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Abstract

Pitt Hopkins Syndrome (PTHS) is a rare syndromic form of autism spectrum disorder (ASD)
caused by autosomal dominant mutations in the Transcription Factor 4 (TCF4) gene. TCF4 is a
basic helix-loop-helix transcription factor that is critical for neurodevelopment and brain function
through its binding to cis-regulatory elements of target genes. One potential therapeutic strategy
for PTHS is to identify dysregulated target genes and normalize their dysfunction. Here, we
propose that SCN10A is an important target gene of TCF4 that is an applicable therapeutic
approach for PTHS. ScnlOa encodes the voltage-gated sodium channel Na,1.8 and is
consistently shown to be upregulated in PTHS mouse models. In this perspective, we review prior
literature and present novel data that suggests inhibiting Na,1.8 in PTHS mouse models is
effective at normalizing neuron function, brain circuit activity and behavioral abnormalities and
posit this therapeutic approach as a treatment for PTHS.

Introduction

Pitt Hopkins Syndrome (PTHS) is a rare neurodevelopmental disorder resulting from autosomal
dominant mutations on chromosome 18 at the TCF4 (also known as ITF2, SEF2, E2-2, not T-cell
factor 4 which is encoded by TCF7L2 gene) locus. Disease-causing mutations are primarily de
novo with rare instances of parental mosaicism (1,2) and result in TCF4 haploinsufficiency or
dominant negative mechanisms (3-7). PTHS patients display features of ASD and are more
generally characterized by intellectual disability, developmental delay, breathing abnormalities,
absent or limited speech, motor delay, seizure, constipation, and facial features including wide
mouth and a broad nasal base with high bridge (8—11). Exactly how mutations in TCF4 lead to
this disorder remains an open question. However, several studies using PTHS animal models
have identified a variety of phenotypes that provide important biological insights into this disorder.
These phenotypes are observed across the lifespan, beginning with alterations in cortical
development, cell fate specification, neuron development and eventually lead to altered neuronal
excitability, synaptic plasticity, and behavioral deficits in adult mice (12-14). Here, we highlight
evidence that suggests mutations in Tcf4 lead to ectopic expression of Scn10a/Nay1.8 which
partially underlies neuronal excitability, network synchronicity and behavioral deficits observed in
PTHS mouse models. Moreover, we discuss evidence that inhibition of Na,1.8 is effective at
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acutely rescuing these phenotypes and discuss the potential of Na,1.8 as a therapeutic target for
the treatment of PTHS.

Identification of SCN10a/Nay1.8 in PTHS

Scnl0a/Nay1.8 was first identified as a downstream dysregulated gene of Tcf4 in a rat model of
PTHS (6). In this model system, shRNA and CRISPR/Cas9 constructs specific to Tcf4 were
delivered by in utero electroporation leading to cellular transgenesis of layer 2/3 pyramidal
neurons and knockdown of Tcf4. This knockdown resulted in a significant reduction in the intrinsic
excitability of transfected neurons. Molecular profiling of transfected neurons via translating
affinity purification (iTRAP) led to the identification of two upregulated ion channel genes, Scnl10a
and Kcngl. Rescue experiments with antagonists to these two channels and phenocopy
experiments via overexpression of Scnl0Oa in wildtype neurons validated the causal role of
ScnlO0a and Kcngl in these intrinsic excitability deficits. Further confirmation of the TCF4-
dependent excitability deficits were obtained in two different PTHS mouse models (6,15). In the
Tcf4*™ mouse model, it was shown that SCN10a expression was upregulated, and consistent
with the rat model, pharmacological blockade of Na,1.8 normalized intrinsic excitability deficits
(6). Regulation of Scnl0a by Tcf4 appears to be direct, as TCF4 ChlP-seq analysis in rat
neuroprogenitor cell cultures indicated that Tcf4 binds directly to regions of the Scnl0a genetic
locus and therefore is predicted to act as a repressor of Scnl0a gene expression in the central
nervous system (CNS)(6). Together, these initial findings indicated Na,1.8 was dysregulated in
PTHS rodent models and that its ectopic expression was a key molecular mechanism underlying
TCF4-dependent intrinsic excitability deficits. Fortunately, the unique properties of Na,1.8 make
it a suitable drug target.

SCN10a/Nay1.8 function and pharmacology

SCN10a/Nay1.8 is a primarily peripherally expressed, TTX resistant, voltage-gated sodium
channel (16), but its expression and function in the central nervous system is reported (6,17,18)
and SCN10a variants are associated with epileptic disorders (19). In the peripheral nervous
system, Nay1.8 is thought to play an important role in nociception (20—23) and in dorsal root
ganglion cells (DRGs) Nay1.8 is responsible for a substantial proportion of the inward current
needed to generate an action potential (24). In addition, Na,1.8 also appears to regulate the
frequency of action potential firing and spike-frequency adaptation due to its unique kinetic
properties (25,26). Na,1.8 channels display prominent slow inactivation (16) and DRGs show a
pronounced adaptation of action potential firing in response to stimulation (26). Selective inhibitors
of Na,1.8 have been developed and have shown promise in rodent pain models as well as in early
phase human trials. The selective Na,1.8 inhibitor A-803467 has shown significant effects on the
maximal amplitude and kinetic properties of the TTX-resistant sodium current in rats (17). A-
803467, exhibited high affinity and selectivity for blocking human Na,1.8 channels and effectively
inhibited spontaneous and evoked DRG neuronal action potentials in vivo in rats. A-803467 also
dose-dependently reduced nociception in neuropathic and inflammatory pain models (21).
However, A-803467 in preclinical models has limited oral bioavailability (27). PF-04531083 was
developed as a potent and highly selective Na,1.8 inhibitor with acceptable oral bioavailability and
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showed effectiveness in preclinical pain models (28). Moreover, PF-04531083 can pass the blood
brain barrier as it was shown to rescue CNS phenotypes in a PTHS mouse model (18). More
recently, VX-548 an oral selective Nay1.8 inhibitor has shown success in two phase 2 clinical trials
for acute pain in patients who had recently undergone abdominoplasty or bunionectomy (29,30),
however the ability of VX-548 to penetrate the blood brain barrier is not known.

Normalization of breathing and behavioral abnormalities

A common symptom observed in PTHS patients is disordered breathing characterized by
hyperventilation and intermittent apnea or breath holding (31,32). These breathing abnormalities
severely impact the patient’s quality of life and often contribute to aspiration-induced pneumonia,
which is the leading cause of death in PTHS (33,34). Remarkably, similar breathing abnormalities
were observed in a PTHS mouse model (18). Tcf4*" mice display frequent episodes of
hyperventilation, reduced sigh activity, increased post-sigh apnea, and fail to increase inspiratory
and expiratory output in response to CO.,. Cleary and colleagues deduced that these breathing
abnormalities may result from abnormal function of the retrotrapezoid nucleus (RTN) because
similar breathing abnormalities are found in Rett Syndrome and are known to involve
chemoreception. In addition, acetazolamide, a carbonic anhydrase inhibitor, used to induce
metabolic acidosis and hyperventilation, improved breathing in PTHS patients (35-40). They
showed that TCF4 mutation resulted in selective loss of parafacial Phox2b+ neurons, altered
connectivity between Phox2b+ neurons and the pre-BotC complex, and suppressed excitability
of chemosensitive RTN neurons. All these phenotypes were consistent with previously observed
phenotypes in various brain regions of PTHS mouse models (6,15,41,42). They went on to show
that Scnl0a expression is not normally detected in the RTN of WT mice, however Scnl0a
expression was observed in Tcf4*" mice, and pharmacological block of Na,1.8 with IP injection
of PF-04531083 was effective at rescuing breathing in these animals. Moreover, they showed
that acute Na,1.8 block was also effective at rescuing hyperlocomotion and anxiety in the Tcf4*'"
mice. Importantly, they demonstrated that rescue by PF-04531083 was specific to inhibition of
Nay1.8 in the CNS, because IP injection of PF-06305591, which does not penetrate the blood
brain barrier, was ineffective at normalizing behavior.

Together, Cleary and colleagues provided direct in vivo evidence showing that central inhibition
of Na,1.8 was effective at normalizing breathing and behavioral abnormalities in a PTHS mouse
model, further supporting the idea of Na,1.8 as a therapeutic target. In another set of studies,
Ekins and colleagues performed a high throughput screen to identify FDA approved drugs for
inhibition on recombinant Na,1.8 expressed in HEK cells (43). Their screen identified a number
of dihydropyridine calcium channel antagonists that were effective at blocking Na,1.8 channels,
with nicardipine being the most potent with a sub micromolar IC50 (0.6uM). They went on to show
that administration of nicardipine improved several behavioral deficits in a PTHS mouse model,
including social recognition, nesting, self-grooming, fear conditioning, and hyperlocomotion (43).
However, the exact mechanism of rescue by nicardipine is not entirely clear, as itis likely inhibiting
both sodium and calcium channels. Overall, these studies provide evidence that inhibition of
Nay1.8 is effective at rescuing breathing and behavioral abnormalities in PTHS mouse models
and therefore support therapeutic targeting of Na,1.8.
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Normalization of auditory evoked potentials

Event-related potentials (ERPs) are stereotyped patterns of voltage fluctuation measured in
response to sensory stimuli, which consist of temporal components that reflect physiological
response. Levels of spectral power and phase coherence during ERP components are thought to
reflect strength and connectivity in cortical circuits that mediate sensory information processing
(44). Following our previously published methods (45), we recorded auditory ERPs in wild-type
(WT) and Tcf4*" mice at baseline (vehicle) and after acute administration of the Na,1.8 antagonist
PF-04531083 (10mg/kg, i.p.). We used component and time-frequency analysis of the ERP to
identify changes in patterns of synchronized oscillatory activity during the ERP in this PTHS
mouse model at baseline and following Na,1.8 antagonism. Component analysis of the ERP
showed that there is a significant effect of genotype in reducing the N40 amplitude peak (Figure
1B-D). In addition, the event-related spectral perturbation (ERSP) power showed changes relative
to tone onset in Tcf4*" mice and alterations in phase locking as measured by intertrial phase
coherence (ITC, Figure 2). Specifically, we observed no difference in ERSP at baseline between
genotypes (Figure 1A and data not shown) but observed significant delay in the latency of low
(theta) frequency activity (Figure 1E), and increased level of coherence in the high (gamma)
frequency ITC at baseline (Figure 1D). The delayed oscillatory activity and increased gamma
synchrony in response to auditory stimuli suggests impairments in the neural correlates of sensory
information processing in this PTHS mouse model. Given prior evidence that Na,1.8 is
upregulated in this mouse model and that Na,1.8 antagonists were effective at hormalizing both
intrinsic excitability and behavior, we quantified the acute effect of PF-04531083 on ERPs. PF-
04531083 had no effect on N40 peak amplitude in WT or Tcf4*" mice (Figure 1B-D). However,
PF-04531083 did significantly reduce gamma ERSP in Tcf4*" mice, but not in WT mice (Figure
2A, C). In addition, acute Na,1.8 blockade also normalized the latency of theta ITC and gamma
ITC (Figure 2B, D, E). These results suggest acute Nay1.8 antagonism is effective at normalizing
abnormal synchronous activity in the PTHS mouse model and provides further support that Na,1.8
may have utility for treating symptoms in PTHS. Moreover, these data represent a potential
electrophysiological biomarker that could be utilized for screening Na,1.8 antagonists for
therapeutic efficacy. Moreover, patterns of oscillatory activity are well-conserved across species,
and if similarly altered ERP responses were detected by scalp EEG recordings in PTHS patients,
the translational value of this biomarker would be invaluable.

SCN10a/Nay1.8 and myelination

Another potential therapeutic benefit of Nay1.8 antagonists in PTHS could be through its relation
to demyelinating disorders. Transcriptional profiling of several different PTHS mouse models
showed that differentially expressed genes were enriched in neurons and oligodendrocytes (OLS),
and analysis of OLs and myelination in the Tcf4*" mouse showed a significant reduction in OL
density, myelination and function (41). These results suggest that re-myelination could be a
potential therapeutic avenue for PTHS but may also provide another link to therapeutic targeting
of Scnl0a/Na,1.8. Several groups have shown that a variety of diseases associated with
demyelination result in maladaptive ectopic expression of ScnlOa/Nay1.8. For instance,
hereditary demyelinating neuropathy leads to an upregulation of Scn10a/Na,1.8 and abnormal
axonal excitability (46), and ectopic Scnl0Oa/Nay,1.8 is observed in the cerebellum of the
experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) and
in MS patients (47). These results have led to the notion that Na,1.8 antagonists may be a
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beneficial treatment for demyelinating diseases and neuropathies (23). It was subsequently
shown that an administration of an orally bioavailable Na,1.8 antagonist (PF-01247324) improved
cerebellar-dependent motor coordination in a transgenic mouse model overexpressing Scnl0a
as well as the EAE mouse model of MS (48,49). The link between demyelination and Scnl10a
expression is intriguing, and a similar maladaptive mechanism could be at play in PTHS in
response to the TCF4-dependent reduction in myelination. Overall, these results suggest
inhibition of Na,1.8 in PTHS patients may provide a dual benefit by normalizing neuronal
excitability and improving myelin related deficits.

Conclusion

Currently there are no approved medications for the core symptoms of ASD or even subsets of
ASD like PTHS. Here, we discuss the results of a variety of rodent studies on PTHS that all
converge on Nayl1.8 as being a plausible therapeutic target. Rodent models of PTHS have
routinely shown that disruption of Tcf4 function leads to upregulation of Scnl0a/Na,1.8 and
pharmacological blockade of Na,1.8 is effective at normalizing both physiological and behavioral
phenotypes. Potent and selective Nay1.8 antagonists are developed and their safety in humans
is demonstrated in clinical trials (50,51). Given all these factors, we recommend testing
antagonists of Na,1.8 as a therapeutic approach for PTHS.
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Figure Legends

Figure 1. Sensory information processing deficits are normalized by Na,1.8 inhibition. (A)
Example event-related potential (ERP) grand averages from individual temporal components
(P20, N40, P80 and P120) where time O=auditory stimulus (S1) onset. (B) Grand average ERPs
in Tcf4*™ (n=10) compared to WT (n=12) animals at baseline and (C) following PF-04531083
administration. (D) Summary component analysis showing significantly reduced amplitudes in
N40 peaks in Tcf4*" mice compared to WT animals, which are not altered by PF-04531083
administration (2-way RM ANOVA, * p=0.0163, main effect of genotype; ns p=0.1317, main effect
of treatment).
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Figure 2. (A) Heat maps of event-related spectral perturbation (ERSP) in WT (left, n=12) and
Tcf4*" (right, n=10) animals depicting ERP-related changes due to genotype (vehicle) and rescue
with PF-04531083 (SCN10a). (B) Heat maps of intertrial coherence (ITC) in WT (left, n=12) and
Tcf4*'" (right, n=10) animals depicting ERP-related changes due to genotype (vehicle) and rescue
with PF-04531083 (SCN10a). (C) Reduction of gamma ERSP following SCN10a antagonism in
Tcf4*", but not in WT animals (2 way RM ANOVA, p=0.0453 interaction of genotype X treatment;
Bonferroni post hoc, *p=0.0269 vehicle-treated Tcf4*" versus PF-04531083-treated Tcf4*" ; ns
p>0.9999 vehicle-treated WT versus PF-04531083-treated WT). (D) High frequency disturbances
in Tcf4*" mice are corrected by SCN10a antagonist. There is significantly higher gamma ITC in
vehicle-treated Tcf4*" compared to WT vehicle-treated mice in the first 75 ms post-tone.
Following SCN10a treatment, there is no effect of genotype (2 way RM ANOVA, p=0.0027
interaction of genotype X treatment; Bonferroni post hoc, *p=0.0446 vehicle-treated WT versus
Tcf4*'"; ns p>0.9999 PF-04531083-treated WT versus Tcf4*""). (E) Low frequency disturbances
in Tcf4*" mice are corrected by PF-04531083. Latency to peak theta (3-8 Hz) ITC is significantly
increased in vehicle-treated Tcf4*" compared to vehicle-treated WT mice. No significant effect of
genotype is detected following treatment with the SCN10a antagonist (2 way RM ANOVA,
p=0.0123 interaction of genotype X treatment; Bonferroni post hoc, *p=0.0303 vehicle-treated WT
versus Tcf4*'"; ns p>0.9999 PF-04531083-treated WT versus Tcf4*").
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