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Abstract

Systems biology approaches have been used to define molecular signatures and
mechanisms of immunity to vaccination. However, most such studies have been done
with single vaccines, and comparative analysis of the response to different vaccines is
lacking. We integrated temporal transcriptional data of over 3,000 samples, obtained
from 820 healthy adults across 28 studies of 13 different vaccines and analyzed
vaccination-induced signatures associated with the antibody response. Most vaccines
induced similar kinetics of shared transcriptional signatures, including signatures of
innate immunity occurring 1-3 days post-vaccination, as well as the canonical
plasmablast and cell cycle signatures appearing 7 days post-vaccination. However, the
yellow fever vaccine YF-17D uniquely induced an early transient signature of T and B
cell activation at Day 1, followed by delayed antiviral/interferon and plasmablast
signatures that peaked at Days 7 and 14-21, respectively. Thus, despite the shared
transcriptional response to most vaccines, at any given time point there was no
evidence for a “universal signature” that could be used to predict the antibody response
to all vaccines. However, accounting for the asynchronous nature of responses led to
the identification of a time-adjusted signature that improved prediction antibody of
responses across vaccines. These results provide a transcriptional atlas of the human
immune response to vaccination and define a common, time-adjusted signature of
antibody responses to vaccination.
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Introduction

Systems vaccinology employs high-throughput -omics measurements together with
systems-based analysis approaches to better understand immune responses to
vaccination 2. The recent growth of this field, which began with initial studies of yellow
fever® * and seasonal influenza® ° vaccines, has rapidly expanded to include studies
profiling responses to a range of vaccines and vaccine platforms, including those
targeting diverse pathogens and age groups’?. These studies have led to important
discoveries such as the role for the nutrient sensor general control nonderepressible 2
(GCN2) in enhancing antigen presentation during responses to yellow fever
vaccination?!, as well as the impact of the gut microbiota in promoting antibody
responses to inactivated influenza vaccination®” 2. However, outside of a few studies®
10 thus far the vast majority have examined immune responses to a single vaccine,
hindering the ability to contextualize the findings and understand how differences in
vaccine formulations can impact immunogenicity.

Another important outcome of such studies has been the identification of early
transcriptional signatures predictive of immune response quality such as subsequent
antibody® > *® or antigen-specific T cell* " * responses. These findings may enable
more rapid and personalized evaluation of vaccine efficacy and development of
improved next-generation vaccines. Yet again, a current limitation is that the identified
predictive signatures thus far have been described in the context of responses to a
single vaccine, and the extent to which predictors of inmune response quality are
conserved across vaccines is unclear®® %°. We previously sought to address the
guestion of whether there was a ‘universal signature’ that could be used to predict
antibody responses to any vaccine by analyzing the transcriptional response to 5
different human vaccines. Our analysis revealed distinct transcriptional signatures of
antibody responses to different classes of vaccines, and provided key insights into
primary viral, protein recall and anti-polysaccharide responses®, yet failed to identify a
universal signature of vaccination.

Here we leverage Immune Signatures Data Resource?®, a curated database of publicly
available datasets containing transcriptional and immune response profiling of
peripheral blood following vaccination in humans, to perform a comparative analysis of
transcriptional responses from 820 healthy young adults across 13 different vaccines.
We find that while a common transcriptional program is shared across many vaccines,
there is significant heterogeneity especially in the kinetics of immune responses. In
particular, the live attenuated yellow fever vaccine induces a unique transcriptional
response, with a surprisingly early upregulation of B and T cell modules within a day of
vaccination, and a delayed induction of innate responses, including antiviral and
interferon signaling, peaking at 10-14 days following vaccination. Furthermore, in an
analysis of predictive signatures of antibody responses across vaccines, adjusting for
time of peak expression enabled a gene module associated with plasma cells and
immunoglobulins to consistently predict antibody responses across vaccines,
demonstrating the importance of accounting for immune response kinetics in the
development of universal predictors of response quality. Together, these findings
highlight the spectrum of immune responses across vaccines and serve as a basis for
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future studies to understand the mechanisms underlying variation in immune responses
across vaccines and inform future vaccine development.

Results

An integrated database of transcriptional responses to vaccination

As part of an effort to enable comparative studies and benchmarking of human vaccine
responses, we curated a database of transcriptomic responses of 820 healthy adults
(18-50 years old) across 13 different vaccines from previously published datasets.
These datasets were compiled into ImmPort, an NIH-funded repository for
immunological data?’, and uploaded to ImmuneSpace (http://www.ImmuneSpace.org)
for centralized QC and processing (Figure 1A). This combined database, named the
Immune Signatures Data Resource?®, includes responses to a broad range of vaccines,
including live-attenuated viruses (e.g. yellow fever, smallpox and influenza vaccines),
recombinant viral vectors (e.g. Ebola and HIV vaccines), inactivated viruses (e.g.
seasonal influenza vaccine), glycoconjugate vaccines (e.g. pneumococcal and
meningococcal vaccines) (Table S1). It also contains samples spanning multiple
response timepoints, ranging from a few hours to more than 3 weeks post-vaccination
(Figure 1B). Included participants in our initial analysis were restricted to 18-50 years
old, and there were similar age and sex distributions across vaccines (Figure 1C). For
analysis, all post-vaccination samples were normalized by pairwise fold change
calculation with their matched pre-vaccination samples. Principal variance component
analysis (PVCA)® revealed that demographic features such as age and sex had
relatively small contributions to variation in responses. In contrast, the post-vaccination
timepoint of the sample explained 15% of the variance in the data, suggesting that there
are shared kinetics of immune responses across vaccines (Figure 1D).

Common and unique transcriptional responses across different vaccines

To examine the overlap in responses across vaccines, we identified differentially
expressed genes post-vaccination relative to the pre-vaccination baseline as well as
differential expression of blood transcriptional modules (BTMs), a set of gene modules
developed through large-scale network integration of publicly available human blood
transcriptomes'®. There was much less overlap at a gene level (Figure S1A) than at a
module level (Figure S1B), where a majority of differentially expressed modules were
shared across 4 or more vaccines. Based on temporal expression patterns, the most
commonly induced modules clustered into four groups (Figure 2A). Cluster 1 (indicated
by the blue vertical bar to the left of the heatmap), upregulated at days 1 and 3 post-
vaccination, represented BTMs related to innate responses and included modules
associated with Toll-like receptor (TLR) and inflammatory signaling, antigen
presentation, and monocyte signatures. Cluster 2 (yellow vertical bar to the left)
contained multiple natural killer (NK) cell modules and was significantly downregulated
on Day 1 (Figure S1C). Finally, Clusters 3 (pink bar) and 4 (green bar) generally peaked
in activity on Day 7 and reflected plasma cell and cell cycle signatures, respectively,
corresponding with expansion of antibody-producing plasmablasts. The “innate” Cluster
1 was most prominently induced in vaccines containing a live viral vector (Ebola, HIV),
or an adjuvant (malaria) (Figure 2B). Meanwhile, the plasma cell signature in Cluster 3
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was strongly increased in the polysaccharide pneumococcal vaccine and the conjugate
meningococcal vaccine (Figure 2C).

We next analyzed how differentially expressed modules were shared across vaccine
responses (Figure 3). In agreement with the prior analysis, the response to most
vaccines on Days 1 (Figure 3A) and 7 (Figure 3C) reflected innate and plasma cell/cell
cycle responses, respectively, while the Day 3 response (Figure 3B) appeared as an
intermediate between these states, with both innate and cell cycle signatures present.
However, such responses were not universally shared across all of the vaccines. In
particular, the early innate and antiviral responses common to most vaccines on Day 1
were not observed in the varicella zoster (VZV) and yellow fever vaccine responses.
While these signatures appeared at later timepoints (Days 3 and 7) in yellow fever
vaccine responses, they were not observed at all following VZV. Additionally, the Day 7
cell cycle signature was not observed following smallpox, VZV, and polysaccharide
meningococcal vaccines. Notably, this signature was observed in the case of the
meningococcal conjugate vaccine, where the bacterial polysaccharides have been
conjugated to a diphtheria toxoid protein to induce memory and T helper cell
responses?’. Since diphtheria toxoid protein is used in other vaccines such as the
Haemophilus influenza type B (Hib) vaccine®, the cell cycle signature observed at day 7
likely reflects the plasmablast response of the recall response to diphtheria toxoid,
consistent with our previous study™.

Early adaptive and delayed innate transcriptional signatures of yellow fever
vaccine

At the gene level, responses were highly correlated across most vaccines on Day 1
post-vaccination (Figure 4A) but became more divergent at later timepoints (Figures
S2A-B). On Day 1, Ebola, inactivated influenza, HIV, and malaria vaccines exhibited the
strongest similarity (Figures 4A, S2C). However, the yellow fever vaccine YF-17D
induced a very distinct response that had little or even negative correlation with
responses to all other vaccines, including other live viral vaccines such as VZV, HIV,
and Ebola (Figures 4A, S2D). The innate pathways that were upregulated in other
vaccine responses were, in fact, downregulated in response to yellow fever vaccine on
Day 1 (Figure 4B). Instead, YF-17D induced early expression of multiple B and T cell
modules. Analysis of estimated cell frequencies using the xCell deconvolution
algorithm® suggested that this induction may reflect a rapid increase in the frequency of
peripheral B and CD4+ T cells (Figure S2E-F).

Another surprising feature of the yellow fever vaccine response was the relatively late
expression of antiviral and interferon pathways, whose expression starts to be observed
on Day 3 and peaks on Day 7 (Figure 4C-D). While these modules were also
upregulated at this timepoint in Ebola vaccine responses, their expression waned
rapidly following a robust early induction at Day 1. Some of the genes in these pathways
that were strongly upregulated on Day 1 in response to most vaccines, such as CXCL10
and OAS1, were upregulated as late as 21 days post-vaccination with YF-17D (Figure
4E). Importantly, both the early adaptive and delayed innate responses were consistent
across multiple studies from diverse geographical locations (Figures S2G-H). Together,
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these results highlight the unique kinetics of transcriptional responses to yellow fever
vaccine relative to other vaccines.

Time-adjusted transcriptional predictors of antibody responses

A key goal of systems vaccinology is to identify early signatures predictive of
subsequent protection from infection. Antibody titers have been established as a reliable
correlate of protection against many pathogens® and previous studies have identified
transcriptional signatures predictive of antibody responses to several vaccines,
including inactivated influenza® ** 8 333 yellow fever®, and hepatitis B'?. However,
these signatures have thus far been developed for single vaccines, and it remains to be
seen whether a ‘universal signature’ exists that can predict antibody responses across
vaccines. Our curated data resource is uniquely suited to address this question, as 10
of the encompassed vaccines had at least one dataset with antibody titer
measurements pre- and ~1 month post-vaccination (Figure S3A). As there was
substantial variability in antibody responses across vaccines, we defined ‘high’ and ‘low’
responders on a per dataset basis as the top and bottom 30% of participants according
to antibody titer fold changes. We then used an elastic-net machine learning algorithm
to develop classifiers capable of distinguishing between high and low responders based
on early transcriptional signatures (see Methods section for further details).

As an initial approach, we wanted to examine whether a model trained using responses
to a single vaccine could reliably predict responses to other vaccines. We therefore first
built models using all 15 inactivated influenza vaccine datasets (the vaccine for which
there was the largest number of samples) in a leave-one-study-out training/testing
configuration. As validation that our model could predict responses within the same
vaccine, classifiers trained using Day 7 fold-change expression data were able to
predict high versus low antibody response in the left-out influenza dataset, with AUCs
ranging between 0.55-0.9 (Figure 5A). The modules in these classifiers were primarily
associated with cell cycle and plasma cell modules (Figure S3B). These results are
consistent with prior work showing that classifiers built using similar pathways are
predictive of antibody responses to influenza vaccination across multiple seasons™®.
However, when we examined their performance in other vaccines, they were not reliably
predictive (Figure S3C). Moreover, the expression of modules associated with antibody
response to inactivated influenza vaccination at Day 7 was not generally correlated with
antibody responses across vaccines (Figure 5B).

We then asked whether training across multiple vaccines would improve the universality
of the identified signatures. Neither a leave-one-vaccine-out approach, nor a 10-fold
cross-validation approach combining all datasets, were able to identify signatures on
Day 3 or Day 7 post-vaccination that could accurately discriminate high versus low
responders across all vaccines (Figures S3D-E). However, analysis of the predictive
power of specific modules over time, such as M156.1, one of the plasma cell modules
associated with response in influenza vaccination on Day 7, revealed that this module
was predictive of response across many vaccines but at different timepoints (Figure
5C). While many vaccines saw a strong association between M156.1 on Day 7 and
subsequent antibody response, in certain vaccines such as yellow fever and smallpox,
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expression of the module was not associated with response until much later, at Days
10-14 and 21, respectively, consistent with the delayed kinetics of this BTM with these
vaccines (Figure 2).

These results suggest that differential kinetics of immune responses across vaccines
pose a confounding variable in the identification of universal predictive signatures of
response at a single timepoint, but that using vaccine-specific timepoints dictated by the
particular kinetics of immune responses for identification of predictive biomarkers of
vaccine responses may improve the universality of such signatures. To test this
hypothesis in the context of the plasma cell signature, we identified the timepoint at
which expression of the plasma cell module M156.1 peaked in response to each
vaccine (Figure 2C). We then trained a logistic regression classifier with M156.1
expression as an input in a 10-fold cross-validation approach using fold-change data at
the peak M156.1 expression timepoint for each vaccine. Indeed, using M156.1 peak
expression timepoints improved the overall performance of the classifier compared with
using a single timepoint (Day 7) for all of the vaccines (Figure 5D). This improvement
was driven by increases in response prediction among vaccines in which the plasma
cell signature peaked at timepoints other than Day 7, such as the yellow fever and
smallpox vaccines (Figure 5E). Thus, expression of the plasma cell module M156.1 acts
as a time-variable universal signature of antibody responses to vaccination.

Impact of aging on transcriptional responses to vaccination

The impairment of vaccine efficacy with age is a major challenge for vaccine
development and public health. Although declining vaccine efficacy can broadly be
attributed to effects of immunosenescence such as loss and dysfunction of naive T
cells®, diminished class-switch capability of B cells®®, and decreased TLR function
among innate cells®” *, the molecular mechanisms responsible for impaired vaccine
responses among older adults are not yet fully understood. While most of the curated
datasets in the HIPC resource contained only young adult participants, some studies,
including those of inactivated influenza®®, varicella zoster'*, and hepatitis B*? vaccines,
profiled responses of both young (<50) and older (=60) vaccinees. As expected, post-
vaccination antibody responses were diminished in older compared to younger
participants across all three vaccines (Figure 6A).

We sought to examine for the effect of aging on immune responses across vaccines by
comparing BTM activity scores of the most commonly induced BTMs (Figure 2A)
between young and older participants across all three vaccines at each timepoint.
Broadly, transcriptional responses to the three vaccines were similar between the two
age groups (Figure S4A). However, there were significant age-associated differences in
several pathways in response to inactivated influenza vaccination, including decreased
expression of interferon and other innate immune modules in older compared to young
participants early post-vaccination (Figure 6B-C), consistent with prior findings*®.
Despite these differences, the power of the M156.1 plasma cell module to predict the
antibody response was highly similar in both young and older individuals (Figure 6D).
These results suggest conservation in the pathways responsible for successful antibody
production post-vaccination, consistent with prior findings for influenza vaccination®.
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Discussion

The high degree of homology in the vaccine-induced signatures induced demonstrates
that diverse vaccines that differ widely in target pathogens and composition stimulate
conserved immunological networks. Despite this homology, there was still substantial
heterogeneity in both the magnitude and kinetics of the induced responses across
vaccines. The most distinct in this regard were responses to the yellow fever vaccine
YF-17D, which displayed several unique features: (1) a delayed innate and antiviral
response which did not peak until Days 3-7 post-vaccination (Figure 4D), (2) an early
upregulation of B and T cell signatures at Day 1 (Figures 4B, S3E) not observed in other
vaccines until much later, and (3) a delay in cell cycle and plasma cell signatures
typically associated with the expansion of antigen-specific antibody-secreting cells
(Figures 2A-B).

The mechanisms underlying the delayed responses are unclear, but could be caused by
differences in viral tropism, the slow but sustained tempo of viral replication in vivo, or
unique immune-evading properties of YF-17D. Wild-type yellow fever infects both
Kupffer cells and hepatocytes in the liver, with the potential for severe pathology®’;
however data from NHPs suggests that YF-17D infects lymphoid cells at the site of
injection and spreads to monocytes and macrophages in the lymph nodes, bone
marrow, and spleen but does not infect the liver*> **. This tropism appears similar to
other live viral or viral-vectored intramuscular vaccines included in this dataset such as
rVSV-ZEBOV which is thought to target endothelial cells, monocytes, macrophages,
and myeloid dendritic cells in lymphoreticular tissues*, and MRKAd5/HIV containing an
Ad5 adenovirus vector, which also has broad tropism but appears to cause local and
lymphoreticular infection without reaching the liver following intramuscular
administration*® *,

Of note, yellow fever and other flaviviruses have a specific capability to inhibit interferon
signaling via multiple mechanisms, including suppression of JAK-STAT signaling®,
which could potentially cause the observed delay in interferon responses following YF-
17D vaccination. Interestingly, the Vaccinia virus also has several mechanisms for
inhibition of interferon responses, including prevention of IRF-3 and NFxB activation
and dephosphorylation of STAT1/2*. Although early response data was not available,
the smallpox vaccine containing Vaccinia also induced some degree of delayed
interferon response following vaccination (Figure 4D).

While YF-17D demonstrated delayed induction of interferon signatures, induction of B
and T cell signatures at Day 1 was much earlier than typically observed with other
vaccines. This timing is most likely too early to represent an antigen-specific response
but could reflect non-specific activation or recruitment of naive cells into the circulation.
Alternatively, these signatures could be a result of increased relative proportions of
adaptive cells in the blood due to extravasation of innate cells into tissues at the site of
injection. Further investigation at a cellular level is required to address these
hypotheses and elucidate the mechanisms by which YF-17D exerts such unique early
effects on the adaptive immune system.
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Finally, our analysis of predictive signatures of antibody responses (Figure 5) indicates
that vaccine response kinetics play an important role in determining such signatures.
Here we have illustrated this principal for a single plasma cell transcriptional module,
however future analyses may enable detection of additional and more accurate
signatures. We have previously proposed the concept of a ‘vaccine chip’ that could
measure defined biomarkers and be used to predict protective immune responses
across vaccines®. This chip would be designed to measure expression of a select set of
genes or modules, subsets of which would predict a particular type of functional or
protective immune response (e.g., neutralizing antibody titers, effector CD8+ T cell
responses, frequency of polyfunctional T cells, T helper 1 (T1) versus T2 response
bias, etc). Our findings demonstrate that the unique kinetics of immune responses to
different vaccines should be accounted for in the development of such a tool. In
practice, small phase I/ll trials could be used to define response kinetics and enable the
successful application of a ‘vaccine chip’ to predict immune responses in subsequent
trials.

Due to the significant costs needed to perform a clinical trial of sufficient size, such
vaccine studies are rarely performed with more than one vaccine. Here, we have
demonstrated that meta-analysis of vaccine trials can provide valuable insights into the
common and unique aspects of immune responses across vaccines. Combined with the
Immune Signatures Data Resource?, these computational approaches and repositories
will enable future research into the mechanisms of vaccine-induced immunity to inform
development of improved adjuvants and vaccines.
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Methods

Gene expression preprocessing

An extensive description of the preprocessing of microarray and RNA-Sequencing
(RNA-Seq) datasets included in the Immune Signatures Data Resource can be found in
the associated manuscript®. The dataset includes 2,949 samples from published
studies and 228 samples not included in previously published studies. All these samples
were assembled into a single resource. Briefly, raw probe intensity data for Affymetrix
studies were background corrected and summarized using the RMA algorithm®’. For
studies using the Illlumina array platform, background corrected raw probe intensities
were used. For RNA-Seq studies, count data was voom-transformed*® to mimic the
distribution of microarray expression intensities. Expression data within each study was
guantile normalized and log-transformed separately for each study.

Batch correction

An extensive description of the across studies normalization used to correct for batch
effects can be found in the Immune Signatures Data Resource manuscript®®. Briefly, a
linear model was fit using the pre-vaccination normalized gene expression as a
dependent variable and platform, study, and blood sample type (i.e., whole blood or
PBMC) as independent variables. The estimated effect of the platform, study and
sample type was then subtracted from the entire gene expression (pre- and post-
vaccination) to obtain batch corrected gene expression.

Identification of differentially expressed genes

To determine differentially expressed genes, p values were first computed within each
study using paired student’s t-tests. Next, Stouffer's method was used to combine p
values across studies via the sumz function in the metap R package®®, with weighting
according to the square root of the study sample size. Finally, combined p values were
then adjusted for multiple testing using the Benjamini-Hochberg procedure. Similarly,
average gene fold changes for each vaccine at each timepoint were computed by
averaging across studies while using weighting equal to the study sample size.

Gene set enrichment analysis

The enrichment analysis of BTMs was performed in two steps. First, for every study and
time point, enrichment was calculated using QUSAGE®, providing as contrast “Day X —
Day 0” where X is the current time point, and also a “pairVector” containing the subject
identifiers so that a paired analysis would be performed. Second, to integrate the results
from multiple studies of the same vaccine, we performed a meta-analysis for every
vaccine + timepoint combination, using the “combinePDFs” function of QUSAGE.

Gene and module sharing analysis

The sharing number of a gene/module is computed as the maximum number of
vaccines it is significantly differentially expressed (FDR<0.05) in, irrespective of time
point. For modules, the p-values were calculated using QUSAGE™ (see Gene set
enrichment analysis). A null distribution for sharing was generated by performing 10,000
permutations of gene/module labels within each vaccine + timepoint group.
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Antibody titer measurements and identification of high and low responders

Depending on the study, antibody titers were measured by neutralization assays,
hemagglutination inhibition assay (HAI), or Immunoglobulin G (IgG) levels measured by
ELISA?. Since some vaccines include multiple strains of viral antigens, the fold change
in the antibody response metric was defined as the maximum fold change (MFC) of any
strain in the vaccine at day 28 (+/- 7 days) compared to pre-vaccination. To minimize
the difference in antibody response between studies (e.g., due to different vaccines or
different techniques used for antibody concentration assessment), the high and low
responders were identified for each study separately by selecting the participants with
MFC equal or above the 70th percentile as high responders and participants with MFC
equal or below the 30th percentile as low responders.

Identification of predictive signatures of antibody responses

Four training/testing setups employed for identification of predictive signatures of
antibody responses: 1) inactivated influenza datasets only, leave-one-study-out 2)
training on all inactivated influenza datasets, testing on other vaccines 3) leave-one-
vaccine-out (all datasets combined) 4) 10-fold cross validation (all datasets combined).
All models were trained using elastic-net logistic regression using the ‘caret’ and
‘glmnet’ R packages. BTM enrichment scores were calculated for each sample using
the single-sample Gene Set Enrichment Analysis (sSGSEA) function and used as input
features to the models, filtering for modules with a standard deviation > 75% quantile of
the standard deviation. Models were fit using either Day 3 fold-change or Day 7 fold-
change of ssGSEA score separately. Tuning parameters and performance metrics were
estimated using 10-fold cross-validation. Confidence intervals were estimated using the
‘ci.auc’ function from the pROC R package.

When developing predictive models for the timepoint adjustment approach, logistic
regression models were trained using ssGSEA score fold-change for module M156.1,
either at Day 7 or at the timepoint of peak expression in a given vaccine. AUC
confidence intervals were estimated using linear-mixed effects models fitted with 100
Monte-Carlo resamples. When computing AUCs across multiple vaccines, a weighted
AUC was computed using sample size as the weights. For the analysis of temporal
change in the predictive capability of M156.1 (Figure 4C), a weighted mean AUC (based
on number of samples in each study) was computed using the calculateROC function of
Metalntegrator R package based on the geometric mean of gene fold changes in the
M156.1 module.
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Figure Captions

Figure 1. An integrated database of transcriptional responses to vaccination.

A) Workflow for collection, curation, and standardization of datasets in the Immune
Signatures Data Resource. B) Histogram of the number of samples included per
vaccine at each timepoint in the Immune Signatures Data Resource. Day 0 represents
Day of vaccination. C) Boxplots of the age distribution of participants in the Immune
Signatures Data Resource by vaccine. Shape of points denotes the subject’s sex. D)
Bar plot representing the proportion of variance in post-vaccination transcriptional
responses that can be attributed to clinical (age, sex, ethnicity) and experimental
variables (time after vaccination, vaccine) via Principal Component Variance Analysis.
The residual represents the proportion of the variance that could not be explained by
any of the included variables.

Figure 2. Common and unique transcriptional responses across different
vaccines. A) Heatmap of common differentially expressed modules (regulated in 7 or
more vaccines) over time (*FDR<0.05). Color represents the QUSAGE activity score.
Clustering on columns was performed separately for Days 1, 3, 7, 14, and 21 post-
vaccination. B) Kinetics of the mean FC of cluster 1 modules across vaccines C)
Kinetics of the mean FC of cluster 3 modules across vaccines.

Figure 3. Overlap in transcriptional responses across vaccines. A-C) Circos plots
of the overlap in differentially expressed modules (FDR<0.05) across vaccines on Days
(A) 1, (B) 3, and (C) 7. Each segment of the circle represents one vaccine, and each
point in a segment represents a single module. Bars in the outer circle represent the
activity score of differentially expressed modules. Lines connect modules with a
significant positive score shared between vaccines. Inner circle boxes and line colors
represent the functional groups of the modules.

Figure 4. Early adaptive and delayed innate transcriptional signatures of yellow
fever vaccine. A) Correlation matrix of pairwise Spearman correlations of Day 1 gene-
level fold changes between vaccines. B) Heatmap of Day 1 activity scores of modules
differentially expressed in response to YF vaccination (QUSAGE FDR<0.2). C) Heatmap
of Day 7 activity scores of modules differentially expressed in response to YF
vaccination (QUSAGE FDR<0.05, activity score >0.2). D) Kinetics of the mean FC of
module M75 across vaccines. E) Heatmap of the post-vaccination FC of genes in
module M75.

Figure 5. Time-adjusted transcriptional predictors of antibody responses. A) Area
under the ROC curve (AUC) barplot of antibody response prediction performance per
dataset for the elastic net classifier trained on inactivated influenza datasets only. B)
Heatmap of high versus low antibody responder difference across vaccines of modules
differentially expressed (FDR<0.05) between high and low antibody responders to
inactivated influenza vaccination. C) Kinetics of the predictive power of M156.1 across
vaccines. For each vaccine/timepoint combination, the AUC is computed based on
difference in the geometric mean of the fold changes of the genes in the M156.1
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between high and low responders (see Methods for details). D) Weighted ROC curves
for a logistic regression classifier using M156.1 expression either at Day 7 in all
vaccines (Day 7) or at the vaccine-specific peak expression timepoint (Peak) (Weighted
AUC Day 7 / Peak = 0.65/0.53). E) Per vaccine AUC barplot for a logistic regression
classifier using M156.1 expression either at Day 7 in all vaccines (yellow) or at the
vaccine-specific peak expression timepoint (green — peak at Day 7, blue — peak at other
timepoints).

Figure 6. Impact of aging on transcriptional responses to vaccination. A) Boxplots
of Day 30 antibody responses to vaccination in young (<50) and older (=60) participants
across vaccines. B) Modules differentially expressed between young and older
participants in response to inactivated influenza vaccination (QUSAGE FDR<0.05). C)
Network plot of modules M111.1 on Day 1 following inactivated influenza vaccination in
young and older participants. Each edge represents a co-expression relationship, as
described in Li et al.'%; colors represent the Day 1 log2 FC. D) Kinetics of the predictive
power of modules M156.1 across vaccines in young and older participants (filled circles
indicate p<0.05, 1000 permutations).

Table S1. Summary of vaccine datasets.

Figure S1. Overlap in differentially expressed genes/modules and kinetics of
common module clusters. A-B) Histograms of overlap in DEGs (A) or differentially
expressed modules (B) between vaccines. A gene/module is shared with another
vaccine if it is significantly (FDR < 0.05) regulated in the same direction, irrespective of
time point. Grey bars represent the null distribution generated by 10,000 permutations
of gene/module labels within vaccine + timepoint groups. Error bars indicate the 2.5%
and 97.5% quantiles. C) Kinetics of the mean FC of cluster 2 BTMs across vaccines. D)
Kinetics of the mean FC of cluster 4 modules across vaccines.

A gene(/set) is shared with another vaccine if it is significantly (FDR < 0.05) up/down in
the same direction, irrespective of time point. Blue bars, number of genesets shared (y-
axis) between the same number of vaccines (x-axis). Grey bars, null distribution
generated by 10k permutations of geneset labels within vaccine+timepoint groups. Error
bars indicate the 2.5% and 97.5% quantiles.

Figure S2. Gene-level correlations between vaccines and estimated cell
frequencies. A) Correlation matrix of pairwise Spearman correlations of Day 3 gene-
level fold changes between vaccines. B) Correlation matrix of pairwise Spearman
correlations of Day 7 gene-level fold changes between vaccines. C) Scatterplot of Day 1
gene FCs between HIV and Malaria vaccines. D) Scatterplot of Day 1 gene FCs
between Yellow Fever and Pneumococcus vaccines. E) Boxplot of Day 1 FC in xCel
estimated B cell frequencies across vaccines. F) Boxplot of Day 1 FC in xCell*!
estimated CD4+ T cell frequencies across vaccines. *p < 0.05, **p < 0.01, ***p < 0.001,
**** n < 0.0001.
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Figure S3. Antibody response prediction across vaccines. A) Boxplots of Day 30
antibody responses to vaccination across vaccines. B) Barplot of feature importance for
the GLM classifier trained on inactivated influenza datasets only. AUC barplot of
antibody response prediction performance across vaccines for the GLM classifier
trained on inactivated influenza datasets only. C) AUC barplot of antibody response
prediction performance of the leave-one-vaccine-out GLM classifier. D) AUC barplot of
antibody response prediction performance of the 10-fold cross-validation GLM classifier.

Figure S4. Comparison of common transcriptional responses between age
groups. A) Scatterplots of module activity scores in each vaccine among young (x-axis)
and elderly (y-axis) of the most commonly expressed modules (Figure 2A) on days 1-7.
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ImmPort Accession Pathogen Vaccine Type Adjuvant/Vector Sample Type # of samples
SDY1373 Ebola Recombinant Viral Vector VSV Whole blood 46
SDY1328 Hepatitis B Inactivated None Whole blood 51
SDY1291 HIV Recombinant Viral Vector AdV PBMC 50
SDY1119 Influenza Inactivated None PBMC 67
SDY1276 Influenza Inactivated None Whole blood 828
SDY180 Influenza Inactivated None Whole blood 102
SDY212 Influenza Inactivated None Whole blood 29
SDY224 Influenza Inactivated None PBMC 55
SDY269 Influenza Inactivated None PBMC 80
SDY270 Influenza Inactivated None PBMC 83
SDY400 Influenza Inactivated None PBMC 60
SDY404 Influenza Inactivated None PBMC 64
SDY520 Influenza Inactivated None Whole blood 51
SDY56 Influenza Inactivated None PBMC 96
SDY61 Influenza Inactivated None PBMC 27
SDY63 Influenza Inactivated None PBMC 42
SDY640 Influenza Inactivated None Whole blood 44
SDY80 Influenza Inactivated None PBMC 256
SDY269 Influenza Live attenuated LAIV PBMC 83
SDY1293 Malaria Recombinant protein AS01/AS02 PBMC 165
SDY1260 Meningococcus Conjugate None PBMC 51
SDY1325 Meningococcus Conjugate None Whole blood 4
SDY1260 Meningococcus Polysaccharide None PBMC 39
SDY1325 Meningococcus Polysaccharide None Whole blood 2
SDY180 Pneumococcus Polysaccharide None Whole blood 54
SDY180 Pneumococcus Polysaccharide None Whole blood 101
SDY1370 Smallpox Live attenuated Vaccinia PBMC 48
SDY1364 Tuberculosis Recombinant Viral Vector Vaccinia PBMC 36
SDY984 Varicella Zoster Live attenuated vzv PBMC 124
SDY1264 Yellow Fever Live attenuated YF17D PBMC 87
SDY1289 Yellow Fever Live attenuated YF17D Whole blood 117
SDY1294 Yellow Fever Live attenuated YF17D PBMC 109

SDY1529 Yellow Fever Live attenuated YF17D Whole blood 180


https://doi.org/10.1101/2022.04.20.488939
http://creativecommons.org/licenses/by-nc-nd/4.0/

G000 4

Mumber of genes

a4

:

%

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.20.488939; this version posted April 26, 2022. The copyright holder for this preprint (which
er, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

was not certified by peer review) is the author/

1

|IIII
‘I_-___
o i 2 3 4 5 & 7 8

availabl der aC
1004
122
=
[
type o
null S
W observed )
Qo
£
>
P4

MNumber of different vaceines (pathogen + vaccine type)

@

©
o

Mean FC (log2)
1)
(6]

Cluster 2

01

3 7 14
Day post-last vaccination

21

504

04

-BY-NC-ND Z-0 International ficense.

|

|IIIII|I
_EI IHm_
0 1 2 3 4 5 6 7 8 9

type
null
W observed

Number of different vaccines (pathogen + vaccine type)

O

Mean FC (log2)
© o o o o
- |\ w B [(6)]

o
=)

Cluster 4

Vaccine

— Ebola (Recombinant Viral Vector)

— Smallpox (Live attenuated)

- - Tuberculosis (Recombinant Viral Vector)

— Hepatitis B (Inactivated)

— Yellow Fever (Live attenuated)

-+ Malaria (Recombinant protein)

— HIV (Recombinant Viral Vector)

= Influenza (Inactivated)

-+ Meningococcus (Polysaccharide)

— Meningococcus (Conjugate)

= Varicella Zoster (Live attenuated)

-+ Influenza (Live attenuated)

— Pneumococcus (Polysaccharide)
NA

01 3 7 14
Day post-last vaccination


https://doi.org/10.1101/2022.04.20.488939
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.20.488939; this versmn posted April 26, 2022. The copyright holder for this preprint (which

was not certr&red by peer review) is the author/funder, who has gran

available under aCC-BY-NC-hg

07
= —
~ c —~ 9 —~
) 9]
e 8 ¢ g -3
2 % - 3 3 24 &8 -
g g 3 8 S s 35 283
8 8 ¥ 8 S 5 S 3 N 3
S 6o 3 & = S g 8
> o 3 s =~ N & &L S N
e e £ E £ &k < = @ ¢
£ £ = = g8 — o0 ® 3 o ]
§ § £ 2 s =22 38 3 5 2
= = o6 a =T Emw g S E L
Meningococcus (PS)
. . 0.8
Meningococcus (Conjugate)
Smallpox (LA) 06
Pneumococcus (PS) 0.4
Malaria (RP) 0.2
HIV (RVV) o Rho
Influenza (Inactivated) 0.2
Ebola (RVV) L 0.4
Yellow Fever (LA
A 0.6
Varicella Zoster (LA)
0.8
Influenza (LA)
-1
C :
R=0.81, p<2.2e-16
(&) e o :
Log
Y
(=)
ks]
>
©
A 2
S
=
()
=0
T
_2 .
-1 0 1 2 3
Malaria (RP) Day 1 log2 FC
*kk * BFFE *kkk *kk e *kk
14 o s
o] [
[« %
g | # % % g
o
()]
o
-1
8 °
© ° = © ©
2 = g 2 2 2
- S [ o} 5}
S s £ g 2 2
S £ I 3 © ©
Z - = £ [ [
€ I 2 © 2 2
g g E S =) 2
5 ] e 2 3 9]
E £ ¢ 8 B s
S £ T 53 3
3 « 3 N “3'
c s g 3 S
: -
& S
G enriched in B cells (1) (M47.0) H
0.3
. 1.0
% 0.2 %)
ie) ke)
0.1
2 Pos
c C
8 o0 8
= =
-0.1 0.0

d bioRxiv a license to display the preprint in perpetuity. It is made

P 4.0 International license. & .

S o
~ © T . o] ~
n Q 2 < S ~ O
a O s I =3 a
e =2 g 2 z g =
0 o B 5 8 & 9
3 3 8 g = -2 £ S 3
288s 235333 <38
8 8§ =2 <o N $ == a7 §
o 9 > v @ x L2 3
o o NS S © 0w N 5 2 S =]
E 2 ¢c T B 3 = £ & £ B 2
> £ ¢ 8 = g 3 & 3§ 8 g =
2 £ 2 °o > £ =2 3 QL o 5
c 9 £ 9 2 8 3 ¥ E o 5 2
o =2 £ wWwIT > > 5 unIF =

Pneumococcus (PS)
Meningococcus (Conjugate)
Influenza (Inactivated)
Ebola (RVV)

HIV (RVV)

Varicella Zoster (LA)

Yellow Fever (LA)

Influenza (LA)

Smallpox (LA)
Hepatitis B (Inactivated)
Tuberculosis (RVV)

Meningococcus (PS)

1.0

D

=-0.24, p<2.2e-16

Pneumococcus (PS) Day 1 log2 FC

-2 -1
Yellow Fever (LA) Day 1 log2 FC

CD4+ T Cells

0.8

0.6

*kkk *FEF *kkk

log2
)
<

i}
1

SRR
e

o

Influenza (Inactivated) -

Ebola (Recombinant Viral Vector) -
HIV (Recombinant Viral Vector)
Malaria (Recombinant protein) - %

Pneumococcus (Polysaccharide) -

Varicella Zoster (Live attenuated) -

antiviral IFN signature (M75)

Study / Location

SDY1264 / USA
— SDY1289 / Canada/Switzerland
— SDY1294 / China

5
Day post-last vaccination

14

7
Day post-last vaccination

Yellow Fever (Live attenuated) -


https://doi.org/10.1101/2022.04.20.488939
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.20.488939; thi April 26, 2022. The copyright holder for this preprint (which
A ﬁm@wcemqwammhaammwmo has g4 Satte a license to display the preprint in perpetuity. It is made
¢ available under aCG-BY-NC-ND 4.0lnternational license.
20- °
10 . s 6 ° ° 5.0
L
5 u 10 B . . 25
- 5 ° 0.0
0 e — — o
0 28 [ 28 0 28
( i ( i Smallpox (Live is inant Viral Vector)
) . . o o B .
B 4 1.0 °
E s ° 04 °
E; s 2- 02 0.5
: NI = I N . =2 B3
[ 28 0 28 0 28 0 28
Varicella Zoster (Live ‘ Yellow Fever (Live Day Post-Vaccination
17
o 9
16 =
61 °
15 =
B 3l
. ]
ol
0 28 0 28
( ; 1.00 A T T T
plasma cells, immunoglobulins (M156.1) _ 0.75 1
=
transmembrane and ion transporters (1) (M142) - O
=
© 050 R =-=-- - -1--
complement activation (I1) (M112.1) . =)
<
ATF targets network (M41.4) . 0.254
TBA (M149) . —
000 :
cell cycle, mitotic phase (M230) l ' Ib Ib T T T Ib T Ib Ib
& 3 & & & o &
TBA (M218) I S S > R $ é@\ & «\"\ S o“é\
\(&0 fo& oS RS R @ . \\q} @ @
& & > A S >
Q7 & R4 S S ¥ & K &
TBA (M246) I & N <§’ < < V& V N
N >/ &) 0(9/ 06/ 6\./ O & &
& g S $ & & § & o
S &F N & & Q & 19 &
enriched in activated dendritic cells/monocytes (M64) NS & 00 6‘0 2} Q}\-’o N
N & E S, ©
&
0 25 50 75 100 NS N ¥
&
Importance &
D3FCH E 1.00
. Hepatitis B_Inactivated
BM
100 . Influenza_Inactivated
8 . Influenza_Live attenuated 0.75
3!,0'75‘ . Meningococcus_Conjugate
8050 N $ A BN 0 G N S . Meningococcus_Polysaccharide o j[ I j[ I I
0.50
3 . Pneumococeus_Polysaccharide 2 I
é 0254 . Smallpox_Live attenuated
i . Tuberculosis_Recombinant Viral Vector 0.25
1004
. Varicella Zoster_Live attenuated
[ vellow Fever_Live attenuated
0.00

0.754

0.

3
Influenza (Inactivated)

0.

o

Influenza (Live attenuated)
Meningococcus (Conjugate)
Meningococcus (Polysaccharide)
Smallpox (Live attenuated)

dnthu

0.00

Pneumococcus (Polysaccharide)
Varicella Zoster (Live attenuated)

Training

. Testing

Tuberculosis (Recombinant Viral Vector)

Yellow Fever (Live attenuated)


https://doi.org/10.1101/2022.04.20.488939
http://creativecommons.org/licenses/by-nc-nd/4.0/

activity_score.old

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.20.488939; this version posted April 26, 2022. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Day 1 Day gvallable under aCC@ay-le-ND 4.0 International license.
1.07 R?=0.71
p=272e-95("")
0.5+ } ST
. D
O
0.0+ s 2|8
: o~ SRl=
. 8 =
[0]
_051 a|w
-1.04
1.0 R%*-=06 R?=0.28 R?=0.23
05- p =9.13e-70 (**") p=4.10e-26 ("**) p=1.71e-21("")
: R S| =
PP A m || =
0.04 .¢r”‘ 2 ‘v 2|5
: Z 1 7 SIS
RS
-054 fol,
-1.0 1
1.01 R%*=0.29 R%=06 R%*=0.52
=8.66e-28 ("™ =5.49e-71 (**"] =1.53e-57 (**" C <
0.5 - P ™) p =54 (") p=1 ™) 5 g
. . o |8
0.0+ o 7 7 5|5
. > Y . ,‘ar 2 | n
L “* [o)
Q
- . —_ (2]
05 g|s
-1.04
T T T T T T T T T T T T T
S 2 o v o2 2 o v o2 ¥ o v o
T 9 ©o o 7 9 ©o o - T Q@ oo o =

Hepatitis B«

activity_score.young

Influenza -

Varicella Zoster


https://doi.org/10.1101/2022.04.20.488939
http://creativecommons.org/licenses/by-nc-nd/4.0/

