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Abstract 

 

The number of annotated genes in the human genome has increased tremendously, and 

understanding their biological role is challenging through experimental methods alone. There is 

a need for a computational approach to infer the function of genes, particularly for non-coding 

RNAs, with reliable explainability. We have utilized genomic features that are present across 

both coding and non-coding genes like transcription factor (TF) binding pattern, histone 

modifications, and DNase hypersensitivity profiles to predict ontology-based functions of genes. 

Our approach for gene function prediction (GFPred) made reliable predictions (>90% balanced 

accuracy) for 486 gene-sets. Further analysis revealed that predictability using only TF-binding 

patterns at promoters is also high, and it paved the way for studying the effect of their 

combinatorics. The predicted associations between functions and genes were validated for their 

reliability using PubMed abstract mining. Clustering functions based on shared top predictive 

TFs revealed many latent groups of gene-sets involved in common major biological processes. 

Available CRISPR screens also supported the inferred association of genes with the major 

biological processes of latent groups of gene-sets. For the explainability of our approach, we 

also made more insights into the effect of combinatorics of TF binding (especially TF-pairs) on 

association with biological functions.  

 

 

Keywords: non-coding RNAs, gene function prediction, transcription factors, coregulation of 

functions 

 

 

Introduction 

 

A biochemical pathway in a cell includes the role of both coding and non-coding RNA (ncRNA) 

genes’ products. The functional role of non-coding RNA is prominently in trans or cis-regulation 
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of the coding genes whose products are the backbone of biochemical pathways (Rinn and 

Chang 2012). The ncRNA genes are short (around 200 base pairs long) and share homology 

across many genes, and they have various molecular mechanisms through which they exert 

their functions in a myriad of molecular and cellular functions; because of these reasons, it is 

hard to study ncRNAs experimentally (Kevin C. Wang 2011; X. Zhang et al. 2019). A promising 

way to dissect the functions of the ncRNA genes is through computational analysis by 

leveraging the existing knowledge of gene-function or gene-disease relationships. Gene 

ontologies represent empirically annotated relationships between disease, functions, and genes. 

In the past, multiple research groups have utilized these ontologies for predicting associations of 

genes with functions and diseases(Zhao et al. 2020). Here we have used the word “function” to 

represent gene-sets of molecular functions and biological processes for ease of reading.  

 

Predictive models are good at identifying similarities between data points and are extensively 

used in gene function identification by comparing the features of unknown and known genes. 

However, using the most relevant biological signals as features for training a predictive model is 

still a crucial factor. The features of the known genes must essentially represent the function 

well for robust prediction. A straightforward approach to gene function prediction is by 

comparing the primary nucleotide sequences of genes and proteins of known function with the 

genes of unknown function (Zhao et al. 2020; Hanyu Zhang et al. 2019; Kulmanov and 

Hoehndorf 2019; N. Zhou et al. 2019), but it has been shown that alternative isoforms can be 

functionally divergent (X. Yang et al. 2016) and primary sequence comparison for non-coding 

genes would be of limited use because of the lack of reference to non-coding genes whose 

biological functions are known. Some researchers have used the ontological relationships of 

genes to identify disease-related ncRNA genes (P. Yang et al. 2012), but the number of 

annotations of ncRNA genes in the ontologies is less and would result in less coverage. Few 

studies have used gene expression data as features for identifying the non-coding genes based 

on the co-expression of the coding genes (Liu et al. 2018). However, a vast number of 

functionally unrelated genes can show correlation at a given instant, and genes involved in the 

same pathway may not exhibit any correlation (Uygun et al. 2016). Thus, current approaches 

fail to effectively utilize the right input genomic features to predict non-coding gene functions. 

 

It is well known that non-coding RNAs regulate the transcription of genes involved in the same 

biological process through interactions with chromatin, RNA, and protein (Sun and Wong 2016). 

However, the question is how to predict their association with any function. Genomic features 

like the binding of transcription factors (TFs) are present across both coding and non-coding 

genes as they are required to modulate the gene expression (Venters and Pugh 2013; Yan et 

al. 2021). Epigenetic marks and chromatin structure work in tandem with the TFs in the 

modulation of gene expression (B. Li, Carey, and Workman 2007). In the past, epigenome 

profiles have been used to predict gene expression (Kumar et al. 2013) and the association 

between disease and single nucleotide polymorphism (SNP) (Tak and Farnham 2015). At the 

same time, many previous studies which published TF ChIP-seq profiles have tried to associate 

binding patterns of 1 or 2 TFs, at a time, with genes of a particular function. Using TFs as 

features can also help make insights into the combinatorics (synergy and cooperativity) involved 

in regulating different functions (Venkatesh et al. 2021). However, a comprehensive analysis of 
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combinatorics of binding patterns of large numbers of TFs at promoters and their associations 

with the function of genes has rarely been done. 

 

Here, we devised an approach to use combinatorics of epigenomic signals, especially TF 

binding patterns at promoters of genes to predict the ontology-based function of genes. 

Accordingly, to capture all the signatures of factors involved during the modulation events that 

would occur during the transcription of a gene; we leveraged a large number of publicly 

available ChIP-seq data of TFs, histone modification marks, and DNase I hypersensitivity sites 

along with cap analysis gene expression (CAGE) tags to include the expression of genes 

including non-polyadenylated ones. In order to gain more insight into the reliability of our 

method, we performed downstream analysis involving top predictive ChIP-seq profiles for 

clustering of functions and associating genes with those clusters of gene-sets. We also made 

insights into the specificity of simple combinatorics of TFs (i.e TF-pair) towards functions.   

 

Results 

 

We developed our approach based on the hypothesis that the coordinated expression and 

functional association of genes are brought about by a few common key regulatory factors 

present across both coding and non-coding genes. We downloaded ChIP-seq profiles of TFs, 

histone modification marks, and DNase I-seq and CAGE-tags from different sources and 

estimated their read-count within 1 Kb of transcription start sites (TSS) of genes, in other words, 

2Kbp wide region around promoter. The flowchart of our approach (GFpred) is shown in Figure 

1. 

 

Gene functions are predictable using the epigenomic signals at the promoter regions. 

Machine learning (ML) algorithms were trained for each of the biological functions of the 

ontologies. We trained 5 different ML models using TFs binding patterns and other features 

(ChIP-seq data of DNase hypersensitivity regions, histone marks, CAGE tags) for a total of 

9559 function gene-sets downloaded from the MSigDB database (Liberzon et al. 2011). We 

performed two approaches for predictive modelling. We used 823 TF ChIP-seq libraries from 

normal (non-diseased) samples for estimating feature scores in the first approach. For the other 

approach, we used ChIP-seq profiles of TFs and histone modifications ChIP-seq (n = 621) and 

DNase-seq (n = 255) and CAGE tags (n = 255) from non-diseased samples. While using the 

second approach, we achieved good predictions for many functions, such that using 

randomForest; the sensitivity was above 80% and minimum specificity of 90% for 425 gene-

sets. Other four ML models (linear regression, logistic regression, SVM, and XGBoost) showed 

100 to 300 gene-sets with a sensitivity of 80% and specificity of 90% (Figure 2A). However, 

when using only 823 TF-ChIP-seq profiles, the number of functions with similar predictability did 

not reduce substantially. Using the threshold criteria of 80% sensitivity and 90% specificity, we 

had 318 functions using randomForest. We took the union of functions with good predictability 

(sensitivity > 80 %, specificity > 90%) from 5 ML models. We found that using only TF ChIP-seq, 

670 functions had good predictability from at least one of the five ML models. However, using all 
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features (TF, Histone modification, CAGE-tags, DNase-seq) we had an increase of only 15% in 

the number of functions (total number = 773) (Figure 2B) with good predictability (sensitivity > 

80%, specificity > 90%) with at least one ML model. When we used the criteria of sensitivity 

greater than 70%( with specificity > 90%), the number of functions based on union from 5 ML 

models was above 1300 with TF ChIP-seq as features (Supplementary Figure 1). The balanced 

accuracy for prediction for a few functions is shown in Figure 2C. Evaluation metrics used for 

each gene-sets can be checked in the Supporting File 1. 

 

Non-random nature and relevance of high predictability   

 

To ensure that high predictability achieved using our approach is non-stochastic, we 

constructed a null model as a control. For this purpose, we checked if modeling is possible on 

‘false gene-sets,’ apart from the gene-sets annotated empirically. We created 200 false gene-

sets by randomly shuffling the genes from existing gene-sets. The best performing random 

forest algorithm trained on these false gene-sets showed an overall balanced accuracy of not 

more than 55% on average. In comparison, the balanced accuracy of the models on the 

empirically annotated gene-sets is 75% on average, as shown in Figure 2D. Our result indicates 

that good predictability is possible only for biologically relevant gene-sets, and there is an 

inherent pattern of regulation exhibited by a few common regulators at the promoter sites of the 

genes associated with the same biological function, supporting our hypothesis.  

 

 

Inference from clustering of functions 

 

There are few indirect studies on the coregulation of functions by the combinatorics of TF 

binding (Wu and Lai 2016). However, we used a direct approach of studying the effect on 

function predictability due to combinatorics of TFs to get an insight into major functional groups 

of coding and non-coding RNA. We found 50 (Figure 3A) prominent clusters of functions 

(Supporting File 2) based on shared top predictors. In addition, we found that in some clusters, 

the majority of the functions were involved in similar major biological activity (Supporting File 2). 

For example, one of the large clusters (cluster-47) related to the cell cycle includes ‘regulation of 

cell cycle process’, ‘cytokinesis’, ‘microtubule-organizing centre’, ‘nucleolus’, ‘regulation of 

cellular protein localization’ (Figure 3A). Some of the top predictive transcription factors and 

cofactors shared among the functions of cluster-47 are CTCF, XRN2, BRD4, SMARCA4, and 

PARP1 (Figure 3B). The role of CTCF, MYC, PARP-1, and SMARCA4 in cell cycle regulation 

has been reported by previous studies (Hyle et al. 2019; Haoyue Zhang et al. 2021; L. Yang et 

al. 2013; Hendricks, Shanahan, and Lees 2004). One other cluster (cluster-26) shown in Figure 

4A consisted of early development and morphogenesis-related terms. Some of the shared top 

predictors for functions in cluster-26 included POU5F1 (Bakhmet and Tomilin 2021), RNF2, and 

SMARCB1 (Meurer et al. 2021; Kenny et al. 2021), SIX1 (Meurer et al. 2021), which are known 

to regulate genes involved in early development. The results show that cluster members (gene-

sets) have unrelated functional roles but a non-discernible role in the overall major biological 

activity. For example, in cluster-47, the majority of the members of the clusters have an 
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apparent role in the major biological function–the cell cycle and ‘negative regulation of catabolic 

process’, is one of the members of the cluster with a generic cellular function but the fact it is 

one the members sharing few of the regulatory elements with other members imply its indirect 

role in the cell cycle. Such indirect role of functions in major biological processes can be 

deduced in other clusters (Supporting File 2). Thus the emergence of clusters of functions 

broadens the scope of linking genes to major biological processes and hints at the specificity of 

the binding patterns of the regulators (TFs and cofactors).  

 

 

Independent validations of the predicted results 

 

Pubmed abstract mining of co-occurrence of gene term and function term 

 

To check if the predicted results are of any biological relevance, the co-occurrence of the 

predicted gene term and the corresponding biological function term of the ontology is searched 

in the abstracts of the PubMed articles published from 1990 to 2021. The boxplot in Figure 4A 

shows the total co-occurrence of predicted gene term and function term pairs compared against 

random gene term and random function term pairs as control. This result adds to the confidence 

in our predicted results.  

 

Related disease-gene links  

 

We also checked if the predicted genes are reported in related human disease gene sets. We 

found 23 intersections between the predicted genes and the disease gene-sets obtained from 

the DisGeNET database (Piñero et al. 2017) (Supplementary Table 1). Refer to Supplementary 

Methods for the procedure followed to perform the intersection. There were a total of 15 

intersections with the Mouse Genome Informatics (MGI) (Blake et al. 2021) (Supplementary 

Table 2).   

 

Comparison of predicted results with other gene-function prediction methods 

 

Gene function prediction is one of the classical problems in computational biology. Some of the 

recent methods to predict the ontology-based functions of genes have utilized different features 

like primary amino acid sequence (NetGo 2.0, DeepGo), gene expression (correlation 

AnalyzeR), and network inference using co-functionality of genes obtained through 

transcriptomic profiles (GenetICA-Network) (Miller and Bishop 2021; Kulmanov et al. 2018; 

Urzúa-Traslaviña et al. 2021; Yao et al. 2021). We compared the abstract mining results on the 

predictions of these methods against the novel associations inferred by our approach (Figure 

4B). The co-occurrence of input ontology term and predicted gene term at least once in the 

PubMed abstracts for the 50 gene-sets of our method is significantly more compared to the 

same input gene terms and their predicted ontology terms by AnalyzeR, DeepGo, NetGo 2.0, 

and comparable to GenetICA-Network. However, the median of the frequency of co-occurrence 

of input terms and corresponding related terms predicted by our method is more than all the 

other methods. Note that we compared the prediction results and not the performance of the 
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models of different gene function prediction methods because our implementation's input 

features and approach for gene function prediction are completely different from the other 

methods. Therefore, benchmarking is possible only on the predicted novel associations with 

functions for a group of genes. 

 

CRISPR-based validation of association of genes with major biological processes of 

clusters of functions 

 

Our approach of grouping functions based on common top predictors (TFs or cofactors) leads to 

new way of finding links (direct and indirect associations) between coding and non-coding 

genes with a few major biological processes. In order to evaluate the results of the discovery of 

such new links between genes and major biological processes, we analyzed available CRISPR 

screens. First, we used the CRISPR screen: ‘viability’ in human pluripotent stem cells (hPSC), 

where the hPSC-enriched essential genes appeared to be mainly encoding transcription factors 

and proteins related to cell-cycle and DNA-repair (Yilmaz et al. 2018). The novel predicted 

genes in functions belonging to cluster-47 (mainly associated with cell-cycle processes) had 

significantly higher z-scores in comparison to an equal number of random genes in the same 

CRISPR screen for viability of hPSC (Figure 4C). However, the novel predicted genes for 

cluster-47 had comparatively less z-scores in other CRISPR screens: ‘resistance to chemicals’, 

‘resistance to bacteria’ and ‘pyroptosis’ (Schinzel et al. 2019; Jeng et al. 2019; Alimov et al. 

2019). For another validation, we used the CRISPR screen: ‘regulation of signal transduction 

phenotype’, which highlighted critical components of the tumor-immune synapse and the 

importance of cancer cell interferon-γ signaling in modulating NK activity (Pech et al. 2019). A 

cluster (cluster-52) consisted of functions related to immune cell activation and its associated 

pathways ( see Supporting File2 for other members) during clustering based on top predictors. 

The novel predicted genes of cluster-52 had higher z-scores compared to an equal number of 

random genes in the same screen for regulation of signal transduction phenotype. However, the 

novel predicted genes for cluster-52 had comparatively less z-scores in other CRISPR screens 

(Figure 4D). CRISPR screens' validations assert the associations of novel genes with major 

biological processes and link the underlying regulatory factors (top predictors) to those 

biological processes.  

  

 

Insight about the effect of binding patterns of TF pairs for better inference of functions: 

 

Our prediction approach using multiple TF ChIP-seq read-count at promoters of genes seems 

reliable; however, there is still a need to study combinatorics of TF binding for better 

explainability. Hence, to gain more explainability and reliability in our approach, we tried to 

understand the effect of the simplest combinatorics of TF-pair binding patterns. Transcription 

factors have pleiotropic effects even within the same tissue or cell-type (Chesmore et al. 2016). 

As expected, a few TFs had high feature importance scores for many functions. To analyze the 

predictive pleiotropy of TFs, we searched for TF ChIP-seq pairs (irrespective of cell-types), 

which emerged together as top predictors of different functions. A few TF ChIP-seq pairs were 

among the top predictors of multiple functions (Figure 5A and Figure 5B). The occurrence of a 
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TF pair among the top important features across multiple biological functions indicated their 

pleiotropic predictive power (Wang, Liao, and Zhang 2010). Further, we checked for the 

diversity of functions for which they were top predictors for every TF pair. For diversity 

estimation, we counted TF pairs occurrences in the clusters of co-regulated functions 

(Supporting File 3). We performed the same task 2 times; the first time, we used TF ChIP-seq 

pairs irrespective of the cell-type, and the second time, we used TF ChIP-seq pairs from the 

same cell-type. We found that TF-pairs appeared to have predictive pleiotropy for many 

functions but had less diversity in terms of clusters of co-regulated functions. ChIP-seq patterns 

of BATF and RUNX3 at promoters in B cells (GM12878) appeared together among the top 20 

predictors for 11 functional gene-sets. However, these 11 gene-sets belonged to only 2 clusters 

of functions mainly involved in immune cell activation and differentiation (Supporting File 4). 

Similarly, DNA-binding profiles at promoters in adipocytes by CEBPA and E2F4 appeared to be 

top predictors for 8 gene-sets (functions) belonging to a single cluster and mainly associated 

with response to the stimulus by peptides (like insulin) and monosaccharides and related 

metabolic processes. Thus, some of the TF-pairs seem to have more specificity toward major 

cellular or biological processes that can be exploited to confirm the prediction of coding and 

non-coding genes.     

 

Only a minor group of TF-pairs were top predictors of the gene-set belonging to more diverse 

clusters of co-regulated functions. Especially pairs involving CTCF showed more diversity in a 

cluster of co-regulated functions. The TFs, ZCAN5FB, and CTCF appeared as the top 

predictors for functions belonging to more than 12 co-regulated clusters. Similarly,  TET3 and 

CTCF appeared as the top predictor of functions from 6 clusters. CTCF is known to have a 

more general effect than other TFs. CTCF is known to play the general role of insulator (Kim, 

Yu, and Kaang 2015). Nevertheless, its co-occurrence with certain TFs as the top predictor also 

highlights another possible role in various cellular processes.      

 

In order to further make insight into the non-random aspect of co-occurrence of  TF pairs 

(Figure 5C) as top predictors, we investigated the overlap of the peaks of their ChIP-seq 

profiles. It was based on the notion that if TF-pair occurrence as top predictors has no relation 

with conserved biological processes, then the overlap of their peaks would appear as a random 

event. For this purpose, we used the R package ‘ChIPpeakAnno’  (L. J. Zhu et al. 2010) and 

analyzed TF ChIP-seq peaks in the GM12878 cell line. We compared the overlap of co-

predictor TF-pair ChIP-seq peaks in the same cell-type with random TF pairs as control. Here, 

co-predictor TF-pair were defined as, pair of TF ChIP-seq profiles in GM12878 cells, which 

appeared among the top 20 predictors (co-predictive) for any function (Supplementary Figure 

2B). We found that the enrichment of overlap of peaks at promoters in GM12878 for such co-

predictive TF pairs was much more significant than random TF ChIP-seq pairs (Figure 5D). 

Such observations build confidence in our approach and indicate that the top predictors’ 

analysis offers insights into TF-TF synergy through higher co-binding frequency at promoters of 

the genes involved in the same biological functions.   

 

 

Insights about functions of non-coding RNAs 
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From the results of ML models, we relied on predictions (with >60% confidence score) for 1,200 

long non-coding genes, associating them with various biological processes and molecular 

functions. Table 1 and Supplementary Table 3 contain the list of non-coding RNAs with 

corresponding literature support. Our results for predicted major cellular processes for some 

non-coding RNA based on function clusters are provided in Supporting File 5.  

 

Case-1: The role of lncRNA AC078909.1 in retinitis pigmentosa 

 

Retinitis pigmentosa is one of the most heterogeneous inherited disorders. Luigi et al. (Donato 

et al. 2020) designed the experiment to understand the molecular mechanisms of oxidative 

stress underlying the etiopathogenesis of retinitis. Their RNA-Seq-based experiment using 

human retinal pigment epithelium cells treated by the oxidant agent N-retinylidene-N-

retinylethanolamine revealed lncRNAs associated with various pathological conditions leading 

to retinal cell death. Out of two down-regulated lncRNAs with the highest fold change in 

experiments by Luigi et al., one of those genes (AC078909.1) was also predicted to have a role 

in eye development by our method.   

 

Case-2: The role of LINC00528 as one of the mediators of lung tumor immune response 

 

The tumor immune microenvironment is a crucial mediator of lung tumorigenesis. Adam et al. 

(Sage et al. 2020) sought to identify the landscape of tumor-infiltrating immune cells in the 

context of long non-coding RNA (lncRNAs). They analyzed lncRNA profiles of lung 

adenocarcinoma tumors by interrogating the single-cell RNA sequencing data from 

microdissected and non-microdissected tumor samples. The predicted lncRNA LINC00528 in 

ontology ‘negative regulation of interleukin-6 production’ is one of the top 10 lncRNA genes 

positively correlated with PTPRC protein, a marker for immune cells (in the study by Adam et 

al.). Such results indicate the potential role of LINC00528 in the infiltration of immune cells in 

immunogenic tumors. 

 

 

 

Discussion 

 

To predict the function of non-coding RNAs, researchers would have to use new kinds of assays 

or genomic features in prediction systems. We used epigenomic and CAGE-tags profiles to 

predict their functions to have a common set of features between coding and non-coding genes. 

Using the union of different ML models, we achieved good predictability for more than 780 

functions with all features and 650 functions using 853 TF and cofactors ChIP-seq. We 

independently validated our results using different datasets. We also compared our method to 

other methods that use various other features for function prediction. Our results hint that in the 

future, with an increase in the availability of ChIP-seq profiles, the number of functions with 

good predictability will also grow. 
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Further downstream analysis revealed an interesting pattern that the majority of the functions 

which shared the same top predictors (especially ChIP-seq profile from the same cell-type) were 

either related to similar major cellular processes or had some dependencies on each other. 

Thus, despite having a seemingly unrelated biological role, functional gene-sets showed 

convergence in terms of association with major cellular processes like cell cycle and transport. 

Such observation is because of shared similarity in patterns of some epigenomic (or TF-binding) 

features at promoters of genes. On the same logic, if a few epigenomic features appear to be 

important common determinants (or predictors) for two known gene-sets, the genes of those 

gene-sets could likely be involved in some major function. In order words, our analysis goes 

beyond the boundary of currently defined gene-sets of function to highlight the effect of TFs. For 

example, for cluster-47, the top predictors are  MYC, PARP-1, CTCF, and SMARCA4, which are 

involved in cell-cycle (Hyle et al. 2019; Haoyue Zhang et al. 2021; L. Yang et al. 2013; 

Hendricks, Shanahan, and Lees 2004). Thus, our analysis of the co-prediction (coregulation) of 

functions through top predictors shows the interdependence between functional gene-sets and 

may explain the perturbation's effect on a key regulator that  can potentially affect a myriad of 

functions. Two major aspects highlight the novelty of our study; i) deciphering combinatorics of 

TF-binding at promoters for association with functions ii) grouping of known gene-sets using top 

co-predictors and finding common major functional terms for their groups. Such groups of 

functions with molecular functions have the potential to provide a better explanation in CRISPR 

screens.   

 

Overall our downstream analysis shows the reliability and sensibility of our models, which is 

directly associated with the prediction of the function of non-coding RNAs. The clustering of 

functions also highlighted the broader role of a few non-coding RNAs. For example, the non-

coding RNA genes–ENSG00000259426, ENSG00000273063, ENSG00000224738, 

LINC00441, LINC01137, DLG1-AS1 were predicted to be associated with at least one of the 

members of the cluster of functions largely involved in cell cycle activity by our approach. Out of 

these 6 non-coding RNAs, DLG1-AS1 is reported to be involved in proliferation (Rui et al. 2018). 

The other two non-coding RNAs  (LINC00441 (J. Zhou et al. 2018) and LINC01137 (Du et al. 

2021) are reported to be involved in cancer development (Supporting File 5). Such inference 

about the role of non-coding RNAs in major processes could help biologists design experiments 

for validation.  

  

Our approach of using the combination of epigenome and TFs as features and further clustering 

of functions to understand the role of coding and non-coding genes stands out of the crowd of 

gene-function prediction methods. We have created a resource for the biologists to corroborate 

their experiment results and utilize our predictions to design the experiments to understand the 

molecular and biological roles of non-coding and coding genes. The demonstration by our study 

advocates for the utilization of more epigenomic features for a better understanding of the 

functions of non-coding RNAs. 

 

 

 

Methods 
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The read-counts around promoters of genes were assimilated as described in Supplementary 

Methods. Notice here that in addition to TF and Histone modification ChIP-seq we also 

assimilated read-counts of a few input libraries without chromatin immunoprecipitation for 

different cell-type so that genome-wide bias can be captured and suppressed by ML models 

while learning the pattern for positive and negative sets of genes.  

 

 

Prediction method 

 

For each gene-set in the ontology, we considered genes annotated in them as positive and 

randomly picked genes (not annotated in the same gene-set) as negatives, and gene function 

prediction is treated as a classification problem. Out of possible 50000 genes, if we expected 

the number of positive unknown genes belonging to a function is less than 100. Then if we were 

to pick 100 genes (as negatives) out of 50000 genes, there is less than 0.002 (100/500000) 

probability of having unknown positives in the negative set. For each gene-set, we choose an 

equal number of negatives to positives. We divided the positives and negatives into a training 

set (75%) and a test set (25%). The 5 different machine learning models for each gene-set are 

Random Forest, XGBoost, SVM (support vector machine), linear regression-based Lasso, and 

logistic regression.  

Further, bootstrapping was done to calculate the standard deviation in the balanced accuracy by 

training the models for 5 iterations. We used various criteria to evaluate prediction on the test 

set, namely accuracy, balanced accuracy, F1-score and Mathew’s correlation coefficient (MCC), 

and error rate (Supporting File 1).   

 

After evaluating the test set, we used the trained model to make predictions for all promoters 

(genes) in our list to find novel associations between function and genes. To have a stringent 

selection of novel/unknown gene-function associations predictions, we calculated the maximum 

true positive rate (TPR, named here as confidence score) for every function (gene-set).  

 

Calculating confidence score for gene-sets  

 

To have robust predictions, we calculated the confidence score of predictions for each function. 

For every function (gene-sets), each of their respective trained random forest models was used 

to predict probability scores (of belongingness to the gene-sets) for all 89747 promoters 

(genes). The confidence score of a gene-set is the threshold at which the probabilities of the 

genes yield the maximum (experimentally annotated) true genes against overall predicted 

genes. We have considered gene-sets having more than a 60% confidence score for our 

downstream analysis. The users can filter the gene-sets based on the confidence scores in our 

web server.   

 

Inference about top regulators 
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We made inferences about top regulators by estimating feature importance while training 

random forest models. This approach has also been used by GENIE3, a top performer in gene-

network inference in the DREAM 5 challenge (Huynh-Thu et al. 2010; Marbach et al. 2012; 

Aibar et al. 2017). Here instead of gene expression of transcription factors, we are using binding 

affinity to promoters as feature scores, and we are predicting the belongingness of a gene to a 

class. Thus for every function, we chose the top 20 predictors with high feature importance 

calculated by the random forest-based approach.  

 

Method for Independent validations using PubMed abstract-mining 

 

To gain confidence in novel predictions and compare our approach with other methods, we 

used PubMed abstract-based validation. Here, the ontology term and corresponding predicted 

gene term is used as input. In order to have a good match of the ontology term in a potentially 

relevant abstract, the ontology terms were processed to remove stop words (Supplementary 

Methods). The ‘Bio.Entrez’ package was used to search for the co-occurrence of the ontology 

term and its corresponding predicted gene term in abstracts of the research articles in the 

PubMed database. As a control to this approach, ontology function terms were paired randomly 

with gene terms and searched for their co-occurrence with the same parameters.  

  

Method for comparison of PubMed abstract mining result on predictions of different 

methods 

 

A list of genes predicted from top-performing random forest models on 50 biological functions 

was used as input of other methods–Correlation AnalyzeR, DeepGO, GenetICA-Network, 

NetGO 2.0 (Miller and Bishop 2021; Kulmanov et al. 2018; Urzúa-Traslaviña et al. 2021; Yao et 

al. 2021). For the Correlation AnalyzeR method, the R library package ‘correlationAnalyzeR’ 

was used, ‘analyzeSingleGenes’ function from the package was used to predict the ontology-

based labels for genes mentioned above predicted by our methods, ontology labels with the 

highest score were considered as the final predicted label. If the prediction was not available by 

the method for a gene, its label was left blank. 

 

For DeepGO, GenetICA-Network, and NetGO 2.0 methods, their respective web servers were 

used to get the predictions on the considered list of genes by feeding the relevant protein 

sequence FASTA files as input; the top listed isoform was considered from the Uniport database 

(The UniProt Consortium 2017). The prediction label with non-generic terms with the highest 

score from either Biological Processes or Molecular Functions section was considered the final 

label. For non-coding genes and genes with less than a 50% score predictions, their labels were 

left blank. 

 

PubMed abstract mining was run on all the predictions of different methods to get the co-

occurrence of the predicted ontology term and input gene term using the ‘Bio.Entrez’ package 

as described above. Stop words (Supplementary Methods) were filtered out from the input 

terms to avoid matching generic terms. 
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Method for clustering functions 

 

To infer clusters of functions (gene-sets), we first estimated similarity scores among functions. 

The similarity score among the two functions was defined as the number of the same TFs and 

cofactor ChIP-seq (SRX id) profiles which appeared among the top-20 predictors for both. The 

similarity scores were inverted to get distances among functions to apply tSNE-based 

dimension reduction. For this purpose, R package ‘Rtsne’ was used with the option ‘is_distance’ 

equal to TRUE. After low dimensional embedding, DBSCAN was used to find clusters of 

functions using the 2D embedding coordinates provided by ‘Rtnse’ (Ester et al. 1996; Van der 

Maaten and Hinton 2008). 

 

Methodology for transcription factors synergy and pleiotropy analysis 

 

The occurrence of TFs and cofactors as top 20 predictors for same and different cell-types 

across those biological functions with more than 60% confidence score was counted. Similarly, 

with the given set of TFs used as features. A TF pair list was constructed, and the occurrence of 

each TF pair among the top 20 predictors across the same biological functions was counted.  

 

 

Availability of data sources and code 

 

Profiles of ChIP-seq of transcription factors, histone marks, and DNase-seq were downloaded 

from the ChipAtlas database (https://chip-atlas.org/) in bedGraph format, which can be 

processed by extension of the DFilter tool. The CAGE-tags profiles were downloaded from the 

FANTOM database (https://fantom.gsc.riken.jp/data/).   

Peak counts of the epigenome profiles can be obtained using DFilter at  

https://reggenlab.github.io/DFilter/. 
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Key Points 

 

1. Good predictability for many functions (gene-set) using epigenome features shared between 

coding and non-coding RNA genes. 

 

2. Unbiased validation and comparison with other methods for association predictions between 

gene and function.  

 

3. Clustering functions based on shared predictors reveal their category in terms of major 

processes and corresponding top regulators.   
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4. Robust prediction and comprehensive analysis of combinatorics of regulators and clusters of 

function provide reliable insight into the role of non-coding RNAs.  

 

 

 

 

 

 

Figure Caption 

 

 

 
Figure 1: Flowchart of our analysis to predict gene functions using epigenome profiles. 
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Figure 2:  An overview of the predictive power of epigenome profiles, especially 

transcription factor binding patterns at promoters for predicting gene function. A) Bar plot 

showing the number of functional gene-sets which had good predictions on the test set (80% 

sensitivity and 90% specificity) using 5 different machine learning (ML) models. The upper panel 

shows the number of functions with the good prediction by ML models using 853 transcription 

factor (TF) ChIP-seq profiles. The lower panel shows the ML model using 5 different types of 

profiles (TF and histone modification ChIP-seq, DNase-seq, CAGE-tags). B) The bar-plot shows 

the number of union set of functions with good predictability (80% sensitivity and 90% 

specificity) using any of the 5 ML models. C) The balanced accuracy was achieved for a few 

functions using bootstrapping (iterations = 5). D) A plot to show the sanity of our approach. Here 

the density plot in yellow color shows the distribution of balanced accuracy achieved with false 

gene-sets (gene-sets created by random sampling). Other density plots show the distribution of 

balanced accuracy achieved using empirically annotated gene-sets. The density plot for some 

functions with balanced accuracy above the 35 percentile among all the functions is also shown.   
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Figure 3:  Clustering of functions based on shared predictive epigenomic features reveal 

their potential overlap of involvement in major cellular processes A) tSNE plot and 

visualization of DBSCAN-based clustering of function (gene-sets). Here, every dot in the tSNE 

plot shows a gene-set. The details about the two clusters are displayed as a heatmap showing 

the similarity in terms of the number of common top predictors (ChIP-seq profiles in top 20 

predictors). It can be noticed that most of the functions in one of the clusters are involved in the 

cell-cycle, such as  B) The dot plot shows the value of feature importance of ChIP-seq profiles 

of TFs and cofactors for functions belonging to one of the clusters (cluster-47). The feature 

importance value not lying in the top 20 is shown as minimum dot size.        
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Figure 4: Validation of predictions of novel association between function and genes. A) 

The box-plot shows the frequency of co-occurrence of function terms and gene names in 

PubMed abstracts. The left box plot shows the frequency of the novel predictions made by 

GFPred, while the right one shows random pairs of functions and genes. The novel and random 

associations between function and genes were not present in the gene-sets we used for training 

or testing. B) Benchmarking and comparing function prediction methods for finding an 

association between function and gene. C) Validation using CRISPR screen: ‘Viability’ for 

identifying genes involved in cell-cycle and proliferation   D) Validation using CRISPR screen: 

‘Regulation of signal transduction phenotype’ to identify genes involved in immune response 

signalling pathways. 
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Figure 5: Insight into the co-occurrence of Transcription factor (TF) pairs among 

predictors and their synergy. A) The count of functions (pink) and the clusters of functions 

(green) for which TF ChIP-seq pairs appeared among the top 20 predictors. The panel on the 

right shows the same counts as a scatter plot. Here the TF ChIP-seq in a pair were allowed to 

be from different cells-type. The TF-pairs shown with symbols are C1: REST-GABPA, C2: 

ZNF76-TET2, F1: STAT1-IRF1, F2: LHX2-ZNF92. B) The count of functions and their clusters 

for which pairs of TF ChIP-seq profiles from the same cell-type appeared together as the top 

predictors. The panel on the right shows the scatter plot version of such counts. The TF-pairs 

shown with symbols are C3: E2F4-GATA1, C4: MAZ-GATA1, F3: ZNF366-SPI1, F4: SPI1-

STAT1. C) Heatmap showing the significance of overlap of TF ChIP-seq peaks in GM12878 

cells at promoters. D) The box-plot of values of significance (-log(P-value)) of overlap of 

promoter-peaks of TF ChIP-seq pairs in GM12878 cells which appeared together as top 

predictors in one or more functions. On the right is the box-plot of the significance of overlap 

(Wilcoxon rank-sum test, p-value < 2.2e-16) of promoter peaks for random pairs of TF ChIP-seq 

profiles in GM12878 cells.  

 

 

 

Table 1: 

List of predicted functions of non-coding RNAs with experimental evidence  
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Ontology Predicted non-coding gene Literature evidence 

GO_STEROL_HOMEOSTASIS LINC02356 (Raulerson et al. 2019) 

GO_HEART_DEVELOPMENT AP001528/ENSG00000280339 (Y.-X. Chen et al. 2021) 

GO_EYE_DEVELOPMENT AC078909.1 (Donato et al. 2020) 

GO_PHOSPHOLIPID_METABOLIC_PROCESS ENSG00000257023 (Elaine Hardman et al. 2019) 

GO_SYNAPSE_ORGANIZATION MIR4281 (P. Zhu et al. 2022) 

GO_NEURON_MATURATION ENSG00000274367 (Z. Li et al. 2021) 

GO_NEGATIVE_REGULATION_OF_INTERLEUKIN_6_PROD
UCTION 

LINC00528 (Sage et al. 2020) 

GO_REGULATION_OF_HOMEOSTATIC_PROCESS MIR658 (Sánchez-Jiménez et al. 2013) 

GO_KERATINOCYTE_DIFFERENTIATION PAUPAR (J. Chen et al. 2020) 

GO_IN_UTERO_EMBRYONIC_DEVELOPMENT MIR5001 (Whittington et al. 2018) 

 

 

References  

Aibar, Sara, Carmen Bravo González-Blas, Thomas Moerman, Vân Anh Huynh-Thu, Hana 
Imrichova, Gert Hulselmans, Florian Rambow, et al. 2017. “SCENIC: Single-Cell 
Regulatory Network Inference and Clustering.” Nature Methods 14 (11): 1083–86. 

Alimov, Irina, Suchithra Menon, Nadire Cochran, Rob Maher, Qiong Wang, John Alford, John B. 
Concannon, et al. 2019. “Bile Acid Analogues Are Activators of Pyrin Inflammasome.” The 
Journal of Biological Chemistry 294 (10): 3359–66. 

Bakhmet, Evgeny I., and Alexey N. Tomilin. 2021. “Key Features of the POU Transcription 
Factor Oct4 from an Evolutionary Perspective.” Cellular and Molecular Life Sciences: 
CMLS 78 (23): 7339–53. 

Blake, J. A., R. Baldarelli, J. A. Kadin, J. E. Richardson, C. L. Smith, and C. J. Bult. 2021. 
“Mouse Genome Database (MGD): Knowledgebase for Mouse-Human Comparative 
Biology.” Nucleic Acids Research 49 (D1). https://doi.org/10.1093/nar/gkaa1083. 

Chen, Jingcheng, Yizhuo Wang, Cong Wang, Ji-Fan Hu, and Wei Li. 2020. “LncRNA Functions 
as a New Emerging Epigenetic Factor in Determining the Fate of Stem Cells.” Frontiers in 
Genetics 11 (March): 277. 

Chen, Yu-Xiao, Jie Ding, Wei-Er Zhou, Xuan Zhang, Xiao-Tong Sun, Xi-Ying Wang, Chi Zhang, 
et al. 2021. “Identification and Functional Prediction of Long Non-Coding RNAs in Dilated 
Cardiomyopathy by Bioinformatics Analysis.” Frontiers in Genetics 12 (April): 648111. 

Chesmore, Kevin N., Jacquelaine Bartlett, Chao Cheng, and Scott M. Williams. 2016. “Complex 
Patterns of Association between Pleiotropy and Transcription Factor Evolution.” Genome 
Biology and Evolution 8 (10): 3159. 

Donato, Luigi, Concetta Scimone, Simona Alibrandi, Carmela Rinaldi, Antonina Sidoti, and 
Rosalia D’Angelo. 2020. “Transcriptome Analyses of lncRNAs in A2E-Stressed Retinal 
Epithelial Cells Unveil Advanced Links between Metabolic Impairments Related to 
Oxidative Stress and Retinitis Pigmentosa.” Antioxidants (Basel, Switzerland) 9 (4). 
https://doi.org/10.3390/antiox9040318. 

Du, Yong, Haiyan Yang, Yue Li, Wenli Guo, Yufeng Zhang, Haitao Shen, Lingxiao Xing, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2022.04.17.488570doi: bioRxiv preprint 

https://paperpile.com/c/TOpgmf/ImU0Q
https://paperpile.com/c/TOpgmf/tfPlc
https://paperpile.com/c/TOpgmf/2RuaM
https://paperpile.com/c/TOpgmf/tCot0
https://paperpile.com/c/TOpgmf/6XgOA
https://paperpile.com/c/TOpgmf/fKGym
https://paperpile.com/c/TOpgmf/hdjOm
https://paperpile.com/c/TOpgmf/N9sYy
https://paperpile.com/c/TOpgmf/1J11S
https://paperpile.com/c/TOpgmf/N0Dt4
http://paperpile.com/b/TOpgmf/hMIBu
http://paperpile.com/b/TOpgmf/hMIBu
http://paperpile.com/b/TOpgmf/hMIBu
http://paperpile.com/b/TOpgmf/hMIBu
http://paperpile.com/b/TOpgmf/hMIBu
http://paperpile.com/b/TOpgmf/gCmJ
http://paperpile.com/b/TOpgmf/gCmJ
http://paperpile.com/b/TOpgmf/gCmJ
http://paperpile.com/b/TOpgmf/gCmJ
http://paperpile.com/b/TOpgmf/gCmJ
http://paperpile.com/b/TOpgmf/dlQBc
http://paperpile.com/b/TOpgmf/dlQBc
http://paperpile.com/b/TOpgmf/dlQBc
http://paperpile.com/b/TOpgmf/dlQBc
http://paperpile.com/b/TOpgmf/dlQBc
http://paperpile.com/b/TOpgmf/DsE1N
http://paperpile.com/b/TOpgmf/DsE1N
http://paperpile.com/b/TOpgmf/DsE1N
http://paperpile.com/b/TOpgmf/DsE1N
http://paperpile.com/b/TOpgmf/DsE1N
http://dx.doi.org/10.1093/nar/gkaa1083
http://paperpile.com/b/TOpgmf/DsE1N
http://paperpile.com/b/TOpgmf/1J11S
http://paperpile.com/b/TOpgmf/1J11S
http://paperpile.com/b/TOpgmf/1J11S
http://paperpile.com/b/TOpgmf/1J11S
http://paperpile.com/b/TOpgmf/1J11S
http://paperpile.com/b/TOpgmf/tfPlc
http://paperpile.com/b/TOpgmf/tfPlc
http://paperpile.com/b/TOpgmf/tfPlc
http://paperpile.com/b/TOpgmf/tfPlc
http://paperpile.com/b/TOpgmf/tfPlc
http://paperpile.com/b/TOpgmf/fmnM6
http://paperpile.com/b/TOpgmf/fmnM6
http://paperpile.com/b/TOpgmf/fmnM6
http://paperpile.com/b/TOpgmf/fmnM6
http://paperpile.com/b/TOpgmf/fmnM6
http://paperpile.com/b/TOpgmf/2RuaM
http://paperpile.com/b/TOpgmf/2RuaM
http://paperpile.com/b/TOpgmf/2RuaM
http://paperpile.com/b/TOpgmf/2RuaM
http://paperpile.com/b/TOpgmf/2RuaM
http://paperpile.com/b/TOpgmf/2RuaM
http://paperpile.com/b/TOpgmf/2RuaM
http://dx.doi.org/10.3390/antiox9040318
http://paperpile.com/b/TOpgmf/2RuaM
http://paperpile.com/b/TOpgmf/ppAxr
https://doi.org/10.1101/2022.04.17.488570
http://creativecommons.org/licenses/by-nc-nd/4.0/


Yuehong Li, Wenxin Wu, and Xianghong Zhang. 2021. “Long Non-Coding RNA LINC01137 
Contributes to Oral Squamous Cell Carcinoma Development and Is Negatively Regulated 
by miR-22-3p.” Cellular Oncology  44 (3): 595–609. 

Elaine Hardman, W., Donald A. Primerano, Mary T. Legenza, James Morgan, Jun Fan, and 
James Denvir. 2019. “mRNA Expression Data in Breast Cancers before and after 
Consumption of Walnut by Women.” Data in Brief 25 (August): 104050. 

Ester, M., H. P. Kriegel, J. Sander, and X. Xu. 1996. “A Density-Based Algorithm for Discovering 
Clusters in Large Spatial Databases with Noise.” KDD: Proceedings / International 
Conference on Knowledge Discovery & Data Mining. International Conference on 
Knowledge Discovery & Data Mining. https://www.aaai.org/Papers/KDD/1996/KDD96-
037.pdf?source=post_page. 

Hendricks, Kristin B., Frances Shanahan, and Emma Lees. 2004. “Role for BRG1 in Cell Cycle 
Control and Tumor Suppression.” Molecular and Cellular Biology 24 (1): 362–76. 

Huynh-Thu, Vân Anh, Alexandre Irrthum, Louis Wehenkel, and Pierre Geurts. 2010. “Inferring 
Regulatory Networks from Expression Data Using Tree-Based Methods.” PloS One 5 (9). 
https://doi.org/10.1371/journal.pone.0012776. 

Hyle, Judith, Yang Zhang, Shaela Wright, Beisi Xu, Ying Shao, John Easton, Liqing Tian, 
Ruopeng Feng, Peng Xu, and Chunliang Li. 2019. “Acute Depletion of CTCF Directly 
Affects MYC Regulation through Loss of Enhancer–promoter Looping.” Nucleic Acids 
Research 47 (13): 6699–6713. 

Jeng, Edwin E., Varun Bhadkamkar, Nnejiuwa U. Ibe, Haley Gause, Lihua Jiang, Joanne Chan, 
Ruiqi Jian, et al. 2019. “Systematic Identification of Host Cell Regulators of Legionella 
Pneumophila Pathogenesis Using a Genome-Wide CRISPR Screen.” Cell Host & Microbe 
26 (4): 551–63.e6. 

Kenny, Colin, Elaine O’Meara, Mevlüt Ulaş, Karsten Hokamp, and Maureen J. O’Sullivan. 2021. 
“Global Chromatin Changes Resulting from Single-Gene Inactivation—The Role of 
SMARCB1 in Malignant Rhabdoid Tumor.” Cancers. 
https://doi.org/10.3390/cancers13112561. 

Kevin C. Wang, Howard Y. Chang. 2011. “Molecular Mechanisms of Long Noncoding RNAs.” 
Molecular Cell 43 (6): 904. 

Kim, Somi, Nam-Kyung Yu, and Bong-Kiun Kaang. 2015. “CTCF as a Multifunctional Protein in 
Genome Regulation and Gene Expression.” Experimental & Molecular Medicine 47 (6): 
e166–e166. 

Kulmanov, Maxat, and Robert Hoehndorf. 2019. “DeepGOPlus: Improved Protein Function 
Prediction from Sequence.” Bioinformatics  36 (2): 422–29. 

Kulmanov, Maxat, Mohammed Asif Khan, Robert Hoehndorf, and Jonathan Wren. 2018. 
“DeepGO: Predicting Protein Functions from Sequence and Interactions Using a Deep 
Ontology-Aware Classifier.” Bioinformatics  34 (4): 660–68. 

Kumar, Vibhor, Masafumi Muratani, Nirmala Arul Rayan, Petra Kraus, Thomas Lufkin, Huck Hui 
Ng, and Shyam Prabhakar. 2013. “Uniform, Optimal Signal Processing of Mapped Deep-
Sequencing Data.” Nature Biotechnology 31 (7): 615–22. 

Liberzon, Arthur, Aravind Subramanian, Reid Pinchback, Helga Thorvaldsdóttir, Pablo Tamayo, 
and Jill P. Mesirov. 2011. “Molecular Signatures Database (MSigDB) 3.0.” Bioinformatics  
27 (12): 1739–40. 

Li, Bing, Michael Carey, and Jerry L. Workman. 2007. “The Role of Chromatin during 
Transcription.” Cell. https://doi.org/10.1016/j.cell.2007.01.015. 

Liu, Guojun, Zihao Chen, Irina G. Danilova, Mikhail A. Bolkov, Irina A. Tuzankina, and Guoqing 
Liu. 2018. “Identification of miR-200c and miR141-Mediated lncRNA-mRNA Crosstalks in 
Muscle-Invasive Bladder Cancer Subtypes.” Frontiers in Genetics 0. 
https://doi.org/10.3389/fgene.2018.00422. 

Li, Zhongyang, Shang Cai, Huijun Li, Jincheng Gu, Ye Tian, Jianping Cao, Dong Yu, and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2022.04.17.488570doi: bioRxiv preprint 

http://paperpile.com/b/TOpgmf/ppAxr
http://paperpile.com/b/TOpgmf/ppAxr
http://paperpile.com/b/TOpgmf/ppAxr
http://paperpile.com/b/TOpgmf/ppAxr
http://paperpile.com/b/TOpgmf/ppAxr
http://paperpile.com/b/TOpgmf/tCot0
http://paperpile.com/b/TOpgmf/tCot0
http://paperpile.com/b/TOpgmf/tCot0
http://paperpile.com/b/TOpgmf/tCot0
http://paperpile.com/b/TOpgmf/tCot0
http://paperpile.com/b/TOpgmf/FwYYa
http://paperpile.com/b/TOpgmf/FwYYa
http://paperpile.com/b/TOpgmf/FwYYa
http://paperpile.com/b/TOpgmf/FwYYa
http://paperpile.com/b/TOpgmf/FwYYa
http://paperpile.com/b/TOpgmf/FwYYa
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf?source=post_page
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf?source=post_page
http://paperpile.com/b/TOpgmf/FwYYa
http://paperpile.com/b/TOpgmf/dVxgc
http://paperpile.com/b/TOpgmf/dVxgc
http://paperpile.com/b/TOpgmf/dVxgc
http://paperpile.com/b/TOpgmf/dVxgc
http://paperpile.com/b/TOpgmf/1xhrz
http://paperpile.com/b/TOpgmf/1xhrz
http://paperpile.com/b/TOpgmf/1xhrz
http://paperpile.com/b/TOpgmf/1xhrz
http://paperpile.com/b/TOpgmf/1xhrz
http://dx.doi.org/10.1371/journal.pone.0012776
http://paperpile.com/b/TOpgmf/1xhrz
http://paperpile.com/b/TOpgmf/fTME6
http://paperpile.com/b/TOpgmf/fTME6
http://paperpile.com/b/TOpgmf/fTME6
http://paperpile.com/b/TOpgmf/fTME6
http://paperpile.com/b/TOpgmf/fTME6
http://paperpile.com/b/TOpgmf/fTME6
http://paperpile.com/b/TOpgmf/LLvd
http://paperpile.com/b/TOpgmf/LLvd
http://paperpile.com/b/TOpgmf/LLvd
http://paperpile.com/b/TOpgmf/LLvd
http://paperpile.com/b/TOpgmf/LLvd
http://paperpile.com/b/TOpgmf/LLvd
http://paperpile.com/b/TOpgmf/g3U7q
http://paperpile.com/b/TOpgmf/g3U7q
http://paperpile.com/b/TOpgmf/g3U7q
http://paperpile.com/b/TOpgmf/g3U7q
http://paperpile.com/b/TOpgmf/g3U7q
http://paperpile.com/b/TOpgmf/g3U7q
http://dx.doi.org/10.3390/cancers13112561
http://paperpile.com/b/TOpgmf/g3U7q
http://paperpile.com/b/TOpgmf/Kft7h
http://paperpile.com/b/TOpgmf/Kft7h
http://paperpile.com/b/TOpgmf/Kft7h
http://paperpile.com/b/TOpgmf/Kft7h
http://paperpile.com/b/TOpgmf/Rv7s6
http://paperpile.com/b/TOpgmf/Rv7s6
http://paperpile.com/b/TOpgmf/Rv7s6
http://paperpile.com/b/TOpgmf/Rv7s6
http://paperpile.com/b/TOpgmf/Rv7s6
http://paperpile.com/b/TOpgmf/1Lrgn
http://paperpile.com/b/TOpgmf/1Lrgn
http://paperpile.com/b/TOpgmf/1Lrgn
http://paperpile.com/b/TOpgmf/1Lrgn
http://paperpile.com/b/TOpgmf/hPvcC
http://paperpile.com/b/TOpgmf/hPvcC
http://paperpile.com/b/TOpgmf/hPvcC
http://paperpile.com/b/TOpgmf/hPvcC
http://paperpile.com/b/TOpgmf/hPvcC
http://paperpile.com/b/TOpgmf/7XjbH
http://paperpile.com/b/TOpgmf/7XjbH
http://paperpile.com/b/TOpgmf/7XjbH
http://paperpile.com/b/TOpgmf/7XjbH
http://paperpile.com/b/TOpgmf/7XjbH
http://paperpile.com/b/TOpgmf/JITKN
http://paperpile.com/b/TOpgmf/JITKN
http://paperpile.com/b/TOpgmf/JITKN
http://paperpile.com/b/TOpgmf/JITKN
http://paperpile.com/b/TOpgmf/JITKN
http://paperpile.com/b/TOpgmf/gTRNs
http://paperpile.com/b/TOpgmf/gTRNs
http://paperpile.com/b/TOpgmf/gTRNs
http://paperpile.com/b/TOpgmf/gTRNs
http://dx.doi.org/10.1016/j.cell.2007.01.015
http://paperpile.com/b/TOpgmf/gTRNs
http://paperpile.com/b/TOpgmf/0wxQQ
http://paperpile.com/b/TOpgmf/0wxQQ
http://paperpile.com/b/TOpgmf/0wxQQ
http://paperpile.com/b/TOpgmf/0wxQQ
http://paperpile.com/b/TOpgmf/0wxQQ
http://paperpile.com/b/TOpgmf/0wxQQ
http://dx.doi.org/10.3389/fgene.2018.00422
http://paperpile.com/b/TOpgmf/0wxQQ
http://paperpile.com/b/TOpgmf/fKGym
https://doi.org/10.1101/2022.04.17.488570
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zaixiang Tang. 2021. “Developing a lncRNA Signature to Predict the Radiotherapy 
Response of Lower-Grade Gliomas Using Co-Expression and ceRNA Network Analysis.” 
Frontiers in Oncology 11 (March): 622880. 

Marbach, Daniel, James C. Costello, Robert Küffner, Nicole M. Vega, Robert J. Prill, Diogo M. 
Camacho, Kyle R. Allison, et al. 2012. “Wisdom of Crowds for Robust Gene Network 
Inference.” Nature Methods 9 (8): 796–804. 

Meurer, Logan, Leonard Ferdman, Beau Belcher, and Troy Camarata. 2021. “The SIX Family of 
Transcription Factors: Common Themes Integrating Developmental and Cancer Biology.” 
Frontiers in Cell and Developmental Biology 9 (August): 707854. 

Miller, Henry E., and Alexander J. R. Bishop. 2021. “Correlation AnalyzeR: Functional 
Predictions from Gene Co-Expression Correlations.” BMC Bioinformatics 22 (1): 206. 

Pech, Matthew F., Linda E. Fong, Jacqueline E. Villalta, Leanne Jg Chan, Samir Kharbanda, 
Jonathon J. O’Brien, Fiona E. McAllister, Ari J. Firestone, Calvin H. Jan, and Jeffrey 
Settleman. 2019. “Systematic Identification of Cancer Cell Vulnerabilities to Natural Killer 
Cell-Mediated Immune Surveillance.” eLife 8 (August). https://doi.org/10.7554/eLife.47362. 

Piñero, Janet, Àlex Bravo, Núria Queralt-Rosinach, Alba Gutiérrez-Sacristán, Jordi Deu-Pons, 
Emilio Centeno, Javier García-García, Ferran Sanz, and Laura I. Furlong. 2017. 
“DisGeNET: A Comprehensive Platform Integrating Information on Human Disease-
Associated Genes and Variants.” Nucleic Acids Research 45 (D1): D833–39. 

Raulerson, Chelsea K., Arthur Ko, John C. Kidd, Kevin W. Currin, Sarah M. Brotman, Maren E. 
Cannon, Ying Wu, et al. 2019. “Adipose Tissue Gene Expression Associations Reveal 
Hundreds of Candidate Genes for Cardiometabolic Traits.” American Journal of Human 
Genetics 105 (4): 773–87. 

Rinn, John L., and Howard Y. Chang. 2012. “Genome Regulation by Long Noncoding RNAs,” 
June. https://doi.org/10.1146/annurev-biochem-051410-092902. 

Rui, Xiaohui, Yun Xu, Yaqing Huang, Linjuan Ji, and Xiping Jiang. 2018. “lncRNA DLG1-AS1 
Promotes Cell Proliferation by Competitively Binding with miR-107 and Up-Regulating 
ZHX1 Expression in Cervical Cancer.” Cellular Physiology and Biochemistry: International 
Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 49 (5): 
1792–1803. 

Sage, Adam P., Kevin W. Ng, Erin A. Marshall, Greg L. Stewart, Brenda C. Minatel, Katey S. S. 
Enfield, Spencer D. Martin, Carolyn J. Brown, Ninan Abraham, and Wan L. Lam. 2020. 
“Assessment of Long Non-Coding RNA Expression Reveals Novel Mediators of the Lung 
Tumour Immune Response.” Scientific Reports 10 (1): 16945. 

Sánchez-Jiménez, Carmen, Isabel Carrascoso, Juan Barrero, and José M. Izquierdo. 2013. 
“Identification of a Set of miRNAs Differentially Expressed in Transiently TIA-Depleted 
HeLa Cells by Genome-Wide Profiling.” BMC Molecular Biology 14 (February): 4. 

Schinzel, Robert Thomas, Ryo Higuchi-Sanabria, Ophir Shalem, Erica Ann Moehle, Brant 
Michael Webster, Larry Joe, Raz Bar-Ziv, et al. 2019. “The Hyaluronidase, TMEM2, 
Promotes ER Homeostasis and Longevity Independent of the UPR.” Cell 179 (6): 1306–
18.e18. 

Sun, Xinghui, and Danny Wong. 2016. “Long Non-Coding RNA-Mediated Regulation of Glucose 
Homeostasis and Diabetes.” American Journal of Cardiovascular Disease 6 (2): 17–25. 

Tak, Yu Gyoung, and Peggy J. Farnham. 2015. “Making Sense of GWAS: Using Epigenomics 
and Genome Engineering to Understand the Functional Relevance of SNPs in Non-Coding 
Regions of the Human Genome.” Epigenetics & Chromatin 8 (December): 57. 

The UniProt Consortium. 2017. “UniProt: The Universal Protein Knowledgebase.” Nucleic Acids 
Research 45 (D1): D158–69. 

Urzúa-Traslaviña, Carlos G., Vincent C. Leeuwenburgh, Arkajyoti Bhattacharya, Stefan 
Loipfinger, Marcel A. T. M. van Vugt, Elisabeth G. E. de Vries, and Rudolf S. N. Fehrmann. 
2021. “Improving Gene Function Predictions Using Independent Transcriptional 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2022.04.17.488570doi: bioRxiv preprint 

http://paperpile.com/b/TOpgmf/fKGym
http://paperpile.com/b/TOpgmf/fKGym
http://paperpile.com/b/TOpgmf/fKGym
http://paperpile.com/b/TOpgmf/fKGym
http://paperpile.com/b/TOpgmf/m3yth
http://paperpile.com/b/TOpgmf/m3yth
http://paperpile.com/b/TOpgmf/m3yth
http://paperpile.com/b/TOpgmf/m3yth
http://paperpile.com/b/TOpgmf/m3yth
http://paperpile.com/b/TOpgmf/1HkIB
http://paperpile.com/b/TOpgmf/1HkIB
http://paperpile.com/b/TOpgmf/1HkIB
http://paperpile.com/b/TOpgmf/1HkIB
http://paperpile.com/b/TOpgmf/3g6Ey
http://paperpile.com/b/TOpgmf/3g6Ey
http://paperpile.com/b/TOpgmf/3g6Ey
http://paperpile.com/b/TOpgmf/3g6Ey
http://paperpile.com/b/TOpgmf/O0UW
http://paperpile.com/b/TOpgmf/O0UW
http://paperpile.com/b/TOpgmf/O0UW
http://paperpile.com/b/TOpgmf/O0UW
http://paperpile.com/b/TOpgmf/O0UW
http://paperpile.com/b/TOpgmf/O0UW
http://dx.doi.org/10.7554/eLife.47362
http://paperpile.com/b/TOpgmf/O0UW
http://paperpile.com/b/TOpgmf/DOhiW
http://paperpile.com/b/TOpgmf/DOhiW
http://paperpile.com/b/TOpgmf/DOhiW
http://paperpile.com/b/TOpgmf/DOhiW
http://paperpile.com/b/TOpgmf/DOhiW
http://paperpile.com/b/TOpgmf/DOhiW
http://paperpile.com/b/TOpgmf/ImU0Q
http://paperpile.com/b/TOpgmf/ImU0Q
http://paperpile.com/b/TOpgmf/ImU0Q
http://paperpile.com/b/TOpgmf/ImU0Q
http://paperpile.com/b/TOpgmf/ImU0Q
http://paperpile.com/b/TOpgmf/ImU0Q
http://paperpile.com/b/TOpgmf/2KUmx
http://paperpile.com/b/TOpgmf/2KUmx
http://dx.doi.org/10.1146/annurev-biochem-051410-092902
http://paperpile.com/b/TOpgmf/2KUmx
http://paperpile.com/b/TOpgmf/I5pYe
http://paperpile.com/b/TOpgmf/I5pYe
http://paperpile.com/b/TOpgmf/I5pYe
http://paperpile.com/b/TOpgmf/I5pYe
http://paperpile.com/b/TOpgmf/I5pYe
http://paperpile.com/b/TOpgmf/I5pYe
http://paperpile.com/b/TOpgmf/I5pYe
http://paperpile.com/b/TOpgmf/hdjOm
http://paperpile.com/b/TOpgmf/hdjOm
http://paperpile.com/b/TOpgmf/hdjOm
http://paperpile.com/b/TOpgmf/hdjOm
http://paperpile.com/b/TOpgmf/hdjOm
http://paperpile.com/b/TOpgmf/hdjOm
http://paperpile.com/b/TOpgmf/N9sYy
http://paperpile.com/b/TOpgmf/N9sYy
http://paperpile.com/b/TOpgmf/N9sYy
http://paperpile.com/b/TOpgmf/N9sYy
http://paperpile.com/b/TOpgmf/N9sYy
http://paperpile.com/b/TOpgmf/XLc7
http://paperpile.com/b/TOpgmf/XLc7
http://paperpile.com/b/TOpgmf/XLc7
http://paperpile.com/b/TOpgmf/XLc7
http://paperpile.com/b/TOpgmf/XLc7
http://paperpile.com/b/TOpgmf/XLc7
http://paperpile.com/b/TOpgmf/AskeF
http://paperpile.com/b/TOpgmf/AskeF
http://paperpile.com/b/TOpgmf/AskeF
http://paperpile.com/b/TOpgmf/AskeF
http://paperpile.com/b/TOpgmf/ujbmT
http://paperpile.com/b/TOpgmf/ujbmT
http://paperpile.com/b/TOpgmf/ujbmT
http://paperpile.com/b/TOpgmf/ujbmT
http://paperpile.com/b/TOpgmf/ujbmT
http://paperpile.com/b/TOpgmf/1G3Xr
http://paperpile.com/b/TOpgmf/1G3Xr
http://paperpile.com/b/TOpgmf/1G3Xr
http://paperpile.com/b/TOpgmf/1G3Xr
http://paperpile.com/b/TOpgmf/1fLBn
http://paperpile.com/b/TOpgmf/1fLBn
http://paperpile.com/b/TOpgmf/1fLBn
https://doi.org/10.1101/2022.04.17.488570
http://creativecommons.org/licenses/by-nc-nd/4.0/


Components.” Nature Communications 12 (1): 1464. 
Uygun, Sahra, Cheng Peng, Melissa D. Lehti-Shiu, Robert L. Last, and Shin-Han Shiu. 2016. 

“Utility and Limitations of Using Gene Expression Data to Identify Functional Associations.” 
PLoS Computational Biology 12 (12): e1005244. 

Van der Maaten, Laurens, and Geoffrey Hinton. 2008. “Visualizing Data Using T-SNE.” Journal 
of Machine Learning Research: JMLR 9 (11). 
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwA. 

Venkatesh, Ishwariya, Vatsal Mehra, Zimei Wang, Matthew T. Simpson, Erik Eastwood, Advaita 
Chakraborty, Zac Beine, et al. 2021. “Co-Occupancy Identifies Transcription Factor Co-
Operation for Axon Growth.” Nature Communications 12 (1): 2555. 

Venters, B. J., and B. F. Pugh. 2013. “Genomic Organization of Human Transcription Initiation 
Complexes.” Nature 502 (7469). https://doi.org/10.1038/nature12535. 

Wang, Zhi, Ben-Yang Liao, and Jianzhi Zhang. 2010. “Genomic Patterns of Pleiotropy and the 
Evolution of Complexity.” Proceedings of the National Academy of Sciences of the United 
States of America 107 (42): 18034–39. 

Whittington, Camilla M., Denis O’Meally, Melanie K. Laird, Katherine Belov, Michael B. 
Thompson, and Bronwyn M. McAllan. 2018. “Transcriptomic Changes in the Pre-
Implantation Uterus Highlight Histotrophic Nutrition of the Developing Marsupial Embryo.” 
Scientific Reports 8 (1): 2412. 

Wu, Wei-Sheng, and Fu-Jou Lai. 2016. “Detecting Cooperativity between Transcription Factors 
Based on Functional Coherence and Similarity of Their Target Gene Sets.” PloS One 11 
(9): e0162931. 

Yang, Liu, Kun Huang, Xiangrao Li, Meng Du, Xiang Kang, Xi Luo, Lu Gao, et al. 2013. 
“Identification of Poly(ADP-Ribose) Polymerase-1 as a Cell Cycle Regulator through 
Modulating Sp1 Mediated Transcription in Human Hepatoma Cells.” PloS One 8 (12): 
e82872. 

Yang, Peng, Xiao-Li Li, Jian-Ping Mei, Chee-Keong Kwoh, and See-Kiong Ng. 2012. “Positive-
Unlabeled Learning for Disease Gene Identification.” Bioinformatics  28 (20): 2640–47. 

Yang, Xinping, Jasmin Coulombe-Huntington, Shuli Kang, Gloria M. Sheynkman, Tong Hao, 
Aaron Richardson, Song Sun, et al. 2016. “Widespread Expansion of Protein Interaction 
Capabilities by Alternative Splicing.” Cell 164 (4): 805–17. 

Yan, Jian, Yunjiang Qiu, André M. Ribeiro Dos Santos, Yimeng Yin, Yang E. Li, Nick Vinckier, 
Naoki Nariai, et al. 2021. “Systematic Analysis of Binding of Transcription Factors to 
Noncoding Variants.” Nature 591 (7848): 147–51. 

Yao, Shuwei, Ronghui You, Shaojun Wang, Yi Xiong, Xiaodi Huang, and Shanfeng Zhu. 2021. 
“NetGO 2.0: Improving Large-Scale Protein Function Prediction with Massive Sequence, 
Text, Domain, Family and Network Information.” Nucleic Acids Research 49 (W1): W469–
75. 

Yilmaz, Atilgan, Mordecai Peretz, Aviram Aharony, Ido Sagi, and Nissim Benvenisty. 2018. 
“Defining Essential Genes for Human Pluripotent Stem Cells by CRISPR-Cas9 Screening 
in Haploid Cells.” Nature Cell Biology 20 (5): 610–19. 

Zhang, Hanyu, Che-Lun Hung, Meiyuan Liu, Xiaoye Hu, and Yi-Yang Lin. 2019. “NCNet: Deep 
Learning Network Models for Predicting Function of Non-Coding DNA.” Frontiers in 
Genetics 0. https://doi.org/10.3389/fgene.2019.00432. 

Zhang, Haoyue, Jessica Lam, Di Zhang, Yemin Lan, Marit W. Vermunt, Cheryl A. Keller, 
Belinda Giardine, Ross C. Hardison, and Gerd A. Blobel. 2021. “CTCF and Transcription 
Influence Chromatin Structure Re-Configuration after Mitosis.” Nature Communications 12 
(1): 1–16. 

Zhang, Xiaopei, Wei Wang, Weidong Zhu, Jie Dong, Yingying Cheng, Zujun Yin, and Fafu 
Shen. 2019. “Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory 
Levels.” International Journal of Molecular Sciences 20 (22): 5573. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2022.04.17.488570doi: bioRxiv preprint 

http://paperpile.com/b/TOpgmf/1fLBn
http://paperpile.com/b/TOpgmf/1fLBn
http://paperpile.com/b/TOpgmf/1fLBn
http://paperpile.com/b/TOpgmf/KIxlQ
http://paperpile.com/b/TOpgmf/KIxlQ
http://paperpile.com/b/TOpgmf/KIxlQ
http://paperpile.com/b/TOpgmf/KIxlQ
http://paperpile.com/b/TOpgmf/8AhiA
http://paperpile.com/b/TOpgmf/8AhiA
http://paperpile.com/b/TOpgmf/8AhiA
http://paperpile.com/b/TOpgmf/8AhiA
http://paperpile.com/b/TOpgmf/8AhiA
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwA
http://paperpile.com/b/TOpgmf/8AhiA
http://paperpile.com/b/TOpgmf/6hgMH
http://paperpile.com/b/TOpgmf/6hgMH
http://paperpile.com/b/TOpgmf/6hgMH
http://paperpile.com/b/TOpgmf/6hgMH
http://paperpile.com/b/TOpgmf/6hgMH
http://paperpile.com/b/TOpgmf/WWWPi
http://paperpile.com/b/TOpgmf/WWWPi
http://paperpile.com/b/TOpgmf/WWWPi
http://paperpile.com/b/TOpgmf/WWWPi
http://dx.doi.org/10.1038/nature12535
http://paperpile.com/b/TOpgmf/WWWPi
http://paperpile.com/b/TOpgmf/eU8fD
http://paperpile.com/b/TOpgmf/eU8fD
http://paperpile.com/b/TOpgmf/eU8fD
http://paperpile.com/b/TOpgmf/eU8fD
http://paperpile.com/b/TOpgmf/eU8fD
http://paperpile.com/b/TOpgmf/N0Dt4
http://paperpile.com/b/TOpgmf/N0Dt4
http://paperpile.com/b/TOpgmf/N0Dt4
http://paperpile.com/b/TOpgmf/N0Dt4
http://paperpile.com/b/TOpgmf/N0Dt4
http://paperpile.com/b/TOpgmf/N0Dt4
http://paperpile.com/b/TOpgmf/32CEI
http://paperpile.com/b/TOpgmf/32CEI
http://paperpile.com/b/TOpgmf/32CEI
http://paperpile.com/b/TOpgmf/32CEI
http://paperpile.com/b/TOpgmf/32CEI
http://paperpile.com/b/TOpgmf/X4jkA
http://paperpile.com/b/TOpgmf/X4jkA
http://paperpile.com/b/TOpgmf/X4jkA
http://paperpile.com/b/TOpgmf/X4jkA
http://paperpile.com/b/TOpgmf/X4jkA
http://paperpile.com/b/TOpgmf/X4jkA
http://paperpile.com/b/TOpgmf/1wo8T
http://paperpile.com/b/TOpgmf/1wo8T
http://paperpile.com/b/TOpgmf/1wo8T
http://paperpile.com/b/TOpgmf/1wo8T
http://paperpile.com/b/TOpgmf/O7ts8
http://paperpile.com/b/TOpgmf/O7ts8
http://paperpile.com/b/TOpgmf/O7ts8
http://paperpile.com/b/TOpgmf/O7ts8
http://paperpile.com/b/TOpgmf/O7ts8
http://paperpile.com/b/TOpgmf/nmaF
http://paperpile.com/b/TOpgmf/nmaF
http://paperpile.com/b/TOpgmf/nmaF
http://paperpile.com/b/TOpgmf/nmaF
http://paperpile.com/b/TOpgmf/nmaF
http://paperpile.com/b/TOpgmf/6fzTC
http://paperpile.com/b/TOpgmf/6fzTC
http://paperpile.com/b/TOpgmf/6fzTC
http://paperpile.com/b/TOpgmf/6fzTC
http://paperpile.com/b/TOpgmf/6fzTC
http://paperpile.com/b/TOpgmf/6fzTC
http://paperpile.com/b/TOpgmf/divo
http://paperpile.com/b/TOpgmf/divo
http://paperpile.com/b/TOpgmf/divo
http://paperpile.com/b/TOpgmf/divo
http://paperpile.com/b/TOpgmf/divo
http://paperpile.com/b/TOpgmf/AyeIU
http://paperpile.com/b/TOpgmf/AyeIU
http://paperpile.com/b/TOpgmf/AyeIU
http://paperpile.com/b/TOpgmf/AyeIU
http://paperpile.com/b/TOpgmf/AyeIU
http://dx.doi.org/10.3389/fgene.2019.00432
http://paperpile.com/b/TOpgmf/AyeIU
http://paperpile.com/b/TOpgmf/3DuYm
http://paperpile.com/b/TOpgmf/3DuYm
http://paperpile.com/b/TOpgmf/3DuYm
http://paperpile.com/b/TOpgmf/3DuYm
http://paperpile.com/b/TOpgmf/3DuYm
http://paperpile.com/b/TOpgmf/3DuYm
http://paperpile.com/b/TOpgmf/emwHq
http://paperpile.com/b/TOpgmf/emwHq
http://paperpile.com/b/TOpgmf/emwHq
http://paperpile.com/b/TOpgmf/emwHq
http://paperpile.com/b/TOpgmf/emwHq
https://doi.org/10.1101/2022.04.17.488570
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhao, Yingwen, Jun Wang, Jian Chen, Xiangliang Zhang, Maozu Guo, and Guoxian Yu. 2020. 
“A Literature Review of Gene Function Prediction by Modeling Gene Ontology.” Frontiers in 
Genetics 0. https://doi.org/10.3389/fgene.2020.00400. 

Zhou, Jianping, Jun Shi, Xingli Fu, Boneng Mao, Weimin Wang, Weiling Li, Gang Li, and Sujun 
Zhou. 2018. “Linc00441 Interacts with DNMT1 to Regulate RB1 Gene Methylation and 
Expression in Gastric Cancer.” Oncotarget 9 (101): 37471–79. 

Zhou, Naihui, Yuxiang Jiang, Timothy R. Bergquist, Alexandra J. Lee, Balint Z. Kacsoh, Alex W. 
Crocker, Kimberley A. Lewis, et al. 2019. “The CAFA Challenge Reports Improved Protein 
Function Prediction and New Functional Annotations for Hundreds of Genes through 
Experimental Screens.” Genome Biology 20 (1): 244. 

Zhu, Lihua J., Claude Gazin, Nathan D. Lawson, Hervé Pagès, Simon M. Lin, David S. 
Lapointe, and Michael R. Green. 2010. “ChIPpeakAnno: A Bioconductor Package to 
Annotate ChIP-Seq and ChIP-Chip Data.” BMC Bioinformatics 11 (May): 237. 

Zhu, Ping, Jing Pan, Qian Qian Cai, Fan Zhang, Min Peng, Xing Li Fan, Hua Ji, Yi Wei Dong, 
Xing Zhong Wu, and Li Hui Wu. 2022. “MicroRNA Profile as Potential Molecular Signature 
for Attention Deficit Hyperactivity Disorder in Children.” Biomarkers: Biochemical Indicators 
of Exposure, Response, and Susceptibility to Chemicals, February, 1–10. 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2022. ; https://doi.org/10.1101/2022.04.17.488570doi: bioRxiv preprint 

http://paperpile.com/b/TOpgmf/cgMyY
http://paperpile.com/b/TOpgmf/cgMyY
http://paperpile.com/b/TOpgmf/cgMyY
http://paperpile.com/b/TOpgmf/cgMyY
http://paperpile.com/b/TOpgmf/cgMyY
http://dx.doi.org/10.3389/fgene.2020.00400
http://paperpile.com/b/TOpgmf/cgMyY
http://paperpile.com/b/TOpgmf/slyWT
http://paperpile.com/b/TOpgmf/slyWT
http://paperpile.com/b/TOpgmf/slyWT
http://paperpile.com/b/TOpgmf/slyWT
http://paperpile.com/b/TOpgmf/slyWT
http://paperpile.com/b/TOpgmf/yohW7
http://paperpile.com/b/TOpgmf/yohW7
http://paperpile.com/b/TOpgmf/yohW7
http://paperpile.com/b/TOpgmf/yohW7
http://paperpile.com/b/TOpgmf/yohW7
http://paperpile.com/b/TOpgmf/yohW7
http://paperpile.com/b/TOpgmf/iddS4
http://paperpile.com/b/TOpgmf/iddS4
http://paperpile.com/b/TOpgmf/iddS4
http://paperpile.com/b/TOpgmf/iddS4
http://paperpile.com/b/TOpgmf/iddS4
http://paperpile.com/b/TOpgmf/6XgOA
http://paperpile.com/b/TOpgmf/6XgOA
http://paperpile.com/b/TOpgmf/6XgOA
http://paperpile.com/b/TOpgmf/6XgOA
http://paperpile.com/b/TOpgmf/6XgOA
http://paperpile.com/b/TOpgmf/6XgOA
https://doi.org/10.1101/2022.04.17.488570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Methods 

 

Feature construction 

 

We used the read-counts of epigenome and transcriptome profiling assays as features. For this 

purpose, we counted the number of DNA fragments lying within 1 kbp of gene transcription start 

sites (TSS). We calculated the number of reads around TSS using ChIP-Seq  (TF, Histone 

modifications) and DNAse-Seq profiles from the ChIP-Atlas database[1] and CAGE-tags from 

the FANTOM5 database. We also calculated the read-counts of a few input libraries (with ChIP) 

around the TSS of genes using an extension of tool DFilter[2]. The purpose of using the read-

counts of the input library was to reduce the effect of artifacts and biases originating from the 

assays so that the predictability of functions can be improved. We used the TSS of non-coding 

genes from gencode (V30) and RefSeq gene transcripts[3,4]. For each gene, we allowed 

multiple transcripts as long as their TSS were at least 500 bp apart from each other. In total, we 

performed our analysis using 89747 promoter regions. 

 

Balanced accuracy: It is a metric used to judge the predictive power of a binary classifier. It is 

often used when there is imbalance in the number of positive and negative (imbalanced 

classes). Balanced accuracy is defined as arithmetic mean of sensitivity and specificity: 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

 

 

PubMed abstract mining stop words: These following stop-words were used to process the 

function terms to remove the generic terms. The following stop words were removed: 

 

Stop words 1: 'cell','of','small','in','is','he', 'to', 'from', 'by', 'on', 'the', 'or', 'like', 'layer', 'ii', 'groups', 

'into', 'type'. 

 

Stop words 2: 'binding', 'protein', 'factor', 'activity', 'regulation', 'group', 'chemical', 'sensory', 

'other', 'process', 'species', 'positive', 'compound', 'cellular', 'particle', 'organism', 'involved', 

'movement', 'interaction', 'environment', 'pathway', 'signaling', 'coupled', 'mrna', 'response', 

'negative','modified', 'response', 'left', 'right', 'formation', 'nucleotide', 'receptor', 'gene', 

'complex','dependent', 'maintenance', 'process', 'acid'. 

 

 

Method for comparison of PubMed abstract mining result on predictions of different 

methods 

 

 

 

The following stop-words were removed to avoid matching with generic terms: 
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Stop words 1: 'cell','of','small','in','is','he', 'to', 'from', 'by', 'on', 'the', 'or', 'like', 'layer', 'ii', 'groups', 

'into', 'type', 'containing', 'protein', 'receptor', 'organ'. 

 

Stop words 2:  = 'binding', 'factor', 'activity', 'regulation', 'group', 'chemical', 'sensory', 'other', 

'process', 'species', 'positive', 'compound', 'cellular', 'particle', 'organism', 'involved', 'movement', 

'interaction', 'environment', 'pathway', 'signaling', 'coupled', 'mrna', 'response', 'negative', 

'modified', 'response', 'left', 'right', 'formation', 'nucleotide', 'gene', 'complex', 'dependent', 

'maintenance', 'process', 'acid'. 

 

 

Method for validation using Mouse and human disease gene-sets:  In order to further 

consolidate some of our predictions of novel associations between function and genes, we used 

information downloaded from the mouse disease-phenotype gene-sets available at the MGI 

database[5]. First, we found matching function terms of our ontology to which novel predictions 

are made, to mouse disease-phenotype terms, further, the intersection of predicted gene terms 

was done with the annotated mouse genes. If there is an intersection between function term and 

gene term with mouse disease and gene terms, then we call the prediction validated. 

Similarly, we downloaded the gene-sets belonging to human diseases from the DisGeneNet 

database [6] and carried out the same method to validate the predictions.   

 

  

Supplementary Results 
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Supplementary Figure 1: The Number of function (gene-sets) with satisfactory prediction 

(specificity 90%, sensitivity 70%) A) The number of gene-sets with satisfactory prediction by 

different machine learning (ML) methods. B) The number of union set of genes with satisfactory 

prediction by any of the 5 ML methods.  
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Supplementary Figure 2: Predictive-pleiotropy of transcription factors (TFs) A) The number of 

functions where a TF appeared among top-predictor  B)  Dot-plot shows the feature importance 

score for TF-ChIP-seq profiles from GM12878 cells. The dot size shows the feature importance 

score and color shows the directionality according to Spearman correlation. Only those 

functions are shown for which at least 2 TF-ChIP-seq profiles from GM12878 cells were among 

the top 20 predictors.  

 

 

 

 

 

 

 

Supplementary Table 1 

Intersection of predicted genes with human disease-gene sets. 

 

Sl. 
No. 

Disease term Ontology term Predicted Genes 
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1 leukocyte disorders leukocyte mediated 
immunity 

ITGB2 

2 male sterility due chromosome deletions male gamete 
generation 

RBMY1A1 

3 peripheral nervous system diseases nervous AR 

4 organic mental disorders substance 
induced 

organic catabolic F12 

5 cardiac hypertrophy cardiac muscle 
apoptotic 

NPR 1.00 

6 metabolic myopathy nucleoside 
monophosphate 
metabolic 

ACADVL 

7 global developmental delay developmental 
maturation 

NTNG2 

8 brain diseases metabolic inherited dna metabolic NDUFAF2 

9 disorder eye eye morphogenesis CDH3 

10 chromosomal instability chromosomal region KIF11 

11 chromosome 16p112 deletion syndrome 
kb 

nuclear chromosome SH2B1 

12 platelet abnormalities eosinophilia 
immune mediated inflammatory disease 

activation immune ARPC1B 

13 acute myeloid leukemia m1 myeloid leukocyte 
mediated immunity 

CAPG 

14 acute coronary syndrome acute inflammatory PON1 

15 metabolic bone disorder steroid metabolic C2 

16 neural tube defects tube size PYY 

17 malignant lymphoma lymphocytic 
intermediate differentiation diffuse 

lymphocyte 
differentiation 

PIK3CD 

18 B cells expansion nfkb anergy B cells  CARD11 

19 lymphoma extranodal nk t cells T cells JAK3 
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20 hodgkin lymphoma lymphocyte 
depletion 

lymphocyte activation TNF 

21 cardiac arrhythmia cardiac muscle tissue KCNJ2 

22 abdominal obesity metabolic syndrome organic hydroxy 
metabolic 

MTTP 

23 organic mental disorders substance 
induced 

organic hydroxy 
metabolic 

MSRA 

 

 

Supplementary Table 2 

Intersection of predicted genes with mice disease-gene sets. 
 

Sl. No. Ontology terms Disease terms genes 

1. GO_NEGATIVE_REGULATION_OF_LEUKOCYTE_MEDIA
TED_IMMUNITY 

leukocyte adhesion deficiency 1 ITGB2 

2. GO_ANTIGEN_PROCESSING_AND_PRESENTATION_VI
A_MHC_CLASS_IB 

thyroid gland Hurthle cell 
carcinoma 

PSMB9 

3. GO_INNATE_IMMUNE_RESPONSE immune dysregulation-
polyendocrinopathy-
enteropathy-X-linked syndrome 

DOCK8 

4. GO_POSITIVE_REGULATION_OF_MYELOID_LEUKOCYT
E_DIFFERENTIATION 

acute myeloid leukemia DLEC1 

5. GO_ACUTE_INFLAMMATORY_RESPONSE acute lymphoblastic leukemia PON1 

6. GO_PEPTIDE_METABOLIC_PROCESS inherited metabolic disorder NDUFS1 

7. GO_HOMOLOGOUS_CHROMOSOME_PAIRING_AT_MEI
OSIS 

hepatocellular carcinoma ASPM 

8. GO_NUCLEOSIDE_TRIPHOSPHATE_METABOLIC_PROC
ESS 

bilirubin metabolic disorder SOD2 

9. GO_REGULATION_OF_LIPID_METABOLIC_PROCESS inherited metabolic disorder MMAB 

10. GO_CEREBRAL_CORTEX_DEVELOPMENT transient cerebral ischemia NEFM 

11. GO_CELLULAR_KETONE_METABOLIC_PROCESS bilirubin metabolic disorder UGT1A1 

12. GO_EAR_DEVELOPMENT congestive heart failure ERBB4 

13. GO_REGULATION_OF_TRANS_SYNAPTIC_SIGNALING transient cerebral ischemia KCNK2 

14. GO_ORGANIC_HYDROXY_COMPOUND_METABOLIC_P
ROCESS 

abdominal obesity-metabolic 
syndrome 1 

MTTP 

15. GO_REGULATION_OF_VASCULAR_ASSOCIATED_SMO
OTH_MUSCLE_CELL_DIFFERENTIATION 

renovascular hypertension FN1 
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Supplementary Table 3 

 

List of lncRNA genes with predicted function with literature evidence 

 

Ontology Predicted non-coding gene Literature evidence 

GO_MIDBRAIN_DEVELOPMENT AC145422.1 [7] 

GO_CHROMATIN_ASSEMBLY_OR
_DISASSEMBLY 

ENSG00000260830 [8] 

GO_RNA_POLYMERASE_II_ACTIV
ATING_TRANSCRIPTION_FACTOR
_BINDING 

AC079305.10 
(AC079305.1) 

[9] 

RNA_POLYMERASE_II_ACTIVATIN
G_TRANSCRIPTION_FACTOR_BIN
DING 

ENSG00000222043 [10] 

GO_CIRCADIAN_RHYTHM AC024243.1 [11] 

GO_REGULATION_OF_CELL_ACTI
VATION 

AC007384.1 [12] 

GO_COVALENT_CHROMATIN_MO
DIFICATION 

AC087623.3 [13] 
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