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ABSTRACT

Cell-cell interactions are the fundamental building blocks of tissue organization and
multicellular life. We developed Neighbor-seq, a method to identify and annotate the
architecture of direct cell-cell interactions and relevant ligand-receptor signaling from the
undissociated cell fractions in massively parallel single cell sequencing data. Neighbor-seq
accurately identifies microanatomical features of diverse tissue types such as the small
intestinal epithelium, terminal respiratory tract, and splenic white pulp. It also captures the
differing topologies of cancer-immune-stromal cell communications in pancreatic and skin
tumors, which are consistent with the patterns observed in spatial transcriptomic data.
Neighbor-seq is fast and scalable. It draws inferences from routine single-cell data and does
not require prior knowledge about sample cell-types or multiplets. Neighbor-seq provides a
framework to study the organ-level cellular interactome in health and disease, bridging the

gap between single-cell and spatial transcriptomics.

INTRODUCTION

The spatial context of cells in a tissue and their resulting cell-cell communications
influence numerous processes, including cellular differentiation, organ development and
homeostasis, and immune interactions in disease (1). Few high-throughput methods exist that can
resolve direct cellular communications in vivo at single-cell resolution. Single-cell RNA
sequencing (scRNA-seq) can identify cell-types and states in heterogeneous tissues, but the tissue
structure is largely destroyed in the process (2). Microscopy-based methods such as RNAscope

and FISH can interrogate only preselected genes at high spatial resolution. Spatial transcriptomics
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allows profiling of microscopic regions, but still samples 10-100 cells per region (3, 4). Sequencing
of partially dissociated tissues and subsequent multiplet deconvolution permits inference of
physical cell interactions, but this requires specialized experimental modifications (5-8). A general
method that can infer direct cell-cell interactions and concurrent transcriptomic changes in vivo at
single cell resolution would provide unprecedented insight into the building blocks of tissue
architecture in healthy and diseased tissues.

Cell aggregates (multiplets) naturally arise in sScCRNA-seq experiments when two or more
cells are captured in the same reaction droplet, and they typically represent at least several percent
of all capture events (9, 10). Such multiplets occur primarily due to incomplete tissue dissociation
(6), or occasionally by random co-encapsulation. We developed Neighbor-seq, a method to infer
physical cell-cell communications by identifying, annotating, and analyzing cell multiplets from
the undissociated cell fractions in sScRNA-seq data using computational approaches (see Methods,
Fig. 1A). Neighbor-seq provides a framework to study the cellular interactome in health and

disease using standard scRNA-seq data.

METHODS AND MATERIALS
Neighbor-seq algorithm

Neighbor-seq is a method to infer physical cell-cell communications by identifying,
annotating, and analyzing cell multiplets from the undissociated cell fractions in sScRNA-seq data
using machine learning approaches. The Neighbor-seq algorithm consists of the following
components, each further described below: (i) barcode clustering and marker gene identification,
(i) Random Forest classifier training to identify multiplets and their cell type compositions, (iii)
calculating enrichment scores for cell-cell interactions, and (iv) construction of cell-cell
interactome network and analysis of cell-neighbor transcriptomes, including ligand-receptor
interactions (Fig. S4).

Input and cell type identification: The input for Neighbor-seq is a cell by gene counts
matrix, and optionally, cell-type cluster labels. If cell-type labels are not provided, Neighbor-seq
utilizes a wrapper function to run Seurat (11) functions that TP10K normalize and scale the
scRNA-seq data, find a default of 5000 variable genes, perform principle component analysis with
n=50 components, and identify cell type clusters. Cell-type marker genes are then identified using

the FindAllMarkers function using a default of 200 cells subsampled for each cluster, an average
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log fold change threshold cutoff of 1, and minimum fraction of cells expressing a gene of 0.2 for
computational efficiency. If cell-type labels are known a priori, only normalization and marker
finding functions are run.

Random Forest classifier training: Next, all homotypic and heterotypic combinations for
a default of 2 cell-types are enumerated (e.g. AA, AB, etc.). Cells forming a doublet or multiplet
are hereon referred to as “neighbors”, and the “neighbor-type” indicates the identities of the 2+
cells on a single barcode. For each neighbor-type, artificial multiplets are created by randomly
sampling cells from the constituent cell types and the prepared input gene by cell matrix and
summing their gene counts. A random forest is then trained using a balanced set of singlets and
artificial multiplets to predict the cell type composition of the barcodes from the assembled dataset.
Although the majority of barcodes are expected to contain single cells, a balanced training set is
used to increase random forest prediction accuracy. As such, a default of 100 artificial multiplets
is created for each neighbor-type, and these are pooled with a default of 100 singlets from each
originally identified cell-type to create the training set. A random forest trained, and hold-out
artificial multiplets data are used to assess random forest performance. The multiROC R package
is used to compute receiver operator curves. The process is iterated multiple times to retrain and
generate an ensemble annotation result. The trained random forest is then used to predict the
barcode composition of all barcodes in the original dataset. Two random forest implementations
are incorporated in Neighbor-seq: the randomForest(12) R package, run with a default of 500 trees,
and a faster implementation via the xgboost(13) R package, configured with the following
parameters: objective=multi:softprob, eval metric=mlogloss, nround=1, max_ depth=20,
num_parallel tree=200, subsample=0.632, colsample bytree=sqrt(number cells)/total number of
cells, and colsample bynode=sqrt(number of cells)/total number of cell. The faster
implementation is preferred with large datasets and is set as the default in Neighbor-seq. Both
implementations generated consistent results on benchmark analyses (Fig. SSb).

Determining significantly enriched cell-cell interactions: Neighbor-seq calculates an
enrichment score for each cell-type interaction and compares it to the distribution of enrichment
scores expected by chance. The interaction enrichment score reflects the proportion of counts of a
neighbor type relative to the product of the total number of edges detected from each constituent
cell and all other cell types. For neighbor type C;C, composed of cell types C; ... C,, the

enrichment score is specifically defined as:
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The observed enrichment score for a neighbor type is compared to that expected by chance. The
null hypothesis assumes that multiplet formation is random and thus the distribution of neighbor-
types follows the underlying singlet population counts. As such, for each sample in a dataset, given
n predicted singlets and m predicted multiplets consisting of x constituent cells, Neighbor-seq
simulates the synthetic creation of m multiplets drawing without replacement from n+x cells. The
resulting neighbor-types are tallied and their enrichment scores are computed. This simulation is
repeated for a default of 100 times; for each neighbor type, lower tailed Wilcoxon testing quantifies
the probability that the simulated enrichment scores have a central tendency greater than the
observed enrichment score. All probabilities are adjusted using the Holm correction.
Construction of a cell-cell interactome network and transcriptomic analysis: The primary
outputs of Neighbor-seq are:(1) the artificial multiplet training and test sets, (2) the trained random
forest, (3) the barcode classification probabilities for all barcode classes, and (4) the neighbor
enrichment analysis. The latter reports the counts of each multiplet class detected in a sample as
well as its enrichment score and corresponding p-value. When an ensemble result is generated by
retraining the algorithm over multiple iterations, Neighbor-seq additionally reports the mean
counts for each multiplet class and a combined p-value using Fisher’s method. Using the cell
neighbor type enrichment data, we use igraph(14) to plot a network, and it is possible to calculate
network statistics such as degree and centrality. We use ligand-receptor data from Ramilowski et
al.(15) or Shao et al. (16) to identify highly expressed ligand-receptor pairs in cell neighbors.
Differentially expressed genes and other transcriptomic features in neighbor-types can be assessed

using Seurat(11).

Benchmarking, robustness, and reproducibility
We used a number of different metrics for benchmarking Neighbor-seq.

Comparative assessment with other doublet finding methods: We obtained scRNA-seq data
for the benchmark annotated doublet datasets from Xi et al.(10) (see Table S1 for dataset details)

and compared Neighbor-seq’s ability to identify singlets vs. doublets against the following 9
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published methods: doubletCells(17), Scrublet(9), DoubletDetection
(https://github.com/JonathanShor/DoubletDetection) , cxds(18),bcds(18), hybrid(18), solo(19),
DoubletFinder(20), and scDblFinder (https://github.com/plger/scDblFinder). These methods are

optimized to distinguish singlets and filter out doublets in sScRNA-seq data, and only scDblFinder
has the ability to propose doublet composition. These methods generally rely on simulating
artificial doublets, projecting data into a lower dimensional space, and using a machine or deep
learning classifier to annotate barcodes. In contrast, Neighbor-seq utilizes cell-type specific
clustering and marker gene sets to train a classifier directly on the gene counts of all possible
expected barcode compositions, and it explicitly assigns multiplet class probabilities for each
barcode rather than annotating the broader label of singlet or doublet. To evaluate Neighbor-seq,
we ran Neighbor-seq using the default parameters on each benchmark dataset. To compute the
probability of each barcode being either a singlet or doublet, we summed the Neighbor-seq
probabilities for all doublet classes. Classification performance (area under the receiver operator
curves) for the 9 benchmark doublet finding methods tested on these datasets were obtained from
Xi et al.(10), who ran these methods using their default settings. Area under the receiver operator
curves for the Neighbor-seq singlet vs. doublet classification were calculated as above with
multiROC and compared with all other methods.

To compare the stability of doublet population predictions across multiple runs from
Neighbor-seq and scDblFinder, we ran each algorithm 10 times on the cline-ch benchmark dataset
obtained from Xi et al.(10) For each doublet class, the coefficient of variation of its counts
(mean/standard deviation) was computed, and the distributions of coefficients of variations were
compared using Wilcoxon testing.

Ensemble prediction: To increase reproducibility of results, artificial multiplet construction
and/or random forest training can be run for multiple iterations and an ensemble results can be
computed. For each neighboring cell-type pair, the mean observed counts and Fisher’s combined
adjusted p-value are reported. We observed a high degree of reproducibility across multiple
iterations and with a range of random seeds. These multiplet type counts and p-value thresholds
for determining significant interactions were set to counts>10 and p-value<0.05 for most analyses
in this study, but they can be adjusted and interpreted in light of data quality and known biology.

Evaluation of Ligand-receptor co-expression in cell neighbors: Ligand-receptor data was

obtained from Ramilowski et al. (15) or Shao et al. (16). We compared three classes of barcodes:
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(1) multiplet-classes with statistically significant enrichment, (2) multiplet-classes without
statistical enrichment, and (3) randomly synthesized multiplets from the same datasets. Multiplet
class statistical enrichment was determined as described above. Random multiplets of degree 2
were created by aggregating the read counts of randomly sampled cells. We determined the number
of matched ligand-receptor pairs as follows. Using TP10K normalized scRNA data, we called a
gene ‘expressed’ in a barcode if its normalized count was greater than the 25" percentile of
expression across all barcodes. For each barcode in a dataset, we counted the number of expressed
ligands whose receptor was also expressed. We compared the distributions of the number of co-
expressed ligand-receptor pairs across the three barcode classes (enriched multiplet types, non-

enriched multiplet types, random multiplets) using Wilcoxon testing.

Identifying cell-cell interactions in the small intestine

We obtained scRNA-seq data and metadata, including cell-type annotations, from Haber et al.(21)
UMAP plots were drawn using Seurat(11). Neighbor-seq was run for n=10 iterations using default
parameters. Cell-cell interactions were considered significant for those interactions with mean
counts>10 and combined p-value<0.05. The validation analysis in known intestinal singlets
multiplets was done using data from Andrews et al.(6), who also provided metadata and cell-type
annotations. Neighbor-seq was run with default parameters as above on the small intestine sScCRNA-
seq data. The resulting classifier was used to predict interactions in the accompanying small
intestine partially dissociated clumps. Interactions were kept for those with counts>10 and adjusted
p-value<0.05. Quantitative comparison of cell-cell networks from different studies was done by
converting the networks into adjacency matrices and computing the inner product correlation. A
permutation-based test was used to calculate the statistical significance of the inner product
correlation. For a pair of matrices, random symmetric adjacency matrices are generated with the
same number of nodes and edges as the test matrix, and a distribution of inner product correlations
is computed. The center of this distribution is compared to the actual inner product correlation

between the two test matrices using a one-sided Wilcoxon test.

Identifying cell-cell interactions in the lung
We obtained scRNA-seq data and metadata, including cell-type annotations, from Travaglini et

al.(22) To reduce computational complexity, cell-type annotations were collapsed into the
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following parent classes: alveolar, basal, ciliated, club, endothelial, fibroblast, goblet, immune,
mucous, smooth muscle. UMAP plots were drawn using Seurat(11). Neighbor-seq was run for
n=10 iterations using default parameters. Cell-cell interactions were considered significant for
those interactions with mean counts>10 and combined p-value<0.05. The validation analysis in
known lung singlets and multiplets was done using data from Andrews et al.(6), who also provided
metadata and cell-type annotations. Neighbor-seq was run with default parameters as above on the
lung scRNA-seq data. The resulting classifier was used to predict interactions in the accompanying
lung partially dissociated clumps. Interactions were kept for those with counts>10 and adjusted p-
value<0.05. Quantitative comparison of cell-cell networks from different studies was done with

the permutation-based inner correlation test as described for the small intestine analysis.

Identifying cell-cell interactions in the spleen

We obtained scRNA-seq data and metadata, including cell-type annotations, from Madissoon et
al.(23) To reduce computational complexity, cell-type annotations were collapsed into the
following parent classes: CD34 progenitor, CD4 T-cells, CD8 T-cells, Cycling T-cells, dendritic
cells, follicular B cells, germinal center B cells, innate lymphoid cells, macrophage, mantle B cells,
monocytes, natural killer cells, plasma B cells, and platelets. UMAP plots were drawn using
Seurat(11). Neighbor-seq was run for n=10 iterations using default parameters. This study
contained data from 19 human samples. Cell-cell interactions were considered significant for those
interactions found in >1 sample and with mean counts>5 and combined p-value<0.05. The
validation analysis was done using spleen data from Tabula Muris(24), who also provided
metadata and cell-type annotations. Cell-type annotations were appended with their cluster label,
resulting in multiple B-cell, T-cell, and myeloid clusters. Neighbor-seq was run with default
parameters as above. Cell-cell interactions were considered significant for those interactions with

mean counts>5 and combined p-value<0.05.

Identifying cell-cell interactions in pancreatic cancer

We obtained scRNA-seq data and metadata, including cell-type annotations, from Peng et al.(25)
UMAP plots were drawn using Seurat(11). Neighbor-seq was run for n=10 iterations using default
parameters. Cell-cell interactions were considered significant for those interactions with mean

counts>10 and combined p-value<0.05. Ligand-receptor analysis was done as described above.
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Betweenness centrality was calculated using igraph(14). Hierarchical clustering of betweenness

centralities scaled by cell-type was done using the pheatmap R package (https://CRAN.R-

project.org/package=pheatmap). Spatial transcriptomic data for PDAC tumors was obtained from

Moncada et al.(26) Cell-type scores for each spatial barcode were calculated as follows. We used
the FindAllMarkers function from Seurat(11) to find differentially expressed genes for the PDAC
cell-types in Peng et al(25). Only highly cell-type specific genes were found by using these
parameters: logfc.threshold=2, min.diff.pct=0.5, min.pct=0.5. Spatial barcodes were TP10K
normalized, and cell-type scores were calculated as the average expression of each cell-type gene
signature. Scores Spearman correlations were computed using the cor.test function in R.
Quantitative comparison of cell-cell networks from different studies was done by converting the
networks into adjacency matrices and computing the inner product correlation. The Spearman
correlation matrix of the transcriptomic data was used as the adjacency matrix, only keeping those
edges with values r>0.2 and p<0.05. A permutation-based test was used to calculate the statistical

significance of the inner product correlation as described above.

Identifying cell-cell interactions in skin cancer

We obtained scRNA-seq data and metadata, including cell-type annotations, from Ji et al. (27). To
reduce computational complexity, immune cell-types annotations were collapsed into parent
lymphoid and myeloid classes. UMAP plots were drawn using Seurat (11). Neighbor-seq was run
for n=10 iterations using default parameters. Cell-cell interactions were considered significant for
those interactions with mean counts>10 and combined p-value<0.05. Ligand-receptor analysis was
done as described above. Cell-type scores for each spatial barcode was calculated as follows. We
used the FindAllMarkers function from Seurat (11) to find differentially expressed genes for the
cell-types in Ji et al. Only highly cell-type specific genes were found by using these parameters:
logfc.threshold=0.5, min.diff.pct=0.52. Marker genes were only kept if they were differentially
expressed in <5 cell types. Spatial barcodes were TP10K normalized, and cell-type scores were
calculated as the average expression of each cell-type gene signature. Scores Pearson correlations

were computed using the cor.test function in R.

RESULTS
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Neighbor-seq identifies physical cell interactions by using a machine learning classifier
that annotates the cellular composition of each scRNA-seq barcode. Briefly, scRNA-seq data is
filtered to remove low quality cells, the remaining barcodes are clustered based on their gene
expression, and cluster marker genes are identified using a standard approach (11). A vast majority
of the barcodes typically represent genuine single cells, with a minority being doublets or
multiplets. Next, a training set of artificial multiplets is constructed representing all possible
multiplet types by randomly sampling cells from each cell cluster and aggregating their raw read
counts. The artificial multiplets can be homotypic (same cell-type) or heterotypic (different cell-
type) and can be of order 2 (e.g. AA, AB, BB etc.) or higher (e.g. AAA, ABA, etc.). A Random
Forest cell-type classifier is trained based on the expression of marker gene sets from » (default:
100) randomly sampled barcodes from each artificial multiplet type, as well as n barcodes from
each original cell type cluster, which are predominantly singlets. Neighbor-seq then applies the
classifier to annotate each barcode in the original dataset and identifies those classified as
multiplets. An ensemble annotation result is generated by iterating the algorithm. Neighbor-seq
computes the enrichment and corresponding statistical significance of the observed frequencies of
multiplet types compared to that expected based on the prevalence of the original cell-types in the
dataset. Accordingly, Neighbor-seq constructs a network representing significant cell-type

interactions and enables transcriptomic analysis of interacting cells.

Benchmarking and validation with known multiplets

We evaluated Neighbor-seq’s ability to identify physically interacting cells via (1)
annotation of multiplets with known composition, (2) detection of known doublets in diverse
tissues, and (3) identification of known cellular architectures in solid tissues. First, we tested
Neighbor-seq’s ability to annotate barcode composition in a controlled setting. We obtained
scRNA-seq data (6) for three cancer cell lines that had been sorted as either singlets or multiplets
of known composition (Fig. 1B); we trained Neighbor-seq on the singlet data and used it to
annotate singlet and multiplet barcode compositions, which contained between 1-4 cells in
nonsymmetrical combinations. Neighbor-seq classified all droplets with high accuracy (AUC:
singlets: 1, doublets: 0.99, triplets: 0.94, quadruplets: 0.82; Fig. 1C), indicating that it can reliably

infer barcode composition.
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Next, we benchmarked Neighbor-seq against 9 other published doublet-finding methods
using 16 datasets of diverse tissue types in which doublets were experimentally annotated (10)
(Table S1). Neighbor-seq performed better or equally well to all published methods in identifying
doublets (Wilcoxon p > 0.8, Fig. 1D), but with the unique advantages of (1) determining multiplet
cell-types, (2) identifying significantly enriched cell-type interactions, (3) requiring no parameter
tuning, and (4) making no assumptions about the underlying doublet frequencies, which ranged
from 2.5% to 37% in the benchmark datasets (Fig. S1A) and may not be known a priori in a real
dataset. Moreover, Neighbor-seq is also the only method that can annotate higher order multiplets
and can transfer knowledge across datasets.

We further hypothesized that since doublets contain neighboring cells, they would have
increased co-expression of ligand-receptor pairs. Indeed, enriched doublets-types co-expressed
significantly more ligand-receptor pairs than non-enriched doublets, and significantly more pairs
than randomly synthesized doublets (both Wilcoxon p < 2.2e-16, Fig. 1E, Fig. S1B, see Methods
for details). This was true in aggregate using two different ligand-receptor databases (15,16) and
for each benchmark study individually (Fig. S1B).

Neighbor-seq performed exceptionally well at classifying singlets and all artificial doublet
types (average AUC = 0.99, Fig. 1F) and performed significantly better than expected by chance
when cell-type labels were randomized (cline ch data; average AUC = 0.501, Wilcoxon p <2.2e-
16, Fig. S1C-D). Neighbor-seq classification accuracies across all benchmark datasets were
similarly high (all AUC > 0.92, Fig. S1E). While Neighbor-seq is the only method designed to
infer doublet-types, scDblFinder also proposes doublet compositions, but when comparing the
stability of doublet-type counts across multiple runs on the same dataset, Neighbor-seq results
were significantly more stable (Wilcoxon p < 2.2e-16, Fig. 1G). These results indicate that
Neighbor-seq successfully and identifies doublets across a range of tissue types and reproducibly
annotates their cellular composition. Taken together, these attributes make Neighbor-seq first in
the class of innovative computational methods that can help reconstruct physical cell interaction

networks from single-cell sequencing data.
Identifying cell-cell interactions in the small intestine

We examined whether Neighbor-seq could identify known interaction architectures in

multiple tissue types with varying levels of cell-type diversity and organization. First, we tested

10
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Neighbor-seq on a scRNA-seq survey of the small intestinal epithelium containing 11,666 cells
from n=2 mice (21). The small intestine consists of alternating units of villi and crypts. Paneth
cells in the crypt protect the residing stem cells, which differentiate and migrate upwards through
various progenitor stages until becoming mature enterocytes, while goblet cells are scattered
throughout villus (28) (Fig. 2A). We identified the major cell types (Fig. 2B) and used Neighbor-
seq to recover their cellular adjacencies. Neighbor-seq correctly detected Paneth-stem interactions,
a progression from stem to mature enterocytes, and multiple goblet cell interactions in the villus
(Fig. 2C, see Methods for details). We confirmed this microanatomy by training Neighbor-seq on
a separate study of 5,279 small intestinal singlets and used it to identify interactions in a dataset of
3,671 intestinal multiplets (6) (Fig. 2D). This validation analysis revealed a similar interaction
network as obtained only from scRNA-seq data (Fig. 2E). Differences between the schematic
illustration and the two networks are primarily due to different cell types annotated in the two
datasets and different optimized network layouts; nonetheless, both networks recapitulate a
progression from the Paneth-stem crypt to the mature enterocytes at the top of the villus whilst
passing through transition and progenitor cells. Furthermore, both networks supported known
ligand-receptor signaling (28), such as LGR, LRP, BMP, and NOTCH- mediated interactions
between Paneth and stem cells. The directionality of this signaling could be inferred by inspecting
the stem and Paneth cell singlets data, in which stem cells had significantly higher expression of
the aforementioned genes compared to Paneth cells (Wilcoxon testing, p<2e-16 for all four genes).
To quantitatively compare the networks obtained from the two studies, we harmonized the cell
labels based on cell ontology and represented them as adjacency matrices (Fig. 2F). The two
matrices were significantly more correlated than expected by chance (inner product correlation =
0.53, Wilcoxon permutation test, p=4e-17, see Methods), indicating that Neighbor-seq identified

similar cell networks from independent studies of the same tissue types.

Identifying cell-cell interactions in the lung

Second, we tested Neighbor-seq’s ability to identify microanatomical structures in the lung,
which contains interactions between cells of multiple lineages. The terminal bronchioles contain
ciliated epithelium and club cells, smooth muscle, mucous secreting cells, and basal stem cells;
gas exchange occurs in the alveoli, which contain alveolar pneumocytes and macrophages and are

lined by vessels, fibroblasts, and smooth muscle (22) (Fig. 3A). We analyzed a human lung cell

11
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atlas containing 65,662 cells from n=5 human donors (22), identified the cell-types (Fig. 3B) and
recovered an interaction network (Fig. 3C, see Methods for details). Neighbor-seq correctly
separated the bronchiolar and alveolar compartments and identified the gas exchange membrane
between alveolar and endothelial cells. We confirmed detection of these cell-cell interactions in a
dataset of lung singlets and multiplets (6) (Fig. 3D). Training Neighbor-seq on the singlet data and
deconvoluting interactions from the known multiplets again revealed bronchiolar and alveolar
compartments as well as several immune cell interactions (Fig. 3E). Neighbor-seq networks also
corroborated known signaling pathways in lung development (29), such as by expression of
NOTCH, FGF, and EGF ligands in basal- cell neighbors. Representing the networks derived from
the two studies as adjacency matrices with harmonized cell-ontology labeling further indicated
significant similarity in the cell-cell connections identified (Fig. 3F, inner product

correlation=0.73, Wilcoxon permutation test, p=5e-17, see Methods).

Identifying cell-cell interactions in the spleen

Third, we used Neighbor-seq to predict interactions in the splenic white pulp, a structure
not held by tight junctions but whose organization is chemokine driven (30). The white pulp is
surrounded by myeloid cells and consists of separate B- and T-cell zones, with B-cell follicles
further separating into germinal centers and mantle zones and T-cells interacting with antigen
presenting myeloid cells (30) (Fig. 4A). We used Neighbor-seq to analyze a dataset of human
spleen containing 94,050 immune cells from n=19 human samples (23) (Fig. 4B, see Methods for
details). Neighbor-seq correctly identified the B and T-cell zones; germinal centers did not interact
with non-B-cells, and myeloid cells interacted with both B and T lymphocytes (Fig. 4C). We
confirmed these structures by analyzing splenic tissue from the Tabula Muris (24) containing 9,552
cells of lymphoid and myeloid origin (Fig. 4D). Neighbor-seq again identified B and T-cell zones
with myeloid interactions (Fig. 4E). Collectively, these analyses confirmed that Neighbor-seq can

correctly identify direct cell-cell interactions and microanatomies in vivo in diverse tissue types.

Identifying cell-cell interactions in pancreatic cancer
We next used Neighbor-seq to analyze inter-cellular interactions in pancreatic ductal
adenocarcinoma (PDAC). We obtained scRNA-seq data for 24 tumors and 11 control samples (25);

these tissues had normal to poorly differentiated histopathology, were from anatomic locations
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throughout the pancreas (Table S2), and in total contained 57,530 cells from a mixture of normal
and malignant epithelial cells and immune, stromal, and endothelial cells (Fig. SA). Neighbor-seq
detected 17,580 doublets (31% of barcodes), of which 1,373 were heterotypic doublets (2.3% of
all barcodes) — this fraction of heterotypic cell neighbors was typical for all datasets analyzed.

Out of 45 possible heterotypic cell-type pairs, Neighbor-seq identified 19 enriched
interactions (Fig. SB). Normal pancreatic epithelium (ductal, endocrine, acinar cells) interacted
with each other and with endothelial cells, whereas tumor cells had stronger connections with
ductal cells and fibroblasts and immune cells interacted with most cell-types. These interactions
were detected across multiple samples, the most common being B cell-myeloid, ductal-tumor, and
tumor-T cell interactions (Fig. 5B, Fig. S2A, Table S3). Again, enriched cell neighbors co-
expressed significantly more matched ligand-receptor pairs than non-enriched doublet-types or
random synthetic doublets (Wilcoxon p < 2.2e-16, Fig. 5C). The detected neighboring cell
communications were also consistent with existing literature. For example, BTK-dependent B-cell
interactions with FCyR+ myeloid cells were recently implicated in PDAC progression (31), and
we observed significantly greater BTK (Wilcoxon, p=6.3e-40) and FCGR A4 expression (Wilcoxon,
p=6.8¢-59) in B cell-myeloid doublets compared to all other doublet-types. This highlights how
Neighbor-seq can be used to identify interaction-specific transcriptional changes with functional
relevance.

The topology of cell-cell interactions varied across samples, which could be due to intra-
or inter-tumor heterogeneity in cell interactions or differential presence/absence of doublet-types
in a sample. We computed the betweenness centrality of cell-types in each sample, and clustering
of these centrality scores revealed three classes of tissue microenvironments (ME, Fig. 5D). ME1
contained mostly normal ductal epithelial connections, ME2 was dominated by tumor cell
connections, and ME3 by immune cell edges (Fig. SD). These ME classes had significantly
different histopathological characteristics (Fisher’s exact test; pathology: p=5e-4; stage: p=5e-4;
lymph node invasion: p=3e-3). These analyses indicate that Neighbor-seq can uncover direct
cellular interactions and tumor microenvironment characteristics with functional or clinical
relevance.

Next, we analyzed spatial transcriptomic data for pancreatic ductal adenocarcinoma
(PDAC) samples from a published study (26) where there were 243-996 spatially annotated

barcodes per sample, each capturing the aggregated transcriptomic makeup of approximately 20-
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70 cells in tumor and adjacent normal tissue microenvironments. We observed organizational
contexts similar to what we identified from scRNA-seq data alone. We used marker genes to
calculate cell-type scores for each spatial barcode (see Methods; PDAC-A: n=428, PDAC-B:
n=224 spatial barcodes) and visualized the distribution of cell-types in the tissues (Fig. SE). Tumor
cells co-localized with ductal cells (Spearman correlation; A: r=0.19, p=2e-2; B: r=0.44, p=4e-10)
and fibroblasts (Spearman correlation; A: r=0.30, p=8e-9). Ductal cells co-localized with acinar
cells (Spearman correlation; A: r=0.16, p=2e-2), endocrine cells (Spearman correlation; A: r=0.29,
p=5e-8), and endothelial cells (Spearman correlation; A: r=0.41, p=le-17). B and T cells were
scattered throughout the tissue, but myeloid cells did not significantly co-localize with tumor cells.
We observed similar patterns when visualizing spatial transcriptomic data for n=7 other PDAC
tumors (Fig. S3A). These findings are broadly consistent with the architecture of cell-networks we
deduced from scRNA-seq data of a different cohort of PDAC tumors (Fig. SC), suggesting that
despite intra- and inter-tumor heterogeneity, the topology of cell-cell interactions may be similar.
We represented the cell-cell networks derived from scRNA-seq and the spatial transcriptomic data
as cell adjacency matrices (Fig. S2B, see Methods). Inner product correlation further indicated that
the cell adjacencies identified from the two studies were significantly more similar than expected
by chance (r=0.33, p=2e-11). This validation across two different technology platforms reinforces
Neighbor-seq’s ability to infer cellular connectomes from scRNA-seq data and bridge between

single-cell and spatial transcriptomics, which has a resolution of 10!-10? cells.

Identifying cell-cell interactions in skin cancer

Lastly, we used Neighbor-seq to analyze physical cell interactions in cutaneous squamous
cell carcinoma (SCC). We obtained scRNA-seq data for 10 tumors, of which 4 tumors also had
spatial transcriptomic data (27). These tissues had moderate or well differentiated histology, were
from various primary sites on the body, and the dataset in total contained 48,164 single-cell
transcriptomes from 16 cell subtypes of epithelial, stromal, and immune origin (Fig. 6A).
Neighbor-seq detected 15,626 doublets (32% of all barcodes), of which 5,346 were heterotypic
doublets (11% of all barcodes). Of 105 possible heterotypic cell-type pairs, Neighbor-seq
identified 38 significant pairwise interactions (Fig. 6B). Tumor cell populations were on the edge
of the cell interaction network and showed significant interactions mostly with normal epithelium.

Unlike in pancreatic cancer (Fig. 5B), immune cells were located peripherally in the network and
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interacted mostly with normal epithelium. We did not observe direct connections between
lymphoid cells and any tumor subpopulation (Fig. 6B), which might suggest potential immune
evasion.

These general patterns identified from the inferred cell-interaction network agreed with
observations made from spatial transcriptomic sequencing data of the same tumors profiled at
8,179 spots. Using the single-cell data, we identified cell-type marker genes and used these to
calculate cell-type scores for each spatial sequencing spot in 4 patients (see Methods). Coloring
the spatial maps by composite tumor, normal epithelium and stroma, or immune scores revealed
spatial contexts similar to those we identified with Neighbor-seq from the single-cell data alone
(Fig. 6C). Most prominently in patient P2, tumor populations occupied a separate region of the
spatial map with minimal immune presence, while the adjacent regions were rich in normal
epithelium, stromal, and immune genetic activity. We next compared the specific cell-type pair
associations identified by Neighbor-seq (Fig. 6B) with the cell-type score correlations in the
matched spatial data. For all patients, cell-types with enriched neighbor interactions in scRNA-seq
were significantly more correlated with each other across spatial spots than were cell-type pairs
that did not have enriched doublets in scRNA-seq (P2: p=2.3e-7, P5: p=3.8e-4, P9: p=3.4e-6, P10:
p=4.2e-10; Wilcoxon; Fig. 6D). Lastly, we confirmed that the enriched cell neighbors in sScCRNA-
seq exhibited increased pairwise crosstalk by assessing the number of co-expressed ligand-receptor
pairs (see Methods). Consistent with our previous analyses, enriched doublets expressed
significantly more ligand-receptor pairs than non-enriched doublets or randomly synthesized
doublets (both Wilcoxon p<2.2e-16, Fig. 6E). Taken together, these results indicate that Neighbor-
seq accurately identifies and annotates multiplets that contain interacting cells across a range of
normal and diseased tissues, and these interactions are consistent with spatial contexts identified

from both the same and different samples.

DISCUSSION

In summary, Neighbor-seq infers direct cell-cell interactions by identifying undissociated
cell multiplets in standard scRNA-seq data and classifying them according to their constituent cell-
types, ultimately building the cellular interactome in diverse normal and diseased tissues. It shows
high accuracy and reproducibility, and the results are in agreement with prior knowledge about

tissue microenvironments in well-studied tissues and with spatial transcriptomic data. Neighbor-
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seq complements emerging methods (5-8) that are optimized for deconvoluting the
transcriptomics of single cells and cell clumps. It, however, reconstructs tissue-scale cell
interaction networks using undissociated multiplets from standard scRNA-seq alone, thereby
eliminating the need for specialized sample preparation and boosting scalability. Neighbor-seq
provides a framework to study the topology of cell-cell interactome leading to the organization of
tissue microenvironment, bridging the gap in resolution between single-cell and spatial

transcriptomics. Neighbor-seq is available at https://github.com/sjdlabgroup/Neighborseq.

DATA AVAILABILITY
The Neighbor-seq resource and user-friendly documentations are freely available on Github at

https://github.com/sjdlabgroup/Neighborseq
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FIGURE CAPTIONS

Figure 1. Benchmarking cell neighbor detection and annotation. (A) A schematic
representation of the Neighbor-seq workflow. (B) Uniform manifold approximation and projection
(UMAP) of barcode RNA sequencing data singlets and multiplets of known composition from 3
cancer cell lines, colored by cell-type identities and shaped by the number of cells per barcode. (C)
Neighbor-seq barcode composition annotation performance of cell-line barcodes in (B), plotted by

known barcode type. AUC = area under the receiver operator curve. (D) Benchmarking Neighbor-
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seq doublet detection against 9 other methods using 16 datasets of diverse tissue types with
experimentally annotated doublets (see Table S1). Among these methods, only Neighbor-seq is
explicitly optimized to infer doublet composition. Comparison of singlet vs. doublet classification
area under the receiver operator curve (AUROC) distributions are shown. Boxplots show median
(line), 25™ and 75" percentiles (box) and 1.5xIQR (whiskers). Points represent outliers. (E)
Comparison of the number of co-expressed ligand-receptor pairs in enriched (statistically
significant) doublet types, not enriched doublets, and random synthetic doublets from the
benchmarking studies in (D). Descriptions of the boxplots are as in (D). (Wilcoxon tests,
*Hx%p<0.0001. See also Fig. S1B-C). (F) Neighbor-seq example receiver operator curve for
classifying artificial multiplet types in the cline-ch study, one of the benchmark studies used in
(D). AUC, area under the curve. (G) Robustness of cell neighbor type annotation. Comparison of
the distribution of coefficients of variation for neighbor type counts from the cline-ch benchmark

dataset across n=10 runs of Neighbor-seq and scDblFinder (Wilcoxon test, boxplots as in (D)).

Figure 2. Detecting known microanatomical features of the small intestinal epithelium. (A)
[lustration of the main cell types in the small intestinal crypt and villus. (B) Uniform manifold
approximation and projection (UMAP) of 11,665 small intestinal cells (21) from the duodenum,
jejunum, and ileum (n=2 mice) colored by cell type. TA, transit amplifying; EP, enterocyte
progenitor. (C) Network diagram of significant cell type interactions from (B) identified by
Neighbor-seq. Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with
a mean count > 10 and enrichment score combined adjusted p-value < 0.05 (see Methods). Edge
thickness represents interaction p-value and edge color represents counts. Green color scale
represents anatomical progression from crypt to villus. (D) UMAP of 5,279 cells from the small
intestine (6) (n=1 mouse) colored by cell type. Neighbor-seq is trained on these cells and used to
predict the interaction network in a dataset of partially dissociated intestinal clumps. (E) Network
diagram of significant cell type interactions identified by Neighbor-seq from 3,671 small intestinal
clumps. Methods, edge color and thickness, and colors scale are the same as in (C). (F) Adjacency
matrix representation of the networks from (C) and (E). Cell labels were harmonized based on cell

ontologies. Red color indicates the presence of a connection, white indicates no connection.
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Figure 3. Detecting known microanatomical features of the terminal respiratory tract. (A)
[lustration of the main cell types in the terminal bronchioles and alveolus. AT1, alveolar type 1
cell, AT2, alveolar type 2 cell (B) Uniform manifold approximation and projection (UMAP)
65,662 cells (22) from the terminal respiratory tract (n=5 human samples) colored by cell type. (C)
Network diagram of significant cell type interactions from (B) identified by Neighbor-seq, colored
by known microanatomical compartment. Data is shown for n=10 iterations, mean counts > 10,
combined p-value < 0.05. (D) UMAP of 6,084 mouse lung cells (6) (n=3 mice) colored by cell
type. Neighbor-seq is trained on these cells and used to predict the interaction network in a dataset
of partially dissociated lung clumps. (E) Network diagram of significant cell type interactions
identified by Neighbor-seq from 4,729 lung clumps. Methods, edge color and thickness, and colors
scale are the same as in (C). (F) Adjacency matrix representation of the networks from (C) and
(E). Cell labels were harmonized based on cell ontologies. Red color indicates the presence of a

connection, white indicates no connection.

Figure 4. Detecting known microanatomical features of the splenic white pulp. (A) Illustration
of the main cell types in the splenic white pulp. (B) Uniform manifold approximation and
projection (UMAP) of 94,050 splenic white pulp immune cells (23) (n=19 human samples) colored
by cell type. DC, dendritic cell; GC, germinal center; ILC, innate lymphoid cell; NK, natural killer
cell. (C) Network diagram of significant cell type interactions from (B) identified by Neighbor-
seq, colored by known cell type lineage. Data is shown for n=10 iterations, mean counts > 5,
combined p-value < 0.05. (D) UMAP of 9,552 murine immune cells from Tabula Muris (24)
colored by cell type. (E) Network diagram of significant cell type interactions from (D) identified
by Neighbor-seq, colored by known cell compartment. Methods, edge color and thickness, and

colors scale are the same as in (C).

Figure 5. Identification of cell type interactions in pancreatic cancer. (A) Uniform manifold
approximation and projection (UMAP) of 57,530 primary human cells (25) from n=24 pancreatic
ductal adenocarcinomas and n=11 control pancreatic tissues colored by cell type. (B) Network
diagram of significant cell type interactions from (A) identified by Neighbor-seq, colored by
known cell compartment. Edge thickness represents interaction p-value and edge color represents

counts. Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with a mean
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count > 10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C)
Comparison of the number of co-expressed ligand-receptor pairs in enriched (statistically
significant) doublet types, not enriched doublets, and random synthetic doublets from (A).
Boxplots show median (line), 25" and 75" percentiles (box) and 1.5xIQR (whiskers). Points
represent outliers. Wilcoxon tests, ****p<(0.0001. (D) Heatmap and hierarchical clustering of cell
type betweenness centrality in interaction networks for each sample. Rows represent cell types and
columns represent samples; T#, tumor sample; N#, normal sample; ME#, microenvironment. (E)
Spatial transcriptomic maps of two pancreatic tumors (26) (32)(32)(32)(32)with n=428 (top) and
n=224 (bottom) barcodes, colored by cell-type abundance scores. Correlation of abundance score
of multiple cell type pairs, identified in Fig 3B, were significant (tumor and ductal cells: A: r=0.19,
p=2e-2; B: 1=0.44, p=4e-10; tumor cells and fibroblasts: A: r=0.30, p=8e-9; ductal and acinar cells:
A: 1=0.16, p=2e-2; ductal and endocrine cells: A: r=0.29, p=5e-8; ductal and endothelial cells A:

r=0.41, p=le-17; Spearman correlation). See Fig. S3 for additional instances.

Figure 6. Identification of cell type interactions in skin cancer. (A) Uniform manifold
approximation and projection (UMAP) of 48,164 primary human cells from n=10 cutaneous
squamous cell carcinomas (27)(27)(27)(27)(27) colored by cell type. TSK, tumor-specific
keratinocyte; KC, keratinocyte; Cyc, cycling; Diff, differentiating. (B) Network diagram of
significant cell type interactions from (A) identified by Neighbor-seq, colored by known cell
compartment. Edge thickness represents interaction p-value and edge color represents counts.
Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with a mean count >
10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C) Spatial
transcriptomic maps of four patients (P2: n=666, P5: n=521, P9: n=1145, P10: n=608 barcodes)
colored by cell-type abundance scores (see Methods). (D) Boxplots comparing spatial barcode
cell-type abundance scores between cell-type pairs with enriched doublets from (B) compared to
all other possible pairs. Boxplots show median (line), 25" and 75 percentiles (box) and 1.5xIQR
(whiskers). Points represent outliers. Wilcoxon testing. (E) Comparison of the number of co-
expressed ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched

doublets, and random synthetic doublets from (A). Boxplots are the same as in (D).
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Figure S1. Neighbor-seq performance on benchmark datasets. (A) Fraction and number of
doublets found in benchmark datasets. (B) Comparison of the number of co-expressed ligand-
receptor pairs in enriched (statistically significant) doublet types, not enriched doublets, and
random synthetic doublets from the benchmarking studies in Fig. 1D using ligand-receptor data
from CellTalkDB (16). Boxplots show median (line), 25" and 75" percentiles (box) and 1.5xIQR
(whiskers). Points represent outliers. Wilcoxon tests, ****p<0.0001. (C) Comparison of the
number of co-expressed ligand-receptor pairs in enriched (statistically significant) doublet types,
not enriched doublets, and random synthetic doublets from benchmark datasets with
experimentally annotated doubles (see Table S1). Boxplots are as in (B). (D) Neighbor-seq
artificial multiplet classification performance on the cline-ch dataset for label-shuffled cell-types.
AUC, area under the curve. (E) Comparison of distributions of area under the receiver operator
curves (AUC) for artificial multiplet classification of the cline-ch dataset for true (Fig. 1D) vs.
label-shuffled (Fig. S1D) data. Boxplots as in (A), Wilcoxon testing. (F) Average artificial
multiplet type classification performance for all benchmark datasets. AUC, area under the receiver

operator curve.

Figure S2. Interactions in pancreatic cancer. (A) Dot plot showing neighbor-types found across
samples in n=24 pancreatic tumors and n=11 control pancreatic tissues (25). Rows represent
neighbor-types and columns represent pancreas samples. T#, tumor sample; N#, normal sample.
Neighbor-seq is run for n=10 iterations and data is shown for neighbor types with mean counts >
10 and combined adjusted p-value < 0.05. (B) Adjacency matrix representation of the networks
from Fig. 5B and one tumor from Fig. SE. Red color indicates the presence of a connection, white

indicates no connection.

Figure S3. PDAC spatial transcriptomic maps colored by cell-type scores. (A) Spatial maps
for n=7 pancreatic tumors (26) colored by cell-type scores (see Methods).

Figure S4. Overview of Neighbor-seq algorithm. Schematic diagram of key Neighbor-seq steps:

(1) single-cell sequencing, cell type clustering, and marker gene identification, (2) enumerating

neighbor-types, (3) random forest training on a dataset of artificial multiplets and singlets, (4)

23


https://doi.org/10.1101/2022.04.15.488517
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488517; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

barcode composition prediction of the original dataset, (5) neighbor-type enrichment and cell-cell

network construction.

Figure S5. Benchmarking the fast implementation of Neighbor-seq. (A) Benchmarking
Neighbor-seq fast implementation doublet detection against 9 other methods using 16 datasets of
diverse tissue types with experimentally annotated doublets (see Table S1). Comparison of singlet
vs. doublet classification area under the receiver operator curve (AUROC) distributions. Boxplots
show median (line), 25" and 75" percentiles (box) and 1.5xIQR (whiskers). Points represent
outliers. (B) Neighbor-seq fast implementation barcode composition annotation performance of
cell-line barcodes in Fig. 1F, plotted by known barcode type. AUC = area under the receiver

operator curve.
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Figure 1. Benchmarking cell neighbor detection and annotation. (A) A schematic representation of the Neighbor-
seq workflow. (B) Uniform manifold approximation and projection (UMAP) of barcode RNA sequencing data singlets
and multiplets of known composition from 3 cancer cell lines, colored by cell-type identities and shaped by the number
of cells per barcode. (C) Neighbor-seq barcode composition annotation performance of cell-line barcodes in (B), plotted
by known barcode type. AUC = area under the receiver operator curve. (D) Benchmarking Neighbor-seq doublet
detection against 9 other methods using 16 datasets of diverse tissue types with experimentally annotated doublets (see
Table S1). Among these methods, only Neighbor-seq is explicitly optimized to infer doublet composition. Comparison
of singlet vs. doublet classification area under the receiver operator curve (AUROC) distributions are shown. Boxplots
show median (line), 25" and 75" percentiles (box) and 1.5xIQR (whiskers). Points represent outliers. (E) Comparison
of the number of co-expressed ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched
doublets, and random synthetic doublets from the benchmarking studies in (D). Descriptions of the boxplots are as in
(D). (Wilcoxon tests, ****p<0.0001. See also Fig. S1A). (F) Neighbor-seq example receiver operator curve for
classifying artificial multiplet types in the cline-ch study, one of the benchmark studies used in (D). AUC, area under
the curve. (G) Robustness of cell neighbor type annotation. Comparison of the distribution of coefficients of variation
for neighbor type counts from the cline-ch benchmark dataset across n=10 runs of Neighbor-seq and scDblFinder
(Wilcoxon test, boxplots as in (D)).
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Figure 2. Detecting known microanatomical features of the small intestinal epithelium. (A) Illustration of the main cell types
in the small intestinal crypt and villus. (B) Uniform manifold approximation and projection (UMAP) of 11,665 small intestinal
cells (21) from the duodenum, jejunum, and ileum (n=2 mice) colored by cell type. TA, transit amplifying; EP, enterocyte
progenitor. (C) Network diagram of significant cell type interactions from (B) identified by Neighbor-seq. Neighbor-seq is run for
n=10 iterations, and interactions are shown for edges with a mean count > 10 and enrichment score combined adjusted p-value <
0.05 (see Methods). Edge thickness represents interaction p-value and edge color represents counts. Green color scale represents

anatomical progression from crypt to villus. (D) UMAP of 5,279 cells from the small intestine

(6) (n=1 mouse) colored by cell

type. Neighbor-seq is trained on these cells and used to predict the interaction network in a dataset of partially dissociated
intestinal clumps. (E) Network diagram of significant cell type interactions identified by Neighbor-seq from 3,671 small intestinal
clumps. Methods, edge color and thickness, and colors scale are the same as in (C). (F) Adjacency matrix representation of the
networks from (C) and (E). Cell labels were harmonized based on cell ontologies. Red color indicates the presence of a

connection, white indicates no connection.
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Figure 3. Detecting known microanatomical features of the terminal respiratory tract. (A) Illustration of the main cell
types in the terminal bronchioles and alveolus. AT1, alveolar type 1 cell, AT2, alveolar type 2 cell (B) Uniform manifold
approximation and projection (UMAP) 65,662 cells (21) from the terminal respiratory tract (n=5 human samples) colored by
cell type. (C) Network diagram of significant cell type interactions from (B) identified by Neighbor-seq, colored by known
microanatomical compartment. Data is shown for n=10 iterations, mean counts > 10, combined p-value < 0.05. (D) UMAP of
6,084 mouse lung cells (6) (n=3 mice) colored by cell type. Neighbor-seq is trained on these cells and used to predict the
interaction network in a dataset of partially dissociated lung clumps. (E) Network diagram of significant cell type interactions
identified by Neighbor-seq from 4,729 lung clumps. Methods, edge color and thickness, and colors scale are the same as in
(C). (F) Adjacency matrix representation of the networks from (C) and (E). Cell labels were harmonized based on cell
ontologies. Red color indicates the presence of a connection, white indicates no connection.
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Figure 4. Detecting known microanatomical features of the splenic white pulp. (A) Illustration of the main cell types in
the splenic white pulp. (B) Uniform manifold approximation and projection (UMAP) of 94,050 splenic white pulp immune
cells (Madissoon et al., 2019) (n=19 human samples) colored by cell type. DC, dendritic cell; GC, germinal center; ILC,
innate lymphoid cell; NK, natural killer cell. (C) Network diagram of significant cell type interactions from (B) identified by
Neighbor-seq, colored by known cell type lineage. Data is shown for n=10 iterations, mean counts > 5, combined p-value <
0.05. (D) UMAP of 9,552 murine immune cells from Tabula Muris (Schaum et al., 2018) colored by cell type. (E) Network
diagram of significant cell type interactions from (D) identified by Neighbor-seq, colored by known cell compartment.
Methods, edge color and thickness, and colors scale are the same as in (C).
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Figure 5. Identification of cell type interactions in pancreatic cancer. (A) Uniform manifold approximation and
projection (UMAP) of 57,530 primary human cells (Peng et al., 2019) from n=24 pancreatic ductal adenocarcinomas and
n=11 control pancreatic tissues colored by cell type. (B) Network diagram of significant cell type interactions from (A)
identified by Neighbor-seq, colored by known cell compartment. Edge thickness represents interaction p-value and edge
color represents counts. Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with a mean count >
10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C) Comparison of the number of co-expressed
ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched doublets, and random synthetic
doublets from (A). Boxplots show median (line), 25% and 75" percentiles (box) and 1.5xIQR (whiskers). Points represent
outliers. Wilcoxon tests, ****p<0.0001. (D) Heatmap and hierarchical clustering of cell type betweenness centrality in
interaction networks for each sample. Rows represent cell types and columns represent samples; T#, tumor sample; N#,
normal sample; ME#, microenvironment. (E) Spatial transcriptomic maps of two pancreatic tumors (Moncada et al.,
2020a) with n=428 (top) and n=224 (bottom) barcodes, colored by cell-type abundance scores. Correlation of abundance
score of multiple cell type pairs, identified in Fig 3B, were significant (tumor and ductal cells: A: r=0.19, p=2e-2; B:
r=0.44, p=4e-10; tumor cells and fibroblasts: A: r=0.30, p=8e-9; ductal and acinar cells: A: r=0.16, p=2e-2; ductal and
endocrine cells: A: r=0.29, p=5e-8; ductal and endothelial cells A: r=0.41, p=1e-17; Spearman correlation). See Fig. S3 for
additional instances.
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Figure 6. Identification of cell type interactions in skin cancer. (A) Uniform manifold approximation and projection
(UMAP) of 48,164 primary human cells from n=10 cutaneous squamous cell carcinomas (26) colored by cell type. TSK,
tumor-specific keratinocyte; KC, keratinocyte; Cyc, cycling; Diff, differentiating. (B) Network diagram of significant cell
type interactions from (A) identified by Neighbor-seq, colored by known cell compartment. Edge thickness represents
interaction p-value and edge color represents counts. Neighbor-seq is run for n=10 iterations, and interactions are shown for
edges with a mean count > 10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C) Spatial
transcriptomic maps of four patients (P2: n=666, P5: n=521, P9: n=1145, P10: n=608 barcodes) colored by cell-type
abundance scores (see Methods). (D) Boxplots comparing spatial barcode cell-type abundance scores between cell-type pairs
with enriched doublets from (B) compared to all other possible pairs. Boxplots show median (line), 25" and 75" percentiles
(box) and 1.5xIQR (whiskers). Points represent outliers. Wilcoxon testing. (E) Comparison of the number of co-expressed
ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched doublets, and random synthetic doublets
from (A). Boxplots are the same as in (D).
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