

1 Article (Discoveries)

2

3 **A revised perspective on the evolution of troponin I and**
4 **troponin T in vertebrates**

5

6 William Joyce^{1,2*}, Daniel M. Ripley², Todd Gillis³, Amanda Coward Black⁴,
7 Holly A. Shiels², Federico G. Hoffmann^{4,5*}

8

9 ¹Department of Biology- Zoophysiology, Aarhus University, Aarhus C, Denmark

10 ²Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester,
11 Manchester, UK

12 ³Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada

13 ⁴Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University,
14 Starkville, MS, USA

15 ⁵Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, USA

16

17 *Corresponding authors:

18 william.joyce@bio.au.dk (ORCID 0000-0002-3782-1641)

19 federico.g.hoffmann@gmail.com (ORCID 0000-0001-5056-4929)

20

21 Keywords: whole-genome duplication, Ohno's hypothesis, 2R, gnathostome,
22 adrenergic regulation

23

24 This PDF includes:

25 Main text

26 Table 1

27 Figures 1-8

28 **Abstract** (250/250 words)

29 The troponin (Tn) complex, responsible for the Ca^{2+} activation of striated muscle, is
30 composed of three interacting protein subunits: TnC, TnI, and TnT, encoded by
31 *TNNC*, *TNNI*, and *TNNT* genes. *TNNI* and *TNNT* are sister gene families, and in
32 mammals the three *TNNI* paralogs (*TNNI1*, *TNNI2*, *TNNI3*), which encode proteins
33 with tissue-specific expression, are each in close genomic proximity with one of the
34 three *TNNT* paralogs (*TNNT2*, *TNNT3*, *TNNT1*, respectively). It has been widely
35 presumed that all vertebrates broadly possess genes of these same three classes,
36 although earlier work has overlooked jawless fishes (cyclostomes) and cartilaginous
37 fishes (chimaeras, rays and sharks), which are distantly related to other jawed
38 vertebrates. With a new phylogenetic and synteny analysis of a diverse array of
39 vertebrates including these taxonomic groups, we define five distinct *TNNI* classes
40 (*TNNI1-5*), with *TNNI4* and *TNNI5* being only present in non-mammalian vertebrates
41 and typically found in tandem, and four classes of *TNNT* (*TNNT1-4*). These genes
42 are located in four genomic loci that were generated by the 2R whole-genome
43 duplication events. *TNNI3*, encoding ‘cardiac TnI’ in mammals, was independently
44 lost in cartilaginous and ray-finned fishes. Ray-finned fishes predominantly express
45 *TNNI1* in the heart. *TNNI5* is highly expressed in shark hearts and contains an N-
46 terminal extension similar to that of *TNNI3* found in tetrapod hearts. Given that
47 *TNNI3* and *TNNI5* are distantly related, this supports the hypothesis that the N-
48 terminal extension may be an ancestral feature of vertebrate *TNNI* and not an
49 innovation unique to *TNNI3*, as has been commonly believed.

50

51

52

53

54

55

56

57

58

59

60

61

62 **Introduction**

63 Contraction of striated muscle is initiated when Ca^{2+} binds to the troponin (Tn)
64 complex, which is located, along with tropomyosin, in association with the actin
65 filament of the sarcomere (Solaro & Rarick 1998; van der Velden & Stienen 2019).
66 Tn- Ca^{2+} binding induces a conformational change that moves tropomyosin and
67 allows the formation of actin-myosin cross-bridges which generate contractile force.
68 The Tn complex is composed of three proteins; the Ca^{2+} -binding subunit (TnC), the
69 inhibitory subunit (TnI), and the tropomyosin-binding subunit (TnT) (van der Velden &
70 Stienen 2019; Solaro & Rarick 1998). TnC is a calmodulin-like protein that is part of
71 the helix-loop-helix group of Ca^{2+} binding proteins (Strynadka & James 1989), whilst
72 TnI and TnT, which are closely related to one another (Chong & Jin 2009;
73 Rasmussen & Jin 2021; Wei & Jin 2016), indirectly affect Ca^{2+} affinity of Tn through
74 protein-protein interactions within the complex (Lombardi et al. 2008; Evans & Levine
75 1980; Hwang et al. 2014). This mode of contraction activation is evolutionarily
76 ancient and can be traced back to the earliest bilaterian animals \sim 700 million years
77 ago (Barnes et al. 2016; Rasmussen et al. 2022; Cao et al. 2019; Yaguchi et al.
78 2017)

79

80 In vertebrates, each striated muscle type (*i.e.* cardiac muscle, slow and fast twitch
81 skeletal muscle) express a specific complement of TnC, TnI, and TnT genes (*TNNC*,
82 *TNNI* and *TNNT*, respectively). It is widely accepted that in mammals and most other
83 vertebrates, two groups of genes encoding TnC are found, which are characterised
84 by expression in fast skeletal muscle (fsTnC; *TNNC2*) or both cardiac and slow
85 skeletal muscle (cTnC; *TNNC1*) (Gillis et al. 2007). In some ray-finned fishes,
86 including teleosts and gar, there are two *TNNC1* genes due to a lineage-specific
87 gene duplication (Genge et al. 2016). The evolutionary histories of TnI and TnT have
88 received great attention (Wei & Jin 2016; Rasmussen et al. 2022; Sheng & Jin 2016;
89 MacLean et al. 1997; Palpant et al. 2010; Gross & Lehman 2016; Chong & Jin 2009;
90 Hastings 1997; Shaffer & Gillis 2010; Genge et al. 2016; Barnes et al. 2016) and it is
91 generally believed that, like mammals, most vertebrates possess three genes
92 encoding TnI; slow skeletal (ssTnI; *TNNI1*), fast skeletal (fsTnI; *TNNI2*) and cardiac
93 (cTnI; *TNNI3*), and three genes for TnT; slow skeletal (ssTnT; *TNNT1*), fast skeletal
94 (fsTnT; *TNNT3*) and cardiac (cTnT; *TNNT2*). Because we explore a range of
95 previously uncharacterised *TNNI* and *TNNT* genes and proteins outside of the three

96 defined in mammals, and because non-mammalian vertebrates are known to
97 express a variety of *TNNI*s in a given muscle type (Alderman et al. 2012), we herein
98 eschew the protein names that derive from muscle specific expression and instead
99 adopt protein names based on the corresponding numbered gene *i.e.* TnI1-3
100 corresponding to genes *TNNI1-3* (instead of ssTnI, fsTnI and cTnI respectively).

101
102 Mammalian *TNNI* genes are located in close proximity to *TNNT* paralogs in human
103 and mouse genomes: *TNNI2* with *TNNT3*, *TNNI3* with *TNNT1*, and *TNNI1* with
104 *TNNT2* (Chong & Jin 2009) and there is also some limited evidence for this in fish
105 (Genge et al. 2016). This is intriguing because whole-genome duplications (WGDs)
106 have played a key role in expanding the gene repertoires of early vertebrates
107 (Hoffmann et al. 2021, 2012; Zavala et al. 2017), and because the teleost whole-
108 genome duplication has been linked to the functional diversification of the zebrafish
109 *TNNI* paralogs (Genge et al. 2016). As such, the diversity in *TNNI* and *TNNT* families
110 appears to have arisen through a tandem duplication followed by successive rounds
111 of whole-genome duplication (Chong & Jin 2009; Rasmussen & Jin 2021).

112
113 Particular interest has been paid to the evolution of *TNNI3*, which in adult mammals
114 is solely expressed in the heart and is distinguished from other vertebrate *TNNI*
115 paralogs by a ‘unique’ N-terminal extension peptide (Sheng & Jin 2016; Shaffer &
116 Gillis 2010; Rasmussen et al. 2022). This N-terminal extension is an important
117 regulatory structure (Sheng & Jin 2016) containing two protein kinase A (PKA) target
118 serine residues that, when phosphorylated via β -adrenergic stimulation, decrease
119 myofilament Ca^{2+} sensitivity (Fentzke et al. 1999; Layland et al. 2005; Robertson et
120 al. 1982, 198; Solaro et al. 1976, 197), thereby increasing the rate of relaxation
121 during diastole (Kentish et al. 2001; Zhang et al. 1995). In teleost fishes, such as
122 zebrafish (Fu et al. 2009) and rainbow trout (Alderman et al. 2012; Gillis & Klaiman
123 2011; Kirkpatrick et al. 2011), cardiac-expressed TnI lacks the N-terminal extension
124 that characterises mammalian TnI3, although a long N-terminal extension is present
125 in amphibian (Drysdale et al. 1994; Warkman & Atkinson 2004) and lungfish
126 (Rasmussen et al. 2022) TnI3. Currently, the most widely believed consensus, at
127 least in the vertebrate TnI field, is that *TNNI1* and *TNNI3* are more closely related to
128 each other than to *TNNI2*, and that all three evolved from a single gene in the
129 ancestor of vertebrates (Shaffer & Gillis 2010; Sheng & Jin 2016). The N-terminal

130 extension has been commonly interpreted as an evolutionary novelty that emerged
131 in TnI3 from a TnI1-like ancestral form in the ancestor of lobe-finned fishes (Palpati
132 et al. 2010; Shaffer & Gillis 2010; Sheng & Jin 2016; Rasmussen et al. 2022).
133 However, given that some protostome invertebrate (Cao et al. 2019; Barnes et al.
134 2016) and tunicate (MacLean et al. 1997) *TNNI* genes encode for alternatively-
135 spliced isoforms with and without an N-terminal extension, an alternative
136 interpretation is that skeletal muscle paralogs secondarily lost an ancestral extension
137 that has been differentially retained by *TNNI3* (Hastings 1997; MacLean et al. 1997;
138 Barnes et al. 2016).

139

140 Several fundamental questions remain open regarding the evolution of the troponin I
141 and T genes in vertebrates. Both teleost fish and mammals have *TNNI* paralogs that
142 encode for cardiac-expressed TnIs, however, it is not clear whether these subunits
143 are encoded by orthologous genes (Genge et al. 2016; Rasmussen et al. 2022).
144 Further, the duplicative history of these genes in the early stages of vertebrate
145 evolution could not be properly resolved because of the limited availability of
146 cartilaginous fish and jawless fish sequences. Cartilaginous fish sequences are
147 particularly valuable as this lineage was the first to diverge from other gnathostomes
148 (jawed vertebrates), meaning that orthologous genes identified in both cartilaginous
149 fishes and other gnathostome clades can be traced back to the last common
150 ancestor of all jawed vertebrates. The current consensus is that the three tetrapod
151 *TNNI*s are monophyletic, and that tetrapod and ray-finned fishes *TNNT2*s fall in a
152 monophyletic group, implying these genes are orthologs. The evidence is
153 inconclusive regarding *TNNI1* and *TNNI3* (Genge et al. 2016, Sheng & Jin 2016).
154 Support to resolve relationships among the different vertebrate *TNNI* paralogs is also
155 limited (Genge et al. 2016, Sheng & Jin 2016), which is critical to determine whether
156 the N-terminal extension of cTnI is ancestral or derived, and to provide a robust
157 evolutionary context to interpret the observed functional differences among the
158 different TnI subunits, including the capacity to regulate contractile function via β -
159 adrenergic stimulation.

160

161 In the current study, we take advantage of improved assemblies of sea lamprey and
162 cartilaginous fish genomes to answer long-standing questions on the duplicative
163 history of the *TNNI* and *TNNT* gene families of vertebrates. We combine

164 phylogenetic and synteny analyses from a representative set of vertebrates to
165 reconstruct the early stages of evolution of these two closely related gene families in
166 the group. Our reconstruction indicates that the last common ancestor of
167 gnathostomes possessed five *TNNI* and four *TNNT* genes in its genome arranged in
168 four different loci which derive from the 2R of WGD early in vertebrate evolution.
169 Comparisons with lamprey and hagfish suggest that the tandem arrangement of
170 *TNNI* and *TNNT* was present in the last common ancestor of vertebrates. We
171 augment our analyses by assessing *TNNI* gene and protein expression, as well as
172 PKA-mediated phosphorylation of cardiac-expressed TnI, in a diverse cohort of
173 gnathostome vertebrates. In the context of our phylogenetic findings, our results
174 indicate that the presence of an N-terminal extension in the TnI3 subunit of tetrapods
175 represents the retention of an ancestral feature rather than an evolutionary
176 innovation of tetrapods or sarcopterygian fish. Our findings also indicate that the
177 genes encoding for the cardiac-expressed TnI subunits of teleost fish (*TNNI1*) and
178 tetrapods (*TNNI3*) are not orthologs. Instead, these subunits are encoded by
179 paralogous genes that were lost (*TNNI3* in ray-finned fish lineage) or exhibit
180 divergent expression patterns (*TNNI1* being restricted to slow skeletal muscle and
181 embryonic cardiac muscle in tetrapods).

182

183 **Results**

184 **Data description and approach**

185 We combined bioinformatic searches of the NCBI and Ensembl databases to collect
186 the full *TNNI* and *TNNT* repertoires in a representative set of vertebrate genomes
187 including two invertebrate chordates as reference. Because our aim was on the early
188 stages of vertebrate evolution and on resolving relationships between teleost and
189 tetrapod paralogs, our sampling included a focussed number of amniotes and
190 teleosts. Our set consisted of 19 different species that included two cyclostomes
191 (Sea lamprey, *Petromyzon marinus* and Inshore hagfish, *Eptatretus burgeri*);
192 representatives of three different orders of cartilaginous fishes (class
193 Chondrichthyes), elephant fish, also known as elephant shark (*Callorhinus milii*,
194 order Chimaeriformes), thorny skate (*Amblyraja radiata*, order Rajiformes), and
195 small-spotted catshark (*Scyliorhinus canicula*, order Carcharhiniformes); three non-
196 teleost ray finned fishes, reedfish (*Erpetoichthys calabaricus*, order Polypteriformes),
197 sterlet sturgeon (*Acipenser ruthenus*, order Acipenseriformes) and spotted gar

198 (*Lepisosteus oculatus*, order Lepisosteiformes); two teleosts, Asian bonytongue
199 (*Scleropages formosus*, order Osteoglossiformes), and zebrafish (*Danio rerio*, order
200 Cypriniformes); African coelacanth (*Latimeria chalumnae*, order Coelacanthiformes);
201 West African lungfish (*Protopterus annectens*, order Dipnii); an amphibian, tropical
202 clawed frog (*Silurana tropicalis*, order Anura); a non-avian reptile, anole lizard (*Anolis*
203 *carolinensis*, order Squamata); a bird, chicken (*Gallus gallus*, order Galliformes); a
204 monotreme, Australian echidna (*Tachyglossus aculeatus*, order Monotremata); and a
205 eutherian mammal, human (*Homo sapiens*, order Primates) (databases available in
206 Supplementary Material online). As outgroup references, we included the full
207 repertoire of *TNNI* and *TNNT* genes from two invertebrate chordates: the sea squirt
208 (*Ciona intestinalis*, a tunicate), and the Florida lancelet (*Branchiostoma floridae*, a
209 cephalochordate). Because we studied a broad range of taxonomic groups with
210 different gene nomenclature practises (e.g. teleost “*tnni*”), to avoid confusion we
211 standardised all gene names to the human convention e.g. “*TNNI*”.

212

213 Our bioinformatic searches combined information from the Ensembl comparative
214 genomics assignments of orthology (Zerbino et al. 2018) with the results of BLAST
215 searches (NCBI Resource Coordinators 2016) against the corresponding genomes.
216 BLAST searches used the blastp and tblastn programs and were seeded with known
217 *TNNI* and *TNNT* protein sequences. We validated our *TNNI* and *TNNT* candidates
218 using reverse BLAST against the NCBI Reference Protein database of vertebrates,
219 refseq_protein. Candidate records that did not include either a *TNNI* or *TNNT* as
220 their top hit were discarded. We inferred that our sequences had captured the full
221 range of *TNNI* and *TNNT* diversity present in each of the genomes surveyed
222 because searches seeded with *TNNI* identified *TNNT*-like sequences, and searches
223 seeded with *TNNT* sequences identified *TNNI*-like sequences.

224

225 **Variation in *TNNI* and *TNNT* gene complements**

226 After curating the results of our searches, our data sets included a total of 81 *TNNI*
227 and 72 *TNNT* sequences. As expected, vertebrates exhibit a wider range of variation
228 in both gene families relative to the invertebrate chordates included as outgroups. In
229 the case of *TNNI*, the number of genes in invertebrate chordates ranged from one in
230 sea squirt (a tunicate) to two in the Florida lancelet (amphioxus), whereas in
231 vertebrates the number ranged from two in reedfish, the least of any vertebrate we

232 surveyed, to a maximum of 14 in zebrafish, which have undergone an additional
233 WGD, and include two series of tandem duplications. In general, our results agree
234 with previous assessments of copy number variation for this gene family in
235 invertebrate chordates and vertebrates (Shih et al. 2015; MacLean et al. 1997). In
236 the case of the *TNNT* genes, the number of genes in invertebrate chordates
237 matched the number of *TNNI* genes, one in sea squirt and two in the Florida
238 lancelet, and in the case of vertebrates, the number ranged from three in gar,
239 coelacanth, and tetrapods to the eight different copies identified in zebrafish.

240

241 **Phylogenies identify additional gnathostome *TNNI* and *TNNT* paralogs**

242 Our phylogenetic analyses place vertebrate *TNNI*s in a monophyletic clade and
243 arrange gnathostome *TNNI*s into five strongly supported monophyletic groups (fig.
244 1). Three of these groups can be defined by the presence of the mammalian *TNNI1*,
245 *TNNI2*, and *TNNI3* paralogs. The *TNNI1* and *TNNI2* groups include ray-finned, lobe-
246 finned, and cartilaginous fish genes, whereas we only found *TNNI3* copies in lobe-
247 finned fishes. The fourth group, *TNNI4*, contains previously annotated (*i.e.* NCBI and
248 ZFIN) *tnni4* zebrafish genes, although these have not previously been formally
249 described in the literature. For the remaining group we coin the name *TNNI5*. *TNNI4*
250 and *TNNI5*, have restricted phyletic distributions, and we failed to find copies of
251 these genes in any of the amniote genomes we surveyed. *TNNI4* is present in the
252 genomes of cartilaginous fishes, ray-finned fishes, lungfish, and amphibians, and
253 includes the previously identified *tnni1.2* gene of the tropical clawed frog (NCBI Gene
254 ID: 394556; Xenbase: XB-GENE-485710, Table 1). In turn, *TNNI5* is restricted to
255 cartilaginous fishes, ray-finned fishes, and coelacanth, and includes the previously
256 named zebrafish genes *tnni1c* (NCBI Gene ID: 751665, ZFIN:ZDB-GENE-060825-
257 192, Table 1) and *tnni1d* (NCBI Gene ID: 436902, ZFIN:ZDB-GENE-040718-374,
258 Table 1). Our analyses identify additional duplications, found in lineages that have
259 undergone additional WGDs, such as teleosts or sterlet, some of which correspond
260 to the already reported tandem expansions of *TNNI2* in zebrafish.

261

262 The 5 gnathostome *TNNI* genes are divided into two super-groups, *TNNI3* is placed
263 as sister to *TNNI2* in the first group, and with *TNNI1*, 4, and 5 are placed in the
264 second one, where *TNNI1* is placed as sister to *TNNI5*, and *TNNI4* groups with the
265 *TNNI1+TNNI5* clade (fig. 1). Lamprey and hagfish include 3 *TNNI* paralogs in their

266 genomes that broadly clustered with the gnathostome *TNNI2/3* or *TNNI1/4/5* groups.
267 The lamprey 116956477 and 116939854 genes are placed in a group with the
268 hagfish *ENSEBUG00000005369* gene in a clade that is placed within gnathostome
269 *TNNI2/3*, and the lamprey 116945613 gene is sister to the hagfish
270 *ENSEBUG00000013390* in a clade within the *TNNI1/4/5* clade of gnathostomes.
271 The third hagfish *TNNI*, *ENSEBUG00000012816*, appears to be either incomplete in
272 the current genome annotation or highly divergent and has unclear phylogenetic
273 affinities.
274
275 Like *TNNI*s, vertebrate *TNNT*s were monophyletic relative to invertebrate chordates,
276 and the gnathostome sequences were arranged into four monophyletic groups with
277 moderate to strong support (fig. 2). The *TNNT1*, *TNNT2*, and *TNNT3* groups can be
278 defined by the presence of human paralogs and are found in the vast majority of
279 species surveyed. The fourth group, which we label as *TNNT4* is restricted to
280 cartilaginous fishes, ray-finned fishes and lungfish. As with *TNNI*s, our analyses
281 identify additional duplications which are mostly restricted to lineages that have
282 undergone additional WGDs, such as teleosts or sterlet. The only exception to this is
283 the presence of duplicate *TNNT2*s in reedfish, sterlet and zebrafish. Within the
284 *TNNT2* paralog, tetrapod and cartilaginous fish sequences fell in monophyletic
285 clades, but ray-finned fish sequences were grouped in two separate groups, the first
286 one including copies from all ray-finned fish species in our study, and the second
287 one including copies from reedfish, sterlet, and zebrafish. This arrangement is
288 suggestive of an old duplication in the last common ancestor of ray-finned fishes that
289 has been differentially retained in some descendants. The *TNNT* genes of
290 gnathostomes are arranged in two groups, with *TNNT2* and *TNNT4* in the first, and
291 *TNNT1* and *TNNT3* in the second.
292
293 Cyclostomes also include multiple *TNNT* copies in their genomes: four in the case of
294 lamprey and three in the case of hagfish. These genes are arranged into three
295 separate groups, all of which fall within the *TNNT1/3* clade of gnathostomes. The
296 hagfish *ENSEBUG00000014830* gene is placed as sister to *TNNT1* with low support.
297 Then a clade with the hagfish *ENSEBUG00000005308* and lamprey 116939851 genes
298 is placed as sister to the *TNNT3* group of gnathostomes, and a second cyclostome
299 *TNNT* clade which includes the hagfish *ENSEBUG00000008305* gene plus the three

300 remaining lamprey genes, 116945609, 116956460, and 116958636, is placed with
301 gnathostome *TNNT3* as well. Support for the nodes resolving affinities for these
302 groups is low.

303

304 ***TNNIs* and *TNNTs* are found in clusters of conserved synteny**

305 In the case of gnathostomes, the results of our synteny analyses (fig. 3) are
306 consistent with our phylogenetic analyses and provide additional insights regarding
307 the duplicative history of the gene families and the absence of some paralogs in
308 some gnathostome genomes. Microsynteny is very conserved in the cases of the
309 *TNNI1-TNNT2* and *TNNI2-TNNT3* clusters of gnathostomes (fig. 3). *TNNI1* and
310 *TNNT2* are found in tandem, with *LAD1* between them and *PHLDA3* and *PKP*
311 flanking the cluster. *TNNI2* is found in tandem with *TNNT3*, with copies of *LSP1* and
312 *PRR33* between them, and copies of *SYT8* upstream of the cluster. *TNNI3* is flanked
313 by copies of *DNAAF3* and *TNNT1* in most tetrapods. Interestingly, *DNAAF3* and
314 *TNNT1* are adjacent to each other in the elephant fish and reedfish genomes,
315 whereas we could not find copies of any of these three genes in the current release
316 of the spotted gar genome (assembly name: LepOcu1; accession
317 GCF_000242695.1). *TNNI4* and *TNNI5* are found in tandem in cartilaginous fishes
318 and sterlet but are located on separate loci in gar and zebrafish. There are copies of
319 *CALD1* and *BPGM* between *TNNT4* and the *TNNI4-5* cluster. In gar and zebrafish,
320 *TNNI5* is on a different chromosome than the *TNNI4-TNNT4* cluster, flanked by
321 copies of *B4GALNT3B* and *C2CD5*. Orthologs of these two genes are found on
322 separate chromosomes in humans. Further, the arrangement of *TNNI* and *TNNT*
323 genes in the phylogenies is consistent with their position in the genome. The *TNNI2*
324 and *TNNT3* genes, which are found on the same locus, on human chromosome 11,
325 are grouped with *TNNI3* and *TNNT1*, which are found on the same locus, on human
326 chromosome 19. In turn, *TNNI1* and *TNNT3*, which are found on the same locus, on
327 human chromosome 1, are grouped with *TNNI4+TNNI5* and *TNNT4* respectively,
328 which are absent in humans, but are found in the same locus in cartilaginous fish,
329 and sterlet.

330

331 As in gnathostomes, we find pairs of *TNNT* and *TNNI* genes in close proximity in
332 both cyclostome genomes. However, synteny comparisons are not as informative
333 because of the reduced contiguity of the hagfish genome relative to the lamprey

334 assembly and because there are discrepancies between the phylogenetic and
335 synteny analyses in this group. The lamprey genome includes three *TNNI-TNNT*
336 pairs, on chromosomes 7, 24, and 65, plus a single *TNNT* gene on chromosome 80,
337 whereas the hagfish genome contains one pair on contig FYBX02009389. There are
338 copies of *GATD1* and *CALD1* between the *TNNI-TNNT* pair on lamprey
339 chromosome 24 (116945613 and 116945609) and the hagfish pair on contig
340 FYBX02009389 (*ENSEBUG00000013390* and *ENSEBUG00000005308*). However,
341 the flanking genes are different, and the phylogenies are not congruent with the
342 synteny. The corresponding *TNNI* genes are sister but not the *TNNT* genes. In the
343 amphioxus and the tunicate, *TNNI* and *TNNT* were not found in close genomic
344 proximity, although curiously in amphioxus we found *TNNI* in a cluster with three
345 *TNNC* genes fig. 4).

346

347 There are similarities in genomic context between the lamprey and the gnathostome
348 *TNNI-TNNT* pairs but results of synteny comparisons and phylogenetic analyses are
349 not easy to reconcile. For example, the *TNNT4* genes of cartilaginous fishes and
350 sterlet are next to *PTPRO* and *RERG* copies, as is the 116939851 *TNNT* gene of the
351 lamprey, but these genes are not placed together in the phylogeny, and the
352 associated *TNNI* genes are not placed close together either. More generally, there
353 are similarities in the genomic context shared by many of the *TNNI-TNNT* genomic
354 loci. There are paralogs of *CALD1* or *LSP1*, next to two of the *TNNI-TNNT* clusters
355 or gnathostomes and two of the lamprey clusters (fig. 4), there are *PTPRO* paralogs
356 close to the *TNNI1-TNNT2* and the *TNNI4-5-TNNT4* clusters of gnathostomes and
357 the lamprey *TNNI-TNNT* clusters on chromosomes 7 and 24, and there are *SYT*
358 paralogs close to the each of the tree *TNNI-TNNT* pairs defined by the presence of
359 mammalian *TNNI*s.

360

361 **The evolution of the N-terminal extension in *TnI***

362 We recognised that the *TNNI5* sequence found in cartilaginous fishes, non-teleost
363 ray-finned fishes, and sarcopterygian fishes included an N-terminal sequence
364 bearing a striking similarity to *TNNI3* previously described in tetrapods (Drysdale et
365 al. 1994; Warkman & Atkinson 2004) and lungfish (Rasmussen et al. 2022).
366 Although teleost fishes possessed genes of the *TNNI5* family (previously named
367 *tnni1c* and *tnni1d*), they did not contain the N-terminal extension, indicating it was

368 lost in this protein lineage in teleosts. To provide a formal and unbiased comparison
369 between *TNNI* paralogs, we used ancestral sequence reconstructions to predict
370 ancestral protein sequences for *TNNI1-5*. The alignment highlights the strong
371 resemblance between *TNNI3* and *TNNI5* N-terminals, particularly with regard to
372 glutamic acid and proline-rich stretches (fig. 5A). Curiously, the *TNNI3* and *TNNI5* N-
373 terminal extensions also showed similarities to *TNNT*, as represented by a
374 reconstruction of the common ancestor of all gnathostome vertebrate *TNNTs*
375 (*TNNT1-4*) (fig. 5B).

376

377 **Cardiac and skeletal muscle gene and protein expression**

378 Having established that cartilaginous and ray-finned fish *TNNI5* shares a strikingly
379 similar N-terminal extension with tetrapod and sarcopterygian fish *TNNI3*, we next
380 investigated the expression of different *TNNI*s in cardiac and skeletal muscle of
381 diverse cartilaginous fishes, non-teleost ray-finned fishes, early diverging teleosts,
382 and a sarcopterygian fish. Gene expression (analysis of previously published RNA-
383 seq data; see Supplementary Material online for full species list and data accession
384 information) and protein expression (Western blotting and mass spectrometry)
385 analysis were conducted with a particular focus on the expression and
386 characterization of the intriguing *TNNI5* paralog.

387

388 In the cardiac transcriptomes of cartilaginous fishes, we found the expression of a
389 broad array of *TNNI*s. In small-spotted catshark (*S. canicula*), for instance, we
390 identified transcripts for each of the four genes found in the genome, whereby *TNNI1*
391 and *TNNI5* were dominantly expressed (~33% *TNNI1* and ~66% *TNNI5*), *TNNI4*
392 exhibited only low expression (< 0.5% *TNNI*) and *TNNI2* was found only at trace
393 levels (0.1% *TNNI*) (fig. 6A). In most of the other sharks (i.e. Great white shark
394 (*Carcharodon carcharias*), Great hammerhead shark (*Sphyrna mokarran*), shortfin
395 mako shark (*Surus oxyrinchus*)) as well as yellow stingray (*Urotrygon jamaicensis*),
396 we likewise found mixed expression of *TNNI1* and *TNNI5* and that the other genes
397 were also absent or expressed at negligible levels. In Greenland shark (*Somniosus*
398 *microcephalus*) *TNNI5* was strongly dominant (>90% *TNNI*). In the chimaerid
399 elephant fish (*C. mili*), *TNNI1* was almost exclusively expressed (>97% *TNNI*
400 expression), although *TNNI5* transcripts were also detected (accounting for the
401 remaining 3% *TNNI*). In almost all of the ray-finned fishes, including ‘basal’ (early-

402 diverging) actinopterygians (Senegal bichir (*Polypterus senegalus*), paddlefish
403 (*Polyodon spathula*), spotted gar (*Lepisosteus oculatus*), bowfin (*Amia calva*) as
404 well as early-diverging teleosts (European eel (*Anguilla anguilla*) and silver arowana
405 (*Osteoglossum bicirrhosum*)), *TNNI1* was the virtually exclusively expressed paralog,
406 although in Siberian sturgeon (*Acipenser baerii*) there was also low but evident (~3%
407 *TNNI1*) expression of *TNNI4* (fig. 6A). In African lungfish (*P. annectens*) we identified
408 slightly predominant gene expression (55% *TNNI1*) of *TNNI3*, with the remainder
409 comprising of *TNNI1*.

410

411 We next studied TnI protein expression in two shark species (small-spotted catshark
412 (*S. canicula*) and Greenland shark (*S. microcephalus*)), four early-diverging ray-
413 finned fishes (Senegal bichir (*P. senegalus*), sterlet (*A. ruthenus*), Florida gar
414 (*Lepisosteus platyrhincus*) and European eel (*A. anguilla*) and African lungfish (*P.*
415 *annectens*) fig. 6B), and in each case the predicted protein sizes correlated well with
416 predictions from transcriptomics. In Greenland shark, only a relatively large TnI (~32
417 kDa) was detected, aligning with the N-terminal extended *TNNI5*, whereas in
418 catshark we were also able to observe the less abundant expression of a shorter TnI
419 protein (~20 kDa), corresponding with the complementary expression of *TNNI1*
420 indicated by the transcriptome (fig. 6B). Mass spectrometry for protein identification
421 was used to confirm the protein sequence of the dominant band matched the
422 predicted sequence for both catshark (28% coverage) and Greenland shark (65%
423 coverage) protein predicted from *TNNI5*. In both cases, the peptide matches
424 included a large proportion of the N-terminal extension (Supplementary fig. S1,
425 Supplementary Material online). In each of the ray-finned fishes we observed only a
426 band of lower molecular mass, corresponding with the N-terminal extension-absent
427 *TNNI1* sequences predicted from transcriptomics. In lungfish, we observed
428 expression of both a high molecular weight (the dominant band) and lower molecular
429 weight TnI. The dominant band was confirmed as that predicted from the *TNNI3*
430 sequence, with a long N-terminal extension, which was verified with mass
431 spectrometry for protein identification (83% coverage).

432

433 Given that the genomes of some early-diverging actinopterygians contained an N-
434 terminal extended TnI (*TNNI5*) that was not abundantly expressed in their hearts, we
435 extended our survey to skeletal muscle (fig. 6C). However, none of the species'

436 transcriptomes that we were able to investigate (paddlefish, gar, bowfin) showed
437 evidence of *TNNI5* expression in skeletal muscle (fig. 6C). In all of these species, the
438 *TNNI2* paralog was strongly dominant, which indicates the preferential dissection of
439 fast twitch muscle in skeletal muscle samples. Western blot analysis of skeletal
440 muscle homogenates from bichir, sturgeon, gar and eel also indicated that only one
441 or more lower molecular weight Tnls were present (fig. 6D). Surprisingly, however,
442 some shark skeletal muscle tissues (particularly the dusky smooth-hound (*Mustelus*
443 *canis*)) expressed the N-terminal extended *TNNI5* mRNA (fig. 6C), and in Greenland
444 shark skeletal muscle, higher molecular weight Tnl was confirmed to be expressed
445 as protein (fig. 6D), which appeared (qualitatively) more abundantly expressed in red
446 skeletal muscle than white muscle.

447

448 **Phosphorylation of cardiac-expressed Tnl by PKA**

449 In the mammal Tnl3 (*TNNI3*), PKA is known to primarily target two serine residues
450 within a canonical PKA motif (Ser-23/24)(Martin-Garrido et al. 2018). Sequence
451 alignment indicates the PKA motif is well conserved in all species with *TNNI3*,
452 including coelacanth and lungfish (Rasmussen et al. 2022). However, despite
453 containing an N-terminal extension and exhibiting cardiac expression, *TNNI5* of
454 sharks does not contain a predicted PKA phosphorylation site in the N-terminal
455 extension (see fig. 5). To investigate if the Tnl expressed in the hearts of sharks,
456 diverse ray-finned fishes, or lungfish are targeted by PKA, we employed a phospho-
457 PKA motif specific antibody in Western blots on cardiac homogenates before
458 stripping the membrane and re-probing for Tnl (fig. 7). Our data showed that in
459 lungfish, a PKA phosphorylated band co-localised with the confirmed Tnl location (in
460 agreement with another recent study (Rasmussen et al. 2022)), whereas in sharks
461 and ray-finned fish, there was no co-localisation of PKA substrates and Tnl band,
462 consistent with predictions from the protein sequences and previous findings that the
463 Tnl of ray-finned fish exhibits little phosphorylation (Gillis & Klaiman 2011; Patrick et
464 al. 2010). The PKA-phosphorylated band in both shark species at ~26 kDa (fig. 7)
465 remains unidentified, but non-Tnl candidates were anticipated for the non-specific
466 PKA substrate antibody.

467

468

469

470 **Discussion**

471 In this study, we combined bioinformatic searches for phylogenetic and synteny
472 analyses with gene and protein expression studies to reconstruct the evolution of the
473 vertebrate *TNNI* and *TNNT* gene families. Our analyses suggest a novel hypothesis
474 regarding the duplicative history of these gene families, identify additional paralogs
475 that are absent from mammalian genomes, and provide a strong hint that the
476 presence of an N-terminal extension in mammalian cardiac TnI represents the
477 retention of an ancestral state. A summary of our interpretation of *TNNI* and *TNNT*
478 gene origins and losses is presented in fig. 8. The lineage-specific gene losses
479 resulted in different paralog repertoires being available for tissue-dependent
480 expression different vertebrate groups. This is well illustrated in the context of
481 cardiac *TNNI* expression, where tetrapods and lobe-finned fishes characteristically
482 express *TNNI3*, ray-finned fishes by and large express *TNNI1*, and cartilaginous
483 fishes express a variable combination of *TNNI1* and *TNNI5* in the heart.

484

485 **TNNI and TNNT paralogs originated in 2R whole-genome duplication events**

486 Earlier convention has been to pigeon-hole the *TNNI* paralogs found in non-
487 mammalian vertebrates into the three classes of *TNNI* defined in mammals. By
488 contrast here, tree reconciliation allows us to trace the five different *TNNI*s and the
489 four different *TNNT*s of gnathostomes back to the last common ancestor of the
490 group. Our trees also suggest that at least three of the *TNNI*s and four of *TNNT*
491 cyclostome paralogs predate the split between hagfish and lamprey, but support for
492 the corresponding nodes is low to move beyond this broad statement. Going deeper
493 into the phylogeny, our maximum likelihood tree placed gnathostome *TNNI4* as
494 sister to a cyclostome *TNNI* gene, implying that the tandem duplication giving rise to
495 *TNNI4* and *TNNI5* would have predated the duplication that gave rise to *TNNI5* and
496 *TNNI1* and the split between cyclostomes and gnathostomes. This would require
497 multiple losses of *TNNI* and *TNNT* genes in both cyclostomes and gnathostomes to
498 account for the extant repertoires. However, a tree where *TNNI4* is constrained to be
499 sister to *TNNI5* (Supplementary fig. S2, Supplementary Material online) is not
500 significantly different from the unconstrained tree (Supplementary Table 1,
501 Supplementary Material online). This constrained tree requires fewer gene losses
502 and maps the tandem duplication giving rise to *TNNI4-TNNI5* to the last common
503 ancestor of gnathostomes, which is consistent with the observed phyletic distribution

504 of the genes. Thus, our analyses indicate the presence of four different *TNNI-TNNT*
505 pairs in the last common ancestor of gnathostomes, and of at least three *TNNI-*
506 *TNNT* clusters in the last common ancestor of cyclostomes.

507

508 Unfortunately, our phylogenies lack power to resolve relationships between
509 gnathostome and cyclostome *TNNIs* and *TNNTs* and move ancestral reconstruction
510 deeper. This is not surprising because cyclostome genomes are unusual with
511 respect to nucleotide, codon and amino acid composition (Qiu et al. 2011; Kuraku
512 2013) that complicate the resolution of orthology based on phylogenies. In some
513 cases, synteny is informative to resolve ambiguous gene phylogenies (Kuraku &
514 Meyer 2012; Hoffmann et al. 2010; Campanini et al. 2015), but in others such as the
515 *TNNI-TNNT* pairs, synteny shows similarities with gnathostomes but ultimately is not
516 informative, as in the globin X genes of vertebrates (Hoffmann et al. 2021).
517 Nevertheless, the presence of multiple *TNNI-TNNT* pairs in both groups provides a
518 strong indication that the last common ancestor of vertebrates possessed four *TNNI-*
519 *TNNT* pairs in its genome.

520

521 Whole-genome duplications played a critical role in expanding the repertoire of
522 vertebrate genes. The presence of four different *TNNI-TNNT* clusters in
523 gnathostomes which are phylogenetically arranged by location and are flanked by
524 additional gene families that appear to have co-duplicated with the *TNNI-TNNT*
525 suggest that the *TNNI-TNNT* clusters of vertebrates also expanded via WGDs, a
526 notion previously speculated on more limited evidence (Shaffer & Gillis 2010). The
527 presence of independent duplications in cyclostomes and synteny similarities within
528 the cyclostome clusters are also consistent with this interpretation. Further, the three
529 human *TNNI-TNNT* pairs and the three lamprey *TNNI-TNNT* pairs all map to proto-
530 vertebrate chromosome Pv11 from Nakatani et al. (2021), as does the tandem of
531 *TNNT* genes in amphioxus (Supplementary Table 2, Supplementary Material online).
532 All of these observations suggest that the vertebrate *TNNI-TNNT* gene families
533 expanded as a result of WGDs.

534

535 There are competing hypotheses regarding the number and timing of the WGDs
536 early in vertebrate evolution. There is consensus that gnathostomes underwent two
537 rounds of WGD (Meyer & Schartl 1999; McLysaght et al. 2002; Dehal & Boore

538 2005), 1R and 2R, and that 1R predates the split of extant cyclostomes and
539 gnathostomes. The placement of 2R on the vertebrate tree, however, is controversial
540 (Kuraku et al. 2009). Whereas some authors place 2R in the common ancestor of
541 cyclostomes and gnathostomes (Sacerdot et al. 2018), *i.e.* '2R-early', more recent
542 studies place 2R in the last common ancestor of gnathostomes (Simakov et al. 2020;
543 Nakatani et al. 2021), *i.e.* '2R-late', and suggest that cyclostomes underwent an
544 independent polyploidization early in their evolution (Mehta et al. 2013; Nakatani et
545 al. 2021). These competing explanations make alternative phylogenetic predictions
546 (Supplementary fig. S3. Supplementary Material online). Our results do not fit either
547 the 2R-early or 2R-late hypotheses in strict sense but they are easier to reconcile
548 with the 2R-late hypothesis. Linking the duplicative history to the 1R and 2R WGDs
549 is trivial in the case of gnathostomes, the *TNNI2/3-TNNT1/3* and *TNNI1/4/5-*
550 *TNNT2/4* pro-orthologs would derive from 1R, which then expanded to the four
551 different *TNNI-TNNT* pairs we see today, with the *TNNI4/5* pro-ortholog in single
552 copy state. The case of cyclostomes is more complex. The *TNNI-TNNT* clusters of
553 lamprey share synteny similarities that distinguish them from the *TNNI-TNNT*
554 clusters of gnathostomes. This fits well with the 2R-late hypothesis, which posits that
555 cyclostomes underwent an independent polyploidization event. Under this scenario,
556 the *TNNI116956477-TNNT116956460* and *TNNI116939854-TNNT116939851* pairs
557 of lamprey and the *TNNI2-TNNT3* and *TNNI3-TNNT1* pairs of gnathostomes would
558 represent independent expansions of one of the post 1R *TNNI-TNNT* pairs, and
559 whereas the *TNNI1-TNNT2* and *TNNI4/5-TNNT4* pairs of gnathostomes and the
560 *TNNI116945613-TNNT116945609* would derive from the other post-1R *TNNI-TNNT*
561 pair. We favour this interpretation because it requires less changes relative to the
562 observed trees and the synteny similarities within cyclostomes and within
563 gnathostomes. Unfortunately, support for the relevant nodes is low, and topology
564 tests are not informative (Supplementary Table 1, Supplementary Material online).
565

566 **Relationships among the *TNNI* and *TNNT* paralogs**

567 In contrast to previous studies, which indicated that *TNNI1* and *TNNI3* were more
568 closely related to one another than to *TNNI2* (Hastings 1997; Shaffer & Gillis 2010;
569 Sheng & Jin 2016), our expanded analyses place *TNNI3* as sister to *TNNI2*, and
570 place *TNNI1* as sister to *TNNI5*, with *TNNI4* grouping with the *TNNI1+TNNI5* clade.
571 This has important implications regarding the origin of the *TNNI3* terminal extension

572 (see below). The parallel analyses of *TNNI* and *TNNT*, consistently found in close
573 proximity in vertebrate genomes, provided a powerful tool to cross-examine
574 predicted gene duplications. In support of the surprising *TNNI2-TNNI3* sister
575 relationship, we also found a sister relationship between their syntenically associated
576 *TNNT* genes, *TNNT3* and *TNNT1*, respectively. Likewise, the *TNNT2-TNNT4* affinity
577 supported the close relationship of *TNNI1*, *TNNI4* and *TNNI5*.

578

579 **Origin of the troponin complex**

580 The three subunits of troponin, *TNNC*, *TNNI*, and *TNNT* can be traced back to at
581 least to the last common ancestor of bilateria (Barnes et al. 2016; Yaguchi et al.
582 2017). Our synteny analyses provides some hints as to how this three-subunit
583 complex emerged. *TNNI* and *TNNT* are the most similar subunits to one another,
584 which probably emerged as tandem duplicates deep in the past (Chong & Jin 2009).
585 To the best of our knowledge (cf. Herranz et al. 2005), vertebrates are the only group
586 that have retained this close tandem arrangement. Interestingly, in amphioxus, an
587 invertebrate chordate, *TNNT* and *TNNC* are in a cluster. We speculate that the three
588 proteins could potentially have been in a single cluster in the early stages of their
589 evolution, and that amphioxus might reflect the ancestral condition of a *TNNC* gene
590 in cluster with the progenitor of *TNNI* and *TNNT*. The original troponin subunit might
591 have been made of a *TNNC* chain associated with two chains contributed by this
592 *TNNI/T* pro-ortholog. In time, a tandem duplication gave rise to *TNNI* and *TNNT* and
593 a sub functionalization process allowed each of these subunits to evolve the more
594 specific roles they have today. In the vertebrate tree of life, the emergence of
595 multiple *TNNI* and *TNNT* subunits via WGD allowed further specialisations of these
596 different genes, which acquired more refined muscle tissue specificity in this group of
597 animals. Such specialisation enabled muscle type specific functional phenotypes.

598

599 ***TNNI1* is expressed in the fish heart**

600 Virtually all of the previous phylogenetic studies on vertebrate *TNNI* evolution (Sheng
601 & Jin 2016; Shaffer & Gillis 2010; Gross & Lehman 2016; Rasmussen et al. 2022)
602 have shown that the teleost cardiac-expressed *TNNI* gene clusters within *TNNI1*
603 (ssTnI) of tetrapods, yet it is still frequently labelled as a fish ‘cTnI’ which implies
604 orthology with *TNNI3*. Its phylogenetic ‘misplacement’ has been repeatedly attributed
605 to its lack of N-terminal extension (Shaffer & Gillis 2010; Rasmussen et al. 2022). By

606 combining our phylogenetic analysis with comparisons of conserved synteny and a
607 broad transcriptomic survey, we unequivocally conclude that ray-finned fishes,
608 including teleosts, lack the *TNNI3* gene and simply express a *TNNI1* ortholog in the
609 heart. This is consistent with the state in embryonic and neonatal mammals, which
610 express *TNNI1* in the heart before *TNNI3* becomes exclusively expressed as
611 juveniles and adults (Saggin et al. 1989; Reiser et al. 1994). In the adult mammalian
612 heart, overexpression of ssTnI (*TNNI1*) at the expense of cTnI (*TNNI3*) confers
613 increased tolerance to acidosis (Wolska et al. 2001), and may provide similar
614 benefits in the fish heart, which in many species show exceptional performance
615 during acidosis (Driedzic & Gesser 1994; Hanson et al. 2009; Joyce et al. 2015).
616

617 Given that ray-finned fishes have lost the *TNNI3* gene (which encodes for cTnI in
618 mammals), we suggest that the use of the 'cTnI' name for cardiac expressed *TNNI*s
619 in these fish, as has been frequently applied (Sheng & Jin 2016; Shaffer & Gillis
620 2010; Alderman et al. 2012; Gillis & Klaiman 2011), should be discontinued. Indeed,
621 more generally the currently used protein nomenclature is based on similarities to
622 human genes, some of which are absent from vertebrate genomes, and incorporate
623 information about the tissue where the protein is found and does not align well with
624 our evolutionary hypothesis. Because non-mammalian species, such as teleost fish
625 (Alderman et al. 2012; Shih et al. 2015), have multiple *TNNI* genes in different
626 striated muscle types, and non-orthologous genes may be expressed in a given
627 muscle type, it becomes ambiguous to use protein nomenclature based on muscle
628 type specific expression of mammals. We therefore advocate that protein names be
629 derived from the gene number (*i.e.* TnI1-5) in studies that include non-mammalian
630 vertebrates.

631
632 Even in some cartilaginous fishes and lungfish, *TNNI1* was relatively highly
633 expressed in the heart, but unlike in ray-finned fishes it was found in combination
634 with another paralog, *i.e.* *TNNI5* or *TNNI3* respectively. The ability to express two or
635 more distinct *TNNI*s with different properties (*i.e.* *TNNI* multiplicity) may provide a
636 substrate for acclimation to different environmental conditions (Alderman et al.
637 2012). Such an ability would be of obvious benefit for ectothermic species and has
638 also been demonstrated to occur with respect to TnC paralog expression in the trout
639 heart with thermal acclimation (Genge et al. 2013).

640

641 **A common origin for the N-terminal extension in vertebrate *TNNI***

642 The N-terminal extension peptide in TnI3 is widely viewed as an evolutionary novelty
643 that appeared in the sarcopterygian fish and tetrapod lineage (Sheng & Jin 2016;
644 Palpant et al. 2010; Shaffer & Gillis 2010; Rasmussen et al. 2022). However, we
645 identified that the *TNNI5* in cartilaginous fishes, non-teleost ray-finned fishes, and
646 coelacanth contained an N-terminal extension with striking similarity to that found in
647 *TNNI3*, particularly of lungfish and amphibians.

648

649 The sister relationships of *TNNI3* with *TNNI2*, and *TNNI5* with *TNNI1* and *TNNI4*,
650 were robustly supported (and cross-supported by the tree of syntenic *TNNTs*),
651 indicating that *TNNI3* and *TNNI5* are only distantly related. Based on the molecular
652 similarity of the N-terminal extensions in the proteins encoded by *TNNI5* and *TNNI3*,
653 it appears likely that it was found in the common ancestor of vertebrate *TNNI*s and
654 was independently lost in *TNNI1*, *TNNI2* and *TNNI4* lineages. The common origin of
655 the N-terminal extension is also supported by the N-terminal extension in the *TNNI* of
656 *C. intestinalis*, which is structurally similar to *TNNI3* of tetrapods such as the tropical
657 clawed frog (MacLean et al. 1997). This earlier led Hasting's to also conclude that
658 the N-terminal extension could be ancestral (Hastings 1997), although this
659 hypothesis has largely been overlooked in more recent work (Sheng & Jin 2016;
660 Palpant et al. 2010; Shaffer & Gillis 2010; Rasmussen et al. 2022). Some protostome
661 TnI genes also contain an N-terminal extension, and the possibility that it was
662 conserved with vertebrate *TNNI3* has also been previously acknowledged (Cao et al.
663 2019; Barnes et al. 2016). Indeed, *TNNT*, as the sister family to *TNNI* (Chong & Jin
664 2009) that diverged following a duplication before the separation of protostomes and
665 deuterostomes (Cao et al. 2019), also contains a proline- and glutamic acid-rich N-
666 terminal extension. An alignment of the ancestral vertebrate *TNNT* (prior to 2R) with
667 ancestral *TNNI3* and *TNNI5* reveals stretches of similarity with TnT in the N-terminus
668 (fig. 5B), indicating the *TNNI* N-terminal extension may date back to before the
669 *TNNI-TNNT* separation.

670

671 That the N-terminal extension was lost multiple times in other vertebrate *TNNI*
672 lineages is initially surprising but is also supported by evidence that the single *TNNI*
673 gene of *C. intestinalis* is alternatively spliced, with the N-terminal extension

674 expressed only in cardiac muscle but excluded in skeletal muscle (MacLean et al.
675 1997). This indicates that it may provide a benefit to lose the N-terminal extension in
676 skeletal muscle, which was only afforded at the genomic level following the gene
677 duplications that generated paralog diversity (Hastings 1997; MacLean et al. 1997).

678

679 In the mammalian heart, TnI3 is a major target for PKA following activation by β -
680 adrenergic stimulation (Bers et al. 2019) where it affects myofilament Ca^{2+} sensitivity
681 (Fenzke et al. 1999; Robertson et al. 1982). Whilst *TNNI3*, in sarcopterygian fishes
682 and tetrapods, and *TNNI5*, in sharks and rays, are both abundantly expressed in the
683 heart, an important distinction is that TnI5 appears to lack functional PKA
684 phosphorylation target sites in the N-terminal extension. This would presumably limit
685 sensitivity of cardiac myofilaments to the effects of adrenergic stimulation (Pi et al.
686 2002) and reduce the functional scope of the heart. *TNNI5* also appears to be
687 expressed in shark skeletal muscle (red muscle in particular), whereas *TNNI3* is
688 strictly only found in the heart in mammals (Sheng & Jin 2016). Given its unique
689 structure and expression pattern, it would be of interest for future work to establish
690 the functional properties of cartilaginous fish TnI5, including the possible influence of
691 its non-phosphorylatable N-terminal extension.

692

693 **Conclusion**

694 Our analyses suggest a novel hypothesis regarding the expansion of the *TNNI* and
695 *TNNT* gene families of vertebrate, linking the presence of multiple *TNNI-TNNT* pairs
696 in their genomes to the WGDs early in the history of the group. Our results show how
697 a combination of tandem gene duplications and whole-genome duplications have
698 worked together to generate protein diversity that allow the differentiation of different
699 muscle types of troponins. Under the 2R-late hypothesis, our analyses suggest that
700 the presence of four *TNNI-TNNT* clusters in the genomes of gnathostomes are the
701 product of the 1R and 2R WGDs. In cyclostomes, which share 1R with
702 gnathostomes, the presence of multiple *TNNI-TNNT* pairs seems to be a
703 combination of 1R and a polyploidization event specific to this lineage. Moving closer
704 to present, we also identify additional paralogs present in the last common ancestor
705 of gnathostomes that are absent from mammalian genomes. The genes were
706 retained by a subset of extant lineages, such as the *TNNI3* from amniotes that is
707 absent in cartilaginous fish or ray-finned fishes, or the *TNNI4/5-TNNT4* locus, which

708 has apparently been lost in amniotes. Moving deeper in time, our results potentially
709 suggest that the *TNNC-TNNI-TNNT* genes could have been arranged in a cluster in
710 the common ancestor of bilaterians, estimated to have lived ~850-700 million years
711 before present. Our new evolutionary framework highlights the need for revised
712 nomenclature to more faithfully portray the evolutionary affiliations of some
713 previously mis-annotated genes (see Table 1), and we also provide consistent
714 names for previously unnamed *TNNI* genes (e.g. 'slow skeletal-like' troponin I genes
715 found across cartilaginous and ray-finned fish lineages that can now be identified as
716 *TNNI4* or *TNNI5*).

717

718 We found that two distantly related lineages, *TNNI3* and *TNNI5*, encode TnI proteins
719 with remarkably similar N-terminal extensions (fig. 5), which is most easily explained
720 by it being present in their common ancestor and independently lost in *TNNI1*,
721 *TNNI2* and *TNNI4* lineages. The discovery of a 'second' vertebrate *TNNI* with an N-
722 terminal extension provides the strongest evidence to date that the extension, which
723 has been widely viewed as unique to *TNNI3*, could represent an ancestral state of
724 gnathostome TnI prior to the 2R duplication events, and likely dates back even
725 further to the origin of bilaterian *TNNI*. Shark hearts exhibited dominant protein
726 expression of the N-terminal extended *TNNI5*. However, the heavily studied PKA-
727 target phosphorylation sites present in mammal TnI3 were only found in the *TNNI3*
728 gene family and not *TNNI5*.

729

730 **Materials and Methods**

731 **Bioinformatic searches and curation**

732 Our strategy was to include all known *TNNI* and *TNNT* genes in a broad range of
733 vertebrates with annotated whole genome assemblies. We pre-defined the following
734 target species: three distantly related species of cartilaginous fish (elephant fish,
735 *Callorhinus milii*, thorny skate, *Amblyraja radiata*, and small-spotted catshark,
736 *Scyliorhinus canicula*), three non-teleost ray finned fishes (reedfish, *Erpetoichthys*
737 *calabaricus*, sterlet sturgeon, *Acipenser ruthenus* and spotted gar, *Lepisosteus*
738 *oculatus*), two distantly-related teleosts (Asian bonytongue, *Scleropages formosus*
739 and zebrafish, *Danio rerio*), African coelacanth (*Latimeria chalumnae*), West African
740 lungfish (*Protopterus annectens*), an amphibian (tropical clawed frog, *Xenopus*
741 *tropicalis*), a non-avian reptile (anole lizard, *Anolis carolinensis*), a bird (chicken,

742 *Gallus gallus*), a monotreme (Australian echidna, *Tachyglossus aculeatus*) and a
743 eutherian mammal (human, *Homo sapiens*). We additionally included two
744 cyclostomes, the sea lamprey (*Petromyzon marinus*) and inshore hagfish (*Eptatretus*
745 *burger*). An amphioxus (Florida lancelet, *Branchiostoma floridae*) and a tunicate
746 (vase tunicate, *Ciona intestinalis*) were included as outgroups. We used both
747 National Center for Biotechnology Information (NCBI) and Ensembl (Release 105)
748 databases. The NCBI database gene pages were manually searched (i.e. “species
749 name + “troponin I”) and also searched with protein-protein BLAST using known (i.e.
750 mammalian or tropical clawed frog) TnI sequences, and *TNNI* genes were searched
751 for a given species in Ensembl. Where genes of a given species appeared on both
752 NCBI and Ensembl, the former was typically used. The African lungfish genome has
753 only recently been sequenced (Wang et al. 2021) and predicted proteins from the
754 gene annotations appeared inconsistent with other species. As we assembled
755 transcriptomes for African lungfish cardiac and skeletal muscle (below), which
756 generated more plausible and complete *TNNI1*, *TNNI2* and *TNNI3* sequences, these
757 were used instead for the phylogenetic analyses. The transcriptome-predicted
758 lungfish *TNNI3* is consistent with that recently cloned by Rasmussen et al. (2022) in
759 the same species. One annotated amphioxus *TNNT* gene (NCBI 118422967) was
760 excluded as it shared little resemblance with *TNNT* in any other species.

761

762 **Phylogenetic analysis**

763 *TNNI* and *TNNT* alignments were generated using MAFFT (v7.490) using the einsi
764 and linsi strategies (Katoh & Standley 2013). The resulting alignments were
765 compared using MUMSA (Lassmann & Sonnhammer 2006) and the alignments with
766 the highest scores were selected for downstream processing. Phylogenetic
767 relationships were estimated using IQ-TREE (multicore version 2.2.0-beta) (Minh et
768 al. 2020). First, the best-fitting model of amino acid substitution was selected using
769 the ModelFinder subroutine from IQ-Tree (Kalyaanamoorthy et al. 2017; Katoh &
770 Standley 2013). Then, searches were run under the selected model using 10,000
771 pseudoreplicates of the ultrafast bootstrap procedure to assess support for the
772 nodes (Hoang et al. 2018). Competing phylogenetic hypotheses were compared
773 using the approximately unbiased test (Shimodaira 2002) as implemented in IQ-
774 Tree. The alignments, tree files, and a log of the commands required to replicate our
775 results are all available as a compressed file with the Supplementary Material online.

776

777 **Synteny**

778 Synteny diagrams were generated for key species (amphioxus, tunicate, lamprey,
779 elephant fish, catshark, spotted gar, zebrafish, coelacanth, tropical clawed frog,
780 human) for genomic regions harbouring select *TNNI/TNNT* genes using the
781 'Genomic context' section on the relevant NCBI gene pages.

782

783 **Reconstruction of ancestral protein sequences**

784 Common ancestral protein sequences for each *TNNI* paralog and the common
785 vertebrate *TNNT* were predicted using FireProt ASR (ancestral sequence
786 reconstruction) v1.1 web server using default parameter settings (Khan et al. 2021).
787 An unrooted tree was generated with the same alignments as used for our
788 phylogenetic trees, except that for *TNNT* the "bonytongue_tnnt2a"
789 (XP_029102145.1) sequence was omitted as it contained an unknown amino acid
790 ('X', i.e. low quality prediction) so was not recognised by the software. Human *TNNI3*
791 and *TNNT1* were used as 'query' sequences. Nodal sequences from the common
792 ancestor of *TNNI1*, *TNNI2*, *TNNI3*, *TNNI4* and *TNNT5*, and the common ancestor of
793 vertebrate *TNNT1-4* were exported and aligned using MAFFT (v. 7.503).

794

795 **Gene expression**

796 Previously generated heart and skeletal muscle RNA-seq data for a broad cohort of
797 cartilaginous fishes, ray-finned fishes and lungfish were collated (see Supplementary
798 Material online for full list of species and SRA accession numbers). Sequences with
799 a low-quality score (regions averaging a score <5 over a 4bp sliding window, and
800 leading/trailing sequences scoring <5) were removed using Trimmomatic (Bolger et
801 al. 2014). The cleaned reads were processed in Trinity 2.8.4 using default
802 parameters (Haas et al. 2013; Grabherr et al. 2011). Open reading frames (ORFs)
803 were predicted from the transcripts using Transdecoder
804 (<https://github.com/TransDecoder/TransDecoder/wiki>) with a minimum length
805 threshold of 100 amino acids. CD-HIT (Li & Godzik 2006) was used to eliminate
806 redundancy by clustering nucleotide sequences with ≥99% similarity. The reads
807 were mapped using Bowtie-2 (Langmead & Salzberg 2012), and pseudo-aligned to
808 the predicted ORFs using Kallisto (Bray et al. 2016), allowing relative abundance
809 estimates of each transcript to be calculated. Annotation was performed using

810 BLAST (blastp, default cut-offs) searches to query a broad range of *TNNI* genes
811 (*TNNI1,2,4,5* from catshark and *TNNI3* from tropical clawed frog). The top hits were
812 manually curated to find *TNNI* paralogs by blastp (default settings) against the NCBI
813 database and candidate genes were cross checked against our conserved synteny
814 diagrams to confirm their identity.

815

816 **Protein expression and phosphorylation immunoblots**

817 Small-spotted catshark (*Scyliorhinus canicula*; 600-800 g; N=2), Senegal bichir
818 (*Polypterus senegalus*; ~15 g, N=2), sterlet (*Acipenser ruthenus*; ~40 g N=2), Florida
819 gar (*Lepisosteus platyrhincus*; ~ 2 g, N=2), European eel (*Anguilla anguilla*; 600-800
820 g; N=2), and West African lungfish (*Protopterus annectens*; 410 g; N=1) were
821 obtained from local commercial dealers and euthanised with an overdose (1 g L⁻¹) of
822 bicarbonate-buffered tricaine methanesulfonate (MS-222) followed by destruction of
823 the brain, a procedure endorsed by the local animal experiments committee and in
824 accordance with Schedule 1 of the Home Office Animals (Scientific Procedures) Act
825 1986. The heart (ventricle) and skeletal muscle (epaxial muscle) were dissected and
826 rapidly frozen on dry ice and stored at -80°C.

827

828 Samples from non-sexually mature Greenland sharks (*Somniosus microcephalus*; N
829 = 2, TL=398 and 386 cm) were collected in 2021 in south-eastern Greenland from
830 the Danish research vessel Dana. Sharks were caught via long lines at depths
831 between 285-325 m. Immediately after capture and euthanisation, samples of
832 ventricle, and white skeletal muscle and red skeletal muscle, were flash frozen in
833 liquid nitrogen and stored at -80 °C until use.

834

835 All experiments were conducted with tissue stored (at -80°C) for less than 6 months,
836 as initial pilot experiments indicated that catshark tissue that was several years old
837 showed greatly reduced general phosphorylation levels. Tissue samples were
838 homogenized in 10 µl mg⁻¹ RIPA buffer (Millipore, 20-188) with 1% protease and
839 phosphatase inhibitor (PPI) cocktail (PPC1010 Sigma-Aldrich). Protein concentration
840 was measured with bicinchoninic acid (BCA) assay (71285-3 EMD Millipore) before
841 samples were denatured with 2x Laemmli buffer (S3401 Sigma-Aldrich) and boiled at
842 95°C for 5 min. Tris-glycine gels (10 or 12.5% acrylamide) were run with an
843 Invitrogen XCell SureLock Mini-Cell and transferred to a PVDF membrane with XCell

844 II Blot Module (ThermoFisher). For the specific gel used for each blot, alongside raw
845 uncropped blot images, see Supplementary Material online. Gels were run at 200 V
846 for 45 min. 15 µg protein was loaded in each lane and run alongside 5 µL BLUeye
847 Prestained Protein Ladder (Sigma-Aldrich 94964). Blots were blocked for 1 h at room
848 temperature using 5% skimmed milk in standard tris-buffered saline with 0.05%
849 Tween 20 (TBS-T).

850

851 For the initial determination of TnI molecular weight, blots were incubated with a
852 mouse monoclonal primary antibody against troponin I (C-4) (Santa-Cruz SC-
853 133117). This antibody, which recognised the majority of the TnI protein except for
854 the 'cTnI-specific' N-terminal extension, is recommended by the manufacturer for
855 detection of diverse (cardiac and skeletal) TnI proteins. 1:1000 dilutions of the 200
856 µg ml⁻¹ stock were diluted in 2% milk TBS-T to incubate the block overnight on a
857 shaker at 4°C. The next day, a corresponding HRP-conjugated anti-mouse
858 secondary antibody (Santa-Cruz sc-516102) at 1:5000 dilution of 400 µg ml⁻¹ stock in
859 2% milk TBS-T was used for a 1 h incubation at room temperature. Blots were
860 imaged on a Bio-Rad ChemiDoc and chemiluminescent signals developed with
861 Millipore/Immobilon Classico Western HRP substrate (Merck WBLUC0500) or Bio-
862 Rad Clarity Western ECL Substrate (Bio-Rad 1705061).

863

864 To identify phosphorylated protein kinase A (phosho-PKA) substrates (RRXS*/T*) in
865 heart samples, we used the New England Biolabs 9624S rabbit primary antibody
866 (1:1000 dilution of unspecified stock concentration) at 4°C overnight with gentle
867 agitation followed by goat anti-rabbit secondary antibody (New England Biolabs
868 7074P2; 1:3000 dilution of unspecified stock concentration) for 1 h at room
869 temperature. The blot was imaged as above, then stripped (Restore Western Blot
870 Stripping Buffer, ThermoFisher 21059) and the TnI antibody protocol followed as
871 described above.

872

873 **Mass spectrometry**

874 To verify if the apparently N-terminal extended dominant TnI proteins present in
875 catshark and Greenland shark as well as African lungfish corresponded with the
876 predicted *TNNI5* or *TNNI3* sequences, protein identification with liquid
877 chromatography-mass spectrometry (LC-MS) was performed with the University of

878 Manchester Bio-MS Research Core Facility (RRID SCR_020987). 20 µg protein per
879 lane was run on a 16% acrylamide Tris-glycine gel (Invitrogen XP00165BOX) which
880 was then stained with SimplyBlue™ SafeStain (ThermoFisher LC6065). The band at
881 the location corresponding with TnI identified by the immunoblot was excised and
882 digested with elastase. The samples were analysed with LC-MS/MS using an
883 UltiMate 3000 Rapid Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA)
884 coupled to an Orbitrap Exploris 480 (Thermo Fisher Scientific, Waltham, MA) mass
885 spectrometer. Mobile phase A was 0.1% formic acid in water and mobile phase B
886 was 0.1% formic acid in acetonitrile. The products were analysed with Scaffold 5
887 (Proteome Software, Portland, OR, USA) and searched against an in-house
888 database including the transcriptomics-predicted *TNNI3* and *TNNI5* sequences from
889 each respective species.

890

891 **Acknowledgements**

892 This work was supported by Novo Nordisk Foundation (NNF19OC0055842) to WJ.
893 Professors John Steffensen, Peter Bushnell, Diego Bernal, and Eurofleets+, and
894 scientists and crew of the RV Dana are thanked for providing the Greenland shark
895 heart and muscle samples.

896

897 **Data Availability Statement**

898 The data underlying this article are available in the article and in its online
899 supplementary material.

900

901 **References**

902 Alderman SL, Klaiman JM, Deck CA, Gillis TE. 2012. Effect of cold acclimation on
903 troponin I isoform expression in striated muscle of rainbow trout. American journal of
904 physiology. Regulatory, integrative and comparative physiology. 303:R168-76.

905 Barnes DE, Hwang H, Ono K, Lu H, Ono S. 2016. Molecular evolution of troponin I
906 and a role of its N-terminal extension in nematode locomotion. Cytoskeleton
907 (Hoboken). 73:117–130. doi: 10.1002/cm.21281.

908 Bers DM, Xiang YK, Zaccolo M. 2019. Whole-Cell cAMP and PKA Activity are
909 Epiphenomena, Nanodomain Signaling Matters. Physiology (Bethesda, Md.).
910 34:240–249.

911 Bodor GS et al. 1997. Troponin I phosphorylation in the normal and failing adult
912 human heart. Circulation. 96:1495–1500. doi: 10.1161/01.cir.96.5.1495.

913 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
914 sequence data. *Bioinformatics*. 30:2114–2120. doi: 10.1093/bioinformatics/btu170.

915 Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-
916 seq quantification. *Nat Biotechnol.* 34:525–527. doi: 10.1038/nbt.3519.

917 Campanini EB et al. 2015. Early Evolution of Vertebrate Mybs: An Integrative
918 Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.
919 *Genome Biol Evol.* 7:3009–3021. doi: 10.1093/gbe/evv197.

920 Cao T, Thongam U, Jin J-P. 2019. Invertebrate Troponin: Arch Biochem Biophys.
921 666:40–45. doi: 10.1016/j.abb.2019.03.013.

922 Chong SM, Jin J-P. 2009. To Investigate Protein Evolution by Detecting Suppressed
923 Epitope Structures. *J Mol Evol.* 68:448–460. doi: 10.1007/s00239-009-9202-0.

924 Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in the ancestral
925 vertebrate. *PLoS Biol.* 3:e314. doi: 10.1371/journal.pbio.0030314.

926 Driedzic WR, Gesser H. 1994. Energy metabolism and contractility in ectothermic
927 vertebrate hearts: hypoxia, acidosis, and low temperature. *Physiol. Rev.* 74:221–
928 258. doi: 10.1152/physrev.1994.74.1.221.

929 Drysdale TA, Tonissen KF, Patterson KD, Crawford MJ, Krieg PA. 1994. Cardiac
930 Troponin I Is a Heart-Specific Marker in the *Xenopus* Embryo: Expression during
931 Abnormal Heart Morphogenesis. *Developmental Biology.* 165:432–441. doi:
932 10.1006/dbio.1994.1265.

933 Fenzke RC et al. 1999. Impaired cardiomyocyte relaxation and diastolic function in
934 transgenic mice expressing slow skeletal troponin I in the heart. *The Journal of
935 physiology.* 517 (Pt 1):143–157.

936 Fu C-Y, Lee H-C, Tsai H-J. 2009. The molecular structures and expression patterns
937 of zebrafish troponin I genes. *Gene Expression Patterns.* 9:348–356. doi:
938 10.1016/j.gep.2009.02.001.

939 Genge CE et al. 2016. Functional Divergence in Teleost Cardiac Troponin Paralogs
940 Guides Variation in the Interaction of TnI Switch Region with TnC. *Genome Biol
941 Evol.* 8:994–1011. doi: 10.1093/gbe/evw044.

942 Genge CE, Davidson WS, Tibbits GF. 2013. Adult teleost heart expresses two
943 distinct troponin C paralogs: cardiac TnC and a novel and teleost-specific ssTnC in a
944 chamber- and temperature-dependent manner. *Physiol Genomics.* 45:866–875. doi:
945 10.1152/physiolgenomics.00074.2013.

946 Gillis TE, Klaiman JM. 2011. The influence of PKA treatment on the Ca²⁺ activation
947 of force generation by trout cardiac muscle. *J. Exp. Biol.* 214:1989–1996. doi:
948 10.1242/jeb.052084.

949 Grabherr MG et al. 2011. Full-length transcriptome assembly from RNA-Seq data
950 without a reference genome. *Nat Biotechnol.* 29:644–652. doi: 10.1038/nbt.1883.

951 Gross SM, Lehman SL. 2016. Functional phosphorylation sites in cardiac
952 myofilament proteins are evolutionarily conserved in skeletal myofilament proteins.
953 *Physiological Genomics*. 48:377–387. doi: 10.1152/physiolgenomics.00112.2015.

954 Haas BJ et al. 2013. De novo transcript sequence reconstruction from RNA-seq
955 using the Trinity platform for reference generation and analysis. *Nat Protoc.* 8:1494–
956 1512. doi: 10.1038/nprot.2013.084.

957 Hanson LM et al. 2009. Intrinsic mechanical properties of the perfused armoured
958 catfish heart with special reference to the effects of hypercapnic acidosis on
959 maximum cardiac performance. *The Journal of experimental biology*. 212:1270–
960 1276.

961 Hastings KEM. 1997. Molecular Evolution of the Vertebrate Troponin I Gene Family.
962 *Cell Struct. Funct.* 22:205–211. doi: 10.1247/csf.22.205.

963 Herranz R et al. 2005. The Coevolution of Insect Muscle TpnT and TpnI Gene
964 Isoforms. *Molecular Biology and Evolution*. 22:2231–2242. doi:
965 10.1093/molbev/msi223.

966 Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2:
967 Improving the Ultrafast Bootstrap Approximation. *Molecular Biology and Evolution*.
968 35:518–522. doi: 10.1093/molbev/msx281.

969 Hoffmann FG, Opazo JC, Storz JF. 2010. Gene cooption and convergent evolution
970 of oxygen transport hemoglobins in jawed and jawless vertebrates. *Proc Natl Acad
971 Sci U S A.* 107:14274–14279. doi: 10.1073/pnas.1006756107.

972 Hoffmann FG, Opazo JC, Storz JF. 2012. Whole-genome duplications spurred the
973 functional diversification of the globin gene superfamily in vertebrates. *Mol Biol Evol*.
974 29:303–312. doi: 10.1093/molbev/msr207.

975 Hoffmann FG, Storz JF, Kuraku S, Vandewege MW, Opazo JC. 2021. Whole-
976 Genome Duplications and the Diversification of the Globin-X Genes of Vertebrates.
977 *Genome Biology and Evolution*. 13:evab205. doi: 10.1093/gbe/evab205.

978 Joyce W, Gesser H, Bayley M, Wang T. 2015. Anoxia and Acidosis Tolerance of the
979 Heart in an Air-Breathing Fish (*Pangasianodon hypophthalmus*). *Physiological and
980 Biochemical Zoology*. 88:648–659. doi: 10.1086/682701.

981 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017.
982 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods*.
983 14:587–589. doi: 10.1038/nmeth.4285.

984 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version
985 7: improvements in performance and usability. *Mol Biol Evol*. 30:772–780. doi:
986 10.1093/molbev/mst010.

987 Kentish JC et al. 2001. Phosphorylation of Troponin I by Protein Kinase A
988 Accelerates Relaxation and Crossbridge Cycle Kinetics in Mouse Ventricular Muscle.
989 *Circulation research*.

990 Khan RT, Musil M, Stourac J, Damborsky J, Bednar D. 2021. Fully Automated
991 Ancestral Sequence Reconstruction using FireProtASR. *Curr Protoc.* 1:e30. doi:
992 10.1002/cpz1.30.

993 Kirkpatrick KP, Robertson AS, Klaiman JM, Gillis TE. 2011. The influence of trout
994 cardiac troponin I and PKA phosphorylation on the Ca²⁺ affinity of the cardiac
995 troponin complex. *Journal of Experimental Biology.* 214:1981–1988. doi:
996 10.1242/jeb.052860.

997 Kuraku S. 2013. Impact of asymmetric gene repertoire between cyclostomes and
998 gnathostomes. *Semin Cell Dev Biol.* 24:119–127. doi:
999 10.1016/j.semcd.2012.12.009.

1000 Kuraku S, Meyer A. 2012. Detection and phylogenetic assessment of conserved
1001 synteny derived from whole genome duplications. *Methods Mol Biol.* 855:385–395.
1002 doi: 10.1007/978-1-61779-582-4_14.

1003 Kuraku S, Meyer A, Kuratani S. 2009. Timing of genome duplications relative to the
1004 origin of the vertebrates: did cyclostomes diverge before or after? *Mol Biol Evol.*
1005 26:47–59. doi: 10.1093/molbev/msn222.

1006 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat
1007 Methods.* 9:357–359. doi: 10.1038/nmeth.1923.

1008 Lassmann T, Sonnhammer ELL. 2006. Kalign, Kalignvu and Mumsa: web servers for
1009 multiple sequence alignment. *Nucleic Acids Res.* 34:W596–599. doi:
1010 10.1093/nar/gkl191.

1011 Layland J, Solaro RJ, Shah AM. 2005. Regulation of cardiac contractile function by
1012 troponin I phosphorylation. *Cardiovasc Res.* 66:12–21. doi:
1013 10.1016/j.cardiores.2004.12.022.

1014 Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets
1015 of protein or nucleotide sequences. *Bioinformatics.* 22:1658–1659. doi:
1016 10.1093/bioinformatics/btl158.

1017 MacLean DW, Meedel TH, Hastings KE. 1997. Tissue-specific alternative splicing of
1018 ascidian troponin I isoforms. Redesign of a protein isoform-generating mechanism
1019 during chordate evolution. *J Biol Chem.* 272:32115–32120. doi:
1020 10.1074/jbc.272.51.32115.

1021 Martin-Garrido A et al. 2018. Monophosphorylation of cardiac troponin-I at Ser-23/24
1022 is sufficient to regulate cardiac myofibrillar Ca²⁺ sensitivity and calpain-induced
1023 proteolysis. *Journal of Biological Chemistry.* 293:8588–8599. doi:
1024 10.1074/jbc.RA117.001292.

1025 McLysaght A, Hokamp K, Wolfe KH. 2002. Extensive genomic duplication during
1026 early chordate evolution. *Nat Genet.* 31:200–204. doi: 10.1038/ng884.

1027 Mehta TK et al. 2013. Evidence for at least six Hox clusters in the Japanese lamprey
1028 (*Lethenteron japonicum*). *Proc Natl Acad Sci U S A.* 110:16044–16049. doi:
1029 10.1073/pnas.1315760110.

1030 Messer AE, Gallon CE, McKenna WJ, Dos Remedios CG, Marston SB. 2009. The
1031 use of phosphate-affinity SDS-PAGE to measure the cardiac troponin I
1032 phosphorylation site distribution in human heart muscle. *Proteomics Clin Appl.*
1033 3:1371–1382. doi: 10.1002/prca.200900071.

1034 Messer AE, Jacques AM, Marston SB. 2007. Troponin phosphorylation and
1035 regulatory function in human heart muscle: dephosphorylation of Ser23/24 on
1036 troponin I could account for the contractile defect in end-stage heart failure. *J. Mol.*
1037 *Cell. Cardiol.* 42:247–259. doi: 10.1016/j.yjmcc.2006.08.017.

1038 Meyer A, Schartl M. 1999. Gene and genome duplications in vertebrates: the one-to-
1039 four (-to-eight in fish) rule and the evolution of novel gene functions. *Curr Opin Cell*
1040 *Biol.* 11:699–704. doi: 10.1016/s0955-0674(99)00039-3.

1041 Minh BQ et al. 2020. IQ-TREE 2: New Models and Efficient Methods for
1042 Phylogenetic Inference in the Genomic Era. *Molecular Biology and Evolution.*
1043 37:1530–1534. doi: 10.1093/molbev/msaa015.

1044 Nakatani Y et al. 2021. Reconstruction of proto-vertebrate, proto-cyclostome and
1045 proto-gnathostome genomes provides new insights into early vertebrate evolution.
1046 *Nat Commun.* 12:4489. doi: 10.1038/s41467-021-24573-z.

1047 NCBI Resource Coordinators. 2016. Database resources of the National Center for
1048 Biotechnology Information. *Nucleic Acids Research.* 44:D7–D19. doi:
1049 10.1093/nar/gkv1290.

1050 Palpant NJ et al. 2010. Pathogenic peptide deviations support a model of adaptive
1051 evolution of chordate cardiac performance by troponin mutations. *Physiol Genomics.*
1052 42:287–299. doi: 10.1152/physiolgenomics.00033.2010.

1053 Patrick SM et al. 2010. Enhanced length-dependent Ca²⁺ activation in fish
1054 cardiomyocytes permits a large operating range of sarcomere lengths. *J. Mol. Cell.*
1055 *Cardiol.* 48:917–924. doi: 10.1016/j.yjmcc.2010.02.008.

1056 Pi Y, Kemnitz KR, Zhang D, Kranias EG, Walker JW. 2002. Phosphorylation of
1057 Troponin I Controls Cardiac Twitch Dynamics. *Circulation Research.* 90:649–656.
1058 doi: 10.1161/01.RES.0000014080.82861.5F.

1059 Qiu H, Hildebrand F, Kuraku S, Meyer A. 2011. Unresolved orthology and peculiar
1060 coding sequence properties of lamprey genes: the KCNA gene family as test case.
1061 *BMC Genomics.* 12:325. doi: 10.1186/1471-2164-12-325.

1062 Rasmussen M, Feng H-Z, Jin J-P. 2022. Evolution of the N-Terminal Regulation of
1063 Cardiac Troponin I for Heart Function of Tetrapods: Lungfish Presents an Example
1064 of the Emergence of Novel Submolecular Structure to Lead the Capacity of
1065 Adaptation. *J Mol Evol.* 90:30–43. doi: 10.1007/s00239-021-10039-9.

1066 Rasmussen M, Jin J-P. 2021. Troponin Variants as Markers of Skeletal Muscle
1067 Health and Diseases. *Frontiers in Physiology.* 12.
1068 <https://www.frontiersin.org/article/10.3389/fphys.2021.747214> (Accessed March 16,
1069 2022).

1070 Reiser PJ, Westfall MV, Schiaffino S, Solaro RJ. 1994. Tension production and thin-
1071 filament protein isoforms in developing rat myocardium. *Am J Physiol.* 267:H1589-
1072 1596. doi: 10.1152/ajpheart.1994.267.4.H1589.

1073 Robertson SP et al. 1982. The effect of troponin I phosphorylation on the Ca²⁺-
1074 binding properties of the Ca²⁺-regulatory site of bovine cardiac troponin. *Journal of*
1075 *Biological Chemistry.* 257:260–263. doi: 10.1016/S0021-9258(19)68355-9.

1076 Sacerdot C, Louis A, Bon C, Berthelot C, Roest Crollius H. 2018. Chromosome
1077 evolution at the origin of the ancestral vertebrate genome. *Genome Biol.* 19:166. doi:
1078 10.1186/s13059-018-1559-1.

1079 Saggin L, Gorza L, Ausoni S, Schiaffino S. 1989. Troponin I switching in the
1080 developing heart. *J Biol Chem.* 264:16299–16302.

1081 Shaffer JF, Gillis TE. 2010. Evolution of the regulatory control of vertebrate striated
1082 muscle: the roles of troponin I and myosin binding protein-C. *Physiological*
1083 *Genomics.* 42:406–419. doi: 10.1152/physiolgenomics.00055.2010.

1084 Sheng J-J, Jin J-P. 2016. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and
1085 protein structure–function relationships. *Gene.* 576:385–394. doi:
1086 10.1016/j.gene.2015.10.052.

1087 Shih Y-H et al. 2015. Cardiac transcriptome and dilated cardiomyopathy genes in
1088 zebrafish. *Circ Cardiovasc Genet.* 8:261–269. doi:
1089 10.1161/CIRCGENETICS.114.000702.

1090 Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection.
1091 *Syst Biol.* 51:492–508. doi: 10.1080/10635150290069913.

1092 Simakov O et al. 2020. Deeply conserved synteny resolves early events in
1093 vertebrate evolution. *Nat Ecol Evol.* 4:820–830. doi: 10.1038/s41559-020-1156-z.

1094 Solaro RJ, Moir AJG, Perry SV. 1976. Phosphorylation of troponin I and the inotropic
1095 effect of adrenaline in the perfused rabbit heart. *Nature.* 262:615–617. doi:
1096 10.1038/262615a0.

1097 van der Velden J. 2011. Diastolic myofilament dysfunction in the failing human heart.
1098 *Pflugers Arch.* 462:155–163. doi: 10.1007/s00424-011-0960-3.

1099 van der Velden J et al. 2003. Increased Ca²⁺-sensitivity of the contractile apparatus
1100 in end-stage human heart failure results from altered phosphorylation of contractile
1101 proteins. *Cardiovascular Research.* 57:37–47. doi: 10.1016/S0008-6363(02)00606-5.

1102 Wang K et al. 2021. African lungfish genome sheds light on the vertebrate water-to-
1103 land transition. *Cell.* 184:1362-1376.e18. doi: 10.1016/j.cell.2021.01.047.

1104 Warkman AS, Atkinson BG. 2004. Amphibian cardiac troponin I gene's organization,
1105 developmental expression, and regulatory properties are different from its
1106 mammalian homologue. *Developmental Dynamics.* 229:275–288. doi:
1107 10.1002/dvdy.10434.

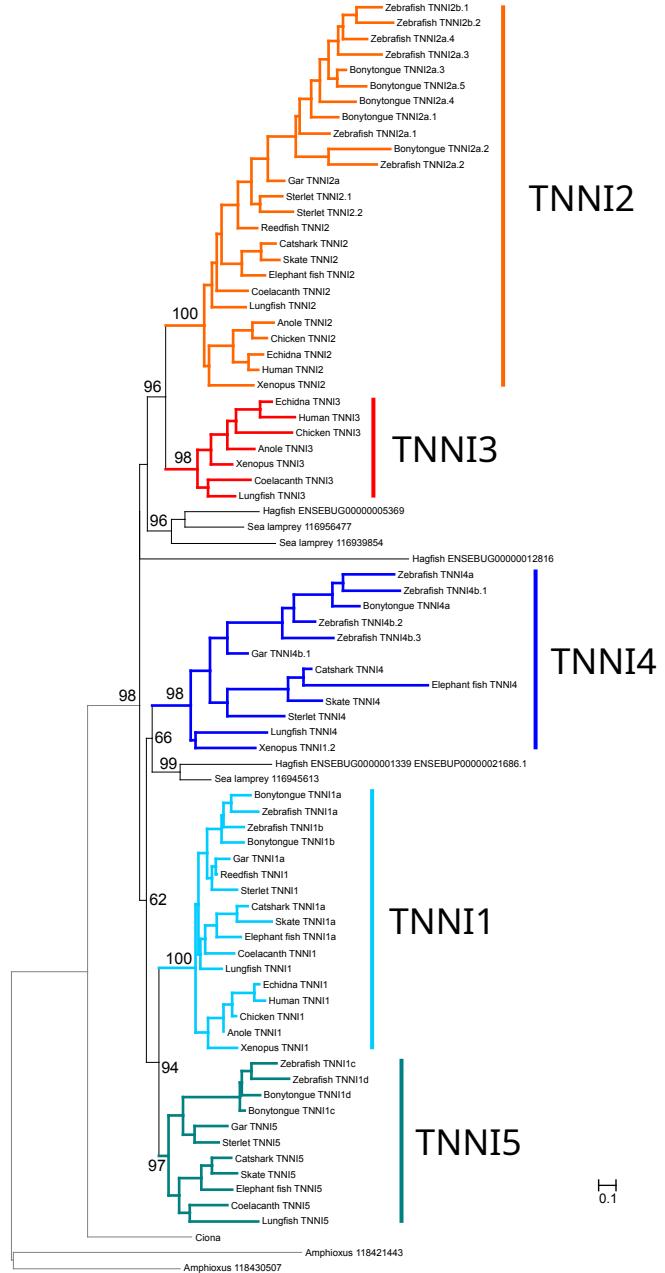
1108 Wei B, Jin J-P. 2016. TNNT1, TNNT2, and TNNT3: Isoform Genes, Regulation, and
1109 Structure-Function Relationships. *Gene*. 582:1–13. doi: 10.1016/j.gene.2016.01.006.

1110 Wolska BM et al. 2001. Expression of slow skeletal troponin I in adult transgenic
1111 mouse heart muscle reduces the force decline observed during acidic conditions.
1112 *The Journal of physiology*. 536:863–870.

1113 Yaguchi S, Yaguchi J, Tanaka H. 2017. Troponin-I is present as an essential
1114 component of muscles in echinoderm larvae. *Sci Rep*. 7:43563. doi:
1115 10.1038/srep43563.

1116 Zavala K, Vandewege MW, Hoffmann FG, Opazo JC. 2017. Evolution of the β -
1117 adrenoreceptors in vertebrates. *Gen Comp Endocrinol*. 240:129–137. doi:
1118 10.1016/j.ygcen.2016.10.005.

1119 Zerbino DR et al. 2018. Ensembl 2018. *Nucleic Acids Research*. 46:D754–D761. doi:
1120 10.1093/nar/gkx1098.


1121 Zhang R, Zhao J, Mandveno A, Potter JD. 1995. Cardiac troponin I phosphorylation
1122 increases the rate of cardiac muscle relaxation. *Circ. Res.* 76:1028–1035.

1123

Table 1. Proposed changes in nomenclature for previously mis-annotated genes.
Revised proposed names are intended to reflect the evolutionary history and phylogenetic affiliations within newly defined *TNNI* and *TNNT* groups.

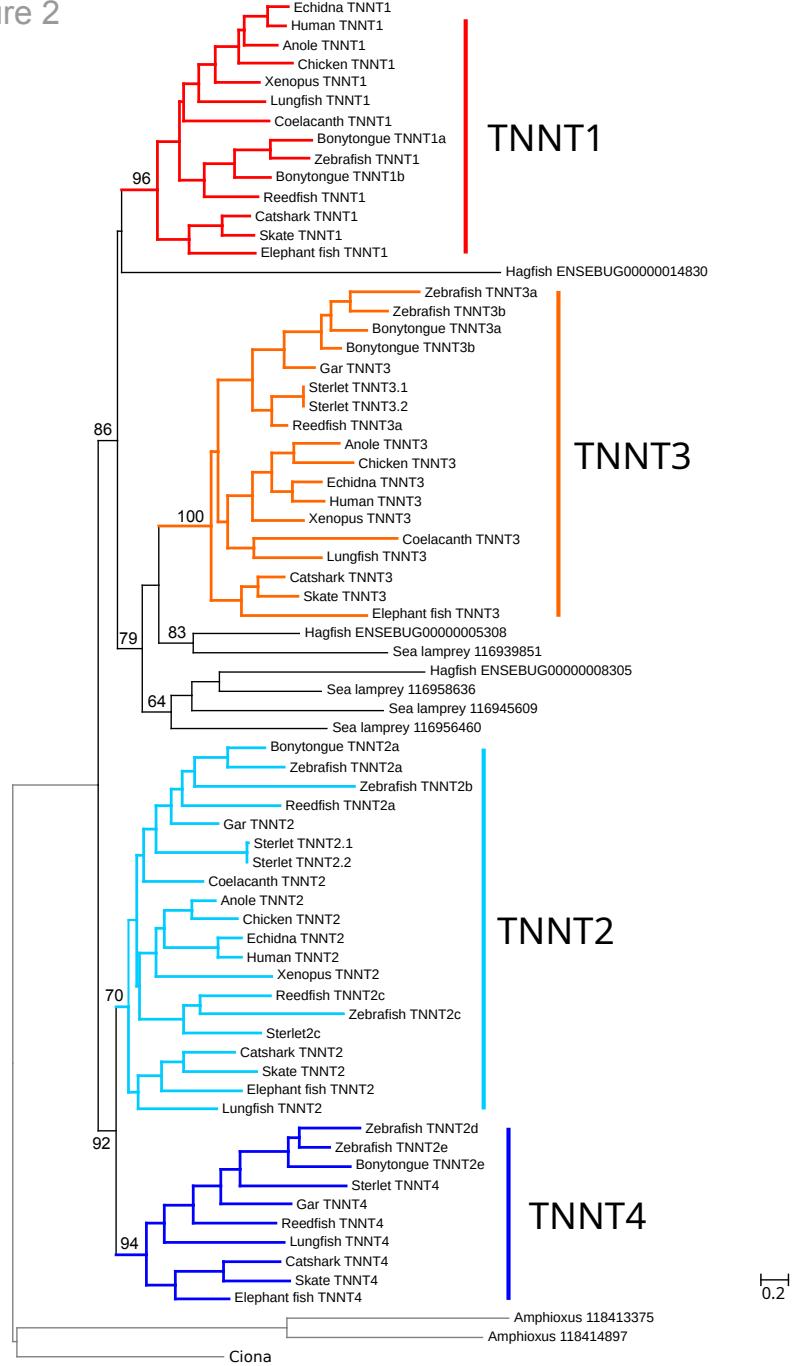

Lineage	Current name	Proposed revision
Amphibians	<i>tnni1.2</i>	<i>tnni4</i>
Teleost fishes	<i>tnni1c/ tnni1d</i>	<i>tnni5a/ tnni5b</i>
Teleost fishes	<i>tnnt2d/ tnni2e</i>	<i>tnnt4a/ tnni4b</i>

Figure 1

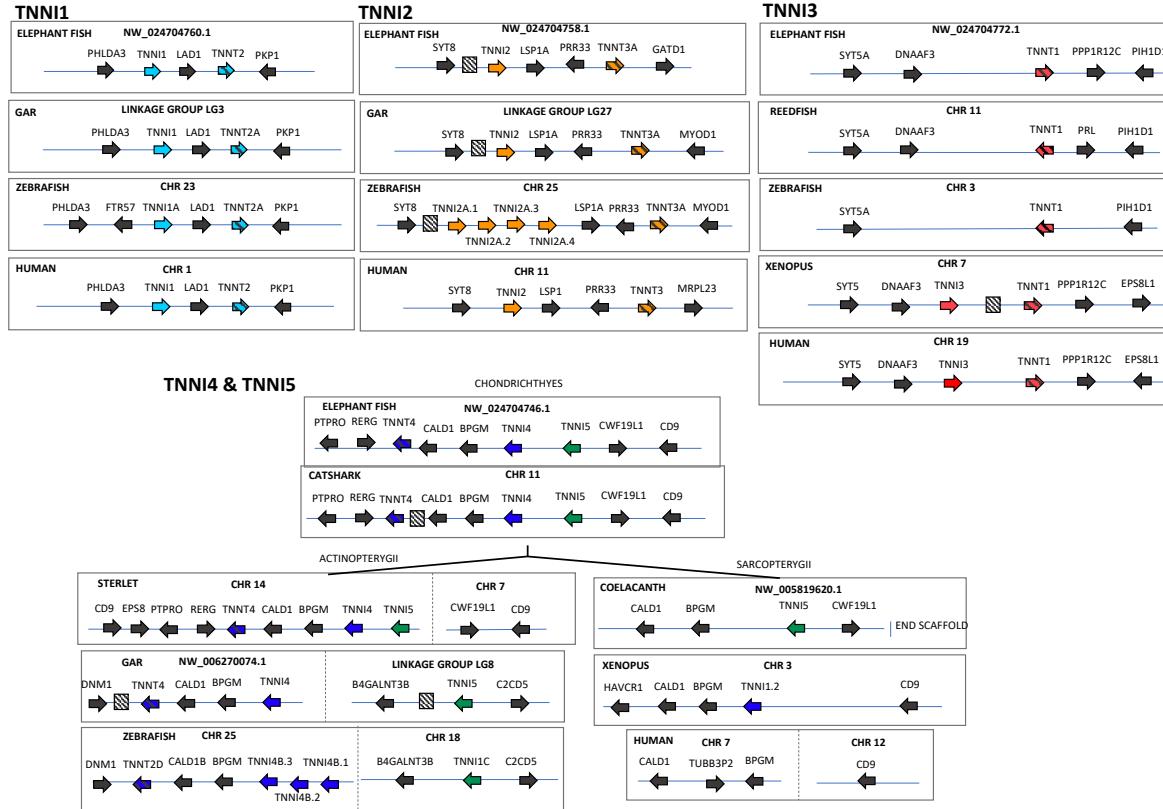


Figure 1. Maximum likelihood phylogenetic tree showing evolutionary relationships between vertebrate troponin I (*TNNI*) sequences. The five distinct *TNNI* groups that we infer were present in the common ancestor of gnathostome vertebrates are highlighted. The tree was rooted with the amphioxus and *Ciona* sequences. Ultrafast bootstrap support is shown above relevant nodes.

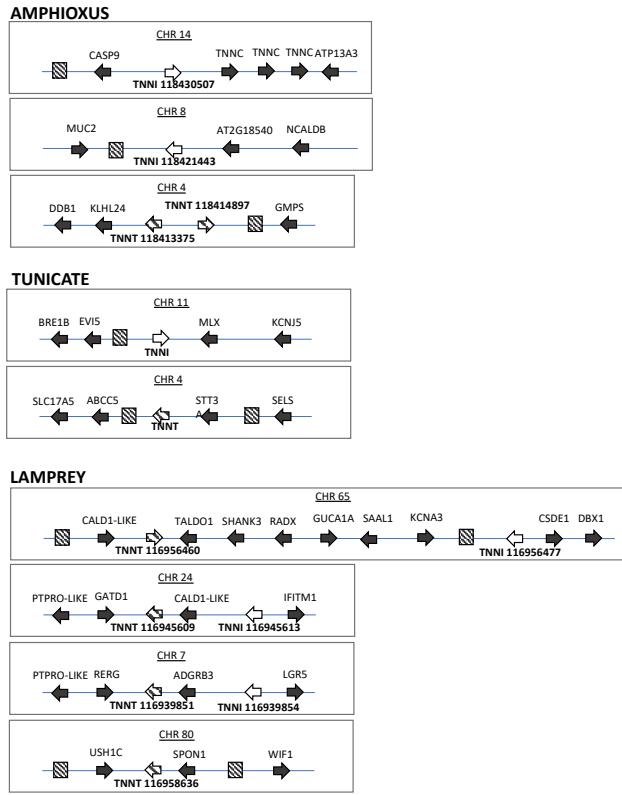
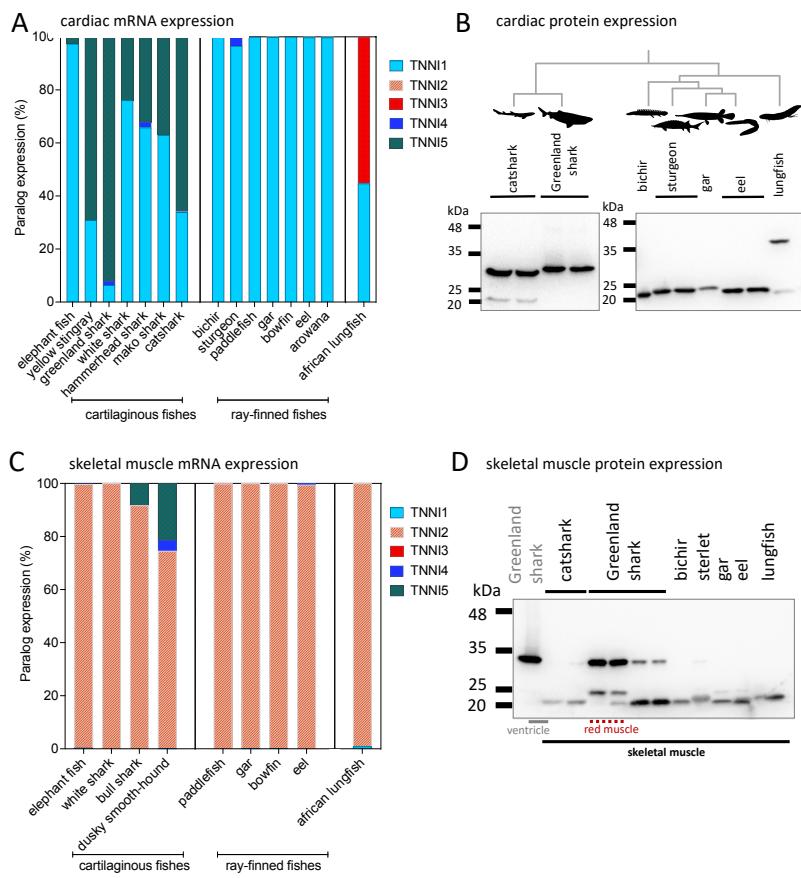

Figure 2

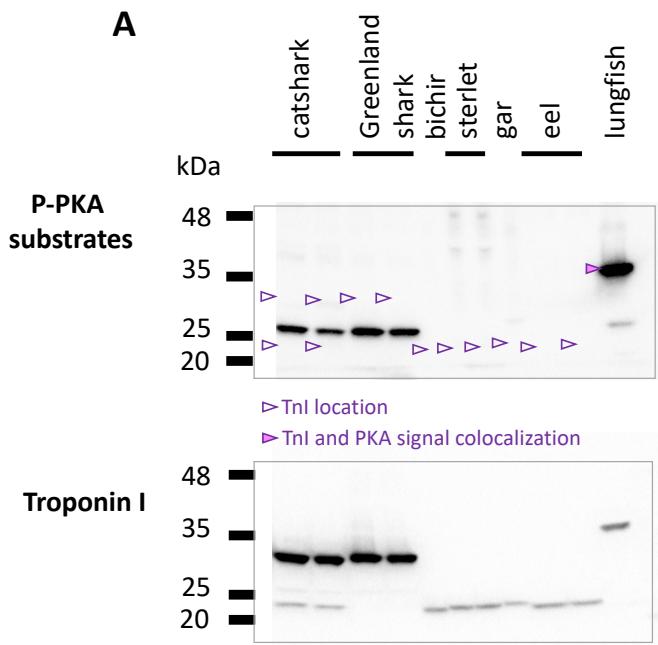
Figure 2. Maximum likelihood phylogenetic tree showing evolutionary relationships between vertebrate troponin T (TNNT) sequences. The four distinct TNNT groups that we infer were present in the common ancestor of gnathostome vertebrates are highlighted. The tree was rooted with the amphioxus and Ciona sequences. Ultrafast bootstrap support is shown above relevant nodes.

Figure 3. Conserved synteny diagrams of genomic regions harbouring *TNNI*/*TNNT* genes in gnathostome vertebrates. Hatched boxes indicate uncharacterised predicted protein coding genes. Non-coding and microRNAs are excluded.

Figure 4. Conserved synteny diagrams of genomic regions harbouring *TNNI*/*TNNT* genes in invertebrate chordates and a cyclostome.


A

CLUSTAL format alignment by MAFFT (v7.503)


B

CLUSTAL format alignment by MAFFT (v7.503)

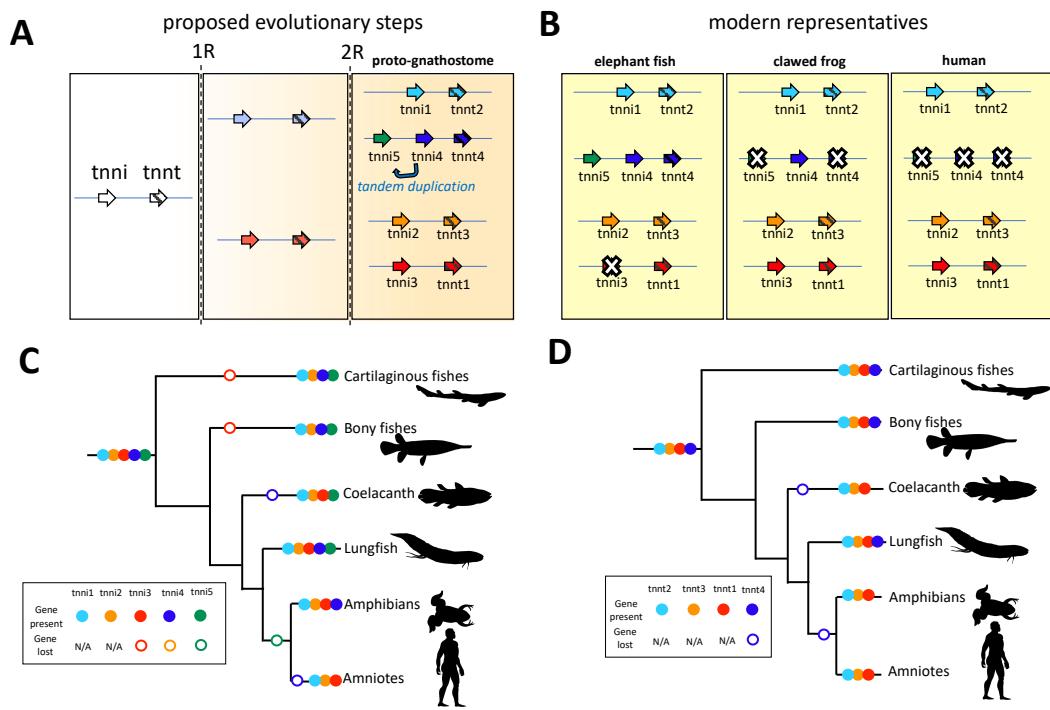

Figure 5. Alignments of N-terminal portions of *TNNI* and *TNNT* genes. A) Similar glutamic acid and proline rich N-terminal extensions in predicted ancestral *TNNI3* and *TNNI5*. Bolded text (serines) indicates protein kinase A target site in *TNNI3* that is absent in *TNNI5*. B) comparison of *TNNI3* and *TNNI5* with ancestral *TNNT* (common ancestral sequence of *TNNT1-4*) also shows similarities in N-terminal extensions.

Figure 6. *TNNI* gene and TnI protein expression in cardiac and skeletal muscle of gnathostome vertebrates. A,C) gene expression as studied by transcriptomics. B,D) immunoblots with general TnI antibody. Fish silhouettes are courtesy of phylopic.org.

Figure 7. Protein kinase A-mediated phosphorylation of cardiac expressed TnI in gnathostome vertebrates. The membrane was blotted with a phospho-PKA substrate antibody, then stripped and reprobed with general TnI antibody in order to identify if a canonical PKA site was phosphorylated in TnI. Arrows show localisation of TnI on P-PKA blot. Filled arrows show co-localisation of TnI and PKA band, non-filled arrows indicate no co-localisation.

Figure 8. The origin and losses of *TNNI* and *TNNT* genes in vertebrates. A) predicted evolutionary steps in evolution showing how whole genome duplications (1R and 2R) and tandem duplications generated gene diversity. White crosses (X) mark genes that have been lost in extant lineages. Whilst our maximum likelihood tree suggests the tandem duplication giving rise to *TNNI4* and *TNNI5* occurred before the genome duplication that gave rise to *TNNI1* and *TNNI5*, which would require subsequent gene loss of a paralog in both gnathostomes and cyclostomes independently, it is also possible that the tandem duplication occurred only in *TNNI4* and *TNNI5* after 2R (here shown by arrow marked ‘tandem duplication’). B) Comparison of which duplicated genes were retained or lost in three specific gnathostomes (elephant fish, *C. milii*, tropical clawed frog, *X. tropicalis* and human, *H. sapiens*. C,D) broader overview of patterns of *TNNI* and *TNNT* gene loss in major vertebrate lineages. Animal silhouettes are courtesy of phylopic.org.