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Abstract

Genetically predicted levels of multi-omic traits can uncover the molecular underpinnings of
common phenotypes in a highly efficient manner. Here, we utilised a large cohort (INTERVAL;
N=50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan,
N=3,175; Olink, N=4,_822), plasma metabolomics (Metabolon HD4, N=8,153), serum
metabolomics (Nightingale, N=37,359), and whole blood Illumina RNA sequencing
(N=4,136). We used machine learning to train genetic scores for 17,227 molecular traits,
including 10,521 which reached Bonferroni-adjusted significance. We evaluated genetic score
performances in external validation across European, Asian and African American ancestries,
and assessed their longitudinal stability within diverse individuals. We demonstrated the utility
of these multi-omic genetic scores by quantifying the genetic control of biological pathways
and by generating a synthetic multi-omic dataset of UK Biobank to identify disease
associations using a phenome-wide scan. Finally, we developed a portal (OmicsPred.org) to
facilitate public access to all genetic scores and validation results as well as to serve as a
platform for future extensions and enhancements of multi-omic genetic scores.



https://doi.org/10.1101/2022.04.17.488593
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.17.488593; this version posted April 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

74  Introduction

75  Multi-omic analysis has become a powerful approach to improve disease predictors and dissect
76  the regulatory networks that underpin disease biology'. However, the collection of
77  transcriptomic, proteomic, metabolomic and other modalities is an extremely expensive and
78  time-consuming process. Because of these barriers, large-scale population cohorts typically
79  generate multi-omic data for only a subset of participants (or not at all), which consequently
80  reduces the statistical power of subsequent analyses and creates inequities for studies that do
81  not have ample resources or are from underrepresented ancestries and other demographics.

82 It has been shown that genetic prediction of complex human traits can have both analytic
83  validity and potential utility in research and clinical settings*®. Genetic prediction has also been
84  extended to omics data, for example whole blood® and multi-tissue transcriptomics'®!! as well
85 as plasma proteomics!>!3. The value of such genetically-predicted traits is primarily in the
86  elucidation of the molecular aetiology of common diseases, incorporating both directionality
87  (as the germline genome is more or less fixed over a life course) and the power of large-scale
88  genotyped biobanks to overcome prediction noise!#'6.

89  The use of genetic scores to predict, expand and thereby democratize multi-omics data is an
90 area of intense interest. While foundational, genetic prediction in this area has historically
91 focused on gene expression, drawing on heterogeneous sources for training data which have
92  limited sample sizes. With many cohorts now performing multi-omics profiling at scale, there
93 is a unique opportunity to create genetic scores which capture multi-omic variation of
94  population-based samples. Given suitably robust external validation, the reliability of multi-
95  omic genetic scores can be quantified and extended to analyses assessing their transferability
96  across ancestries, thus facilitating equitable tools for molecular investigations in multiple
97  populations. This approach both facilitates integrative cross-cohort analyses for multi-omic
98  studies and enables the efficient generation of synthetic multi-omic data for studies with only
99  genetic data assayed.

100  Here, we utilise the INTERVAL study!’, a cohort of UK blood donors with extensive multi-
101  omic profiling, to train genetic prediction models. We externally validated these genetic scores
102 in seven different external studies, comprising European, East Asian (Chinese, Malay), South
103 Asian (Indian) and African American ancestries. We then demonstrate the use of genetically-
104  predicted molecular data, including their coverage of biological pathways and the identification
105  of multi-omic predictors of diseases and traits in UK Biobank. Finally, we construct an open
106  resource (OmicsPred.org) which makes all genetic scores, validations and biomarker analyses
107  freely available to the wider community.

108

109 Results

110  Development of genetic scores

111 This study aimed to develop genetic scores for blood biomolecular traits, including transcripts,
112 proteins, metabolites (Figure 1). To do this, we used the INTERVAL study which collected
113 participant serum or plasma on which assays from five different omics platforms were
114 performed: SomaScan v3 (Somalogic Inc., Boulder, Colorado, US), an aptamer-based
115  multiplex protein assay; Olink Target (Olink Proteomics Inc., Uppsala, Sweden), an antibody-
116  based proximity extension assay for proteins; Metabolon HD4 (Metabolon Inc., Durham, US),
117  anuntargeted mass spectrometry metabolomics platform; Nightingale (Nightingale Health Plc.,
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118  Helsinki, Finland), a proton nuclear magnetic resonance (NMR) spectroscopy platform; and
119  whole blood RNA sequencing via the Illumina NovaSeq 6000 (Illumina Inc., San Diego,
120  California, US) (Methods). INTERVAL participants were genotyped on the Affymetrix
121  Biobank Axiom array which was then imputed using a combined 1000 Genomes Phase 3-
122 UKI10K reference panel (Methods). After quality control, there were 10,572,788 genetic
123 variants for constructing genetic scores.

124

125  To train genetic scores, we utilised Bayesian ridge regression (BR), which has been shown to
126  have equal or better performance as other machine learning methods for genetic prediction®
127  and is more computationally efficient with a smaller carbon footprint!®. In the data used here,
128  we confirmed the generalisability of these findings across multiple platforms (Metabolon,
129  Olink, SomaScan), assessing the impact of different sets of variants arising from different
130 filtering strategies (Methods; Figures S1-4). Overall, we found the best performing approach
131  overall to be BR with a genome-wide variant selection using GWAS p-value < 5x108 (Figures
132 S1-4).

133 We developed genetic scores for 17,227 biomolecular traits from the five platforms, including
134 726 metabolites (Metabolon HD4), 141 metabolic traits (Nightingale), 308 proteins measured
135 by Olink, 2,384 protein targets measured by SomaScan, 13,668 genes for Illumina RNAseq
136  (Ensembl gene-level counts) (Methods). Across all platforms, we found wide variation in the
137  predictive value (R? between the genetically predicted and the directly measured biomolecular
138  trait) and the number of variants of the genetic scores in internal validation (Figure S5).

139 Overall, we found 10,521 biomolecular traits could be genetically predicted at Bonferroni-
140  adjusted significance (correcting for all genetic scores tested), including 1,051, 206, 379, 137
141  and 8,748 for SomaScan, Olink, Metabolon, Nightingale and RNAseq respectively. Of these,
142 5,816 and 409 genetic scores could predict their biomolecular traits with R?> 0.1 and R* > 0.5,
143 respectively (Figure 2 and Tables S1-5).

144 Validation in external cohorts of European ancestries

145  Following internal validation of the genetic scores, we performed external validation of
146  SomaScan protein targets in the FENLAND study!?; Olink proteins in the Northern Swedish
147  Population Health Study (NSPHS)?*?! and the Orkney Complex Disease Study
148  (ORCADES)?*%; Metabolon metabolites in ORCADES?; Nightingale metabolic traits in UK
149  Biobank (UKB)**?°, Viking Health Study Shetland (VIKING)?*® and ORCADES?® studies
150  (Figure 1 and Table 1). For Metabolon metabolites and Illumina RNAseq transcripts, we
151  performed further validation in withheld sets of INTERVAL (Methods). Overall, we found
152 that performance of the genetic scores for most traits across the five platforms was consistent
153  between internal and external validation in European ancestries, with genetic scores of many
154  traits being highly predictive (Figure 3 and Figures S6-11). As expected, we also found that
155  genetic scores with high missingness rates amongst variants (e.g. due to allele frequency
156  differences or technical factors) had attenuated power (Methods; Figure S12).

157  The SomaScan v3 platform quantified 3,622 plasma protein targets in INTERVAL?’, of which
158 2,384 proteins had at least one significant genetic variant that could be used for genetic score
159  development (Figure S5). Internal validation found that SomaScan genetic scores had median
160 R?= 0.04 (IQR = 0.08). External validation in European ancestries utilised the FENLAND
161  study'®, where 89% (N=2,129) of SomaScan genetic scores could be tested. Overall, there was
162  high consistency between internal and external R? performance (Pearson correlation » = 0.86
163  across all SomaScan genetic scores tested) (Figure 3). Of the 2,129 tested SomaScan genetic
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164  scores, we found 45 proteins (2%) with a majority of their variance explained (R?> 0.50) by
165 the genetic score in external validation, including several involved in innate and adaptive
166 immune responses, which were highly genetically predicted with R? > 0.70 (CLECI2A,
167  SIGLECY9, FCGR2A, FCGR2B and LILRBS). There were a total of 369 SomaScan proteins
168  (17%) that could be genetically predicted with R?> 0.10 in external validation.

169  The Olink proteomics used in INTERVAL quantified levels of 368 plasma proteins from four
170  different panels (Inflammation, Cardiovascular 2, Cardiovascular 3, Neurology), of which 308
171  unique proteins were qualified for genetic score development (Methods). Internal validation
172 found that Olink genetic scores had median R?= 0.06 (IQR = 0.12). We were able to test 301
173  and 302 genetic scores in external European ancestry cohorts, NSPHS and ORCADES
174  respectively (Methods). In assessing Olink proteins across both external validation cohorts,
175  we found four proteins (FCGR2B, IL6R, MDGA1, SIRPA) with a majority of their variance
176  explained (R?> 0.50) by the genetic score in external validation, with FCGR2B on SomaScan
177  found to be similarly genetically predicted (Figure 3). As compared to SomaScan, a larger
178  proportion of Olink proteins in NSPHS (N=117; 39%) and ORCADES (N=87; 29%) could be
179  genetically predicted with R?>0.10 in external validation. Overall, we found broad consistency
180  between validations in NSPHS and ORCADES (Figure S13).

181  The Metabolon HD4 platform quantifies >900 plasma metabolites and was used here in two
182  different phases of the INTERVAL study (Methods). Phase 1 (N=8,153) was used for
183  development and internal validation of Metabolon genetic scores and phase 2 (N=8,114) was
184  used for external validation (with no individuals overlapping between the two phases). We
185  conducted a further external validation in ORCADES. Internal validation found that Metabolon
186  genetic scores had median R?= 0.02 (IQR = 0.05). A total of 726 Metabolon HD4 metabolites
187  had significant genetic variants with which to construct genetic scores in INTERVAL, of which
188 526 and 455 metabolites (399 overlapping) could be externally validated in the phase 2 set and
189  ORCADES, respectively (Figure 3). We again found broad consistency between the two
190  external validation sets (Figure S13). There were no Metabolon HD4 metabolites with R? >
191  0.50 between their genetic scores and their directly measured values in either the phase 2 set
192  or ORCADES; however, there were 6 metabolites that had R?> 0.3 in both the phase 2 set and
193  ORCADES (4 metabolites overlapping). Of the metabolites that could be externally validated,
194 10% and 13% (N=50 and N=59) achieved a R? > 0.10 in the phase 2 set and ORCADES,
195  respectively. The top performing genetic scores included those for ethylmalonate (phase 2 set
196 R%?=0.43; ORCADES R? = 0.33), N-acetylcitrulline (both phase 2 set and ORCADES R?=
197  0.38) and androsterone sulfate (phase 2 set R>= 0.35; ORCADES R?= 0.17).

198  The Nightingale NMR platform was used to quantify 230 serum metabolic biomarkers (largely
199  lipoproteins, lipids and low molecular weight metabolites) from 45,928 INTERVAL
200  participants. Our analyses focused on the directly measured (non-derived) metabolic
201  biomarkers, and genetic scores for 141 Nightingale biomarkers were developed using
202 INTERVAL (Methods). Internal validation found that Nightingale genetic scores had median
203  R?=0.07 (IQR = 0.03). The genetic scores were externally validated in three cohorts (UKB,
204  ORCADES and VIKING). Overall, we found that genetic scores for Nightingale explained
205 somewhat lesser variation in the directly measured traits, as compared to other platforms
206  (Figure 3; Figure S11). Across UKB, ORCADES and VIKING, 28 Nightingale metabolic
207  biomarkers had an R?>> 0.10 in at least one external validation cohort, with no biomarkers
208  having R?> 0.30. However, Nightingale genetic scores performed consistently across cohorts,
209  with mean R? for all 141 Nightingale biomarkers of 0.07, 0.06 and 0.06 in UKB, ORCADES
210  and VIKING, respectively. The most predictive genetic scores were mainly related to low-


https://doi.org/10.1101/2022.04.17.488593
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.17.488593; this version posted April 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

211  density lipoprotein (LDL), e.g. concentrations of cholesteryl esters in small LDL, cholesterol
212 in small LDL, cholesteryl esters in medium LDL, cholesterol in medium LDL and LDL
213 cholesterol (Table S2).

214  RNAseq of whole blood from 4,778 individuals in INTERVAL was carried out using Illumina
215 NovaSeq (Methods). While 4,136 individuals were used to develop and test genetic scores,
216 598 individuals were kept as a withheld set for validation. The INTERVAL RNAseq data
217  allowed for the construction of genetic scores using both cis and trans eQTLs for 13,668 genes
218  (ENSEMBL gene IDs), of which 12,958 (95%) could be assessed in the withheld validation
219  set (Figure 3). Internal validation found that RNAseq genetic scores had median R? = 0.06
220 (IQR = 0.13). Overall, we found strong correlation of R? between the internal and withheld
221  validation sets (Pearson r = 0.97). There were 141 genes which had R?> 0.50 in the withheld
222 validation set, and 798 genes with R?> 0.30. The most predictive genes were those involved
223 in proteolysis (RNPEP; R*= 0.71), solute cotransport (SLC1247; R*>= 0.72), RNA helicase
224 activity (DDX11; R?=0.71) and spliceosome function (U24F[; R?= 0.72).

225  Transferability of multi-omic genetic scores to African American and Asian
226  ancestries

227  To assess the performance of the genetic scores developed in the predominantly-European
228 INTERVAL cohort in non-European ancestries, we utilised the Singapore Multi-Ethnic Cohort
229  (MEC)? and the Jackson Heart Study (JHS)*. MEC data comprised individuals of Chinese,
230 Indian and Malay populations who have matched genotypes, plasma Nightingale NMR and
231  plasma SomaScan (Table 1; Methods). The JHS data comprised African Americans with
232 matched genotypes and plasma SomaScan (Table 1; Methods).

233 Overall, we found that genetic scores developed from INTERVAL can predict the Nightingale
234  and SomaScan trait levels in cohorts of Asian and African American ancestries, but as expected
235  their performances were significantly reduced when compared to the validations in European
236  ancestry cohorts (Figure 4). For Nightingale, the European-trained genetic score performance
237  generally declined from Chinese to Indian to Malay ancestries, with LDL subclasses displaying
238  some of the most variable cross-ancestry R? (Figure 4a and 4b). The most transferrable
239  Nightingale genetic scores were triglycerides in IDL, triglycerides in small HDL and medium
240 HDL, degree of unsaturation and phosphatidylcholines (Figure 4c¢). When assessing
241  transferability of SomaScan, we found genetic score performance generally declined from
242 Indian to Malay to Chinese to African American ancestries (Figure 4d). The SomaScan genetic
243 scores that attenuated most in non-European ancestries were those for CD177 (a cell-surface
244 expressed protein on neutrophil and Treg's) and GDFS5 (a secreted ligand of TGF-beta) (Figure
245  4e). The most transferable SomaScan genetic scores included SIGLEC9 (which mediates
246  sialic-acid binding to cells), SIRPA (a cell surface receptor for CD47 involved in signal
247  transduction) and ACP1 (an acid and protein tyrosine phosphatase), where all internal and
248  external validation R? were >0.50 (Figure 4f).

249  Longitudinal stability of genetic scores in diverse ancestries

250  Within MEC, 1,739 individuals were measured at both baseline and revisit with mean length
251  of follow-up 6.31 years (SD 1.45 years). This allowed longitudinal assessment of the stability
252 of genetic scores for SomaScan (N =403 Chinese, 356 Indian and 353 Malay) and Nightingale
253 (N =721 Chinese, 376 Indian and 363 Malay) platforms. For SomaScan traits, we found strong
254  consistency between the predictive capacity of genetic scores between baseline and revisit
255  samples (Pearson r = 0.99 for Chinese, 0.98 for Indian and 0.98 for Malay populations), and
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256  little difference in longitudinal stability between ancestries (Figure 5d-f). For Nightingale
257  traits, despite variation in the predictive capacity of genetic scores between baseline and revisit
258  samples, the longitudinal stability between ancestries was still largely consistent (Pearson r =
259  0.60 for Chinese, 0.84 for Indian and 0.85 for Malay populations; Figure 5a-c).

260  Quantifying the genetic control of biological pathways

261  Multi-omic genetic scores may be used to probe the relevance of biological pathways to a
262  particular trait or disease outcome of interest. To assess the coverage of biological pathways
263 by the proteomic genetic scores we present here, we applied the genetic scores for SomaScan
264  and Olink to assess the extent to which pathways are genetically controlled (Methods). Here,
265  we considered all genetic scores with R? > 0.01 in internal validation (2,205 unique proteins)
266  and jointly mapped the SomaScan and Olink scores onto data curated from Reactome?® (Figure
267  6a, Figure S15).

268  For the plasma proteome, we found wide variation amongst the 27 super-pathways with some
269  super-pathways under relatively little genetic control (e.g. chromatic organisation, or transport
270  of small molecules) and others under substantially greater genetic control (e.g. digestion and
271  absorption, or extracellular matrix organisation) (Figure 6a). Approximately 18% of proteins
272 in the digestion and absorption super-pathway had internal validation R?> 0.10, and ~4% with
273 R?> 0.30. For the lowest-level pathway annotation (N=1,717) of the 27 super-pathways, we
274  found that a majority (N=1,169, 68%) were covered by at least one SomaScan or Olink genetic
275  score with an internal validation R>> 0.01 (Figure S15). For both the digestion and absorption
276  and the extracellular matrix organisation super-pathways, 25% and 42%, respectively, of
277  lowest-level pathway annotations were covered by at least one SomaScan or Olink genetic
278  score with internal R?> 0.30.

279  Phenome-wide association analysis using multi-omic genetic scores

280  Using the multi-omic genetic scores, we generated genetically predicted Metabolon HD4,
281  Nightingale NMR, Olink, SomaScan and whole blood RNAseq data for the UK Biobank
282  (Methods). Next, using these predicted multi-omics data of UKB, we performed a phenome-
283  wide association study using PheCodes?! (ICD-9 and ICD-10 based diagnosis codes collapsed
284  into hierarchical clinical disease groups; Methods). For simplicity and to maximize the number
285  of qualified PheCodes, we focused the analysis on UKB individuals of white British ancestry.
286  Multiple testing was controlled using Benjamini-Hochberg FDR of 0.05 (Methods).

287  Overall, at an FDR of 5%, we identified 18,404 associations between genetic scores of the
288  biomolecular traits and 18 categories of PheCodes (Figure 6b). These associations comprised
289 1,668 for Metabolon HD4, 2,854 for Nightingale NMR, 740 for Olink, 5,501 for SomaScan
290 and 7,641 for RNAseq (Table S6 and S7). Circulatory system diseases, endocrine/metabolic
291  and digestive diseases yielded the largest number of associations across platforms (Figure 6b).

292  The PheWAS detected many well-known blood biomarkers as well as intriguing associations
293  across genes, proteins and metabolites. For example, total cholesterol was significantly
294  associated with myocardial infarction (HR = 1.13 per s.d., FDR-corrected p-value = 1x107").
295  Interleukin-6 (IL-6) pathways have been shown to have a causal association with coronary
296  artery disease*>*, and notably, IL-6 receptor genetic scores in SomaScan and Olink had R? >
297 0.50 in both internal and external validation, showing its high genetic predictability.
298  Genetically predicted levels of IL-6 receptor in both Olink and SomaScan were significantly
299  associated with myocardial infarction (HR = 0.97 per s.d., FDR-corrected p-value = 2x10%;
300 HR = 0.97 per s.d., FDR-corrected p-value = 4x104, respectively). Microseminoprotein-beta
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301  has been identified as a biomarker for prostate cancer’* and PheWAS findings support this
302  association (HR = 0.87 per s.d., FDR-corrected p-value = 3x10*°). Genetically predicted Sex
303  Hormone-Binding Globulin (SHBG) protein was associated with type 2 diabetes (HR = 0.98
304  per s.d., FDR-corrected p-value = 0.03), consistent with previous observational and genetic
305  analyses®. Similarly, we found associations for insulin signaling pathway related proteins, e.g.
306 insulin receptor (INSR) and insulin-like growth factor 1 receptor (IGF1R), with type 2
307  diabetes*®’; ABO®® with type 2 diabetes; IL-6 with asthma*®; and HLA-DQA1/DQBI with
308  celiac disease*® (Table S6).

309  Ourresults validate those of a recent study identifying putative causal plasma protein mediators
310  between polygenic risk and incident cardiometabolic disease’, including six of the novel and
311  putatively causal associations for coronary artery disease (Table S6). Amongst the strongest
312 signals, we found intriguing associations including chronic pericarditis (N=266 cases) with
313 genetically-predicted gene expression of the phospholipase NAPEPLD (HR = 0.88 per s.d.,
314  FDR-corrected p-value < 1x10397) and the association of rhesus isoimmunization in pregnancy
315  (i.e. maternal antibodies attacking fetal blood cells; N=302 cases) with genetically-predicted
316  protein levels of ICAM4 (HR = 0.19 per s.d., FDR-corrected p-value = 3x10%). ICAM4 itself
317 s critical to the Landsteiner-Weiner blood system, which is genetically independent of the
318 rhesus factor (Rh) blood group system. Despite the /CAM4 locus showing no significant
319  association with rhesus isoimmunization in pregnancy (PheWeb*!), our ICAM4 results
320  demonstrate that genetic prediction of plasma protein levels can identify biologically plausible
321  candidate associations.

322 OmicsPred: An online portal for multi-omic genetic scores

323 We developed an online portal (OmicsPred.org) to facilitate open dissemination of the genetic
324  scores, detailed validation results and visualisations. OmicsPred also serves as an online
325  updatable resource, which allows future expansion and deepening of the omics platforms,
326  multi-ancestry transferability, newly developed and more powerful genetic scores, as well as
327  results from applications of OmicsPred (Figure S14).

328  The portal presents genetic scores of biomolecular traits by platform, in which users can access
329  summary statistics of the training and validation cohorts used for traits at each platform as well
330  as download, individually or in batch, the corresponding model files for genetic scores (i.e.
331  variants and weights). Users can visualise validation results by selected performance metrics
332 (e.g. R?or Spearman's tho), cohort(s), together with detailed trait (e.g. full protein name) and
333  validation information (e.g. variant missingness rate). Users can easily search the portal to find
334  biomolecular traits of specific interest, either by name or related descriptions. The OmicsPred
335  portal also hosts descriptions and summary results from applications of the genetic scores (e.g.
336  the PheWAS in UK Biobank described above).

337

338  Discussion

339  In this study, we developed genetic scores for >17,000 multi-omic traits across five molecular
340 platforms covering proteomics, metabolomics and transcriptomics in a single cohort. The
341  relative predictive values and robustness of the genetic scores were assessed in external
342  validations of European, Asian and African American ancestries; the longitudinal stabilities of
343  the genetic score performances were established within individuals of different ancestries; and
344  the utility of the multi-omic genetic scores was demonstrated by elucidating the relative genetic
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345  control of biological pathways and by identifying multi-omic disease associations using a
346  phenome-wide scan of predicted multi-omic data in UK Biobank. Finally, we developed an
347  open resource OmicsPred (OmicsPred.org) to publicly disseminate and continuously enhance
348  the value of multi-omic genetic scores.

349  While the utility of generating predicted transcriptomic data for cohorts with genome-wide
350  genotype data has been demonstrated*?, our work substantially extends these foundations using
351  alarge multi-omic cohort, quantifying both the intra- and inter-ancestry reliability of proteomic
352  and metabolomic genetic scores across multiple platforms. We generate a predicted multi-omic
353  dataset for UK Biobank and show that PheWAS can uncover many known and novel omic
354  associations with disease. Given that the increase in sample size required to detect an
355  association for a noisy explanatory variable can be estimated by the formula n/R (where n is
356  the sample size required if no measurement error exists and R is the reliability coefficient)',
357  even genetic scores of apparently low predictive value are likely powerful enough to detect
358  true associations at the sample sizes of current and forthcoming biobank-scale data. This
359  suggests that large biobanks could reliably test trait-disease associations using efficient
360  genetically-predicted data, before committing to novel data generation using (frequently
361  expensive) molecular assays.

362  Our study has several limitations. While blood is a key tissue of broad utility in discovery
363  science and medicine, it is most likely a correlate but not the main site of function for many of
364  the biomolecules assessed here. While genetic score performance was generally consistent
365 across cohorts, there were factors that could affect their performance, including technical
366  factors (e.g. use of serum versus plasma; genetic variant missingness), participant
367  demographics, and genetic factors (e.g. allele frequency differences). Genetic scores may also
368  pick up differences in molecular traits shared by multiple platforms (e.g. Olink and SomaScan).
369  Despite genetic scores for most shared proteins being consistently predictive across platforms,
370  there can be large differences which can be due to technical factors (e.g. binding affinity)
371  (Methods), as assessed in a recent study*. The attenuated performance of polygenic scores
372  across ancestries is a well-known limitation** and our analysis also found this in multi-omics
373  data. Multi-omics for non-European ancestries will likely become more common in the future,
374  and we see a key role for OmicsPred in facilitating robust genetic scores which enable multi-
375  omic prediction in diverse populations. Finally, we acknowledge that there are many highly
376  sophisticated machine learning approaches, which may improve genetic score performance
377  and/or transferability. We selected Bayesian ridge because it has been previously shown to
378  both perform well relative to other machine learning approaches and because it scales very well
379  to large numbers of traits, thus improving computational efficiency and promoting green
380  computing®!845. Optimal variant selection thresholds may also vary for each platform or trait
381  and this could potentially led to some improvements in prediction.

382  Future avenues for research include assessing to what extent the predicted multi-omic
383  associations are causal, expansion of OmicsPred to additional platforms and/or cohorts, and
384  multi-ancestry training for improved prediction. In summary, we have developed, validated
385  and applied multi-omic genetic scores for >17,000 traits and made them publicly accessible
386  via the new OmicsPred resource (https://www.omicspred.org), facilitating the generation and
387  application of multi-omics data at scale for the wider community.

388

389
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390 Methods

391 INTERVAL cohorts and data quality control

392  The INTERVAL study!” is a randomised trial of ~50,000 healthy blood donors, who were
393 recruited at 25 centres of England’s National Health Service Blood and Transplant (NHSBT)
394  and aged 18 years or older at recruitment. This trial aimed to study the safety of varying
395  frequency of blood donation, and all the participants completed an online questionnaire when
396 joining the study about their demographic and lifestyle, such as age, sex, weight, height,
397  alcohol intake, smoking habits, and diet, etc. All participants have given informed consent and
398 this study was approved by the National Research Ethics Service (11/EE/0538).

399

400  Using the aptamer-based SomaScan assay (version 3), this study profiled plasma proteins of
401 3,562 participants in two batches (n=2,731 and n=831), of which 3,175 samples remained for
402  analysis after quality control. The detailed steps for measurements and quality controls of the
403  protein levels using the SomaScan array in INTERVAL have been previously described>?’. In
404  summary, the relative concentration of 3,622 proteins (or protein complexes) targeted by 4,034
405 modified aptamers (SOMAmer reagents, referred to as SOMAmers) on the array were
406  measured from 150-pl aliquots of plasma at SomaLogic Inc. (Boulder Colorado, US). Quality
407  control was performed at the sample and SOMAmer levels by Somalogic, which uses the
408  control aptamers and calibrator samples to correct for systematic variability in hybridization,
409  within-run and between-run technical variability. For this study, we did not exclude protein
410  aptamers with greater than 20% coefficient of variation in either batch, but excluded these
411  aptamers targeting non-human proteins. We also excluded aptamers that, since the original
412 quantification in INTERVAL, had been (1) deprecated by Somalogic; (2) found to be
413  measuring the fusion construct rather than the target protein; or (3) measuring a common
414  contaminant’, which finally filtered the data to 3,793 high quality aptamers targeting 3,442
415  proteins. Within each batch, the relative protein abundances were natural log-transformed, and
416  then adjusted for age, sex, the first three genetic principal components and duration between
417  blood draw and sample processing (binary, 1 day vs >1 day). The protein residuals from this
418  linear regression were finally rank-inverse normalized and used as phenotype values for their
419  GWAS, which has been previously reported in detail?’. These normalized phenotype values
420  were further adjusted for batch effect and top 4-10 genetic principal components, which were
421  used as the phenotype values for the genetic score model training and internal validation.

422 Using Olink proximity extension assays*®, the INTERNAL study measured plasma protein
423  abundance of ~5,000 samples on four Olink panels: Inflammation-1 (INF-1), Cardiovascular
424  II (CVD-2), Cardiovascular III (CVD-3), and Neurology (NEUR) panel, each of which
425  includes 92 proteins. For the INF-1, CVD-2 and CVD-3 panels, samples were assayed in two
426  equal batches and their protein levels were pre-processed and quality controlled by Olink using
427  NPX Manager software. Protein levels were then regressed on age, sex, sample measurement
428  plate, time from blood draw to sample processing (number of days), season (categorical: spring,
429  summer, autumn, winter), and inverse rank normal transformed. Details of quality control and
430  GWAS for proteins on these three panels were given in the previous work!3. Due to timing and
431  funding differences, the NEUR panel was treated separately from other 3 panels for QC
432  purposes. In detail, samples were assayed in one large batch, and trait levels were also
433  processed by the NPX software and final measurements were presented as NPX values on a
434  log scale (i.e. a one unit increase represents a doubling of protein level). We removed 187
435 measurements flagged by Olink as potentially having technical issues and 147 samples of
436  potentially non-European origin as determined by principal component analyses, which left
437 4,811 measurements proceeding to standard QC assessments. We also checked for missing
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438  measurements and measurements below the limit of detection. No missing measurements were
439  found. 8 out of 92 proteins had values below the limit of detection (LOD), of which 4 (HAGH,
440  BDNF, GDNF, CSF3) had more than 5% of measurements below the LOD so were not taken
441  forward for further analyses. No participant had more than 4% of protein measurements below
442  LOD, and we did not observe over-representation of particular proteins below LOD for specific
443  participants. Protein measurements were then adjusted for age, sex, season and the first 11

444  genetic PCs, residuals of which were further inverse normal rank transformed for their GWAS:s.
445 It was noted that there are a small number of shared proteins across the four Olink panels
446  (detailed numbers of proteins and participants per panel after QC were given in Table S8). To
447  avoid duplication in genetic score construction, these shared proteins were merged by
448  averaging their protein levels on each sample across panels, and taken as a unique protein. All
449  the genetic variants identified in GWASs for the same protein across multiple panels were
450  combined (if different) for its genetic score development. The normalized proteins levels of
451 308 unique proteins were adjusted for the first ten genetic principal components (if not adjusted
452  previously), which were used as phenotype values for genetic score model construction and
453  testing in INTERVAL.

454

455  The DiscoveryHD4® platform (Metabolon, Inc., Durham, USA) was used to measure plasma
456  metabolites of INTERVAL participants. Four sub cohorts of 4,316 4,637, 3,333 and 4,802
457  participants were created through random sampling from the INTERVAL study and
458  metabolites were measured within the four sub cohorts (or batches) separately at two time
459  phases of the study (two batches at each phase). Samples of the first two batches were used as
460  training data for GWAS and genetic score development of metabolite traits in the platform,
461  and samples of the other two batches were held out for external validation purpose. The two
462  subsets of INTERVAL data were put through the same quality control process as described
463  below before performing training or validation. No significant technical variability was found
464  between batches and hence batches within a subset (i.e. phase 1 or 2) were merged prior to the
465  QC and genetic analysis including batch as a covariate to adjust for any residual batch effects.
466  Inthe first step, samples with missing values for each of the ion-counts for a specific metabolite
467  fragment (‘OrigScale’) were identified. These sample specific metabolite values were set to
468  missing within the scaled and imputed data ('ScaledlmpData'), which contains for each
469  metabolite the values within the OrigScale median normalised for run day (median set to 1 for
470  run-day batch). Metabolites were then excluded if measured in only one batch or in less than
471 100 samples. Metabolite values were then winsorized to 5 standard deviation from the mean
472  where the values exceeded mean +/-5 x standard deviation of the metabolite. Each metabolite
473  was then log (natural) transformed prior to calculating the residuals adjusted for age, sex,
474  Metabolon batch, INTERVAL recruitment centre, plate number, appointment month, the lag
475  time between the blood donation appointment and sample processing, and the first 5 ancestry
476  principal components. Prior to the genetic analysis, these residuals were standardised to a mean
477  of 0 and standard deviation of 1. GWASs were then performed for each trait using the
478  standardised trait values on samples of the first two batches, details of which were described
479  in the previous study*’. Finally, the standardised metabolites levels of the two INTERVAL
480  subsets (batches 1+2 and batches 3+4) were further adjusted for the top 6-10 genetic principal
481  components, which were used for genetic scores training and external validation respectively.

482

483  The Nightingale Health NMR platform was used to assay baseline serum samples of 45,928
484  INTERVAL participants and quantified 230 analytes in total, which are largely lipoprotein
485  subfractions and ratios, lipids and low molecular weight metabolites. This study only focused
486  on the 141 directly measured analytes and excluded those derived from other analytes. Apart
487  from the missing values for low abundance analytes, the dataset also included zero values for
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488  some analytes, which were recoded as missing in our analysis. In addition, those analyte values
489  of participants that had abnormally high/low values of more than 10 SD from the analyte mean
490  across all participants were set as missing too. We further excluded participants with >30%
491  analyte missingness and duplicate samples. Participants that failed genetic QC (see below) or
492  did not have relevant phenotype data available were also removed, which resulted in 37,359
493  participants remaining in the analysis. Values of each analyte were log (natural) transformed
494  and adjusted for age, sex, BMI, recruitment centre, time between blood draw and sample
495  processing and the first 10 genetic principal component. The residuals were then inverse
496  normal rank transformed, which were finally used to perform GWAS of these traits and their
497  genetic score development. Details of quality control and GWAS for these traits can be found
498  in the previous study*®.

499

500 RNA sequencing was performed on the NovaSeq 6000 system (S4 flow cell, Xp workflow;
501  Illumina) with 75 bp paired-end sequencing reads (reverse stranded) in INTERVAL, which
502  were aligned to the GRCh38 human reference genome (Ensembl GTF annotation v99) using
503  STAR (v2.7.3.a)* and obtained the gene count matrix using featureCounts (v2.0.0)*°. This in
504  total resulted in raw gene-level count data of 60,676 genes (ENSEMBL gene IDs) across 4,778
505  individuals with 2.03-95.55 million uniquely mapped reads (median: ~24 million). Poor-
506  quality samples with RNA integrity number (RIN) < 4 or read depth < 10 million uniquely
507  mapped reads were removed. We further removed one random individual from each flagged
508  pair of related individuals, which were first- or second-degree estimated from genetic data.
509  Finally, sample swaps and cross-contamination were assessed using match bam to VCF (MBV)
510  method from QTLtools!, which identified and corrected 10 pairs of mislabelled samples;
511  samples with no clear indication of their matching genotype data were also removed. Genes
512 were retained based on >0.5 counts per million (CPM) expression threshold in =1% of the
513  samples. The filtered count values were converted to trimmed mean of M-values (TMM)-
514  normalized transcript per million mapped reads (FPKM) values>?. Next, the normalised log,-
515  FPKM values for each gene were ranked-based inverse normal transformed across samples.
516  We further excluded globin genes, rRNA genes, and pseudogenes. After filtering, a total of
517 4,732 samples and 19,835 genes were retained for further eQTL analysis. Prior to eQTL
518  mapping, the probabilistic estimation of expression residuals (PEER) method>* was used to
519  find and correct for latent batch effects and other unknown confounders in the gene expression
520 data. To estimate PEER factors independent of the effects of known variables, a set of 22
521 covariates of interest was included in the analysis. These were age, sex, BMI, and blood cell
522 traits (N=19), including: (1) Basophil percentage (of white cell count); (2) Eosinophil
523  percentage(of white cell count); (3) Lymphocyte percentage (of white blood cell count; (4)
524  Monocyte percentage (of white blood cell count); (5) Neutrophil percentage (of white blood
525  cell count); (6) White blood cell (leukocyte) count (reported); (7) Immature reticulocyte
526  fraction; (8) Haematocrit (volume percentage of blood occupied by red cells); (9) Reticulocyte
527  percentage (of red cell and reticulocyte count); (10) Haemoglobin concentration; (11) Mean
528  corpuscular haemoglobin; (12) Mean corpuscular haemoglobin concentration; (13) Mean
529  corpuscular (red cell) volume; (14) Red blood cell (erythrocyte) count (reported); (15) Red cell
530 distribution width; (16) Mean platelet volume; (17) Plateletcrit; (18) Platelet distribution width;
531 (19) Platelet count. The eQTL mapping was performed on genome-wide variants using
532 TensorQTL v1.0.35* adjusting for age, sex, BMI, the above mentioned blood cells traits (N=19),
533  the top 10 genetic principal components, RIN, sequencing batch, RNA concentration, raw read
534  depth, season (based on month of blood draw), and PEER factors (N=30). The normalised gene
535  level values were also adjusted for the same set of covariates used in the eQTL mapping for
536  their genetic score training and validation. Note that we held out the last two batches of samples
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537  for external validation purpose and the first four were used for eQTL mapping and genetic
538  score training/internal validation.

539

540  The genotyping and its quality control for INTERV AL samples have been previously described
541  indetail®®. The samples were genotyped using the Affymetrix UK Biobank Axiom array, which
542  assays approximately 830,000 variants. The variants were phased using SHAPEIT3 and
543  imputed on a combined 1000 Genomes Phase 3-UK10K reference panel. After various quality
544 control steps, it finally results in 10,572,788 variants for 43,059 samples. The number of valid
545  samples in each platform for genetic score construction (Table 1) excluded samples that did
546  not pass the genetic QC.

547  External validation cohorts

548  The FENLAND study profiled the plasma proteins of 12,084 participants using the aptamer-
549  based SomaScan assay (version 4), in which 8994 participants were genotyped using the same
550  the Affymetrix UK Biobank Axiom array as INTERVAL*. The later subset of Fenland
551  participants were used for the genetic score model validation in our study. As FENLAND and
552  INTERVAL applied two different versions of the SomaScan array (versions 3 and 4), we
553  matched aptamers (or SOMAmers) between the two studies by using their unique SomaScan
554  IDs, which resulted in 2129 matched results. The detailed QC steps for protein measurements,
555  and genotype imputation and QC for genotype data in the FENLAND study were described in
556  the previous study'®. The Fenland study was approved by the National Health Service (NHS)
557  Health Research Authority Research Ethics Committee (NRES Committee — East of England
558  Cambridge Central, ref. 04/Q0108/19), and all participants provided written informed consent.
559  Both the Orkney Complex Disease Study (ORCADES)?*? and Northern Sweden Population
560  Health Study (NSPHS)?° have measured plasma protein levels of their participants on the four
561  Olink panels that were used in INTERVAL, and genotyped participants using Illumina arrays.
562  Thus, participants of the two studies were used to validate genetic score models of Olink
563  proteins considered in our study, where gene names of proteins were used to match proteins
564  between studies. For those proteins that appeared in two or more Olink panels, their validation
565 measurements were averaged across panels for the protein. Detailed imputation and QC steps
566  for protein abundance measurements and genetic data in the two studies were described in the
567  previous studies®®>7. Protein levels in ORCADES were adjusted for age, sex, plate, plate row,
568 and plate column, sampling year and season, top 10 genetic PCs and kinship before used for
569  validation. ORCADES also used the same platform Metabolon HD4 as INTERV AL to measure
570  plasma metabolites of participants, and we used COMP identifier in the platform to match
571  metabolites between the two studies, which resulted in 455 overlapped traits. Detailed quality
572  control steps for metabolites in ORCADES were described in the previous study?® and their
573  trait levels were adjusted for covariates of sex, age, BMI, sampling season and year, plate
574  number, plate column, plate row, genotyping array and top 20 PCs. The UK Biobank,
575 ORCADES and the VIKING health study?® were used as external cohorts to validate genetic
576  scores of Nightingale traits, and traits identifiers provided in the platform were used to
577  successfully match all 141 traits between these studies and INTERVAL. Quality control for
578  these traits in each external cohort has been described previously in details**?*. Before
579  validation, levels of these traits were adjusted for sex, age, BMI, sampling season and sampling
580  year, genotyping array and top 20 genetic PCs in ORCADES, VIKING; in UKB, they were
581  adjusted for sex age, BMI, use of lipid lowering medication, top 10 genetic PCs and technical
582  variance following the protocol of the previous study?*.

583

584  The Multi-Ethnic Cohort (MEC) recruited three major Asian ethnic groups represented in
585  Singapore: Chinese, Malays and Indians, between 2004 and 2010 to better understand how
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586  genes and lifestyle influence health and diseases differently in persons of different ethnicities?®.
587  Between 2011 and 2016, the participants were further invited for a follow-up. Whole genome-
588  sequencing was performed on 2,902 MEC participants as Phase I of the National Precision
589  Medicine Programme (https:/npm.a-star.edu.sg/). Samples were whole-genome sequenced to
590 an average of 15X coverage. Read alignment was performed with BWA-MEM and variant
591  discovery and genotyping was performed with GATK. Site-level filtering includes only
592  retaining VQSR-PASS and non-STAR allele variants. At the sample level, samples with call
593  rate <95%, BAM cross-contamination rate >2%, or BAM error-rate > 1.5%; at the genotype
594  calllevel, genotypes with DP<5 or GQ<20 or AB>0.8 (heterozygotes calls), were set to NULL.
595  Finally, samples with abnormal ploidy were excluded, and genetic ancestry were determined
596  with k-means clustering from the top 15 principal components. Both SomaScan (version 4) and
597  Nightingale NMR platforms were used to assay baseline and revisit blood samples of
598  participants in MEC. For quality control of Nightingale data, participants with >10% missing
599  metabolic biomarker values were excluded from subsequent analyses. For participants with
600  biomarker values lower than detection level, we replaced values of 0 with a value equivalent
601  to 0.9 multiplied by the non-zero minimum value of that measurement. For quality control of
602  SomaScan data, protein levels were first normalized to remove hybridization variation within
603  arun. This was followed by median normalization across calibrator control samples to remove
604  other assay biases within the run. Overall scaling and calibration were then performed on a per-
605 plate basis to remove overall intensity differences between runs with calibrator controls.
606  Finally, median normalization to a reference was performed on the individual samples with QC
607  controls. During these standardization steps, multiple scaling factors were generated for each
608  sample/aptamer at each step. The final number of samples in each ethnic groups used in our
609  validation were given in Table 1. For both SomaScan and Nightingale traits, natural log-
610 transformation was applied before adjusting for age, sex, T2D status, and BMI (Nightingale
611  traits only). Residuals from the regression were inverse-normalised for correlation analyses
612  with genetic scores trained in INTERVAL.

613  The Jackson Heart Study (JHS) is a community-based longitudinal cohort study begun in 2000
614  of 5,306 self-identified Black individuals from the Jackson, Mississippi metropolitan statistical
615  area®-8. The participants included in our validation of genetic scores for SomaScan proteins
616  are samples collected at Visit 1 between 2000 and 2004 from 1,852 individuals with whole
617  genome sequencing and proteomic profiling (SomaScan) performed, quality controls of which
618  were detailed in the previous studies?-%¢?, SomaScan IDs were used to match shared proteins
619  between JHS and INTERVAL, which identified 820 proteins in total. Protein levels were
620  adjusted for age, sex and the first 10 principal components of genetic ancestry in JHS, before
621  they were used for evaluating performance of genetic scores.

622  Polygenic scoring method

623 A genetic score is most commonly constructed as a weighted sum of genetic variants carried
624 by an individual, where the genetic variants are selected and their weights quantified via
625  univariate analysis in a corresponding genome-wide association study®!-62:

626 PGS, = z B; X x; )
JES

627  where Sis the set of variants, referring to single nucleotide polymorphisms (SNPs) in this study,

628 that are identified in the variant selection step described below; f; is the effect size of the SNP

629 j that is obtained through the univariate statistical association tests in the GWAS; x;; is the

630  genotype dosage of SNP j of the individual i. As the variant set S is derived through a LD

631  pruning and p-value thresholding process, this method is often named as the P+T. However,
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632  P+T relies on hard cut-off thresholds to remove LD correlations among variants and select
633  associated variants. It is often challenging to balance between keeping predictive variants and
634  removing redundant and uninformative variants that can limit the prediction precision. Also,
635  due to the inherent linear assumption of the univariate analysis in P+T, this method leaves no
636  modelling considerations for joint effects between variants. To alleviate these limitations,
637  various machine learning based methods, such as Bayesian ridge (BR), elastic net (EN)* and
638  LDpred®, have been utilized to construct genetic scores for a wide range of traits and diseases®.
639  In particular, BR and EN have been shown to outperform other methods when developing
640  scores for predicting biomolecular traits, such as blood cell traits and gene expression®!?, which
641  are similar to the type of traits considered in this study. We adopted the BR method for the
642  genetic score construction of all the biomolecular traits as BR is more efficient to run in practice
643  (see details below).

644  Bayesian ridge is a multivariate linear model which assumes that the genetic variants have
645  linear additive effects on the genetic score of the trait®®*. In addition, BR also assumes that the
646  genetic score of a trait follows a Gaussian distribution, and the prior for effect sizes of variants
647 s also given by a spherical Gaussian:

648 p(PGS|x, B,a) ~ N | PGS| z X8, a ! 3),
Tes

649 p(BlA) ~N(B|0,A71) (4)

650

651  where a and A are coefficients of the model and subject to two Gamma distribution: Gamma(a,
652  02) and Gamma(\i, A2). These two prior Gamma distributions can be set via a validation step.

653  Genetic score model training and evaluation

654  The explained variance (R?) and Spearman's rank correlation coefficient were used to measure
655  the performance of constructed genetic scores in the INTERVAL training samples and external
656  cohorts (or INTERVAL withheld subset), where R? scores were calculated using the squared
657  Pearson correlation coefficient. We adopted a similar strategy for sample partition when
658  training and evaluating genetic scores within the training samples as previous studies®!? that
659 utilised learning-based methods to construct genetic scores for molecular traits. The training
660  samples of a trait were randomly and equally partitioned to five subsets, from which any four
661  subsets are used as true-training data to learn a genetic score model of the trait, and test the
662  model’s performance on the remaining 20% of samples. Given a genetic scoring method and a
663  trait, we obtained five different genetic score models of the trait and the mean of their
664  performance measurements in the corresponding testing samples in INTERVAL was reported
665  (internal validation). Note that, due to the high similarities between the five genetic score
666  models trained for most traits, only one model was randomly selected from the five and
667  evaluated in the external cohorts (or INTERVAL withheld subset).

668  When training genetic score models using the BR method, we need to select two appropriate
669  prior gamma distributions, i.e. a1, 02, A1 and A2. To do so, a grid search across the set [-10°, -
670  10°,-10, 0, 10, 10°, 10'°] was performed on the true-training data set, in which 10% of the
671  samples were used as a validation set. However, running this validation process is resource and
672  time-intensive, which makes it challenging to run for all the traits. To address this problem, we
673  found that it is reasonable to assume that the same category of molecular traits, i.e. proteomic
674  traits or metabolomic traits, share the same prior distributions, without sacrificing model
675  performance. Thus, we only needed to run the validation process once for each of the platforms
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676  (a trait was randomly selected), and applied the identified optimal prior distributions to other
677  traits.

678  Variant selection and performance comparison between BR and P+T

679  Selecting a proper set of variants and feeding into a polygenic scoring method are a key step
680  for effective genetic score construction. To do so and further confirm the superiority of BR
681  method, we looked at the performance of BR and P+T on a variety of variant selection schemes
682  for the traits in three platforms (SomaScan, Olink and Metabolon).

683  To ensure the generalizability of genetic score models when applied to other cohorts, a variant
684 filtering step was first performed for all the traits considered, which applied a MAF threshold
685  0of 0.5% and excluded all multi-allelic variants as well as ambiguous variants (i.e. A/T, G/C).
686  To remove LD dependencies among variants, a follow-up LD thinning step was carried out at
687  an s’ threshold of 0.8 on all the variants. The remaining variants were then filtered at given p-
688  value thresholds (from their GWAS summary statistics conducted on the INTERVAL training
689  data) for a trait in different platforms. To identify an appropriate variant selection scheme for
690  the use of all the biomolecular traits, we attempted the following four p-value thresholding
691  schemes for protein traits in Olink and SomaScan platforms: (1) p-value < 5 x 10 on all the
692  variants; (2) p-value < 5 x 10® on variants in the cis region only (within 1IMB of the
693  corresponding gene’s transcription start site); (3) all the cis variants only; (4) all the cis variants
694  and p-value < 1 x 107 on the frans variants; and the two different p-value thresholds on the
695  genome-wide variants for metabolite traits in the Metabolon platform (as they do not
696  distinguish cis and trans regions): (1) p-value <5 x 10%; (2) p-value < 1 x 10,

697

698  Then, we compared the performance of BR and P+T on these variant sets in the internal
699  validation (Figure S1-S3). Regarding the proteomic traits (SomaScan and Olink), the two
700  variant selection schemes: (1) p-value < 5x10"® on genome-wide variants and (2) all the cis
701  variants and p-value < 1x10- on the frans variants, were shown to be the best performing
702 schemes with either of the methods; BR method largely outperformed P+T across the two
703  wvariant selection schemes. Meanwhile, it was noted that the two selection schemes led to
704  greatly different performance, with the latter scheme achieving an unrealistic mean R? of ~0.74
705  across all the proteins (only ~0.09 for the former scheme). Similarly, for the metabolomic traits
706  (Metabolon), the applied two variant selection schemes significantly differ in their performance
707  in internal validation, and BR was also shown to a better performing method.

708  To further identify the optimal variant selection scheme, we also looked at the performance of
709  validated genetic score models trained with the two identified (for proteins) or all the two
710  applied (for metabolites) schemes using BR method for Olink traits and Metabolon traits
711  (Figure 3 and Figure S4) in external cohorts (NSPHS and ORCADES) or withheld
712 INTERVAL data. Despite the second scheme (all the cis variants and p-value < 1x10 on the
713 trans variants for proteins, or p-value < 1x10 on genome-wide variants for metabolites)
714 showed outstanding performance in internal validation, its performance saw a dramatic decline
715  in external validation for almost every trait validated (Figure S4). It indicates this variant
716  selection scheme caused an overfitting problem in genetic score training, which is consistent
717  with previous findings when using overly lenient p-value thresholds for variant selection®.
718  These results suggested that the BR method with the variant selection scheme of p-value <
719  5x10°® on genome-wide variants was the optional method (of those tested) for genetic score
720  development of these biomolecular traits, thus we applied this approach to all other traits for
721  their genetic score development in this study.
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722 Comparing the genetic scores for shared proteins between SomaScan and Olink

723 SomaScan and Olink used two different technologies for protein level measurement. The two
724  platforms measured many proteins in common, among which there are 169 unique proteins
725  whose genetic scores we have validated. To check the impact of technologies on genetic
726  prediction, we looked at how the genetic scores trained on one platform can predict protein
727  levels from the other platform on the INTERVAL training samples (Figure S16). We
728  confirmed that performance of these overlapped genetic scores trained in the other platform
729  was generally consistent with that of the scores trained in their original platform. However, we
730  did observe, in some cases, the genetic scores trained in the two platforms can lead to very
731  different predictions, for which we found that they are mainly due to the differences in what
732 the two platforms are actually quantifying. For example, among the 169 proteins, there are 11
733  proteins in SomaScan that had a R > 0.3 in internal validation, in which 10 proteins also
734 achieved a R? > 0.3 but the remaining protein (CHI3L1) received a poor R’ < 0.1 when
735  predicting with Olink genetic scores. We found that the remaining protein received a lowest
736  Pearson’s r score among the 11 proteins between their actual protein levels measured in the
737  two platforms. In INTERVAL, there were ~700 participants (depending on the protein) who
738  were assayed by both SomaScan and Olink, which allowed us to calculate the correlations
739  between the actual protein levels measured by the two platforms for the same protein. These
740  results suggested, despite great consistency, genetic scores of the same protein trained in the
741  two platforms can represent distinct aspects of protein biology of prediction and integration of
742 diverse proteomic techniques may enable to develop better genetic scores for these proteins®’.

743  Pathway coverage analysis of heritable proteins

744 Inthis analysis, SomaScan and Olink proteins were combined based on their Uniprot ID, where
745 duplicate proteins were removed if identified. We only kept proteins with R?>0.01 in internal
746  validation, resulting in a total of 2,205 unique proteins for the analysis. We used pathway data
747  of Homo sapiens curated at Reactome?® and conducted analyses to uncover the coverage of
748  these proteins in the pathways. In detail, this analysis looked at the percentages of these proteins
749  in annotated physical entities of each super-pathway, and the percentages of the lowest-level
750  pathways these proteins covered among all the lowest-level pathways of each super-pathway.
751  Where at least one protein in this study are included in entities of a lowest-level pathway, we
752 considered this pathway is covered by proteins of this study.

753  Phenome-wide association analysis (PheWAS) in UKB

754  We included biomolecular traits with R? > 0.01 in internal validation in this analysis (11,576
755  traits in total) and considered only participants of European ancestry in UKB (the White British
756  subset). We used the version 3 of imputed and quality controlled genotype data for UKB, which
757  were detailed in the previous study?’. Using version 1.2 of the Phe WAS Catalog?®!, we extracted
758  the curated phenotype definitions of all phecodes. Each phecode is provided as a set of WHO
759  International Classification of Diseases (ICD) diagnosis codes in versions 9 (ICD-9) and 10
760  (ICD-10) of the ontology to define individuals with the phenotype of interest, and a set of
761  related phecodes that should be excluded from the control cohort of unaffected individuals. To
762  define cases for each phecode, we searched for the presence of any of the constituent ICD-9/10
763  codes in linked health records (including in-patient Hospital Episode Statistics data, cases of
764  invasive cancer defined in the cancer registry, and primary and secondary cause of death
765  information from the death registry), and converted the earliest coded date to the age of
766  phenotype onset. Individuals without any codes for the phenotype of interest were recorded as
767  controls, and censored according to the maximum follow-up of the health linkage data (January
768 31, 2020) or the date of death whichever came first. To define the cohort for testing molecular
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769  genetic score associations with the age-of-onset of each phenotype, we used the set of events
770  and censored individuals described above and removed any individuals with related
771  phenotypes (based on definitions from the PheWAS Catalog), restricting analyses to be sex-
772  specific (e.g. ovarian and prostate cancer) where requires. To ensure a well-powered study we
773 restricted the PheWAS analysis to phenotypes with at least 200 cases in the 409,703 European
774  ancestry individuals whose reported sex match the genetically inferred sex from the UKB
775  quality controlled genotype data?®, resulting in a set of 1,123 phecodes included in the final
776  analysis. The association of the genetic score for biomolecular traits with the onset of each
777  phenotype was assessed by using a Cox proportional hazards model with age-as-timescale,
778  stratified by sex and adjusted for genotyping array and 10 PCs of genetic ancestry. The
779  association between genetic scores and each phecode is reported in terms of its effect size
780  (Hazard ratio) and corresponding significance (p-value), and significant results were defined
781  as Benjamini/Hochberg FDR-corrected p-value < 0.05 for all the tested traits. Statistical
782  analyses were performed in python and the Cox model was implemented using the lifelines
783  package®.
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1059  Table 1. Demographic statistics of training and validation samples for genetic score
1060  construction of blood biomolecular traits by platform. The table shows the mean * standard
1061  deviation of age and BMI for participants in each cohort or cohort subset.

# # % BMI

Platform Cohort Ancestry Traits | Samples | Men Age (years) (kg/m?)
Training and Internal Validation
Metabolon 726 8,153 | 51.0% | 43.9+14.1 | 264+46
Nightingale 141 37359 | 51.0% | 43.7+14.1 | 26.4+4.6
Olink INTERVAL European 308 4,822 59.3% | 59.0+6.7 | 26.5+4.1
p
SomaScan 2,384 3,175 | 50.8% | 43.6+14.2 | 263 +4.7
Eﬁﬁre‘: 13,668 | 4,136 | 56.4% | 54.6+11.6 | 26.6 +4.4
External Validation
INTERVAL 527 | 8114 | 494% | 47.0+13.8 | 26.5+4.6
Metabolon | Withheld subset European
ORCADES 455 1,007 | 43.9% | 54.0+153 | 27.7+4.9
UKB 141 116,830 | 45.8% | 56.5+8.1 | 27.4+48
ORCADES European 141 1,884 40.0% | 53.9+15.0 | 27.8+£5.0
Nishtineal VIKING 141 2,046 | 39.9% | 49.8+152 | 27.4+49
1ghtingale ;
Chinese 139 1,067 | 472% | 521499 | 23.5+3.8
MEC Indian 139 654 43.7% | 445+11.6 | 26.4+5.1
Malay 139 634 42.9% | 449+11.1 | 26.9+5.1
Olink NSPHS . 302 872 47.6% | 49.6+20.2 | 26.7+4.38
mn uropean
ORCADES P 301 1,052 | 44.1% | 53.8+15.7 | 27.7+4.9
FENLAND European 2,129 8,832 47.1% 48.8+7.4 269 +438
Chinese | 2,070 645 46.0% | 51.9+109 | 23.5+3.9
SomaScan MEC Indian 2,070 564 45.0% | 44.0+12.0 | 26.3+53
Malay 2,070 563 43.9% | 444+113 | 269+5.2
JHS A‘?nfgr‘;ign 820 1,852 | 39.0% | 55.7+12.8 | 31.6+73
[llumina INTERVAL 0
RNAseq withheld subset European | 12,958 598 49.5% | 45.0+13.1 | 26.8+4.8
1062
1063
1064
1065
1066
1067
1068
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1069  Figure 1: Schematic framework for the development and validation of multi-omic genetic
1070  scores.
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1074  Figure 2: Performance of multi-omic genetic scores in internal validation. For each
1075  platform, genetic scores were constructed using Bayesian ridge regression on the genome-wide
1076  genetic variants with univariate p-value < 5x10® in INTERVAL. The variance explained in the
1077  measured biomolecular trait (R?) by the genetic score is assessed in the internal validation set
1078  (Methods). Pie charts reflect the number of genetic scores in a particular R? range.
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Figure 3: External validation of genetic scores in cohorts of European ancestry.
Scatterplots show comparisons of the R? in internal validation and external validation for each
omic platform. Data points are coloured by variant missingness rate in the external cohort (i.e.
the proportion of variants in the genetic score missing in the external cohort) and blue lines
show the linear models fitting the data points. For each platform, concentric circles show the
number of genetic scores in different ranges of explained variance (R?) in internal validation
(inner ring) and external validation (outer ring). External validation cohorts used for each
platform include FENLAND (SomaScan), NSPHS (Olink), INTERVAL withheld set

(Metabolon), UKB (Nightingale) and INTERVAL withheld set (RNAseq).
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Figure 4: Transferability of genetic scores to cohorts of Asian and African American
ancestries. (a, d) Performance (R?) of genetic scores for Nightingale (a) and SomaScan (d) in
external cohorts of various ancestries relative to R? in internal validation (INTERVAL).
Transferability was only tested if the genetic score had a significant (Bonferroni corrected p-
value < 0.05) association with the directly measured molecular trait in internal validation,
which resulted in 137, 136 Nightingale metabolic traits for UKB and MEC (Chinese, Indian
and Malay) respectively and 949, 945, 378 SomaScan proteins for FENLAND, MEC and JHS.
Violin plots show distributions of the ratio of R? values. Black points show mean values and
error bars are standard errors. (b, ¢, e, f) R? of genetic scores for Nightingale (b, ¢) and
SomaScan (e, f) with the five most variable (b, e) or five most consistent (c, f) for prediction
in multi-ancestry validation, as quantified by mean absolute difference in R2. In this analysis,
only Nightingale R? > 0.05, SomaScan R? > 0.30 in internal validation were considered.
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Figure 5: Performance (R?) of genetic scores between longitudinal samples and across
ancestries in the MEC cohort. Paired samples include a baseline and a revisit sample from
each individual run on Nightingale and SomaScan for MEC Chinese (N=406 and 721

individuals), MEC Indian (N= 356 and 376) and MEC Malay (N=353 and 363). Blue lines
denote linear models fitted to each set of data points.
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Figure 6: Applications of multi-omic genetic scores. (a) Genetic control of Reactome super-
pathways using SomaScan and Olink genetic scores of varying predictive performances in
internal validation (Methods). (b) Phenome-wide association study using PheCodes in UK
Biobank. Slacked barplots showing the number of detected significant associations (FDR-
corrected p-value < 0.05) by PheCode category of disease and omic platform. (c) Strength of
associations by category of disease and omic platform. Association with the lowest pvalue for
each category of diseases is labelled.

a

@
8

Variance
Explained (R?)

n
S

051]

| RS

| E3LE)
m I I I II I II II o
o+

#Proteins/#Total Entities in Pathway (%)

$ S > & N\ L ¢E £ S S
& > i o 5 \ & & F S ESFS &
S \\0 o\"q’ \"v‘\@ RS o‘Q ‘96 @Q 5 &Q’ 5@\ o@@ %% & @‘Q 58 x@’(’ o & F P rz§°
F P & @ S F R & &E e° &% &° & S @ & N P &
v & @ P T T ARE N R PSP VS R A SN LN
AN RS & & & N F F & & L & & AP
P ¢ o S S ST 2 &
PN @ & & 5 N MR P O £
% AN RN D Y 2 > O 2 's
N & F & Sl & 3 .
@ NRS) & N & € & B
& S & & W
5 NG ° N\
4 & & &
& &
Oﬂ

4000
Platform

[ Wetabolon
. Nightingale
B oinx

b [T somascan
[ Rnaseq
S -

Number of Significant Associations

& & > o &
& & & & & i & & ©
¥ o“q’ & \c? c»}"' e\>‘\° s \e“‘fo & & Q \G\\ & & & F
S N Q N S & Q o S 3© & S N & ) &%
RS N & &) & & R > > 5 & & <€ g
& & <f « [} & > % & o &
X N & Nss N o & ¥
& & ¢ & & S o)
[© & N N 3 S
o) <& A Y (\ﬂ)
Q@Q
Disease Category
C
> 308 NP O x XBOKX X

o
(Chronic pericarditis, NAPEPLD)
(Disorders of iron metabolism, TFRC) ~ (Dementias, CPE)
(Celiac disease, GRIA4)

(Hypercholesterolemia, Phospholipids in IDL)

a
300 Hxo X PO

o < o0

200 ©

-l0g1o(p)

(Dupuytren's disease, BX537318.1)
(Other non-epithelial cancer of skin, ASIP)

o
(Psoriasis, USP25) %QQ
| (Multiple sclerosis, PDE4D)

Wy o

1001 A 00x x

00

(Rhesus isoimmunization in pregnancy, ICAM4)

(Degeneration of macula and
(Asthma, TfsBV75) posterior pole of retina, ANAPCT)

&
& @ & & ¢ ¢ ¢ S & 3© S @
& & & ¢ & & & & F F & F & F S EF
Q& S & S N &€ & » o N © & S Q & @ 5
Q Ny ) & & & & < N N ¥ & S Q¢ & S
& & < S & & 3 & & L5 S &
> eQ\\ s < o & \“é\ W 9 ©
5 & & N 3
¢ 00@ <« & N <§'§
Q¢

Disease Category

Platform © Metabolon 4 Nightingale + Olink x SomaScan © RNAseq

31


https://doi.org/10.1101/2022.04.17.488593
http://creativecommons.org/licenses/by/4.0/

