases identified in each

831 TMT and pHASED experiment (p<0.01).

832  Figure5. Comparison of phosphorylated kinases identified in resistant cell lines comparing
833 TMT and pHASED experiments. A) Cell viability was assessed by resazurin assay at 48 h
834  following treatment with sorafenib in FLT3-ITD, FLT3-ITD/D835V, and FLT3-ITD/D835Y
835 isogenic cell lines (n=3 independent replicates). B) Number of kinases identified as differentially
836  phosphorylated (log, + 0.25) in double mutants in comparison to FLT3-1TD cell using TMT and
837 pHASED datasets. C) Kinases with significantly increased or decreased phosphorylation (log,
838  0.25; p<0.05) in resistant cell lines comparison to FLT3-1TD identified by TMT and pHASED.
839  Functional protein-protein interaction network and enrichment profile of kinases differentially
840  phosphorylated (log, £ 0.25) in resistant cell lines compared to FLT3-ITD cells. Protein

841 interaction network shown corresponding to the major cluster of kinases identified in D) FLT3-
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842 ITD/D835V via pHASED; E) FLT3-ITD/D835V via TMT; and F) FLT3-ITD/D835Y via
843 pHASED, and G) FLT3-ITD/D835Y via TMT. Yellow indicates increased phosphorylation,
844  whereas Blue represents decreased phosphorylation. Canonical pathways of enriched kinases
845  (Purple = FLT3-ITD/D835V, Blue = FLT3-ITD/D835Y) with FDR <1% in each comparison are

846  also shown.

847  Figure 6. Bioinformatic analysis of FLT3 resstant phenotype via pHASED. A) Kinase
848  substrate enrichment analysis (KSEA) profile of resistant cell lines compared to FLT3-ITD. Z
849  score indicates predicted kinase activity, with a positive value predictive of kinase activation and
850 a negative value predictive of kinase inhibition. B) Ingenuity Pathway analysis (IPA) of
851  phosphorylated changes in resistant cell lines compared with FLT3-ITD. C) Phosphorylation
852  profile of ATM substrates in resistant cell lines compared with FLT3-ITD. Yellow indicates
853 increased phosphorylation, whereas Blue represents decreased phosphorylation. Missing values
854  are colored Grey. Phosphorylation profile of substrates downstream DSB repair pathway for D)
855 FLT3-ITD/D835V and E) FLT3-ITD/D835Y compared with FLT3-1TD. Statistical significance
856 calculated via one-way ANOVA with significant threshold of *p<0.05, **p<0.01 and

857  ***p<0.001.

858 Figure 7. Sensitivity to ATM inhibition (KU-60019) in combination with FLT3 inhibitor
859 sorafenib. Bliss synergy analysis of combined effect of sorafenib and KU-60019 in A) FLT3-
860 ITD/D835Y, B) FLT3-ITD/D835V, and C) FLT3-ITD (<0= antagonistic, >0<10=additive,
861  >10=synergistic). Cell survival comparison of D) FLT3-ITD/D835Y, and E) FLT3-ITD/D835V
862  cell lines at 62 nM sorafenib in combination with 1.25 uM, 2.5 pM and 5 uM KU-60019 (n=3
863  independent replicates). Statistical significance calculated via one-way ANOVA with significant

864  threshold of *p<0.05, **p<0.01 and ***p<0.001.
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TABLES

Table 1: Isogenic cellular models of FLT3 mutant AML analyzed by TMT and pHASED

protocols in biological triplicate ((n=36/technique)

Model of  Sorafenib
AML sensitivity
Cellline  Species Biological replicates Samples stage
FDC-P1  Mouse 3 FLT3wt Normal Sensitive
FDC-P1  Mouse 3 FLT3-ITD Diagnosis  Sensitive
FDC-P1 Mouse 3 FLT3-D835V Diagnosis ~ Sensitive
FDC-P1  Mouse 3 FLT3-D835Y Diagnosis ~ Sensitive
FDC-P1 Mouse 3 FLT3-ITD/D835V Relapse Resistant
FDC-P1 Mouse 3 FLT3-ITD/D835Y Relapse Resistant
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