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Abstract

The western honeybee, Apis mellifera L., is a crop pollinator that makes royal jelly and other hive
products. However, widespread concerns arise about opportunistic diseases (e.g., bacteria, fungi, or
mites) or chemicals that have an effect on the health and number of colonies, as well as their activity.
The relationships between the gut microbiota and its host are currently being researched extensively.
The effects of Varroa destructor infection on the gut microbial community, in particular, have received
little investigation. This work utilized amplicon sequencing of the bacterial and archaeal 16S rRNA
genes to assess the bacterial and archaeal communities of adult bee groups (healthy and affected by
Varroa designed in NG and VG, respectively) and larvae from Varroa destructor-infected hives. Our
results suggest that the genus Bombella was substantially dominant in larvae, while the genera
Gillamella, unidentified Lactobacillaceae, and Snodgrassella were significantly dominant in adult bees.
NG and VG, on the other hand, did not differ statistically significantly. The PICRUSt study revealed a
significant difference in the KEGG classifications of larvae and adult bee groups. A greater number of
genes involved in cofactor and vitamin production were identified in larvae. Additionally, despite the
complexity of the honeybee's bacterial community, all groups exhibited a straightforward archaeal
community structure. Surprisingly, methanogen was detected in low abundance in the microbiota of
honeybees. In summary, larvae and adult bees infected with Varroa destructor exhibit altered gut

microbiota composition and function.
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Introduction

The next-generation sequencing method has considerably expanded the exploration of the
microbiome and its contribution to the host to vertebrate (e.g., human) or plant as a leading scientific
field. In particular, the studies for microorganism and/or microbial communities colonized in the host
gastrointestinal tract have improved our understanding and knowledge of the ecological and
functional roles in its gut environments. The gut microbial communities (i.e., microbiota) are
recognized as being critical for the survival of a wide variety of host organisms.. Nonetheless, the
intricate co-evolutionary relationships between microorganisms and hosts, as well as the
potential/fundamental properties of gut microorganisms, remain largely unknown.

The western honeybee, Apis mellifera L, is a key player as a pollinator species for natural
ecosystem and agricultural production (1). Ap. mellifera is critical because it contributes to the
pollination of over 90 percent of key commercial crops in the United States of America (2). Among the
crops, blueberries and cherries are 90% depending on their pollination activity. The entire of the
almond crop depends on the Ap. mellifera for pollination at bloom time (American Beekeeping
Federation, http://www.abfnet.org). Additionally, honey and beeswax production are valuable
commodities to humans and contribute to the economic value of honey bees. Despite their critical
contributions to human consumption, the colony sustainability of honeybees has been changed by
modern agricultural practices (e.g., use of pesticides and agrochemicals), pathogen exposure, or
environmental changes (e.g., global warming) (3-7).

Recent research indicates that Ap. mellifera gut dysbiosis induced by antibiotic and
microplastics exposure may impair their activity (8-11). Additionally, these researches indicated a
possible hazard to public health posed by opportunistic human infections that acquired antibiotic
resistance genes from drug-treated honeybees. Numerous prudential applications, including
probiotics, have been made to honeybee colonies in response to the situation (12-14). Lactobacilli
spp., in particular, enhances honeybee activity, stress control, and queen brood production (13, 15-
18). Apart from the factors discussed above, the resulting gut microbiota may be influenced by
infectious disease transmitted by viruses, microsporidian, or mites, which may have an effect on
honeybee health, activity, and population (19-22). To summarize, examining the Ap. mellifera gut
microbiota as a novel experimental paradigm is crucial for future research on the human gut
microbiota (23-26).

Numerous studies have examined the compositions or changes in the honeybee gut
microbiota of different bee classes (i.e., forage, nurse, or queen) (27-30). Until now, the majority of

studies on the microbial community have concentrated on the entire body of honeybees or mites (31-
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35). To our knowledge, the gut microbiota of larvae and adult bees infected with Varroa destructor
has not been comprehensively investigated.

The purpose of this study was to i) characterize and compare the archaeal and bacterial
community structures found in larvae and adult honeybees from the Varroa-infested hives; and ii)
estimate differences in putative functional roles based on the microbial compositions of larvae and
adult bees. Our findings may contribute to a better understanding of the interaction between

microbiota and honeybees, as well as their functional roles in the honeybee gut environment.
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77  Materials and methods
78  Sample collection
79  We surveyed beehives afflicted with the ectoparasitic mite Varroa destructor from beekeeping farms
80 onlJejulsland toward the end of May 2021, practically to the end of the full blooming period. Finally,
81 two larvae and fourteen adult bees were collected from two western honeybee (Ap. mellifera L.)
82  apiaries, one without varroa (NG, n=9) and one with varroa (VG, n=5). Two Varroa-infected apiaries
83  were discovered by an experienced beekeeper, who confirmed the deceased Varroa and clinical
84  symptoms (e.g., shortening of the wing) with his naked eyes. After harvesting samples into the sterile
85  falcon tube, they were immediately kept at a low temperature (4°C) using an icepack and sent to the
86 laboratory for further processing.
87
88 DNA extraction and amplicon sequencing
89  Total genomic DNA (gDNA) was extracted from isolated adult bee guts or whole-body for larva using
90 a QlAamp PowerFecal Pro DNA Kit (Qiagen). Gut tract from each surface-sterilized adult bee was
91 dissected in sterilized phosphate buffered solution (PBS, pH 7.4) under anatomical microscope. The
92 quality and quantity for the extracted gDNA were estimated by a DS-11 Plus Spectrophotometer
93  (DeNovix, Inc., Wilmington, DE) and confirmed agarose gel (1.5% w/v) electrophoresis. The gDNA
94  samples were frozen at -20°C for further experiment.
95 To obtain the amplicon for bacterial and archaeal 16S rRNA gene, we conducted PCR on an
96 [llumina platform according to our previously describe studies (36). Briefly, total 20 ul of PCR mixture
97  was prepared as follows: 10 pl of Solg™ 2x EF-Taq PCR Smart mix (Solgent, South Korea), 1 uM primer
98 set (final conc.), and about ~5 ng of template gDNA. The procedures for thermal amplification were as
99 follows: an initial denaturation step at 95°C for 5 min; followed by 30 cycles of 95°C for 30s, 55°C for
100  30s and 72°C for 40s, ended with a final extension step at 72°C for 7min. The sequences of the primer
101 sets were targeted to the V4-V5 hyper-variable region of 16S rRNA gene for Bacteria (515F, 5’-
102  GTGCCAGCMGCCGCGGTAA-3’ and 907R, 5-CCGTCAATTCCTTTGAGTTT-3’) and Archaea (519F, 5'-
103 CAGCCGCCGCGGTAA-3’ and 915R, 5’-GTGCTCCCCCGCCAATTCCT-3’). PCR amplified products were
104  visualized by 1.5% (w/v) agarose gel electrophoresis for amplified size confirmation. Then, the
105 amplicons were purified with the Monarch® PCR & DNA Cleanup Kit (NEB). High-throughput
106  sequencing was performed by Novogene using the Illumina NovaSeq PE250 system (lllumina, Inc.),
107 according to the manufacturer’s instructions.
108

109 Data analysis and statistics
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110  Sequencing data was analyzed using the standard operating procedure (SOP) described on Mothur

111  (version 1.46.1) website (https://mothur.org/wiki/miseq sop/). All raw reads were obtained after

112  trimming the barcode and primer sequences. The trimmed paired-end reads were merged supplied in
113 Mothur program. Subsequently, high-qualified merged reads were obtained by filtering and chimeric
114  sequences were removed using chimera.vsearch command. Also, to increase the analysis quality, the
115 qualified-read sequences were unknown and non-microbial sequences (e.g., chloroplast,
116 mitochondria, and eukaryote), were discharged. Then, the sequences were assigned to operational
117  taxonomic units (OTUs) at 97% sequence similarity and a representative sequence was selected from
118 each OTU. The bacterial and archaeal sequences were aligned and classified to a reference database

119  (version silva.nr_v138.1) provided Mothur website (https://mothur.org/wiki/silva reference files/).

120  Alpha-diversity indices (i.e., Chaol nonparametric richness, Shannon, inverse-Simpson, and Good'’s
121 coverage) and beta-diversity [i.e., unweighted pair group method with arithmetic mean (UPGMA)
122 clustering and principle coordination analysis (PCoA)] were estimated by the Mothur package. Analysis
123 of molecular variance (AMOVA) was performed to compare the diversity indices for microbial
124  community between two groups. Unless otherwise state, the proportion of total sequences
125 representing each sample or group (combined from same experimental sample) was calculated.
126 Heatmap was generated using R package (gplots). The differences in taxa between the two groups
127  was carried out the linear discriminant analysis effect size (LEfSe) in an on-line interface using default
128 parameters (threshold of > 2.0 for the logarithmic LDA score).

129 Phylogenetic investigation of communities by reconstruction of unobserved states (PICRISt2)
130  was conducted to predict putative functional profiles based on the microbial community. Bacterial
131  functional profiles were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
132 pathways.

133
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134  Results

135 General features of bacterial diversity of honeybee gut microbiota

136 A total of 2,531,114 raw reads were acquired from two larvae (designated as L) and fourteen adult
137 bees [attached or unattached Varroa designated as varroa group (VG) or non-varroa group (NG),
138 respectively] and each sample was sub-sampled by 20,000 reads. The number of reads used for sub-
139 analysis processing varied between 2041 and 3421 reads per sample.

140 The diversity indices were estimated using the qualified and subsampled reads. The detailed
141 diversity values for larva and adult bee were shown in Table 1. Larvae had a significantly different gut
142  microbiota than NG (ANOVA, p=0.02) and VG (p=0.009) (sFig. S1). Surprisingly, there was no significant
143  difference in microbiota between NG and VG (ANOVA, p=0.292) (sFig. S1). The results for the number
144  of the estimated OTUs (Chaol) indicates that NG and VG are higher than L group (Kruskal-Wallis,
145 p=0.059 and 0.053, respectively). However, statistical analysis of the diversity indices reveals no
146  substantial inter-group differences. Furthermore, the Good's coverage (avg. 65.8 percent) indicated
147  that microbial diversity did not achieve a horizontal asymptote, implying that the sequencing effort
148  did not saturate diversity (Table 1).

149 Although the diversity indices for gut microbiota did not show statistically significant
150 differences between intergroups, the results of the unweighted pair group method with arithmetic
151  mean clustering (UPGMA) and principal coordinates analysis (PCoA) indicated that the honeybee
152 samples were clearly divided into two groups at the OTU level (Fig. 1). Nonetheless, no significant
153  difference between NG and VG was seen.

154

155 The profiles of honeybee gut bacterial community

156  Although the alpha-diversity analysis indicated no discernible differences (i.e., diversity indices, Table
157 1), microbial communities were considerably different according to development stage (i.e., larva and
158  adult) (Figs. 2-3).

159 The analyzed sequence reads were classified into 40 phyla from all sample. We then estimated
160 the relative abundances of a combined set of organisms collected by the same experimental sample
161 (i.e., L group, NG, and VG). Finally, only 17 phyla were chosen as abundant phyla in this study (more
162  than 0.1 percent of total reads in each sample) (Fig. 2). Proteobacteria (59.6-68.7 percent) and
163 Firmicutes (20.4-30.7 percent) were identified as the most numerous phyla (>20 percent of total reads)
164 in three groups (L group, NG and VG), followed by Bacteroidota, an unidentified group, and
165  Actinobacteriota (more than 1% of total reads). In minor phyla (less than 1%), the phylum

166  Campylobacrota was more abundant than both adult bee groups (NG and VG). On the other hand,
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167 Gemmatimonadota, Myxococcota, Synergistota, Verrucomicrobiota, and Bdellovibrionota were
168 shown to be more abundant in NG than the L group and VG.

169 The analyzed sequence reads were classified into 727 genera at the genus level. Nonetheless,
170  the majority of readings were classed as unclassified with a high taxonomic rank (i.e., family to class).
171  We selected 22 genera from each group (threshold more than 1% of total reads) for sub-sequential
172 analysis, including the unclassified group with a high taxonomic rank. Among the selected genera, we
173 identified nine significant taxa (more than 4% of each group); Bombella, Bombilactobacillus,
174 Commensalibacter, Frischella, Gilliamella, unclassified Latobacillaceae, unclassified Orbaceae,
175  Snodgrassella, and Streptococcus. The genus Bombella, in particular, was found as a prominent species
176  with the highest relative abundance in the L group (43.7 percent of total bacterial abundance).
177 Bombella had a decreased the relative abundance in adult bees (less than 0.6 percent). Additionally,
178  thelgroup had a higher the relative abundance of several taxa, including Streptococcus, Alloprevotella,
179 Bacillus, Gemella, and other high-taxonomic groups (e.g., Acetobacteraceae and Bacilli), than the adult
180  bees group (Fig. 3 and sFig. S2).

181 On the other hand, in NG and VG, a dominant microbe was identified as Gilliamella, unidentified
182 Lactobacillaceae, and Snodgrassella (ranges 12.8 to 19.7 percent). Additionally, unclassified
183 Enterobacterales, unclassified Gammaproteobacteria, Lactobacillus, and unclassified Neisseriaceae
184  were identified as taxa with a higher abundance in NG and VG than the L group. Except for the genera
185  Apilacetobacillus and Melissococcus or Lactobacillus, the relative abundances of the other genera
186  were comparable between NG and VG (Fig. 3).

187 The LEfSe analysis was used to separate the distinctive taxa (at the genus level) from the inter-
188  group (Fig. 4). We found no significant difference between NG and VG in the analysis. In light of that
189  finding, we attempted to quantify the precise changes in microorganisms between the L group and
190  adult bees from NG and VG. Seven genera were significantly enriched in the L group, led by Bombella
191  (5.44 LDA score, p=0.0001), Streptococcus (4.47 and 0.0001, LDS score and p value, respectively),
192  unclassified bacterial group (4.44 and 0.0001), unclassified Acetobacteraceae (4.35 and 0.0001),
193  Bacillus (4.31 and 0.0001), Gemella (4.11 and 0.008), and Alloprevotella (4.11 (4.05 and 0.0001). While
194 Gilliamella, unclassified Lactobacillaceae, unclassified Orbaceae, unclassified Neisseriaceae, Frischella,
195 Lactobacillus, unclassified Gammaproteobacteria, Bombilactobacillus, and  unclassified
196 Enterobacterales were remarkably dominant genera in the adult bee group with a 4.43-4.93 LDA score
197 and p<0.04. Interestingly, two genera, Commensalibacter and Snodgrassella, were identified as the
198  major taxon in adult bees (NG and VG) (Fig. 3); nevertheless, the LEfSe analysis revealed no significant
199  difference between the L group and adult bees (Fig. 4).

200
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201 Honeybee gut archaeal community profiles

202 In the current work, we attempted to investigate the archaeal community profiles of honeybees,
203 including larvae. Surprisingly, we learned relatively little about the archaeal community from our ten
204  samples, which included one larva and nine adult bees (NG, n=5; VG, n=4). Surprisingly, the genus
205 Methanomassiliicoccus (phylum Thermoplasmatota) was found as the sole dominant bacterium in
206 larvae. Methanimicrococcus (80.5 percent of total reads in NG) and Candidatus Methanoplasma (17.3
207 percent) were the most common microbes in NG, belonging to the Halobacteria and
208 Thermoplasmatota, respectively. Additionally, an unidentified archaeal group was discovered in NG
209  with a 2.0 percent abundance. When NG and VG were compared, Methanomassiliicoccus was a
210  surprisingly dominant genus (98.7 percent of total reads in VG) (data not shown).

211

212 Predicted functional profiles from bacterial communities

213 In general, it may be challenging to comprehend and extrapolate functional roles from the
214  organization of microbial communities as determined by the 16S rRNA gene. As a result, putative
215  functional profiles were inferred for inter-group comparisons using PICRUSt analysis and KEGG
216 pathway information. The PICRUSt analysis revealed that the L group, NG, and VG all had enriched
217  functional profiles in the bacterial population. The result of KEGG functional classes (levels 1 and 2)
218 revealed substantial differences between the L and NG or VG groups in terms of functional categories
219 (Fig. 5). Nonetheless, no significant variations in PICRUSt analysis were seen between NG and VG,
220  similar to the results for alpha-diversity and LEfSe (Table 1 and Fig. 4).

221 In comparison to NG or VG, the eight categories (lipid metabolism, splicesome, sulfur
222 metabolism, cofactor and vitamin biosynthesis, RNA processing, histidine metabolism, aromatic
223 amino acid metabolism, and branched-chain amino acid metabolism) had a significant effect size in
224  the L group (effect size ranged from 0.37 to 0.82). In particular, as compared to adult bees, biotin
225 synthesis gene clusters were identified in the L group (Fig. 5). Carbon fixation, methane metabolism,
226 mineral and organic ion transport systems, nitrogen metabolism, glycosaminoglycan metabolism,
227 nitrogen, nucleotide sugar, repair system, transport, peptide and nickel transport systems, and
228 phosphate and amino acid transport systems all had a smaller effect size in the L group.

229
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230  Discussion

231 It has been demonstrated that the gut microbiota has a substantial functional role in organisms,
232 including plants. Recently, the total number of microbial cells (i.e., bacteria) was recalculated to be
233 comparable to the number of human cells, after previously being estimated to be at least tenfold (37).
234 Regardless of the ratio, gut microbiota can have a substantial impact on host health and disease.
235 Simultaneously, it was discovered lately that invertebrates, including bees, have a key link with a
236  complex microbial community. Nonetheless, the critical physiological roles of the (bee) microbiota
237 during the health or development stages are relatively unknown (24, 26). The use of NGS sequencing
238 and culture-dependent techniques has considerably expanded our understanding of the link between
239 bees and related bacteria, and the roles of gut microbiota have been recognized in the gut microbiota
240  of the majority of healthy-adult worker honeybees.

241 The purpose of this study was to examine whether there were significant differences in the
242  gut microbiota of Varroa-infected (attached) bees and those were not infected. Additionally, the
243 complete larval body's microbiota was employed to create a separate group. To address these
244  questions, we sequenced the 16S rRNA gene and analyzed archaeal and bacterial populations from
245  the samples using the lllumina NovaSeq technology.

246 As previously reported, Bacteroidetes and Firmicutes are the predominant taxa for the
247  vertebrate gut microbiota (references in 36). However, as previously documented in several other
248 studies on honeybees, we discovered that larva and adult groups were dominated by the
249 Proteobacteria and Firmicutes phyla (38-42). We identified the main phyla and genera in each
250 experimental group and discovered substantial differences in the bacterial community between the L
251 and adult bee groups (combined with NG and VG). However, as previously stated, biostatistical
252 analysis indicates no difference in the resultant alpha diversity and bacterial community structure
253 between NG and VG. Hubert et al. reported that various microorganisms (e.g., Morgnaella,
254  Sprioplasma, and Arsenophonus) were transmitted between honeybees and Varroa (34). Additionally,
255 Gammaproteobacteria, Betaproteobacteria, Lactobacillus spp., Bifidobacterium spp., and
256  Brevibasillus laterosporus were detected in adult bees from Varroa-infested colonies using the gPCR
257  technique (35). Thus, our hypothesis regarding sampling time is explicable; in this study, we collected
258 samples from hives treated with anti-Varroa destructor medicine. However, the two studies cited
259 previously (34, 35) evaluated the total body, not only the gut flora.

260 Interestingly, the phylum Bacteroidota (formerly termed Bacteroidetes) had a larger relative
261  abundance (2.16-5.75 percent) than Actiobacteriota (1.28-1.62 percent) in all samples (Fig. 2), as
262 previously described (40, 43). Particularly, Bacteroidota in L group was more abundant than adult bees.

263 However, the Bacteroidota abundance observed in adult bees was higher than that of the other

10
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264  studies (39, 41, 42). The variables underlying these discrepancies are likely to be experimental
265  differences, such as the target region for the 16S rRNA gene (e.g., V1-V3 or V3-V4) (44).

266 Bacteroidota is a prominent taxon in both mammalian and insect gut microbiota (45-47). The
267 phylum Bacteroidota can degrade and utilize soluble polysaccharides via polysaccharide utilization
268 loci-like systems (46). It is obvious that extracellular enzymes from bacterial cells of the phylum
269 Bacteroidota can contribute to supply vitamins to host through intra- or intercellular reaction chains
270 (48). However, due to the low abundance of the phylum Bacteroidota, its functional roles in
271 honeybees are less understood than those of other taxa such as Firmicutes (26).

272 Similarly to other previous studies, we discovered distinct genera in both groups at the genus
273  taxon level (larvae and adult bees). Particularly, in L group, the genus Bombella-related reads were
274  dominant. Li et al. first proposed the genus Bombella as a member of the Alphaproteobacteria (49),
275  with the description of Bombella intestine as the type species from bumble bee crop. At the time of
276  this writing, the genus Bombella has just four validly named species (49-51). Interestingly, these
277 Bombella spp. have been only isolated from honeybee-associated environments such as honeycombs
278 and gut. Also, all members of the genus Bombella share unique characteristic for acetic acid producing.
279 Indeed, It has been already predicted that Acetobacteraceae Alpha 2.2 bacteria of the genus Bombella
280 plays an functional roles on the young larval fitness (52). Additionally, recent genomic studies clearly
281 show that they play a critical role in the interaction with their host (53, 54). The genus Allopreovotella
282  was only identified as a minor group inside the L group, among several other genera and high-
283  taxonomic groups (e.g., Acetobacteraceae and Bacilli) (Fig. 3). Indeed, only one study has identified
284  the genus Alloprevotella in adult bees to our knowledge (39). The genus Alloprevotella reclassified
285  from Prevotella (55) can produce acetate and succinate as end products (i.e., short-chain fatty acid,
286  SCFA) from glucose via fermentation. The SCFAs are the main metabolites produced by gut bacterial
287  fermentation using saccharides (e.g., starch or fiber) and contribute to crucial physiological effects on
288 host health including immunity, behavior, or neurological disorders (56, 57). In fact, the roles of the
289 Prevotella spp. in the host are uncertain and various investigations have reported contradictory
290 interpretations (58). Nonetheless, it may be difficult to dismiss Alloprevotella as a beneficial
291 commensal because it plays a critical role in larval health via polysaccharide breakdown and SCFA
292 production.

293 In comparison to the L group's gut microbiota, adult bee groups contain a distinct microbial
294  community constituted of four distinct classes (e.g., Bacilli, Alpha-, Beta- and Gamma-proteobacteria)
295  (Fig. 2). This could be due to the four distinct developmental stages (egg, larva, pupa, and adult) and
296  the nursing bees' distinct-yet-simple feeding systems for larvae (pollen and honey) (26, 59). These four

297 classes have been given the names Bombilactobacillus, Commensalibacter, Frischella, Gilliamella,
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298 Lactobacillus, and Snodgrassella, and their roles in honeybees have been thoroughly characterized (25,
299 27, 60, 61). Additionally, the genus Bifidobacterium is known as a core bacterial clade and may provide
300 organic or aromatic compounds degraded from pollen (62). These pollen-derived compounds might
301 be cross-fed to other gut bacterial members and finally contribute to bee development (63). Despite
302 the fact that there are only two studies linking microbiota and Varroa infection, the results indicate
303 that Bifidobacterium was detected in gut microbiota and its abundance was positively correlated with
304 Varroa infection (33, 35). Unexpectedly, in the present study, the relative abundance for
305 Bifidobacterium (Actinobacter phylum) were less than 0.5% of total microbiota in both L and adult bee
306  groups. However, the relative abundance of unclassified Bifidobacteriaceae as a high taxon level was
307 similar to the genus Bifidobacterium. This indicates that the honeybee gut has a greater number of
308 unclassified species belonging to the family Bifidobacteriaceae. Lactic acid bacteria such as
309 Bifidobacterium protect hosts from (opportunity) pathogen infection by lowering the pH of the gut
310 environment through the production of organic acids and antimicrobial substances such as
311  antimicrobial peptides (AMPs) (64). As a result, it is worth mentioning that clarifying their potential
312 activities may aid in our knowledge of the honeybee gut microbiota's more functional roles in
313 pathogen defense.

314 In the present study, we firstly attempted to analyze and identify archaeal community in
315 honeybee gut. However, unexpectedly, the archaeal diversity and community structure was extremely
316 limited. Only a few bee samples harbored methanogen, despite the honeybee gut was anoxic
317 condition with partial oxygen pressure closed to zero (65). This could be because of the positive redox
318  potential (215-370mV) (65). Under anaerobic conditions with a negative redox potential,
319 methanogenesis is conceivable (-200mV) (66, 67). Indeed, only a few insects, including beetles,
320 cockroaches, termites, and millipedes, possess methanogen or other archaeal groups in their hindguts
321 (45, 68).

322 This study has the following limitations: i) gut microbiota analysis was performed a few days
323  following therapy for Varroa infection. Examining the time course of Varroa infection on the honeybee
324  gut may provide more detailed information about microbiota changes (i.e., dysbiosis); ii) the sample
325 size for each group was relatively small (see materials and methods), despite the fact that our results
326  were consistent with previous studies. Nonetheless, this study shows that the organization of the
327 honeybees' bacterial community reflects their developmental stage. The L or adult bees group has a
328 straightforward and distinctive bacterial composition and distribution of the several bacterial groups.
329 The expected functional profiles of L and adult bee groups are distinct depending on their bacterial

330 communities. These functional characteristics, however, were comparable across NG and VG. Finally,
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331  the bacterial and archaeal community structure seen in honeybees may be an essential factor in the

332 health of the bees.

333
334  Outlook
335 To date, most investigations have focused on pathogenic or beneficial microorganisms in

336 human gut, which have an influence gastric diseases, metabolic syndrome, brain, or behavior (69-71).
337 However, it makes difficult to fully characterize the microbial composition and to isolate the key
338 microorganisms from the microbiota. Numerous microorganisms remain uncultured, and the impacts
339 of specific microorganisms cannot be examined using molecular techniques (i.e., NGS). Additionally,
340  direct study on the relationship between humans and microbiota or its physiological involvement in
341  the host gut is restricted. Invertebrate organisms (i.e., insect) harbor relatively simple gut microbial
342  communities (45). Beyond the fruit fly Drosophila (72), honeybees, in particular, have been used as a
343 model organism to study social behavior, brain disorders, aging, and development (73-76). The
344 honeybee's microbial (i.e., bacterial) community structure is straightforward, and only a few bacterial
345 species have been identified as being prevalent in the gut system, which is another advantage of using
346  honeybees as a model for gut microbiota (25, 26).

347

348
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556  Table 1. An overview of estimates of read sequence diversity and phylotype coverage of the NovaSeq
557 data generated from the larva and adult bee samples. The diversity indices and richness estimators
558  were calculated using mothur software. Diversity was estimated using operational taxonomic units

559 (OTUs) and was defined as groups with > 97% sequence similarity.

560
Group® Analyzed OTU® Chaol | Shannon | Simpson® Goods'
reads coverage
L1 2271 1000 4812.70 | 6.12 31.22 0.64
L2 2042 942 6735.13 | 6.05 22.77 0.61
NG1 2817 1168 6863.52 | 6.03 30.37 0.65
NG2 2681 1045 5813.76 | 5.83 26.19 0.67
NG3 3421 1267 7135.66 | 5.87 27.21 0.69
NG4 2900 980 7079.13 | 5.51 24.03 0.71
NG5 3224 1484 5565.07 | 6.78 99.59 0.65
NG6 2777 1141 7583.90 | 6.10 41.09 0.66
NG7 2837 1069 7010.52 | 5.78 29.73 0.68
NG8 2826 1172 7275.66 | 6.01 29.26 0.65
NG9 2749 1083 9465.89 | 5.71 20.27 0.65
VG1 2122 1037 5725.35 | 6.37 49.54 0.59
VG2 3012 1186 8024.03 | 5.91 29.42 0.66
VG3 3053 1299 7068.81 | 6.16 30.02 0.64
VG4 3254 1081 9201.67 | 5.33 14.57 0.71
VG5 2948 1171 5338.30 | 5.99 29.21 0.68
561

562 2L, NG, and VG denotes the larva, non-varroa, and varroa group, respectively
563 ®The OTUs were determined based on 97% of 16S rRNA gene similarity.

564  “Inverse-Simpson (see the materials and methods)

565

566
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567  Figure legends

568 Figure 1. The relationships between the bacterial community profiles of the larva and adult bees,
569 represented by a principal coordinates analysis (PCoA) plot (a) and an unweighted pair group method
570  with arithmetic mean (UPGMA) clustering tree (b), based on Yue-Clayton dissimilarity metrics. The
571 principal axes are shown with the percentage of variation explained between brackets. Each bee
572 samples are denoted by larva (L, triangle, light yellow), non-varroa (NG, circle, light green), and varroa
573  group (VG, square, light gray), respectively.

574

575  Figure 2. The relative abundances of the identified phyla in the L (a), NG (b), and VG (c) samples. Phyla
576  abundances of taxa found in the difference groups represent by dot plot (10 x 10). Read sequences
577  were assigned using mothur package and a reference database of recently updated 16S rRNA gene
578 obtained from the Silva database (version silva.nr_v138.1).

579

580  Figure 3. The abundances of the identified genera in the L (a), NG (b), and VG (c) samples. Genera
581 abundances represent by dot plot (10 x 10). The selected most relatively dominated genera (more
582  than 1% of total read sequences in each group) are shown in stacked. Read sequences were assigned
583 using mothur package and a reference database of recently updated 16S rRNA gene obtained from
584  the Silva database (version silva.nr_v138.1).

585

586 Figure 4. The LEfSe was carried out by Galaxy Project and the LDS score were presented by in the bar
587 charts. LDA scores showed significant bacterial difference between Larva and adult bees (NG and VG)
588  groups at the selected genera. The groups were statistically significant compared to each other (LDA
589 >2.0and p<0.05).

590

591 Figure 5. PICRUSt analysis. The chart for the predicted functional characterization at KEGG level 3
592  significant difference (p < 0.05) between larva and NG (a) or VG (b) groups was presented by STAMP
593  software. Larva (orange), non-varroa group (NG, blue), varroa group (VG, green).

594

595
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Supplementary figure legends

Figure S1. Alpha-diversity, estimated by Chaol (a), Shannon richness (b), and inverse Simpson diversity
(c) indices is plotted for larva (L, light yellow), non-varroa (NG, light green), and varroa group (VG, light
gray). These values were calculated with Yue and Clayton dissimilarity metric based on the proportions
of OTUs in different samples. The plots are based on the data shown in Table 1. The horizontal line
inside the box indicates the median value. The whiskers represent the lowest and highest values within
the 1.5 times interquartile range (IQR) from 25" and 75" percentile. Outliers as well as individual

sample values are shown as dots.

Figure S2. Heatmap showing the microbial taxa selected most relatively dominated genera (more than

1% of total read sequences) in each group. Heatmap was generated using gplot package.
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