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Abstract

Ambient wildfire smoke in the American West has worsened considerably in recent
decades, while the number of individuals recreating outdoors has simultaneously surged.
Wildfire smoke poses a serious risk to human health, especially during long periods of
exposure and during exercise. Here we aggregate data on black carbon, a major
component of wildfire smoke, and recreational visitation in 32 U.S. national parks from
1980 - 2019 to examine how visitors respond to wildfire smoke. We hypothesize that
visitor response may exhibit a threshold effect where ambient smoke reduces visitation
after a critical level, but not before. We develop a series of breakpoint models to test
this hypothesis. Overall, these models show little to no effect of ambient smoke on
visitation to the 32 parks tested, even when allowing for critical thresholds at the
extreme upper ranges of the smoke data. This suggests that wildfire smoke does not
significantly alter behavior of park attendance. This finding has implications for the
management of recreation areas, public health, and climate change adaptation broadly.

Introduction 1

Wildfires in the American West have increased dramatically in both frequency and size 2

over the last 40 years [1, 2]. Approximately half of this increase in burned area can be 3

attributed to anthropogenic climate change [3]. Thus, wildfires in western forests are 4

expected to worsen over the next 40 years as the climate continues to warm [2,4–9]. 5

Accompanying the increase in wildfires in the American West, is a projected increase in 6

wildfire smoke; fire-prone areas may experience a two-fold increase in wildfire smoke by 7

2100 [10,11]. 8

Wildfire smoke is a complex mixture of gasses aerated by biomass combustion across 9

the landscape [12]. While many of these compounds have been shown to cause health 10

problems in humans, organic carbon and black carbon particulate matter less than 2.5 11

µm in diameter (PM2.5) are particularly harmful to human health [13]. PM2.5 causes 12

between 260,000 - 600,000 global deaths annually and significantly increases community 13

mortality even under acute exposure, especially in areas experiencing outbreaks of 14

COVID-19 infection [12,14–16]. While both PM2.5 and wildfire smoke generally are 15

made up of organic material (i.e. organic carbon) and black carbon, black carbon is the 16

most visible component [17]. Black carbon is particularly prominent in visible wildfire 17

smoke, as it has high light absorption properties that contribute to the dark appearance 18

of plumes [18]. 19
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In some regions of the American West, wildfires now account for 50% of all 20

atmospheric PM2.5, compared to less than 20% in 2010 [19]. As any level of ambient 21

PM2.5 increases community morbidity, public health agencies increasingly call for 22

individuals to limit outdoor recreational behavior when wildfire smoke is present 23

[20–22]. 24

While calls to limit outdoor recreation during wildfire smoke events have become 25

ubiquitous in the summertime American West, a survey of federal land managers 26

indicated that they feel they have a shortage of information describing how air quality 27

actually affects the recreational behavior of their visitors [23]. Reviews of scientific 28

literature come to a similar conclusion, pointing to a dearth of research describing how 29

individuals respond to low air quality (although see [24]) and how climate change is 30

affecting the recreation landscape [25,26]. 31

This article uses estimates of black carbon and visitation data collected from 32

national parks in the American West from 1980-2019 to answer whether individuals 33

alter their recreation behavior in response to ambient wildfire smoke. We hypothesize 34

that the effect of ambient smoke on national park visitation may be nonlinear, only 35

showing a measurable impact in the upper ranges of the observed smoke values. 36

Threshold effects such as this are common in ecology and human behavioral sciences 37

[27–29]. Toms and Lesperance (2003) show that breakpoint models are an effective tool 38

to account for these thresholds and make inferences about the effect of a predictor 39

before and after a particular threshold in natural systems [30]. Here we develop a series 40

of three hierarchical breakpoint models to determine if a threshold effect is present in 41

national park visitation response to ambient smoke and if so, what the effect of smoke is 42

on visitation post-threshold. 43

Materials and methods 44

Data collection 45

Visitation data 46

We obtained monthly visitation data through the National Park Service (NPS) Visitor 47

Use Statistics Portal. These data are generally collected via car counters, permit 48

information, and concessionaire reporting. Methods of collection vary from park to park. 49

Unit specific information can be found on the National Park Service Visitor Use 50

Statistics Portal. Although collection methods are inconsistent across the sample, all 51

data was taken as reported. We retrieved monthly data for all national park units in the 52

Intermountain and Pacific West regions for years 1980 through 2019. 53

While wildfires have seen a dramatic increase across the United States over the last 54

four decades, changes in wildfire smoke have been most concentrated in the westernmost 55

regions of the country [19]. In the contiguous United States, the western regions are 56

the only areas with a significant smoke burden where the majority of the smoke they see 57

originates from wildfires within their own borders [31]. Therefore, as to not confound 58

our analysis with unpredictable smoke events which originate from distant wildfires, we 59

limit our sample to the national parks in the American West (i.e. Intermountain and 60

Pacific West NPS regions). 61

The 32 national parks included in the two regions in our sample have different high 62

seasons for visitation. Wildfire smoke occurs year-round, but primarily in the Summer 63

months. In some seasons, for some parks, there is a natural visitation drop driven by 64

temperature alone that coincides with highest levels of wildfire smoke. To ensure that 65

we estimate visitation changes driven by smoke rather than seasonality, we subset our 66

data to only the three month high season associated with each park. For example, only 67
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Summer (June, July, Aug.) data were used for Yellowstone National Park and only 68

Winter data (Dec., Jan., Feb.) were used for Death Valley National Park. 69

Smoke data 70

To detect times of high concentrations of black carbon associated with smoke, we used 71

data from the second Modern-Era Retrospective analysis for Research and Applications 72

[32]. MERRA-2 is a NASA atmospheric reanalysis that begins in 1980 and replaces the 73

original MERRA reanalysis using an upgraded version of the Goddard Earth Observing 74

System Model, Version 5 data assimilation system [33]. MERRA-2 provides mean 75

monthly measurements of black carbon starting in 1980 at a spatial resolution of 0.625° 76

x 0.5°. We used the monthly black carbon column mass density measurements (kg/m−2) 77

and calculated the mean of those pixels that intersected national park boundaries to 78

represent wildfire smoke at the park level; Fig 1 [34]. We also correlated the column 79

black carbon values to the amount of black carbon only at the surface layer (i.e., the 80

measurements closest to the ground; S1). 81

Fig 1. Smoke observations. Monthly smoke observations in each of the 32 national
parks included in this study from 1980-2019. Monthly medians greater than 5 on our
standardized scale (10 standard deviations above the mean) are labeled. The right-hand
y-axis shows the standardized values of smoke referred to when describing the chosen
critical thresholds. Smoke values on the left-hand y-axis are shown in kilograms per
time-averaged two-dimensional meter.

Analyses 82

Visitation to US national parks has increased sharply in recent years [35]. We first 83

account for this underlying change in national park visitation from 1980-2019 by 84

developing a hierarchical, temporal autoregressive model which we assess for 85

within-sample predictive accuracy and build upon. This baseline autoregressive model 86

Eq (1) predicts the visitation to a given park in a given month based on the recorded 87

visitation in that park and month in the previous year. This formulation of an 88

autoregressive model is commonly referred to as an AR(k) model, where k is the 89

number of previous time periods used for prediction [36]. In this particular instance we 90

chose k = 1 to reduce issues of collinearity and identifiability among autoregressive 91

predictors [37]. 92

We formulated this baseline autoregressive model using a Bayesian hierarchical 93

framework. This approach accounts for between-park variation in visitation trends while 94

acknowledging the interconnectedness of these trends through partial pooling [38]. For 95

each park (j) we estimate a parameter value (ν) representing the trend in visitation 96

from one year to the next, in order to predict the visitation for each month in our data 97

set (i). Finally, we estimate both global (α0) and park specific (β0j) intercepts to yield 98

equation 1 below. We modeled these data using a negative binomial distribution to allow 99

us to estimate an overdispersion parameter (ϕ) rather than assuming the dispersion is 100

equal to the mean. We fit this model using 7 Markov chains run for 5,000 iterations. 101
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yij ∼ NegBinom(µij , ϕ) (1)

log(µij) = α0 + β0j + νj · visi,t−1

β0j ∼ Norm(0, σ)

This baseline autoregressive model showed adequate diagnostic statistics, exhibiting 102

ample mixing of Markov chains, R̂ values equal to 1 for all parameter estimates, and the 103

absence of divergent transitions after warm up. We examined the within-sample 104

predictive capacity of this autoregressive-only model to be sure we sufficiently 105

accounted for baseline changes in visitation before building on this model to test for the 106

effects of smoke on visitation. This baseline model allowed us to account for 107

approximately 37% of all variation in the data, with the bulk of the error occurring 108

when actual visitation was very high or very low (Fig 2). 109

Fig 2. Autoregressive-only predictive accuracy. Scatterplot showing the
within-sample predictive accuracy of the autoregressive baseline model used in this
study. This model accounts for 37% of all variation in the data. Black dashed line shows
an exact 1:1 relationship between the predicted visitation and actual visitation axes.

After confirming that the model above captures the baseline trends in national park 110

visitation from 1980-2019, we built upon it to estimate if a critical threshold for 111

visitation response to wildfire smoke exists in these data and if so, what the impact of 112

wildfire smoke is on visitation post-threshold. To do this, we developed a series of three 113

breakpoint models, allowing for three increasingly extreme breakpoints (i.e. critical 114

thresholds). We standardized these smoke data, and thus the thresholds as well, by 115

dividing by two standard deviations following the recommendation made by Gelman 116

(2008) [39]. The three thresholds tested were 0.0, 0.5, and 1.0, which can thus be 117

interpreted as the mean smoke value, one standard deviation above the mean, and two 118

standard deviations above the mean respectively. These increasingly extreme thresholds 119

contain the highest 45%, 8%, and 3% of observed smoke values out of the 3,744 data 120

points in our sample. A visual comparison of the observed smoke values plotted on both 121

the standardized and unstandardized scales can be seen in Fig 1. 122

We estimated the effect of smoke on visitation before (β1) and after (β2) each 123

breakpoint (BP). Just as with the autoregressive term (ν), we estimated unique 124

parameter values for each park (j) in a hierarchical framework. The complete model 125

used for each of the three breakpoint values is then as seen in Eq (2). Each model was 126

run using 7 Markov chains for 5,000 iterations. 127

yij ∼ NegBinom(µij , ϕ) (2)

log(µij) =


α0 + β0j + β1j · smokei + νj · visi,t−1 if smokei < BP

β0 + β0j + β1j · BP + (smokei − BP) · β2j+

νj · visi,t−1 if smokei ≥ BP

β0j ∼ Norm(0, σ)
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Following the recommendation given by Gelman et al. (2008) for producing stable, 128

conservative estimates, we specified long-tailed regularizing priors for the autoregressive 129

term, the global intercept value, and the overdispersion parameter [40]. We used 130

normally distributed regularizing priors for estimating the standard deviation parameter 131

(σ) and the pre and post-breakpoint smoke effects to allow for more efficient sampling 132

while generating within-sample predictions at high smoke values. 133

As the goal of this paper is inference, we test just the suite of breakpoint models 134

described above, which were developed a priori to evaluate our hypothesis that smoke 135

would exhibit a non-linear threshold effect on park visitation [41]. We do not test our 136

models against other candidate models using information criterion metrics or cross 137

validation, as the objective of such tests is prediction rather than inference and we 138

would not expect our models to be predictively valid strictly speaking [41,42]. 139

Results 140

All three breakpoint models showed adequate model diagnostics, including well-mixed 141

Markov chains, R̂ values of 1 for all estimated parameters, and the absence of divergent 142

transitions after warm up [43]. We then take the coefficient estimates produced from 143

our models as reliable for inference regarding our a priori hypothesis. 144

While some between-park variation exists, our overall study shows no evidence for 145

threshold effects in recreational visitor response to wildfire smoke in national parks in 146

the American West. Fig 3 and Fig 4 show the parameter estimates for the pre and 147

post-breakpoint smoke effects respectively. In all three breakpoint models, only two 148

parks have 90% credible intervals that do not overlap zero for slope 1, both of which 149

have opposite signs (Fig 3). The post-breakpoint, slope 2, parameter estimates 150

exclusively overlap zero at a 90% credibility interval (Fig 4). The uncertainty in these 151

estimates increases dramatically as we use more extreme breakpoint values and the 152

amount of data post-breakpoint decreases. We note however, that even parks with 153

relatively certain estimates in the more extreme breakpoint models (0.5 & 1) still 154

exclusively overlap 0, demonstrating no impact of ambient smoke on park visitation 155

even at very dangerous levels. 156

Fig 3. Slope 1 parameter estimates. Posterior parameter estimates for slope 1 for
each of the 32 national parks included in this study for each of the three breakpoint
models. Points represent the median prediction. Thick lines show the 50% credibility
intervals and thin lines show the 90% intervals.

Fig 4. Slope 2 parameter estimates. Posterior parameter estimates for slope 2 for
each of the 32 national parks included in this study for each of the three breakpoint
models. Points represent the median prediction. Thick lines show the 50% credibility
intervals and thin lines show the 90% intervals.

Visually examining the marginal effect of ambient smoke on park recreational visits 157

provides a similar intuition as above (Fig 5). We see little difference in the effect of 158

smoke before and after the hypothesized thresholds. In addition, we descriptively show 159

high levels of visitation even under very high levels of ambient smoke. In Redwood 160

National Park for example, we see visitation within the normal range even during the 161

August 2018 wildfire events, which produced smoke levels over 30 times the total sample 162

standard deviation. 163

Given the clear lack of threshold effects in visitation response to ambient wildfire 164

smoke, we conducted an exploratory analysis on the overall effect of smoke on visitation 165
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Fig 5. Marginal effects of slope on visitation. Marginal effect of ambient smoke
on monthly park visitation for four of our study parks with the highest median smoke
values from 1980 to 2019. Parks displayed are Glacier National Park, Grand Teton
National Park, Great Sand Dunes National Park & Preserve, and Redwood National
Park. For simplicity, we show just the model with the middle breakpoint value (0.5 on
our standardized scale). Blue shading represents the full range of posterior predictions
for visitation given the mean value for each autoregressive term in the model. Intensity
of shading shows the credibility interval for each prediction, with the middle black line
showing the median prediction at each value of smoke.

in our study parks (i.e. without a breakpoint). We formulate this exactly as in the 166

pre-breakpoint slope in equation 2. We again ran this model for 5,000 iterations using 7 167

Markov chains, which exhibited adequate mixing, a lack of divergent transitions after 168

warmup, and R̂ values of 1 for all estimated parameters. 169

The parameter estimates for the overall effect of ambient smoke on visitation 170

response in all 32 parks in our sample are considerably more narrow than the estimates 171

produced via the breakpoint models (Fig. 6). Still, the 90% credibility intervals 172

estimating the smoke effect for each park exclusively overlap 0, indicating no overall 173

effect, further supporting our findings above. Intuitively, the within-sample R2 remains 174

equal to 0.37 after accounting for the overall smoke effects, showing no improvement 175

compared to the autoregressive only model. This suggests that ambient smoke in 176

national parks in the American West is not driving any measurable change in visitation 177

even at sustained and dangerous levels. We thus conclude that visitors are not altering 178

recreation behavior in response to smoke and therefore no overall effect or critical 179

threshold for adaptation is detectable in these data. 180

Fig 6. Overall model parameter estimates. Posterior parameter estimates for the
overall effect of smoke on visitation for each of the 32 national parks included in this
study. Points represent the median prediction. Thick lines show the 50% credibility
intervals and thin lines show the 90% intervals.

Discussion 181

We did not detect visitor adaptation to increasing wildfire smoke in national parks in 182

the American West. This result is troubling both specifically for visitor health in U.S. 183

national parks and for climate change adaptation broadly. As discussed above, wildfire 184

smoke significantly increases community morbidity even under acute exposure. In 185

concert with showing no overall trends in behavioral adaptation, these data provide 186

specific instances of historic smoke events where visitation did not deviate from normal 187

(Fig 5). 188

The highly variable nature of wildfires, their relationship to climate change, and the 189

great distances that smoke can travel during and after wildfire events make it difficult 190

for individuals to plan around smoke events [31,44,45]. In conjunction, U.S. national 191

parks draw a great number of non-local visitors, many of whom are coming from other 192

states or countries and are likely visiting for the first time [46]. We speculate that these 193

visitors are less likely to change their plans due to wildfire smoke than individuals 194

recreating locally or repeatedly in one location. We propose that these unique features 195

of national parks and wildfire smoke make visitors particularly unable to adapt to 196

changing climatic conditions. 197

Based on our findings here, we suggest that a regional or national level policy 198
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limiting visitation during dangerous smoke events may be necessary to protect would-be 199

visitors to U.S. national parks [47]. Presently, there is considerable variation in the way 200

states react and plan for climate change and associated hazards [48]. 201

Considering our findings more generally, humans must adapt quickly to the new 202

realities of our increasingly variable climate if we are to continue to thrive over the 203

coming decades [49]. Climate change is already dramatically altering the 204

social-ecological landscapes in which humans have learned to operate [50]. This 205

research contributes to a broader body of work showing that despite increasing 206

awareness, as a society we still fail to respond adequately [51]. Even when adaptive 207

strategies and their benefits are known, we do not translate strategies into action [52]. 208

While research has shown that extreme events tend to spur climate adaptation on the 209

part of governments, individual response is much less consistent [53–55]. Therefore, 210

while we speculate that the system of recreational visitation to U.S. national parks may 211

be particularly problematic, we suppose that the trends observed in this study may be 212

characteristic of individual response to many changing environmental conditions. 213

Limitations and future research 214

A key limitation of this study is the lack of fine scale visitation data to US national 215

parks. Daily visitation data would allow us to identify a more complete picture of if and 216

how visitors respond to smoke events day to day. Current data at the monthly scale 217

allows us to investigate the big picture trends in visitor behavior, but future research 218

would benefit greatly from daily count data. It is possible that individuals postpone 219

visits to national parks by days or weeks when smoke is present, behavior which our 220

current study would be unable to capture. 221

It is also possible that this trend would not be observed for recreation on all public 222

lands or for all climate change-induced hazards. Other paths for future research may 223

therefore be to investigate if the trend shown here holds for other public lands with 224

different visitor profiles and for other hazards. 225

Conclusion 226

The results presented here indicate that individuals are not modifying their behavior to 227

adapt to worsening wildfire smoke events. It is unclear if this finding is representative of 228

individual climate adaptation generally or is unique to this system. Regardless of the 229

generality of our findings, this study has specific implications for management of U.S. 230

national parks. Future research may confirm or negate the trend shown here in 231

individual climate adaptation broadly. This will have considerable implications for the 232

future of all communities living with climate-induced hazards. 233

Supporting information 234

S1 Correlation between surface level and column mean black carbon 235

measurements. Scatterplot showing the correlation between measurements of the 236

surface level and the column-wide black carbon densities. Densities are displayed in 237

(kg/m−2). We use just surface level density measurements in our analyses. The surface 238

and column-wide densities are correlated at a value of 0.85. 239
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