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Abstract:  

Precise mechanism-based gene expression signatures (GESs) have been developed in 

appropriate in vitro and in vivo model systems, to identify important cancer-related signalling 

processes. However, some GESs originally developed to represent specific disease 

processes, primarily with an epithelial cell focus, are being applied to heterogeneous tumour 

samples where the expression of the genes in the signature may no longer be epithelial-

specific. Therefore, unknowingly, even small changes in tumour stroma percentage can 

directly influence GESs, undermining the intended mechanistic signalling.  

Using colorectal cancer as an exemplar, we deployed numerous orthogonal profiling 

methodologies, including laser capture microdissection, flow cytometry, bulk and 

multiregional biopsy clinical samples, single cell RNAseq and finally spatial transcriptomics, 

to perform a comprehensive assessment of the potential for the most widely-used GESs to 

be influenced, or confounded, by stromal content in tumour tissue. To complement this work, 

we generated a freely-available resource, ConfoundR; https://confoundr.qub.ac.uk/, that 

enables users to test the extent of stromal influence on an unlimited number of the 

genes/signatures simultaneously across colorectal, breast, pancreatic, ovarian and prostate 

cancer datasets. 

Findings presented here demonstrate the clear potential for misinterpretation of the meaning 

of GESs, due to widespread stromal influences, which in-turn can undermine faithful 

alignment between clinical samples and preclinical data/models, particularly cell lines and 

organoids, or tumour models not fully recapitulating the stromal and immune 

microenvironment. As such, efforts to faithfully align preclinical models of disease using 

phenotypically-designed GESs must ensure that the signatures themselves remain 

representative of the same biology when applied to clinical samples. 
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Introduction:  

Although the publication of gene expression-based signatures (GES) continues to grow each 

year in the research setting, these published signatures rarely make any clinical impact.1 In 

addition to potentially-addressable technical confounders, such as sample size issues or 

lack of validation cohorts, the biology underpinning the signature may also expose a critical 

weakness in current translational bioinformatics research pipelines, when applied to clinical 

samples either in retrospective collections or prospective trials. This is particularly pertinent 

as researchers now have unparalleled access to cancer datasets that can be routinely 

characterised using the tens of thousands of GESs already available in molecular databases 

such as TCGA.2 We have previously demonstrated the confounding effects of stroma on 

molecular subtypes in colorectal cancer,3,4 alongside specific influences of the tumour 

microenvironment on EMT-related signatures.5,6 

A number of recent studies have highlighted the characterisation required to ensure faithful 

alignment between human tumours and preclinical models, in terms of the biological 

signalling and therapeutic responses in both.7-9 Integrity and robustness in aligning models 

with human tumours is critical in the era of precision medicine, where treatments are tailored 

for the biology underpinning specific cancer subtypes. Furthermore, signature development 

and testing is increasingly performed in disease-matched pre-clinical models, using in vitro, 

in vivo or ex vivo systems, enabling almost absolute control over the experimental conditions 

employed during biology-driven GES development.10-12 Although such “clean” models are 

exquisitely suited for precise identification and characterisation of discrete mechanistic 

signalling, when compared to the relative unpredictable nature of diagnostic sample 

acquisition, differences in the epithelial, immune and stromal composition between the 

models and clinical samples13 has the potential to  confound our understanding and 

interpretation of these signatures in specific domains. While this will in no way alter the 

prognostic/predictive statistical value of such signatures, differences in cellular composition 

and tumour stroma percentage (TSP) are rarely accounted for during the interpretation of the 
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true biological meaning of the GES result in bulk tumour datasets. Conversely, when 

biomarkers of prognosis, response or molecular subtypes are identified from tumour 

datasets, approaches to reverse-translate these findings into pre-clinical models introduces 

the potential for assessment of these genes/signatures in lineages that do not represent the 

true cellular source of the signalling in clinical samples. Again, it is important to note that the 

statistical correlation between a specific biomarker/signature and a clinical variable like 

relapse, are in no way weakened if the end-user does not accurately consider the true 

biological interpretation of the signature itself. While biological researchers understand that 

correlation does not always equate to causation,14 there remains a potential gap in our 

understanding when interpretation of GESs can be influenced by the cellular composition of 

a tumour sample. The potential for misinterpretation is an issue that has become even more 

important in the precision medicine era,15 where it is now essential that therapeutic targeting 

is based on robust and accurate mechanistic-driven evidence. In order to successfully 

translate pre-clinical efficacies into clinical benefit, testing of therapeutics must be performed 

in models that are representative of specific patient subtypes.7 

To examine if variations in TSP can distort GES results, and in-turn lead to biological 

misinterpretation, we performed a comprehensive assessment and quantification of the 

extent that stromal composition in bulk tumours can skew the expression levels of n=7835 of 

commonly employed gene sets and signatures in cancer research. Using a combination of 

discovery and independent validation cohorts, including tissues from laser capture 

microdissection, flow cytometry, bulk clinical samples, single cell RNAseq and finally spatial 

transcriptomics, enabled a detailed interrogation of widely-used transcriptomic signatures to 

enumerate the extent to which stromal composition can confound their classification. The 

pan-cancer nature of these findings were subsequently assessed across a number of 

publicly-available laser capture microdissection datasets derived from pancreatic, breast, 

ovarian and prostate cancer. Furthermore, to ensure that our findings can be widely applied, 

we have developed the freely-available ConfoundR on-line resource; 
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https://confoundr.qub.ac.uk/, which gives a user the ability to quickly and easily interrogate 

the potential confounding effects on any individual gene, combination of genes, and GES 

across colorectal, pancreatic, breast, ovarian and prostate cancer datasets.  
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Results:  

 

Initial characterisation of tumour epithelium and stromal datasets 

To assess the influence that TSP has on commonly used transcriptional signatures, we 

designed a study to identify, characterise, and orthogonally validate the tumour 

microenvironment (TME) compartments and lineages associated with specific transcriptional 

signatures within primary colorectal cancer (CRC). This approach utilised a series of 

independent primary tumour samples that had undergone laser capture microdissection 

(LCM), to segregate tissue into epithelial and stromal components, for discovery (n=26 

samples from n=13 tumours; GSE35602) and validation (n=16 samples from n=8 tumours; 

GSE31279) (Figure 1A).  Further delineation of cell-type-specific transcriptional signalling 

was performed using transcriptional data generated from FACS-purified epithelial, fibroblast, 

endothelial and leukocyte cell populations from CRC resections (n=6 tumours, n=24 

populations; GSE39396) (Figure 1A). 

To confirm the purity of these datasets, we utilised the microenvironment cell population 

(MCP)-counter algorithm16 to assign single sample scores for n=10 stromal (fibroblasts, 

endothelial cells) and immune lineages (T cells, CD8 T cells, cytotoxic lymphocytes, B 

lineages, natural killer (NK) cells, monocytic lineages, myeloid dendritic cells, neutrophils) to 

each individual sample (Figure 1B-D). In the LCM cohorts, these analyses confirmed that the 

majority of TME lineage signatures are exclusively stromal, particularly those aligned to 

fibroblast and endothelial cells (Figure 1B, C). Although most immune lineages appeared to 

align to the stroma, we did observe signalling indicative of CD8 T cells, NK cells and 

neutrophils within the epithelial compartment, indicative of intra-epithelial infiltration of these 

specific immune lineages (Figure 1B, C). In line with this LCM data, within the FACS cohort 

we observed fibroblast and endothelial populations aligned exclusively to the MCP-counter 

signature for fibroblasts and endothelial cells respectively, supporting the suitability of our 

approach and the utility of the MCP-counter signatures (Figure 1D). While T cell, CD8 T cell, 

cytotoxic lymphocyte and B cell lineage scores all closely aligned to the purified leukocyte 
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population as expected, we did observe signalling indicative of NK cells, myeloid dendritic 

cells and neutrophils in non-leukocyte populations, suggesting that there was some 

crossover in these specific populations during cell sorting for epithelial cells (EPCAM+), 

leukocytes (CD45+), fibroblasts (FAP+) and endothelial cells (CD31+), or that the signatures 

cannot be used for precise enumeration of these lineages in CRC tissue.  

 

Association of CRC molecular subtypes with stromal components 

A number of studies including our own have identified the stromal and immune contributions 

to the CRC consensus molecular subtypes (CMS)3,4,17,18, in particular to CMS1 and CMS4, 

however the relative contributions of TME compartments and specific lineage contributing to 

CMS calls using the original classifier have not been detailed. To test this, we classified the 

epithelial and stromal components from each tumour using the CMSclassifier17 algorithm, 

where we found that with the exception of one unclassified samples (UNK), the stroma was 

exclusively classified as CMS4 in the LCM cohorts (Figure 1E, F), as were both the purified 

fibroblast and endothelial lineages in the FACS cohort (Figure 1G), suggesting that 

transcriptional signalling from these components alone, even in the absence of the epithelial 

transcriptome, is sufficient for tumour classification as CMS4, the group with the worst 

prognosis in CRC.  

When the epithelium was examined, with the exception of two samples, we observed a 

strong tendency for classification of CMS2 and CMS3, both well-characterised epithelial-rich 

subtypes, across the LCM and FACS cohorts (Figure 1E, F, G). In contrast to the 

association between stromal/endothelial cells and CMS4, when the leukocyte FACS purified 

population calls were assessed, we observed uniform unknown/unclassified assignments, 

indicating that the presence of immune infiltration alone is not sufficient for classification of a 

tumour as an immune-rich CMS1 tumour (Figure 1G) and more complex histological 

features involving tumour infiltrating lymphocytes and epithelial components are required. 
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Furthermore, these issues remain apparent when using the CMScaller classifier,19 

specifically modified to classify epithelial-based pre-clinical models according to CMS 

(Supplementary Figure 1). 

 

Stromal influence on widely used transcriptional signatures 

While individual studies have highlighted the stromal origins of a number of key 

genes/proteins, using methods similar to MCP, it remains unknown how influential the 

stromal transcriptome is on some of the most widely-employed GESs. To investigate this, we 

performed pair-wise gene set enrichment analysis (GSEA)20 comparing epithelium to stroma 

using one of the most commonly used pathway/ontology collections, the Molecular 

Signatures Database (MSigDB)21 of n=50 “Hallmarks” (Supplementary Figure 2A, B). By 

performing these analyses in both LCM cohorts in tandem, we observed that n=21 

Hallmarks were significantly (padj <0.02; more stringent that the accepted 0.25 cut-off) and 

consistently associated with either stroma (n=17) or epithelium (n=4) across both LCM 

cohorts (Figure 2A). These findings were further validated using single-sample GSEA 

(ssGSEA) in the FACS cohort (Supplementary Figure 2C), where the n=17 stromal-

associated and n=4 epithelial-associated Hallmarks were again enriched in the 

corresponding cell populations (Figure 2B). Despite being developed and named to classify 

samples associated with specific biology, these analyses reveal the signalling underpinning 

of these signatures may be entirely, albeit unintentionally, misinterpreted due to the 

confounding effects of the stromal transcriptome in bulk tumour data. To ensure that this 

confounding effect is not an artefact of the Hallmark signatures specifically, we performed 

the same analyses using the n=186 KEGG and n=7481 gene ontology biological processes 

(GO BP) signatures, where again we found widespread stromal influence in 50/186 

(Supplementary Figure 2D) and 949/7481 (Supplementary Table 1) signatures consistently 

in both cohorts, validated within the FACS cohort (Supplementary Figure 2E-F). 
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We also observed similar confounding effects at the transcription factor (TF) activity level, 

when assessed using the n=118 defined regulons within the Dorothea algorithm.22 These 

analyses revealed the extent to which numerous seemingly epithelial-specific cancer-

associated TFs are influenced by stromal content, across both LCM cohorts (Figure 2C); 

with n=48 TFs significantly activated in stromal components, compared to only n=8 TFs 

being significantly activated in the epithelium. As with the transcriptional signatures, when 

extended into the FACS purified populations, we observed a near identical overlap with the 

LCM findings and identified a number of lineage-specific associations (Figure 2D). Given the 

potential implications of the CRC findings described above, we next questioned if this was a 

pan-cancer phenomena, by performing the same analysis in LCM cohorts from breast 

cancer (BC), triple-negative breast cancer (TNBC), pancreatic ductal adenocarcinoma 

(PDAC), ovarian cancer (OvC) and prostate cancer (PrC). Despite some small organ-

specific discrepancies in individual GESs, these analyses again revealed that the presence 

and extent of the confounding effect of the stroma is not CRC-specific, highlighting the 

potential for widespread biological misinterpretation of these signalling pathways across 

multiple cancer types (Supplementary Figure 2G-K). 

 

The ConfoundR resource enables estimation of stromal influence on transcriptional 

signatures simultaneously across multiple cancer types  

Our findings of the presence of the stromal confounding effect across cancers, coupled with 

the widespread interest in biomarker/GES identification and application, motivated us to 

develop the online resource, ConfoundR (www.confoundr.qub.ac.uk). ConfoundR enables 

users, regardless of their bioinformatics skillset, to examine individual genes, combination of 

genes, and GES of interest to identify if they could be susceptible to the same stromal 

confounding issues we have identified in this study. This freely-available online resource 
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enables users to interrogate the CRC, BC, TNBC, PDAC, OvC and PrC datasets through 

three analysis modules; gene expression boxplots, gene expression heatmaps and GSEA 

(Figure 3A). 

The boxplots module of ConfoundR allows gene expression comparisons of a single gene 

between epithelial samples and stroma samples in each dataset, by creating boxplots and 

providing accompanying p-values for Mann-Whitney U tests (Figure 3B). ConfoundR’s 

heatmap module allows expression levels of multiple genes to be visually compared 

between epithelial and stromal samples in each dataset using a heatmap (Figure 3C). 

Finally, the GSEA module of ConfoundR, enables the user to perform GSEA comparing 

stromal and epithelial samples in each dataset from established gene set collections; 

Hallmarks (n=50), KEGG (n=186), Reactome (n=1604), Biocarta (n=292), Pathway 

Interactions Database (PID; n=196). In addition, as many researchers will be interested in 

assessing their own bespoke or unpublished gene signatures, ConfoundR also provides the 

end-user with complete control to input and generate GSEA results from an unlimited 

number of custom gene sets (Figure 3D). To exemplify the utility of the ConfoundR resource, 

we examined the expression of the fibroblast activated protein (FAP) gene using the 

Expression Boxplots module, the expression of a subset of genes from the Hallmark EMT 

gene set using the Expression Heatmap module and the GSEA module to perform GSEA for 

the Hallmark EMT gene set (Figure 3B-D). The ConfoundR application provides all cancer 

researchers with a freely-available and novel resource to test the susceptibility of any gene, 

lists of genes or gene signatures to the stromal confounding phenomenon described in the 

present study. 

 

Application of findings to bulk CRC tumour data 

 

To test these findings further in bulk tumour datasets, we utilised transcriptional data from 

n=356 primary tumours used in the FOCUS clinical trial (Figure 4A; GSE156915)23, 
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alongside digital pathology-derived desmoplastic stromal percentage score derived from 

H&Es (desmoplastic stroma percentage [DS%]; detailed in Methods). We confirmed the 

previously-reported associations between CMS4 and stromal content are also observed in 

this tumour  cohort (Supplementary Figure 3A) alongside strong correlation between our 

digital pathology assessments of stroma and the MCP fibroblast score (ρ=0.64, p<2.2e-16) 

(Supplementary Figure 3B) and ESTIMATE24 stromal score (ρ=0.73, p<2.2e-16) (Figure 4B). 

Using DS% to rank the tumour samples from low to high, we next assessed all the Hallmarks 

(Supplementary Figure 3C), alongside the subset of Hallmarks and TFs that were found to 

be significantly associated with stroma/epithelium in the LCM and FACS cohorts (Figure 4C 

and 4D), revealing a strikingly clear pattern that again indicates how widely the stromal 

components of a tumour can confound the interpretation of transcriptional signatures and TF 

activity scores in the bulk tumour setting.  

Throughout our analyses a number of individual signatures were consistently associated 

with the strongest confounding effects of stromal content, and therefore we selected these 

as specific exemplars related to DS%; namely the EPITHELIAL MESENCHYMAL 

TRANSITION (Spearman’s rho = 0.69, p < 2.2e-16), KRAS SIGNALLING UP (Spearman’s 

rho = 0.48, p < 2.2e-16) and MYC TARGETS V2 (Spearman’s rho = -0.41, p < 2.2e-16) 

(Figure 4E) Hallmark signatures. We identified two cases representative of low and high 

DS% in each of these analyses (Figure 4E, red circles) and assessed histological features 

according to  H&Es with  AI-guided tissue segmentation, which provided a visual 

confirmation that these Hallmark signatures are confounded by quantity of desmoplastic 

stroma across the tissue section (Figure 4F).  

 

Lineage-specific scRNAseq assessment of the Hallmarks EMT signature  

Single cell RNA seq (scRNAseq) can be deployed to provide exceptional lineage-specific 

resolution in transcriptional studies, and this method has been used to great effect in the 
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identification of tumour heterogeneity and phenotypic associations.25 To assess how far our 

findings extend in such data, we utilised a scRNAseq cohort derived from n=6 CRC primary 

tumours (Figure 5A; GSE144735), where across all regions at a single cell resolution the 

Hallmark EMT signature displays a significant enrichment in stromal cells compared to all 

other cell types (p <2.2e-16; Figure 5B) and in particular when comparing epithelial and 

stromal only (p <2.2e-16; Figure 5C). The highest EMT scoring epithelial cells only ever 

display an EMT gene expression signature score that reaches the lowest quartile of EMT 

signature score for stromal cells across all samples (Figure 5D). Based on these data, 

despite EMT signatures proving to be highly-tractable biomarkers of epithelial cells 

undergoing transitions when utilised in in vitro, pre-clinical or scRNAseq data, these data 

provide further proof that when applied to clinical samples, any EMT-related signature score, 

regardless of how well refined it is from pre-clinical models or scRNAseq data, becomes a 

definitive measurement of stromal content rather than epithelial to mesenchymal transition. 

 

Multi-regional biopsy assessment 

We next wished to test the potential clinical implications of these findings, in terms of patient 

misclassification, using the biopsy of surgical specimens (BOSS)26 cohort of n=7 primary 

colon tumour resections, where each patient tumour has bulk transcriptional profiles derived 

from up to n=5 multi-regional biopsies (Figure 5E). Application of ssGSEA for the Hallmarks 

revealed some signature- and patient-specific variations indicative of stromal-derived 

intratumoural heterogeneity. When assessed individually, all n=5 biopsy samples derived 

from patient BOSS01 display low expression of all n=17 Hallmarks and n=42 TFs we have 

previously associated with stroma, in line with this patient having a largely uniform epithelial-

rich tumour (Figure 5F and 5G). However, for the remaining patient samples, particularly 

from patient BOSS11, BOSS13 and BOSS17, all displayed large variation in gene 

expression between their patient-matched biopsies for each of the stromal-associated n=17 

Hallmark signatures and n=48 TFs (Figure 5F and 5G), suggesting that these tumours in 
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particular displayed intratumoural heterogeneity in tumour stroma percentage. To test if the 

source of this intratumoural heterogeneity in Hallmark scores was due to variation in DS% 

content across biopsies, we assessed the individual ssGSEA signature scores correlated 

with the ESTIMATE stromal score which we previously confirmed as an accurate surrogate 

of DS% (Figure 4B). Remarkably, these analyses revealed the extent to which stromal 

content can accurately predict transcriptional signature scores regardless of the patient-of-

origin. This was particularly evident for the signatures we have identified to be confounded 

by stromal content in our LCM, FACS and bulk tumour datasets, exemplified by positive 

correlation of EPITHELIAL MESENCHYMAL TRANSITION (Spearman’s rho = 0.96, p = 

1.7e-08), KRAS SIGNALLING UP (Spearman’s rho = 0.87, p = 7.9e-07) signalling, alongside 

negative correlation with the MYC TARGETS V2 (Spearman’s rho = -0.63, p = 0.00037) 

signature (Figure 5H).  

 

Spatial transcriptomic confirms the confounding effects of the stroma  

In this study, we have shown the potential for TSP to confound transcriptional signature 

scores, which in turn can result in misinterpretation of their meaning. Furthermore, analysis 

in the BOSS cohort also reveal the potential clinical implications of intratumoural stromal 

heterogeneity, which could result in patient misclassification, or indeed multiple conflicting 

classifications, when using GESs. To directly assess if spatial transcriptomics (ST) can 

alleviate some of the confounding variations in transcriptional signalling and inaccurate 

interpretation of findings when using bulk data, we profiled n=11 regions of a colon tumour 

sample using the GeoMx ST platform (Figure 6A). While the GeoMx Cancer Transcriptome 

Atlas gene panel employed was more limited (n=1825 core genes in total) when compared 

to the profiling in our other cohorts; we demonstrated that the reduced total number of genes 

still represent excellent surrogates for the whole transcriptome by assessing ssGSEA scores 

of the full signatures alongside the reduced genes available in the ST data. To test this 

further, using data from the FOCUS cohort, we observed excellent concordance in ssGSEA 
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scores of the full MSigDB Hallmark EMT signature (ρ=0.95; n=200 genes) and MYC Targets 

V2 signature (ρ=0.75; n=58 genes), when assessed using the corresponding reduced 

signatures that were present on the GeoMx panel (n=81 genes and n=8 genes respectively) 

(Figure 6B, Supplementary Figure 4A). The ST platform provided the option to stratify our 

regions of interest into epithelium and stroma, using cytokeratin (pan-CK) staining, enabling 

calculation of total cellularity for each transcriptional pool. Using the ST data, we next 

performed ssGSEA using the Hallmarks we have previously shown to be most confounded 

by stroma, which again revealed the same general pattern across the n=17 stromal-

associated and n=4 epithelial-associated signatures (Figure 6C). These findings were further 

confirmed when ST data from across the entire slide was pooled into two groups for pair-

wise GSEA, PanCK- and PanCK+ (Supplementary Figure 4B), which again revealed a 

significant enrichment for the EMT Hallmark signalling cascade in the stromal (PanCK-) 

regions (Figure 6D). While bulk tumour datasets will remain an essential tool for statistical 

association studies, these data clearly highlight the need for the compartment and/or 

lineage-specific stratification, as afforded by ST, to ensure accurate biological interpretation 

of GESs. 
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Discussion:  

In this study, we provide a comprehensive characterisation of the tumour transcriptome, 

stratified primarily into epithelium and stroma using LCM and spatial transcriptomics, 

alongside a more granular assessment of individual lineages using FACS and scRNAseq 

analysis. These analyses provide insight into the extent of the stroma’s contribution to some 

of the most widely-employed signatures in cancer research, and also the potential for 

biological misinterpretation of resulting data when extrapolating biology from preclinical 

models that do not contain a full tumour microenvironment. Furthermore, we can clearly 

show the potential clinical implications of these issues in terms of variable patient 

classification, both through the use of bulk tumour data (as demonstrated in this study from 

the FOCUS clinical trial) and through the use of multi-regional biopsies from primary 

resection material. To ensure that all users can benefit from the findings of this study, we 

have developed a user-friendly and freely-available resource, ConfoundR, which enables 

assessment of individual genes, pathways and bespoke signatures across a number of 

CRC, BC, TNBC, PDAC, OvC and PrC datasets. 

Pre-clinical models, particularly epithelial-rich systems where near-complete control over 

lineage purity and environmental conditions can be achieved and reproduced, represent 

ideal systems to develop transcriptional signatures that correlate with phenotypes of interest. 

We and others have previously highlighted discrepancies between the nomenclature used 

for such published signatures,4,27 when named to reflect the phenotypes they characterise in 

vitro, and the actual biology they can represent when applied to bulk tumour datasets. This is 

primarily due to the fact that while lineage purity is fixed in such pre-clinical models, a tumour 

mass is composed of a milieu of lineages,13 the proportions of which are most often 

unknown at the time of processing for bulk transcriptomic profiling. This becomes particularly 

problematic for signatures and biomarkers that are developed to characterise mesenchymal 

traits, as although they will track with precise epithelial biology in in vitro systems, when 

applied to tumour data they are more likely to become highly-accurate tumour stromal 
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percentage estimates, rather than measures of subtle epithelial transitions.5,6 Our current 

study addresses the importance of also ensuring that the transcriptional signatures faithfully 

represent the same biology during forward and reverse translation studies, and are not 

undermined by changes in conditions between clinical and preclinical settings. As such, the 

most faithful alignment of biological traits between models and clinical samples should be 

based on deeper phenotyping assessments, that incorporate histology and lineage-specific 

assessments in addition to transcriptional signatures.  

The contribution of the stroma to the cancer transcriptome has been the subject of numerous 

studies, highlighted by Isella and colleagues18,28 who identified a set of 4,434 genes present 

in cancer datasets but exclusively expressed by the tumour stroma. While the nomenclature 

used in each of the signatures tested may lead researchers to conclude that the biology of 

that pathway is elevated, data presented here clearly demonstrates that when these 

otherwise mechanistic-driven signatures are composed of genes expressed at higher levels 

in stromal cells, the signatures themselves become surrogate markers, to different extents, 

of the tumour stroma percentage within a bulk tumour sample. Given the extent to which the 

stroma appears to confound biological interpretation of the thousands of signatures and TFs 

we have assessed in this study, there may be a significant body of research published that 

has inadvertently derived conclusions based on inaccurate interpretations of results.  

Data presented here do not challenge the use or value of using signatures to interpret data 

from bulk tumours, but present unambiguous intelligence around the caution that should be 

applied when interpreting what these signature scores can reflect, despite what the 

signature name suggests. An inaccurate biological conclusion in itself will not have major 

consequences for the statistical correlation associated with a signature, however it is highly 

likely that inaccurate biological interpretations of such results are being used as the basis for 

ongoing clinical therapeutic developments, which themselves are also potentially being 

tested in models that bear little relevance to the patient tumour samples they are derived 

from. This is particularly important, as most users are reliant on utilising existing molecular 
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datasets, where there is no control over the initial profiling steps, or indeed representative 

histological images that precisely align to the tumour region used for nucleic acid extraction. 

As such, while the signatures presented here represent large collections of experimentally-

validated genes associated with specific phenotypes or biological cascades, our findings 

support the conclusion that widespread misconceptions exist when interpreting the meaning 

underlying transcriptional signatures in tumour studies, given the discordance between their 

development and application.  

Genes can have many functions, and in some cases the genes that strongly demark a 

specific phenotype in a pre-clinical model system can also be expressed and perform 

entirely different mechanistic signalling roles in stromal lineages that make up a TME. If the 

magnitude of expression of these genes is low in the stromal/immune lineages, this may 

cause minimal impact when interpreting the precise nature of the transcriptional signature in 

bulk tumour data. However, if the genes within these signatures are expressed at higher 

levels in non-epithelial lineages, they can become strong surrogate markers for levels of 

TME components, rather than reflecting any of the mechanistic biology that they were 

designed to identify. It is this potential for misinterpretation that our paper wishes to highlight, 

thereby enabling researchers to assess the potential for their mechanistic signature of 

choice to be confounded in bulk tumour data using our ConfoundR resource. This will 

hopefully allow researchers to make a more informed interpretation of the true biology 

underlying the signature in these tumour samples, as compared to the controlled pre-clinical 

system it was developed in. 

While the use of scRNAseq analysis can provide high quality lineage-specific transcriptional 

data, this comes at the expense of spatial information.29 Conversely, spatial transcriptomics 

can regionalise transcriptional signalling but lose the single cell resolution.30 While both 

approaches, individually or in combination,31,32 have revolutionised the field of transcriptional 

profiling, the use of bulk transcriptomics datasets available in publicly-accessible databases 

like TCGA and GEO, remain the mainstay for alignment of transcriptional signature to clinical 
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outcome data for prognostic assessment and mechanistic/biological interpretation. It is likely 

that with reducing costs and expansion of technologies, the generation of tumour-matched 

scRNAseq, spatial and bulk cohorts in both clinical samples and pre-clinical models will 

become more routine in future, and at some point may supersede that of existing bulk data. 

However, this is unlikely to be in the immediate future and as such the findings of this study, 

and the unique ConfoundR application we have made publicly-available, will represent an 

important resource to ensure that translational researchers can more accurately interpret the 

information underpinning the transcriptional biomarker(s) used to stratify patient samples 

and inform cancer care. 
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Methods:  

Datasets 

When publicly available, the data were assessed via GEO and the processed data matrix 
downloaded. All array data were collapsed using the collapseRows function within WGCNA 
(v1.70-3) R package. In the case of duplicated genes, the probe with the highest mean 
expression across all samples was used and those genes with no expression across the 
dataset were removed. All GEO datasets are available via https://www.ncbi.nlm.nih.gov/geo/ 
using GSE codes below:  

Discovery: LCM GSE35602; Matched epithelium and stroma from thirteen colorectal 
tumours transcriptionally profiled using Aligent array. Validation: LCM GSE31279; Matched 
epithelium and stroma from eight colorectal tumours (with both compartments) 
transcriptionally profiled using Illumina sentrix-8 chip. Validation: FACS GSE39396; Six CRC 
tumours were FACS into four cell populations: epithelial cells (EPCAM+), leukocytes 
(CD45+), fibroblasts (FAP+) and endothelial cells (CD31+). Validation: Breast Cancer 
GSE14548; Matched LCM epithelium and stroma from nine invasive ductal carcinomas 
transcriptionally profiled using the Affymetrix Human X3P Array. Validation: TNBC 
GSE81838; Matched LCM epithelium and stroma from ten triple negative breast cancers 
transcriptionally profiled using the Affymetrix Human Gene 1.0 ST Array. Validation: PDAC 
GSE164665; Matched LCM epithelium and stroma from nineteen PDACs transcriptionally 
profiled by Illumina NextSeq 500. Validation: Ovarian Cancer GSE9899; Matched LCM 
epithelium and stroma from five ovarian tumours transcriptionally profiled using the 
Affymetrix Human Genome U133 Plus 2.0 Array. Validation: Prostate Cancer GSE97284; 
Matched LCM epithelium and stroma from 25 prostate tumours, of which 12 were low grade 
(Gleason 3+3) and 13 were high grade (Gleason 8 or above) transcriptionally profiled using 
the Affymetrix Human Gene 1.0 ST Array. Clinical Validation: FOCUS trial GSE156915; The 
UK Medical Research Council FOCUS [Fluorouracil, Oxaliplatin and CPT11 (irinotecan)] trial 
involving stage IV patients with primary CRC resection transcriptionally profiled on Almac 
Xcell chip, only those with matched histology remained for analysis (n=356). Validation: 
scRNAseq GSE144735; The border and central tumour from six colorectal patients were 
single cell sequenced. Count matrix was aligned to annotation file within Partek Genomics 
Suite. Genes with an expression <1 in at least 99.9% of cells were removed. Data was 
normalised by counts per million, +1 and log2 transformed. Validation: BOSS biopsy 
GSE85043; Multiple biopsies obtained with different regions of seven CRC resection 
specimens. Profiled on Affymetrix array.  

 

GeoMx 

Nanostring GeoMx Digital Spatial Profiling 
To further characterise differences in transcriptomic expression between TME and tumour 
epithelium, a formalin-fixed paraffin-embedded (FFPE) section of archival resected colon 
cancer was selected for analysis on the Nanostring GeoMx Digital Spatial Profiler (DSP).  
This platform enables the characterisation of user-selected topographic Regions of Interest 
(ROI) from immunofluorescently (IF) stained FFPE tissue.The GeoMx instrument achieves 
RNA profiling in situ hybridization by employing DNA oligonucleotide probes designed to 
bind mRNA targets. From 5′ to 3′, they comprise a 35- to 50-nucleotide target 
complementary sequence, an ultraviolet (UV) photocleavable linker and a 66-nucleotide 
indexing oligonucleotide sequence containing a unique molecular identifier (UMI), RNA ID 
sequence and primer binding sites. Up to 10 RNA detection probes were designed per target 
mRNA. In summary, the instrument employs UV light to cleave the UV-sensitive probes 
leading to release of the hybridised barcodes. 
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Slide preparation including hybridisation of tissue with UV-photocleavable probes 
The DSP procedure has previously been described in detail by Merritt et al (1). The 5-µm 
FFPE tissue section was mounted on positively charged Superfrost glass slide (Thermo 
Fisher Scientific) and baked for 30 mins at 60 °C.  The tissue was dewaxed, hydrated and 
treated with 1μg/ml Proteinase K (Thermo Fisher Scientific, AM2546) for 15 minutes before 
undergoing heat-induced epitope retrieval (HIER) on a Leica BOND Autostainer (pH 9.0, 
ER2 at 100°C) for 20 minutes.  The slide was immediately stored in 1X PBS (PBS: 
Invitrogen, AM9625).  Hybridisation with a pre-designed Cancer Transcriptome Atlas (CTA) 
panel of antibodies corresponding to 1,825 genes (Nanostring) was performed according to 
the manufacturer’s protocol (2).  100μL of the RNA probe mix (CTA panel) was mixed with 
800μL of Buffer R (Nanostring) and 100μL of DEPC-treated water.  Each tissue was covered 
with 200μL of hybridisation solution and a HybriSlip™ cover (Thermo Fisher Scientific) 
before overnight incubation in a hybridisation oven at 37 °C for at least 16 hours.  The slide 
was then dipped in 2X SSC-T and washed twice with a 1:1 ratio of 100% deionized 
formamide (Ambion) and 4X SSC (Sigma) at 37°C for 25 minutes each.   

The GeoMx DSP is capable of capturing four channels (FITC/525nm, Cy3/568nm, Texas 
Red/615nm and Cy5/666nm) for the detection of up to four customisable IF morphology 
markers for each tissue (1).  One channel (FITC/525nm) is reserved for the nuclear stain 
(SYTO13).  The slides were blocked with Buffer W (Nanostring) for 30 minutes at RT before 
incubation with TME RNA Morphology Marker kit (Nanostring) for 1 hour at RT. This 
consisted of fluorescently conjugated Syto13, Pan-Cytokeratin (PanCK) and CD45 
antibodies were used to stain the tissue to identify nuclei, tumour epithelium and the immune 
components respectively. Slides were then stored at 4°C in SSC before being loaded on the 
GeoMx DSP instrument for ROI selection and collection. 

 

Region selection and collection  
The whole slide was imaged at 20x magnification using the GeoMx DSP with the integrated 
software suite then used to select 300-600um diameter ROIs from which the instrument 
focuses UV light (385nm), to cleave the UV-sensitive probes with the subsequent release of 
the hybridised barcodes.  11 ROIs corresponding to epithelial tumour centre, abundant TME 
regions and regions representing an interface between tumour and TME and were selected.  
The DSP software enabled Areas of Interest (AOI) contained in individual ROIs to be defined 
and selected. Firstly segments containing PanCK+ IF signal were masked for tumour 
epithelium and extracted, then the complementary inverse segments (PanCK-) was masked 
and captured corresponding to the TME. Once AOIs were defined, then exposed UV light, 
the indexing oligonucleotides, were collected with a microcapillary and deposited in a 96-well 
plate prior to sequencing. The oligonucleotides were dried overnight and subsequently 
resuspended using 10μl of DEPC-treated water 

 

Library Preparation and NGS Sequencing 
Sequencing libraries were generated by PCR from the photo-released indexing oligos and 
AOI-specific Illumina adapter sequences, and unique i5 and i7 sample indices were added. 
Each PCR reaction used 4µl of each collection sample added to the corresponding well of a 
new 96-well PCR plate containing the GeoMx Seq Code primers (Nanostring) and 1X PCR 
Master Mix (Nanostring).  The PCR plate was incubated in a thermocycler with the 
programme specified by the manufacturer.  The PCR products were then centrifuged and 
pooled (4μl each) into one 1.5 mL eppendorf to create a library.  The library was purified 
twice using AMPure XP system (Beckman Coulter).  The purified library was resuspended in 
Elution Buffer (10mM Tris-HCl with 0.05% Tween-20, pH 8.0) before undergoing quality 
check using an Agilent Bioanalyser.  
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The purified library underwent Next Generation Sequencing (NGS) using an Illumina 
NextSeq 550 (Glasgow Polyomics). Recommended sequencing parameters were followed in 
generation of FASTQ files, dual-indexing, paired-end reads and including a 5% PhiX spike-
in. Sequencing depth was determined by total ROI area (µm2) multiplied by sequencing 
depth factor (30 for CTA panel) as per manufacturer’s instructions. H&Es from Focus 
(N=356) were scanned at high resolution on an Aperio scanner at a total magnification of 
20X. Tissue segmentation was run on H&E images by deep convoluted neural net using the 
HALO platform (Indica Labs). Supervised training had been performed using >1,500 tissue 
areas from four CRC cohorts. Counts of single cells were utilised to assess the proportion of 
desmoplastic stroma compared to total cell counts. 

Digital histology scoring 

H&Es from Focus (N=356) were scanned at high resolution on an Aperio scanner at a total 
magnification of 20X. Tissue segmentation was run on H&E images by deep convoluted 
neural net using the HALO platform (Indica Labs). Supervised training had been performed 
using >1,500 tissue areas from four CRC cohorts. Counts of single cells were utilised to 
assess the proportion of desmoplastic stroma compared to total cell counts. 

 

Data analysis 

The FASTQ files generated were converted into Digital Count Conversion (DCC) files using 
the GeoMx NGS pipeline on the Illumina BaseSpace platform.  The DCC files were uploaded 
onto the GeoMx DSP analysis suite (Nanostring), where they underwent quality control, 
filtering, Q3 normalisation and background correction.  Data were then downloaded from the 
GeoMx instrument and loaded in to RStudio (v1.2.1335) using R build version 4.1.1.   

 

MCP. MCPcounter (v1.2.0) R package was used to generate scores for 10 cell populations. 
CMS. Consensus Molecular Subtype classification utilised ‘classifyCMS.SSP’ function within 
the CMSclassifier (v1.0.0) R package and the CMScaller (v2.0.1) R package. ssGSEA. 
Single sample gene set enrichment analysis was performed using gsva (v1.38.2) R package 
with the following non-default settings: min.sz=5, verbose = TRUE, method = 'ssgsea', on 
the HALLMARK, Gene Ontology: Biological Processes and the KEGG genesets. ESCAPE 
(v1.4) R package was utilised to generated single sample scores for the HALLMARK 
pathways within the single cell cohort using the ‘enrichIt’ function: groups= 1000, cores=2. 
GSEA. Pair-wise gene set enrichment analysis was performed using fgsea (v1.16.0) R 
package (minSize=1, maxSize=Inf, nperm=10000), on the HALLMARK, Gene Ontology: 
Biological Processes and the KEGG genesets accessed via msigdb (v7.4.1). Within the 
FOCUS validation dataset a median split of DS was used for comparison, followed by 
DGEA. DoRothEA. Transcriptional factor activity was assessed using dorothea (v1.2.2) R 
package, within the ‘run_viper’ function (filtered for high confidence regulons). Within LCM 
cohorts, P <0.05 was considered significant to obtain consensus LCM TFs. Plots in 
subsequent cohorts include all TF, regardless of significance. ESTIMATE. estimate (v1.0.13) 
R package was used to generate stromal and immune scores.  R studio (v1.3.1073), R 
(v4.0) used for all analysis. All heatmaps were plotted using ComplexHeatmap and all 
additional plots using ggplot2.  

 

ConfoundR Shiny application 

Development and Access. The ConfoundR application was created using R version 4.1.2 
in combination with the R package shiny (RRID:SCR_001626; version 1.7.1) and is running 
on the Shiny Server (version 1.5.17) hosted on the Queen’s University Belfast virtual server 
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(CentOS 7, 64-bit, Intel Xeon Gold E5-2660 v3 @2.60 GHZ, 16 Core).  ConfoundR is 
accessible at https://confoundr.qub.ac.uk. Datasets. The datasets used in the ConfoundR 
application are described above, along with the pre-processing methods applied to each 
dataset.  

Expression Boxplots. The Expression Boxplots module allows the user to enter the gene 
symbol for a single gene into the input box. Boxplots in the Expression Boxplots module are 
created using ggplot2 (RRID:SCR_014601; version 3.3.5) and Mann-Whitney U tests are 
performed using the stat_compare_means function from the ggpubr package 
(RRID:SCR_021139; version 0.4.0) with method = “wilcox.test”. Boxplots for the PDAC 
dataset (GSE164665) are plotted using normalised counts calculated by DESeq2 
(RRID:SCR_015687; version 1.34.0), using the size factors calculated by the 
estimateSizeFactors function, accessed via the counts function with normalized = TRUE. 
Plots for each of the datasets can be downloaded in png format using the Save Plot button. 

Expression Heatmap. The Expression Heatmap module enables users to enter a list of 
gene symbols with each gene symbol on a new line. For the RNA-Seq dataset, variance 
stabilising transformed counts, calculated using the vst function (blind = FALSE), from the 
DESeq2 package (RRID:SCR_015687; version 1.34.0), are used as the gene expression 
values for samples. The gene expression values for each user selected gene in each 
dataset are converted to Z-scores using the scale function (center = TRUE, scale = TRUE) 
prior to plotting heatmaps. Heatmaps of the gene expression Z-scores are plotted using the 
ComplexHeatmap package (RRID:SCR_017270; version 2.10.0) with the samples grouped 
by the respective cell/tissue types to aid visual comparison between groups. 

GSEA. The GSEA module enables users to select an existing gene set from established 
gene set collections using dropdown menus or to enter a custom user-defined gene set by 
entering a list of gene symbols with each symbol on a new line. The existing gene sets 
available to the user are the Hallmark, KEGG, Reactome, Biocarta and Pathway Interactions 
Database (PID) gene sets as curated by the Molecular Signatures Database 
(RRID:SCR_016863) and accessed via the msigdbr package (version 7.4.1). 

In order to perform pre-ranked GSEA, differential analysis is performed for each of the 
datasets, comparing stromal samples to epithelial samples. For the GSE39396 dataset the 
user can specify the cell types (epithelial, leukocytes, endothelial, fibroblasts) to compare 
using the input boxes provided. Differential analysis is performed using limma 
(RRID:SCR_010943; version 3.50.0) for microarray datasets (GSE39396, GSE35602, 
GSE31279, GSE81838, GSE14548, GSE9899, GSE97284) and using DESeq2 
(RRID:SCR_015687; version 1.34.0) for the RNA-seq dataset (GSE164665). Following 
differential analysis, genes are ranked according to the t-statistic (limma) or Wald statistic 
(DESeq2). Pre-ranked GSEA is performed by the GSEA function from the clusterProfiler 
package (RRID:SCR_016884, version 4.2.1) using the fgseaSimple method with 10,000 
permutations (by = “fgsea”, nPerm = 10000) and a random seed of 123. Plots of GSEA 
results are produced using a modified version of the gseaplot2 function from the enrichplot 
package. 

Packages used. The ConfoundR app uses the following R packages: shiny (v1.7.1), 
shinydashboard (v0.7.2), dashboardthemes (v1.1.5), shinyFeedback (v0.4.0), shinybusy 
(v0.2.2), shinyccssloaders (v1.0.0), msigdbr (v7.4.1), ggplot2 (v3.3.5), cowplot(v1.1.1), 
ggbeeswarm (v0.6.0), ggpubr (v0.4.0), ComplexHeatmap (v2.10.0), limma (v3.50.0), 
DESeq2 (v1.34.0), clusterProfiler (v4.2.1), fgsea (v1.20.0), enrichplot (v1.14.1) and 
RColorBrewer (v1.1-2). 
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Code availability. The source code for the ConfoundR app is available at 
https://www.github.com/Dunne-Group/ConfoundR. All scripts to perform the analyses 
outlined in this paper are available on our lab website www.Dunne-Lab.com.   
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Figure 1. Initial characterisation of tumour epithelium and stromal datasets
A Schematic of the segregation strategies in the discovery and validation cohorts, drawn using BioRender. B
Heatmap of MCP-counter scores for the laser capture microdissected (LCM) discovery cohort, according to
epithelium and stromal regions. C Heatmap of MCP-counter scores for the LCM validation cohort, according to
epithelium and stromal regions. D Heatmap of MCP-counter scores for the FACS validation cohort. E CMS
classifications (using CMSclassifier) for the matched epithelium and stroma samples in the laser capture
microdissected discovery cohort. F CMS calls (using CMSclassifier) for the matched epithelium and stroma
samples in the laser capture microdissected validation cohort. G CMS calls (using CMSclassifier) for the four
lineages in the FACS validation cohort.
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Figure 2. Stromal influence on widely used transcriptional signatures
A Gene set enrichment analysis (GSEA) of Hallmark gene sets in LCM discovery and validation cohorts. Only
gene sets significantly and concordantly enriched in stroma or epithelium in both the discovery and validation
cohorts are shown (adjusted p-value < 0.02). B Heatmap of single sample GSEA (ssGSEA) scores for the
Hallmark gene sets in the FACS validation cohort samples. Only the gene sets significantly and concordantly
enriched in stroma or epithelium in both the LCM discovery and validation cohorts are shown (adjusted p-value
< 0.02). C Transcription factors whose activity was significantly and concordantly enriched in stroma or
epithelium in both the LCM discovery and validation cohorts (p < 0.05). D Heatmap of the inferred activity
scores for the same transcription factors in the FACS validation cohort. For all panels in Figure 2, gene
sets/transcription factors with names/symbols coloured orange were significantly and consistently enriched in
stroma in the LCM discovery and validation cohorts, whereas gene sets/transcription factors with
names/symbols coloured blue were consistently and significantly enriched in epithelium in the LCM discovery
and validation cohorts (gene sets: adjusted p-value < 0.02; transcription factors: p < 0.05).
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Figure 3. The ConfoundR resource enables stromal influence estimation in cancer tissue
A Schematic overview of the cohorts and analyses available within the ConfoundR app, accessible via
https://confoundr.qub.ac.uk/. B Expression Boxplots analysis module of ConfoundR enabling the
expression of a single gene to be compared between stroma and epithelium samples in each of the
ConfoundR datasets. C Expression Heatmap analysis module of ConfoundR enabling the expression of
multiple genes to be visually compared between stroma and epithelium samples in each of the ConfoundR
datasets. D GSEA analysis module of ConfoundR allowing GSEA of existing gene sets from established
gene set collections or custom user defined gene sets to be performed comparing stroma to epithelium in
each of the ConfoundR datasets.
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Figure 4. Application of findings to bulk CRC tumour data.
A Schematic summary of the clinical validation dataset from the FOCUS clinical trial. B Scatterplot showing
correlation between desmoplastic stroma percentage determined from H&E assessment and ESTIMATE Stromal
Score determined by transcriptomic data in the FOCUS clinical trial samples (Spearman’s rho = 0.73, p < 2.2e-16),
coloured by Consensus Molecular Subtype (CMS) calls (CMS1: n=62; CMS2: n=155; CMS3: n=29; CMS4: n=66;
UNK: n=44). C Heatmap of ssGSEA scores for the Hallmark gene sets (identified in Figure 2 as significantly
enriched in the stroma/epithelium in the LCM discovery and validation cohorts) for the FOCUS clinical trial samples.
Samples ranked in order of desmoplastic stroma percentage (DS%) from lowest (left) to highest (right). Gene sets
with names coloured orange were significantly enriched in stroma in the LCM discovery and LCM validation cohorts
and gene sets with names coloured blue were significantly enriched in epithelium in the LCM discovery and LCM
validation cohorts. D Heatmap of activity scores for transcription factors (identified as significantly enriched in the
stroma/epithelium in the LCM discovery and validation cohorts) for the FOCUS clinical trial samples. Samples are
arranged in order of desmoplastic stroma percentage (DS%) from lowest (left) to highest (right). Gene sets with
names coloured orange were significantly enriched in stroma in the LCM discovery and LCM validation cohorts and
gene sets with names coloured blue were significantly enriched in epithelium in the LCM discovery and LCM
validation cohorts. E Scatterplots showing the correlation between desmoplastic stroma percentage determined
from H&E and ssGSEA scores for the Epithelial Mesenchymal Transition (left) (Spearman’s rho = 0.69, p < 2.2e-
16), KRAS Signalling Up (middle) (Spearman’s rho = 0.48, p < 2.2e-16) and MYC Targets V2 (right) (Spearman’s
rho = -0.41, p < 2.2e-16) Hallmark gene sets. We identified two cases representative of low and high desmoplastic
stromal percentage in each of these analyses (red circles). F H&E along with HALO mark-up for the representative
low and high desmoplastic stromal percentage samples identified in E.
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Figure 5. Single cell and multi-regional biopsy analyses.
A Schematic of scRNA-Seq cohort derived from n=6 CRC primary tumours segregated into two regions for each
tumour: the central tumour and tumour border. B-D Boxplots showing ssGSEA scores for the Hallmark Epithelial
Mesenchymal Transition gene set B across the various cell types C and specifically between epithelial and stromal
cells (from all six CRC tumours) in the scRNA-Seq dataset (p < 2.2x10-16; Wilcoxon test). D Comparison of
ssGSEA scores for the Hallmark Epithelial Mesenchymal Transition gene set between epithelial and stromal cells
in each primary CRC (n=6) in the scRNA-Seq dataset (all p < 2.2x10-16; Wilcoxon test). Epithelial cells are shown
in green and stromal cells in pink. E Schematic overview of the BOSS Biopsy cohort consisting of colon cancer
resections from seven patients each with up to n=5 multi-regional biopsy samples. F-G Heatmaps of F ssGSEA
scores for the Hallmark gene sets and G transcription factor activity scores for the BOSS Biopsy samples.
Samples are grouped according to patient of origin and the ESTIMATE StromalScore of each biopsy sample is
indicated by the ESTIMATE StromalScore bar at the top of the heatmap. Only the gene sets/transcription factors
significantly and concordantly enriched in stroma or epithelium in both the LCM discovery and LCM validation
cohorts are shown (from Figure 2) (adjusted p-value < 0.02 – Hallmarks; p < 0.05 – transcription factors). Gene
sets/transcription factors with names/symbols coloured orange were significantly enriched in stroma in the LCM
discovery and LCM validation cohorts and gene sets/transcription factors with names/symbols coloured blue were
significantly enriched in epithelium in the LCM discovery and LCM validation cohorts. H Scatterplots showing
correlation between the ESTIMATE StromalScore and ssGSEA scores for the Hallmark Epithelial Mesenchymal
Transition (left) (Spearman’s rho = 0.96, p = 1.7e-08), KRAS Signaling Up (middle) (Spearman’s rho = 0.87, p =
7.9e-07) and MYC Targets V2 (right) (Spearman’s rho = -0.63, p = 0.00037) gene sets. Samples are coloured by
patient of origin.
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Figure 6. Spatial transcriptomic confirms the confounding effects of the stroma.
A Whole slide image of colon cancer case selected for spatial transcriptomic analysis. The tissue was stained with
Pan-Cytokeratin (PanCK) and CD45 with PanCK+ regions (green) identifying epithelium and CD45+ regions (purple)
identifying immune components. Small circles indicate the regions of interest selected for spatial transcriptomic
analysis; ROI 4: high epithelial content, ROI 11: mixed epithelial content, ROI 10 demonstrates a ROI with low
epithelial content, ROI 6: no epithelial content. B Scatterplot showing the correlation between ssGSEA scores for the
full Hallmark Epithelial Mesenchymal Transition gene set (n=200 genes) and the corresponding reduced GeoMx
Epithelial Mesenchymal Transition gene set (n=81 genes) in the FOCUS clinical trial cohort (Spearman’s rho = 0.95).
Samples coloured by Consensus Molecular Subtype (CMS) calls (CMS1: n=62; CMS2: n=155; CMS3: n=29; CMS4:
n=66; UNK: n=44). C Heatmap of ssGSEA scores for the Hallmark gene sets for the PanCK+ (epithelium) (n=8) and
PanCK- (stroma) (n=11) areas within the regions of interest. Only the Hallmark gene sets identified as significantly
and concordantly enriched in stroma or epithelium in both the LCM discovery and LCM validation cohorts are shown
(the GeoMx versions of these Hallmark gene sets were used). D GSEA comparing PanCK- areas (stroma) (n=11) to
PanCK+ areas (epithelium) (n=8) for the Hallmark Epithelial Mesenchymal Transition gene set (GeoMx version).
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