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Abstract

Proper control of replication timing (RT) is of vital importance to maintain genome and epigenome
integrity. However, the genome-wide sequence determinants regulating RT remain unclear. Here, we
develop a new machine learning method, named CONCERT, to simultaneously predict RT from se-
quence features and identify RT-modulating sequence elements in a genome-wide manner. CONCERT
integrates two functionally cooperative modules, a selector, which performs importance estimation-
based sampling to detect predictive sequence elements, and a predictor, which incorporates bidirec-
tional recurrent neural networks and self-attention mechanism to achieve selective learning of long-
range spatial dependencies across genomic loci. We apply CONCERT to predict RT in mouse em-
bryonic stem cells and multiple human cell types with high accuracy. The identified RT-modulating
sequence elements show novel connections with genomic and epigenomic features such as 3D chro-
matin interactions. In particular, CONCERT reveals a class of RT-modulating elements that are
not transcriptional regulatory elements but are enriched with specific repetitive sequences. As a
generic interpretable machine learning framework for predicting large-scale functional genomic pro-
files based on sequence features, CONCERT provides new insights into the potential sequence deter-
minants of RT.
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Introduction

As a fundamental genome function of eukaryotic cells, the replication timing (RT) program has a highly
regulated temporal pattern along the genome, which is intertwined with genome structure and other
genome functions [1-3]. High-throughput Repli-seq data together with the 3D genome features derived
from Hi-C have shown that the active domains towards the nuclear interior generally have early RT
patterns, which are also evolutionarily conserved [3-5]. Methods have also been developed to predict
RT in human cells based on epigenomic features [6, 7] and yet genomic sequence features that may
modulate RT patterns remain mostly unclear [3]. Sima et al. [8] recently made a significant step forward
in identifying specific cis-acting elements regulating early RT in mouse embryonic stem cells (mESCs).
Based on CRISPR-mediated deletions on a few genomic loci, early replicating control elements (ERCEs)
were experimentally validated to regulate early RT in mESCs [8]. However, it is unclear whether there are
sequence features that are predictive of the entire RT program genome-wide across different cell types.
We currently lack effective computational models that can accurately predict detailed genome-wide RT
profiles from sequences.

In recent years, there have been a number of machine learning methods that use DNA sequences to
predict functional genomic signatures as well as chromatin folding patterns. Starting with early successes
of applying deep neural network based architectures to regulatory genomics [9, 10], models have been
developed to generate features from the sequences to predict transcription factor (TF) binding and other
short-range, local epigenetic features based on both convolution neural networks (CNNs) and recurrent
neural networks (RNNs) [11-17]. More recently, a few models have been proposed to use dilated convo-
lutions to learn long-range spatial dependencies in DNA sequences, which are critical for the prediction
of long-range gene regulation and chromatin interaction [18-21]. For example, Basenji [18] uses CNNs
and dilated convolutions to predict gene expressions from DNA sequences at 128bp resolution. The very
recently developed Enformer increases the receptive field width as compared to Basenji and predicts
gene expressions from DNA sequences by utilizing self-attention mechanism to capture long-range in-
teraction information [22]. Enformer also uses CNNs for sequence feature extraction at the resolution of
128bp. However, for data types with lower resolution and with larger-scale signal profiles (e.g., the RT
data with 5-50Kb bin size), it is particularly challenging to apply CNNss for efficient high-quality feature
extraction from each genomic bin. Importantly, for long-range spatial dependency, the receptive field
width of dilated convolutions is still limited in size compared to the input sequence length. In particular,
the dilated convolutions use regular gaps to capture spatial dependency, which may lose information on
more complicated dependency patterns (e.g., combinatorial patterns of cooperative elements at different
loci). Therefore, it remains an unsolved problem to capture dependency among arbitrary loci over a
very large-scale genomic region such as replication domains, which are typically larger than S00Kb in
size [4], and achieve high model interpretability.

Here, we develop an interpretable, context-of-sequences-aware model for RT prediction, named
CONCERT (CONtext-of-sequenCEs for Replication Timing), using DNA sequence features only. CON-
CERT unifies (i) modeling of long-range spatial dependencies across different genomic loci and (ii) detec-
tion of a subset of genomic loci that are predictive of the target genomic signals over large-scale spatial
domains. Applications of CONCERT to 10 human cell lines and mESCs demonstrate that the model
achieves high RT prediction accuracy. Crucially, our method can identify sequences that are potentially
important for shaping the RT program (i.e., RT-modulating elements). CONCERT provides a generic
interpretable framework for predicting potential sequence determinants for large-scale genomic signals.
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Results

Overview of the CONCERT model

CONCERT is an interpretable, context-attentive model that is able to simultaneously identify predictive
sequence elements for modulating RT and predict genome-wide RT profiles using DNA sequence fea-
tures only. Specifically, CONCERT is structured with two functionally cooperative modules: (i) selector
and (i1) predictor, which are trained jointly within one unified framework in modeling long-range spatial
dependencies across genomic loci, detecting predictive sequence elements, and learning context-aware
sequence feature representations (see Methods and Supplementary Methods A.1). The selector aims
to estimate which genomic loci are of potential importance in modulating the target signals (RT signals
in this work), approximately selecting a set of predictive sequence elements by importance estimation-
based subset sampling. Leveraging sequence importance estimation from the selector, the predictor then
performs selective learning of spatial dependencies across the genomic loci and makes prediction of
target signals over large-scale spatial domains.

An overview of the CONCERT model is shown in Fig. 1a. The input to the model contains DNA
sequences of the genomic loci within each context window. The output includes both the predicted
signals and the locus-wise estimated importance scores. The estimated scores can be further processed
to delineate predictive sequence elements that are important for modulating the target signals. A notable
advance of CONCERT is that it embeds the interpretation mechanism into predictive model training,
thereby not requiring separate post-hoc steps for model explanation. Importantly, the model is also
capable of handling different sizes of context without increasing the model parameters, making it more
scalable to the context size of genomic loci. Details of the model architecture are described in Methods.

We applied CONCERT to predict RT and identify RT-modulating elements in mESCs and 10 human
cell lines, including HI-hESC, H9-hESC, GM 12878, HCT116, HEK293, K562, IMR-90, RPE-hTERT,
U20S, and WTC11. We used the two-fraction E/L Repli-seq data (see Methods for details on data
processing). We only included autosomal chromosomes in the analysis, in consideration of the sex
identity differences of the cell lines and the potential bias induced by the sex chromosomes. We divided
the genome into consecutive non-overlapping SKb bins (genomic loci). Note that the processed RT signal
at each locus is a continuous value, with higher value representing earlier replication.

CONCERT achieves high RT prediction accuracy in multiple human cell types

To evaluate the performance of CONCERT, we carried out cross-chromosome RT prediction in 10 human
cell types by using two subsets of chromosomes for model training (Supplementary Methods A.2.1;
see Fig. 1b for examples), obtaining genome-wide RT predictions and importance score estimation. We
included six other methods for performance comparisons: XGBoost Regression (XGBR) [23], Random
Forest (RF), Linear Regression (LR), DNN-Local, CNN-BiLSTM-Local (adapted from DanQ [11]), and
Dilated-CNN (adapted from the dilated convolution module of Basenji [18]) (Supplementary Meth-
ods A.2.3-A.2.4). We also adapted the full model of Basenji for RT prediction (Supplementary Meth-
ods A.2.5); however, we found that this adapted Basenji full model had lower performance than Dilated-
CNN. We therefore only included Dilated-CNN in the performance benchmarking. We assessed the av-
erage and variation of prediction performances across different chromosomes in each cell type (Fig. Ic,
Fig. S2, Supplementary Methods A.2.2). We also merged the predictions on all chromosomes to report
genome-wide results (Tables S1 and S2). Overall, CONCERT consistently outperformed other methods in
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all cell types. For CONCERT, the median Pearson correlation coefficient (PCC) and median Spearman’s
rank correlation coefficient (Spearman’s p) between the genome-wide predicted RT and the real RT sig-
nals across the 10 human cell lines are 0.81 and 0.80, respectively. In particular, CONCERT showed clear
advantages over other methods that do not use context information. Notably, CONCERT outperformed
Dilated-CNN in different cell types with respect to different evaluation metrics. This evaluation confirms
the advantage of CONCERT that predicts RT profiles and identifies predictive RT-modulating genomic
loci simultaneously.

The performance of CONCERT varies across cell types, with relatively high prediction accuracy in
HCT116 and HEK293 (above 0.85 for both PCC and Spearman’s p) while lower accuracy in IMR-90 and
RPE-hTERT, suggesting that there may exist cell type-specific dependencies between DNA sequence
features and RT patterns. CONCERT has the capability of capturing not only the similar RT patterns
shared by different cell types but also cell type-specific RT patterns (see examples in Fig. 1b). We
further evaluated CONCERT using different context sizes (Fig. 1e). We found that the prediction accu-
racy increases as the context expands within a range in each cell type, indicating the informativeness
of long-range context for RT prediction. The performance approaches saturation as the context size ex-
ceeds +/-150Kb. In addition, we evaluated our method on early or late RT classification (Supplementary
Methods A.2.2). CONCERT reached 0.81-0.95 in AUROC (area under the receiver operating characteris-
tic curve), 0.72-0.96 in AUPR (area under the precision-recall curve) in 10 human cell types, consistently
outperforming the other methods (Fig. 1d, Fig. S3).

The numbers of predicted important genomic loci for RT in different human cell types that are also
shared by the other cell types are listed in (Table S7). We also identified cell type-specific important
loci (Table S8). The cross cell-type comparison suggests that there may exist sequence elements with
conserved or cell type-specific functional importance in modulating RT across cell types. Specifically,
we identified ESC-specific important genomic loci that are only predicted in HI-hESC or H9-hESC.
Gene Ontology (GO) analysis of the identified important loci using GREAT [24] showed that they are
significantly associated with fundamental developmental processes (Fig. S5). Also, based on the gene
expressions in HI-hESC, GM12878, and K562, both cell type-specific expressed genes and genes with
cell type-specific increased expressions are more enriched near the predicted important loci and show
higher enrichment around the predicted cell type-specific important loci, both in early RT regions and
genome-wide (Fig. S6, Supplementary Methods A.3.8).

Together, these results strongly demonstrate the effectiveness and advantages of CONCERT in learn-
ing functionally important genomic loci to predict RT profiles from DNA sequences.

CONCERT predicted important loci in mESCs show consistency with ERCEs

Next, we applied CONCERT to predict RT in mESCs and evaluated the importance scores by comparing
to the recently discovered ERCEs in mESCs [8]. In [8], multiple cis-regulatory elements with crucial
roles in controlling early replication (i.e., ERCEs) were identified in mESCs and were validated by
CRISPR-mediated genome engineering. In particular, three cooperative ERCEs were discovered at the
Dppa2/4 domain on chromosome 16 in mESCs (denoted as ‘a’, ‘b’, and ‘c’ in Fig. S4) and the targeted
deletion of these three elements caused a switch from early to late replication [8]. Additionally, 1,835
ERCEs were computationally inferred genome-wide based on specific epigenetic properties shared with
the three experimentally identified ERCEs. Two ERCEs (‘d’ and ‘e’ in Fig. 2b) inferred at the Zfp42/Rex1
locus on chromosome 8 were also further verified experimentally.

We sought to explore the connection between ERCEs and the important RT-modulating genomic
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loci identified by CONCERT using sequence features only. We used the same mESC Repli-seq data in
CAST/129 hybrid cells from [8]. There are two alleles: mutant allele, with targeted ERCE deletions, and
WT (wild type) allele, which share similar RT profiles except for the ERCE deleted regions. The simi-
lar model training procedures applied to RT prediction in the human cell types were applied to mESCs
(Supplementary Methods A.2.1). CONCERT achieved high RT prediction accuracy in mESCs, with
PCC 0.90, 0.91, explained variance 0.80, 0.79 on the mutant and WT alleles, respectively, outperform-
ing other methods (Fig. 2a). We next identified RT-modulating genomic loci based on the estimated
importance scores. Specifically, we normalized the scores to the scale [0,1] using quantile transforma-
tion followed by detecting local peaks of scores to select a subset of loci with distinguishable prominence
(Supplementary Methods A.3.1). CONCERT identified seven important genomic loci at the Dppa2/4 lo-
cus on mouse chromosome 16, where three directly overlap with ERCEs ‘a’, ‘b’, ‘c’ and two overlap with
‘b’ and ‘c’ with +/- 1 bin (5Kb) extension (Fig. S4). Also, CONCERT identified three important genomic
loci at the Zfp42/RexI locus on chromosome 8 (Fig. 2b), where two loci directly overlap with ERCEs
‘d’ and ‘e’. Altogether, each of the five ERCEs that were experimentally validated by CRISPR-mediated
deletions in [8] was matched by RT-modulating genomic loci predicted from CONCERT. CONCERT also
predicted the local switch from early to later RT after the in silico deletion of each of the two sets of
ERCEs (‘a’, ‘b’, ‘c’ and ‘d’, ‘e’), consistent with the experimental results in [8] (Fig. 2b and Fig. S4).

We next compared the identified RT-modulating genomic loci genome-wide and the predicted ERCEs
from [8] (1,798 predicted ERCEs on autosomes with 20Kb~200Kb in length) We found that 1,419 of
the 1,798 predicted ERCEs with +/-2 bin extension (78.92%, empirical P<1e-02, Fig. 2c) overlap with
one or more predicted RT-modulating loci identified by CONCERT. The CONCERT predicted impor-
tant loci also have shorter distance to the nearest ERCEs and higher overlap with the matched ERCEs
as compared to the background where the elements are randomly shuffled (Fig. 2d-e, P<2.2e-16 with
Kolmogorov-Smirnov test, or K-S test [25]). We further evaluated the CONCERT estimated importance
scores for ERCEs compared with the randomly sampled non-ERCE sequences (background). ERCEs on
average have significantly higher region-wise maximal and mean scores from CONCERT than the back-
ground, both in early RT domains and genome-wide (Fig. 2f, P<2.2e-16 with K-S test, Supplementary
Methods A.3.2).

Together, these results further confirm the effectiveness of CONCERT in predicting genome-wide
important RT-modulating sequence elements supported by ERCEs in mESCs.

CONCERT predicted important loci in human ESCs match orthologous ERCEs

As the ERCEs were only inferred in mESCs [8], we aimed to assess how conserved these important
cis-elements for RT are between human and mouse in terms of their connection to the RT-modulating
elements predicted by CONCERT. By mapping the mouse ERCEs to the human genome with recip-
rocal liftOver [26] (Supplementary Methods A.3.2), we obtained 446 mapped ERCEs and evaluated
the CONCERT importance scores of the mapped regions in HI-hESC. We compared the distribution of
region-wise maximal (or mean) estimated importance scores of the mapped ERCEs with the background
distribution based on randomly sampled regions in HI-hESC (Fig. 2g, Supplementary Methods A.3.2).
The mapped ERCEs in human exhibit higher CONCERT importance scores on average compared to the
background in both early RT domains and genome-wide (P<2.2e-16). The mapped ERCEs in human
with co-binding of two or more pluripotency TFs also show higher CONCERT importance scores than
the background (P<1e-7, Fig. 2h). Furthermore, 71.08% of the mapped ERCEs in human with +/-2 bin
extension can be matched by CONCERT identified RT-modulating loci (empirical P<1e-02).
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An example of the mouse ERCE mapped to the human genome that can be identified by CONCERT
is shown in Fig. 2i, This is a genomic region with hESC-specific early RT and contains a co-binding
of the pluripotency TFs POU5F1, SOX2, and NANOG in H1-hESC. The mapped ERCE also resides in
a replication initiation zone in H1-hESC identified from [27] (Fig. 2i). CONCERT identified cell type-
specific RT-modulating loci that overlap with the mapped ERCE in hESC (supported by data in both
HI1-hESC and H9-hESC). The non-ES cell types such as GM12878 and HCT116 exhibit late RT locally,
without important genomic loci identified by CONCERT at the same location. Also, the 5’ side of the
TF-encoding gene OTX2 is co-localized with the identified important loci in H1-hESC and H9-hESC,
with hESC-specific expression (Supplementary Methods A.3.8). OTX2 has critical roles in the early
stages of embryonic development and ESC differentiation [28, 29]. There are cell type-specific enhancers
(annotations from [30]) near the promoter of OTX2 in H1-hESC and H9-hESC, which overlap with the
pluripotency TF co-binding site and the CONCERT identified important loci. This points to the potential
connections underlying the OTX2 regulation, the co-binding of pluripotency TFs, and the ESC-specific
early RT modulation at this locus. This mapped ERCE in human is highly likely to be a human ES
cell-specific ERCE and there is potential functional conservation between human and mouse (Fig. 21).

These analyses provide additional evidence regarding the potential of CONCERT in identifying RT-
modulating sequence elements in human cell types.

CoONCERT predicted RT-modulating loci are enriched with specific regulatory elements

To explore the connection between transcriptional regulatory elements and the CONCERT predicted RT-
modulating sequences, we compared the estimated importance scores and the annotated cis-regulatory
elements (CREs) in different human cell types. The CRE annotations were retrieved from the SCREEN
database [31], comprising mainly five types of CREs: dELS (distal enhancer-like signatures), pELS
(proximal enhancer-like signatures), PLS (promoter-like signatures), DNase-H3K4me3 (likely poised
elements with DNase and H3K4me3 marks), and CTCF-only. We found that the loci with pELS, PLS, or
DNase-H3K4me3 signatures received significantly higher estimated importance scores from CONCERT
than the non-CRE loci, which was consistently observed in different cell types (Fig. 3a, P<2.2e-16,
Supplementary Methods A.3.3).

We further analyzed the TF binding enrichment in the CONCERT predicted important loci in H1-
hESC using the ChIP-seq data from ENCODE [32] (Supplementary Methods A.3.3). We observed
enriched presence of specific TF binding sites in the CONCERT predicted important loci as compared to
the background loci with matched RT signal levels (Fig. 3c,Supplementary Methods A.3.4), including
the TFs known to be critical for transcription or the pluripotency of ESCs. Specifically, the binding
sites of the pluripotency TFs, POUSF1, SOX2, and NANOG, are significantly enriched in the CON-
CERT predicted important loci (Fisher’s exact test, P<<0.01), of which POUSF]1 in particular shows high
enrichment (P<2.2e-16). These three TFs were also identified as key signatures of mESC ERCEs in [8].

We further compared the chromatin states annotated by ChromHMM [33] in the CONCERT predicted
RT-modulating loci in different human cell types (Fig. 3b). We merged the 15 chromatin states into 8
groups using the definition in [34] (Supplementary Methods A.3.5). We observed distinct patterns of
the different chromatin state groups in the predicted important loci.

Together, these results suggest that the predicted RT-modulating sequence elements from CONCERT
co-localize with specific types of transcriptional regulatory elements, indicating the intertwined nature
of transcription and DNA replication.
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Specific transposable elements are over-represented in the CONCERT predicted impor-
tant loci depleted of regulatory elements

Our analyses revealed that the predicted important loci for RT show signatures of specific transcription-
related regulatory elements. However, we have limited knowledge of what sequence features may exist
in the DNA elements with RT-modulating functions beyond the known regulatory elements. We next
specifically explored the connections between the transposable elements (TEs)/repetitive elements (REs)
and the estimated important loci globally, using the annotations in the human genome from the UCSC
Genome Browser [35] (Supplementary Methods A.3.6). We observed specific types of repetitive se-
quences are enriched in genomic loci with high importance scores from CONCERT (Figs. S7-S8). We
found that Alu elements show strong preference in loci with high estimated importance in different cell
types, consistent with earlier studies [1]. Additionally, scRNA, snRNA, srpRNA, and SVA are also
highly represented in loci with high CONCERT estimated scores, in accordance with findings from pre-
vious studies on RT comparison across multiple primate species [5].

Next, we analyzed the features of the predicted important loci that are depleted of known regula-
tory elements. We used multiple annotations to identify the genomic loci without regulatory elements in
human cell types, including chromatin states, CREs, and enhancers (Supplementary Methods A.3.7).
Notably, the CONCERT predicted important loci depleted of regulatory elements in different human cell
types show enrichment of specific transposable element (TE) families or REs as compared to the pre-
dicted important loci overlapping with regulatory elements (Fig. 3d). In H1-hESC, the corresponding
enriched repetitive sequences include multiple TE families of LTR (including LTR, ERVL, ERVL-Mal R,
ERVK, ERV1, Gypsy), L1 elements, and SVA. The enrichment patterns were observed in both early and
late RT regions, and consistent across cell types (Fig. S9).

As an example, there are 6 predicted important loci depleted of regulatory elements in a genomic
region displaying local early RT on chromosome 6 in H1-hESC (Fig. 3e). CONCERT predicted the
emergence of the local early RT. We performed in silico deletions of these 6 loci (denoted as R1-R6, with
+/-1 bin extension each) both individually and in combinations to evaluate the effect of each locus or the
combinations. By deleting both R1 and RS, the local predicted RT switched from early to late, exhibiting
the most significant change among all the deletions. Deleting R1 or R5 alone changed the corresponding
side of the RT profile from early to late, while the other side of the RT profile remained early RT.
Deleting RS alone induced the strongest prediction change among the individual deletions. Note that
CONCERT predicted the highest importance score at R5 among these 6 loci. Deleting both R1 and RS
resulted in larger change of predicted RT than the accumulation of predicted RT decrease by individual
deletions, suggesting the potential synergistic cooperative functions of R1 and R5. We then searched for
the distinctive sequence features underlying the two loci. As R1 and R5 each contain +/-1 bin extension
(3 bins in size, denoted as R1.0-R1.2 and R5.0-R5.2, respectively), we deleted each bin separately in
silico and compared the change of predicted RT (Fig. 3e). The loci with the strongest effects (R1.2,
R5.0, the deletion of which is similar to deleting the whole R1 or RS) are each primarily composed of
LTR elements; specifically, ERVK (R1.2) and ERV1 (R5.0), consistent with the observations in Fig. 3d.
Moreover, based on the multi-species sequence alignment, the loci with strong effects correspond to
sequences only present in human and the closely-related primates (Fig. S10). This strongly suggests that
the TEs in the two loci were likely inserted into the genome during recent primate evolution, which may
be subsequently exapted to perform lineage-specific function of RT modulation.

This analysis suggests the existence of a potential new class of RT-modulating elements that are
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depleted of known transcriptional regulatory elements but are strongly represented by specific TEs/REs.

The interplay between the CONCERT predicted important loci and replication origins as
well as 3D chromatin interactions

We next asked if our CONCERT predicted important loci co-localize with the replication origins identified
from the SNS-seq data [36]. We performed peak calling to locate RT origins using the SNS-seq data
in H1-hESC and H9-hESC cell lines from [27]. The genomic loci overlapping with RT origins have
on average significantly higher estimated importance scores than the loci without identified RT origins
(Fig. 4a, P<2.2e-16, K-S test, Fig. S11). In particular, 13,230 of the predicted important loci (33.54%)
overlap with a SNS-seq derived RT origin in HI-hESC (Fig. 4b). This suggests that CONCERT identifies
a subset of the RT origins. The identified non-RT origin but important genomic loci from CONCERT may
harbor sequence elements that participate in RT regulation but not RT origins. We also found that the
RT origins exhibit discrepancy of estimated important scores. The importance scores estimated by our
method may reflect the heterogeneity of the RT origins (see examples in Fig. 4f-g).

RT is highly interconnected with 3D genome organization. To further reveal the potential depen-
dencies between the estimated RT-modulating loci and the 3D genome features, we performed Hi-C
aggregate analysis of the predicted important loci in different human cell types (Supplementary Meth-
ods A.3.9). The identified important genomic loci showed higher proportion of Hi-C contacts compared
to the background in different cell types (Fig. 4c). As CTCF is known to be crucial for mediating chro-
matin loops, we analyzed the binding distribution of CTCF in genomic regions harboring the CONCERT
predicted important loci. We found that the CONCERT predicted important loci have higher CTCF bind-
ing scores as compared to the surrounding regions, while the enrichment pattern was not found in the
control group (Fig. 4d, Supplementary Methods A.3.9).

Next, we assessed the potential chromatin interactions between the CONCERT predicted important
loci and the RT origins identified from the SNS-seq data [27], by which the CONCERT predicted loci
interact with RT origins to cooperatively modulate RT. We calculated the Hi-C O/E (observed/expected)
interaction score for each pair of predicted important genomic locus and an RT origin within a distance
range. The predicted important loci show significantly higher average Hi-C O/E scores than the control
(Fig. 4e, P<2.2e-16, K-S test, Supplementary Methods A.3.9), indicating that the CONCERT predicted
RT-modulating loci show spatial interactions with the RT origins.

As an example, we show the connections between the predicted important loci and the RT origins
in the context of 3D genome organization (Fig. 4f-g). Here, CONCERT predicted an important genomic
locus for RT (denoted as R1) in an early RT region on chromosome 1 in HI-hESC, which overlaps with
the SNS-seq derived RT origins and is connected to three RT origins (P1-P3) by two chromatin loops
(Fig. 4f, Supplementary Methods A.3.9). R1 is among the loci with the highest estimated importance
scores in the region, while P1-P3 receive lower scores. To evaluate the importance of R1 and P1-P3,
we performed individual and paired in silico deletions of the loci (Fig. 4f-g). Each pair involves R1 and
one of P1-P3 connected by a Hi-C loop. We found that each of the paired deletions caused the local
predicted RT to switch from early to late (Fig. 4g). For individual deletions, deleting R1 caused the most
significant effect, showing the change of early to late RT. Deleting each of P1-P3 alone caused moderate
decrease of the predicted RT signals. These observations suggest that R1 is a strong candidate locus for
RT modulation. Importantly, the Hi-C loops connecting R1 to the other RT origins may assist R1 to
synergistically regulate RT.

In summary, these results demonstrate that CONCERT helps unveil the interplay among the RT-
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modulating sequence elements, the replication origins, and 3D chromatin interactions.

Discussion

In this work, we developed CONCERT to predict DNA replication timing profiles using DNA sequence
features only, with the model training procedure using the Repli-seq data as input. Application to 10 hu-
man cell lines demonstrated that CONCERT reached high prediction performance in a wide range of cell
types and outperformed other methods. The results additionally showed conservation and variation in
the potential dependencies between DNA sequences and RT signals in different cell types. Our method
also reached high RT prediction accuracy in mESCs. For predictive sequence element identification in
mESCs, each of the five ERCEs in mESCs that were experimentally validated through CRISPR-mediated
deletions in [8] can be identified by our method. We also observed connections between the CONCERT
predicted RT-modulating elements and different types of genomic, epigenomic, and 3D genome features,
unveiling sequence elements that may have underappreciated roles for RT modulation. Our method
demonstrates the potential for prioritizing experimental characterizations of possible sequence determi-
nants of RT. Overall, CONCERT provides a generic framework to predict large-scale genomic features
and discover the underlying predictive sequence elements that may modulate RT program using DNA
sequence features only.

There are a number of possible improvements and future directions for CONCERT. First, the model
can incorporate specific cooperative functions of sequence elements, as revealed in [8], where several
ERCEs were found to cooperate as a group to regulate early RT in the local domain. Second, we can
include other types of epigenetic features into the model to reflect cell type-specific characteristics of RT
regulation, and improve the model performance in RT prediction and recognition of possible RT regula-
tors. We can also utilize the integration of epigenetic features to perform cross cell type RT predictions.
Finally, to further disentangle sequence determinants for RT, transcription, and 3D chromatin structures
that are intrinsically interconnected, an integration of CONCERT and other related sequence-based mod-
els [19, 22] may offer a systematic solution to connect genomic sequence, genome structure, and genome
functions. For example, we found the CONCERT predicted important loci have stronger CTCF binding
than their flanking regions. However, earlier work showed that CTCF depletion does not lead to changes
in genome-wide RT program in mESC [8]. Future work is needed to clearly demonstrate the mechanistic
connections between CONCERT predicted RT-modulating loci and chromatin folding. Nevertheless, we
have demonstrated that CONCERT has shown strong promise to help uncover important sequence level
properties that potentially modulate the genome-wide RT program in a diverse set of cell types. The
CONCERT predictive model also has the potential to help expand the catalog of functionally-relevant
genetic variants in the human genome.
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Methods

CONCERT - Interpretable RT prediction using sequence features with context

In CONCERT, we aim to maximize the mutual information between the target genomic signals (RT in this
work) to be predicted and the underlying DNA sequences, with a set of predictive sequences selected.
We divide the genome into non-overlapping consecutive bins of equal sizes. Each genomic bin is a locus.
Suppose we use +/- [ bins around each locus to form a context. The context surrounding each locus forms
a sliding window of size L = 2/+ 1 along the genome. Features of loci in each context window are fed to
the model to predict locus-wise signals. Suppose fy(x) is the function of the predictor, which maps the
sequence features z € RY*? to the signals y € RY*¢, with 6 as the parameters, and d, c representing the
sequence feature dimensionality and the number of genomic signal types, respectively. We use ¢ = 1.
Our model is extendable to predict multiple types of genomic signals with ¢ > 1.

Let X = (Xq,---,X1), Y = (Yq,---,Y;), where X; € R% Y, € R denote the feature vector
and the RT signal of the k-th genomic locus, respectively, k = 1,--- , L. Let V") = {v € Rl|y;, €
{0,1},k = 1,--- ,L}. Let S = (S1,---,51) € V& denote a specific combinatorial selection of
predictive loci, with S; = 1 indicating the k-th locus is selected and S, = 0 otherwise. Suppose ¢(-)
is the function of the selector, mapping X to S, with J as the parameters. Let Xg be the representation
of X with only the features of selected genomic loci retained. The original objective function is (more
details are in Supplementary Methods A.1.1):

max E[logps(Y|X5s)], (1)
S.L.S = dy(X). @)

The selector module in CONCERT

With the selector module we aim to select a subset of genomic loci that are predictive of the RT signals
in each context window. Let V&™) = {v € Ry, € {0,1},k =1,---,L, > r_, v = m} denote all
the possible selections of m loci from L loci, 1 < m < L. Suppose we first only select one predictive
locus from the window. Suppose the selection for a given context window is denoted by Z ey,
Let 2 = (21,29, -+ ,21) € RE be the category probabilities of locus selection, where each category
corresponds to a locus. We use the Gumbel-Softmax reparameterization approach [37] to approximate
the distribution of Z with a Concrete distribution which is differentiable.

First, we add randomness to the probability of selecting each locus using random variables {G}, }%_,
that are independently sampled from a Gumbel distribution [38]. Let G} = —log(—logUy), Uy ~
Uniform(0, 1), where Uniform(0, 1) represents uniform distribution on [0, 1]. We have G, ~ Gumbel(0, 1),
k =1,---, L. The random perturbation facilitates learning robust selection that is less sensitive to noise.

Suppose g, - - - , o, are unnormalized category probabilities, o, > 0. If we use the Gumbel-Max
approach [37], we select the k-th locus as the predictive locus with the objective function:

k= arg m]?x{log ap + Gl 3)

The objective function is not differentiable everywhere in its domain. We employ the Gumbel-Softmax
reparameterization trick that was developed for the continuous relaxation of the arg max function [37].
Using the Gumbel-Softmax trick, the probability of selecting locus £ as the predictive locus is:
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- exp((log ag, + Gy)/7)
Sr_rexp((log e + Gi) /1)

where 7 is a temperature parameter. The softmax function approaches the arg max function as 7 ap-
proaches zero, with the orders of {logay + Gy} preserved [37]. We denote the distribution of Z =
(Zy,--+,Z1) € RY as a Concrete distribution parameterized by (o, 7), where @ = (ay, -+ , ). We
have Z ~ Concrete(c, 7).

To sample a subset of m predictive genomic loci from the L loci, we sample a vector S from p&m).,
We adopt the strategy proposed in [39] for the approximation of sampling S. First, we sample m Concrete

4

random vectors z(M) ...  2(™) independently from the distribution Concrete(cr,7). Second, for each
genomic locus k, we take the maximal value at the k-th dimension of the sampled random vectors as the
estimated probability of selecting locus k. Let S = (S, -+, SL), where Sy represents the probability of
selecting locus k. S is a continuous approximation of the discrete vector S. We have:
Z9 ~ Concrete(r, 7), j=1,---,m, (5)
o = pp(X), (6)
Se=max{Z", ... 2"} k=1,--- L, (7)
where ¢g(-) is the function mapping the sequence features to ov = (o, - - - , vy in the selector module,

with parameters 5. We interpret o, as the estimated importance score of the k-th locus.

Let G denote the set of random variables {{G ,(gj ) L }7L, which are sampled from the Gumbel distri-
bution. We have S = ¢p(X, G). Suppose the number of genomic loci is N. As each locus is the center
of a context window, the number of context windows is N. With regularization on the model complexity
to reduce model over-fitting, the objective function is:

min — Egs[logpe(Y|X, d5(X, €))] + M0 + 1, (8)

0,8

where ¢ = {e¥) € RE}™, consists of random variables independently sampled for z € RE*4. We
have ) = (egj), e ,e(Lj)), e,gj) ~ Gumbel(0,1), k =1,--- L, j = 1,--- ,m. p, Qg represent model
complexities of the predictor and the selector, respectively, with Ay, 7; as the corresponding regular-
ization coefficients. We use [,-norm of parameters for measuring €2y and )3 in practice. In the imple-
mentation, the selector comprises one dense layer for preliminary feature transformation, a convolution
layer to utilize limited local context information for feature representation, followed by dense layers

to generate estimates of «, and a Gumbel distribution based random variable sampler (Supplementary
Methods A.1.3).

The predictor module in CONCERT

The predictor module consists of four sequentially connected parts (Supplementary Methods A.1.2).
The first part is a preliminary feature transformation sub-module which generates an intermediate feature
representation for each locus, with an interface from the selector (Fig. S1). The output of the sub-module
is weighted by the importance scores s; = ¢g(z;,€;) = (si1,- -, i) € RF estimated by the selector,
where 7 represents the index of the context window. The weighted feature is Z; = fe(l)(xi) © ¢p(x;, €),
where fe(l) (+) is the mapping function of the sub-module and ® represents element-wise multiplication.
The second part is a BILSTM layer [40], which enables bidirectional context information sharing
across genomic loci (Supplementary Methods A.1.2). RNNs have been widely used for modeling
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sequential data [41-43]. LSTM and GRU [44, 45] are two representative variants of RNNs, using cell
memory and gate mechanisms to learn long-range dependencies, with the information flow restricted to
one direction. BiLSTM overcomes this limitation by splitting the hidden states of LSTM into forward
and backward states, forming two parallel LSTM layers in different directions. The output of BiLSTM is
the concatenation of the forward and backward states, producing context-aware feature representations.

The third part is the self-attention layer, which is used to capture dependencies between two arbitrary
loci in a context window [46]. With BiLSTM, information sharing is constrained by the spatial order
of the loci. The shared information vanishes as the distance between loci increases, making it still
challenging to model dependencies between distant loci. For each target locus [ (represented by x;),
the self-attention layer estimates an attention value of each locus !’ (including the target locus) in the
context window, measuring the importance of x; for predicting the signal of x;. The features of the loci
are weighted by their target-specific attention values and averaged to generate an updated context-aware
feature vector of the target locus. The self-attention mechanism used is:

by = on(Wixy + Wy + by), )
ery = oo(Wahiy + b)), (10)
I p— (1n

ZkEC ekvl/ ’

Zi'l = Zau/l‘l/. (12)

rec

where C represents the context window. oy, o, denote nonlinear activation functions. {W;, W, b;, W, b, }
are model parameters. The self-attention layer selectively aggregates the outputs from the BiLSTM
layer to model distance-insensitive spatial dependencies across genomic loci. The fourth part is a fully-
connected layer, mapping the features of each locus to a continuous value as the predicted RT signal. We
use Keras/Tensorflow [47, 48] for implementation. The architecture details and hyperparameters of the
model used in the analysis are described in Supplementary Methods A.1.3.

Feature representation of genomic loci

Feature engineering with specific sequence patterns

We combine different types of features from each genomic locus as the input to the model, includ-
ing the transformed K -mer frequency features, the GC profile based features, the optional transcription
factor (TF) binding motif features, and the optional conservation score features (Supplementary Meth-
ods A.1.4). Let 2™ 2{% be the first two types of features of the i-th genomic locus, respectively.
K-mer is a DNA subsequence of length K. The K-mer frequency feature is based on the occurrence
frequency of each K -mer in the sequence of each locus, normalized by the sequence length, generating a
4K _dimensional feature vector. Let "™ denote the feature for a specific K. For the balance between
prediction performance and computation cost, we choose K = 5 and K = 6 to form concatenated fea-
ture vector 7™ = (zlkmerd) glkmer6)y ¢ R5120 We choose PCA (Principal Component Analysis) for
feature dimension reduction, with the reduced dimension d;, = 50. As GC content is known to correlate
with RT [49], we extract two types of GC-based features, GC content (f (22)) and GC skew ( f (skew)y We

have (&) — (f89), pekew)y

) - 7
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Feature representation learning from local geomic sequences

We also propose incorporating a local-level sub-model which combines convolution neural networks
(CNN) with BiLSTM to learn features from sequences (Supplementary Methods A.1.5), as an al-
ternative to the pre-engineered feature representations. Integrating the CNN-BiLSTM sub-model, the
model is re-formulated into a framework with a two-level hierarchical structure (denoted as CONCERT-
hierarchical), providing a local-global multi-resolution scheme. At the first level, the sub-model learns
to capture spatial dependencies within the sequence of each locus, functioning as a local feature extrac-
tion component. At the second level, the model learns dependencies across different genomic loci over
larger-scale domains. The hierarchical structure shows similar RT prediction accuracy to the basic CON-
CERT model (Table S6). We therefore focus on the basic CONCERT model in the analysis in this work.
Still, CONCERT-hierarchical provides an option to enable the flexibility of learning long-range spatial
dependencies while remaining attentive to local sequence features.

Data collection and processing

We used genome-wide RT maps based on Repli-seq data [50] in 10 human cell lines H1-hESC, H9-hESC,
GM12878, HCT116, HEK293, K562, IMR-90, RPE-hTERT, U20S, and WTCI11. The two-fraction
E/L Repli-seq data were downloaded from the 4DN Data Portal [51] and the ENCODE project [32]
(accession numbers in Tables S4). We divided the genomes into consecutive non-overlapping SKb bins
(the genomic loci). We followed the scripts on https://github.com/4dn-dcic/repli-seq-pipeline for Repli-
seq analysis. We performed quality control of the Repli-seq reads using FastQC [52] and removed
adapter sequences using Cutadapt [53]. We calculated the RT signal values for each non-overlapping
5Kb bin of the human genome. Specifically, we first mapped the processed sequencing reads to the
human genome assemblies of hg38, using BWA [54]. The genome assemblies were downloaded from
the UCSC Genome Browser [55]. We then calculated Repli-seq read count within a given genomic
window (a genomic bin) in early and late phases of RT, respectively, normalized by the total mapped
read count in early or late RT phase on the whole genome accordingly. The RT signal in each bin is
defined as the base 2 logarithm ratio of read count per million reads between the early and late phases
of RT within this region. Lastly, the log 2 ratio signal was quantile normalized and smoothed using the
loess-smooth method [56].

The Repli-seq data in mouse were from the CAS/129 hybrid mESCs [8] (downloaded from
GEO: GSE114139), which were derived from the cross between M. casteneus (CAST/Ei) and M.
musculus (129/sv). SNP calls for CAST/Ei and 129/sv genomes were downloaded from: ftp://ftp-
mouse.sanger.ac.uk/REL-1505-SNPs_Indels/. We first used Bowtie 2 [57] to map reads to a mouse
genome (mml0) where all SNP positions are masked by the ambiguity base ‘N’. Then we used
SNPsplit [58] to parse the mapped reads to the corresponding allele. Reads that do not overlap with
SNPs were discarded. Reads overlapping with SNPs in the two genomes were sorted and processed in
each allele individually. We followed the same scripts (https://github.com/4dn-dcic/repli-seq-pipeline)
used in human RT analysis. The mouse RT signals in each allele were calculated at 5Kb resolution.
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Code Availability

The source code of CONCERT can be accessed at: https://github.com/ma-compbio/CONCERT.
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Figure 1: Overview of the CONCERT model and the performance evaluation in human cell types. a. Schematic
of the CONCERT model framework. The detailed model architecture is shown in Fig. S1. b. An example of the
predicted RT profiles in a genomic region on chromosome 14 in H1-hESC, H9-hESC, GM12878, and HCT116
in comparison with the real Repli-seq signals as shown in the UCSC Genome Browser. The regions e1, e2,
and e3 are examples showing that the predictions of CONCERT capture both the similar RT patterns shared
cross cell types and the cell type-specific patterns. ¢. Performance evaluation of RT predictions by different
methods in H1-hESC, H9-hESC, GM12878, and HCT116. Each boxplot shows the performance variation
across 22 autosomes for the corresponding method in the given cell line. The red/blue triangle represents the
performance of genome-wide predictions based on merging the predictions across chromosomes. Detailed
evaluation results in H1-hESC are shown in Table S3. d. RT classification performance across chromosomes
in the four cell lines above. e. The change of RT prediction performance with respect to different context size of
each genomic locus in 10 human cell lines. For ¢ and d, performance evaluations in 10 human cell types are
shown in Fig. S2 and Fig. S3.
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Figure 2 (preceding page): Evaluation of the predictions from CONCERT in mESCs and hESCs. a. RT
prediction performance (left panel on each row) and early/late RT classification performance (right panel on
each row) on the mutant and WT alleles of mESC CAST/129 in comparison with different methods (Repli-
seq data from [8]). b. RT prediction with respect to the presence of ERCEs at the Zfp42/Rex1 locus on
chromosome 8 in MESCs and the identified important genomic loci with high CONCERT importance scores.
Normalized estimated importance scores below 0.5 are not shown. ¢. Percentage of the predicted ERCEs (the
red dots) that overlap with the CONCERT predicted important loci, with varying extension sizes of the original
ERCEs. The boxplots show the corresponding background distributions of the percentage of the randomly
sampled regions overlapping with the predicted important loci. d. Distribution of the empirical P-value of the
distance of a predicted important locus to the nearest ERCE. The predicted loci are randomly shuffled on
the corresponding chromosomes to estimate the empirical background distribution. The sub-plot included is
an example showing the distance of a predicted important locus to the nearest ERCE vs. the background
distribution of the distances for the randomly shuffled loci. e. Distribution of the empirical P-value of the overlap
ratio of a predicted important locus with the matched ERCE. The predicted loci are randomly shuffled on the
corresponding chromosomes to estimate the empirical background distribution. The sub-plot included is an
example showing the overlap ratio of a predicted important locus with the matched ERCE vs. the background
distribution of the overlap ratios for the randomly shuffled loci. f. Distribution of the estimated importance scores
of ERCE regions vs. the background distribution in non-ERCE regions (left: region-wise mean scores; right:
region-wise maximal scores). g. Distribution of the estimated importance scores of ERCE regions mapped
to human vs. the background distribution in H1-hESC. h. Importance score distribution of ERCE regions
mapped to human with the co-binding sites of POU5F1, SOX2, and NANOG in H1-hESC. i. Examples of the
RT prediction and cell type-specific important genomic loci identified on chr14:54,295,000-58,750,000. Loci
Est. represents the estimated RT-predictive important genomic loci. H1-hESC Init_Zone represents replication
initiation zones in H1-hESC [27].
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Figure 3: Comparisons between the CONCERT predicted important loci and different genomic and epigenomic
features. a. Distribution of importance scores in genomic loci with CREs in open chromatin regions in GM12878
and H1-hESC. b. Enrichment of chromatin states annotated by ChromHMM [33] in the predicted important loci.
¢. Enrichment of specific TF or non-TF binding sites in the predicted important loci in open chromatin regions
in H1-hESC. The enrichment is measured by log2 Fisher’s exact test statistics (x-axis) and the P-value (y-axis).
d. Log?2 fold change of the percentage of predicted important loci depleted of known regulatory elements and
overlapping with a specific TE family vs. the percentage of predicted loci overlapping with both regulatory ele-
ments and the specific TE family in early and late RT regions in H1-hESC. e. Examples of predicted important
loci (depleted of regulatory elements) with specific TE families on chr6:122,250,000-123,000,000 in H1-hESC.
1st panel: the estimated importance scores; 2nd panel: real RT and predicted RT without or with deletions; 3rd
panel: predicted RT with deletion per bin for R1 or R5; 4th panel: TE families in each bin of R1 or R5. The
important bins and associated TEs are marked with dashed lines.
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Figure 4: Interplay between the CONCERT predicted RT-modulating important loci and RT origins as well
as 3D chromatin interactions. a. Distribution of the estimated importance scores on RT origins and non-
origins. RT origins were defined by SNS-seq peaks in H9-hESC [27]. b. The overlap between the predicted
important loci and SNS-seq peaks in H9-hESC. ¢. Hi-C aggregate analysis of the predicted important genomic
loci. d. Enrichment of CTCF ChlIP-Seq scores in genomic regions surrounding the predicted important loci.
e. Distribution of Hi-C O/E scores of interactions between the predicted important loci and RT origins. f.
Genome Browser example of the predicted important loci in the context of 3D chromatin interactions in H1-
hESC. The tracks shown are (from top to bottom): estimated importance scores, RT origins identified from
SNS-seq data (H1-hESC and H9-hESC) [27], Hi-C loops, Micro-C loops [59], real RT and predicted RT with
or without deletions of specific pairs of genomic loci. g. Predicted RT with individual in silico deletions of the
genomic locus in each specific pair of loci. Predicted RT with paired deletions is also shown.
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