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ABSTRACT 

Cell-cell interactions are the fundamental building blocks of tissue organization and 

multicellular life. We developed Neighbor-seq, a method to identify and annotate the 

architecture of direct cell-cell interactions and relevant ligand-receptor signaling from the 

undissociated cell fractions in massively parallel single cell sequencing data. Neighbor-seq 

accurately identifies microanatomical features of diverse tissue types such as the small 

intestinal epithelium, terminal respiratory tract, and splenic white pulp. It also captures the 

differing topologies of cancer-immune-stromal cell communications in pancreatic and skin 

tumors, which are consistent with the patterns observed in spatial transcriptomic data. 

Neighbor-seq is fast and scalable. It draws inferences from routine single-cell data and does 

not require prior knowledge about sample cell-types or multiplets. Neighbor-seq provides a 

framework to study the organ-level cellular interactome in health and disease, bridging the 

gap between single-cell and spatial transcriptomics. 

 

INTRODUCTION  

The spatial context of cells in a tissue and their resulting cell-cell communications 

influence numerous processes, including cellular differentiation, organ development and 

homeostasis, and immune interactions in disease (1). Few high-throughput methods exist that can 

resolve direct cellular communications in vivo at single-cell resolution. Single-cell RNA 

sequencing (scRNA-seq) can identify cell-types and states in heterogeneous tissues, but the tissue 

structure is largely destroyed in the process (2). Microscopy-based methods such as RNAscope 

and FISH can interrogate only preselected genes at high spatial resolution. Spatial transcriptomics 
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allows profiling of microscopic regions, but still samples 10-100 cells per region (3, 4). Sequencing 

of partially dissociated tissues and subsequent multiplet deconvolution permits inference of 

physical cell interactions, but this requires specialized experimental modifications (5–8). A general 

method that can infer direct cell-cell interactions and concurrent transcriptomic changes in vivo at 

single cell resolution would provide unprecedented insight into the building blocks of tissue 

architecture in healthy and diseased tissues.  

Cell aggregates (multiplets) naturally arise in scRNA-seq experiments when two or more 

cells are captured in the same reaction droplet, and they typically represent at least several percent 

of all capture events (9, 10). Such multiplets occur primarily due to incomplete tissue dissociation
 

(6), or occasionally by random co-encapsulation. We developed Neighbor-seq, a method to infer 

physical cell-cell communications by identifying, annotating, and analyzing cell multiplets from 

the undissociated cell fractions in scRNA-seq data using computational approaches (see Methods, 

Fig. 1A). Neighbor-seq provides a framework to study the cellular interactome in health and 

disease using standard scRNA-seq data.  

 

METHODS AND MATERIALS 

Neighbor-seq algorithm 

Neighbor-seq is a method to infer physical cell-cell communications by identifying, 

annotating, and analyzing cell multiplets from the undissociated cell fractions in scRNA-seq data 

using machine learning approaches. The Neighbor-seq algorithm consists of the following 

components, each further described below: (i) barcode clustering and marker gene identification, 

(ii) Random Forest classifier training to identify multiplets and their cell type compositions, (iii) 

calculating enrichment scores for cell-cell interactions, and (iv) construction of cell-cell 

interactome network and analysis of cell-neighbor transcriptomes, including ligand-receptor 

interactions (Fig. S4).  

Input and cell type identification: The input for Neighbor-seq is a cell by gene counts 

matrix, and optionally, cell-type cluster labels. If cell-type labels are not provided, Neighbor-seq 

utilizes a wrapper function to run Seurat (11) functions that TP10K normalize and scale the 

scRNA-seq data, find a default of 5000 variable genes, perform principle component analysis with 

n=50 components, and identify cell type clusters. Cell-type marker genes are then identified using 

the FindAllMarkers function using a default of 200 cells subsampled for each cluster, an average 
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log fold change threshold cutoff of 1, and minimum fraction of cells expressing a gene of 0.2 for 

computational efficiency. If cell-type labels are known a priori, only normalization and marker 

finding functions are run.  

 Random Forest classifier training: Next, all homotypic and heterotypic combinations for 

a default of 2 cell-types are enumerated (e.g. AA, AB, etc.). Cells forming a doublet or multiplet 

are hereon referred to as “neighbors”, and the “neighbor-type” indicates the identities of the 2+ 

cells on a single barcode. For each neighbor-type, artificial multiplets are created by randomly 

sampling cells from the constituent cell types and the prepared input gene by cell matrix and 

summing their gene counts. A random forest is then trained using a balanced set of singlets and 

artificial multiplets to predict the cell type composition of the barcodes from the assembled dataset. 

Although the majority of barcodes are expected to contain single cells, a balanced training set is 

used to increase random forest prediction accuracy. As such, a default of 100 artificial multiplets 

is created for each neighbor-type, and these are pooled with a default of 100 singlets from each 

originally identified cell-type to create the training set. A random forest trained, and hold-out 

artificial multiplets data are used to assess random forest performance. The multiROC R package 

is used to compute receiver operator curves. The process is iterated multiple times to retrain and 

generate an ensemble annotation result. The trained random forest is then used to predict the 

barcode composition of all barcodes in the original dataset. Two random forest implementations 

are incorporated in Neighbor-seq: the randomForest(12) R package, run with a default of 500 trees, 

and a faster implementation via the xgboost(13) R package, configured with the following 

parameters: objective=multi:softprob, eval_metric=mlogloss, nround=1, max_depth=20, 

num_parallel_tree=200, subsample=0.632, colsample_bytree=sqrt(number cells)/total number of 

cells, and colsample_bynode=sqrt(number of cells)/total number of cell. The faster 

implementation is preferred with large datasets and is set as the default in Neighbor-seq. Both 

implementations generated consistent results on benchmark analyses (Fig. S5b).  

Determining significantly enriched cell-cell interactions: Neighbor-seq calculates an 

enrichment score for each cell-type interaction and compares it to the distribution of enrichment 

scores expected by chance. The interaction enrichment score reflects the proportion of counts of a 

neighbor type relative to the product of the total number of edges detected from each constituent 

cell and all other cell types. For neighbor type C1Cn composed of cell types C1 … Cn, the 

enrichment score is specifically defined as:  
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The observed enrichment score for a neighbor type is compared to that expected by chance. The 

null hypothesis assumes that multiplet formation is random and thus the distribution of neighbor-

types follows the underlying singlet population counts. As such, for each sample in a dataset, given 

n predicted singlets and m predicted multiplets consisting of x constituent cells, Neighbor-seq 

simulates the synthetic creation of m multiplets drawing without replacement from n+x cells. The 

resulting neighbor-types are tallied and their enrichment scores are computed. This simulation is 

repeated for a default of 100 times; for each neighbor type, lower tailed Wilcoxon testing quantifies 

the probability that the simulated enrichment scores have a central tendency greater than the 

observed enrichment score. All probabilities are adjusted using the Holm correction.   

 Construction of a cell-cell interactome network and transcriptomic analysis: The primary 

outputs of Neighbor-seq are:(1) the artificial multiplet training and test sets, (2) the trained random 

forest, (3) the barcode classification probabilities for all barcode classes, and (4) the neighbor 

enrichment analysis. The latter reports the counts of each multiplet class detected in a sample as 

well as its enrichment score and corresponding p-value. When an ensemble result is generated by 

retraining the algorithm over multiple iterations, Neighbor-seq additionally reports the mean 

counts for each multiplet class and a combined p-value using Fisher’s method. Using the cell 

neighbor type enrichment data, we use igraph(14) to plot a network, and it is possible to calculate 

network statistics such as degree and centrality. We use ligand-receptor data from Ramilowski et 

al.(15) or Shao et al. (16) to identify highly expressed ligand-receptor pairs in cell neighbors. 

Differentially expressed genes and other transcriptomic features in neighbor-types can be assessed 

using Seurat(11). 

 

Benchmarking, robustness, and reproducibility 

We used a number of different metrics for benchmarking Neighbor-seq. 

 Comparative assessment with other doublet finding methods: We obtained scRNA-seq data 

for the benchmark annotated doublet datasets from Xi et al.(10) (see Table S1 for dataset details) 

and compared Neighbor-seq’s ability to identify singlets vs. doublets against the following 9 
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published methods: doubletCells(17), Scrublet(9), DoubletDetection 

(https://github.com/JonathanShor/DoubletDetection) , cxds(18),bcds(18), hybrid(18),  solo(19), 

DoubletFinder(20), and scDblFinder (https://github.com/plger/scDblFinder). These methods are 

optimized to distinguish singlets and filter out doublets in scRNA-seq data, and only scDblFinder 

has the ability to propose doublet composition. These methods generally rely on simulating 

artificial doublets, projecting data into a lower dimensional space, and using a machine or deep 

learning classifier to annotate barcodes. In contrast, Neighbor-seq utilizes cell-type specific 

clustering and marker gene sets to train a classifier directly on the gene counts of all possible 

expected barcode compositions, and it explicitly assigns multiplet class probabilities for each 

barcode rather than annotating the broader label of singlet or doublet. To evaluate Neighbor-seq, 

we ran Neighbor-seq using the default parameters on each benchmark dataset. To compute the 

probability of each barcode being either a singlet or doublet, we summed the Neighbor-seq 

probabilities for all doublet classes. Classification performance (area under the receiver operator 

curves) for the 9 benchmark doublet finding methods tested on these datasets were obtained from 

Xi et al.(10), who ran these methods using their default settings. Area under the receiver operator 

curves for the Neighbor-seq singlet vs. doublet classification were calculated as above with 

multiROC and compared with all other methods.  

 To compare the stability of doublet population predictions across multiple runs from 

Neighbor-seq and scDblFinder, we ran each algorithm 10 times on the cline-ch benchmark dataset 

obtained from Xi et al.(10) For each doublet class,  the coefficient of variation of its counts 

(mean/standard deviation) was computed, and the distributions of coefficients of variations were 

compared using Wilcoxon testing.  

Ensemble prediction: To increase reproducibility of results, artificial multiplet construction 

and/or random forest training can be run for multiple iterations and an ensemble results can be 

computed. For each neighboring cell-type pair, the mean observed counts and Fisher’s combined 

adjusted p-value are reported. We observed a high degree of reproducibility across multiple 

iterations and with a range of random seeds. These multiplet type counts and p-value thresholds 

for determining significant interactions were set to counts>10 and p-value<0.05 for most analyses 

in this study, but they can be adjusted and interpreted in light of data quality and known biology.  

 Evaluation of Ligand-receptor co-expression in cell neighbors: Ligand-receptor data was 

obtained from Ramilowski et al. (15) or Shao et al. (16). We compared three classes of barcodes: 
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(1) multiplet-classes with statistically significant enrichment, (2) multiplet-classes without 

statistical enrichment, and (3) randomly synthesized multiplets from the same datasets. Multiplet 

class statistical enrichment was determined as described above. Random multiplets of degree 2 

were created by aggregating the read counts of randomly sampled cells. We determined the number 

of matched ligand-receptor pairs as follows. Using TP10K normalized scRNA data, we called a 

gene ‘expressed’ in a barcode if its normalized count was greater than the 25
th

 percentile of 

expression across all barcodes. For each barcode in a dataset, we counted the number of expressed 

ligands whose receptor was also expressed. We compared the distributions of the number of co-

expressed ligand-receptor pairs across the three barcode classes (enriched multiplet types, non-

enriched multiplet types, random multiplets) using Wilcoxon testing.  

 

Identifying cell-cell interactions in the small intestine  

We obtained scRNA-seq data and metadata, including cell-type annotations, from Haber et al.(21) 

UMAP plots were drawn using Seurat(11). Neighbor-seq was run for n=10 iterations using default 

parameters. Cell-cell interactions were considered significant for those interactions with mean 

counts>10 and combined p-value<0.05. The validation analysis in known intestinal singlets 

multiplets was done using data from Andrews et al.(6), who also provided metadata and cell-type 

annotations. Neighbor-seq was run with default parameters as above on the small intestine scRNA-

seq data. The resulting classifier was used to predict interactions in the accompanying small 

intestine partially dissociated clumps. Interactions were kept for those with counts>10 and adjusted 

p-value<0.05. Quantitative comparison of cell-cell networks from different studies was done by 

converting the networks into adjacency matrices and computing the inner product correlation. A 

permutation-based test was used to calculate the statistical significance of the inner product 

correlation. For a pair of matrices, random symmetric adjacency matrices are generated with the 

same number of nodes and edges as the test matrix, and a distribution of inner product correlations 

is computed. The center of this distribution is compared to the actual inner product correlation 

between the two test matrices using a one-sided Wilcoxon test.  

 

Identifying cell-cell interactions in the lung  

We obtained scRNA-seq data and metadata, including cell-type annotations, from Travaglini et 

al.(22) To reduce computational complexity, cell-type annotations were collapsed into the 
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following parent classes: alveolar, basal, ciliated, club, endothelial, fibroblast, goblet, immune, 

mucous, smooth muscle. UMAP plots were drawn using Seurat(11). Neighbor-seq was run for 

n=10 iterations using default parameters. Cell-cell interactions were considered significant for 

those interactions with mean counts>10 and combined p-value<0.05. The validation analysis in 

known lung singlets and multiplets was done using data from Andrews et al.(6), who also provided 

metadata and cell-type annotations. Neighbor-seq was run with default parameters as above on the 

lung scRNA-seq data. The resulting classifier was used to predict interactions in the accompanying 

lung partially dissociated clumps. Interactions were kept for those with counts>10 and adjusted p-

value<0.05. Quantitative comparison of cell-cell networks from different studies was done with 

the permutation-based inner correlation test as described for the small intestine analysis. 

 

Identifying cell-cell interactions in the spleen  

We obtained scRNA-seq data and metadata, including cell-type annotations, from Madissoon et 

al.(23) To reduce computational complexity, cell-type annotations were collapsed into the 

following parent classes: CD34 progenitor, CD4 T-cells, CD8 T-cells, Cycling T-cells, dendritic 

cells, follicular B cells, germinal center B cells, innate lymphoid cells, macrophage, mantle B cells, 

monocytes, natural killer cells, plasma B cells, and platelets. UMAP plots were drawn using 

Seurat(11). Neighbor-seq was run for n=10 iterations using default parameters. This study 

contained data from 19 human samples. Cell-cell interactions were considered significant for those 

interactions found in >1 sample and with mean counts>5 and combined p-value<0.05. The 

validation analysis was done using spleen data from Tabula Muris(24), who also provided 

metadata and cell-type annotations. Cell-type annotations were appended with their cluster label, 

resulting in multiple B-cell, T-cell, and myeloid clusters. Neighbor-seq was run with default 

parameters as above. Cell-cell interactions were considered significant for those interactions with 

mean counts>5 and combined p-value<0.05. 

 

Identifying cell-cell interactions in pancreatic cancer  

We obtained scRNA-seq data and metadata, including cell-type annotations, from Peng et al.(25) 

UMAP plots were drawn using Seurat(11). Neighbor-seq was run for n=10 iterations using default 

parameters. Cell-cell interactions were considered significant for those interactions with mean 

counts>10 and combined p-value<0.05. Ligand-receptor analysis was done as described above. 
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Betweenness centrality was calculated using igraph(14). Hierarchical clustering of betweenness 

centralities scaled by cell-type was done using the pheatmap R package (https://CRAN.R-

project.org/package=pheatmap). Spatial transcriptomic data for PDAC tumors was obtained from 

Moncada et al.(26) Cell-type scores for each spatial barcode were calculated as follows. We used 

the FindAllMarkers function from Seurat(11) to find differentially expressed genes for the PDAC 

cell-types in Peng et al(25). Only highly cell-type specific genes were found by using these 

parameters: logfc.threshold=2, min.diff.pct=0.5, min.pct=0.5. Spatial barcodes were TP10K 

normalized, and cell-type scores were calculated as the average expression of each cell-type gene 

signature. Scores Spearman correlations were computed using the cor.test function in R. 

Quantitative comparison of cell-cell networks from different studies was done by converting the 

networks into adjacency matrices and computing the inner product correlation. The Spearman 

correlation matrix of the transcriptomic data was used as the adjacency matrix, only keeping those 

edges with values r>0.2 and p<0.05. A permutation-based test was used to calculate the statistical 

significance of the inner product correlation as described above.  

 

Identifying cell-cell interactions in skin cancer  

We obtained scRNA-seq data and metadata, including cell-type annotations, from Ji et al. (27). To 

reduce computational complexity, immune cell-types annotations were collapsed into parent 

lymphoid and myeloid classes. UMAP plots were drawn using Seurat (11). Neighbor-seq was run 

for n=10 iterations using default parameters. Cell-cell interactions were considered significant for 

those interactions with mean counts>10 and combined p-value<0.05. Ligand-receptor analysis was 

done as described above. Cell-type scores for each spatial barcode was calculated as follows. We 

used the FindAllMarkers function from Seurat (11) to find differentially expressed genes for the 

cell-types in Ji et al. Only highly cell-type specific genes were found by using these parameters: 

logfc.threshold=0.5, min.diff.pct=0.52. Marker genes were only kept if they were differentially 

expressed in <5 cell types. Spatial barcodes were TP10K normalized, and cell-type scores were 

calculated as the average expression of each cell-type gene signature. Scores Pearson correlations 

were computed using the cor.test function in R.  

 

RESULTS 
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Neighbor-seq identifies physical cell interactions by using a machine learning classifier 

that annotates the cellular composition of each scRNA-seq barcode. Briefly, scRNA-seq data is 

filtered to remove low quality cells, the remaining barcodes are clustered based on their gene 

expression, and cluster marker genes are identified using a standard approach (11). A vast majority 

of the barcodes typically represent genuine single cells, with a minority being doublets or 

multiplets. Next, a training set of artificial multiplets is constructed representing all possible 

multiplet types by randomly sampling cells from each cell cluster and aggregating their raw read 

counts. The artificial multiplets can be homotypic (same cell-type) or heterotypic (different cell-

type) and can be of order 2 (e.g. AA, AB, BB etc.) or higher (e.g. AAA, ABA, etc.). A Random 

Forest cell-type classifier is trained based on the expression of marker gene sets from n (default: 

100) randomly sampled barcodes from each artificial multiplet type, as well as n barcodes from 

each original cell type cluster, which are predominantly singlets. Neighbor-seq then applies the 

classifier to annotate each barcode in the original dataset and identifies those classified as 

multiplets. An ensemble annotation result is generated by iterating the algorithm. Neighbor-seq 

computes the enrichment and corresponding statistical significance of the observed frequencies of 

multiplet types compared to that expected based on the prevalence of the original cell-types in the 

dataset. Accordingly, Neighbor-seq constructs a network representing significant cell-type 

interactions and enables transcriptomic analysis of interacting cells.  

 

Benchmarking and validation with known multiplets 

We evaluated Neighbor-seq’s ability to identify physically interacting cells via (1) 

annotation of multiplets with known composition, (2) detection of known doublets in diverse 

tissues, and (3) identification of known cellular architectures in solid tissues. First, we tested 

Neighbor-seq’s ability to annotate barcode composition in a controlled setting. We obtained 

scRNA-seq data (6) for three cancer cell lines that had been sorted as either singlets or multiplets 

of known composition (Fig. 1B); we trained Neighbor-seq on the singlet data and used it to 

annotate singlet and multiplet barcode compositions, which contained between 1-4 cells in 

nonsymmetrical combinations. Neighbor-seq classified all droplets with high accuracy (AUC: 

singlets: 1, doublets: 0.99, triplets: 0.94, quadruplets: 0.82; Fig. 1C), indicating that it can reliably 

infer barcode composition.  
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Next, we benchmarked Neighbor-seq against 9 other published doublet-finding methods 

using 16 datasets of diverse tissue types in which doublets were experimentally annotated (10) 

(Table S1). Neighbor-seq performed better or equally well to all published methods in identifying 

doublets (Wilcoxon p > 0.8, Fig. 1D), but with the unique advantages of (1) determining multiplet 

cell-types, (2) identifying significantly enriched cell-type interactions, (3) requiring no parameter 

tuning, and (4) making no assumptions about the underlying doublet frequencies, which ranged 

from 2.5% to 37% in the benchmark datasets (Fig. S1A) and may not be known a priori in a real 

dataset. Moreover, Neighbor-seq is also the only method that can annotate higher order multiplets 

and can transfer knowledge across datasets.  

We further hypothesized that since doublets contain neighboring cells, they would have 

increased co-expression of ligand-receptor pairs. Indeed, enriched doublets-types co-expressed 

significantly more ligand-receptor pairs than non-enriched doublets, and significantly more pairs 

than randomly synthesized doublets (both Wilcoxon p < 2.2e-16, Fig. 1E, Fig. S1B, see Methods 

for details). This was true in aggregate using two different ligand-receptor databases (15,16) and 

for each benchmark study individually (Fig. S1B).  

Neighbor-seq performed exceptionally well at classifying singlets and all artificial doublet 

types (average AUC = 0.99, Fig. 1F) and performed significantly better than expected by chance 

when cell-type labels were randomized (cline_ch data; average AUC = 0.501, Wilcoxon p < 2.2e-

16, Fig. S1C-D). Neighbor-seq classification accuracies across all benchmark datasets were 

similarly high (all AUC > 0.92, Fig. S1E). While Neighbor-seq is the only method designed to 

infer doublet-types, scDblFinder also proposes doublet compositions, but when comparing the 

stability of doublet-type counts across multiple runs on the same dataset, Neighbor-seq results 

were significantly more stable (Wilcoxon p < 2.2e-16, Fig. 1G). These results indicate that 

Neighbor-seq successfully and identifies doublets across a range of tissue types and reproducibly 

annotates their cellular composition. Taken together, these attributes make Neighbor-seq first in 

the class of innovative computational methods that can help reconstruct physical cell interaction 

networks from single-cell sequencing data. 

 

Identifying cell-cell interactions in the small intestine 

We examined whether Neighbor-seq could identify known interaction architectures in 

multiple tissue types with varying levels of cell-type diversity and organization. First, we tested 
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Neighbor-seq on a scRNA-seq survey of the small intestinal epithelium containing 11,666 cells 

from n=2 mice (21). The small intestine consists of alternating units of villi and crypts. Paneth 

cells in the crypt protect the residing stem cells, which differentiate and migrate upwards through 

various progenitor stages until becoming mature enterocytes, while goblet cells are scattered 

throughout villus (28) (Fig. 2A). We identified the major cell types (Fig. 2B) and used Neighbor-

seq to recover their cellular adjacencies. Neighbor-seq correctly detected Paneth-stem interactions, 

a progression from stem to mature enterocytes, and multiple goblet cell interactions in the villus 

(Fig. 2C, see Methods for details). We confirmed this microanatomy by training Neighbor-seq on 

a separate study of 5,279 small intestinal singlets and used it to identify interactions in a dataset of 

3,671 intestinal multiplets (6) (Fig. 2D). This validation analysis revealed a similar interaction 

network as obtained only from scRNA-seq data (Fig. 2E). Differences between the schematic 

illustration and the two networks are primarily due to different cell types annotated in the two 

datasets and different optimized network layouts; nonetheless, both networks recapitulate a 

progression from the Paneth-stem crypt to the mature enterocytes at the top of the villus whilst 

passing through transition and progenitor cells. Furthermore, both networks supported known 

ligand-receptor signaling (28), such as LGR, LRP, BMP, and NOTCH- mediated interactions 

between Paneth and stem cells. The directionality of this signaling could be inferred by inspecting 

the stem and Paneth cell singlets data, in which stem cells had significantly higher expression of 

the aforementioned genes compared to Paneth cells (Wilcoxon testing, p<2e-16 for all four genes). 

To quantitatively compare the networks obtained from the two studies, we harmonized the cell 

labels based on cell ontology and represented them as adjacency matrices (Fig. 2F). The two 

matrices were significantly more correlated than expected by chance (inner product correlation = 

0.53, Wilcoxon permutation test, p=4e-17, see Methods), indicating that Neighbor-seq identified 

similar cell networks from independent studies of the same tissue types.  

 

Identifying cell-cell interactions in the lung 

Second, we tested Neighbor-seq’s ability to identify microanatomical structures in the lung, 

which contains interactions between cells of multiple lineages. The terminal bronchioles contain 

ciliated epithelium and club cells, smooth muscle, mucous secreting cells, and basal stem cells; 

gas exchange occurs in the alveoli, which contain alveolar pneumocytes and macrophages and are 

lined by vessels, fibroblasts, and smooth muscle (22) (Fig. 3A). We analyzed a human lung cell 
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atlas containing 65,662 cells from n=5 human donors (22), identified the cell-types (Fig. 3B) and 

recovered an interaction network (Fig. 3C, see Methods for details). Neighbor-seq correctly 

separated the bronchiolar and alveolar compartments and identified the gas exchange membrane 

between alveolar and endothelial cells. We confirmed detection of these cell-cell interactions in a 

dataset of lung singlets and multiplets (6) (Fig. 3D). Training Neighbor-seq on the singlet data and 

deconvoluting interactions from the known multiplets again revealed bronchiolar and alveolar 

compartments as well as several immune cell interactions (Fig. 3E). Neighbor-seq networks also 

corroborated known signaling pathways in lung development (29), such as by expression of 

NOTCH, FGF, and EGF ligands in basal- cell neighbors. Representing the networks derived from 

the two studies as adjacency matrices with harmonized cell-ontology labeling further indicated 

significant similarity in the cell-cell connections identified (Fig. 3F, inner product 

correlation=0.73, Wilcoxon permutation test, p=5e-17, see Methods).   

 

Identifying cell-cell interactions in the spleen 

Third, we used Neighbor-seq to predict interactions in the splenic white pulp, a structure 

not held by tight junctions but whose organization is chemokine driven (30). The white pulp is 

surrounded by myeloid cells and consists of separate B- and T-cell zones, with B-cell follicles 

further separating into germinal centers and mantle zones and T-cells interacting with antigen 

presenting myeloid cells (30) (Fig. 4A). We used Neighbor-seq to analyze a dataset of human 

spleen containing 94,050 immune cells from n=19 human samples (23) (Fig. 4B, see Methods for 

details). Neighbor-seq correctly identified the B and T-cell zones; germinal centers did not interact 

with non-B-cells, and myeloid cells interacted with both B and T lymphocytes (Fig. 4C). We 

confirmed these structures by analyzing splenic tissue from the Tabula Muris (24) containing 9,552 

cells of lymphoid and myeloid origin (Fig. 4D). Neighbor-seq again identified B and T-cell zones 

with myeloid interactions (Fig. 4E). Collectively, these analyses confirmed that Neighbor-seq can 

correctly identify direct cell-cell interactions and microanatomies in vivo in diverse tissue types.  

 

Identifying cell-cell interactions in pancreatic cancer 

We next used Neighbor-seq to analyze inter-cellular interactions in pancreatic ductal 

adenocarcinoma (PDAC). We obtained scRNA-seq data for 24 tumors and 11 control samples (25); 

these tissues had normal to poorly differentiated histopathology, were from anatomic locations 
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throughout the pancreas (Table S2), and in total contained 57,530 cells from a mixture of normal 

and malignant epithelial cells and immune, stromal, and endothelial cells (Fig. 5A). Neighbor-seq 

detected 17,580 doublets (31% of barcodes), of which 1,373 were heterotypic doublets (2.3% of 

all barcodes) – this fraction of heterotypic cell neighbors was typical for all datasets analyzed.  

Out of 45 possible heterotypic cell-type pairs, Neighbor-seq identified 19 enriched 

interactions (Fig. 5B). Normal pancreatic epithelium (ductal, endocrine, acinar cells) interacted 

with each other and with endothelial cells, whereas tumor cells had stronger connections with 

ductal cells and fibroblasts and immune cells interacted with most cell-types. These interactions 

were detected across multiple samples, the most common being B cell-myeloid, ductal-tumor, and 

tumor-T cell interactions (Fig. 5B, Fig. S2A, Table S3). Again, enriched cell neighbors co-

expressed significantly more matched ligand-receptor pairs than non-enriched doublet-types or 

random synthetic doublets (Wilcoxon p < 2.2e-16, Fig. 5C). The detected neighboring cell 

communications were also consistent with existing literature. For example, BTK-dependent B-cell 

interactions with FCgR+ myeloid cells were recently implicated in PDAC progression (31), and 

we observed significantly greater BTK (Wilcoxon, p=6.3e-40) and FCGR1A expression (Wilcoxon, 

p=6.8e-59) in B cell-myeloid doublets compared to all other doublet-types. This highlights how 

Neighbor-seq can be used to identify interaction-specific transcriptional changes with functional 

relevance.  

The topology of cell-cell interactions varied across samples, which could be due to intra- 

or inter-tumor heterogeneity in cell interactions or differential presence/absence of doublet-types 

in a sample. We computed the betweenness centrality of cell-types in each sample, and clustering 

of these centrality scores revealed three classes of tissue microenvironments (ME, Fig. 5D). ME1 

contained mostly normal ductal epithelial connections, ME2 was dominated by tumor cell 

connections, and ME3 by immune cell edges (Fig. 5D). These ME classes had significantly 

different histopathological characteristics (Fisher’s exact test; pathology: p=5e-4; stage: p=5e-4; 

lymph node invasion: p=3e-3). These analyses indicate that Neighbor-seq can uncover direct 

cellular interactions and tumor microenvironment characteristics with functional or clinical 

relevance.   

Next, we analyzed spatial transcriptomic data for pancreatic ductal adenocarcinoma 

(PDAC) samples from a published study (26) where there were 243-996 spatially annotated 

barcodes per sample, each capturing the aggregated transcriptomic makeup of approximately 20-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.15.488517doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.15.488517
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

70 cells in tumor and adjacent normal tissue microenvironments. We observed organizational 

contexts similar to what we identified from scRNA-seq data alone. We used marker genes to 

calculate cell-type scores for each spatial barcode (see Methods; PDAC-A: n=428, PDAC-B: 

n=224 spatial barcodes) and visualized the distribution of cell-types in the tissues (Fig. 5E). Tumor 

cells co-localized with ductal cells (Spearman correlation; A: r=0.19, p=2e-2; B: r=0.44, p=4e-10) 

and fibroblasts (Spearman correlation; A: r=0.30, p=8e-9). Ductal cells co-localized with acinar 

cells (Spearman correlation; A: r=0.16, p=2e-2), endocrine cells (Spearman correlation; A: r=0.29, 

p=5e-8), and endothelial cells (Spearman correlation; A: r=0.41, p=1e-17). B and T cells were 

scattered throughout the tissue, but myeloid cells did not significantly co-localize with tumor cells. 

We observed similar patterns when visualizing spatial transcriptomic data for n=7 other PDAC 

tumors (Fig. S3A). These findings are broadly consistent with the architecture of cell-networks we 

deduced from scRNA-seq data of a different cohort of PDAC tumors (Fig. 5C), suggesting that 

despite intra- and inter-tumor heterogeneity, the topology of cell-cell interactions may be similar. 

We represented the cell-cell networks derived from scRNA-seq and the spatial transcriptomic data 

as cell adjacency matrices (Fig. S2B, see Methods). Inner product correlation further indicated that 

the cell adjacencies identified from the two studies were significantly more similar than expected 

by chance (r=0.33, p=2e-11). This validation across two different technology platforms reinforces 

Neighbor-seq’s ability to infer cellular connectomes from scRNA-seq data and bridge between 

single-cell and spatial transcriptomics, which has a resolution of 10
1
-10

2
 cells. 

 

Identifying cell-cell interactions in skin cancer 

 Lastly, we used Neighbor-seq to analyze physical cell interactions in cutaneous squamous 

cell carcinoma (SCC). We obtained scRNA-seq data for 10 tumors, of which 4 tumors also had 

spatial transcriptomic data (27). These tissues had moderate or well differentiated histology, were 

from various primary sites on the body, and the dataset in total contained 48,164 single-cell 

transcriptomes from 16 cell subtypes of epithelial, stromal, and immune origin (Fig. 6A). 

Neighbor-seq detected 15,626 doublets (32% of all barcodes), of which 5,346 were heterotypic 

doublets (11% of all barcodes). Of 105 possible heterotypic cell-type pairs, Neighbor-seq 

identified 38 significant pairwise interactions (Fig. 6B). Tumor cell populations were on the edge 

of the cell interaction network and showed significant interactions mostly with normal epithelium. 

Unlike in pancreatic cancer (Fig. 5B), immune cells were located peripherally in the network and 
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interacted mostly with normal epithelium. We did not observe direct connections between 

lymphoid cells and any tumor subpopulation (Fig. 6B), which might suggest potential immune 

evasion. 

 These general patterns identified from the inferred cell-interaction network agreed with 

observations made from spatial transcriptomic sequencing data of the same tumors profiled at 

8,179 spots. Using the single-cell data, we identified cell-type marker genes and used these to 

calculate cell-type scores for each spatial sequencing spot in 4 patients (see Methods). Coloring 

the spatial maps by composite tumor, normal epithelium and stroma, or immune scores revealed 

spatial contexts similar to those we identified with Neighbor-seq from the single-cell data alone 

(Fig. 6C). Most prominently in patient P2, tumor populations occupied a separate region of the 

spatial map with minimal immune presence, while the adjacent regions were rich in normal 

epithelium, stromal, and immune genetic activity. We next compared the specific cell-type pair 

associations identified by Neighbor-seq (Fig. 6B) with the cell-type score correlations in the 

matched spatial data. For all patients, cell-types with enriched neighbor interactions in scRNA-seq 

were significantly more correlated with each other across spatial spots than were cell-type pairs 

that did not have enriched doublets in scRNA-seq (P2: p=2.3e-7, P5: p=3.8e-4, P9: p=3.4e-6, P10: 

p=4.2e-10; Wilcoxon; Fig. 6D). Lastly, we confirmed that the enriched cell neighbors in scRNA-

seq exhibited increased pairwise crosstalk by assessing the number of co-expressed ligand-receptor 

pairs (see Methods). Consistent with our previous analyses, enriched doublets expressed 

significantly more ligand-receptor pairs than non-enriched doublets or randomly synthesized 

doublets (both Wilcoxon p<2.2e-16, Fig. 6E). Taken together, these results indicate that Neighbor-

seq accurately identifies and annotates multiplets that contain interacting cells across a range of 

normal and diseased tissues, and these interactions are consistent with spatial contexts identified 

from both the same and different samples.   

 

DISCUSSION 

In summary, Neighbor-seq infers direct cell-cell interactions by identifying undissociated 

cell multiplets in standard scRNA-seq data and classifying them according to their constituent cell-

types, ultimately building the cellular interactome in diverse normal and diseased tissues. It shows 

high accuracy and reproducibility, and the results are in agreement with prior knowledge about 

tissue microenvironments in well-studied tissues and with spatial transcriptomic data. Neighbor-
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seq complements emerging methods (5–8) that are optimized for deconvoluting the 

transcriptomics of single cells and cell clumps. It, however, reconstructs tissue-scale cell 

interaction networks using undissociated multiplets from standard scRNA-seq alone, thereby 

eliminating the need for specialized sample preparation and boosting scalability. Neighbor-seq 

provides a framework to study the topology of cell-cell interactome leading to the organization of 

tissue microenvironment, bridging the gap in resolution between single-cell and spatial 

transcriptomics. Neighbor-seq is available at https://github.com/sjdlabgroup/Neighborseq.  

 

DATA AVAILABILITY 

The Neighbor-seq resource and user-friendly documentations are freely available on Github at 

https://github.com/sjdlabgroup/Neighborseq 
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FIGURE CAPTIONS 

Figure 1. Benchmarking cell neighbor detection and annotation. (A) A schematic 

representation of the Neighbor-seq workflow. (B) Uniform manifold approximation and projection 

(UMAP) of barcode RNA sequencing data singlets and multiplets of known composition from 3 

cancer cell lines, colored by cell-type identities and shaped by the number of cells per barcode. (C) 

Neighbor-seq barcode composition annotation performance of cell-line barcodes in (B), plotted by 

known barcode type. AUC = area under the receiver operator curve. (D) Benchmarking Neighbor-
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seq doublet detection against 9 other methods using 16 datasets of diverse tissue types with 

experimentally annotated doublets (see Table S1). Among these methods, only Neighbor-seq is 

explicitly optimized to infer doublet composition. Comparison of singlet vs. doublet classification 

area under the receiver operator curve (AUROC) distributions are shown. Boxplots show median 

(line), 25
th

 and 75
th

 percentiles (box) and 1.5xIQR (whiskers). Points represent outliers. (E) 

Comparison of the number of co-expressed ligand-receptor pairs in enriched (statistically 

significant) doublet types, not enriched doublets, and random synthetic doublets from the 

benchmarking studies in (D). Descriptions of the boxplots are as in (D). (Wilcoxon tests, 

****p<0.0001. See also Fig. S1B-C). (F) Neighbor-seq example receiver operator curve for 

classifying artificial multiplet types in the cline-ch study, one of the benchmark studies used in 

(D). AUC, area under the curve. (G) Robustness of cell neighbor type annotation. Comparison of 

the distribution of coefficients of variation for neighbor type counts from the cline-ch benchmark 

dataset across n=10 runs of Neighbor-seq and scDblFinder (Wilcoxon test, boxplots as in (D)).  

 

Figure 2. Detecting known microanatomical features of the small intestinal epithelium. (A) 

Illustration of the main cell types in the small intestinal crypt and villus. (B) Uniform manifold 

approximation and projection (UMAP) of 11,665 small intestinal cells (21) from the duodenum, 

jejunum, and ileum (n=2 mice) colored by cell type. TA, transit amplifying; EP, enterocyte 

progenitor. (C) Network diagram of significant cell type interactions from (B) identified by 

Neighbor-seq. Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with 

a mean count > 10 and enrichment score combined adjusted p-value < 0.05 (see Methods). Edge 

thickness represents interaction p-value and edge color represents counts. Green color scale 

represents anatomical progression from crypt to villus. (D) UMAP of 5,279 cells from the small 

intestine (6) (n=1 mouse) colored by cell type. Neighbor-seq is trained on these cells and used to 

predict the interaction network in a dataset of partially dissociated intestinal clumps. (E) Network 

diagram of significant cell type interactions identified by Neighbor-seq from 3,671 small intestinal 

clumps. Methods, edge color and thickness, and colors scale are the same as in (C). (F) Adjacency 

matrix representation of the networks from (C) and (E). Cell labels were harmonized based on cell 

ontologies. Red color indicates the presence of a connection, white indicates no connection.  
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Figure 3. Detecting known microanatomical features of the terminal respiratory tract. (A) 

Illustration of the main cell types in the terminal bronchioles and alveolus. AT1, alveolar type 1 

cell, AT2, alveolar type 2 cell (B) Uniform manifold approximation and projection (UMAP) 

65,662 cells (22) from the terminal respiratory tract (n=5 human samples) colored by cell type. (C) 

Network diagram of significant cell type interactions from (B) identified by Neighbor-seq, colored 

by known microanatomical compartment. Data is shown for n=10 iterations, mean counts > 10, 

combined p-value < 0.05. (D) UMAP of 6,084 mouse lung cells (6) (n=3 mice) colored by cell 

type. Neighbor-seq is trained on these cells and used to predict the interaction network in a dataset 

of partially dissociated lung clumps. (E) Network diagram of significant cell type interactions 

identified by Neighbor-seq from 4,729 lung clumps. Methods, edge color and thickness, and colors 

scale are the same as in (C). (F) Adjacency matrix representation of the networks from (C) and 

(E). Cell labels were harmonized based on cell ontologies. Red color indicates the presence of a 

connection, white indicates no connection. 

 

Figure 4. Detecting known microanatomical features of the splenic white pulp. (A) Illustration 

of the main cell types in the splenic white pulp. (B) Uniform manifold approximation and 

projection (UMAP) of 94,050 splenic white pulp immune cells (23) (n=19 human samples) colored 

by cell type. DC, dendritic cell; GC, germinal center; ILC, innate lymphoid cell; NK, natural killer 

cell. (C) Network diagram of significant cell type interactions from (B) identified by Neighbor-

seq, colored by known cell type lineage. Data is shown for n=10 iterations, mean counts > 5, 

combined p-value < 0.05. (D) UMAP of 9,552 murine immune cells from Tabula Muris (24) 

colored by cell type. (E) Network diagram of significant cell type interactions from (D) identified 

by Neighbor-seq, colored by known cell compartment. Methods, edge color and thickness, and 

colors scale are the same as in (C).  

 

Figure 5. Identification of cell type interactions in pancreatic cancer. (A) Uniform manifold 

approximation and projection (UMAP) of 57,530 primary human cells (25) from n=24 pancreatic 

ductal adenocarcinomas and n=11 control pancreatic tissues colored by cell type. (B) Network 

diagram of significant cell type interactions from (A) identified by Neighbor-seq, colored by 

known cell compartment. Edge thickness represents interaction p-value and edge color represents 

counts. Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with a mean 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.15.488517doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.15.488517
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

count > 10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C) 

Comparison of the number of co-expressed ligand-receptor pairs in enriched (statistically 

significant) doublet types, not enriched doublets, and random synthetic doublets from (A). 

Boxplots show median (line), 25
th

 and 75
th

 percentiles (box) and 1.5xIQR (whiskers). Points 

represent outliers. Wilcoxon tests, ****p<0.0001. (D) Heatmap and hierarchical clustering of cell 

type betweenness centrality in interaction networks for each sample. Rows represent cell types and 

columns represent samples; T#, tumor sample; N#, normal sample; ME#, microenvironment. (E) 

Spatial transcriptomic maps of two pancreatic tumors (26) (32)(32)(32)(32)with n=428 (top) and 

n=224 (bottom) barcodes, colored by cell-type abundance scores. Correlation of abundance score 

of multiple cell type pairs, identified in Fig 3B, were significant (tumor and ductal cells: A: r=0.19, 

p=2e-2; B: r=0.44, p=4e-10; tumor cells and fibroblasts: A: r=0.30, p=8e-9; ductal and acinar cells: 

A: r=0.16, p=2e-2; ductal and endocrine cells: A: r=0.29, p=5e-8; ductal and endothelial cells A: 

r=0.41, p=1e-17; Spearman correlation). See Fig. S3 for additional instances. 

 

Figure 6. Identification of cell type interactions in skin cancer. (A) Uniform manifold 

approximation and projection (UMAP) of 48,164 primary human cells from n=10 cutaneous 

squamous cell carcinomas (27)(27)(27)(27)(27) colored by cell type. TSK, tumor-specific 

keratinocyte; KC, keratinocyte; Cyc, cycling; Diff, differentiating. (B) Network diagram of 

significant cell type interactions from (A) identified by Neighbor-seq, colored by known cell 

compartment. Edge thickness represents interaction p-value and edge color represents counts. 

Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with a mean count > 

10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C) Spatial 

transcriptomic maps of four patients (P2: n=666, P5: n=521, P9: n=1145, P10: n=608 barcodes) 

colored by cell-type abundance scores (see Methods). (D) Boxplots comparing spatial barcode 

cell-type abundance scores between cell-type pairs with enriched doublets from (B) compared to 

all other possible pairs. Boxplots show median (line), 25
th

 and 75
th

 percentiles (box) and 1.5xIQR 

(whiskers). Points represent outliers. Wilcoxon testing. (E) Comparison of the number of co-

expressed ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched 

doublets, and random synthetic doublets from (A). Boxplots are the same as in (D).  
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Figure S1. Neighbor-seq performance on benchmark datasets. (A) Fraction and number of 

doublets found in benchmark datasets. (B) Comparison of the number of co-expressed ligand-

receptor pairs in enriched (statistically significant) doublet types, not enriched doublets, and 

random synthetic doublets from the benchmarking studies in Fig. 1D using ligand-receptor data 

from CellTalkDB (16). Boxplots show median (line), 25
th

 and 75
th

 percentiles (box) and 1.5xIQR 

(whiskers). Points represent outliers. Wilcoxon tests, ****p<0.0001.  (C) Comparison of the 

number of co-expressed ligand-receptor pairs in enriched (statistically significant) doublet types, 

not enriched doublets, and random synthetic doublets from benchmark datasets with 

experimentally annotated doubles (see Table S1). Boxplots are as in (B). (D) Neighbor-seq 

artificial multiplet classification performance on the cline-ch dataset for label-shuffled cell-types. 

AUC, area under the curve. (E) Comparison of distributions of area under the receiver operator 

curves (AUC) for artificial multiplet classification of the cline-ch dataset for true (Fig. 1D) vs. 

label-shuffled (Fig. S1D) data. Boxplots as in (A), Wilcoxon testing. (F) Average artificial 

multiplet type classification performance for all benchmark datasets. AUC, area under the receiver 

operator curve.  

 

Figure S2. Interactions in pancreatic cancer. (A) Dot plot showing neighbor-types found across 

samples in n=24 pancreatic tumors and n=11 control pancreatic tissues (25). Rows represent 

neighbor-types and columns represent pancreas samples. T#, tumor sample; N#, normal sample.  

Neighbor-seq is run for n=10 iterations and data is shown for neighbor types with mean counts > 

10 and combined adjusted p-value < 0.05. (B) Adjacency matrix representation of the networks 

from Fig. 5B and one tumor from Fig. 5E. Red color indicates the presence of a connection, white 

indicates no connection.  

 

 

Figure S3. PDAC spatial transcriptomic maps colored by cell-type scores. (A) Spatial maps 

for n=7 pancreatic tumors (26) colored by cell-type scores (see Methods). 

 

Figure S4. Overview of Neighbor-seq algorithm. Schematic diagram of key Neighbor-seq steps: 

(1) single-cell sequencing, cell type clustering, and marker gene identification, (2) enumerating 

neighbor-types, (3) random forest training on a dataset of artificial multiplets and singlets, (4) 
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barcode composition prediction of the original dataset, (5) neighbor-type enrichment and cell-cell 

network construction.  

 

Figure S5. Benchmarking the fast implementation of Neighbor-seq. (A) Benchmarking 

Neighbor-seq fast implementation doublet detection against 9 other methods using 16 datasets of 

diverse tissue types with experimentally annotated doublets (see Table S1). Comparison of singlet 

vs. doublet classification area under the receiver operator curve (AUROC) distributions. Boxplots 

show median (line), 25
th

 and 75
th

 percentiles (box) and 1.5xIQR (whiskers). Points represent 

outliers. (B) Neighbor-seq fast implementation barcode composition annotation performance of 

cell-line barcodes in Fig. 1F, plotted by known barcode type. AUC = area under the receiver 

operator curve.  
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Figure 1. Benchmarking cell neighbor detection and annotation. (A) A schematic representation of the Neighbor-
seq workflow. (B) Uniform manifold approximation and projection (UMAP) of barcode RNA sequencing data singlets
and multiplets of known composition from 3 cancer cell lines, colored by cell-type identities and shaped by the number
of cells per barcode. (C) Neighbor-seq barcode composition annotation performance of cell-line barcodes in (B), plotted
by known barcode type. AUC = area under the receiver operator curve. (D) Benchmarking Neighbor-seq doublet
detection against 9 other methods using 16 datasets of diverse tissue types with experimentally annotated doublets (see
Table S1). Among these methods, only Neighbor-seq is explicitly optimized to infer doublet composition. Comparison
of singlet vs. doublet classification area under the receiver operator curve (AUROC) distributions are shown. Boxplots
show median (line), 25th and 75th percentiles (box) and 1.5xIQR (whiskers). Points represent outliers. (E) Comparison
of the number of co-expressed ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched
doublets, and random synthetic doublets from the benchmarking studies in (D). Descriptions of the boxplots are as in
(D). (Wilcoxon tests, ****p<0.0001. See also Fig. S1A). (F) Neighbor-seq example receiver operator curve for
classifying artificial multiplet types in the cline-ch study, one of the benchmark studies used in (D). AUC, area under
the curve. (G) Robustness of cell neighbor type annotation. Comparison of the distribution of coefficients of variation
for neighbor type counts from the cline-ch benchmark dataset across n=10 runs of Neighbor-seq and scDblFinder
(Wilcoxon test, boxplots as in (D)).
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Figure 2. Detecting known microanatomical features of the small intestinal epithelium. (A) Illustration of the main cell types
in the small intestinal crypt and villus. (B) Uniform manifold approximation and projection (UMAP) of 11,665 small intestinal
cells (21) from the duodenum, jejunum, and ileum (n=2 mice) colored by cell type. TA, transit amplifying; EP, enterocyte
progenitor. (C) Network diagram of significant cell type interactions from (B) identified by Neighbor-seq. Neighbor-seq is run for
n=10 iterations, and interactions are shown for edges with a mean count > 10 and enrichment score combined adjusted p-value <
0.05 (see Methods). Edge thickness represents interaction p-value and edge color represents counts. Green color scale represents
anatomical progression from crypt to villus. (D) UMAP of 5,279 cells from the small intestine (6) (n=1 mouse) colored by cell
type. Neighbor-seq is trained on these cells and used to predict the interaction network in a dataset of partially dissociated
intestinal clumps. (E) Network diagram of significant cell type interactions identified by Neighbor-seq from 3,671 small intestinal
clumps. Methods, edge color and thickness, and colors scale are the same as in (C). (F) Adjacency matrix representation of the
networks from (C) and (E). Cell labels were harmonized based on cell ontologies. Red color indicates the presence of a
connection, white indicates no connection.
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Figure 3. Detecting known microanatomical features of the terminal respiratory tract. (A) Illustration of the main cell
types in the terminal bronchioles and alveolus. AT1, alveolar type 1 cell, AT2, alveolar type 2 cell (B) Uniform manifold
approximation and projection (UMAP) 65,662 cells (21) from the terminal respiratory tract (n=5 human samples) colored by
cell type. (C) Network diagram of significant cell type interactions from (B) identified by Neighbor-seq, colored by known
microanatomical compartment. Data is shown for n=10 iterations, mean counts > 10, combined p-value < 0.05. (D) UMAP of
6,084 mouse lung cells (6) (n=3 mice) colored by cell type. Neighbor-seq is trained on these cells and used to predict the
interaction network in a dataset of partially dissociated lung clumps. (E) Network diagram of significant cell type interactions
identified by Neighbor-seq from 4,729 lung clumps. Methods, edge color and thickness, and colors scale are the same as in
(C). (F) Adjacency matrix representation of the networks from (C) and (E). Cell labels were harmonized based on cell
ontologies. Red color indicates the presence of a connection, white indicates no connection.
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Figure 4. Detecting known microanatomical features of the splenic white pulp. (A) Illustration of the main cell types in
the splenic white pulp. (B) Uniform manifold approximation and projection (UMAP) of 94,050 splenic white pulp immune
cells (Madissoon et al., 2019) (n=19 human samples) colored by cell type. DC, dendritic cell; GC, germinal center; ILC,
innate lymphoid cell; NK, natural killer cell. (C) Network diagram of significant cell type interactions from (B) identified by
Neighbor-seq, colored by known cell type lineage. Data is shown for n=10 iterations, mean counts > 5, combined p-value <
0.05. (D) UMAP of 9,552 murine immune cells from Tabula Muris (Schaum et al., 2018) colored by cell type. (E) Network
diagram of significant cell type interactions from (D) identified by Neighbor-seq, colored by known cell compartment.
Methods, edge color and thickness, and colors scale are the same as in (C).
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Figure 5. Identification of cell type interactions in pancreatic cancer. (A) Uniform manifold approximation and
projection (UMAP) of 57,530 primary human cells (Peng et al., 2019) from n=24 pancreatic ductal adenocarcinomas and
n=11 control pancreatic tissues colored by cell type. (B) Network diagram of significant cell type interactions from (A)
identified by Neighbor-seq, colored by known cell compartment. Edge thickness represents interaction p-value and edge
color represents counts. Neighbor-seq is run for n=10 iterations, and interactions are shown for edges with a mean count >
10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C) Comparison of the number of co-expressed
ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched doublets, and random synthetic
doublets from (A). Boxplots show median (line), 25th and 75th percentiles (box) and 1.5xIQR (whiskers). Points represent
outliers. Wilcoxon tests, ****p<0.0001. (D) Heatmap and hierarchical clustering of cell type betweenness centrality in
interaction networks for each sample. Rows represent cell types and columns represent samples; T#, tumor sample; N#,
normal sample; ME#, microenvironment. (E) Spatial transcriptomic maps of two pancreatic tumors (Moncada et al.,
2020a) with n=428 (top) and n=224 (bottom) barcodes, colored by cell-type abundance scores. Correlation of abundance
score of multiple cell type pairs, identified in Fig 3B, were significant (tumor and ductal cells: A: r=0.19, p=2e-2; B:
r=0.44, p=4e-10; tumor cells and fibroblasts: A: r=0.30, p=8e-9; ductal and acinar cells: A: r=0.16, p=2e-2; ductal and
endocrine cells: A: r=0.29, p=5e-8; ductal and endothelial cells A: r=0.41, p=1e-17; Spearman correlation). See Fig. S3 for
additional instances.
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Figure 6. Identification of cell type interactions in skin cancer. (A) Uniform manifold approximation and projection
(UMAP) of 48,164 primary human cells from n=10 cutaneous squamous cell carcinomas (26) colored by cell type. TSK,
tumor-specific keratinocyte; KC, keratinocyte; Cyc, cycling; Diff, differentiating. (B) Network diagram of significant cell
type interactions from (A) identified by Neighbor-seq, colored by known cell compartment. Edge thickness represents
interaction p-value and edge color represents counts. Neighbor-seq is run for n=10 iterations, and interactions are shown for
edges with a mean count > 10 and enrichment score combined adjusted p-value < 0.05 (see Methods). (C) Spatial
transcriptomic maps of four patients (P2: n=666, P5: n=521, P9: n=1145, P10: n=608 barcodes) colored by cell-type
abundance scores (see Methods). (D) Boxplots comparing spatial barcode cell-type abundance scores between cell-type pairs
with enriched doublets from (B) compared to all other possible pairs. Boxplots show median (line), 25th and 75th percentiles
(box) and 1.5xIQR (whiskers). Points represent outliers. Wilcoxon testing. (E) Comparison of the number of co-expressed
ligand-receptor pairs in enriched (statistically significant) doublet types, not enriched doublets, and random synthetic doublets
from (A). Boxplots are the same as in (D).
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