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Abstract 55 

Genetically predicted levels of multi-omic traits can uncover the molecular underpinnings of 56 
common phenotypes in a highly efficient manner. Here, we utilised a large cohort (INTERVAL; 57 
N=50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, 58 
N=3,175; Olink, N=4,822), plasma metabolomics (Metabolon HD4, N=8,153), serum 59 
metabolomics (Nightingale, N=37,359), and whole blood Illumina RNA sequencing 60 
(N=4,136). We used machine learning to train genetic scores for 17,227 molecular traits, 61 
including 10,521 which reached Bonferroni-adjusted significance. We evaluated genetic score 62 
performances in external validation across European, Asian and African American ancestries, 63 
and assessed their longitudinal stability within diverse individuals. We demonstrated the utility 64 
of these multi-omic genetic scores by quantifying the genetic control of biological pathways 65 
and by generating a synthetic multi-omic dataset of UK Biobank to identify disease 66 
associations using a phenome-wide scan. Finally, we developed a portal (OmicsPred.org) to 67 
facilitate public access to all genetic scores and validation results as well as to serve as a 68 
platform for future extensions and enhancements of multi-omic genetic scores. 69 

 70 
 71 
 72 
  73 
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Introduction  74 

Multi-omic analysis has become a powerful approach to improve disease predictors and dissect 75 
the regulatory networks that underpin disease biology1–3. However, the collection of 76 
transcriptomic, proteomic, metabolomic and other modalities is an extremely expensive and 77 
time-consuming process. Because of these barriers, large-scale population cohorts typically 78 
generate multi-omic data for only a subset of participants (or not at all), which consequently 79 
reduces the statistical power of subsequent analyses and creates inequities for studies that do 80 
not have ample resources or are from underrepresented ancestries and other demographics. 81 

It has been shown that genetic prediction of complex human traits can have both analytic 82 
validity and potential utility in research and clinical settings4–8. Genetic prediction has also been 83 
extended to omics data, for example whole blood9 and multi-tissue transcriptomics10,11 as well 84 
as plasma proteomics12,13. The value of such genetically-predicted traits is primarily in the 85 
elucidation of the molecular aetiology of common diseases, incorporating both directionality 86 
(as the germline genome is more or less fixed over a life course) and the power of large-scale 87 
genotyped biobanks to overcome prediction noise14–16. 88 

The use of genetic scores to predict, expand and thereby democratize multi-omics data is an 89 
area of intense interest. While foundational, genetic prediction in this area has historically 90 
focused on gene expression, drawing on heterogeneous sources for training data which have 91 
limited sample sizes. With many cohorts now performing multi-omics profiling at scale, there 92 
is a unique opportunity to create genetic scores which capture multi-omic variation of 93 
population-based samples. Given suitably robust external validation, the reliability of multi-94 
omic genetic scores can be quantified and extended to analyses assessing their transferability 95 
across ancestries, thus facilitating equitable tools for molecular investigations in multiple 96 
populations. This approach both facilitates integrative cross-cohort analyses for multi-omic 97 
studies and enables the efficient generation of synthetic multi-omic data for studies with only 98 
genetic data assayed. 99 

Here, we utilise the INTERVAL study17, a cohort of UK blood donors with extensive multi-100 
omic profiling, to train genetic prediction models. We externally validated these genetic scores 101 
in seven different external studies, comprising European, East Asian (Chinese, Malay), South 102 
Asian (Indian) and African American ancestries. We then demonstrate the use of genetically-103 
predicted molecular data, including their coverage of biological pathways and the identification 104 
of multi-omic predictors of diseases and traits in UK Biobank. Finally, we construct an open 105 
resource (OmicsPred.org) which makes all genetic scores, validations and biomarker analyses 106 
freely available to the wider community. 107 

 108 

Results 109 

Development of genetic scores 110 

This study aimed to develop genetic scores for blood biomolecular traits, including transcripts, 111 
proteins, metabolites (Figure 1). To do this, we used the INTERVAL study which collected 112 
participant serum or plasma on which assays from five different omics platforms were 113 
performed: SomaScan v3 (SomaLogic Inc., Boulder, Colorado, US), an aptamer-based 114 
multiplex protein assay; Olink Target (Olink Proteomics Inc., Uppsala, Sweden), an antibody-115 
based proximity extension assay for proteins; Metabolon HD4 (Metabolon Inc., Durham, US), 116 
an untargeted mass spectrometry metabolomics platform; Nightingale (Nightingale Health Plc., 117 
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Helsinki, Finland), a proton nuclear magnetic resonance (NMR) spectroscopy platform; and 118 
whole blood RNA sequencing via the Illumina NovaSeq 6000 (Illumina Inc., San Diego, 119 
California, US) (Methods). INTERVAL participants were genotyped on the Affymetrix 120 
Biobank Axiom array which was then imputed using a combined 1000 Genomes Phase 3-121 
UK10K reference panel (Methods). After quality control, there were 10,572,788 genetic 122 
variants for constructing genetic scores. 123 
 124 
To train genetic scores, we utilised Bayesian ridge regression (BR), which has been shown to 125 
have equal or better performance as other machine learning methods for genetic prediction8 126 
and is more computationally efficient with a smaller carbon footprint18. In the data used here, 127 
we confirmed the generalisability of these findings across multiple platforms (Metabolon, 128 
Olink, SomaScan), assessing the impact of different sets of variants arising from different 129 
filtering strategies (Methods; Figures S1-4). Overall, we found the best performing approach 130 
overall to be BR with a genome-wide variant selection using GWAS p-value < 5´10-8 (Figures 131 
S1-4).  132 

We developed genetic scores for 17,227 biomolecular traits from the five platforms, including 133 
726 metabolites (Metabolon HD4), 141 metabolic traits (Nightingale), 308 proteins measured 134 
by Olink, 2,384 protein targets measured by SomaScan, 13,668 genes for Illumina RNAseq 135 
(Ensembl gene-level counts) (Methods). Across all platforms, we found wide variation in the 136 
predictive value (R2 between the genetically predicted and the directly measured biomolecular 137 
trait) and the number of variants of the genetic scores in internal validation (Figure S5).  138 

Overall, we found 10,521 biomolecular traits could be genetically predicted at Bonferroni-139 
adjusted significance (correcting for all genetic scores tested), including 1,051, 206, 379, 137 140 
and 8,748 for SomaScan, Olink, Metabolon, Nightingale and RNAseq respectively. Of these, 141 
5,816 and 409 genetic scores could predict their biomolecular traits with R2 > 0.1 and R2 > 0.5, 142 
respectively (Figure 2 and Tables S1-5).  143 

Validation in external cohorts of European ancestries 144 
Following internal validation of the genetic scores, we performed external validation of 145 
SomaScan protein targets in the FENLAND study19; Olink proteins in the Northern Swedish 146 
Population Health Study (NSPHS)20,21 and the Orkney Complex Disease Study 147 
(ORCADES)22,23; Metabolon metabolites in ORCADES23; Nightingale metabolic traits in UK 148 
Biobank (UKB)24,25, Viking Health Study Shetland (VIKING)26 and ORCADES23 studies 149 
(Figure 1 and Table 1). For Metabolon metabolites and Illumina RNAseq transcripts, we 150 
performed further validation in withheld sets of INTERVAL (Methods). Overall, we found 151 
that performance of the genetic scores for most traits across the five platforms was consistent 152 
between internal and external validation in European ancestries, with genetic scores of many 153 
traits being highly predictive (Figure 3 and Figures S6-11). As expected, we also found that 154 
genetic scores with high missingness rates amongst variants (e.g. due to allele frequency 155 
differences or technical factors) had attenuated power (Methods; Figure S12). 156 

The SomaScan v3 platform quantified 3,622 plasma protein targets in INTERVAL27, of which 157 
2,384 proteins had at least one significant genetic variant that could be used for genetic score 158 
development (Figure S5). Internal validation found that SomaScan genetic scores had median 159 
R2 = 0.04 (IQR = 0.08). External validation in European ancestries utilised the FENLAND 160 
study19, where 89% (N=2,129) of SomaScan genetic scores could be tested. Overall, there was 161 
high consistency between internal and external R2 performance (Pearson correlation r = 0.86 162 
across all SomaScan genetic scores tested) (Figure 3). Of the 2,129 tested SomaScan genetic 163 
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scores, we found 45 proteins (2%) with a majority of their variance explained (R2 > 0.50) by 164 
the genetic score in external validation, including several involved in innate and adaptive 165 
immune responses, which were highly genetically predicted with R2 > 0.70 (CLEC12A, 166 
SIGLEC9, FCGR2A, FCGR2B and LILRB5). There were a total of 369 SomaScan proteins 167 
(17%) that could be genetically predicted with R2 > 0.10 in external validation. 168 

The Olink proteomics used in INTERVAL quantified levels of 368 plasma proteins from four 169 
different panels (Inflammation, Cardiovascular 2, Cardiovascular 3, Neurology), of which 308 170 
unique proteins were qualified for genetic score development (Methods). Internal validation 171 
found that Olink genetic scores had median R2 = 0.06 (IQR = 0.12). We were able to test 301 172 
and 302 genetic scores in external European ancestry cohorts, NSPHS and ORCADES 173 
respectively (Methods). In assessing Olink proteins across both external validation cohorts, 174 
we found four proteins (FCGR2B, IL6R, MDGA1, SIRPA) with a majority of their variance 175 
explained (R2 > 0.50) by the genetic score in external validation, with FCGR2B on SomaScan 176 
found to be similarly genetically predicted (Figure 3). As compared to SomaScan, a larger 177 
proportion of Olink proteins in NSPHS (N=117; 39%) and ORCADES (N=87; 29%) could be 178 
genetically predicted with R2 > 0.10 in external validation. Overall, we found broad consistency 179 
between validations in NSPHS and ORCADES (Figure S13).  180 

The Metabolon HD4 platform quantifies >900 plasma metabolites and was used here in two 181 
different phases of the INTERVAL study (Methods). Phase 1 (N=8,153) was used for 182 
development and internal validation of Metabolon genetic scores and phase 2 (N=8,114) was 183 
used for external validation (with no individuals overlapping between the two phases). We 184 
conducted a further external validation in ORCADES. Internal validation found that Metabolon 185 
genetic scores had median R2 = 0.02 (IQR = 0.05). A total of 726 Metabolon HD4 metabolites 186 
had significant genetic variants with which to construct genetic scores in INTERVAL, of which 187 
526 and 455 metabolites (399 overlapping) could be externally validated in the phase 2 set and 188 
ORCADES, respectively (Figure 3). We again found broad consistency between the two 189 
external validation sets (Figure S13). There were no Metabolon HD4 metabolites with R2 > 190 
0.50 between their genetic scores and their directly measured values in either the phase 2 set 191 
or ORCADES; however, there were 6 metabolites that had R2 > 0.3 in both the phase 2 set and 192 
ORCADES (4 metabolites overlapping). Of the metabolites that could be externally validated, 193 
10% and 13% (N=50 and N=59) achieved a R2 > 0.10 in the phase 2 set and ORCADES, 194 
respectively. The top performing genetic scores included those for ethylmalonate (phase 2 set 195 
R2 = 0.43; ORCADES R2 = 0.33), N-acetylcitrulline (both phase 2 set and ORCADES R2 = 196 
0.38) and androsterone sulfate (phase 2 set R2 = 0.35; ORCADES R2 = 0.17). 197 

The Nightingale NMR platform was used to quantify 230 serum metabolic biomarkers (largely 198 
lipoproteins, lipids and low molecular weight metabolites) from 45,928 INTERVAL 199 
participants. Our analyses focused on the directly measured (non-derived) metabolic 200 
biomarkers, and genetic scores for 141 Nightingale biomarkers were developed using 201 
INTERVAL (Methods). Internal validation found that Nightingale genetic scores had median 202 
R2 = 0.07 (IQR = 0.03). The genetic scores were externally validated in three cohorts (UKB, 203 
ORCADES and VIKING). Overall, we found that genetic scores for Nightingale explained 204 
somewhat lesser variation in the directly measured traits, as compared to other platforms 205 
(Figure 3; Figure S11). Across UKB, ORCADES and VIKING, 28 Nightingale metabolic 206 
biomarkers had an R2 > 0.10 in at least one external validation cohort, with no biomarkers 207 
having R2 > 0.30. However, Nightingale genetic scores performed consistently across cohorts, 208 
with mean R2 for all 141 Nightingale biomarkers of 0.07, 0.06 and 0.06 in UKB, ORCADES 209 
and VIKING, respectively. The most predictive genetic scores were mainly related to low-210 
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density lipoprotein (LDL), e.g. concentrations of cholesteryl esters in small LDL, cholesterol 211 
in small LDL, cholesteryl esters in medium LDL, cholesterol in medium LDL and LDL 212 
cholesterol (Table S2). 213 

RNAseq of whole blood from 4,778 individuals in INTERVAL was carried out using Illumina 214 
NovaSeq (Methods). While 4,136 individuals were used to develop and test genetic scores, 215 
598 individuals were kept as a withheld set for validation. The INTERVAL RNAseq data 216 
allowed for the construction of genetic scores using both cis and trans eQTLs for 13,668 genes 217 
(ENSEMBL gene IDs), of which 12,958 (95%) could be assessed in the withheld validation 218 
set (Figure 3). Internal validation found that RNAseq genetic scores had median R2 = 0.06 219 
(IQR = 0.13). Overall, we found strong correlation of R2 between the internal and withheld 220 
validation sets (Pearson r = 0.97). There were 141 genes which had R2 > 0.50 in the withheld 221 
validation set, and 798 genes with R2 > 0.30. The most predictive genes were those involved 222 
in proteolysis (RNPEP; R2 = 0.71), solute cotransport (SLC12A7; R2 = 0.72), RNA helicase 223 
activity (DDX11; R2 = 0.71) and spliceosome function (U2AF1; R2 = 0.72). 224 

Transferability of multi-omic genetic scores to African American and Asian 225 
ancestries  226 

To assess the performance of the genetic scores developed in the predominantly-European 227 
INTERVAL cohort in non-European ancestries, we utilised the Singapore Multi-Ethnic Cohort 228 
(MEC)28 and the Jackson Heart Study (JHS)29. MEC data comprised individuals of Chinese, 229 
Indian and Malay populations who have matched genotypes, plasma Nightingale NMR and 230 
plasma SomaScan (Table 1; Methods). The JHS data comprised African Americans with 231 
matched genotypes and plasma SomaScan (Table 1; Methods).  232 

Overall, we found that genetic scores developed from INTERVAL can predict the Nightingale 233 
and SomaScan trait levels in cohorts of Asian and African American ancestries, but as expected 234 
their performances were significantly reduced when compared to the validations in European 235 
ancestry cohorts (Figure 4). For Nightingale, the European-trained genetic score performance 236 
generally declined from Chinese to Indian to Malay ancestries, with LDL subclasses displaying 237 
some of the most variable cross-ancestry R2 (Figure 4a and 4b). The most transferrable 238 
Nightingale genetic scores were triglycerides in IDL, triglycerides in small HDL and medium 239 
HDL, degree of unsaturation and phosphatidylcholines (Figure 4c). When assessing 240 
transferability of SomaScan, we found genetic score performance generally declined from 241 
Indian to Malay to Chinese to African American ancestries (Figure 4d). The SomaScan genetic 242 
scores that attenuated most in non-European ancestries were those for CD177 (a cell-surface 243 
expressed protein on neutrophil and Treg's) and GDF5 (a secreted ligand of TGF-beta) (Figure 244 
4e). The most transferable SomaScan genetic scores included SIGLEC9 (which mediates 245 
sialic-acid binding to cells), SIRPA (a cell surface receptor for CD47 involved in signal 246 
transduction) and ACP1 (an acid and protein tyrosine phosphatase), where all internal and 247 
external validation R2 were >0.50 (Figure 4f). 248 

Longitudinal stability of genetic scores in diverse ancestries 249 

Within MEC, 1,739 individuals were measured at both baseline and revisit with mean length 250 
of follow-up 6.31 years (SD 1.45 years). This allowed longitudinal assessment of the stability 251 
of genetic scores for SomaScan (N = 403 Chinese, 356 Indian and 353  Malay) and Nightingale 252 
(N = 721 Chinese, 376 Indian and  363 Malay) platforms. For SomaScan traits, we found strong 253 
consistency between the predictive capacity of genetic scores between baseline and revisit 254 
samples (Pearson r = 0.99 for Chinese, 0.98 for Indian and 0.98 for Malay populations), and 255 
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little difference in longitudinal stability between ancestries (Figure 5d-f). For Nightingale 256 
traits, despite variation in the predictive capacity of genetic scores between baseline and revisit 257 
samples, the longitudinal stability between ancestries was still largely consistent (Pearson r = 258 
0.60 for Chinese, 0.84 for Indian and 0.85 for Malay populations; Figure 5a-c). 259 

Quantifying the genetic control of biological pathways 260 
Multi-omic genetic scores may be used to probe the relevance of biological pathways to a 261 
particular trait or disease outcome of interest. To assess the coverage of biological pathways 262 
by the proteomic genetic scores we present here, we applied the genetic scores for SomaScan 263 
and Olink to assess the extent to which pathways are genetically controlled (Methods). Here, 264 
we considered all genetic scores with R2 > 0.01 in internal validation (2,205 unique proteins) 265 
and jointly mapped the SomaScan and Olink scores onto data curated from Reactome30 (Figure 266 
6a, Figure S15).  267 

For the plasma proteome, we found wide variation amongst the 27 super-pathways with some 268 
super-pathways under relatively little genetic control (e.g. chromatic organisation, or transport 269 
of small molecules) and others under substantially greater genetic control (e.g. digestion and 270 
absorption, or extracellular matrix organisation) (Figure 6a). Approximately 18% of proteins 271 
in the digestion and absorption super-pathway had internal validation R2 > 0.10, and ~4% with 272 
R2 > 0.30. For the lowest-level pathway annotation (N=1,717) of the 27 super-pathways, we 273 
found that a majority (N=1,169, 68%) were covered by at least one SomaScan or Olink genetic 274 
score with an internal validation R2 > 0.01 (Figure S15). For both the digestion and absorption 275 
and the extracellular matrix organisation super-pathways, 25% and 42%, respectively, of 276 
lowest-level pathway annotations were covered by at least one SomaScan or Olink genetic 277 
score with internal R2 > 0.30. 278 

Phenome-wide association analysis using multi-omic genetic scores 279 
Using the multi-omic genetic scores, we generated genetically predicted Metabolon HD4, 280 
Nightingale NMR, Olink, SomaScan and whole blood RNAseq data for the UK Biobank 281 
(Methods). Next, using these predicted multi-omics data of UKB, we performed a phenome-282 
wide association study using PheCodes31 (ICD-9 and ICD-10 based diagnosis codes collapsed 283 
into hierarchical clinical disease groups; Methods). For simplicity and to maximize the number 284 
of qualified PheCodes, we focused the analysis on UKB individuals of white British ancestry. 285 
Multiple testing was controlled using Benjamini-Hochberg FDR of 0.05 (Methods). 286 

Overall, at an FDR of 5%, we identified 18,404 associations between genetic scores of the 287 
biomolecular traits and 18 categories of PheCodes (Figure 6b). These associations comprised 288 
1,668 for Metabolon HD4, 2,854 for Nightingale NMR, 740 for Olink, 5,501 for SomaScan 289 
and 7,641 for RNAseq (Table S6 and S7). Circulatory system diseases, endocrine/metabolic 290 
and digestive diseases yielded the largest number of associations across platforms (Figure 6b).  291 

The PheWAS detected many well-known blood biomarkers as well as intriguing associations 292 
across genes, proteins and metabolites. For example, total cholesterol was significantly 293 
associated with myocardial infarction (HR = 1.13 per s.d., FDR-corrected p-value = 1´10-61). 294 
Interleukin-6 (IL-6) pathways have been shown to have a causal association with coronary 295 
artery disease32,33, and notably, IL-6 receptor genetic scores in SomaScan and Olink had R2 > 296 
0.50 in both internal and external validation, showing its high genetic predictability. 297 
Genetically predicted levels of IL-6 receptor in both Olink and SomaScan were significantly 298 
associated with myocardial infarction (HR = 0.97 per s.d., FDR-corrected p-value = 2´10-4; 299 
HR = 0.97 per s.d., FDR-corrected p-value = 4´10-4, respectively). Microseminoprotein-beta 300 
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has been identified as a biomarker for prostate cancer34 and PheWAS findings support this 301 
association (HR = 0.87 per s.d., FDR-corrected p-value = 3´10-49). Genetically predicted Sex 302 
Hormone-Binding Globulin (SHBG) protein was associated with type 2 diabetes (HR = 0.98 303 
per s.d., FDR-corrected p-value = 0.03), consistent with previous observational and genetic 304 
analyses35. Similarly, we found associations for insulin signaling pathway related proteins, e.g. 305 
insulin receptor (INSR) and insulin-like growth factor 1 receptor (IGF1R), with type 2 306 
diabetes36,37; ABO38 with type 2 diabetes; IL-6 with asthma39; and HLA-DQA1/DQB1 with  307 
celiac disease40 (Table S6).  308 

Our results validate those of a recent study identifying putative causal plasma protein mediators 309 
between polygenic risk and incident cardiometabolic disease5, including six of the novel and 310 
putatively causal associations for coronary artery disease (Table S6). Amongst the strongest 311 
signals, we found intriguing associations including chronic pericarditis (N=266 cases) with 312 
genetically-predicted gene expression of the phospholipase NAPEPLD (HR = 0.88 per s.d., 313 
FDR-corrected p-value < 1´10-307) and the association of rhesus isoimmunization in pregnancy 314 
(i.e. maternal antibodies attacking fetal blood cells; N=302 cases) with genetically-predicted 315 
protein levels of ICAM4 (HR = 0.19 per s.d., FDR-corrected p-value = 3´10-93). ICAM4 itself 316 
is critical to the Landsteiner-Weiner blood system, which is genetically independent of the 317 
rhesus factor (Rh) blood group system. Despite the ICAM4 locus showing no significant 318 
association with rhesus isoimmunization in pregnancy (PheWeb41), our ICAM4 results 319 
demonstrate that genetic prediction of plasma protein levels can identify biologically plausible 320 
candidate associations. 321 

OmicsPred: An online portal for multi-omic genetic scores 322 
We developed an online portal (OmicsPred.org) to facilitate open dissemination of the genetic 323 
scores, detailed validation results and visualisations. OmicsPred also serves as an online 324 
updatable resource, which allows future expansion and deepening of the omics platforms, 325 
multi-ancestry transferability, newly developed and more powerful genetic scores, as well as 326 
results from applications of OmicsPred (Figure S14).  327 

The portal presents genetic scores of biomolecular traits by platform, in which users can access 328 
summary statistics of the training and validation cohorts used for traits at each platform as well 329 
as download, individually or in batch, the corresponding model files for genetic scores (i.e. 330 
variants and weights). Users can visualise validation results by selected performance metrics 331 
(e.g. R2 or Spearman's rho), cohort(s), together with detailed trait (e.g. full protein name) and 332 
validation information (e.g. variant missingness rate). Users can easily search the portal to find 333 
biomolecular traits of specific interest, either by name or related descriptions. The OmicsPred 334 
portal also hosts descriptions and summary results from applications of the genetic scores (e.g. 335 
the PheWAS in UK Biobank described above). 336 

 337 

Discussion 338 

In this study, we developed genetic scores for >17,000 multi-omic traits across five molecular 339 
platforms covering proteomics, metabolomics and transcriptomics in a single cohort. The 340 
relative predictive values and robustness of the genetic scores were assessed in external 341 
validations of European, Asian and African American ancestries; the longitudinal stabilities of 342 
the genetic score performances were established within individuals of different ancestries; and 343 
the utility of the multi-omic genetic scores was demonstrated by elucidating the relative genetic 344 
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control of biological pathways and by identifying multi-omic disease associations using a 345 
phenome-wide scan of predicted multi-omic data in UK Biobank. Finally, we developed an 346 
open resource OmicsPred (OmicsPred.org) to publicly disseminate and continuously enhance 347 
the value of multi-omic genetic scores.  348 

While the utility of generating predicted transcriptomic data for cohorts with genome-wide 349 
genotype data has been demonstrated42,  our work substantially extends these foundations using 350 
a large multi-omic cohort, quantifying both the intra- and inter-ancestry reliability of proteomic 351 
and metabolomic genetic scores across multiple platforms. We generate a predicted multi-omic 352 
dataset for UK Biobank and show that PheWAS can uncover many known and novel omic 353 
associations with disease. Given that the increase in sample size required to detect an 354 
association for a noisy explanatory variable can be estimated by the formula n/R (where n is 355 
the sample size required if no measurement error exists and R is the reliability coefficient)14, 356 
even genetic scores of apparently low predictive value are likely powerful enough to detect 357 
true associations at the sample sizes of current and forthcoming biobank-scale data. This 358 
suggests that large biobanks could reliably test trait-disease associations using efficient 359 
genetically-predicted data, before committing to novel data generation using (frequently 360 
expensive) molecular assays. 361 

Our study has several limitations. While blood is a key tissue of broad utility in discovery 362 
science and medicine, it is most likely a correlate but not the main site of function for many of 363 
the biomolecules assessed here. While genetic score performance was generally consistent 364 
across cohorts, there were factors that could affect their performance, including technical 365 
factors (e.g. use of serum versus plasma; genetic variant missingness), participant 366 
demographics, and genetic factors (e.g. allele frequency differences). Genetic scores may also 367 
pick up differences in molecular traits shared by multiple platforms (e.g. Olink and SomaScan). 368 
Despite genetic scores for most shared proteins being consistently predictive across platforms, 369 
there can be large differences which can be due to technical factors (e.g. binding affinity) 370 
(Methods), as assessed in a recent study43. The attenuated performance of polygenic scores 371 
across ancestries is a well-known limitation44 and our analysis also found this in multi-omics 372 
data. Multi-omics for non-European ancestries will likely become more common in the future, 373 
and we see a key role for OmicsPred in facilitating robust genetic scores which enable multi-374 
omic prediction in diverse populations. Finally, we acknowledge that there are many highly 375 
sophisticated machine learning approaches, which may improve genetic score performance 376 
and/or transferability. We selected Bayesian ridge because it has been previously shown to 377 
both perform well relative to other machine learning approaches and because it scales very well 378 
to large numbers of traits, thus improving computational efficiency and promoting green 379 
computing8,18,45. Optimal variant selection thresholds may also vary for each platform or trait 380 
and this could potentially led to some improvements in prediction. 381 

Future avenues for research include assessing to what extent the predicted multi-omic 382 
associations are causal, expansion of OmicsPred to additional platforms and/or cohorts, and 383 
multi-ancestry training for improved prediction. In summary, we have developed, validated 384 
and applied multi-omic genetic scores for >17,000 traits and made them publicly accessible 385 
via the new OmicsPred resource (https://www.omicspred.org), facilitating the generation and 386 
application of multi-omics data at scale for the wider community. 387 
 388 
 389 
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Methods 390 

INTERVAL cohorts and data quality control 391 

The INTERVAL study17 is a randomised trial of ~50,000 healthy blood donors, who were 392 
recruited at 25 centres of England’s National Health Service Blood and Transplant (NHSBT) 393 
and aged 18 years or older at recruitment. This trial aimed to study the safety of varying 394 
frequency of blood donation, and all the participants completed an online questionnaire when 395 
joining the study about their demographic and lifestyle, such as age, sex, weight, height, 396 
alcohol intake, smoking habits, and diet, etc. All participants have given informed consent and 397 
this study was approved by the National Research Ethics Service (11/EE/0538).  398 
 399 
Using the aptamer-based SomaScan assay (version 3), this study profiled plasma proteins of 400 
3,562 participants in two batches (n=2,731 and n=831), of which 3,175 samples remained for 401 
analysis after quality control. The detailed steps for measurements and quality controls of the 402 
protein levels using the SomaScan array in INTERVAL have been previously described5,27. In 403 
summary, the relative concentration of 3,622 proteins (or protein complexes) targeted by 4,034 404 
modified aptamers (SOMAmer reagents, referred to as SOMAmers) on the array were 405 
measured from 150-μl aliquots of plasma at SomaLogic Inc. (Boulder Colorado, US). Quality 406 
control was performed at the sample and SOMAmer levels by Somalogic, which uses the 407 
control aptamers and calibrator samples to correct for systematic variability in hybridization, 408 
within-run and between-run technical variability. For this study, we did not exclude protein 409 
aptamers with greater than 20% coefficient of variation in either batch, but excluded these 410 
aptamers targeting non-human proteins. We also excluded aptamers that, since the original 411 
quantification in INTERVAL, had been (1) deprecated by SomaLogic; (2) found to be 412 
measuring the fusion construct rather than the target protein; or (3) measuring a common 413 
contaminant5, which finally filtered the data to 3,793 high quality aptamers targeting 3,442 414 
proteins. Within each batch, the relative protein abundances were natural log-transformed, and 415 
then adjusted for age, sex, the first three genetic principal components and duration between 416 
blood draw and sample processing (binary, 1 day vs >1 day). The protein residuals from this 417 
linear regression were finally rank-inverse normalized and used as phenotype values for their 418 
GWAS, which has been previously reported in detail27. These normalized phenotype values 419 
were further adjusted for batch effect and top 4-10 genetic principal components, which were 420 
used as the phenotype values for the genetic score model training and internal validation.  421 

Using Olink proximity extension assays46, the INTERNAL study measured plasma protein 422 
abundance of ~5,000 samples on four Olink panels: Inflammation-1 (INF-1), Cardiovascular 423 
II (CVD-2), Cardiovascular III (CVD-3), and Neurology  (NEUR) panel, each of which 424 
includes 92 proteins. For the INF-1, CVD-2 and CVD-3 panels, samples were assayed in two 425 
equal batches and their protein levels were pre-processed and quality controlled by Olink using 426 
NPX Manager software. Protein levels were then regressed on age, sex, sample measurement 427 
plate, time from blood draw to sample processing (number of days), season (categorical: spring, 428 
summer, autumn, winter), and inverse rank normal transformed. Details of quality control and 429 
GWAS for proteins on these three panels were given in the previous work13. Due to timing and 430 
funding differences, the NEUR panel was treated separately from other 3 panels for QC 431 
purposes. In detail, samples were assayed in one large batch, and trait levels were also 432 
processed by the NPX software and final measurements were presented as NPX values on a 433 
log2 scale (i.e. a one unit increase represents a doubling of protein level). We removed 187 434 
measurements flagged by Olink as potentially having technical issues and 147 samples of 435 
potentially non-European origin as determined by principal component analyses, which left 436 
4,811 measurements proceeding to standard QC assessments. We also checked for missing 437 
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measurements and measurements below the limit of detection. No missing measurements were 438 
found. 8 out of 92 proteins had values below the limit of detection (LOD), of which 4 (HAGH, 439 
BDNF, GDNF, CSF3) had more than 5% of measurements below the LOD so were not taken 440 
forward for further analyses. No participant had more than 4% of protein measurements below 441 
LOD, and we did not observe over-representation of particular proteins below LOD for specific 442 
participants. Protein measurements were then adjusted for age, sex, season and the first 11 443 
genetic PCs, residuals of which were further inverse normal rank transformed for their GWASs. 444 
It was noted that there are a small number of shared proteins across the four Olink panels 445 
(detailed numbers of proteins and participants per panel after QC were given in Table S8). To 446 
avoid duplication in genetic score construction, these shared proteins were merged by 447 
averaging their protein levels on each sample across panels, and taken as a unique protein. All 448 
the genetic variants identified in GWASs for the same protein across multiple panels were 449 
combined (if different) for its genetic score development. The normalized proteins levels of 450 
308 unique proteins were adjusted for the first ten genetic principal components (if not adjusted 451 
previously), which were used as phenotype values for genetic score model construction and 452 
testing in INTERVAL. 453 
  454 
The DiscoveryHD4® platform (Metabolon, Inc., Durham, USA) was used to measure plasma 455 
metabolites of INTERVAL participants. Four sub cohorts of 4,316 4,637, 3,333 and 4,802 456 
participants were created through random sampling from the INTERVAL study and 457 
metabolites were measured within the four sub cohorts (or batches) separately at two time 458 
phases of the study (two batches at each phase). Samples of the first two batches were used as 459 
training data for GWAS and genetic score development of metabolite traits in the platform, 460 
and samples of the other two batches were held out for external validation purpose. The two 461 
subsets of INTERVAL data were put through the same quality control process as described 462 
below before performing training or validation. No significant technical variability was found 463 
between batches and hence batches within a subset (i.e. phase 1 or 2) were merged prior to the 464 
QC and genetic analysis including batch as a covariate to adjust for any residual batch effects. 465 
In the first step, samples with missing values for each of the ion-counts for a specific metabolite 466 
fragment (‘OrigScale’) were identified. These sample specific metabolite values were set to 467 
missing within the scaled and imputed data ('ScaledImpData'), which contains for each 468 
metabolite the values within the OrigScale median normalised for run day (median set to 1 for 469 
run-day batch). Metabolites were then excluded if measured in only one batch or in less than 470 
100 samples. Metabolite values were then winsorized to 5 standard deviation from the mean 471 
where the values exceeded mean +/-5 ´ standard deviation of the metabolite. Each metabolite 472 
was then log (natural) transformed prior to calculating the residuals adjusted for age, sex, 473 
Metabolon batch, INTERVAL recruitment centre, plate number, appointment month, the lag 474 
time between the blood donation appointment and sample processing, and the first 5 ancestry 475 
principal components. Prior to the genetic analysis, these residuals were standardised to a mean 476 
of 0 and standard deviation of 1. GWASs were then performed for each trait using the 477 
standardised trait values on samples of the first two batches, details of which were described 478 
in the previous study47. Finally, the standardised metabolites levels of the two INTERVAL 479 
subsets (batches 1+2 and batches 3+4) were further adjusted for the top 6-10 genetic principal 480 
components, which were used for genetic scores training and external validation respectively.  481 
 482 
The Nightingale Health NMR platform was used to assay baseline serum samples of 45,928 483 
INTERVAL participants and quantified 230 analytes in total, which are largely lipoprotein 484 
subfractions and ratios, lipids and low molecular weight metabolites. This study only focused 485 
on the 141 directly measured analytes and excluded those derived from other analytes. Apart 486 
from the missing values for low abundance analytes, the dataset also included zero values for 487 
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some analytes, which were recoded as missing in our analysis. In addition, those analyte values 488 
of participants that had abnormally high/low values of more than 10 SD from the analyte mean 489 
across all participants were set as missing too. We further excluded participants with >30% 490 
analyte missingness and duplicate samples. Participants that failed genetic QC (see below) or 491 
did not have relevant phenotype data available were also removed, which resulted in 37,359 492 
participants remaining in the analysis. Values of each analyte were log (natural) transformed 493 
and adjusted for age, sex, BMI, recruitment centre, time between blood draw and sample 494 
processing and the first 10 genetic principal component. The residuals were then inverse 495 
normal rank transformed, which were finally used to perform GWAS of these traits and their 496 
genetic score development. Details of quality control and GWAS for these traits can be found 497 
in the previous study48. 498 
 499 
RNA sequencing was performed on the NovaSeq 6000 system (S4 flow cell, Xp workflow; 500 
Illumina) with 75 bp paired-end sequencing reads (reverse stranded) in INTERVAL, which 501 
were aligned to the GRCh38 human reference genome (Ensembl GTF annotation v99) using 502 
STAR (v2.7.3.a)49 and obtained the gene count matrix using featureCounts (v2.0.0)50. This in 503 
total resulted in raw gene-level count data of 60,676 genes (ENSEMBL gene IDs) across 4,778 504 
individuals with 2.03–95.55 million uniquely mapped reads (median: ~24 million). Poor-505 
quality samples with RNA integrity number (RIN) < 4 or read depth < 10 million uniquely 506 
mapped reads were removed. We further removed one random individual from each flagged 507 
pair of related individuals, which were first- or second-degree estimated from genetic data. 508 
Finally, sample swaps and cross-contamination were assessed using match bam to VCF (MBV) 509 
method from QTLtools51, which identified and corrected 10 pairs of mislabelled samples; 510 
samples with no clear indication of their matching genotype data were also removed. Genes 511 
were retained based on >0.5 counts per million (CPM) expression threshold in ≥1% of the 512 
samples. The filtered count values were converted to trimmed mean of M-values (TMM)-513 
normalized transcript per million mapped reads (FPKM) values52. Next, the normalised log2-514 
FPKM values for each gene were ranked-based inverse normal transformed across samples. 515 
We further excluded globin genes, rRNA genes, and pseudogenes. After filtering, a total of 516 
4,732 samples and 19,835 genes were retained for further eQTL analysis. Prior to eQTL 517 
mapping, the probabilistic estimation of expression residuals (PEER) method53 was used to 518 
find and correct for latent batch effects and other unknown confounders in the gene expression 519 
data. To estimate PEER factors independent of the effects of known variables, a set of 22 520 
covariates of interest was included in the analysis. These were age, sex, BMI, and blood cell 521 
traits (N=19), including: (1) Basophil percentage (of white cell count); (2) Eosinophil 522 
percentage(of white cell count); (3) Lymphocyte percentage (of white blood cell count; (4) 523 
Monocyte percentage (of white blood cell count); (5) Neutrophil percentage (of white blood 524 
cell count); (6) White blood cell (leukocyte) count (reported); (7) Immature reticulocyte 525 
fraction; (8) Haematocrit (volume percentage of blood occupied by red cells); (9) Reticulocyte 526 
percentage (of red cell and reticulocyte count); (10) Haemoglobin concentration; (11) Mean 527 
corpuscular haemoglobin; (12) Mean corpuscular haemoglobin concentration; (13) Mean 528 
corpuscular (red cell) volume; (14) Red blood cell (erythrocyte) count (reported); (15) Red cell 529 
distribution width; (16) Mean platelet volume; (17) Plateletcrit; (18) Platelet distribution width; 530 
(19) Platelet count. The eQTL mapping was performed on genome-wide variants using 531 
TensorQTL v1.0.354 adjusting for age, sex, BMI, the above mentioned blood cells traits (N=19), 532 
the top 10 genetic principal components, RIN, sequencing batch, RNA concentration, raw read 533 
depth, season (based on month of blood draw), and PEER factors (N=30). The normalised gene 534 
level values were also adjusted for the same set of covariates used in the eQTL mapping for 535 
their genetic score training and validation. Note that we held out the last two batches of samples 536 
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for external validation purpose and the first four were used for eQTL mapping and genetic 537 
score training/internal validation. 538 
 539 
The genotyping and its quality control for INTERVAL samples have been previously described 540 
in detail55. The samples were genotyped using the Affymetrix UK Biobank Axiom array, which 541 
assays approximately 830,000 variants. The variants were phased using SHAPEIT3 and 542 
imputed on a combined 1000 Genomes Phase 3-UK10K reference panel. After various quality 543 
control steps, it finally results in 10,572,788 variants for 43,059 samples. The number of valid 544 
samples in each platform for genetic score construction (Table 1) excluded samples that did 545 
not pass the genetic QC.  546 

External validation cohorts 547 

The FENLAND study profiled the plasma proteins of 12,084 participants using the aptamer-548 
based SomaScan assay (version 4), in which 8994 participants were genotyped using the same 549 
the Affymetrix UK Biobank Axiom array as INTERVAL43. The later subset of Fenland 550 
participants were used for the genetic score model validation in our study. As FENLAND and 551 
INTERVAL applied two different versions of the SomaScan array (versions 3 and 4), we 552 
matched aptamers (or SOMAmers) between the two studies by using their unique SomaScan 553 
IDs, which resulted in 2129 matched results. The detailed QC steps for protein measurements, 554 
and genotype imputation and QC for genotype data in the FENLAND study were described in 555 
the previous study19. The Fenland study was approved by the National Health Service (NHS) 556 
Health Research Authority Research Ethics Committee (NRES Committee – East of England 557 
Cambridge Central, ref. 04/Q0108/19), and all participants provided written informed consent. 558 
Both the Orkney Complex Disease Study (ORCADES)22 and Northern Sweden Population 559 
Health Study (NSPHS)20 have measured plasma protein levels of their participants on the four 560 
Olink panels that were used in INTERVAL, and genotyped participants using Illumina arrays. 561 
Thus, participants of the two studies were used to validate genetic score models of Olink 562 
proteins considered in our study, where gene names of proteins were used to match proteins 563 
between studies. For those proteins that appeared in two or more Olink panels, their validation 564 
measurements were averaged across panels for the protein. Detailed imputation and QC steps 565 
for protein abundance measurements and genetic data in the two studies were described in the 566 
previous studies56,57. Protein levels in ORCADES were adjusted for age, sex, plate, plate row, 567 
and plate column, sampling year and season, top 10 genetic PCs and kinship before used for 568 
validation. ORCADES also used the same platform Metabolon HD4 as INTERVAL to measure 569 
plasma metabolites of participants, and we used COMP identifier in the platform to match 570 
metabolites between the two studies, which resulted in 455 overlapped traits. Detailed quality 571 
control steps for metabolites in ORCADES were described in the previous study23 and their 572 
trait levels were adjusted for covariates of sex, age, BMI,  sampling season and year, plate 573 
number, plate column, plate row, genotyping array and top 20 PCs. The UK Biobank, 574 
ORCADES and the VIKING health study26 were used as external cohorts to validate genetic 575 
scores of Nightingale traits, and traits identifiers provided in the platform were used to 576 
successfully match all 141 traits between these studies and INTERVAL. Quality control for 577 
these traits in each external cohort has been described previously in details23,24. Before 578 
validation, levels of these traits were adjusted for sex, age, BMI, sampling season and sampling 579 
year, genotyping array and top 20 genetic PCs in ORCADES, VIKING; in UKB, they were 580 
adjusted for sex age, BMI, use of lipid lowering medication, top 10 genetic PCs and technical 581 
variance following the protocol of the previous study24.  582 
 583 
The Multi-Ethnic Cohort (MEC) recruited three major Asian ethnic groups represented in 584 
Singapore: Chinese, Malays and Indians, between 2004 and 2010 to better understand how 585 
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genes and lifestyle influence health and diseases differently in persons of different ethnicities28. 586 
Between 2011 and 2016, the participants were further invited for a follow-up. Whole genome-587 
sequencing was performed on 2,902 MEC participants as Phase I of the National Precision 588 
Medicine Programme (https://npm.a-star.edu.sg/). Samples were whole-genome sequenced to 589 
an average of 15X coverage. Read alignment was performed with BWA-MEM and variant 590 
discovery and genotyping was performed with GATK. Site-level filtering includes only 591 
retaining VQSR-PASS and non-STAR allele variants. At the sample level, samples with call 592 
rate <95%, BAM cross-contamination rate >2%, or BAM error-rate > 1.5%; at the genotype 593 
call level, genotypes with DP<5 or GQ<20 or AB>0.8 (heterozygotes calls), were set to NULL. 594 
Finally, samples with abnormal ploidy were excluded, and genetic ancestry were determined 595 
with k-means clustering from the top 15 principal components. Both SomaScan (version 4) and 596 
Nightingale NMR platforms were used to assay baseline and revisit blood samples of 597 
participants in MEC. For quality control of Nightingale data, participants with >10% missing 598 
metabolic biomarker values were excluded from subsequent analyses. For participants with 599 
biomarker values lower than detection level, we replaced values of 0 with a value equivalent 600 
to 0.9 multiplied by the non-zero minimum value of that measurement. For quality control of 601 
SomaScan data, protein levels were first normalized to remove hybridization variation within 602 
a run. This was followed by median normalization across calibrator control samples to remove 603 
other assay biases within the run. Overall scaling and calibration were then performed on a per-604 
plate basis to remove overall intensity differences between runs with calibrator controls. 605 
Finally, median normalization to a reference was performed on the individual samples with QC 606 
controls. During these standardization steps, multiple scaling factors were generated for each 607 
sample/aptamer at each step. The final number of samples in each ethnic groups used in our 608 
validation were given in Table 1. For both SomaScan and Nightingale traits, natural log-609 
transformation was applied before adjusting for age, sex, T2D status, and BMI (Nightingale 610 
traits only). Residuals from the regression were inverse-normalised for correlation analyses 611 
with genetic scores trained in INTERVAL. 612 

The Jackson Heart Study (JHS) is a community-based longitudinal cohort study begun in 2000 613 
of 5,306 self-identified Black individuals from the Jackson, Mississippi metropolitan statistical 614 
area29,58. The participants included in our validation of genetic scores for SomaScan proteins 615 
are samples collected at Visit 1 between 2000 and 2004 from 1,852 individuals with whole 616 
genome sequencing and proteomic profiling (SomaScan) performed, quality controls of which 617 
were detailed in the previous studies29,59,60. SomaScan IDs were used to match shared proteins 618 
between JHS and INTERVAL, which identified 820 proteins in total. Protein levels were 619 
adjusted for age, sex and the first 10 principal components of genetic ancestry in JHS, before 620 
they were used for evaluating performance of genetic scores. 621 

Polygenic scoring method 622 

A genetic score is most commonly constructed as a weighted sum of genetic variants carried 623 
by an individual, where the genetic variants are selected and their weights quantified via 624 
univariate analysis in a corresponding genome-wide association study61,62: 625 

																																																																		𝑃𝐺𝑆!% ='𝛽"
"∈$

× 𝑥%" 																																																													(1) 626 

where S is the set of variants, referring to single nucleotide polymorphisms (SNPs) in this study, 627 
that are identified in the variant selection step described below; βj is the effect size of the SNP 628 
j that is obtained through the univariate statistical association tests in the GWAS; xij is the 629 
genotype dosage of SNP j of the individual i. As the variant set S is derived through a LD 630 
pruning and p-value thresholding process, this method is often named as the P+T. However, 631 
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P+T relies on hard cut-off thresholds to remove LD correlations among variants and select 632 
associated variants. It is often challenging to balance between keeping predictive variants and 633 
removing redundant and uninformative variants that can limit the prediction precision. Also, 634 
due to the inherent linear assumption of the univariate analysis in P+T, this method leaves no 635 
modelling considerations for joint effects between variants. To alleviate these limitations, 636 
various machine learning based methods, such as Bayesian ridge (BR), elastic net (EN)45 and 637 
LDpred63, have been utilized to construct genetic scores for a wide range of traits and diseases8. 638 
In particular, BR and EN have been shown to outperform other methods when developing 639 
scores for predicting biomolecular traits, such as blood cell traits and gene expression8,10, which 640 
are similar to the type of traits considered in this study. We adopted the BR method for the 641 
genetic score construction of all the biomolecular traits as BR is more efficient to run in practice 642 
(see details below). 643 

Bayesian ridge is a multivariate linear model which assumes that the genetic variants have 644 
linear additive effects on the genetic score of the trait8,64. In addition, BR also assumes that the 645 
genetic score of a trait follows a Gaussian distribution, and the prior for effect sizes of variants 646 
is also given by a spherical Gaussian:  647 

																																																	𝑝(𝑃𝐺𝑆/ |𝒙, 𝜷, 𝛼)	~	𝑁7𝑃𝐺𝑆/ |'𝑥"𝛽"
"∈$

, 𝛼&'8 																																						(3), 	 648 

																																																																					𝑝(𝜷|𝜆)	~	𝑁(𝜷|0, 𝜆&')																																																								(4) 649 
 650 
where α and λ are coefficients of the model and subject to two Gamma distribution: Gamma(α1, 651 
α2) and Gamma(λ1, λ2). These two prior Gamma distributions can be set via a validation step. 652 

Genetic score model training and evaluation 653 

The explained variance (R2) and Spearman's rank correlation coefficient were used to measure 654 
the performance of constructed genetic scores in the INTERVAL training samples and external 655 
cohorts (or INTERVAL withheld subset), where R2 scores were calculated using the squared 656 
Pearson correlation coefficient. We adopted a similar strategy for sample partition when 657 
training and evaluating genetic scores within the training samples as previous studies8,10 that 658 
utilised learning-based methods to construct genetic scores for molecular traits. The training 659 
samples of a trait were randomly and equally partitioned to five subsets, from which any four 660 
subsets are used as true-training data to learn a genetic score model of the trait, and test the 661 
model’s performance on the remaining 20% of samples. Given a genetic scoring method and a 662 
trait, we obtained five different genetic score models of the trait and the mean of their 663 
performance measurements in the corresponding testing samples in INTERVAL was reported 664 
(internal validation). Note that, due to the high similarities between the five genetic score 665 
models trained for most traits, only one model was randomly selected from the five and 666 
evaluated in the external cohorts (or INTERVAL withheld subset). 667 

When training genetic score models using the BR method, we need to select two appropriate 668 
prior gamma distributions, i.e. α1, α2, λ1 and λ2. To do so, a grid search across the set [-1010, -669 
105,-10, 0, 10, 105, 1010] was performed on the true-training data set, in which 10% of the 670 
samples were used as a validation set. However, running this validation process is resource and 671 
time-intensive, which makes it challenging to run for all the traits. To address this problem, we 672 
found that it is reasonable to assume that the same category of molecular traits, i.e. proteomic 673 
traits or metabolomic traits, share the same prior distributions, without sacrificing model 674 
performance. Thus, we only needed to run the validation process once for each of the platforms 675 
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(a trait was randomly selected), and applied the identified optimal prior distributions to other 676 
traits. 677 

Variant selection and performance comparison between BR and P+T  678 

Selecting a proper set of variants and feeding into a polygenic scoring method are a key step 679 
for effective genetic score construction. To do so and further confirm the superiority of BR 680 
method, we looked at the performance of BR and P+T on a variety of variant selection schemes 681 
for the traits in three platforms (SomaScan, Olink and Metabolon). 682 

To ensure the generalizability of genetic score models when applied to other cohorts, a variant 683 
filtering step was first performed for all the traits considered, which applied a MAF threshold 684 
of 0.5% and excluded all multi-allelic variants as well as ambiguous variants (i.e. A/T, G/C). 685 
To remove LD dependencies among variants, a follow-up LD thinning step was carried out at 686 
an r2 threshold of 0.8 on all the variants. The remaining variants were then filtered at given p-687 
value thresholds (from their GWAS summary statistics conducted on the INTERVAL training 688 
data) for a trait in different platforms. To identify an appropriate variant selection scheme for 689 
the use of all the biomolecular traits, we attempted the following four p-value thresholding 690 
schemes for protein traits in Olink and SomaScan platforms: (1) p-value < 5 ´ 10-8 on all the 691 
variants; (2) p-value < 5 ´ 10-8 on variants in the cis region only (within 1MB of the 692 
corresponding gene’s transcription start site); (3) all the cis variants only; (4) all the cis variants 693 
and p-value < 1 ´ 10-3 on the trans variants; and the two different p-value thresholds on the 694 
genome-wide variants for metabolite traits in the Metabolon platform (as they do not 695 
distinguish cis and trans regions): (1) p-value < 5 ´ 10-8; (2) p-value < 1 ´ 10-3. 696 
 697 
Then, we compared the performance of BR and P+T on these variant sets in the internal 698 
validation (Figure S1-S3). Regarding the proteomic traits (SomaScan and Olink), the two 699 
variant selection schemes: (1) p-value < 5´10-8 on genome-wide variants and (2) all the cis 700 
variants and p-value < 1´10-3 on the trans variants, were shown to be the best performing 701 
schemes with either of the methods; BR method largely outperformed P+T across the two 702 
variant selection schemes. Meanwhile, it was noted that the two selection schemes led to 703 
greatly different performance, with the latter scheme achieving an unrealistic mean R2 of ~0.74 704 
across all the proteins (only ~0.09 for the former scheme). Similarly, for the metabolomic traits 705 
(Metabolon), the applied two variant selection schemes significantly differ in their performance 706 
in internal validation, and BR was also shown to a better performing method. 707 

To further identify the optimal variant selection scheme, we also looked at the performance of 708 
validated genetic score models trained with the two identified (for proteins) or all the two 709 
applied (for metabolites) schemes using BR method for Olink traits and Metabolon traits 710 
(Figure 3 and Figure S4) in external cohorts (NSPHS and ORCADES) or withheld 711 
INTERVAL data. Despite the second scheme (all the cis variants and p-value < 1´10-3 on the 712 
trans variants for proteins, or p-value < 1´10-3 on genome-wide variants for metabolites) 713 
showed outstanding performance in internal validation, its performance saw a dramatic decline 714 
in external validation for almost every trait validated (Figure S4). It indicates this variant 715 
selection scheme caused an overfitting problem in genetic score training, which is consistent 716 
with previous findings when using overly lenient p-value thresholds for variant selection8. 717 
These results suggested that the BR method with the variant selection scheme of p-value < 718 
5´10-8 on genome-wide variants was the optional method (of those tested) for genetic score 719 
development of these biomolecular traits, thus we applied this approach to all other traits for 720 
their genetic score development in this study. 721 
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Comparing the genetic scores for shared proteins between SomaScan and Olink  722 
SomaScan and Olink used two different technologies for protein level measurement. The two 723 
platforms measured many proteins in common,among which there are 169 unique proteins 724 
whose genetic scores we have validated. To check the impact of technologies on genetic 725 
prediction, we looked at how the genetic scores trained on one platform can predict protein 726 
levels from the other platform on the INTERVAL training samples (Figure S16). We 727 
confirmed that performance of these overlapped genetic scores trained in the other platform 728 
was generally consistent with that of the scores trained in their original platform. However, we 729 
did observe, in some cases, the genetic scores trained in the two platforms can lead to very 730 
different predictions, for which we found that they are mainly due to the differences in what 731 
the two platforms are actually quantifying. For example, among the 169 proteins, there are 11 732 
proteins in SomaScan that had a R2 > 0.3 in internal validation, in which 10 proteins also 733 
achieved a R2 > 0.3 but the remaining protein (CHI3L1) received a poor R2 < 0.1 when 734 
predicting with Olink genetic scores. We found that the remaining protein received a lowest 735 
Pearson’s r score among the 11 proteins between their actual protein levels measured in the 736 
two platforms. In INTERVAL, there were ~700 participants (depending on the protein) who 737 
were assayed by both SomaScan and Olink, which allowed us to calculate the correlations 738 
between the actual protein levels measured by the two platforms for the same protein. These 739 
results suggested, despite great consistency, genetic scores of the same protein trained in the 740 
two platforms can represent distinct aspects of protein biology of prediction and integration of 741 
diverse proteomic techniques may enable to develop better genetic scores for these proteins65. 742 

Pathway coverage analysis of heritable proteins 743 

In this analysis, SomaScan and Olink proteins were combined based on their Uniprot ID, where 744 
duplicate proteins were removed if identified. We only kept proteins with R2 > 0.01 in internal 745 
validation, resulting in a total of 2,205 unique proteins for the analysis. We used pathway data 746 
of Homo sapiens curated at Reactome30 and conducted analyses to uncover the coverage of 747 
these proteins in the pathways. In detail, this analysis looked at the percentages of these proteins 748 
in annotated physical entities of each super-pathway, and the percentages of the lowest-level 749 
pathways these proteins covered among all the lowest-level pathways of each super-pathway. 750 
Where at least one protein in this study are included in entities of a lowest-level pathway, we 751 
considered this pathway is covered by proteins of this study.  752 

Phenome-wide association analysis (PheWAS) in UKB 753 

We included biomolecular traits with R2 > 0.01 in internal validation in this analysis (11,576 754 
traits in total) and considered only participants of European ancestry in UKB (the White British 755 
subset). We used the version 3 of imputed and quality controlled genotype data for UKB, which 756 
were detailed in the previous study25. Using version 1.2 of the PheWAS Catalog31, we extracted 757 
the curated phenotype definitions of all phecodes. Each phecode is provided as a set of WHO 758 
International Classification of Diseases (ICD) diagnosis codes in versions 9 (ICD-9) and 10 759 
(ICD-10) of the ontology to define individuals with the phenotype of interest, and a set of 760 
related phecodes that should be excluded from the control cohort of unaffected individuals. To 761 
define cases for each phecode, we searched for the presence of any of the constituent ICD-9/10 762 
codes in linked health records (including in-patient Hospital Episode Statistics data, cases of 763 
invasive cancer defined in the cancer registry, and primary and secondary cause of death 764 
information from the death registry), and converted the earliest coded date to the age of 765 
phenotype onset. Individuals without any codes for the phenotype of interest were recorded as 766 
controls, and censored according to the maximum follow-up of the health linkage data (January 767 
31, 2020) or the date of death whichever came first. To define the cohort for testing molecular 768 
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genetic score associations with the age-of-onset of each phenotype, we used the set of events 769 
and censored individuals described above and removed any individuals with related 770 
phenotypes (based on definitions from the PheWAS Catalog), restricting analyses to be sex-771 
specific (e.g. ovarian and prostate cancer) where requires. To ensure a well-powered study we 772 
restricted the PheWAS analysis to phenotypes with at least 200 cases in the 409,703 European 773 
ancestry individuals whose reported sex match the genetically inferred sex from the UKB 774 
quality controlled genotype data25, resulting in a set of 1,123 phecodes included in the final 775 
analysis. The association of the genetic score for biomolecular traits with the onset of each 776 
phenotype was assessed by using a Cox proportional hazards model with age-as-timescale, 777 
stratified by sex and adjusted for genotyping array and 10 PCs of genetic ancestry. The 778 
association between genetic scores and each phecode is reported in terms of its effect size 779 
(Hazard ratio) and corresponding significance (p-value), and significant results were defined 780 
as Benjamini/Hochberg FDR-corrected p-value < 0.05 for all the tested traits. Statistical 781 
analyses were performed in python and the Cox model was implemented using the lifelines 782 
package66. 783 
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Table 1. Demographic statistics of training and validation samples for genetic score 1059 
construction of blood biomolecular traits by platform. The table shows the mean ± standard 1060 
deviation of age and BMI for participants in each cohort or cohort subset.  1061 

Platform Cohort Ancestry # 
Traits 

# 
Samples 

% 
Men Age (years) BMI 

(kg/m2) 

Training and Internal Validation 

Metabolon 

INTERVAL European 

726 8,153 51.0% 43.9 ± 14.1 26.4 ± 4.6 

Nightingale 141 37,359 51.0% 43.7 ± 14.1 26.4 ± 4.6 

Olink 308 4,822 59.3% 59.0 ± 6.7 26.5 ± 4.1 

SomaScan 2,384 3,175 50.8% 43.6 ± 14.2 26.3 ± 4.7 
Illumina 
RNAseq 13,668 4,136 56.4% 54.6 ± 11.6 26.6 ± 4.4 

External Validation 

Metabolon 
INTERVAL 

withheld subset European 
527 8,114 49.4% 47.9 ± 13.8 26.5 ± 4.6 

ORCADES 455 1,007 43.9% 54.0 ± 15.3 27.7 ± 4.9 

Nightingale 

UKB 

European 

141 116,830 45.8% 56.5 ± 8.1 27.4 ± 4.8 
ORCADES 141 1,884 40.0% 53.9 ± 15.0 27.8 ± 5.0 

VIKING 141 2,046 39.9% 49.8 ± 15.2 27.4 ± 4.9 

MEC 

Chinese 139 1,067 47.2% 52.1 ± 9.9 23.5 ± 3.8 
Indian 139 654 43.7% 44.5 ± 11.6 26.4 ± 5.1 
Malay 139 634 42.9% 44.9 ± 11.1 26.9 ± 5.1 

Olink 
NSPHS 

European 
302 872 47.6% 49.6 ± 20.2 26.7 ± 4.8 

ORCADES 301 1,052 44.1% 53.8 ± 15.7 27.7 ± 4.9 

SomaScan 

FENLAND European 2,129 8,832 47.1% 48.8 ± 7.4 26.9 ± 4.8 

MEC 

Chinese 2,070 645 46.0% 51.9 ± 10.9 23.5 ± 3.9 
Indian 2,070 564 45.0% 44.0 ± 12.0 26.3 ± 5.3 
Malay 2,070 563 43.9% 44.4 ± 11.3 26.9 ± 5.2 

JHS African 
American 820 1,852 39.0% 55.7 ± 12.8 31.6 ± 7.3 

Illumina 
RNAseq 

INTERVAL 
withheld subset European 12,958 598 49.5% 45.0 ± 13.1 26.8 ± 4.8 
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Figure 1: Schematic framework for the development and validation of multi-omic genetic 1069 
scores.  1070 
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Figure 2: Performance of multi-omic genetic scores in internal validation. For each 1074 
platform, genetic scores were constructed using Bayesian ridge regression on the genome-wide 1075 
genetic variants with univariate p-value < 5´10-8 in INTERVAL. The variance explained in the 1076 
measured biomolecular trait (R2) by the genetic score is assessed in the internal validation set 1077 
(Methods). Pie charts reflect the number of genetic scores in a particular R2 range. 1078 
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Figure 3: External validation of genetic scores in cohorts of European ancestry. 1080 
Scatterplots show comparisons of the R2 in internal validation and external validation for each 1081 
omic platform. Data points are coloured by variant missingness rate in the external cohort (i.e. 1082 
the proportion of variants in the genetic score missing in the external cohort) and blue lines 1083 
show the linear models fitting the data points. For each platform, concentric circles show the 1084 
number of genetic scores in different ranges of explained variance (R2) in internal validation 1085 
(inner ring) and external validation (outer ring). External validation cohorts used for each 1086 
platform include FENLAND (SomaScan), NSPHS (Olink), INTERVAL withheld set 1087 
(Metabolon), UKB (Nightingale) and INTERVAL withheld set (RNAseq). 1088 
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Figure 4: Transferability of genetic scores to cohorts of Asian and African American 1090 
ancestries. (a, d) Performance (R2) of genetic scores for Nightingale (a) and SomaScan (d) in 1091 
external cohorts of various ancestries relative to R2 in internal validation (INTERVAL). 1092 
Transferability was only tested if the genetic score had a significant (Bonferroni corrected p-1093 
value < 0.05) association with the directly measured molecular trait in internal validation, 1094 
which resulted in 137, 136 Nightingale metabolic traits for UKB and MEC (Chinese, Indian 1095 
and Malay) respectively and 949, 945, 378 SomaScan proteins for FENLAND, MEC and JHS. 1096 
Violin plots show distributions of the ratio of R2 values. Black points show mean values and 1097 
error bars are standard errors. (b, c, e, f) R2 of genetic scores for Nightingale (b, c) and 1098 
SomaScan (e, f) with the five most variable (b, e) or five most consistent (c, f) for prediction 1099 
in multi-ancestry validation, as quantified by mean absolute difference in R2. In this analysis, 1100 
only Nightingale R2 > 0.05, SomaScan R2 > 0.30 in internal validation were considered.  1101 
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Figure 5: Performance (R2) of genetic scores between longitudinal samples and across 1104 
ancestries in the MEC cohort.  Paired samples include a baseline and a revisit sample from 1105 
each individual run on Nightingale and SomaScan for MEC Chinese (N=406 and 721 1106 
individuals), MEC Indian (N= 356 and 376) and MEC Malay (N=353 and 363). Blue lines 1107 
denote linear models fitted to each set of data points. 1108 
 1109 
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Figure 6: Applications of multi-omic genetic scores. (a) Genetic control of Reactome super-1120 
pathways using SomaScan and Olink genetic scores of varying predictive performances in 1121 
internal validation (Methods). (b) Phenome-wide association study using PheCodes in UK 1122 
Biobank. Slacked barplots showing the number of detected significant associations (FDR-1123 
corrected p-value < 0.05) by PheCode category of disease and omic platform. (c) Strength of 1124 
associations by category of disease and omic platform. Association with the lowest pvalue for 1125 
each category of diseases is labelled. 1126 
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