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Abstract
Frequency selectivity is a fundamental property of the peripheral auditory system; however, the

invasiveness of auditory nerve (AN) experiments limits its study in the human ear. Compound action
potentials (CAPs) associated with forward-masking have been suggested as an alternative means to
assess cochlear frequency selectivity. Previous methods relied on an empirical comparison of AN and
CAP tuning curves in animal models, arguably not taking full advantage of the information contained
in forward-masked CAPs. In this work, we seek to provide a direct estimate of the quality factor
characterizing AN frequency tuning using many forward-masked CAP responses. The method is based
on a convolution model of the CAP that takes into account the masking of AN populations induced by
notched-noise maskers with various notch widths and attenuations. The model produces masking patterns
that, once convolved by a unitary response, predict forward-masked CAP waveforms. Model parameters,
including those characterizing frequency selectivity, are fine-tuned by minimizing waveform prediction
errors across the different masking conditions, yielding robust estimates. The method was applied to
click-evoked CAPs at the round window of anesthetized chinchillas. The estimated quality factor Q10 as
a function of center frequency is shown to closely match the average quality factor obtained from AN-fiber
tuning curves, without the need for an empirical correction factor. Beyond the estimation of frequency
selectivity, the proposed model proves to be accurate in predicting forward-masked CAP responses, and
therefore could be extended to study more complex aspects of cochlear signal processing using a similar
experimental approach.

Introduction
Much of our knowledge about the mammalian peripheral auditory system has been gained from single-fiber
recordings of the auditory nerve. However, the invasiveness of these experiments prevents their use in humans,
hampering the search of potential specificities of the human auditory system. Other means have been employed
to infer the properties of the human inner ear, either through psychophysical experiments, or through less
invasive physiological methods. In particular, a combination of these solutions – including psychophysical
experiments based on masking [Shera et al., 2002, Oxenham and Shera, 2003], otoacoustic emissions (OAEs)
[Shera et al., 2002, Sumner et al., 2018] and compound action potentials (CAPs) [Verschooten et al., 2018] –
has led to a growing body of evidence that cochlear frequency selectivity is sharper in humans than small
mammals. Frequency selectivity is a fundamental property of the peripheral auditory system, but its study is
not straightforward, a reason being that it is affected by cochlear compressive nonlinearities [Heinz et al.,
2002, Oxenham and Shera, 2003, Eustaquio-Martín and Lopez-Poveda, 2011]. As a result, although data on
cochlear frequency tuning in humans have been obtained by various means, the picture is not as detailed as
for other mammals, and some methods of assessing cochlear frequency selectivity do not show any significant
difference with small mammals [Ruggero and Temchin, 2005]. To advance our knowledge in this area, it is
necessary to refine the available tools and to better understand how they relate to auditory physiology. For
example, OAE-based estimates of frequency selectivity would benefit from a better understanding of how
OAE delays [Shera and Charaziak, 2019] or distorsion-product level functions [Wilson et al., 2021] relate
to cochlear tuning. The focus of this paper is the compound action potential (CAP), an auditory evoked

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.15.487700doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.15.487700
http://creativecommons.org/licenses/by-nc-nd/4.0/


potential that reflects the summed activity of auditory nerve fibers (ANFs). CAP data can be obtained with
a satisfactory signal-to-noise ratio (SNR) at the cost of moderate invasiveness [Eggermont, 2017, Verschooten
and Joris, 2022], and, if analyzed with an appropriate model, could provide a lot of information on the
compound response of ANFs.

Methods of frequency selectivity estimation based on the CAP rely on the masking paradigm, similar
to psychophysical experiments historically associated with the measurement of critical bands in humans
[Patterson, 1976, Moore and Glasberg, 1983]. While simultaneous masking reflects both excitatory and
suppressive masking [Delgutte, 1990, Harrison et al., 1981b, Charaziak and Siegel, 2014], estimates based on
forward masking reflect only excitatory masking and have good agreement with ANF tuning curves [Harrison
et al., 1981a,b, Verschooten et al., 2012]. In the last decade, Verschooten et al. refined a previous estimation
procedure based on forward-masked CAPs [Harrison et al., 1981a,b] using the notched-noise method. The
advantage of notched-noise maskers over narrowband stimuli is that results are less confounded by suppression
effects; they also limit the effect of ‘off-frequency listening’ [Delgutte, 1990, Oxenham and Shera, 2003], i.e.,
the activity of ANFs tuned at frequencies below or above the notch is reduced. The procedure of Verschooten
et al. was first validated in animal models [Verschooten et al., 2012] and later applied to human subjects
[Verschooten et al., 2018]. Their estimation method was based on establishing iso-response curves for masker
level versus masker notch width. However, the method required an empirical correction factor to match the
quality factor Q10 of ANF tuning curves, which was not the same for every species. In particular, a higher
estimate of human cochlear frequency tuning was obtained when the correction factor found for macaques
was applied, leaving the exact range for Q10 uncertain.

In this work, we propose a method that seeks to estimate the frequency tuning of ANFs directly, avoiding the
need for an empirical correction factor. To this end, we assume that the masked part of forward-masked
CAP responses can be approximated by a ‘masking pattern’ convolved by a unitary response. Convolution
models for the CAP have been used for decades [Goldstein and Kiang, 1958] but with limited applications,
since this type of model requires many assumptions about the multiple factors that affect CAP waveforms,
in particular: the (level-dependent) relationship between cochlear place and AN spike latencies, the spread
of excitation along the cochlear partition, the unitary response and the distribution of thresholds and rate
functions [Boer, 1975]. Considering the forward-masking of a CAP response in multiple different masking
settings but with a fixed probe appears to be a less challenging option from the modeling perspective, given
in addition that masking reveals information about the different factors mentioned (e.g., the place-latency
relationship using high-pass noise maskers [Eggermont, 1976]). In this paper, we introduce a differentiable
model for predicting the waveforms of forward-masked click-evoked CAPs when presented with notched-noise
maskers. The model is applied to CAPs recorded at the round window of anesthetized chinchillas, and the
estimation of model parameters based on the minimization of the prediction error by gradient descent is
assessed. In particular, we show that the resulting estimates for the quality factor provide an excellent match
to published ANF tuning curve values.

Methods
Experimental setting
Preparation & Anesthesia. CAP responses were acquired in 5 adult male chinchillas (Chinchilla lanigera)
using surgical procedures pre-approved by the Purdue Animal Care and Use Committee. Anesthesia was
induced using subcutaneous injections of xylazine (2-3 mg/kg) and ketamine (30-40 mg/kg). Anesthesia
was maintained using intraperitoneal boluses of sodium pentobarbital (15 mg/kg/2h), and fluids (Lactated
Ringer’s) were administered subcutaneously throughout the experiment (∼1cc/hr). The animals’ vital signs
were monitored throughout experiments using pulse oximetry (Nonin 8600V, Plymouth, MN) while oxygen
was continuously delivered to the animal. Body temperature was maintained at 37°C using a homeothermic
monitoring system with rectal probe (50-7220F, Harvard Apparatus).

Surgical Procedure. Following anesthetic induction, a tracheotomy was performed to provide a low-resistance
airway, reducing respiratory artifacts. Skin and muscles were transected following a dorsal-midline incision,
and the external ear canals and bullae were subsequently exposed. Hollow ear bars were bilaterally placed
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in the ear canals and secured to a stereotaxic frame (David Kopf Instruments, Tujunga, CA). Sound was
delivered monaurally through the ear bars using a dynamic loudspeaker (DT48, Beyerdynamic). To prevent
a progressive negative pressure buildup in the bulla, a polyethylene tube (PE-90) was placed through an
incision in the anterior bulla [Guinan and Peake, 1967]. A second incision was made in the posterior base of
the ipsilateral bulla to expose the middle ear. A silver wire electrode was placed near the round window to
record CAPs and sealed in place within bulla opening using light-cured dental cement (Prime-Dent, USA).
A pocket in the nape of the neck was made for a silver coiled wire reference electrode soaked in isotonic
saline and connected to ground. All procedures were carried out in a double-walled, electrically shielded,
sound-attenuating booth (Acoustic Systems, Austin, TX, USA). At the end of the experiments, animals were
euthanized by barbiturate overdose.

Signal acquisition and pre-processing. We calibrated sound input using a probe microphone (Etymotic ER-7C)
placed near eardrum. A flat frequency response (within ± 2 dB until 10kHz) was achieved using a 256-tap
digital finite impulse response filter for the forward-maskers. For the click probe, we adopted a different
strategy by using the inverse of a 128th-order all-pole filter computed using linear predictive coding (LPC) to
correct for the phase differences induced by the acoustic system. CAP responses from the round window
were amplified and band-passed using an ISO-80 Bio-Amplifier (103 gain, 102 − 104 Hz, World Precision
Instruments) before being recorded by hardware modules from Tucker-Davis Technologies (TDT, Alachua,
FL). Signal acquisition was controlled by a custom MATLAB-based (MathWorks, Natick, MA) interface.
Of the 5 chinchillas tested, 4 had exploitable data at all center frequencies (CFs) tested (except at CF=8
kHz for chinchilla Q333). Masking had a too small effect on the CAP response for the remaining animal
(signal-to-noise ratio too low or absence of signal for ∆CAP ), except for CFs in the range 3–5 kHz. This
animal is not included in the Results section, but the analysis we conducted on the partial data did not
contradict the results obtained for the other animals. Prior to analysis, the CAP responses were pre-processed
by applying a Tukey window to keep only the part where most of the masking occurred (typical parameters:
window length 4 ms, proportion of interval covered by the tapered cosine region: 0.4). The signals were
smoothed by a Gaussian filter of standard deviation 0.03 ms. Specific experimental artifacts were addressed
by additional pre-processing in two animals: correction of a DC drift and removal of a periodic noise using a
notch filter.

Stimulus paradigm
Presentation of masker and probe. CAPs in response to alternating-polarity 80 dB peSPL clicks were recorded
from the round window in the presence of Gaussian noise maskers according to a forward-masking paradigm.
Fig 1 A shows the time representation of the masker and probe, and the durations within one stimulus cycle,
with one cycle totaling 160 ms. We used in total around 150 masking conditions, each associated with a
specific power spectrum profile (Fig 1 B). The masking conditions are further described in the next paragraph.
Each condition was repeated 120×2 times (12 blocks × 10 repetitions × 2 click polarities). Within each block,
the conditions were presented in a random order, ensuring some degree of interleaving. The interleaving
of conditions was important to avoid unintended effects of long-term adaptation. Such effects on the CAP
responses were indeed visible in a pilot experiment without interleaving constraint, especially 2.5 ms after the
onset of the CAP (N2), possibly corresponding to the response from the cochlear nucleus [Møller, 1983].

Masker design. The 155 maskers were of three different types, corresponding to high-pass noise (12 maskers),
notched noise with varying amplitude for the notch (77 maskers), or notched noise with a varying notch
width (65 maskers). This set also includes the broadband noise masking condition (no notch), used as the
reference condition. The high-pass noise maskers were used to reproduce the narrow-band analysis of the
CAP [Eggermont, 1976, Prijs and Eggermont, 1981] that provides estimates of the latencies associated with
the cut-off frequencies of the maskers. The latencies follow the same trend as the cochlear traveling wave,
with the onset of basal contributions (high CFs) preceding the onset of apical contributions (lower CFs) –
e.g. in our data, contributions corresponding to 2 kHz are delayed by 0.5 ms compared to the most basal
frequencies. The 12 cut-off frequencies associated with the high-pass maskers ranged from 1.2 kHz to 10
kHz. The two other types of masking conditions were notched-noise maskers with the notch having either
a varying amplitude or a varying notch width. The notched-noise maskers were grouped according to the
center frequency of the notch which was around 7 reference frequencies: 1.5, 2.2, 3, 4, 5, 6, and 8 kHz. For
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Figure 1: Time representation of one stimulus cycle (A/) and spectral representation of the three types of
maskers (B/). A/ The stimuli consisted of the repetition of a masker and probe. The masker was generated
from Gaussian noise with a spectrum that follows a pattern represented in panel B/. The probe was a
click of alternating polarity. The forward-masked CAPs were obtained by averaging the responses evoked
by the probe presented under the same masking condition. The durations illustrated are from left to right:
gating time (cosine ramp), masker-probe interval, probe-masker interval and masker duration. B/ Schematic
representation of the spectra of the three different types of maskers. Each type of masker was designed for a
different purpose: high-pass noise maskers for the estimation of the place-latency relationship (‘narrow-band
analysis’ method [Eggermont, 1976]), notched noise maskers for the estimation of masking input-output
functions (maskers with varying notch attenuation) and frequency tuning (varying notch widths).

each CF, 10 maskers corresponded to the varying notch amplitude type, ranging from 35 dB attenuation to
0 dB attenuation, thus gradually merging into the broadband noise condition (0 dB attenuation, reference
condition). Except for the first experiment that was conducted (chinchilla Q395), an additional condition
was included corresponding to a notched-noise masker with -3 dB attenuation for the notch (i.e., the power
spectrum in the region of the notch was above the broadband noise spectrum density); the introduction
of this extra masker helped to determine the slope of input-output masking curves at the reference point.
The notched-noise maskers with different notch widths typically had a large notch width (e.g., 2 kHz at
CF=5 kHz, 1 kHz at CF=1.5 kHz). They were used to estimate the amount of masking as a function of
place-specific response intensity (input/output masking curves, see further in text). Around 10 maskers by CF
were related to the last type of maskers: notched-noise maskers with a varying notch width. As an example,
the 10 maskers associated with this type at CF=5 kHz had a notch width in the range 900 Hz to 1.4 kHz,
which is of the order of the expected value of the 10-dB bandwidth of cochlear filters at this CF [Temchin
et al., 2008]. The center frequency of the notch was allowed to vary slightly to probe different groups of ANFs,
e.g. 4 800 Hz for one masker and 5 200 Hz for another. The notch amplitude for this type of masker was in
most cases zero. These maskers were designed to estimate the frequency selectivity of the auditory filters.
The rationale is the same as for psychological measurements of critical bands using notched noise stimuli
[Patterson, 1976, Moore and Glasberg, 1983, Oxenham and Shera, 2003], and derives from the following
principle: if increasing the notch width from the broadband condition results in a significant masking release
effect, it indicates a sharp tuning of cochlear filters. The frequency spectra of all the maskers were restricted
to the range between 200 Hz and 12 kHz and the power spectral density (PSD), excluding the notches and
filtered parts, was set to a constant. For all the animals, the maximum PSD was similar, in the range 4–14
dB SPL, corresponding to a sound level in the range 45–55 dB SPL for the broadband noise condition.
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Model
Main hypothesis. The main hypothesis of our model is that the masking of the CAP is driven by the response
intensity at the output of a cochlear filter bank and input/output (I/O) masking curves determining the
growth of masking. More explicitly, if I is the average intensity in response to the masker at the output of a
cochlear filter, we assume that the amount of masking M for the compound response of the associated ANFs
can be represented by a function of I. We tested two common functions for these I/O masking curves (shown
in Fig 4 A in the Results section):

• the sigmoid:
M(I) = C

(
1 + e−(I−I0)/λ

)−1
(1)

• the Weibull cumulative distribution function (CDF), as in [Verschooten et al., 2012]:

M(I) = C

[
1 − e

−
( (I−I0)+

λ

)s
]

, (2)

where (I − I0)+ = I − I0 if I ≥ I0, 0 elsewhere.

The unknown parameters for the sigmoid are I0 and the scale parameter λ. The additional shape parameter
s allows the Weibull CDF to fit a larger set of functions that do not necessarily have symmetry around their
half-maximum value point. By convention, we set the constant C so that the I/O masking functions are
constrained to 100% masking for the response level corresponding to the broadband noise condition (reference
level).

Generation of the CAP estimates. The model builds on the convolution model that was already used in early
work on the CAP [Goldstein and Kiang, 1958, Boer, 1975]. Conveniently, the convolution model for the CAP
can be written as a convolution between a cochlear excitation pattern E defined in the latency domain and a
unitary response u0:

CAP (t) = E ⋆ u0 (t) =
∫

τ

E(τ)u0(t − τ) dτ . (3)

In this form, u0 accounts for the spike unit response but also for the spike histogram of a population of
synchronized ANFs normalized with respect to the number of spikes (see [Elberling and Hoke, 1978] or
[Bappert et al., 1980] for a similar approach). The decomposition of u0 under the hypothesis of a constant
normalized spike histogram – justified in particular if we consider a narrow range of cochlear locations – in
Eq 3 leads to a double convolution model:

CAP (t) = ︸ ︷︷ ︸
cP ST

E ⋆

u0︷ ︸︸ ︷
nPST ⋆ UR (t) (4)

where nPST, cPST stand for the normalized and compound post-stimulus time histograms (PSTH), and
UR is the spike unit response.

The focus of our method, instead, is the masking of the CAP. CAP (t) is therefore replaced by ∆CAP (t), the
release of masking of the CAP, defined by the difference in amplitude between the CAP response when a
notched-noise masker is presented versus the response corresponding to the broadband noise masker:

∆CAP (t) = CAP (t) − CAP0(t) ,

where CAP0 is the reference response with the broadband noise condition as masker.

An example of how ∆CAP (t) is derived from CAP (t) with typical data is shown in Fig 3 in the Results
section. We can write a similar equation to Eq 4 for ∆CAP :
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∆CAP (t) = ︸ ︷︷ ︸
c∆P ST

R ⋆

u︷ ︸︸ ︷
n∆PST ⋆ UR (t) = R ⋆ u(t) (5)

where R(τ) is the masking release pattern and u is the unitary response. Again, u is the compound of the
spike unit response and the difference in the PSTH of a population of synchronized ANFs normalized with
respect to the amount of masking (n∆PST ). We are not interested, however, in the exact decomposition of u
and we will refer to the simpler equation ∆CAP = R⋆u in the rest of the paper. Note that the model assumes
that n∆PST is invariant regardless of the amount of masking. Prior to any experiment, we tested whether
this hypothesis was reasonable with a well-established computational model of ANF responses [Bruce et al.,
2018]. This analysis is left as supplementary material (SI_PSTH.pdf ). As for the spike unitary response,
authors reported that it can be essentially considered independent of the ANF best frequency or spontaneous
rate [Kiang et al., 1976, Wang, 1979, Prijs, 1986].

Figure 2 shows the steps leading to the generation of the estimates ∆̂CAP (t). In the following, we describe
and justify these steps going backward from ∆̂CAP (t). ∆̂CAP (t) is obtained by convolution of a masking
release pattern and the unitary response (Eq 5). We consider that the masking release pattern R is related to
the amount of masking M by

R = R0(1 − M)
where R0 represents the relative contributions of ANF populations to ∆CAP . R0 can also be seen as the
masking release pattern when there is no forward-masker. By convention, M = 1 for the broadband noise
condition. R0, M and R depend on latency (e.g. R = R(τ)), but we consider that place (i.e., center frequency)
and latency are related by a power-law: CF (τ) = B(τ − t0)α

+, where B and α are estimated using the
high-pass noise maskers (following the narrow-band analysis method [Eggermont, 2017]). Hence, all latency
dependencies can be converted to a place dependency and vice versa. For the generation of the masking
release patterns, we estimated R0 and M first in the frequency domain then the masking release pattern was
converted to the time domain. R0(f) can be considered as frequency weights, which have to be included to
account for the non-homogeneous contributions of different CFs to the masking release of the CAP. Finally,
to compute the amount of masking M as a function of frequency, we relied on a simplified model of cochlear
filtering using a linear filter bank. Given the average power spectral density of the masker S(f), the average
response intensity at the output of a cochlear filter characterized by CF was computed using:

< A2 >=
∫

|wCF (f − CF )|2 S(f) df ,

I = 10 log10(< A2 >).

The amount of masking M was then obtained by applying the I/O masking function (Eq 1 or 2) on I. wCF

is the cochlear filter shape in the frequency domain, defined such as its root mean square (RMS) value is 1.
We implemented two models of cochlear filters for wCF : gammatones (as illustrated in Fig 2 and used for the
Results section) and Gaussian filters. Once the type of cochlear filter is chosen, wCF depends only on the
tuning of the cochlear filter at CF, characterized by the quality factor Q10 (related to the 10 dB-bandwidth
by: Q10 = CF/BW10). As the masker spectra are simple and defined by rectangular bands, analytical
formulas for I as a function of CF were employed instead of integral expressions. For instance, in the case of
the Gaussian implementation and considering a masker spectrum made of a single band [flow, fhigh] with
power S0, we have:

< A2 >= S0/2
[
erf(fhigh − CF√

2σf

) − erf(flow − CF√
2σf

)
]

with σf = BW10/(2
√

2 ln 10) and erf being the error function. In the case of a masker presenting multiple
bands, the expressions for each band simply add up. The derivation of the formula for gammatones is
presented in the Appendix.
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Figure 2: Flow diagram of the generation of the masking release estimates ∆̂CAP (t). The masker spectrum
(A) is provided at the input and decomposed by a model of cochlear filter bank with gammatone filters. As
the masker spectra are of simple form, i.e., composed of rectangular bands, the average response (B) at the
output of the filter bank was computed using an analytical formula (see text). The masking input-output
function applied to the average response provides the amount of masking M(f) (C) or, equivalently, the
amount of masking release 1 − M(f) (D). Frequency weights R0(f) are included to the result to account for
the non-homogeneous contributions of different frequencies to ∆CAP . This yields the final estimate of the
amount of masking release defined in the frequency domain (E). Using a power-law model for the latencies,
the masking release is converted to the time domain, giving the masking release pattern R(τ) (F) . Once
convolved with the unitary response u, we finally obtain the estimate of the release ∆̂CAP (t) (G). The
parameters that are fine-tuned during the optimization process (gradient descent) are highlighted in red:
they are Q10, the masking I/O function (Weibull CDF) variables, and the frequency weights. The unitary
response u and the power-law parameters relating CFs and latencies are also parameters of the model, but
are adjusted independently before the optimization procedure.
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Estimation and optimization procedure
Model unknowns. The model presented in the previous paragraph and outlined in Fig 2 has multiple unknowns
that are reviewed here:

1. The relationship between latencies and center frequencies. It is assumed to follow a power-law:
CF (τ) = B(τ − t0)α

+.
2. The unitary response u.
3. The amount of masking as a function of place-specific intensity response (I/O masking curves). In the

case of the Weibull CDF (Eq 2), as adopted in the rest of the paper, this curve is parametrically defined
by three variables (λ, I0, s).

4. The tuning of the auditory filters, characterized by Q10.
5. The frequency weights R0(f) characterizing the contributions of each cochlear region (or frequency

interval) to ∆CAP .

Estimation procedure. While fitting all these parameters at once could seem intractable in a traditional setting,
this approach is made possible by the fact that responses to many masking conditions are acquired during an
experiment. It is also technically facilitated by the existence of automatic differentiation libraries (see details
of the optimization procedure below). This section presents the outline of the estimation procedure. The
technical details of the step-by-step procedure can be found in the code released for this project [Deloche,
2022].

The two unknowns that are determined first are the place-latency relationship and the unitary response. The
relationship between latencies and center frequencies is determined using the narrow-band analysis method
[Eggermont, 2017]. The method is based on the high-pass noise maskers; when presented in the order of
decreasing cut-off frequencies, these maskers progressively mask the basal contributions to the CAP. The
CAP peak delay is assumed to be the latency associated with the cut-off frequency. The latencies were fit by
a power-law estimated from the peak delays by least-squares fitting (dog leg method). The unitary response
u was estimated by deconvolution of the release-of-masking signals [∆CAP (t)] with a first estimation of the
masking release patterns for the notched noise maskers. For this step, the CAP responses were smoothed
by a Gaussian filter of deviation 0.06 ms (instead of 0.03 ms elsewhere). Once the unitary responses and
latencies were determined, they were considered fixed during the rest of the estimation procedure. However,
after the optimization of the other parameters was done, the unitary response was re-estimated with the
updated masking release patterns, and the optimization procedure was performed a second time.
All the other model parameters, highlighted in red in Fig 2, were fitted simultaneously by minimizing the
mean squared error (MSE) between the signals [∆̂CAP (t)] generated by the model, and the true signals
[∆CAP ]. The optimization procedure is described in the next paragraph. One challenge of the method is
that most of the model parameters potentially depend on CF. This is the case for the unitary response, the
parameters controlling the I/O masking curve, the quality factor Q10, and the frequency weights R0(f). This
issue is mostly resolved by adjusting different versions of the model to each CF probed instead of having a
single model fitted on all the data. For this purpose, the notched-noise maskers were grouped into 7 different
center frequencies according to the frequency region of the notch (CF = 1.5, 2.2, 3, 4, 5, 6 or 8 kHz) and
their responses were fitted separately. However, we allowed some parameters to be shared across the different
optimization nodes. This was in particular the case for the frequency weights R0(f). The estimation of R0(f)
at every frequency was made possible at the cost of a regularity assumption. We assumed that R0 belongs to
a low-dimensional manifold, explicitly that R0(f) in the range [200 Hz, 12kHz] is only defined by its m first
Fourier coefficients (m = 10). For the estimation of Q10, we assumed that the 10-dB bandwidth was constant
in the interval of frequencies around CF and searched its optimal value using gradient descent or a grid search
method. As an alternative, we also used a regression method assuming that Q10 could be approximated by a
radial basis function (RBF) network (6 hidden neurons, input x = f/15000, output: log Q10, activations are
Gaussian functions with σ = 0.5). The results of the two methods are shown at the end of the paper.

Optimization procedure. The goal of the optimization procedure is to adjust the model parameters highlighted
in red in Fig 2, including Q10 characterizing frequency selectivity, to obtain the best fit between the signals
generated by the model and the true responses. We denote [∆CAP (t)]i the masking releases of the CAP,
where i is an index for the masking condition (i = 1 · · · Ncond, with Ncond the number of masking conditions).

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.15.487700doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.15.487700
http://creativecommons.org/licenses/by-nc-nd/4.0/


The model yields estimates [∆̂CAP (t)]i for each masking condition, and we define the cost function as the
total mean square error:

MSE = ||∆̂CAP − ∆CAP ||22 =
Ncond∑
i=1

∑
t

(
[∆̂CAP (t)]i − [∆CAP (t)]i

)2

MSE was minimized through a gradient descent scheme. The gradients with respect to the model parameters
were computed with PyTorch, an automatic differentiation library originally designed for the optimization
of artificial neural networks [Paszke et al., 2019]. A schematic for the graph of computations is provided
in supplementary materials (SI_computations.pdf ), that also synthesizes the operations that lead to the
generation of ̂∆CAP (t). The key point is that, although the entire model is complex, each step of computation
is a simple differentiable operation, and the gradients can be computed by applying the chain rule. An
alternate gradient scheme was adopted. At step 1, the gradients were computed and summed over all the
notched-noise masker conditions and the frequency weights R0(f) were updated. At step 2, the gradients were
computed over the maskers with a notch of varying amplitude and the I/O masking function was updated. At
step 3, Q10 was updated using the the maskers with a varying notch width. The same steps were then repeated
about 100 times. The optimization was done separately for each CF probed. However, some parameters were
shared and optimized jointly (e.g. frequency weights R0(f)), using the distributed communication package of
PyTorch. The parameters were initially set manually or set at plausible values (e.g., Q10 was set to fit the
curve Q10 = 2(f/1000)0.5), before being fine-tuned by the optimization algorithm. Since the cost function is
not guaranteed to be convex with respect to the model parameters, and the algorithm can be stuck in local
minima, several initializations were tried.

Results

Figure 3: Example of CAP data and derivation of ∆CAP (t). Left: forward-masked CAP responses to 80-dB
clicks with a Gaussian noise masker presenting a 2-kHz notch of varying amplitude around 5 kHz (masker
profiles are shown at the top center). Right: Masking release of the same forward-masked CAPs, using
the broadband noise condition as reference (∆CAP (t) = CAP (t) − CAP0(t)). CM=cochlear microphonics.
Notch attenuations: 15, 12, 9, 6, 3, 0dB (REF).

The results presented in this section were obtained using the 4th-order gammatone model for cochlear
filters and the Weibull CDF for the masking I/O functions. It can be noted, however, that we did not find
significantly different results when using Gaussian filters instead of gammatones. The first figures in this
section show an example of forward-masked CAP data and the ancillary model parameters in one animal
(chinchilla Q395).
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Estimation of input-output masking curves
A first indication of the masking input-output curve – the amount of masking as a function of cochlear-filter
output intensity – is provided by the measure of reduction of the ∆CAP peak amplitude when the masker
presents a notch of decreasing attenuation centered at CF. Fig 4 A displays this type of data corresponding
to the CAP responses shown in Fig 3. The sigmoid and the Weibull CDF equally provide a good fit for this
example, but a larger number of cases were matched by the Weibull CDF, which allows for greater flexibility.
In reality, the relationship between reduction of the CAP peak amplitude and the underlying masking I/O
curve is not guaranteed to be linear, because the masking of the CAP also depends on the spread of the
cochlear excitation pattern, which differs for each masker. For this reason, the determination of the reduction
of the CAP amplitude serves only as a first approximation of the parametric I/O masking curve, which is
then fine-tuned during the optimization procedure along with the other parameters. The masking I/O curve
at CF=5 kHz after optimization (dashed line) is also shown in Fig 4 A, clearly deviating from the initial
curve. The other curves for the same animal at different CFs are shown in panel B. We did not find a regular
pattern in the changes of the I/O curves with CF considering all the animals in the study. Note that since the
I/O functions were found using notched-noise maskers, the amount of 0% masking does not necessarily mean
that no masking occurs for that level but rather that no masking is discernible from the masking elicited by
the sides of the masker.

Figure 4: Masking input-output (I/O) curves. A/ Amount of masking at CF=5 kHz as estimated by the
peak-to-peak amplitude of the responses represented in Fig 3 (masker with a 2 kHz-wide notch centered at 5
kHz). The x-axis refers to the power spectral density within the notch. The purple cross corresponds to the
reference condition (0 attenuation relative to maximum PSD, i.e., broadband noise condition, matched to
100% masking). Fits with the sigmoid and Weibull CDF functions are shown, as well as the Weibull CDF
fit after fine-tuning the model (dashed line), considered to better approximate the underlying masking I/O
function of the compound response of ANFs tuned to CF. B/ Masking I/O curves (Weibull CDFs) for the
same animal at all the CFs after fine-tuning the model.

Estimation of latencies, unitary responses, frequency weights
Figure 5 shows the estimated latencies for the same chinchilla using the narrowband analysis method. Small
deviations (<0.15) from the power-law can be observed. These deviations appear bigger on a log-log scale for
high CF, but these do not affect the overall performance of the model since the latencies for these frequencies
are in fact small. The values of the latencies are to be interpreted along with the peak delays of the estimation
of the unitary response u, shown for the same animal in Fig 6 A. u keeps the biphasic shape of the spike
unitary response [Wang, 1979] but is repeated at least twice, with the two first negative peaks separated by
0.8 ms. The second peak has been partly attributed to the phenomenon of ‘double-spiking’, i.e., the firing
of ANFs immediately after the refractory period [Özdamar and Dallos, 1978, Versnel et al., 1992]. Another
reason may be the presence of sub-threshold electrical resonances in the auditory nerve peripheral dendrites
[McMahon and Patuzzi, 2002]. Interestingly, this figure does not exhibit significant variations in the shape of
the unitary response, but small changes with a trend consistent with decreasing CFs can be observed at 2.2
and 3 ms. These changes could be explained by larger group delays for apical cochlear filters (i.e., a slower
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build-up of response intensity), hence a broader n∆PST for lower CFs in Equation 5. A fast analysis based
on the deconvolution of the unitary responses at each CF with the unitary response at CF=8 kHz tends to
confirm this hypothesis. Although we only described the results for one animal in this paragraph, the results
were similar for the other animals in the study. We observed, however, larger deviations from the power-law
for latencies in two animals, especially at lower CFs with deviations up to 0.3 ms at CF=1.5 kHz.

Figure 5: Estimation of the place-latency relationship. A/ Release-of-masking ∆CAP for the high-pass
noise maskers. The cut-off frequency goes from 10 kHz to 1.5 kHz (REF: broadband noise, cut-off frequency
200 Hz). The responses display the shift of the peak latencies that reflect the cochlear traveling wave, with
the CAP onset corresponding to the contributions of the most basal fibers. Responses for 8 high-pass noise
maskers out of 12 are represented. B/ Results of the estimation of the latencies as a function of frequency
(green crosses, log-log scale) using the narrowband analysis method [Eggermont, 1976] with the signals
represented in panel A. Fit (dashed line): power law, f = 11.6 (t − t0)−0.64, with t0 = 0.83 ms (to consider
along with u, Fig 6 A), standard error: 0.05 ms.

Fig 6 B shows the distribution of weights R0 accounting for the relative contributions to ∆CAP , both in
the place-frequency domain and in the latency domain (panel B). The estimation of the distribution R0(f)
has been our main difficulty to fit CAP data and obtain consistent estimates. The slow decreasing trend of
R0(f) was expected as a result of the spatial distribution of inner hair cells (i.e., the exponential relationship
between cochlear place and frequency). However, as shown in Fig 6 B, R0(f) exhibits in addition two narrow
dips (2.5 kHz and 6 kHz) that hinder the estimation, not only of the frequency weights, but also of the other
parameters of the model at the corresponding frequencies. In the same time, since R0(f) is estimated as
a sum of sine and cosine functions, oscillations in the approximation of R0(f) can damage the prediction
of other model parameters. To deal with this issue, we adopted a strategy consisting in approximating
R0(f) with low modes only (m = 4) at initialization of the optimization procedure, then increasing the
maximum mode (m = 10) while conducting gradient descent. Most of the chinchillas presented the same
type of distributions, with an overall decreasing trend for R0(f) and one or two relatively narrow dips, but
the dips were not always found at the same frequencies. We do not have a clear explanation for the presence
of dips in R0(f), although one hypothesis is that they result from the three-dimensional cochlear geometry.

Fitting of ∆CAP and estimation of frequency selectivity
Figure 7 A shows how the model fit real data for two masking conditions after optimization of the model
parameters (CF=1.5 kHz). The panel B in the same figure shows a synthesis of prediction errors for the
same animal at all the CFs, considering all the notched-noise maskers with a notch around CF. In most cases,
more than 90% of the variance was accounted for by the model. Remarkably, for some CFs, the prediction
error almost reached noise level (after pre-processing). Similar accuracy numbers were obtained for the other
animals in the study.

Finally, we present the results of the estimation of frequency selectivity which was the main object of this
study. Fig 8 A shows the RMS fitting error for ∆CAP corresponding to the maskers presenting a varying
notch width around CF=5 kHz as a function of model filter bandwidth. The bandwidth minimizing the
prediction error provides an estimate of the 10-dB bandwidth at CF (grid search). Alternatively, the quality
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Figure 6: Other ancillary parameters of the model. A/ Estimated unitary responses u at the different
CFs, corresponding to the weighted average of deconvolutions of ∆CAP responses (notched-noise maskers
with varying notch attenuation) with masking release patterns. The unitary responses have been normalized
according to their maximum baseline-to-peak amplitude. B/ Estimation of the frequency weight distribution
R0(f) (top) representing the relative contributions of different frequencies (i.e., cochlear places) to ∆CAP .
The weights below 1.5 kHz and above 8kHz (dashed lines) are a result of extrapolation and do not correspond
to real data points. The associated distribution in the latency domain is shown (bottom). The conversion
from frequency to time was done using the relation CF (τ) = B(τ − t0)α

+, with the change of variable
R0(f)df = R0(f)Bα(τ − t0)α−1dτ = R0(τ)dτ .

Figure 7: Fitting of ∆CAP (t) for one chinchilla. A/ Two examples of fits of ∆CAP (t) for two notched-noise
maskers after parameter optimization (the first masker belongs to the varying notch width type, the second
masker belongs to the varying notch attenuation type; CFs are around 1.5 kHz). Masking release excitation
patterns are shown in dashed blue (arbitrary scale and zero for y-axis). B/ Synthesis of errors and ∆CAP
RMS amplitude value (computed on the 100% region of the Tukey window after pre-processing of the data)
at the different CFs for the same animal. The squared errors are averaged across all conditions corresponding
to notched-noise maskers with a notch centered around CF.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2022. ; https://doi.org/10.1101/2022.04.15.487700doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.15.487700
http://creativecommons.org/licenses/by-nc-nd/4.0/


factor Q10 can be optimized by gradient descent during the optimization procedure along with the other
parameters of the model. We also estimated Q10 as a function of CF using a RBF network, to take advantage
of the assumed regularity of the quality factor as a function of frequency. The results for all CFs and animals
are presented in Fig 8 B, as well as their averages and standard deviations. An average of Q10 values derived
directly from AN tuning curves is also provided for comparison, highlighting the close match between the two
datasets.

Figure 8: Estimation of frequency selectivity. A/ Grid search method: an estimate of the 10-dB bandwidth
is obtained by minimizing the RMS fitting error of ∆̂CAP as a function of model bandwidth. In this
example, the error is minimized over the responses corresponding to the notched noise maskers presenting
a varying notch width around CF=5 kHz. Other parameters were considered fixed and their values were
set by gradient descent before the grid search. B/ Synthesis of the estimates of the quality factor Q10
as a function of frequency. Crosses correspond to the estimates using the grid search method; solid lines
correspond to estimates using a regression technique during the optimization procedure (RBF network). The
gray shaded area shows the average and standard deviation of these solid lines. Average data from auditory
nerve experiments in chinchillas [Temchin et al., 2008] are given for comparison (dashed purple line).

Discussion
Suitability of the convolution model for forward-masked CAPs
Our approach to fit forward-masked CAP responses with a differentiable convolution-based model led to
accurate predictions of the CAP waveforms in the presence of notched Gaussian noise maskers, with more
than 90% of the variance explained on the release-of-masking ∆CAP (t) in most animals and CFs. The
generation of the waveform estimates relies on a consistent set of parameters, which are estimated by gradient
descent (parametric I/O masking function, frequency weights, quality factor Q10) or by a specific procedure
(latencies and unitary responses). A particular observation of the good performance of the model is that
it was able to predict the overall shape of the release-of-masking ∆CAP , suggesting that the assumption
that the effect of masking can be captured by a simple convolution model is valid. For instance, it is clearly
apparent in Fig 3 that, if we discard the variation in amplitude, the shape of ∆CAP remains almost the
same. We observed an exception during a pilot experiment, in which ∆CAP was delayed when the masking
release was small (delay of 0.1 ms when the masker notch attenuation is reduced from 15 dB to 6 dB). A
possible explanation for this delay is that the onset of the compound PSTH tends to be masked before the
offset of the PSTH when the masker intensity is progressively increased. The probe sound level was lower for
this pilot experiment than for the following sessions, suggesting that a sharper PSTH onset obtained when a
higher probe level is used resolves this issue.

The latencies related to place or CF by a power-law were small above 3/4 kHz (<0.1 ms, Fig 5 B), enough
to question the relevance of the convolution model for high CFs. Since all the contributions of high CFs to
the masking release pattern are essentially synchronous, they could just as easily be described as a single
excitation. However, the convolution model includes this particular case and can provide a more accurate
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model for lower CFs for which latencies are more significant. Although it captured the overall trend well, the
local dependence of latencies on CF was also not always properly described by a single power-law fitted over
the entire range of CFs.

The fitting of the ∆CAP waveforms after some adjustments of the model was remarkably accurate, but
the estimation procedure presented several challenges. The fact that the model relies on a relatively large
number of parameters, especially if we include all the possible dependencies on CF, can make the optimization
cumbersome. The optimization of the model is however facilitated by the existence of new elegant libraries
for automatic differentiation. We found that the main difficulty regarding the estimation of the different
model parameters was the determination of the weights R0(f). The model would be greatly simplified if we
could assume that the contributions to ∆CAP are homogeneous across CFs, but we found that it was not
the case. We showed one extreme case in Fig 6 B where two narrow dips (at 2.5 kHz and 6 kHz) are present.
The estimation of R0(f) is still possible with regularity assumptions and notched-noise maskers with notches
distributed over the entire range of frequencies. However, if the dips are too steep, the estimation of the
frequency weights and of the other parameters can be affected. As potential evidence, the largest deviation
between Q10 values derived from AN tuning curves and those obtained with our estimation procedure (Fig 8 B)
was observed at 2.2 kHz for the animal presenting a dip around this frequency (grid search method). By
using a regression technique for the estimation of Q10, we can however exploit the regularity of the quality
factor with respect to CF to still provide an accurate estimate of frequency selectivity (solid lines in Fig 8 B).

Estimation of frequency selectivity using forward-masked CAPs
We found a good agreement between the estimates of the quality factor averaged over the 4 experiments for
which we had complete data (Fig 8) and published values derived from the collection of many ANF tuning
curves in chinchillas[Temchin et al., 2008]. Our experimental approach that led to the estimation of cochlear
frequency selectivity was inspired by the experiments of Verschooten et al. [Verschooten et al., 2012, 2018] –
their work was in turn an improvement of experiments using forward-masked CAPs that were conducted in
the 1980s [Harrison et al., 1981a,b]. The method of frequency selectivity estimation used by Verschooten et al
involved establishing iso-response curves for masker level versus masker notch width – the response criterion
being that 66% of the initial CAP amplitude had to be restored. A measure of tuning was derived from these
curves by considering the 10-dB bandwidth – reduced to a single auditory filter model, this measure can be
seen as the bandwidth encompassing 90% of the frequency response power spectrum (called BW90 in other
works [Unoki et al., 2006]). The main interest of their technique compared to ours is that it does not require
the assumption that the amount of masking of synchronized ANFs is driven by input-output curves that are
to be determined. Rather, their measure of tuning was considered as an empirical quantity, and assumed to be
proportional to the 10-dB bandwidth of ANF tuning curves. They found a good agreement between the two
quantities after a constant correction factor was applied. However, the conversion factor from CAP to ANF
data was not the same for every species and smaller for small mammals. In addition, the correction factor for
macaques was not constant as a function of frequency (S5 Fig in [Verschooten et al., 2018]). It is therefore not
clear how the derived measure can be interpreted, as it may be affected differently from one species to another
by, for example, the effect of off-frequency masking. The method presented in this article provides a more
direct estimate of frequency selectivity that is grounded by a mathematical model of forward-masked CAPs
and does not require an empirical correction factor. The convolution-based method has other advantages.
Since the entire ∆CAP signal is used instead of the CAP peaks, the estimation is more robust to noise.
Furthermore, it exploits all the available data, whereas the ‘fast’ procedure in Verschooten et al. searches for a
particular masker level meeting the masking criterion, thus potentially wasting measurements points. Beyond
these aspects, a potential of our method is that the mathematical model and experimental approach could be
adapted to study more complex aspects of cochlear signal processing, such as compressive nonlinearities, as
explained in the next paragraph.

Limitations related to the simplified underlying auditory model
A few difficulties associated with the model were mentioned throughout the paper, including changes in the
model parameters with CF that make the estimation more challenging. Another set of limitations is related
to the oversimplifications of the model to describe the behavior of the cochlea. The main shortcoming of
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the model is that the cochlear decomposition of the signal, which was merely described as the action of a
filter bank (Fig 2), is in reality not linear. Compressive nonlinearities not only affect frequency tuning by
broadening the auditory filters when intensity is increased [Heinz et al., 2002], but they also modify the
input-output functions depending on the amount of suppression [Delgutte, 1990]. Therefore, including these
nonlinear effects in the model represents a major challenge for future developments, but could lead to a
detailed picture of how compressive nonlinearities affect cochlear processing. To study nonlinear effects
properly, a greater variety of masking conditions would also have to be employed during data collection. As
an example, Verschooten et al. evaluated the level dependence of cochlear frequency selectivity in cats by
presenting maskers of various intensities [Verschooten et al., 2012].

Other aspects of the auditory model considered in this work correspond to oversimplifications of cochlear
signal processing. Auditory filter frequency profiles are in reality asymmetric, and the lower and upper sides
are not affected the same way by nonlinearities [Irino and Patterson, 2002]. We focused on the ‘tip’ of the
auditory filters, which can be accurately described by gammatones or Gaussian filters – and we did not
find significant differences using one model or the other – but auditory filters also present a low-frequency
tail, the latter showing different attributes depending on filter CF [Temchin et al., 2008]. In addition, the
preferred frequency of auditory filters change with the degree of compression [Lopez-Poveda and Meddis,
2001]. Future work is needed to explore whether the proposed method could be extended to include these
nonlinear properties and prove to be an effective tool to study complex aspects of cochlear signal processing
with a lower degree of invasiveness compared to single-fiber AN recordings.

Acknowledgments
This work was conducted while the first author was on a postdoctoral fellowship supported by Fondation Pour
l’Audition (FPA RD-2019-3). Support was also provided by NIH grants R01-DC009838 and T32-DC016853.

Appendix
Computation of cochlear-filter output intensity for the gammatone model:

Note: In this paragraph, τ does not have the same use as in the main part of the paper where it is a variable
for latencies. Here, it refers to the time constant of the gammatones.

The k-th order gammatone, characterized by an envelope proportional to tk−1
+ e−t/τ , is defined in the frequency

domain (complex version, w.l.o.g.) by:

|wCF (ω)|2 =
(

2k − 2
k − 1

)−1
22k−1τ

[
1 + τ2(ω − 2π CF )2]−k

.

Considering one band of noise masker (the results simply add up if there are multiple bands), we have:

< A2 >= S0

(
2k − 2
k − 1

)−1
22k−2π−1τ

∫ 2π(fmax−CF )

2π(fmin−CF )

[
1 + τ2ω2]−k

dω

< A2 >= S0

(
2k − 2
k − 1

)−1
22k−2π−1

∫ arctan(2πτ(fmax−CF ))

arctan(2πτ(fmin−CF ))
cos2(k−1) θ dθ .

The last integral is then computed by writing

cos2(k−1) θ = 22−2k
[∑k−2

l=0
(2k−2

l

)
2 cos((2k − 2 − 2l)θ) +

(2k−2
k−1

)]
.

Note: The 10-dB bandwidth is related to τ by BW10τπ =
[
101/k − 1

]1/2.
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