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Abstract 
Systems biology approaches have been used to define molecular signatures and 
mechanisms of immunity to vaccination. However, most such studies have been done 
with single vaccines, and comparative analysis of the response to different vaccines is 
lacking. We integrated temporal transcriptional data of over 3,000 samples, obtained 
from 820 healthy adults across 28 studies of 13 different vaccines and analyzed 
vaccination-induced signatures associated with the antibody response. Most vaccines 
induced similar kinetics of shared transcriptional signatures, including signatures of 
innate immunity occurring 1-3 days post-vaccination, as well as the canonical 
plasmablast and cell cycle signatures appearing 7 days post-vaccination. However, the 
yellow fever vaccine YF-17D uniquely induced an early transient signature of T and B 
cell activation at Day 1, followed by delayed antiviral/interferon and plasmablast 
signatures that peaked at Days 7 and 14-21, respectively. Thus, despite the shared 
transcriptional response to most vaccines, at any given time point there was no 
evidence for a “universal signature” that could be used to predict the antibody response 
to all vaccines. However, accounting for the asynchronous nature of responses led to 
the identification of a time-adjusted signature that improved prediction antibody of 
responses across vaccines. These results provide a transcriptional atlas of the human 
immune response to vaccination and define a common, time-adjusted signature of 
antibody responses to vaccination. 
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Introduction 
Systems vaccinology employs high-throughput -omics measurements together with 
systems-based analysis approaches to better understand immune responses to 
vaccination1, 2. The recent growth of this field, which began with initial studies of yellow 
fever3, 4 and seasonal influenza5, 6 vaccines, has rapidly expanded to include studies 
profiling responses to a range of vaccines and vaccine platforms, including those 
targeting diverse pathogens and age groups7-20. These studies have led to important 
discoveries such as the role for the nutrient sensor general control nonderepressible 2 
(GCN2) in enhancing antigen presentation during responses to yellow fever 
vaccination21, as well as the impact of the gut microbiota in promoting antibody 
responses to inactivated influenza vaccination22, 23. However, outside of a few studies8-

10, thus far the vast majority have examined immune responses to a single vaccine, 
hindering the ability to contextualize the findings and understand how differences in 
vaccine formulations can impact immunogenicity.  
 
Another important outcome of such studies has been the identification of early 
transcriptional signatures predictive of immune response quality such as subsequent 
antibody3, 5, 18 or antigen-specific T cell3, 7, 14 responses. These findings may enable 
more rapid and personalized evaluation of vaccine efficacy and development of 
improved next-generation vaccines. Yet again, a current limitation is that the identified 
predictive signatures thus far have been described in the context of responses to a 
single vaccine, and the extent to which predictors of immune response quality are 
conserved across vaccines is unclear24, 25. We previously sought to address the 
question of whether there was a ‘universal signature’ that could be used to predict 
antibody responses to any vaccine by analyzing the transcriptional response to 5 
different human vaccines. Our analysis revealed distinct transcriptional signatures of 
antibody responses to different classes of vaccines, and provided key insights into 
primary viral, protein recall and anti-polysaccharide responses8, yet failed to identify a 
universal signature of vaccination. 
 
Here we leverage Immune Signatures Data Resource26, a curated database of publicly 
available datasets containing transcriptional and immune response profiling of 
peripheral blood following vaccination in humans, to perform a comparative analysis of 
transcriptional responses from 820 healthy young adults across 13 different vaccines. 
We find that while a common transcriptional program is shared across many vaccines, 
there is significant heterogeneity especially in the kinetics of immune responses. In 
particular, the live attenuated yellow fever vaccine induces a unique transcriptional 
response, with a surprisingly early upregulation of B and T cell modules within a day of 
vaccination, and a delayed induction of innate responses, including antiviral and 
interferon signaling, peaking at 10-14 days following vaccination. Furthermore, in an 
analysis of predictive signatures of antibody responses across vaccines, adjusting for 
time of peak expression enabled a gene module associated with plasma cells and 
immunoglobulins to consistently predict antibody responses across vaccines, 
demonstrating the importance of accounting for immune response kinetics in the 
development of universal predictors of response quality. Together, these findings 
highlight the spectrum of immune responses across vaccines and serve as a basis for 
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future studies to understand the mechanisms underlying variation in immune responses 
across vaccines and inform future vaccine development. 
 
Results 
 
An integrated database of transcriptional responses to vaccination  
As part of an effort to enable comparative studies and benchmarking of human vaccine 
responses, we curated a database of transcriptomic responses of 820 healthy adults 
(18-50 years old) across 13 different vaccines from previously published datasets. 
These datasets were compiled into ImmPort, an NIH-funded repository for 
immunological data27, and uploaded to ImmuneSpace (http://www.ImmuneSpace.org) 
for centralized QC and processing (Figure 1A). This combined database, named the 
Immune Signatures Data Resource26, includes responses to a broad range of vaccines, 
including live-attenuated viruses (e.g. yellow fever, smallpox and influenza vaccines), 
recombinant viral vectors (e.g. Ebola and HIV vaccines), inactivated viruses (e.g. 
seasonal influenza vaccine), glycoconjugate vaccines (e.g. pneumococcal and 
meningococcal vaccines) (Table S1). It also contains samples spanning multiple 
response timepoints, ranging from a few hours to more than 3 weeks post-vaccination 
(Figure 1B). Included participants in our initial analysis were restricted to 18-50 years 
old, and there were similar age and sex distributions across vaccines (Figure 1C). For 
analysis, all post-vaccination samples were normalized by pairwise fold change 
calculation with their matched pre-vaccination samples. Principal variance component 
analysis (PVCA)28 revealed that demographic features such as age and sex had 
relatively small contributions to variation in responses. In contrast, the post-vaccination 
timepoint of the sample explained 15% of the variance in the data, suggesting that there 
are shared kinetics of immune responses across vaccines (Figure 1D). 
 
Common and unique transcriptional responses across different vaccines  
To examine the overlap in responses across vaccines, we identified differentially 
expressed genes post-vaccination relative to the pre-vaccination baseline as well as 
differential expression of blood transcriptional modules (BTMs), a set of gene modules 
developed through large-scale network integration of publicly available human blood 
transcriptomes10. There was much less overlap at a gene level (Figure S1A) than at a 
module level (Figure S1B), where a majority of differentially expressed modules were 
shared across 4 or more vaccines. Based on temporal expression patterns, the most 
commonly induced modules clustered into four groups (Figure 2A). Cluster 1 (indicated 
by the blue vertical bar to the left of the heatmap), upregulated at days 1 and 3 post-
vaccination, represented BTMs related to innate responses and included modules 
associated with Toll-like receptor (TLR) and inflammatory signaling, antigen 
presentation, and monocyte signatures. Cluster 2 (yellow vertical bar to the left) 
contained multiple natural killer (NK) cell modules and was significantly downregulated 
on Day 1 (Figure S1C). Finally, Clusters 3 (pink bar) and 4 (green bar) generally peaked 
in activity on Day 7 and reflected plasma cell and cell cycle signatures, respectively, 
corresponding with expansion of antibody-producing plasmablasts. The “innate” Cluster 
1 was most prominently induced in vaccines containing a live viral vector (Ebola, HIV), 
or an adjuvant (malaria) (Figure 2B). Meanwhile, the plasma cell signature in Cluster 3 
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was strongly increased in the polysaccharide pneumococcal vaccine and the conjugate 
meningococcal vaccine (Figure 2C).  
 
We next analyzed how differentially expressed modules were shared across vaccine 
responses (Figure 3). In agreement with the prior analysis, the response to most 
vaccines on Days 1 (Figure 3A) and 7 (Figure 3C) reflected innate and plasma cell/cell 
cycle responses, respectively, while the Day 3 response (Figure 3B) appeared as an 
intermediate between these states, with both innate and cell cycle signatures present. 
However, such responses were not universally shared across all of the vaccines. In 
particular, the early innate and antiviral responses common to most vaccines on Day 1 
were not observed in the varicella zoster (VZV) and yellow fever vaccine responses. 
While these signatures appeared at later timepoints (Days 3 and 7) in yellow fever 
vaccine responses, they were not observed at all following VZV. Additionally, the Day 7 
cell cycle signature was not observed following smallpox, VZV, and polysaccharide 
meningococcal vaccines. Notably, this signature was observed in the case of the 
meningococcal conjugate vaccine, where the bacterial polysaccharides have been 
conjugated to a diphtheria toxoid protein to induce memory and T helper cell 
responses29. Since diphtheria toxoid protein is used in other vaccines such as the 
Haemophilus influenza type B (Hib) vaccine30, the cell cycle signature observed at day 7 
likely reflects the plasmablast response of the recall response to diphtheria toxoid, 
consistent with our previous study10. 
 
Early adaptive and delayed innate transcriptional signatures of yellow fever 
vaccine 
At the gene level, responses were highly correlated across most vaccines on Day 1 
post-vaccination (Figure 4A) but became more divergent at later timepoints (Figures 
S2A-B). On Day 1, Ebola, inactivated influenza, HIV, and malaria vaccines exhibited the 
strongest similarity (Figures 4A, S2C). However, the yellow fever vaccine YF-17D 
induced a very distinct response that had little or even negative correlation with 
responses to all other vaccines, including other live viral vaccines such as VZV, HIV, 
and Ebola (Figures 4A, S2D). The innate pathways that were upregulated in other 
vaccine responses were, in fact, downregulated in response to yellow fever vaccine on 
Day 1 (Figure 4B). Instead, YF-17D induced early expression of multiple B and T cell 
modules. Analysis of estimated cell frequencies using the xCell deconvolution 
algorithm31 suggested that this induction may reflect a rapid increase in the frequency of 
peripheral B and CD4+ T cells (Figure S2E-F). 
 
Another surprising feature of the yellow fever vaccine response was the relatively late 
expression of antiviral and interferon pathways, whose expression starts to be observed 
on Day 3 and peaks on Day 7 (Figure 4C-D). While these modules were also 
upregulated at this timepoint in Ebola vaccine responses, their expression waned 
rapidly following a robust early induction at Day 1. Some of the genes in these pathways 
that were strongly upregulated on Day 1 in response to most vaccines, such as CXCL10 
and OAS1, were upregulated as late as 21 days post-vaccination with YF-17D (Figure 
4E). Importantly, both the early adaptive and delayed innate responses were consistent 
across multiple studies from diverse geographical locations (Figures S2G-H). Together, 
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these results highlight the unique kinetics of transcriptional responses to yellow fever 
vaccine relative to other vaccines. 
 
Time-adjusted transcriptional predictors of antibody responses  
A key goal of systems vaccinology is to identify early signatures predictive of 
subsequent protection from infection. Antibody titers have been established as a reliable 
correlate of protection against many pathogens32 and previous studies have identified 
transcriptional signatures predictive of antibody responses to several vaccines, 
including inactivated influenza6, 11, 18, 33, 34, yellow fever3, and hepatitis B12. However, 
these signatures have thus far been developed for single vaccines, and it remains to be 
seen whether a ‘universal signature’ exists that can predict antibody responses across 
vaccines. Our curated data resource is uniquely suited to address this question, as 10 
of the encompassed vaccines had at least one dataset with antibody titer 
measurements pre- and ~1 month post-vaccination (Figure S3A). As there was 
substantial variability in antibody responses across vaccines, we defined ‘high’ and ‘low’ 
responders on a per dataset basis as the top and bottom 30% of participants according 
to antibody titer fold changes. We then used an elastic-net machine learning algorithm 
to develop classifiers capable of distinguishing between high and low responders based 
on early transcriptional signatures (see Methods section for further details).  
 
As an initial approach, we wanted to examine whether a model trained using responses 
to a single vaccine could reliably predict responses to other vaccines. We therefore first 
built models using all 15 inactivated influenza vaccine datasets (the vaccine for which 
there was the largest number of samples) in a leave-one-study-out training/testing 
configuration. As validation that our model could predict responses within the same 
vaccine, classifiers trained using Day 7 fold-change expression data were able to 
predict high versus low antibody response in the left-out influenza dataset, with AUCs 
ranging between 0.55-0.9 (Figure 5A). The modules in these classifiers were primarily 
associated with cell cycle and plasma cell modules (Figure S3B). These results are 
consistent with prior work showing that classifiers built using similar pathways are 
predictive of antibody responses to influenza vaccination across multiple seasons18.  
However, when we examined their performance in other vaccines, they were not reliably 
predictive (Figure S3C). Moreover, the expression of modules associated with antibody 
response to inactivated influenza vaccination at Day 7 was not generally correlated with 
antibody responses across vaccines (Figure 5B). 
 
We then asked whether training across multiple vaccines would improve the universality 
of the identified signatures. Neither a leave-one-vaccine-out approach, nor a 10-fold 
cross-validation approach combining all datasets, were able to identify signatures on 
Day 3 or Day 7 post-vaccination that could accurately discriminate high versus low 
responders across all vaccines (Figures S3D-E). However, analysis of the predictive 
power of specific modules over time, such as M156.1, one of the plasma cell modules 
associated with response in influenza vaccination on Day 7, revealed that this module 
was predictive of response across many vaccines but at different timepoints (Figure 
5C). While many vaccines saw a strong association between M156.1 on Day 7 and 
subsequent antibody response, in certain vaccines such as yellow fever and smallpox, 
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expression of the module was not associated with response until much later, at Days 
10-14 and 21, respectively, consistent with the delayed kinetics of this BTM with these 
vaccines (Figure 2).  
 
These results suggest that differential kinetics of immune responses across vaccines 
pose a confounding variable in the identification of universal predictive signatures of 
response at a single timepoint, but that using vaccine-specific timepoints dictated by the 
particular kinetics of immune responses for identification of predictive biomarkers of 
vaccine responses may improve the universality of such signatures. To test this 
hypothesis in the context of the plasma cell signature, we identified the timepoint at 
which expression of the plasma cell module M156.1 peaked in response to each 
vaccine (Figure 2C). We then trained a logistic regression classifier with M156.1 
expression as an input in a 10-fold cross-validation approach using fold-change data at 
the peak M156.1 expression timepoint for each vaccine. Indeed, using M156.1 peak 
expression timepoints improved the overall performance of the classifier compared with 
using a single timepoint (Day 7) for all of the vaccines (Figure 5D). This improvement 
was driven by increases in response prediction among vaccines in which the plasma 
cell signature peaked at timepoints other than Day 7, such as the yellow fever and 
smallpox vaccines (Figure 5E). Thus, expression of the plasma cell module M156.1 acts 
as a time-variable universal signature of antibody responses to vaccination.  
 
Impact of aging on transcriptional responses to vaccination  
The impairment of vaccine efficacy with age is a major challenge for vaccine 
development and public health. Although declining vaccine efficacy can broadly be 
attributed to effects of immunosenescence such as loss and dysfunction of naïve T 
cells35, diminished class-switch capability of B cells36, and decreased TLR function 
among innate cells37, 38, the molecular mechanisms responsible for impaired vaccine 
responses among older adults are not yet fully understood. While most of the curated 
datasets in the HIPC resource contained only young adult participants, some studies, 
including those of inactivated influenza18, varicella zoster13, and hepatitis B12 vaccines, 
profiled responses of both young (≤50) and older (≥60) vaccinees. As expected, post-
vaccination antibody responses were diminished in older compared to younger 
participants across all three vaccines (Figure 6A). 
 
We sought to examine for the effect of aging on immune responses across vaccines by 
comparing BTM activity scores of the most commonly induced BTMs (Figure 2A) 
between young and older participants across all three vaccines at each timepoint. 
Broadly, transcriptional responses to the three vaccines were similar between the two 
age groups (Figure S4A). However, there were significant age-associated differences in 
several pathways in response to inactivated influenza vaccination, including decreased 
expression of interferon and other innate immune modules in older compared to young 
participants early post-vaccination (Figure 6B-C), consistent with prior findings18. 
Despite these differences, the power of the M156.1 plasma cell module to predict the 
antibody response was highly similar in both young and older individuals (Figure 6D). 
These results suggest conservation in the pathways responsible for successful antibody 
production post-vaccination, consistent with prior findings for influenza vaccination20. 
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Discussion 
The high degree of homology in the vaccine-induced signatures induced demonstrates 
that diverse vaccines that differ widely in target pathogens and composition stimulate 
conserved immunological networks. Despite this homology, there was still substantial 
heterogeneity in both the magnitude and kinetics of the induced responses across 
vaccines. The most distinct in this regard were responses to the yellow fever vaccine 
YF-17D, which displayed several unique features: (1) a delayed innate and antiviral 
response which did not peak until Days 3-7 post-vaccination (Figure 4D), (2) an early 
upregulation of B and T cell signatures at Day 1 (Figures 4B, S3E) not observed in other 
vaccines until much later, and (3) a delay in cell cycle and plasma cell signatures 
typically associated with the expansion of antigen-specific antibody-secreting cells 
(Figures 2A-B).  
 
The mechanisms underlying the delayed responses are unclear, but could be caused by 
differences in viral tropism, the slow but sustained tempo of viral replication in vivo, or 
unique immune-evading properties of YF-17D. Wild-type yellow fever infects both 
Kupffer cells and hepatocytes in the liver, with the potential for severe pathology39; 
however data from NHPs suggests that YF-17D infects lymphoid cells at the site of 
injection and spreads to monocytes and macrophages in the lymph nodes, bone 
marrow, and spleen but does not infect the liver40, 41. This tropism appears similar to 
other live viral or viral-vectored intramuscular vaccines included in this dataset such as 
rVSV-ZEBOV which is thought to target endothelial cells, monocytes, macrophages, 
and myeloid dendritic cells in lymphoreticular tissues42, and MRKAd5/HIV containing an 
Ad5 adenovirus vector, which also has broad tropism but appears to cause local and 
lymphoreticular infection without reaching the liver following intramuscular 
administration43, 44. 
 
Of note, yellow fever and other flaviviruses have a specific capability to inhibit interferon 
signaling via multiple mechanisms, including suppression of JAK-STAT signaling45, 
which could potentially cause the observed delay in interferon responses following YF-
17D vaccination. Interestingly, the Vaccinia virus also has several mechanisms for 
inhibition of interferon responses, including prevention of IRF-3 and NFκB activation 
and dephosphorylation of STAT1/246. Although early response data was not available, 
the smallpox vaccine containing Vaccinia also induced some degree of delayed 
interferon response following vaccination (Figure 4D). 
 
While YF-17D demonstrated delayed induction of interferon signatures, induction of B 
and T cell signatures at Day 1 was much earlier than typically observed with other 
vaccines. This timing is most likely too early to represent an antigen-specific response 
but could reflect non-specific activation or recruitment of naïve cells into the circulation. 
Alternatively, these signatures could be a result of increased relative proportions of 
adaptive cells in the blood due to extravasation of innate cells into tissues at the site of 
injection. Further investigation at a cellular level is required to address these 
hypotheses and elucidate the mechanisms by which YF-17D exerts such unique early 
effects on the adaptive immune system. 
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Finally, our analysis of predictive signatures of antibody responses (Figure 5) indicates 
that vaccine response kinetics play an important role in determining such signatures. 
Here we have illustrated this principal for a single plasma cell transcriptional module, 
however future analyses may enable detection of additional and more accurate 
signatures. We have previously proposed the concept of a ‘vaccine chip’ that could 
measure defined biomarkers and be used to predict protective immune responses 
across vaccines25. This chip would be designed to measure expression of a select set of 
genes or modules, subsets of which would predict a particular type of functional or 
protective immune response (e.g., neutralizing antibody titers, effector CD8+ T cell 
responses, frequency of polyfunctional T cells, T helper 1 (Th1) versus Th2 response 
bias, etc). Our findings demonstrate that the unique kinetics of immune responses to 
different vaccines should be accounted for in the development of such a tool. In 
practice, small phase I/II trials could be used to define response kinetics and enable the 
successful application of a ‘vaccine chip’ to predict immune responses in subsequent 
trials. 
 
Due to the significant costs needed to perform a clinical trial of sufficient size, such 
vaccine studies are rarely performed with more than one vaccine. Here, we have 
demonstrated that meta-analysis of vaccine trials can provide valuable insights into the 
common and unique aspects of immune responses across vaccines. Combined with the 
Immune Signatures Data Resource26, these computational approaches and repositories 
will enable future research into the mechanisms of vaccine-induced immunity to inform 
development of improved adjuvants and vaccines. 
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Methods 
Gene expression preprocessing 
An extensive description of the preprocessing of microarray and RNA-Sequencing 
(RNA-Seq) datasets included in the Immune Signatures Data Resource can be found in 
the associated manuscript26. The dataset includes 2,949 samples from published 
studies and 228 samples not included in previously published studies. All these samples 
were assembled into a single resource. Briefly, raw probe intensity data for Affymetrix 
studies were background corrected and summarized using the RMA algorithm47. For 
studies using the Illumina array platform, background corrected raw probe intensities 
were used. For RNA-Seq studies, count data was voom-transformed48 to mimic the 
distribution of microarray expression intensities. Expression data within each study was 
quantile normalized and log-transformed separately for each study. 
 
Batch correction 
An extensive description of the across studies normalization used to correct for batch 
effects can be found in the Immune Signatures Data Resource manuscript26. Briefly, a 
linear model was fit using the pre-vaccination normalized gene expression as a 
dependent variable and platform, study, and blood sample type (i.e., whole blood or 
PBMC) as independent variables. The estimated effect of the platform, study and 
sample type was then subtracted from the entire gene expression (pre- and post-
vaccination) to obtain batch corrected gene expression. 
 
Identification of differentially expressed genes 
To determine differentially expressed genes, p values were first computed within each 
study using paired student’s t-tests. Next, Stouffer’s method was used to combine p 
values across studies via the sumz function in the metap R package49, with weighting 
according to the square root of the study sample size. Finally, combined p values were 
then adjusted for multiple testing using the Benjamini-Hochberg procedure. Similarly, 
average gene fold changes for each vaccine at each timepoint were computed by 
averaging across studies while using weighting equal to the study sample size. 
 
Gene set enrichment analysis 
The enrichment analysis of BTMs was performed in two steps. First, for every study and 
time point, enrichment was calculated using QuSAGE50, providing as contrast “Day X – 
Day 0” where X is the current time point, and also a “pairVector” containing the subject 
identifiers so that a paired analysis would be performed. Second, to integrate the results 
from multiple studies of the same vaccine, we performed a meta-analysis for every 
vaccine + timepoint combination, using the “combinePDFs” function of QuSAGE. 
 
Gene and module sharing analysis 
The sharing number of a gene/module is computed as the maximum number of 
vaccines it is significantly differentially expressed (FDR<0.05) in, irrespective of time 
point. For modules, the p-values were calculated using QuSAGE50 (see Gene set 
enrichment analysis). A null distribution for sharing was generated by performing 10,000 
permutations of gene/module labels within each vaccine + timepoint group. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.20.488939doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.20.488939
http://creativecommons.org/licenses/by-nc-nd/4.0/


Antibody titer measurements and identification of high and low responders 
Depending on the study, antibody titers were measured by neutralization assays, 
hemagglutination inhibition assay (HAI), or Immunoglobulin G (IgG) levels measured by 
ELISA26. Since some vaccines include multiple strains of viral antigens, the fold change 
in the antibody response metric was defined as the maximum fold change (MFC) of any 
strain in the vaccine at day 28 (+/- 7 days) compared to pre-vaccination. To minimize 
the difference in antibody response between studies (e.g., due to different vaccines or 
different techniques used for antibody concentration assessment), the high and low 
responders were identified for each study separately by selecting the participants with 
MFC equal or above the 70th percentile as high responders and participants with MFC 
equal or below the 30th percentile as low responders. 
 
Identification of predictive signatures of antibody responses 
Four training/testing setups employed for identification of predictive signatures of 
antibody responses: 1) inactivated influenza datasets only, leave-one-study-out 2) 
training on all inactivated influenza datasets, testing on other vaccines 3) leave-one-
vaccine-out (all datasets combined) 4) 10-fold cross validation (all datasets combined). 
All models were trained using elastic-net logistic regression using the ‘caret’ and 
‘glmnet’ R packages. BTM enrichment scores were calculated for each sample using 
the single-sample Gene Set Enrichment Analysis (ssGSEA) function and used as input 
features to the models, filtering for modules with a standard deviation > 75% quantile of 
the standard deviation. Models were fit using either Day 3 fold-change or Day 7 fold-
change of ssGSEA score separately. Tuning parameters and performance metrics were 
estimated using 10-fold cross-validation. Confidence intervals were estimated using the 
‘ci.auc’ function from the pROC R package. 
  
When developing predictive models for the timepoint adjustment approach, logistic 
regression models were trained using ssGSEA score fold-change for module M156.1, 
either at Day 7 or at the timepoint of peak expression in a given vaccine. AUC 
confidence intervals were estimated using linear-mixed effects models fitted with 100 
Monte-Carlo resamples. When computing AUCs across multiple vaccines, a weighted 
AUC was computed using sample size as the weights. For the analysis of temporal 
change in the predictive capability of M156.1 (Figure 4C), a weighted mean AUC (based 
on number of samples in each study) was computed using the calculateROC function of 
MetaIntegrator R package based on the geometric mean of gene fold changes in the 
M156.1 module.  
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Figure Captions 
 
Figure 1. An integrated database of transcriptional responses to vaccination. 
A) Workflow for collection, curation, and standardization of datasets in the Immune 
Signatures Data Resource. B) Histogram of the number of samples included per 
vaccine at each timepoint in the Immune Signatures Data Resource. Day 0 represents 
Day of vaccination. C) Boxplots of the age distribution of participants in the Immune 
Signatures Data Resource by vaccine. Shape of points denotes the subject’s sex. D) 
Bar plot representing the proportion of variance in post-vaccination transcriptional 
responses that can be attributed to clinical (age, sex, ethnicity) and experimental 
variables (time after vaccination, vaccine) via Principal Component Variance Analysis. 
The residual represents the proportion of the variance that could not be explained by 
any of the included variables. 
 
Figure 2. Common and unique transcriptional responses across different 
vaccines. A) Heatmap of common differentially expressed modules (regulated in 7 or 
more vaccines) over time (*FDR<0.05). Color represents the QuSAGE activity score. 
Clustering on columns was performed separately for Days 1, 3, 7, 14, and 21 post-
vaccination. B) Kinetics of the mean FC of cluster 1 modules across vaccines C) 
Kinetics of the mean FC of cluster 3 modules across vaccines. 
 
Figure 3. Overlap in transcriptional responses across vaccines. A-C) Circos plots 
of the overlap in differentially expressed modules (FDR<0.05) across vaccines on Days 
(A) 1, (B) 3, and (C) 7. Each segment of the circle represents one vaccine, and each 
point in a segment represents a single module. Bars in the outer circle represent the 
activity score of differentially expressed modules. Lines connect modules with a 
significant positive score shared between vaccines. Inner circle boxes and line colors 
represent the functional groups of the modules. 
 
Figure 4. Early adaptive and delayed innate transcriptional signatures of yellow 
fever vaccine. A) Correlation matrix of pairwise Spearman correlations of Day 1 gene-
level fold changes between vaccines. B) Heatmap of Day 1 activity scores of modules 
differentially expressed in response to YF vaccination (QuSAGE FDR<0.2). C) Heatmap 
of Day 7 activity scores of modules differentially expressed in response to YF 
vaccination (QuSAGE FDR<0.05, activity score >0.2). D) Kinetics of the mean FC of 
module M75 across vaccines. E) Heatmap of the post-vaccination FC of genes in 
module M75. 
 
Figure 5. Time-adjusted transcriptional predictors of antibody responses. A) Area 
under the ROC curve (AUC) barplot of antibody response prediction performance per 
dataset for the elastic net classifier trained on inactivated influenza datasets only. B) 
Heatmap of high versus low antibody responder difference across vaccines of modules 
differentially expressed (FDR<0.05) between high and low antibody responders to 
inactivated influenza vaccination. C) Kinetics of the predictive power of M156.1 across 
vaccines. For each vaccine/timepoint combination, the AUC is computed based on 
difference in the geometric mean of the fold changes of the genes in the M156.1 
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between high and low responders (see Methods for details). D) Weighted ROC curves 
for a logistic regression classifier using M156.1 expression either at Day 7 in all 
vaccines (Day 7) or at the vaccine-specific peak expression timepoint (Peak) (Weighted 
AUC Day 7 / Peak = 0.65/0.53). E) Per vaccine AUC barplot for a logistic regression 
classifier using M156.1 expression either at Day 7 in all vaccines (yellow) or at the 
vaccine-specific peak expression timepoint (green – peak at Day 7, blue – peak at other 
timepoints). 
 
Figure 6. Impact of aging on transcriptional responses to vaccination. A) Boxplots 
of Day 30 antibody responses to vaccination in young (≤50) and older (≥60) participants 
across vaccines. B) Modules differentially expressed between young and older 
participants in response to inactivated influenza vaccination (QuSAGE FDR<0.05). C) 
Network plot of modules M111.1 on Day 1 following inactivated influenza vaccination in 
young and older participants. Each edge represents a co-expression relationship, as 
described in Li et al.10; colors represent the Day 1 log2 FC. D) Kinetics of the predictive 
power of modules M156.1 across vaccines in young and older participants (filled circles 
indicate p<0.05, 1000 permutations). 
 
Table S1. Summary of vaccine datasets. 
 
Figure S1. Overlap in differentially expressed genes/modules and kinetics of 
common module clusters. A-B) Histograms of overlap in DEGs (A) or differentially 
expressed modules (B) between vaccines. A gene/module is shared with another 
vaccine if it is significantly (FDR < 0.05) regulated in the same direction, irrespective of 
time point. Grey bars represent the null distribution generated by 10,000 permutations 
of gene/module labels within vaccine + timepoint groups. Error bars indicate the 2.5% 
and 97.5% quantiles. C) Kinetics of the mean FC of cluster 2 BTMs across vaccines. D) 
Kinetics of the mean FC of cluster 4 modules across vaccines. 
 
A gene(/set) is shared with another vaccine if it is significantly (FDR < 0.05) up/down in 
the same direction, irrespective of time point. Blue bars, number of genesets shared (y-
axis) between the same number of vaccines (x-axis). Grey bars, null distribution 
generated by 10k permutations of geneset labels within vaccine+timepoint groups. Error 
bars indicate the 2.5% and 97.5% quantiles. 
 
Figure S2. Gene-level correlations between vaccines and estimated cell 
frequencies. A) Correlation matrix of pairwise Spearman correlations of Day 3 gene-
level fold changes between vaccines. B) Correlation matrix of pairwise Spearman 
correlations of Day 7 gene-level fold changes between vaccines. C) Scatterplot of Day 1 
gene FCs between HIV and Malaria vaccines. D) Scatterplot of Day 1 gene FCs 
between Yellow Fever and Pneumococcus vaccines. E) Boxplot of Day 1 FC in xCell31 
estimated B cell frequencies across vaccines. F) Boxplot of Day 1 FC in xCell31 
estimated CD4+ T cell frequencies across vaccines. *p < 0.05, **p < 0.01, ***p < 0.001, 
**** p < 0.0001. 
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Figure S3. Antibody response prediction across vaccines. A) Boxplots of Day 30 
antibody responses to vaccination across vaccines. B) Barplot of feature importance for 
the GLM classifier trained on inactivated influenza datasets only. AUC barplot of 
antibody response prediction performance across vaccines for the GLM classifier 
trained on inactivated influenza datasets only. C) AUC barplot of antibody response 
prediction performance of the leave-one-vaccine-out GLM classifier. D) AUC barplot of 
antibody response prediction performance of the 10-fold cross-validation GLM classifier. 
 
Figure S4. Comparison of common transcriptional responses between age 
groups. A) Scatterplots of module activity scores in each vaccine among young (x-axis) 
and elderly (y-axis) of the most commonly expressed modules (Figure 2A) on days 1-7. 
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ImmPort Accession Pathogen Vaccine Type Adjuvant/Vector Sample Type # of samples
SDY1373 Ebola Recombinant Viral Vector VSV Whole blood 46
SDY1328 Hepatitis B Inactivated None Whole blood 51
SDY1291 HIV Recombinant Viral Vector AdV PBMC 50
SDY1119 Influenza Inactivated None PBMC 67
SDY1276 Influenza Inactivated None Whole blood 828
SDY180 Influenza Inactivated None Whole blood 102
SDY212 Influenza Inactivated None Whole blood 29
SDY224 Influenza Inactivated None PBMC 55
SDY269 Influenza Inactivated None PBMC 80
SDY270 Influenza Inactivated None PBMC 83
SDY400 Influenza Inactivated None PBMC 60
SDY404 Influenza Inactivated None PBMC 64
SDY520 Influenza Inactivated None Whole blood 51
SDY56 Influenza Inactivated None PBMC 96
SDY61 Influenza Inactivated None PBMC 27
SDY63 Influenza Inactivated None PBMC 42
SDY640 Influenza Inactivated None Whole blood 44
SDY80 Influenza Inactivated None PBMC 256
SDY269 Influenza Live attenuated LAIV PBMC 83
SDY1293 Malaria Recombinant protein AS01/AS02 PBMC 165
SDY1260 Meningococcus Conjugate None PBMC 51
SDY1325 Meningococcus Conjugate None Whole blood 4
SDY1260 Meningococcus Polysaccharide None PBMC 39
SDY1325 Meningococcus Polysaccharide None Whole blood 2
SDY180 Pneumococcus Polysaccharide None Whole blood 54
SDY180 Pneumococcus Polysaccharide None Whole blood 101
SDY1370 Smallpox Live attenuated Vaccinia PBMC 48
SDY1364 Tuberculosis Recombinant Viral Vector Vaccinia PBMC 36
SDY984 Varicella Zoster Live attenuated VZV PBMC 124
SDY1264 Yellow Fever Live attenuated YF17D PBMC 87
SDY1289 Yellow Fever Live attenuated YF17D Whole blood 117
SDY1294 Yellow Fever Live attenuated YF17D PBMC 109
SDY1529 Yellow Fever Live attenuated YF17D Whole blood 180
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