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Abstract

Accurately identifying cell populations is paramount to the quality of downstreamanalyses and
overall interpretations of single-cell RNA-seq (scRNA-seq) datasets but remains a challenge.
The quality of single-cell clustering depends on the proximity metric used to generate cell-to-
cell distances. Accordingly, proximity metrics have been benchmarked for scRNA-seq
clustering, typically with results averaged across datasets to identify a highest performing
metric. However, the ‘best-performing’ metric varies between studies, with the performance
differing significantly between datasets. This suggests that the unique structural properties of
a scRNA-seq dataset, specific to the biological system under study, has a substantial impact on
proximity metric performance. Previous benchmarking studies have omitted to factor the
structural properties into their evaluations. To address this gap, we developed a framework for
the in-depth evaluation of the performance of 17 proximity metrics with respect to core
structural properties of scCRNA-seq data, including sparsity, dimensionality, cell population
distribution and rarity. We find that clustering performance can be improved substantially by
the selection of an appropriate proximity metric and neighbourhood size for the structural
properties of a dataset, in addition to performing suitable pre-processing and dimensionality
reduction. Furthermore, popular metrics such as Euclidean and Manhattan distance performed
poorly in comparison to several lessor applied metrics, suggesting the default metric for many
scRNA-seq methods should be re-evaluated. Our findings highlight the critical nature of
tailoring scRNA-seq analyses pipelines to the system under study and provide practical
guidance for researchers looking to optimise cell similarity search for the structural properties
of their own data.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) enables investigation into the properties and
heterogeneity of the individual cells within complex samples. The transcriptional profiles
defining the current state of individual cells can be studied at high-resolution to identify
signature genes, and patterns of expression which denote specific cellular processes [1], states
[2], and types [3]. Accordingly, unsupervised clustering algorithms have become a popular
approach in scRNA-seq for the identification of cell-types in an unbiased manner [4—6]. These
algorithms partition cells into distinct clusters on the basis of cell-cell distances using a
proximity metric, such as Euclidean distance.

Obtaining accuracy in clustering is hampered by structural properties of the scRNA-seq data.
For example, there is an increased rate of dropouts in sScRNA-seq compared to their bulk level
counterparts, resulting in extremely sparse datasets and high levels of noise [7]. The capacity
to measure thousands of features per cell, at scales of thousands to millions of cells, has led to
increasingly high-dimensional data spaces. These spaces come with unique properties and
limitations, often referred to as ‘the curse of dimensionality’ where the feature space is vastly
larger than the sample space [8]. Furthermore, common clustering algorithms for sScRNA-seq
are based on the assumption that a dataset is composed of discrete and mutually exclusive
groups of cells [4]. While these discretely-structured datasets do exist, such as tissue atlases
which represent biological data of terminally differentiated cell types [9—11], datasets of
continuous structure are also common. Continuously-structured datasets are composed of
contiguous groupings of cells which experience multifaceted gradients of gene expression,
encompassing dynamic processes such as embryonic development [12,13] and cell
differentiation [14,15].

Knowledge of the biological system, and thus discrete or continuous structure of a dataset, is
important as it has been shown to significantly influence the performance of certain scRNA-
seq methods [4,16]. Heiser & Lau [17] identified that a dataset’s structural distribution is the
primary determinant of dimensionality reduction performance, finding that preservation of
structure i1s worse in discretely structured datasets than in continuous ones. The assumption of
discrete, discernible cell-types in scRNA-seq clustering also poses challenges for identification
of rare-cell populations, where rare cells may only differ from more abundant, stable cell
populations by a small number of expressed genes [18-20]. Despite their low abundance, rare
cell populations are of critical importance as they often represent highly specialised cell states
or sub-types, and therefore provide valuable insights into processes such as differentiation,
migration, metabolism and cancer [21-24]. It is also thought that all disease originates at the
level of a single cell and therefore capturing rare cells accurately is critical for scRNA-seq

analysis in clinical applications [25].

Intense efforts have been made to produce new clustering algorithms and benchmark the
performance of existing methods to overcome the aforementioned limitations [4,26,27]. Some
comparative studies specifically address data properties such as sparsity [28], dimensionality
[29], rare-cell populations [30-34] and data structure [4,28,33]. Previous studies evaluating
proximity metrics produce varied recommendations and lacked key design considerations. For
example, Skinnider et al. [35] recommends proportionality-based metrics, whilst Kim et al.
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[36] recommends correlation-based metrics, specifically Pearson. However, Sanchez-Taltavull
et al. [37] recommend Bayesian correlation over Pearson. Several other studies have proposed
novel and scRNA-seq specific proximity metrics after observing variable performance of
traditional proximity metrics [38—40]. Despite the inconclusive findings of previous works with
respect to specific proximity metrics, they are largely in agreement that proximity metric
performance is highly dataset-dependent [4,36,38,41,42]. This conclusion remains unworkable
however, as the specific structural properties of the scRNA-seq datasets included in these
evaluations are rarely addressed in detail or evaluated in a systematic manner.

Consequently, our study aims to address the important question of how the properties of
scRNA-seq datasets influence the performance of proximity metrics in scRNA-seq cell
clustering. To the best of our knowledge, such an investigation has yet to be performed and
may be a reason why previous attempts that have been more limited, have been unable to yield
actionable conclusions. Our study evaluates the clustering performance of 17 proximity metrics
in the presence of a Continuous and Discrete data structure, under varying levels of cell-rarity,
sparsity, and dimensionality that reflect the variability of real sScRNA-seq data. Our findings
demonstrate that taking the structural properties of the individual dataset into consideration
when planning and executing an analysis pipeline leads to substantial improvements in
performance of proximity metrics in sScCRNA-seq clustering. We believe similar performance
gains may be possible in other analyses steps that use proximity metrics, such as dimensionality
reduction and trajectory inference. Consequently, we provide readers with practical guidelines
for selecting a preferred proximity metric and neighbourhood size with respect to the structural
properties of their own datasets. We also provide our evaluation framework as a python
package, scProximitE, to allow users to evaluate the performance of proximity metrics for their
own datasets and structural properties of interest.

Methods
scRNA-seq Data Collection

The Discrete dataset was sourced from the CellSIUS benchmarking dataset [43] from
Wegmann et al. [30] which profiled eight human cell lines. We used two subsets to evaluate
how cell-population proportions influenced proximity metric performance (Figure 1). The first
subset, Discrete Abundant, contains predominantly abundant cell populations, with seven cell-
lines at proportions of low (5.4%) to high (32%) abundance, and one moderately rare
population (2%). In contrast, the second subset, Discrete Rare, comprises of 6 rare cell-
populations (0.08%-3.14%), and two highly abundant cell-populations at 40.15% and 50.21%.

The Continuous datasets consist of five erythrocyte differentiation cell-types from the Fetal
Liver Haematopoiesis dataset (FLH) [44] produced in Popescu et al. [45] (Figure 1). As with
the Discrete data, an Abundant and Rare subset were produced from the original FLLH dataset.
All five cell populations were present at high proportions (20%) in the Continuous Abundant
dataset, whilst the Continuous Rare subset consisted of three rare cell-types present at
proportions between 0.075% and 2.5%, and two highly abundant populations at 42% and 55%.

Both datasets were produced using 10x Genomics Chromium Single Cell (3’ library kit V2)
and the provided cell-type annotations were used as the ground truth when evaluating clustering
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performance. For CelISIUS, single-cell sequencing was performed on batches of 2-3 cell-lines
at a time, whilst bulk-sequencing was also performed for each cell line individually [30]. Cell-
type annotations were generated by correlating single-cell profiles to the bulk profiles. For the
FLH dataset, cell annotation was performed manually and validated through imaging mass
cytometry, flow cytometry and cellular morphology [45]. The cell number and proportion for
individual cell-types within each dataset are provided in Supplementary Table 1.

scRNA-seq Data Simulations

Simulated datasets are used to evaluate how structural properties influence proximity metric
performance, including, sparsity and cell-population imbalance. Simulated datasets follow a
topology of four differentiation trajectories of equal length (3 branches), which diverge from a
single origin state (1 branch). Each branch length is 50 pseudo-time units and represents a cell
population in a continuous differentiation process. The PROSST package (v1.2.0) [46] was
used to simulate 10 cells at each pseudo-time unit (6500 cells total) and 5000 genes from a
negative binomial distribution. For each gene g, the variance parameters were sampled from o
~ ¢e%, X € N (loge (0.2), 1.5) and Bg ~ ¢*, x € N (loge (1), 1.5), respectively. This simulated
dataset in its original form was used to represent the Continuous Abundant Simulated dataset,
whilst a subset containing only the origin state and the endmost population from each
differentiation path was used to represent the Discrete Abundant Simulated dataset

(Supplementary Figure 1, 2).

To further explore the influence of imbalanced cell-type proportions on metric performance,
two structural subclasses, Moderately-Rare and Ultra-Rare, were created using Continuous
Abundant Simulated and Discrete Abundant Simulated datasets. For the Moderately-Rare
dataset, multiple cell-types are present at proportions p where 1% < p <5% whilst the Ultra-
Rare datasets contain multiple cell-types where p <1%. The cell number and proportion for
individual cell-types within each dataset are provided in Supplementary Table 2. The final
structural property of interest in the study is dataset sparsity. Starting at 46-50% sparsity, two
additional levels of moderate (68-71%) and high (89-90%) sparsity were produced for each of
the six datasets by adding zeros using a Gaussian distribution (Supplementary Table 3).

scRNA-seq Data Quality Control and Normalisation

The raw count matrices were filtered to remove 1) cells with non-zero gene expression for <200
genes, ii) cells with >10% of their total counts arising from mitochondrial genes and iii) genes
expressed in <10% of cells. The resulting cell and gene numbers for each dataset post-
processing are in Supplementary Table 3 for simulated data, and Supplementary Table 4 for
the CellSIUS and FLH datasets. Gene expression measurements for each cell were normalised
by total expression and multiplied by a scale factor of 10,000, then log-transformed using
natural logarithm, adding a pseudo count of one. All data processing steps, including filtering,
normalisation, and identification of highly variable genes, were performed using the Scanpy

package (v1.8.2) [47].
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Proximity Metrics

A total of 17 proximity metrics with a diverse range of properties were selected for evaluation.
All metrics were computed in the form of dissimilarities, details regarding implementation are
provided in Supplementary Table 5. For metrics implemented in R (v4.1.1) [48], Anndata [49]
objects were converted to Seurat [50] objects using the sceasy package (v0.06) [51]. The
formula for each proximity metric is available via the documentation of the relevant package.
True distance metrics are dissimilarities which satisfy the four key properties of symmetry,
reflexivity, non-negativity, and the triangle inequality. In this study, we included Euclidean,
Manhattan, Canberra, Chebyshev, and Hamming distances. As the remaining 12 proximity
measures do not strictly satisfy all four properties of a distance metric, we refer to all as
“proximity metrics” herein for simplicity.

The proximity metrics, Hamming, Yule, Kulsinski and Jaccards Index, are computed on binary
vectors. To generate the binarised count matrices for input, genes with >1 expression count
were converted to 1, and genes with zero expression remained 0. All other metrics used
normalised expression data as input.

Several of the evaluated dissimilarities are derived from correlations: Pearson, Spearman,
Kendall, and Weighted-Rank correlations. Further selections included Bray-Curtis, a measure
of compositional dissimilarity between two different samples, and Cosine, which measures the
cosine of the angle between two vectors in the multi-dimensional space. In addition to
commonly applied metrics, several recently proposed scRNA-seq metrics were also included.
Given the sparse nature of sScRNA-seq data, we evaluated the Zero-Inflated Kendall correlation
(Z1-Kendall), an adaptation of Kendall’s tau for zero-inflated continuous data. Additionally,
we evaluated Optimal Transport (OT) distance with entropic regularization, given its positive
results for scRNA-seq clustering [52].As scRNA-seq data is relative rather than absolute, a
proportionality-based metric called Phi was included, which Skinnider ef al. [35] found to
perform well in scRNA-seq clustering.

Evaluation of Proximity Metric Performance

A key aspect of our study was to investigate how the presence and proportion of rare-cell types
influence proximity metric performance, as such, we selected the Pair Sets Index (PSI) for
evaluation of clustering performance [53], using the genieclust implementation (v1.0.0) [54].
PSI is a cluster validation metric based on pair-set matching and adjusted for chance, with a
range of 0-1, where 0 indicates random partitioning whilst 1.0 represents perfect labelling with
respect to ground truth annotations. Alternative evaluation measures were tested, including the
Adjusted Rand Index (ARI) [55] and Adjusted Mutual Information (AMI) [56] (Figure 3), for
which the Scikit-learn (v1.0.1) [57] implementation was used.

Performance Evaluation Framework

The single-cell RNA-seq datasets representing the four structural classes of interest (Discrete
Abundant, Discrete Rare, Continuous Abundant, Continuous Rare) (Figure 1) were first pre-
processed and then used as input to calculate the distance matrix for each of the 17 proximity
metrics (Figure 2). For each distance matrix, k-nearest-neighbour (KNN) graphs were
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computed using Scikit-learn library (v1.0.1) [57] in Python (3.8.11) [58], with the metric
parameter set to ‘precomputed’. The KNN graphs are connectivity matrices, where each cell is
connected to its k closest cells, as determined by the input distance matrix. To account for
varying degrees of local structure, KNN graphs were constructed for each proximity metric at
four different neighbourhood sizes: 3, 10, 30, 50. The resulting connectivity matrices are
provided as input to the Scanpy implementation of the Leiden algorithm [47,59].

The Leiden algorithm identifies clusters as groups of cells that are more densely connected to
one-another than to the cells outside of the group based on the KNN graph [59]. Leiden is an
unsupervised method with a resolution parameter that can be tuned to influence the number of
communities detected. To accomplish accurate benchmarking, the resolution parameter was
adjusted automatically until the number of clusters known to be present in the ground-truth
cell-type annotations were returned, or until 1000 iterations had been attempted. To account
for initialisation bias, 10 random seed values were generated, and the Leiden clustering was
repeated with each seed for each connectivity graph.

The performance of the individual clustering outputs for each connectivity graph was compared
to ground-truth cell annotations and quantified using PSI. The mean PSI across the clustering
outputs was used to evaluate the neighbourhood size, k. Lastly, a mean PSI value was computed
across the four neighbourhood sizes to summarize a proximity metric’s performance on a
dataset.

Results

We aimed to evaluate the performance of 17 proximity metrics in the presence of four types of
scRNA-seq data structures: Discrete Abundant, Discrete Rare, Continuous Abundant, and
Continuous Rare. A representative dataset was constructed for the Discrete structure from the
CelISIUS benchmarking dataset [30,43] and included cells from eight distinct human cell lines
(Figure 1). The Continuous structure category was represented by a subset of five erythrocyte
differentiation cell types from the Fetal Liver Haematopoiesis dataset of the Developmental
Human Cell Atlas [44,45].

Within the Continuous and Discrete datasets, a subclass was defined to reflect the balance of
cell type proportions (Figure 1). An Abundant data structure is one where the majority of cell
populations are present at a relatively high level, specifically, the majority of cell populations
are represented at a proportion of > 5% of the total cell number. In contrast, a Rare data
structure is one where a majority of cell populations are represented at proportions of <5%
(Supplementary Table 1).

We developed an evaluation framework to assess how the selected metrics performed with
respect to properties relevant to scRNA-seq data (Figure 2). Specifically, the data properties
were 1) data structure (Continuous or Discrete), 2) sparsity, and 3) cell rarity, 4)
dimensionality, and 5) neighbourhood density. Comparisons to the ground-truth cell
annotations were assessed using the Pair Set Index (PSI) for each metric.
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Figure 1: Principle Component Analysis (PCA) of the Discrete (top) and Continuous (bottom)

structured scRNA-seq datasets, from the CellSIUS and Fetal Liver Haematopoiesis datasets
respectively (see Methods). Datasets were subsampled to produce the Abundant datasets (left),
representing data with only minor cell type imbalance, and Rare datasets (right), representing
data with cell type proportion imbalances due to the presence of multiple rare cell populations.
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Figure 2: Evaluation framework for the assessment of the clustering performance of different
proximity metrics. 1) Processed scRNA-seq cell x gene matrices are the input to the framework.
2) A distance matrix is calculated on the cell x gene matrix using a proximity metric. 3) For
each distance matrix, a KNN connectivity graphs is generated, on which Leiden clustering is
performed 10 times using randomly generated initialisation values. The PSI is calculated for
each clustering output, and the mean of the 10 results is taken as the PSI of the proximity metric
at the k value. 4) Step 3 is repeated for the proximity metric at four different neighbourhood
size values (k=3, 10, 30, 50). 5) The mean PSI from all neighbourhood sizes is calculated as
the overall PSI value for the proximity metric. 6) This pipeline is completed for each of the 17
proximity metrics included in this study.
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Clustering results were obtained for > 9 of the 10 repeats for all proximity metrics from the
CellISIUS and FLH datasets, apart from Kulsinski at neighbourhood size 50 in the Discrete
Abundant Dataset, which obtained 7. For the simulation datasets, > 7 of the 10 repeats were
returned, with two exceptions. For Cosine in the high sparsity Discrete Rare dataset at £ = 100
only 4 results were obtained, and for Canberra in the high sparsity Continuous Rare dataset at
k=3, where only 1 result was returned.

We selected PSI to evaluate the clustering performance as incorrect clustering of rare and
abundant cell-populations effects the final score equally [53]. Several popular evaluation
metrics were considered for inclusion, including the Adjusted Rand Index (ARI) and Adjusted
Mutual Information (AMI), however, we found the clustering score was dominated by the
performance on Abundant populations, with little influence from Rare populations. For
example, ARI and AMI scored a clustering output as near perfect on the Discrete Rare dataset
(0.97, 0.91 respectively) despite 6 of the 8 cell-types being incorrectly clustered (Figure 3).
Almost equivalent scores (ARI=0.98, AMI=0.96) were achieved by a clustering output where
6 of the 8 cell-types were accurately identified, showing the inability of these metrics to
effectively distinguish clustering quality on datasets with substantial cluster-size imbalances.
In comparison, PSI scored the second clustering result substantially higher (0.85) than the first
(0.31). PSI has also been shown to be less sensitive to other clustering parameters such as the

number clusters and degree of cluster overlap [53].

Ground truth labels Kulsinski, k=100 Yule, k=3
A549 PSI=0.31 PSI=0.85
Ramos
S hekaos O s
® Jurkat
e

PC1 PC1 PC1
Figure 3: PCA in A) depicts the ground truth cell annotations for the Discrete Rare dataset
derived from the CellSIUS benchmarking dataset. PCA in B) depicts the clustering results for
the Discrete Rare data with the Kulsinski metric at a neighbourhood size of ~=100. PCA in C)
depicts clustering results for the Discrete Rare data with Yule at a neighbourhood size of 4=3.
Boxes are included to emphasise the location of the rare cell types H1437 (navy) and Jurkat
(red) in each plot.

Clustering performance of proximity metrics is dependent on the intrinsic structure of SCRNA-
seq datasets.

We find that the capacity of proximity metrics to identify similarities between cells correctly
in scRNA-seq data varies significantly depending on the intrinsic structure of sScRNA-seq data
(Figure 4). On average, proximity metrics achieved higher clustering performance for the
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Discrete data structures than the Continuous ones (on average by 0.4 PSI) (Figure 4). Within
these structures, greater performance was observed for Abundant datasets than for Rare (by an
average of 0.34 PSI) (Figure 4). We found that the magnitude of differences in clustering
performance was larger between dataset structures than between metrics evaluated within the
same structure. For example, the standard deviation across all metrics within the Discrete
Abundant structure was only 0.097, whilst the standard deviation for the Euclidean distance
metric across the four data structures was 0.27 (Figure 4).
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Figure 4: Clustering performance of proximity metrics for the scRNA-seq datasets
representing the four classes of data structure: Discrete Abundant, Discrete Rare, Continuous
Abundant, Continuous Rare. Points depict the mean Pair Sets Index (PSI) of clustering from
neighbourhood sizes of k& = (3,10,30,50), with error bars depicting the standard deviation.
Horizontal lines depict (top to bottom) 75%, 50t and 25™ percentiles. Error bars show one SD.

For the Discrete Abundant dataset, 16 out of 17 proximity metrics had good performance (PSI
>= the 75" percentile, Figure 4), whilst in the Discrete Rare dataset only a single proximity
metric, Yule, performed at this level. Performance on the Continuous Abundant dataset was
substantially lower, with only 3 metrics exceeding the 50 percentile (Pearson Correlation,
Cosine, Phi) (Figure 4). Continuous Rare datasets exhibited the poorest performance, with all
metrics falling below the 25" percentile. Similar trends are observed for simulated datasets
(Supplementary Figure 3).

Dimensionality Reduction Reliably Improves Clustering Performance of Proximity Metrics in
Discretely structured datasets, but not Continuously structured.

When working with high dimensional, noisy data like scRNA-seq data, it can be advantageous
to perform dimensionality reduction, especially prior to clustering. However, the resulting
changes to the data structure may cause some proximity metrics to work sub-optimally. To
evaluate how dimensionality reduction affects performance of the 17 proximity metrics we
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reduced the dimensionality by selecting the 2000 most highly variable genes (HVG2000) and
the 500 most highly variable genes (HVG500) and compared the performance to the full high-
dimensional (HD) datasets. Metrics were considered invariant between any two levels of
dimensionality if there was <0.05 change in the PSI score.

As expected, an improvement in performance between the HD dataset and at least one of the
HVG datasets was observed for a range of proximity metrics in all structural classes
(Supplementary Figure 4, 5). For the Discrete Abundant; Euclidean, Canberra, Hamming,
Pearson, Spearman, Cosine and OT improved from <0.9 PSI to achieve near perfect clustering
accuracy (>0.99 PSI) after the application of dimensionality reduction (Figure S5A,
Supplementary Figure 5). A similar trend was observed for Euclidean, Canberra and Hamming
in Discrete Rare, which ranked among the 5 highest performing metrics after dimensionality
reduction to 500 HVG, despite their relatively poor performance in HD (0.47-0.59 PSI)
(Supplementary Figure 5). This indicates dimensionality reduction is of particular benefit to
the distance metrics commonly applied in scRNA-seq analysis. Conversely, despite
experiencing the largest improvement in PSI (>0.28) due to dimensionality reduction for both
Discrete structures, the binary metric Kulsinski remained the worst performing metric in these
datasets (Figure 5A).

Despite substantial improvements in clustering performance due to dimensionality reduction,
metrics in Discrete Rare data structures have lower PSI values (<0.71) than Discrete Abundant
data structures. Similarly, when evaluating the Continuous data structures, the metrics with the
largest improvement dueto dimensionality reduction nevertheless had overall lower PSI values
than the Discrete structure, PSI < 0.67 for Continuous Abundant, and <0.34 for Continuous
Rare (Figure 5A). Accordingly, the trends of poorer clustering performance for scRNA-seq
datasets with Continuous and/or Rare structure that are observed at HD largely remain after
dimensionality reduction.

We use our findings to identify metrics with robust performance across HD, HVG2000 and
HVG500. These metrics are characterized by a high level of performance as well as an invariant
PSI across HD and HVG conditions and may be an attractive option when performing
dimensionality reduction is not feasible. We defined a high-performance metric as one with a
PSI at HD within 0.05 PSI of the maximum PSI achieved for either level of dimensionality
reduction within the corresponding dataset. For the Discrete Abundant data structure, five
metrics are identified as robust: Manhattan, Kendall, Phi and Weighted Rank, with a HD PSI
>0.99, and Yule with a HD PSI >0.95. Consistent with this, Yule (0.7 PSI), Manhattan (0.67
PSI) and Phi (0.66 PSI) were also identified as robust metrics in the Discrete Rare dataset,
along with Bray-Curtis (0.66 PSI) (Supplementary Figure 6). Of the few proximity metrics
identified as invariant for the Continuous Abundant (3) and Continuous Rare (4) datasets
(Supplementary Figure 6), none were classified as high performing, indicating that
dimensionality reduction has a greater influence on datasets with continuous structure and
therefore is likely to be a necessary step prior to clustering continuous datasets.
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Figure 5: Clustering performance of A) the top five metrics for each structural condition after
ranking for the greatest positive change between the high-dimensional (HD) dataset and either
level of dimensionality reduction (HVG2000, HVGS500), and B) metrics which showed >0.05
change PSIbetween the two levels of dimensionality reduction (HVG2000, HVGS500), for each
structural condition. Each point represents a PSI measurement of clustering performance from
real scRNA-seq datasets that has been averaged across the neighbourhood sizes (k = 3,10,
30,50).

Given the limited number of metrics showing invariance to dimensionality on continuously
structured data, we explored whether the extent of dimensionality reduction applied (HV G2000
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vs HVG500) had an influence on proximity metric performance. Almost half of the proximity
metrics (8/17) showed variable performance between the two HVG conditions in the
Continuous Abundant data. Whilst Yule, Kulsinski and Chebyshev performed best at HV G500,
the remaining five metrics, including Euclidean and Manhattan, showed poorer performance
at HV G500 relative to HVG2000 (Figure 5B). For Continuous Rare, Canberra, Hamming and
ZI-Kendall showed improvement from HVG2000 to HVGS500, whilst as observed in the
Continuous Abundant data, Euclidean and Manhattan showed the reverse (Figure 5B). In
comparison, 16 of the 17 proximity metrics in the Discrete datasets exhibited robust clustering
performance between 2000HV G and S00HVG, with the outlier being Kulsinski (Figure 5B).
This suggests that in discretely structured data, equivalent information may be captured with
500 genes as with2000 for most metrics, but also that further reduction beyond 2000HV G does
not provide additional benefits such as greater reduction of noise. Conversely, for continuously
structured data there may be a narrower parameter range at which the benefits of dimensionality
reduction are balanced with the loss of relevant structural information.

All Proximity Metrics are Sensitive to Increasing Rarity of Cell-Populations.

The identification of rare-cell types in sScRNA-seq remains challenging, as demonstrated by the
consistently poor clustering performance achieved for our Rare datasets, regardless of structure
or dimensionality. The rare subsets from CellSIUS and FLH datasets contained ‘rare’ cell types
at proportions ranging between 0.08%-3.1% and 0.425%- 2.5% respectively (Supplementary
Table 1). To investigate if proximity metric performance is only impacted beyond a certain
threshold of rarity, we used the PROSSTT package to simulate scRNA-seq datasets with
Discrete and Continuous structure, for which we generated an Abundant (all populations >5%),
Moderately-Rare (multiple populations at >1% to <5%), and Ultra-Rare dataset (multiple
populations at <1%) (Supplementary Table 2). Datasets representing our moderate-sparsity
condition (68-71% zero values) were used for the results included (Figure 6), however results
for all sparsity levels are depicted in Supplementary Figure 7.

. Discrete Continuous
[
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Figure 6: Clustering performance of the top five proximity metrics, as ranked by PSI on the
Ultra-Rare simulated scRNA-seq dataset (moderate sparsity), for Discrete (left) and
Continuous (right) structure. Points depict the mean Pair Sets Index (PSI) of clustering from
neighbourhood sizes of £ = (3,10,30,50), with error bars depicting standard deviation.

We observed a substantial reduction in clustering performance between the Abundant and
Moderately-Rare datasets for Discrete (mean change in PSI = 0.29, SD=0.09) and Continuous
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(mean change in PSI = 0.24, SD=0.17) datasets, indicating that cells at proportions of >1% are
sufficiently rare to challenge proximity metrics (Figure 6). Between the Discrete structure
Moderately- and Ultra-Rare datasets, performance was further reduced by a mean of 0.23
(SD=0.07) across all metrics, with the maximum PSI achieved at 0.49. Notably, there was no
significant difference in PSI from Moderately-Rare to Ultra-Rare datasets of Continuous
structure (mean change in PSI= 0.04, SD = 0.03). This is unsurprising given that the metrics
already displayed very poor performance for identifying Moderately-Rare cell types (<0.41
PSI) (median PSI 0.28, SD = 0.08). Notably, whilst Bray-Curtis and Cosine were included in
the top 5 performers for both Discrete and Continuous data structures based on PSI in Ultra-
Rare datasets (Figure 6), no proximity metrics showed significantly greater robustness to the

presence of increasingly rare cell populations.

Our findings suggest that there is not a threshold of ‘rarity’ (cell-population proportion) at
which the performance of proximity metrics is suddenly impacted, but rather a continuing
decline in performance for cell-populations of decreasing proportions relative to the total
dataset. We show the proximity metrics’ capacity to capture structural information is
particularly challenged in datasets comprised of cell-populations representing continuous
processes and datasets containing rare cell-populations.

Most metrics perform worse as sparsity increases, but under-utilised metrics show greater
robustness.

Sparsity is one of the greatest challenges when working with scRNA-seq data and hence it is
important to evaluate performance against this structural property. Using our Abundant and
Moderately-Rare (hereafter referred to as ‘Rare’) simulated scRNA-seq datasets, we adjusted
sparsity to 3 different levels: low (the baseline sparsity of 46-50%), moderate (68-71%) and
high (89-90%) by simulating additional dropout based on a Gaussian distribution
(Supplementary Table 4). To interpret the results, we defined a metric as robust to sparsity if
the change between PSI levels for different sparsity conditions was <0.05, sensitive if the
change between PSI levels was > the 75" percentile for all metrics in that structural class, and
moderately sensitive if between these thresholds (Supplementary Figure 8).

Similar to the influence of dimensionality reduction, proximity metrics are influenced by
sparsity to a greater degree on continuously structured data than on discretely structured data.
Encouragingly, a substantial number of proximity metrics demonstrated robust performance
when sparsity was increased from low to moderate for the Discrete Abundant (11/17) and Rare
(7/17) datasets (Figure 7). Conversely, no metrics were identified as robust for Continuous
Abundant, and only two in Continuous Rare. Notably, Bray-Curtis and Pearson correlation
were identified as robust metrics for the Discrete Abundant, Discrete Rare, and Continuous
Rare structured datasets. Furthermore, Bray-Curtis, Cosine and Pearson correlation were
consistently ranked among the top five metrics with the least sensitivity to sparsity for all
structural conditions (Supplementary Figure 9). However, it should be noted, the maximum
PSI for the Continuous Rare dataset with moderate sparsity was only 0.41, indicating that the
clustering performance of even the best ranked proximity metrics was poor for this structure.
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Figure 7: Left— Performance of proximity metrics identified as robust between low (50%) and
moderate (70%) sparsity, given a threshold of <0.05 change in PSI. As no metrics met these
criteria for the Continuous Abundant dataset, the panel is blank. Right — Performance of
proximity metrics identified as sensitive between low and moderate sparsity, given a threshold
of >75™ percentile change in PSI. Points depict mean PSI of clustering performance from
simulated scRNA-seq datasets across neighbourhood sizes of £ = (3,10, 30,50) and the four
classes of structure, for each level of sparsity described.

Interestingly, performance of the true distance metrics were more sensitive to sparsity than
the other proximity metrics, with Euclidean, Manhattan and Chebyshev being the only metrics
that were sensitive to sparsity across all four conditions, whilst Canberra was sensitive in all
data structure types except Discrete Rare (Figure 7). This result reflects that the true distance
metrics share a fundamental property resulting in more sensitive performance in sparse, high-
dimensional data. Yule, one of the proximity metrics based on Boolean vectorisation of gene
expression data, was also identified as sensitive in three of the four structural conditions. Our
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results suggest that Bray-Curtis, Cosine and Pearson correlation may be the preferred metrics
when analysing datasets with moderate levels of sparsity, as opposed to the more commonly
applied Euclidean and Manhattan distance metrics.

Despite maintaining clustering performance at moderate sparsity, all ‘robust’ proximity metrics
drop substantially in clustering performance when applied on the high sparsity data.
Furthermore, at high sparsity the difference in performance between Abundant and Rare
structures becomes equivalent in the Continuous dataset, with a maximum PSI of 0.21
(Supplementary Figure 10). This indicates that insufficient information is present in highly
sparse scCRNA-seq data to enable the discrimination of contiguous cell types, irrespective of
cell-population abundance. The same trend is observed forthe Discrete data, with the exception
of Bray-Curtis, Cosine and Pearson correlation which provide good clustering performance for
Abundant datasets (>0.8 PSI). Consequently, reduction of dataset sparsity, whether via
filtering, dimensionality reduction or imputation, is a key factor in optimising performance of
proximity metrics on sSCRNA-seq data, with particular necessity for continuously structured
data.

Dataset Structure and Sparsity are key factors in clustering parameter optimisation.

Clustering approaches based on KNN graphs, such as the Leiden algorithm, have grown
popular in scRNA-seq analysis due to their speed and scalability. These methods are
unsupervised, with a tuneable parameter, &, the number of nearest neighbours to identify for
each cell. As the neighbourhood size, k, affects the number and size of clusters identified,
selecting the appropriate & for a dataset is important. We investigated the impact of the
neighbourhood size by varying k across five levels (3,10,30,50,100) and testing the
performance of the metrics under each simulated data structure and sparsity condition. To
identify metrics with the strongest performance across all neighbourhood sizes, we focused on
those with a maximum PSI value across all neighbourhood sizes >75% percentile (Figure 8).

At low sparsity, proximity metrics achieved greater performance in both Discrete and
Continuous structure datasets containing Rare cell-populations at small neighbourhood sizes
(3,10), whilst performance on Abundant datasets was invariant (Figure 8). In datasets of
moderate sparsity, these trends are weaker as performance becomes more specific to the
proximity metric. For example, Phi and Spearman correlation perform poorly for
neighbourhood size of 3 in the Continuous Abundant data. However, these trends change
noticeably at high sparsity, with proximity metrics showing increased performance at larger
neighbourhood sizes (30,50,100) in the Discrete Abundant dataset. A similar but weaker trend
1s seen in the Discrete Rare dataset, except for Cosine and Correlation which continue to exhibit
greatest clustering performance at a neighbourhood size of 3. In the Continuous datasets,
performance is consistently very poor across metrics regardless of neighbourhood size (<0.25
PSI). The inconsistent relationship between neighbourhood size and clustering performance at
high-sparsity further underlines the challenges associated with capturing structural information
from highly sparse scRNA-seq datasets and supports our findings from our investigation of
sparsity, reinforcing our recommendation to reduce dataset sparsity.
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Figure 8: Clustering performance across the five neighbourhood size values for K-Nearest
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simulations. Proximity metrics are included if their maximum PSI achieved across all
neighbourhood sizes is >75th percentile of the maximum performance in the relevant structural
class.

Summary and Practical Recommendations

A summary of our findings are encapsulated in a flowchart to provide practical guidance on
selection of appropriate proximity metrics based on the dataset (Figure 9). Recommendations
have been derived from the set of metrics and neighbourhood sizes that were used during the
clustering performance evaluation using the datasets in this study. Overall, the diverse nature
of the proximity metrics evaluated in this study was exemplified in their differing responses to
the structural properties investigated. For example, Cosine is the highest ranked metric for
robustness to sparsity across all data-structures (Figure 10A) but responded inconsistently to
dimensionality reduction (Figure 10B). In contrast, Manhattan distance performance was
robust to changes in dimensionality (Figure 10B), but it is among the most sensitive metrics to
even moderate sparsity (Figure 10A)
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Figure 9: Flowchart for recommended metrics and neighbourhood sizes (k) given specific
structural properties of a sScRNA-seq dataset, based on results obtained from the evaluation
framework on simulated and real scRNA-seq datasets. See Supplementary Table 6 for
additional details.

Metrics which are recommended for > 50% of the combinations of structural properties
investigated include Pearson correlation (8/12), Cosine (8/12) and Bray-Curtis (7/12) (Figure
9), which showed the greatest robustness to dataset sparsity (Figure 10A). Kendall correlation
(6/12), which was among the top five metrics for both dimensionality and sparsity (Figure 10),
displayed a high degree of robustness relative to other metrics investigated. Conversely, despite
its prominence in scCRNA-seq analyses, Euclidean distance exhibited equivalent or lower
performance than a range of less common metrics across the dataset structures, showing
particular sensitivity to high-dimensionality (Figure 10B) and sparsity (Figure 10A). The
adaptation of Kendall correlation for sparse data, ZI-Kendall, was also found to perform poorer
than the original version under moderate and high sparsity conditions (Figure 10A).

In Discrete datasets composed of Abundant cell populations, application of dimensionality
reduction ensured equally exceptional clustering performance (>99%) for all proximity metrics
and neighbourhood sizes, excluding Kulsinski (Figure 10B). Similar performance could be
achieved even in highly sparse (Figure 10A) or high-dimensional datasets (Figure 10B), given
appropriate selection of proximity metric and neighbourhood size (Figure 9). For Discretely
structured datasets containing multiple Rare cell-populations, Pearson correlation and Cosine
were identified as top performing metrics at a neighbourhood size of 3 forall combinations of
data properties. However, the greatest performance (0.71) could only be achieved in datasets
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which underwent dimensionality reduction or in which sparsity was low to moderate,
highlighting the importance of the data processing step prior to clustering. The application of
dimensionality reduction also expanded the pool of high performing metrics to include many
of the distance metrics and the binary dissimilarity metric, Yule (Figure 10B).
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Figure 10: Proximity metric performance across real sScRNA-seq datasets of varying structure
and A) sparsity and B) dimensionality. Heatmap cells contain mean PSI obtained across
neighbourhood sizes of 3,10,30,50, for each metric and dataset combination. Rows are ordered
by mean PSI across datasets with strongest performance at the top.
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For Continuous structures, data processing to reduce sparsity and dimensionality is necessary
to optimise the performance of proximity metrics, regardless of cell population proportions.
With application of dimensionality reduction, Yule, Kendall, and Weighted Rank were
consistently among the top performing metrics for Abundant and Rare datasets, whereas the
performance for a variety of other proximity metrics suffered upon greater dimensionality
reduction (Figure 10B). In scenarios where datasets are unable to undergo dimensionality
reduction, Pearson correlation, Bray-Curtis and Cosine were the highest performing metrics
across all sparsity levels, although performance was significantly lower in the high sparsity
datasets (Figure 10A). When figures were generated with PSI at 30 neighbours (the default
value in Seurat), the top 5 ranked metrics remained the same for dimensionality, and top 4
metrics for sparsity, albeit re-ordered. This suggests our results may be relevant even without
parameter tuning (Supplementary Figure 11).

Discussion

Given the direct influence of cell clustering on downstream analysis in scRNA-seq data,
evaluating the accuracy of clustering algorithms is an important area of research. Previous
studies have recognised the effect of proximity metric choice when measuring cell-to-cell
similarity on clustering performance [36,38]. However, variable performance is reported for
proximity metrics between datasets, making the recommendation of a specific metric
impossible [38]. Inresponse, we developed a framework to evaluate 17 proximity metrics with
respect to core structural properties of the scRNA-seq data, including sparsity, dimensionality,
structure, and rarity. Our findings demonstrate that greater care should be taken to select and
fine-tune methods to suit the structural properties of the individual biological system under
study. Consequently, we have provided practical guidance for researchers to optimise their cell
similarity search by investigating and acting on the structural properties of their own data.

Of the actions available, we identified reducing dataset sparsity as the most impactful factor
for improving clustering performance (Figure 7). Sparsity reduction can be achieved via
filtering and feature selection, but may require the application of scRNA-seq imputation
methods [60,61]. Dimensionality reduction via selection of highly-variable genes also
produced improvements in clustering performance for many proximity metrics (Figure 5).
However, the variable results observed for continuously structured dataindicate that the degree
of dimensionality applied must be tuned appropriately to the dataset. How proximity metrics
performance may be influenced by transformative dimensionality reduction approaches such
as PCA [62], t-SNE [63,64] or UMAP [65,66] remains to be explored, but the influence of
discrete and continuous data structure on these methods are reviewed in Heiser & Lau [17].

Selection of an appropriate neighbourhood size was essential for optimising performance of
proximity metrics to accommodate cell-balance properties (Figure 8). Notably, the greatest
performance for Rare datasets was obtained with neighbourhood sizes of 3 and 10, as opposed
to the default values of 20 and 30 in Scanpy and Seurat, respectively. This finding illustrates
the importance of tuning parameters for a given dataset based on knowledge of the underlying
system, rather than relying on default settings [67]. The optimal parameter values for
dimensionality reduction methods have been similarly shown to be a function of dataset-
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specific properties [17,68—70], and we expect that this extends to other aspects of scRNA-seq
analysis.

We consistently identified cell-population structure to be one of the most influential properties,
with substantially lower clustering performance for proximity metrics in datasets with
continuously structured populations than discrete (Figure 4, Supplementary Figure 3). This has
previously been identified as a shortcoming of clustering methods, and alternatives such as
pseudo-time analysis [71] or soft clustering [72] have been proposed [4]. However, given that
these recommended alternatives similarly rely on the calculation of cell-to-cell similarity,
selection of an appropriate proximity metric is likely to be equally relevant. Additionally,
performance was inferior in datasets with imbalanced cell-population proportions due to Rare
cell populations, as compared to the Abundant datasets (Figure 4, Figure 6). Whilst we
identified preferred dataset processing steps, proximity metrics and parameter values to
improve performance on Rare datasets (Figure 9), we were unable to match the clustering
performance of the Abundant datasets for either Discrete or Continuous structures.

It is worth highlighting that only by basing our evaluation framework around a performance
score which is independent of cluster size, such as the PSI, could the true extent of this effect
from rare cell-populations be revealed (Figure 3)[53]. It is likely that unsatisfactory clustering
accuracy due to rare cell-populations is similarly present in other comparative evaluations, but
largely masked by the use of evaluation scores such as ARl and AMI. For ARI and AMI cluster
evaluations are size-dependent, thus the influence of misclassified rare cell-populations on the
overall score is greatly diminished [53,73,74]. Given common approaches for data processing,
normalisation, feature selection and clustering were used in the course of our study, these
findings raise concerns regarding the current state of rare cell identification in scRNA-seq. A
beneficial extension to our work would be to include specialised clustering methods developed
for rare cell populations, such as GiniClust [31], scAIDE [32] or CellSIUS [30]. However, if
researchers are unaware of the presence of rare cell types in their data, they will most likely
fail to seek out such specialised methods. As such, there is a crucial need for greater integration

of rare cell-type methods into popular scRNA-seq packages and standard analysis vignettes.

Euclidean distance is among the most commonly applied proximity metrics for cell-cell
distance in scRNA-seq. Despite this, when evaluated for robustness to sparsity and high
dimensionality in our datasets Euclidean, and the other true distance metrics evaluated, showed
greater sensitivity relative to a range of lesser known proximity metrics (Figure 7,
Supplementary Figure 6). These results were not entirely unexpected, as true distances metrics
have been demonstrated to perform poorly as dimensionality and sparsity increase, leading to
poorly defined nearest neighbours [75,76]. In line with this, we saw distance metrics perform
considerably better with the appropriate level of dimensionality reduction, at times even
achieving the maximum level of performance (Figure 5).

Our findings are supported by previous studies which have similarly identified Euclidean as a
poorly performing proximity metric in sSSCRNA-seq [35,36,38]. In Kim ef al. [36] correlation-
based metrics out-performed Euclidean distance for clustering, which was attributed to the
sensitivity of the distance metrics to scaling and normalisation, whereas correlation-based
metrics are invariant to these factors [36]. Interestingly, Pearson and Kendall correlations,
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along with another scale invariant metric, Cosine, were identified as the preferred metrics for
the majority of structural conditions examined in our study. However, other scale-invariant
metrics such as Spearman correlation did not show the same performance trends. Skinnider et
al. [35] also found Euclidean performed poorly for a range of analysis tasks, including cell
clustering, and suggested that as scRNA-seq only yields the relative abundance of gene
expression within a cell rather than the absolute amount. Accordingly, they state that metrics
of proportionality such as Phi and Rho are more suitable [35,77]. Whilst Phi performed
moderately well in our evaluation, it was outperformed by Pearson, Kendall, and Cosine.
However, another proportionality-based metric, Bray-Curtis, was identified as a preferred
metric for more than half of the structural condition combinations evaluated.

Our results suggest that given the high dimensional and sparse nature of scRNA-seq data, the
use of Euclidean distance as the default proximity metric should be re-evaluated. Several
clustering methods that make use of proximity metrics aside from Euclidean have already been
developed, have been shown to perform well for scRNA-seq data. For example, SC3 generates
a consensus distance matrix derived from the Euclidean, Pearson and Spearman proximity
metrics [78]. RacelD3 is arare cell-type clustering method which allows the user to select from
a range of distance and correlation-based metrics [79]. Other methods have instead developed
entirely new metrics to measure cell-cell similarity, such as CIDER which recently proposed
Inter-group Differential ExpRession (IDER) as a proximity metric for their new clustering
pipeline [80].

While we aimed to design our study to be as comprehensive as possible, there are aspects of
the framework which could be extended to evaluate additional factors, for example, expanding
clustering methods to include approaches beyond graph-based clustering. However, similar
results were obtained by Skinnider et al. [35] when they compared the clustering performance
of proximity metrics with hierarchical and graph-based clustering approaches, suggesting that
our results may hold for other methods. As with clustering, many scRNA-seq dimensionality
reduction methods rely on the calculation of cell-cell similarity with a proximity metric. To
minimise the influence of additional proximity calculations on the downstream clustering
result, we used a feature selection approach when exploring this aspect of data structure.
However, given the popularity of alternative dimensionality reduction methods in sScRNA-seq
pipelines, such as PCA[62], t-SNE [64] and UMAP [66], it would be beneficial to expand our
framework to include approaches based on feature transformation.

Furthermore, t-SNE and UMAP, among many other dimensionality reduction methods, use
Euclidean distance as their proximity metric. Given the relatively poor performance of this
metric, the application of our framework to explore the influence of other proximity metrics on
dimensionality reduction performance may prove insightful [81,82]. Adaptions of the
framework could be made to enable evaluation of different datatypes such as scATAC-seq and
DNA methylation. Whilst we applied the same processing pipeline to all of the datasets used
in this study, we expect proximity metric performance to be impacted to some extent by dataset
processing. As such, we would encourage the design of our framework to be modified to
evaluate the potential influence from upstream data handling practices as well.
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Taken together, our findings demonstrate how the inherent structural properties of sScRNA-seq
data have a substantial influence on the performance of proximity measures and subsequently,
cell-type clustering and subsequent identification. Given the complexity of sScRNA-seq datasets
as outlined, it is unlikely for a single metric to perform best in all situations. Instead, we have
provided practical guidelines for the selection of proximity metrics likely to perform well with
respect to specific properties of the dataset. Furthermore, we provide our framework in the
form of a python package to allow users to evaluate proximity metrics for their own datasets.
The relevance of this study extends beyond cell clustering, to the numerous scRNA-seq
processing and analysis methods which make use of cell-to-cell distances. We hope that the
findings from our study and our analysis framework will contribute to improvements in the
development of novel metrics and approaches for high-dimensional, sparse data such as
scRNA-seq in the future.

Key Points

e We developed a framework to systematically evaluate the influence of fundamental
structural properties of scRNA-seq data on the clustering performance of a diverse
range of proximity metrics.

e Clustering performance can be improved substantially by the selection of an appropriate
proximity metric and neighbourhood size for the structural properties of a given dataset,
and we provide readers with practical guidelines to facilitate this process.

e Many of the proximity metrics’ clustering performance was improved by reduction of
dataset sparsity and/or dimensionality.

e Popular metrics such as Euclidean and Manhattan distance performed poorly in
comparison toseveral lessor applied metrics including Cosine, Bray-Curtis and Pearson
and Kendall correlations.

e (lustering accuracy withrespect torare cell populations cannot be effectively evaluated
by metrics such as ARI and AMI due to their sensitivity to cluster size, and we
recommend inclusion of size-independent metrics such as the Pair Sets Index in future
studies for situations where bias towards clusters of different sizes is not useful.

Data Availability

The CelISIUS dataset used to represent discretely structured scRNA-seq datain this article was
produced by Wegmann et al. [30] and is available in  Zenodo:
https://zenodo.org/record/3238275. The Fetal Liver Haematopoiesis dataset used to represent
continuously structured scRNA-seq data was produced by Popescu et al. [43] and is available

from the Developmental Human Cell Atlas:
https://developmentcellatlas.ncl.ac.uk/datasets/hca_liver/data _share/. Our results, along with
raw and processed copies of the datasets used in this study, including simulated scRNA-seq
and subsets generated from CellSIUS and the Fetal Liver Haematopoiesis datasets, are
available at https:/doi.org/10.5281/zenodo0.6443267. The evaluation framework package
scProximitE along with code to reproduce all figures is available at https:/github.com/Ebony-

Watson/scProximitE.
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