

Evaluation of $\text{Na}_v1.8$ as a therapeutic target for Pitt Hopkins Syndrome

Keri Martinowich^{1,2,3}, Debamitra Das¹, Srinidhi Rao Sripathy¹, Brady J. Maher^{1,2,3}

¹Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA.

²Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.

³Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.

Correspondence to: Brady J. Maher, brady.maher@libd.org

Abstract

Pitt Hopkins Syndrome (PTHS) is a rare syndromic form of autism spectrum disorder (ASD) caused by autosomal dominant mutations in the Transcription Factor 4 (*TCF4*) gene. *TCF4* is a basic helix-loop-helix transcription factor that is critical for neurodevelopment and brain function through its binding to cis-regulatory elements of target genes. One potential therapeutic strategy for PTHS is to identify dysregulated target genes and normalize their dysfunction. Here, we propose that *SCN10A* is an important target gene of *TCF4* that is an applicable therapeutic approach for PTHS. *Scn10a* encodes the voltage-gated sodium channel $\text{Na}_v1.8$ and is consistently shown to be upregulated in PTHS mouse models. In this perspective, we review prior literature and present novel data that suggests inhibiting $\text{Na}_v1.8$ in PTHS mouse models is effective at normalizing neuron function, brain circuit activity and behavioral abnormalities and posit this therapeutic approach as a treatment for PTHS.

Introduction

Pitt Hopkins Syndrome (PTHS) is a rare neurodevelopmental disorder resulting from autosomal dominant mutations on chromosome 18 at the *TCF4* (also known as ITF2, SEF2, E2-2, not T-cell factor 4 which is encoded by *TCF7L2* gene) locus. Disease-causing mutations are primarily de novo with rare instances of parental mosaicism (1,2) and result in *TCF4* haploinsufficiency or dominant negative mechanisms (3–7). PTHS patients display features of ASD and are more generally characterized by intellectual disability, developmental delay, breathing abnormalities, absent or limited speech, motor delay, seizure, constipation, and facial features including wide mouth and a broad nasal base with high bridge (8–11). Exactly how mutations in *TCF4* lead to this disorder remains an open question. However, several studies using PTHS animal models have identified a variety of phenotypes that provide important biological insights into this disorder. These phenotypes are observed across the lifespan, beginning with alterations in cortical development, cell fate specification, neuron development and eventually lead to altered neuronal excitability, synaptic plasticity, and behavioral deficits in adult mice (12–14). Here, we highlight evidence that suggests mutations in *Tcf4* lead to ectopic expression of *Scn10a/Na_v1.8* which partially underlies neuronal excitability, network synchronicity and behavioral deficits observed in PTHS mouse models. Moreover, we discuss evidence that inhibition of $\text{Na}_v1.8$ is effective at

acutely rescuing these phenotypes and discuss the potential of $\text{Na}_v1.8$ as a therapeutic target for the treatment of PTHS.

Identification of SCN10a/ $\text{Na}_v1.8$ in PTHS

Scn10a/ $\text{Na}_v1.8$ was first identified as a downstream dysregulated gene of *Tcf4* in a rat model of PTHS (6). In this model system, shRNA and CRISPR/Cas9 constructs specific to *Tcf4* were delivered by in utero electroporation leading to cellular transgenesis of layer 2/3 pyramidal neurons and knockdown of *Tcf4*. This knockdown resulted in a significant reduction in the intrinsic excitability of transfected neurons. Molecular profiling of transfected neurons via translating affinity purification (iTRAP) led to the identification of two upregulated ion channel genes, *Scn10a* and *Kcnq1*. Rescue experiments with antagonists to these two channels and phenocopy experiments via overexpression of *Scn10a* in wildtype neurons validated the causal role of *Scn10a* and *Kcnq1* in these intrinsic excitability deficits. Further confirmation of the TCF4-dependent excitability deficits were obtained in two different PTHS mouse models (6,15). In the *Tcf4^{+/tr}* mouse model, it was shown that SCN10a expression was upregulated, and consistent with the rat model, pharmacological blockade of $\text{Na}_v1.8$ normalized intrinsic excitability deficits (6). Regulation of *Scn10a* by *Tcf4* appears to be direct, as TCF4 ChIP-seq analysis in rat neuroprogenitor cell cultures indicated that *Tcf4* binds directly to regions of the *Scn10a* genetic locus and therefore is predicted to act as a repressor of *Scn10a* gene expression in the central nervous system (CNS)(6). Together, these initial findings indicated $\text{Na}_v1.8$ was dysregulated in PTHS rodent models and that its ectopic expression was a key molecular mechanism underlying TCF4-dependent intrinsic excitability deficits. Fortunately, the unique properties of $\text{Na}_v1.8$ make it a suitable drug target.

SCN10a/ $\text{Na}_v1.8$ function and pharmacology

SCN10a/ $\text{Na}_v1.8$ is a primarily peripherally expressed, TTX resistant, voltage-gated sodium channel (16), but its expression and function in the central nervous system is reported (6,17,18) and SCN10a variants are associated with epileptic disorders (19). In the peripheral nervous system, $\text{Na}_v1.8$ is thought to play an important role in nociception (20–23) and in dorsal root ganglion cells (DRGs) $\text{Na}_v1.8$ is responsible for a substantial proportion of the inward current needed to generate an action potential (24). In addition, $\text{Na}_v1.8$ also appears to regulate the frequency of action potential firing and spike-frequency adaptation due to its unique kinetic properties (25,26). $\text{Na}_v1.8$ channels display prominent slow inactivation (16) and DRGs show a pronounced adaptation of action potential firing in response to stimulation (26). Selective inhibitors of $\text{Na}_v1.8$ have been developed and have shown promise in rodent pain models as well as in early phase human trials. The selective $\text{Na}_v1.8$ inhibitor A-803467 has shown significant effects on the maximal amplitude and kinetic properties of the TTX-resistant sodium current in rats (17). A-803467, exhibited high affinity and selectivity for blocking human $\text{Na}_v1.8$ channels and effectively inhibited spontaneous and evoked DRG neuronal action potentials *in vivo* in rats. A-803467 also dose-dependently reduced nociception in neuropathic and inflammatory pain models (21). However, A-803467 in preclinical models has limited oral bioavailability (27). PF-04531083 was developed as a potent and highly selective $\text{Na}_v1.8$ inhibitor with acceptable oral bioavailability and

showed effectiveness in preclinical pain models (28). Moreover, PF-04531083 can pass the blood brain barrier as it was shown to rescue CNS phenotypes in a PTHS mouse model (18). More recently, VX-548 an oral selective $\text{Na}_v1.8$ inhibitor has shown success in two phase 2 clinical trials for acute pain in patients who had recently undergone abdominoplasty or bunionectomy (29,30), however the ability of VX-548 to penetrate the blood brain barrier is not known.

Normalization of breathing and behavioral abnormalities

A common symptom observed in PTHS patients is disordered breathing characterized by hyperventilation and intermittent apnea or breath holding (31,32). These breathing abnormalities severely impact the patient's quality of life and often contribute to aspiration-induced pneumonia, which is the leading cause of death in PTHS (33,34). Remarkably, similar breathing abnormalities were observed in a PTHS mouse model (18). *Tcf4^{+/tr}* mice display frequent episodes of hyperventilation, reduced sigh activity, increased post-sigh apnea, and fail to increase inspiratory and expiratory output in response to CO_2 . Cleary and colleagues deduced that these breathing abnormalities may result from abnormal function of the retrotrapezoid nucleus (RTN) because similar breathing abnormalities are found in Rett Syndrome and are known to involve chemoreception. In addition, acetazolamide, a carbonic anhydrase inhibitor, used to induce metabolic acidosis and hyperventilation, improved breathing in PTHS patients (35–40). They showed that *TCF4* mutation resulted in selective loss of parafacial Phox2b^+ neurons, altered connectivity between Phox2b^+ neurons and the pre-BotC complex, and suppressed excitability of chemosensitive RTN neurons. All these phenotypes were consistent with previously observed phenotypes in various brain regions of PTHS mouse models (6,15,41,42). They went on to show that *Scn10a* expression is not normally detected in the RTN of WT mice, however *Scn10a* expression was observed in *Tcf4^{+/tr}* mice, and pharmacological block of $\text{Na}_v1.8$ with IP injection of PF-04531083 was effective at rescuing breathing in these animals. Moreover, they showed that acute $\text{Na}_v1.8$ block was also effective at rescuing hyperlocomotion and anxiety in the *Tcf4^{+/tr}* mice. Importantly, they demonstrated that rescue by PF-04531083 was specific to inhibition of $\text{Na}_v1.8$ in the CNS, because IP injection of PF-06305591, which does not penetrate the blood brain barrier, was ineffective at normalizing behavior.

Together, Cleary and colleagues provided direct *in vivo* evidence showing that central inhibition of $\text{Na}_v1.8$ was effective at normalizing breathing and behavioral abnormalities in a PTHS mouse model, further supporting the idea of $\text{Na}_v1.8$ as a therapeutic target. In another set of studies, Ekins and colleagues performed a high throughput screen to identify FDA approved drugs for inhibition on recombinant $\text{Na}_v1.8$ expressed in HEK cells (43). Their screen identified a number of dihydropyridine calcium channel antagonists that were effective at blocking $\text{Na}_v1.8$ channels, with nicardipine being the most potent with a sub micromolar IC50 (0.6uM). They went on to show that administration of nicardipine improved several behavioral deficits in a PTHS mouse model, including social recognition, nesting, self-grooming, fear conditioning, and hyperlocomotion (43). However, the exact mechanism of rescue by nicardipine is not entirely clear, as it is likely inhibiting both sodium and calcium channels. Overall, these studies provide evidence that inhibition of $\text{Na}_v1.8$ is effective at rescuing breathing and behavioral abnormalities in PTHS mouse models and therefore support therapeutic targeting of $\text{Na}_v1.8$.

Normalization of auditory evoked potentials

Event-related potentials (ERPs) are stereotyped patterns of voltage fluctuation measured in response to sensory stimuli, which consist of temporal components that reflect physiological response. Levels of spectral power and phase coherence during ERP components are thought to reflect strength and connectivity in cortical circuits that mediate sensory information processing (44). Following our previously published methods (45), we recorded auditory ERPs in wild-type (WT) and *Tcf4^{+/tr}* mice at baseline (vehicle) and after acute administration of the $\text{Na}_v1.8$ antagonist PF-04531083 (10mg/kg, i.p.). We used component and time-frequency analysis of the ERP to identify changes in patterns of synchronized oscillatory activity during the ERP in this PTHS mouse model at baseline and following $\text{Na}_v1.8$ antagonism. Component analysis of the ERP showed that there is a significant effect of genotype in reducing the N40 amplitude peak (Figure 1B-D). In addition, the event-related spectral perturbation (ERSP) power showed changes relative to tone onset in *Tcf4^{+/tr}* mice and alterations in phase locking as measured by intertrial phase coherence (ITC, Figure 2). Specifically, we observed no difference in ERSP at baseline between genotypes (Figure 1A and data not shown) but observed significant delay in the latency of low (theta) frequency activity (Figure 1E), and increased level of coherence in the high (gamma) frequency ITC at baseline (Figure 1D). The delayed oscillatory activity and increased gamma synchrony in response to auditory stimuli suggests impairments in the neural correlates of sensory information processing in this PTHS mouse model. Given prior evidence that $\text{Na}_v1.8$ is upregulated in this mouse model and that $\text{Na}_v1.8$ antagonists were effective at normalizing both intrinsic excitability and behavior, we quantified the acute effect of PF-04531083 on ERPs. PF-04531083 had no effect on N40 peak amplitude in WT or *Tcf4^{+/tr}* mice (Figure 1B-D). However, PF-04531083 did significantly reduce gamma ERSP in *Tcf4^{+/tr}* mice, but not in WT mice (Figure 2A, C). In addition, acute $\text{Na}_v1.8$ blockade also normalized the latency of theta ITC and gamma ITC (Figure 2B, D, E). These results suggest acute $\text{Na}_v1.8$ antagonism is effective at normalizing abnormal synchronous activity in the PTHS mouse model and provides further support that $\text{Na}_v1.8$ may have utility for treating symptoms in PTHS. Moreover, these data represent a potential electrophysiological biomarker that could be utilized for screening $\text{Na}_v1.8$ antagonists for therapeutic efficacy. Moreover, patterns of oscillatory activity are well-conserved across species, and if similarly altered ERP responses were detected by scalp EEG recordings in PTHS patients, the translational value of this biomarker would be invaluable.

SCN10a/ $\text{Na}_v1.8$ and myelination

Another potential therapeutic benefit of $\text{Na}_v1.8$ antagonists in PTHS could be through its relation to demyelinating disorders. Transcriptional profiling of several different PTHS mouse models showed that differentially expressed genes were enriched in neurons and oligodendrocytes (OLs), and analysis of OLs and myelination in the *Tcf4^{+/tr}* mouse showed a significant reduction in OL density, myelination and function (41). These results suggest that re-myelination could be a potential therapeutic avenue for PTHS but may also provide another link to therapeutic targeting of *Scn10a*/ $\text{Na}_v1.8$. Several groups have shown that a variety of diseases associated with demyelination result in maladaptive ectopic expression of *Scn10a*/ $\text{Na}_v1.8$. For instance, hereditary demyelinating neuropathy leads to an upregulation of *Scn10a*/ $\text{Na}_v1.8$ and abnormal axonal excitability (46), and ectopic *Scn10a*/ $\text{Na}_v1.8$ is observed in the cerebellum of the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) and in MS patients (47). These results have led to the notion that $\text{Na}_v1.8$ antagonists may be a

beneficial treatment for demyelinating diseases and neuropathies (23). It was subsequently shown that an administration of an orally bioavailable $\text{Na}_v1.8$ antagonist (PF-01247324) improved cerebellar-dependent motor coordination in a transgenic mouse model overexpressing *Scn10a* as well as the EAE mouse model of MS (48,49). The link between demyelination and *Scn10a* expression is intriguing, and a similar maladaptive mechanism could be at play in PTHS in response to the *Tcf4*-dependent reduction in myelination. Overall, these results suggest inhibition of $\text{Na}_v1.8$ in PTHS patients may provide a dual benefit by normalizing neuronal excitability and improving myelin related deficits.

Conclusion

Currently there are no approved medications for the core symptoms of ASD or even subsets of ASD like PTHS. Here, we discuss the results of a variety of rodent studies on PTHS that all converge on $\text{Na}_v1.8$ as being a plausible therapeutic target. Rodent models of PTHS have routinely shown that disruption of *Tcf4* function leads to upregulation of *Scn10a*/ $\text{Na}_v1.8$ and pharmacological blockade of $\text{Na}_v1.8$ is effective at normalizing both physiological and behavioral phenotypes. Potent and selective $\text{Na}_v1.8$ antagonists are developed and their safety in humans is demonstrated in clinical trials (50,51). Given all these factors, we recommend testing antagonists of $\text{Na}_v1.8$ as a therapeutic approach for PTHS.

Acknowledgements

We are grateful for the vision and generosity of the Lieber and Maltz families, who made this work possible. This work was supported by the Lieber Institute for Brain Development, the Pitt–Hopkins Research Foundation Awards (to B.J.M.), National Institute of Mental Health (NIMH) grant R56MH104593 (to B.J.M.), NIMH grant R01MH110487 (to B.J.M.). We thank Julia Hill for performing and analyzing experiments.

Author contributions

K.M. and B.J.M designed the experiments. K.M analyzed the results. D.D. S.R.S. and B.J.M. wrote the manuscript. K.M. and B.J.M reviewed and edited the manuscript.

Figure Legends

Figure 1. Sensory information processing deficits are normalized by $\text{Na}_v1.8$ inhibition. (A) Example event-related potential (ERP) grand averages from individual temporal components (P20, N40, P80 and P120) where time 0=auditory stimulus (S1) onset. **(B)** Grand average ERPs in *Tcf4*^{+/tr} (n=10) compared to WT (n=12) animals at baseline and (C) following PF-04531083 administration. **(D)** Summary component analysis showing significantly reduced amplitudes in N40 peaks in *Tcf4*^{+/tr} mice compared to WT animals, which are not altered by PF-04531083 administration (2-way RM ANOVA, * p=0.0163, main effect of genotype; ns p=0.1317, main effect of treatment).

Figure 2. (A) Heat maps of event-related spectral perturbation (ERSP) in WT (left, n=12) and *Tcf4^{+/tr}* (right, n=10) animals depicting ERP-related changes due to genotype (vehicle) and rescue with PF-04531083 (SCN10a). **(B)** Heat maps of intertrial coherence (ITC) in WT (left, n=12) and *Tcf4^{+/tr}* (right, n=10) animals depicting ERP-related changes due to genotype (vehicle) and rescue with PF-04531083 (SCN10a). **(C)** Reduction of gamma ERSP following SCN10a antagonism in *Tcf4^{+/tr}*, but not in WT animals (2 way RM ANOVA, p=0.0453 interaction of genotype X treatment; Bonferroni post hoc, *p=0.0269 vehicle-treated *Tcf4^{+/tr}* versus PF-04531083-treated *Tcf4^{+/tr}*; ns p>0.9999 vehicle-treated WT versus PF-04531083-treated WT). **(D)** High frequency disturbances in *Tcf4^{+/tr}* mice are corrected by SCN10a antagonist. There is significantly higher gamma ITC in vehicle-treated *Tcf4^{+/tr}* compared to WT vehicle-treated mice in the first 75 ms post-tone. Following SCN10a treatment, there is no effect of genotype (2 way RM ANOVA, p=0.0027 interaction of genotype X treatment; Bonferroni post hoc, *p=0.0446 vehicle-treated WT versus *Tcf4^{+/tr}*; ns p>0.9999 PF-04531083-treated WT versus *Tcf4^{+/tr}*). **(E)** Low frequency disturbances in *Tcf4^{+/tr}* mice are corrected by PF-04531083. Latency to peak theta (3-8 Hz) ITC is significantly increased in vehicle-treated *Tcf4^{+/tr}* compared to vehicle-treated WT mice. No significant effect of genotype is detected following treatment with the SCN10a antagonist (2 way RM ANOVA, p=0.0123 interaction of genotype X treatment; Bonferroni post hoc, *p=0.0303 vehicle-treated WT versus *Tcf4^{+/tr}*; ns p>0.9999 PF-04531083-treated WT versus *Tcf4^{+/tr}*).

References

1. Steinbusch CVM, van Roozendaal KEP, Tserpelis D, Smeets EEJ, Kranenburg-de Koning TJ, de Waal KH, et al. Somatic mosaicism in a mother of two children with Pitt-Hopkins syndrome. *Clin Genet.* 2013 Jan;83(1):73–7.
2. Kousoulidou L, Tanteles G, Moutafi M, Sismani C, Patsalis PC, Anastasiadou V. 263.4 kb deletion within the TCF4 gene consistent with Pitt-Hopkins syndrome, inherited from a mosaic parent with normal phenotype. *Eur J Med Genet.* 2013 Jun;56(6):314–8.
3. Zweier C, Sticht H, Bijlsma EK, Clayton-Smith J, Boonen SE, Fryer A, et al. Further delineation of Pitt-Hopkins syndrome: phenotypic and genotypic description of 16 novel patients. *J Med Genet.* 2008 Nov;45(11):738–44.
4. Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. *Am J Hum Genet.* 2007 May;80(5):988–93.
5. Sepp M, Pruunsild P, Timmusk T. Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects. *Hum Mol Genet.* 2012 Jul 1;21(13):2873–88.
6. Rannals MD, Hamersky GR, Page SC, Campbell MN, Briley A, Gallo RA, et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of scn10a and KCNQ1. *Neuron.* 2016 Apr 6;90(1):43–55.
7. Brockschmidt A, Filippi A, Charbel Issa P, Nelles M, Urbach H, Eter N, et al. Neurologic and ocular phenotype in Pitt-Hopkins syndrome and a zebrafish model. *Hum Genet.* 2011

Nov;130(5):645–55.

8. Whalen S, Héron D, Gaillon T, Moldovan O, Rossi M, Devillard F, et al. Novel comprehensive diagnostic strategy in Pitt-Hopkins syndrome: clinical score and further delineation of the TCF4 mutational spectrum. *Hum Mutat.* 2012 Jan;33(1):64–72.
9. Forrest M, Chapman RM, Doyle AM, Tinsley CL, Waite A, Blake DJ. Functional analysis of TCF4 missense mutations that cause Pitt-Hopkins syndrome. *Hum Mutat.* 2012 Dec;33(12):1676–86.
10. Sweatt JD. Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. *Exp Mol Med.* 2013 May 3;45:e21.
11. Watkins A, Bissell S, Moss J, Oliver C, Clayton-Smith J, Haye L, et al. Behavioural and psychological characteristics in Pitt-Hopkins syndrome: a comparison with Angelman and Cornelia de Lange syndromes. *J Neurodev Disord.* 2019 Oct 5;11(1):24.
12. Chen H-Y, Bohlen JF, Maher BJ. Molecular and Cellular Function of Transcription Factor 4 in Pitt-Hopkins Syndrome. *Dev Neurosci.* 2021 Jun 16;43(3–4):159–67.
13. Rannals MD, Maher BJ. Molecular mechanisms of transcription factor 4 in pitt hopkins syndrome. *Curr Genet Med Rep.* 2017 Mar;5(1):1–7.
14. Teixeira JR, Szeto RA, Carvalho VMA, Muotri AR, Papes F. Transcription factor 4 and its association with psychiatric disorders. *Transl Psychiatry.* 2021 Jan 5;11(1):19.
15. Thaxton C, Kloth AD, Clark EP, Moy SS, Chitwood RA, Philpot BD. Common Pathophysiology in Multiple Mouse Models of Pitt-Hopkins Syndrome. *J Neurosci.* 2018 Jan 24;38(4):918–36.
16. Vijayaragavan K, O’Leary ME, Chahine M. Gating properties of Na(v)1.7 and Na(v)1.8 peripheral nerve sodium channels. *J Neurosci.* 2001 Oct 15;21(20):7909–18.
17. Szulczyk B, Pasierski M, Gawlak M. Prefrontal cortex pyramidal neurons express functional Nav1.8 tetrodotoxin-resistant sodium currents. *Clin Exp Pharmacol Physiol.* 2022 Mar;49(3):350–9.
18. Cleary CM, James S, Maher BJ, Mulkey DK. Disordered breathing in a Pitt-Hopkins syndrome model involves Phox2b-expressing parafacial neurons and aberrant Nav1.8 expression. *Nat Commun.* 2021 Oct 13;12(1):5962.
19. Kambouris M, Thevenon J, Soldatos A, Cox A, Stephen J, Ben-Omran T, et al. Biallelic SCN10A mutations in neuromuscular disease and epileptic encephalopathy. *Ann Clin Transl Neurol.* 2017 Jan;4(1):26–35.
20. Gold MS, Weinreich D, Kim C-S, Wang R, Treanor J, Porreca F, et al. Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. *J Neurosci.* 2003 Jan 1;23(1):158–66.
21. Jarvis MF, Honore P, Shieh C-C, Chapman M, Joshi S, Zhang X-F, et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. *Proc Natl Acad Sci USA.* 2007 May 15;104(20):8520–5.
22. Joshi SK, Mikusa JP, Hernandez G, Baker S, Shieh C-C, Neelands T, et al. Involvement of

the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. *Pain*. 2006 Jul;123(1–2):75–82.

- 23. Han C, Huang J, Waxman SG. Sodium channel Nav1.8: Emerging links to human disease. *Neurology*. 2016 Feb 2;86(5):473–83.
- 24. Renganathan M, Cummins TR, Waxman SG. Contribution of Na(v)1.8 sodium channels to action potential electogenesis in DRG neurons. *J Neurophysiol*. 2001 Aug 1;86(2):629–40.
- 25. Dib-Hajj SD, Tyrrell L, Cummins TR, Black JA, Wood PM, Waxman SG. Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. *FEBS Lett*. 1999 Nov 26;462(1–2):117–20.
- 26. Blair NT, Bean BP. Role of tetrodotoxin-resistant Na⁺ current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons. *J Neurosci*. 2003 Nov 12;23(32):10338–50.
- 27. Priest BT, Kaczorowski GJ. Blocking sodium channels to treat neuropathic pain. *Expert Opin Ther Targets*. 2007 Mar;11(3):291–306.
- 28. Bagal SK, Marron BE, Owen RM, Storer RI, Swain NA. Voltage gated sodium channels as drug discovery targets. *Channels (Austin)*. 2015;9(6):360–6.
- 29. Vertex Pharmaceuticals Incorporated. A Study Evaluating Efficacy and Safety of VX-548 for Acute Pain After a Bunionectomy [Internet]. 2022 [cited 2022 Apr 12]. Available from: <https://clinicaltrials.gov/ct2/show/NCT04977336?term=VX-548&draw=2&rank=1>
- 30. Vertex Pharmaceuticals Incorporated. A Study Evaluating Efficacy and Safety of VX-548 for Acute Pain After an Abdominoplasty [Internet]. 2022 [cited 2022 Apr 12]. Available from: <https://clinicaltrials.gov/ct2/show/NCT05034952?term=VX-548&draw=2&rank=2>
- 31. de Winter CF, Baas M, Bijlsma EK, van Heukelingen J, Routledge S, Hennekam RCM. Phenotype and natural history in 101 individuals with Pitt-Hopkins syndrome through an internet questionnaire system. *Orphanet J Rare Dis*. 2016 Apr 12;11:37.
- 32. Goodspeed K, Newsom C, Morris MA, Powell C, Evans P, Golla S. Pitt-Hopkins Syndrome: A Review of Current Literature, Clinical Approach, and 23-Patient Case Series. *J Child Neurol*. 2018 Mar;33(3):233–44.
- 33. Marangi G, Zollino M. Pitt-Hopkins Syndrome and Differential Diagnosis: A Molecular and Clinical Challenge. *J Pediatr Genet*. 2015 Sep 25;4(3):168–76.
- 34. Hasi M, Soileau B, Sebold C, Hill A, Hale DE, O'Donnell L, et al. The role of the TCF4 gene in the phenotype of individuals with 18q segmental deletions. *Hum Genet*. 2011 Dec;130(6):777–87.
- 35. Willemsen MH, Rensen JHM, van Schrojenstein-Lantman de Valk HMJ, Hamel BCJ, Kleefstra T. Adult Phenotypes in Angelman- and Rett-Like Syndromes. *Mol Syndromol*. 2012 Apr;2(3–5):217–34.
- 36. Garg SK, Liou DT, Knopp SJ, Bissonnette JM. Conditional depletion of methyl-CpG-binding protein 2 in astrocytes depresses the hypercapnic ventilatory response in mice. *J Appl Physiol*. 2015 Sep 15;119(6):670–6.

37. Zhang X, Su J, Cui N, Gai H, Wu Z, Jiang C. The disruption of central CO₂ chemosensitivity in a mouse model of Rett syndrome. *Am J Physiol, Cell Physiol.* 2011 Sep;301(3):C729-38.
38. Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA. Effect of ventilatory drive on carbon dioxide sensitivity below eupnea during sleep. *Am J Respir Crit Care Med.* 2002 May 1;165(9):1251–60.
39. Verhulst SL, De Dooy J, Ramet J, Bockaert N, Van Coster R, Ceulemans B, et al. Acetazolamide for severe apnea in Pitt-Hopkins syndrome. *Am J Med Genet A.* 2012 Apr;158A(4):932–4.
40. Gaffney C, McNally P. Successful use of acetazolamide for central apnea in a child with Pitt-Hopkins syndrome. *Am J Med Genet A.* 2015 Jun;167(6):1423.
41. Phan BN, Bohlen JF, Davis BA, Ye Z, Chen H-Y, Mayfield B, et al. A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. *Nat Neurosci.* 2020 Mar;23(3):375–85.
42. Li H, Zhu Y, Morozov YM, Chen X, Page SC, Rannals MD, et al. Disruption of TCF4 regulatory networks leads to abnormal cortical development and mental disabilities. *Mol Psychiatry.* 2019 Aug;24(8):1235–46.
43. Ekins S, Gerlach J, Zorn KM, Antonio BM, Lin Z, Gerlach A. Repurposing approved drugs as inhibitors of kv7.1 and nav1.8 to treat pitt hopkins syndrome. *Pharm Res.* 2019 Jul 22;36(9):137.
44. Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ. EEG biomarkers of target engagement, therapeutic effect, and disease process. *Ann N Y Acad Sci.* 2015 May;1344:12–26.
45. Hill JL, Hardy NF, Jimenez DV, Maynard KR, Kardian AS, Pollock CJ, et al. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. *Transl Psychiatry.* 2016 Aug 23;6(8):e873.
46. Moldovan M, Rosberg MR, Alvarez S, Klein D, Martini R, Krarup C. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice. *Neurobiol Aging.* 2016 Mar;39:128–39.
47. Black JA, Dib-Hajj S, Baker D, Newcombe J, Cuzner ML, Waxman SG. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. *Proc Natl Acad Sci USA.* 2000 Oct 10;97(21):11598–602.
48. Payne CE, Brown AR, Theile JW, Loucif AJC, Alexandrou AJ, Fuller MD, et al. A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. *Br J Pharmacol.* 2015 May;172(10):2654–70.
49. Shields SD, Butt RP, Dib-Hajj SD, Waxman SG. Oral administration of PF-01247324, a subtype-selective Nav1.8 blocker, reverses cerebellar deficits in a mouse model of multiple sclerosis. *PLoS ONE.* 2015 Mar 6;10(3):e0119067.
50. Hijma HJ, Siebenga PS, de Kam ML, Groeneveld GJ. A Phase 1, Randomized, Double-

Blind, Placebo-Controlled, Crossover Study to Evaluate the Pharmacodynamic Effects of VX-150, a Highly Selective NaV1.8 Inhibitor, in Healthy Male Adults. *Pain Med.* 2021 Aug 6;22(8):1814–26.

51. Hijma HJ, van Brummelen EMJ, Siebenga PS, Groeneveld GJ. A phase I, randomized, double-blind, placebo-controlled, single- and multiple dose escalation study evaluating the safety, pharmacokinetics and pharmacodynamics of VX-128, a highly selective Nav 1.8 inhibitor, in healthy adults. *Clin Transl Sci.* 2021 Dec 27;

Figure 1

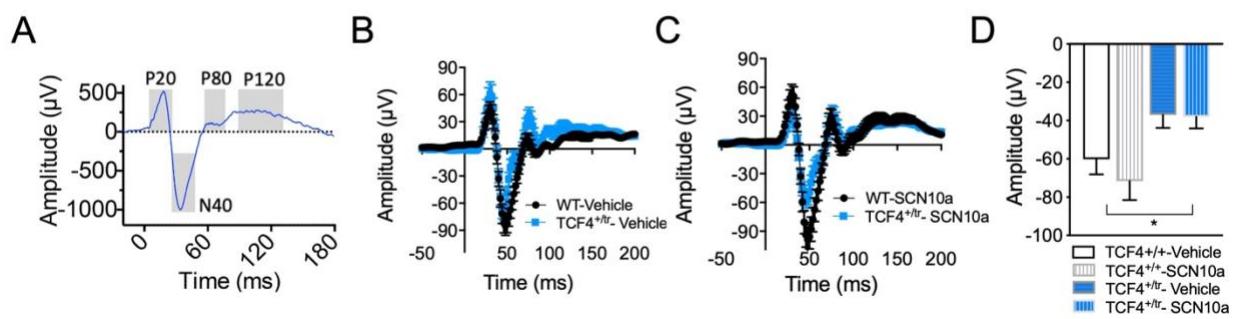
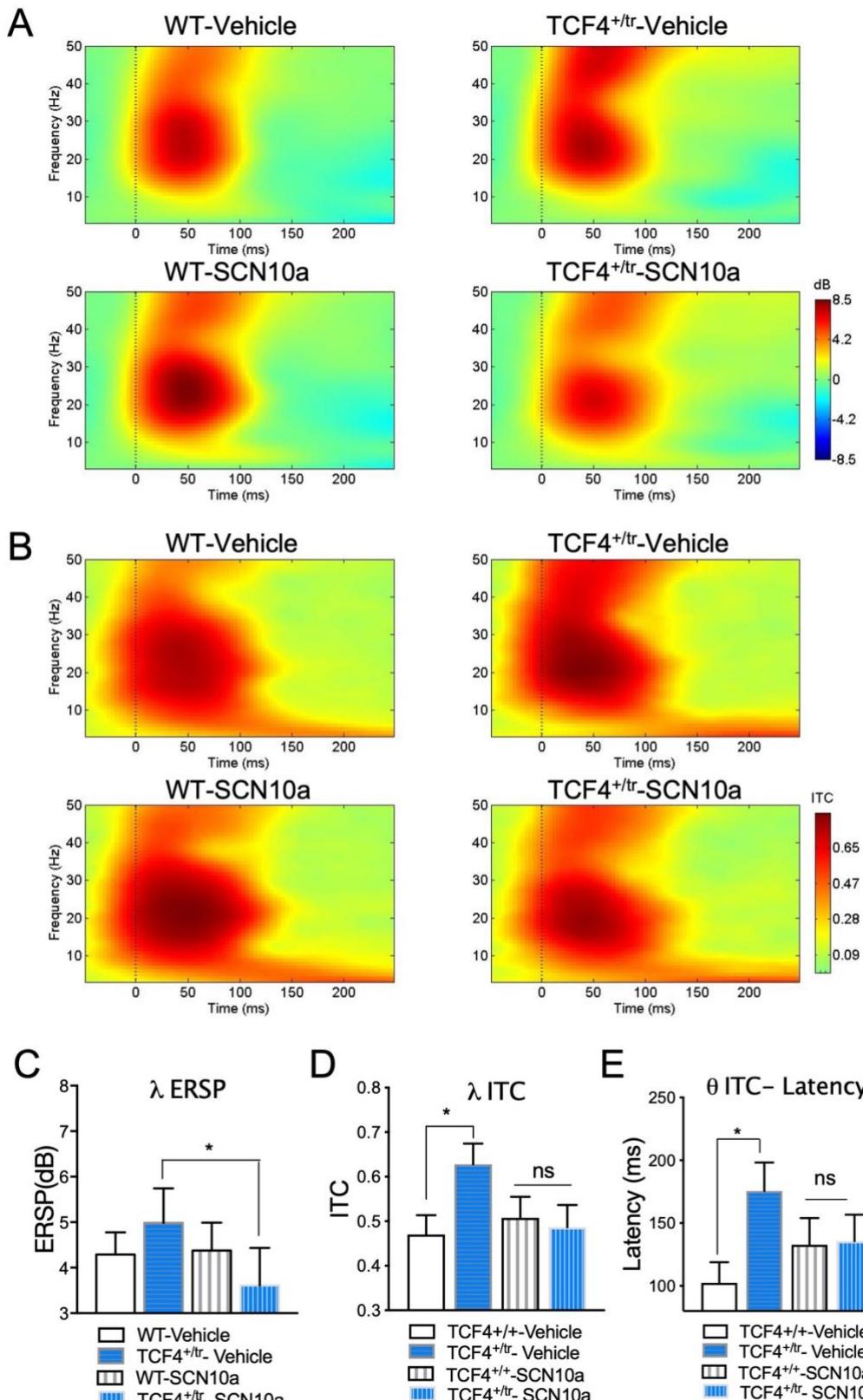



Figure 2

