

1 **Roseoflavin, a natural riboflavin analogue, possesses**
2 ***in vitro* and *in vivo* antiplasmodial activity**

3

4 Ayman Hemasa¹, Matthias Mack² and Kevin J. Saliba^{1,*}

5

6 ¹ Research School of Biology, The Australian National University, Canberra,
7 ACT, 2601, AUSTRALIA

8 ² Institute for Technical Microbiology, Department of Biotechnology,
9 Mannheim University of Applied Sciences, Mannheim, GERMANY

10

11 * To whom correspondence should be addressed (kevin.saliba@anu.edu.au)

12

13

14

15 **ORCID numbers**

16 MM: 0000-0002-7753-2422

17 KJS: 0000-0003-3345-8440

18

19

20

21

22 Abstract

23 The ability of the human malaria parasite *Plasmodium falciparum* to access and utilise vital
24 nutrients is critical to its growth and proliferation. Molecules that interfere with these process
25 could potentially serve as antimalarials. We found that two riboflavin analogues, roseoflavin
26 and 8-aminoriboflavin, inhibit malaria parasite proliferation by targeting riboflavin metabolism
27 and/or the utilisation of the riboflavin metabolites flavin mononucleotide and flavin adenine
28 dinucleotide. An additional eight riboflavin analogues were evaluated, but none were found to
29 be more potent than roseoflavin, nor was their activity on target. Focussing on roseoflavin, we
30 tested its antimalarial activity *in vivo* against *Plasmodium vinckei vinckei* in mice. We found
31 that roseoflavin decreased the parasitemia by 46-fold following a 4 day suppression test and,
32 on average, increased the survival of mice by 4-5 days. Our data are consistent with riboflavin
33 metabolism and/or the utilisation of riboflavin-derived cofactors being viable drug targets for
34 the development of new antimalarials and that roseoflavin could serve as a potential starting
35 point.

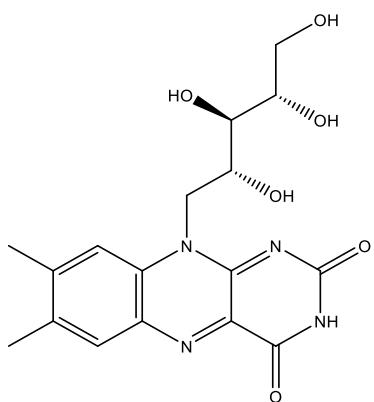
36

37

38

39 **Keywords:** Malaria, *Plasmodium falciparum*, roseoflavin, 8-aminoriboflavin, riboflavin
40 analogues.

41


42

43

44 Introduction

45 Despite constant effort to combat malaria, a disease caused by apicomplexan parasites of the
46 genus *Plasmodium*, the fatality rate remains high, with 627,000 deaths in 2020 (1). Mosquito
47 (the malaria vector) resistance to insecticides and parasite resistance to antimalarials continue
48 to increase in endemic countries (1-3), making malaria control difficult. The danger of
49 acquiring cross-resistance may be increased if new antimalarials are developed which have the
50 same target/s as current antimalarials. In addition, the lack of a highly effective vaccine (4, 5),
51 makes it important to evaluate novel drug targets in order to create safe and effective
52 treatments.

53 Understanding the essential nutrient requirements of the intraerythrocytic stage of the malaria
54 parasite (the stage responsible for the morbidity and mortality associated with malaria) may
55 shed light on the metabolic pathways that can be used as novel targets. Whilst progress has
56 been made in our understanding of the parasite's requirement for certain vitamins (e.g.
57 pantothenate (6-8)), very little is known about the parasite's requirement for other vitamins,
58 such as riboflavin (vitamin B₂, see **Figure 1** for structure).

59 **Figure 1: The chemical structure of riboflavin.**

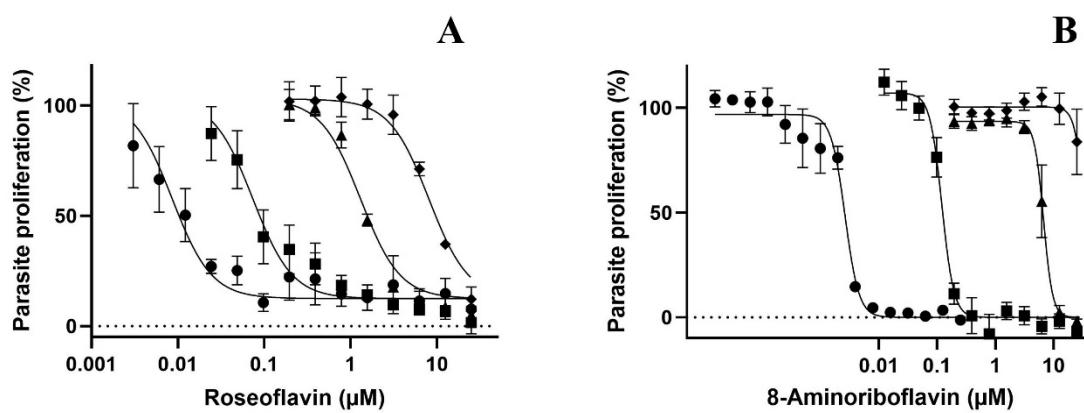
60 Riboflavin is phosphorylated by the enzyme flavokinase into flavin mononucleotide (FMN)
61 which can be adenylated to flavin adenine dinucleotide (FAD) by the enzyme FAD
62 synthetase. Riboflavin itself has no known biological activity, but its metabolites FMN and

63 FAD (referred to as flavin cofactors) are essential for the activity of flavoenzymes. These
64 enzymes are involved in a variety of biological processes such as redox reactions, electron
65 transport, protein folding, apoptosis, chromatin remodelling, DNA repair, hydrogenation and
66 dehydrogenation processes, and hydroxylation (9, 10). The genes encoding enzymes involved
67 in riboflavin biosynthesis in other organisms (11-16), do not appear to be present in the *P.*
68 *falciparum* genome (PlasmoDB). Therefore, the host is presumably the source of riboflavin for
69 the malaria parasite. It has been reported that riboflavin uptake and its conversion into FMN
70 and FAD is increased in erythrocytes infected by *P. falciparum* compared to uninfected
71 erythrocytes, consistent with the parasite requiring an extracellular supply of riboflavin (17).
72 In both *Plasmodium lophurea* (18) and *Plasmodium berghei* (19) infections, riboflavin
73 deficiency has been shown to have an inverse relationship with parasitemia. Moreover, in
74 Papua New Guinea, riboflavin deficiency has been found to provide partial protection
75 to newborns infected with malaria (20). However, removing extracellular riboflavin has also
76 been reported to have no effect on parasite proliferation (21), although the erythrocytes may
77 not have been depleted of intracellular flavin stores at the start of that experiment.

78 A number of riboflavin analogues have shown antibacterial, anticancer, and antiviral activity,
79 specifically by interfering with the metabolism of riboflavin (22, 23). 8-Demethyl-8-
80 methylamino riboflavin was reported to possess *in vitro* activity against *P. falciparum* (21),
81 and 10-(4'-chlorophenyl)-3-methylflavin has been shown to kill *P. falciparum* in culture and
82 *P. vinckei* in mice (24, 25). The antiplasmodial activity of roseoflavin (RoF), a naturally
83 occurring riboflavin analogue, has not yet been tested. RoF was first isolated from the soil-
84 dwelling bacterium *Streptomyces davawensis* (26) which recently was described as a valid
85 species and renamed “*Streptomyces davaonensis*” (27). It has been reported that RoF has
86 bactericidal activity against Gram-positive bacteria (26). Within these bacteria, RoF is
87 phosphorylated by the bacterial flavokinase into roseoflavin mononucleotide (RoFMN) and

88 then adenyllylated by FAD synthetase into roseoflavin adenine dinucleotide (RoFAD) (28).
89 These flavin cofactor analogs have different physicochemical properties when compared to
90 FMN and FAD. When RoFMN and RoFAD combine with flavoenzymes, they may be rendered
91 inactive (29-32). Another key riboflavin analogue with antimicrobial activity against both
92 Gram-positive and Gram-negative bacteria that has not been tested for antiplasmodial activity
93 is 8-demethyl-8-aminoriboflavin (8AF). 8AF is naturally synthesized as an intermediate
94 product during the synthesis of RoF (33-35).

95 In this study, we investigated the antiplasmodial activity of RoF and 8AF, as well as an
96 additional eight riboflavin analogues. We show that RoF and 8AF have potent *in vitro*
97 antiplasmodial activity against *P. falciparum* that is counteracted by increasing the
98 extracellular riboflavin concentration. We also tested the effect of RoF against *P. vinckeii*
99 *vinckeii* in mice and show that RoF significantly inhibits malaria parasite proliferation *in vivo*.


100 **Results**

101 ***In vitro* antiplasmodial activity of RoF and 8AF**

102 We initially tested the *in vitro* antiplasmodial activity of RoF and 8AF against the 3D7 strain
103 of *P. falciparum*. RoF and 8AF were found to possess antiplasmodial activity, with IC₅₀ values
104 of $1.6 \pm 0.1 \mu\text{M}$ and $7 \pm 1 \mu\text{M}$, (mean \pm SEM, N = 3), respectively (**Figure 2**), when the
105 experiment was carried out in the presence of 0.532 μM riboflavin, the concentration present
106 in standard RPMI-1640. The antiplasmodial activity of RoF decreased by 6-fold ($P < 0.0001$,
107 unpaired t-test) while the activity of 8AF decreased by >3.5-fold, when the extracellular
108 riboflavin concentration was increased from 0.532 to 5 μM . Furthermore, their activity
109 increased by a factor of 53 and 3500 ($P < 0.0001$ and $= 0.0046$, unpaired t-tests), respectively,
110 when the experiment was carried out in riboflavin-free medium (**Figure 2**). These results are

111 consistent with both compounds exerting their effect on parasite proliferation by competitively
112 inhibiting the parasite's ability to utilise riboflavin. We next determined the IC₅₀ values of RoF
113 and 8AF against *P. falciparum* parasites in the presence of 50 nM riboflavin, a physiologically
114 relevant riboflavin concentration within human plasma (36). Both compounds were found to
115 have IC₅₀ values of approximately 120 nM (**Figure 2 and Table 1**).

116

117

118 **Figure 2: Antiplasmodial activity of RoF (A) and 8AF (B) against *P. falciparum* measured in riboflavin-free**
119 **medium (circles), or in medium containing 50 nM (squares), 0.532 μM (triangles) or 5 μM riboflavin**
120 **(diamonds). Values are from three independent experiments, each carried out in triplicate. Error bars represent**
121 **SEM and, where not shown, are smaller than the symbols.**

122

123

124 ***In vitro* antiplasmodial activity of additional riboflavin analogues**

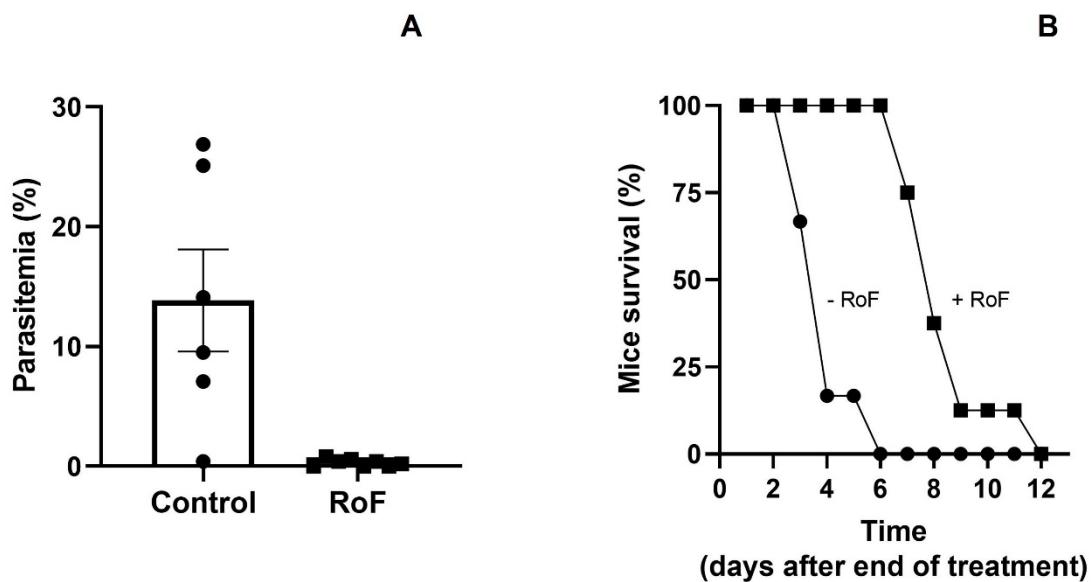
125 Encouraged by the fact that RoF and 8AF were found to possess antiplasmodial activity and
126 that they interfere with riboflavin utilisation, we tested an additional eight riboflavin analogues
127 for activity against *P. falciparum*. Except for compounds **5** and **6**, all the additional analogues
128 were found to possess antiplasmodial activity in RPMI-1640 medium containing 0.532 μM
129 riboflavin. However, their potency was considerably lower than RoF and 8AF (**Table 1**). We
130 then tested the activity of compounds **2**, **3**, **7**, and **8** in medium containing a 10-fold higher
131 concentration (5 μM) of riboflavin and found that the antiplasmodial activity was unaffected

132 (P>0.579; unpaired t-test, **Figure S1**), consistent with the compounds either inhibiting parasite
133 proliferation in a manner that although on target, is noncompetitive with riboflavin (although
134 this is unlikely given that the compounds are analogues of riboflavin), or by a mechanism
135 unrelated to riboflavin utilisation.

136 ***In vivo* antimalarial activity of roseoflavin**

137 In light of the potent *in vitro* antiplasmodial activity of RoF and 8AF, it was important to
138 establish whether the compounds are active *in vivo*. We chose to test RoF because it is
139 commercially readily accessible. The activity of RoF was tested against *P. vinckeii vinckeii*-
140 infected BALB/c mice using the standard four-day suppression test (37). Infected mice were
141 treated orally with a RoF dose of 150 mg/kg/day or intraperitoneally (IP) with 20 mg/kg/day.
142 Control groups of mice were administered with oral (propylene glycol) or IP (DMSO) vehicle
143 controls only. Similar concentrations of propylene glycol (24) and DMSO (38) have previously
144 been shown to have no effect on *P. vinckeii vinckeii* growth in mice. Mice that received the
145 initial IP dose, were then given the same dose of RoF for three consecutive days and toxicity
146 was not observed (as determined by weight (**Figure S2**), grooming and level of activity). Mice
147 that were administered the higher dose of RoF (150 mg/kg) orally showed signs of toxicity
148 (**Figure S2**) on the third day (i.e. after the second dose) and were not administered any further
149 doses. RoF (or RoF metabolites, which have the same characteristic colour) was still present
150 in the urine of mice given oral RoF four days after the final administration (evidenced by
151 distinctly pink urine). These mice were euthanised by the seventh day post-infection, but,
152 importantly, we could not detect any parasites in their blood at the time of euthanasia.

153 **Table 1: Antiplasmodial activity of riboflavin analogues against *Plasmodium falciparum* in varying**
 154 **riboflavin concentrations.**


Name	Structure	IC ₅₀			
		(Values are in μ M unless otherwise indicated)			
		0	50 nM	0.532 μ M	5 μ M
RoF		30 \pm 4 nM	118 \pm 48 nM	1.6 \pm 0.1	9.8 \pm 0.3
8-AF		2 \pm 0.4 nM	117 \pm 6 nM	7 \pm 1	>25
1		- ^a	-	58 \pm 1	-
2		-	-	>25	18 \pm 5
3		-	-	22 \pm 3	>25
4		-	-	63 \pm 2	-
5		-	-	No activity ^b	-
6		-	-	No activity	-
7		-	-	17 \pm 6	14 \pm 5
8		-	-	21 \pm 5	19 \pm 6

155 Values are from three independent experiments, each carried out in triplicate. ^aNo experiment was carried out at
 156 these conditions. ^bIndicates that the analogue did not possess antiplasmodial activity when tested at 25 μ M, the
 157 highest concentration possible.

158 The parasitemia in mice administered with RoF IP was measured from the day after the final
159 drug treatment. A 98% reduction in parasitemia was observed in mice two days after four days
160 of IP treatment in comparison with control mice (Figure 3A; $p = 0.029$, unpaired t-test). RoF
161 administration also allowed the mice to survive malaria infection for several additional days
162 following completion of the treatment regime (Figure 3B). When the parasitemia reached a
163 value higher than 25%, the mice were euthanased. Euthanasia due to high parasitaemia was the
164 only cause of death of the mice in the IP experiment.

165 The relative risk of dying in the control group as compared to that in the RoF group in the ten
166 days following completion of the IP treatment regime was calculated as 8.6 ($p < 0.001$, from
167 $\chi^2 = 21.7$, log rank test). Hence, IP treatment with 20 mg/kg RoF offered a significant survival
168 advantage to mice infected with *P. vinckeii vinckeii* compared to the untreated control mice.
169 These findings demonstrate that RoF is effective against malaria parasite proliferation *in vivo*.

170

171

172 **Figure 3: The effect of RoF on the growth of *P. vinckeii vinckeii* in vivo.** (A) Average parasitemia in mice
173 determined two days after four days of IP treatment with 20 mg/kg/day RoF or solvent control. Error bars represent
174 SEM. (B) Percent mice surviving in the days after completion of the 4-day treatment regime with 20 mg/kg/day
175 RoF (squares) or solvent control (circles).

176

177 Discussion

178 The antibacterial activity of RoF and 8AF has been known for some time (26, 31, 39, 40) In
179 this study, we show for the first time that RoF and 8AF kill *P. falciparum* parasites at
180 nanomolar concentrations in culture medium containing a riboflavin concentration within the
181 higher end of the human riboflavin plasma levels (2.7 to 42.5 nM, (36)). The observation that
182 the antiplasmodial activity of RoF and 8AF could be altered by changing the extracellular
183 riboflavin concentration is consistent with these compounds targeting riboflavin metabolism,
184 either as inhibitors (reducing the generation of FMN and/or FAD) or substrates of the enzymes
185 involved (thereby generating FMN and/or FAD antimetabolites with a potential to inhibit
186 flavoenzymes). Furthermore, our *in vivo* data demonstrate that RoF (administered at 20
187 mg/kg/day, IP) significantly reduced the parasitemia and increased the survival time of mice
188 infected with *P. vinckei vinckei*. At this dose, however, the mice were not cured. A 7.5-fold
189 higher dose (150 mg/kg/day) administered orally appeared to completely eliminate the
190 parasites, but was also toxic to the mice. Whilst the oral bioavailability of RoF is encouraging,
191 lower doses will need to be tested to determine which dose/s are efficacious without being
192 toxic.

193 Riboflavin analogues with electron-donating substituents at position 8 (such as the amino group
194 or alkyl-amino group in the case of 8AF and RoF, respectively) were found to be inert to
195 numerous biological reductants, and hence were assumed incapable of behaving as redox-
196 active molecules (39). These analogues were explored as possible steric replacements for
197 riboflavin, but not as catalytic alternatives (41). As a result, RoFMN, RoFAD and 8AFMN
198 may bind to flavoenzymes that are dependent on FMN or FAD, lowering their activity.

199 In the last decade, chemical synthesis has been used to create a range of flavin analogues, some
200 of which were found to have strong antibacterial or antiprotozoal activity (31), but only a few of
201 them have been investigated for potential effectiveness against *P. falciparum*. Encouraged by

202 the potency and on target effects of RoF and 8AF, we tested additional riboflavin analogues.
203 These modifications include riboflavin analogues that lack the ribityl side chain (compound **2**,
204 also known as lumichrome) and it was found to possess off-target activity against *P.*
205 *falciparum*, but replacing the methyl group of lumichrome at C7 and C8 with hydrogen
206 (compound **6**) and substituting the N1 and N3 of compound **6** with methyl group (compound
207 **5**) led to a complete loss of the activity. However, substituting N5 of compound **5** with the
208 oxide anion (compound **3**) and substituting C6 and C9 of compound **6** with methoxy group
209 (compound **1**) restored the activity. We also found that substituting the N3 of riboflavin with a
210 methyl group (compound **7**), replacing the methyl group at C7 and C8 of riboflavin with ethyl
211 group (compound **8**) and replacing N5 of riboflavin with C atom (compound **4**) resulted in
212 some activity, but they were off-target as determined by the fact that the activity could not be
213 shifted by increasing the extracellular riboflavin concentration (**Figure S1**). Although the
214 results with the additional analogues was disappointing, the results with RoF and 8AF are
215 encouraging and leaves open the possibility that other, more potent and on-target riboflavin
216 analogues could be identified.

217 **Methods**

218 ***In vitro* culture of *P. falciparum***

219 The 3D7 strain of *P. falciparum* was used in all *in vitro* investigations. The parasites were kept
220 in synchronous continuous cultures, as previously described (42). Briefly, *P. falciparum*
221 parasites were maintained in commercial RPMI-1640 medium (Life Technologies)
222 supplemented with 11 mM glucose (Sigma), 24 µg/mL gentamycin (Life Technologies), 200
223 µM hypoxanthine (Sigma) and 0.6% w/v Albumax II (Life Technologies, dissolved in water
224 to 20% (w/v), filter sterilized and stored at (-20°C). Parasites were maintained at 4%
225 hematocrit (HCT), typically in O⁺ erythrocytes in 75 cm² Nunc culture flask, flushed with a
226 gas mixture of 3% CO₂, 1% O₂ and 96% N₂, and held at 37°C in a horizontal shaking incubator.

227 The suspension was centrifuged, every 24 hours, at 500 g for 5 min and the supernatant was
228 replaced with fresh medium. The infected erythrocyte pellets were diluted 10-20 times with
229 uninfected erythrocytes when the parasites were in the trophozoite stage, and the parasitemia
230 was not allowed to exceed 5%.

231 ***In vitro* antiplasmodial activity**

232 *SYBR-safe assay* - The antiplasmodial activity of compounds **1-6** was evaluated using the
233 fluorescence-based SYBR-safe assay (43, 44). Parasites were incubated in 96 well plates with
234 riboflavin analogues (compounds **1-6** were obtained from the the National Cancer Institute,
235 DCTD/DTP/DSCB, Rockville, MD, USA, and compound **7** and **8** were purchased from
236 Sigma). All compounds were prepared in DMSO except compound **2** which was dissolved in
237 a mixture of DMSO and 1N KOH. The compounds were tested at a final concentration of 25
238 μ M, except compounds **1, 4 and 8** which were tested at 100 μ M. The experiments were carried
239 out at a parasitemia of 0.5 % and a HCT of 1 % for 96 h, starting with parasites in the ring
240 stage. Parasites were incubated with compounds that had been serially diluted (in 2-fold
241 increments). Chloroquine was used as a positive control at a final concentration of 0.5 μ M and
242 the corrsponding fluorescence was subtracted from all other values as a background
243 measurement. Drug-free wells were used to represent 100% parasite proliferation. The final
244 volume in each well of the plate was 200 μ L. The outermost wells were not used to avoid the
245 “edge effect” (45), but were filled with 200 μ L medium. After the 96-hour incubation, the
246 plates were stored at -20°C for at least 24 hours. The plate was then thawed, the contents of the
247 wells resuspended by pipetting and 100 μ L transferred to a new plate. To each well, 100 μ L
248 SYBR-safe solution in lysis buffer was then added. This solution was made up by adding 2 μ L
249 of SYBR-safe stock (Life Technologies) to 10 mL lysis buffer comprised of 5 mM EDTA
250 (Sigma), 20 mM TrisHCl (Sigma), 0.008% w/v saponin (Sigma) and 0.08% v/v Triton X-100

251 (Sigma). The fluorescence in each well was measured at an excitation of 490 nm and emission
252 of 520nm using a Fluostar Optima fluorometer.

253 *Malstat assay* - The antiplasmodial activity of RoF, 8AF, **7** and **8** was tested using the Malstat
254 assay because their fluorescent properties interfered with the SYBR-safe assay. This method
255 was carried out according to (46), with minor modifications. Two solutions were prepared to
256 determine the activity of *P. falciparum* lactate dehydrogenase (*Pf*LDH). The first, termed
257 malstat solution, was prepared by dissolving 4 g of sodium L-lactate (Sigma), 1.32 g of Tris
258 (tris(hydroxymethyl)aminomethane, Sigma), 22 mg of 3-acetylpyridine adenine dinucleotide
259 (APAD, Sigma) and 0.08% v/v Triton X-100, pH 9 into 50 mL water. This soultion was filter
260 sterilised and stored at 4 °C. The second solution was prepared by mixing 80 mg nitroblue
261 tetrazolium (NBT) and 4 mg phenazine ethosulfate (PES) in 50 mL water. This solution is
262 sensitive to light and was therefore stored in the dark at 4 °C. The antiplasmodial Malstat assay
263 was carried out as described for the SYBR-safe assay up to and including the freezing of the
264 plates. After thawing the plates, the well contents were resuspended and 20 µL of each well
265 transferred to a new plate. To each well 100 µL of the malstat solution was then added, followed
266 by 10 µL of the NBT/PES solution. The plate was incubated in the dark for 45 minutes and the
267 absorbance in each well measured at 620 nm.

268 ***In vivo* antiplasmodial activity**

269 Approval was obtained from the Australian National University Animal Experimentation
270 Ethics Committee for *in vivo* experiments (approval number F.BMB.31.07). The *in vivo*
271 antiplasmodial activity of RoF was determined *via* a standard four-day suppression test (37).
272 This method assesses the ability of a compound to suppress parasite proliferation when
273 administered in four daily doses. Eight-week-old female BALB/c mice weighing 17- 21 g were
274 used. Cryopreserved *P. vinckeii* *vinckeii*-infected erythrocytes from a donor mouse were thawed
275 and loaded into a syringe with a 25 G needle. Approximately 3×10^6 erythrocytes ($\sim 1 \times 10^6$ of

276 them infected with parasites) in 200 μ L of cell suspension were then injected intraperitoneally
277 (IP) into two donor mice. Blood from one of the donor mice was then collected by day six and
278 diluted in saline to 10^7 infected erythrocytes per 200 μ L of cell suspension. A 25 G needle and
279 syringe was used to inject 200 μ L of this suspension into each mouse to be used in the four-
280 day suppression test.

281 Two hours following infection, a group of mice was administered with a 150 mg/kg dose of
282 RoF (37 mM uniform suspension in propylene glycol) orally by gavage. The volume of drug
283 solution given orally to each mouse was approximately 200 μ L. Control infected mice were
284 administered with equivalent volumes of propylene glycol to serve as oral vehicle controls. A
285 group of mice was administered IP with a RoF dose of 20 mg/kg (25 mM in DMSO). The
286 volume of drug solution given to each mouse IP was approximately 40 μ L. Control mice were
287 administered with equivalent amounts of DMSO to serve as IP vehicle controls. Mice in the IP
288 RoF and corresponding vehicle control groups were given three additional doses approximately
289 24, 48 and 72 h after the initial dose. Mice in the oral RoF group began to exhibit signs of
290 toxicity after the first two doses. No additional doses were therefore administered.

291 Blood was taken from the tail (via needle prick) of each mouse 48 h after the final drug
292 administration (72 h after the final oral RoF administration) and used to prepare methanol-
293 fixed, Giemsa-stained smear slides. Microscopic examination was used to determine the
294 parasitemia for each mouse by counting the number of parasitised cells in a random sample of
295 more than 500 erythrocytes. The counting was carried out in a ‘blinded’ fashion and the groups
296 to which the slides belonged to only revealed after all the counting has been completed.
297 Parasitemias were determined daily (except for mice administered oral RoF), and mice with
298 parasitemia $>25\%$ were euthanised. Mouse weights were monitored daily from the first drug
299 administration. Mice were observed regularly for signs of toxicity (e.g. loss of weight, lethargy
300 and lack of grooming).

301 **Statistical analysis**

302 GraphPad Prism 9 was used to do statistical analysis of means using unpaired, two-tailed
303 Student's t tests. Mouse survival was analysed using the log rank test - a method for determining
304 if two or more independent groups have the same chance of survival. The test compares each
305 group's whole survival experience and can be considered as an assessment of whether or not
306 the survival curves are equivalent (matching). The relative risk to die in one group, a , compared
307 to that in the other group, b , is calculated as

308
$$r = (\Sigma Oa / \Sigma Ea) / (\Sigma Ob / \Sigma Eb)$$

309 where O is the observed number of dead mice, and E is the expected number of dead mice. On
310 any one day, E is calculated as $E_a = (r_a \times d_{total}) / r_{total}$ where r_a is the number of subjects at risk in
311 group a , d_{total} is the total number of subjects dead from both groups, and r_{total} is the total number
312 of subjects at risk from both groups.

313

314 **Acknowledgements**

315 We are grateful to Dr Kylie Easton for carrying out some of the experiments and to the
316 Canberra Branch of the Australian Red Cross Lifeblood for the provision of red blood cells.
317 AH was supported by a Research Training Program scholarship from the Australian
318 Government and by the Alliance Berlin Canberra "Crossing Boundaries: Molecular
319 Interactions in Malaria," a program co-funded by the Deutsche Forschungsgemeinschaft
320 (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National
321 University.

322

323 References

324

- 325 1. WHO. 2021. World Malaria Report.
- 326 2. Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. 2019. Malaria: the past and the
327 present. *Microorganisms* 7:179.
- 328 3. Nkumama IN, O'Meara WP, Osier FH. 2017. Changes in malaria epidemiology in
329 Africa and new challenges for elimination. *Trends in Parasitology* 33:128-140.
- 330 4. Mahmoudi S, Keshavarz H. 2018. Malaria vaccine development: the need for novel
331 approaches: A review article. *Iranian Journal of Parasitology* 13:1.
- 332 5. Birkett AJ. 2016. Status of vaccine research and development of vaccines for malaria.
333 *Vaccine* 34:2915-2920.
- 334 6. Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. 2021. A novel
335 heteromeric pantothenate kinase complex in apicomplexan parasites. *PLoS Pathogens*
336 17:e1009797.
- 337 7. Guan J, Spry C, Tjhin ET, Yang P, Kittikool T, Howieson VM, Ling H, Starrs L,
338 Duncan D, Burgio G, Saliba KJ, Auclair K. 2021. Exploring heteroaromatic rings as a
339 replacement for the labile amide of antiplasmodial pantothenamides. *Journal of
340 Medicinal Chemistry* 64:4478-4497.
- 341 8. Spry C, Barnard L, Kok M, Powell AK, Mahesh D, Tjhin ET, Saliba KJ, Strauss E, de
342 Villiers M. 2020. Toward a Stable and Potent Coenzyme A-Targeting Antiplasmodial
343 Agent: Structure–Activity Relationship Studies of N-Phenethyl- α -methyl-
344 pantothenamide. *ACS Infectious Diseases* 6:1844-1854.
- 345 9. Joosten V, van Berkel WJ. 2007. Flavoenzymes. *Current Opinion in Chemical
346 Biology* 11:195-202.
- 347 10. Mack M, Grill S. 2006. Riboflavin analogs and inhibitors of riboflavin biosynthesis.
348 *Applied Microbiology and Biotechnology* 71:265-275.
- 349 11. Vervoort J, Xavier BB, Stewardson A, Coenen S, Godycki-Cwirko M, Adriaenssens
350 N, Kowalczyk A, Lammens C, Harbarth S, Goossens H, Malhotra-Kumar S. 2014. An
351 in vitro deletion in ribE encoding lumazine synthase contributes to nitrofurantoin
352 resistance in *Escherichia coli*. *Antimicrobial Agents and Chemotherapy* 58:7225-
353 7233.
- 354 12. Koh Y-S, Choih J, Lee J-H, Roe J-H. 1996. Regulation of theribA gene encoding
355 GTP cyclohydrolase II by thesoXRS locus in *Escherichia coli*. *Molecular and General
356 Genetics MGG* 251:591-598.
- 357 13. Hümbelin M, Griesser V, Keller T, Schurter W, Haiker M, Hohmann H, Ritz H,
358 Richter G, Bacher A, Van Loon A. 1999. GTP cyclohydrolase II and 3, 4-dihydroxy-
359 2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of
360 an industrial *Bacillus subtilis* strain used for riboflavin production. *Journal of
361 Industrial Microbiology and Biotechnology* 22:1-7.
- 362 14. Tuan PA, Zhao S, Kim JK, Kim YB, Yang J, Li CH, Kim S-J, Arasu MV, Al-Dhabi
363 NA, Park SU. 2014. Riboflavin accumulation and molecular characterization of
364 cDNAs encoding bifunctional GTP cyclohydrolase II/3, 4-dihydroxy-2-butanone 4-
365 phosphate synthase, lumazine synthase, and riboflavin synthase in different organs of
366 *Lycium chinense* plant. *Molecules* 19:17141-17153.
- 367 15. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G. 2000. Biosynthesis of vitamin
368 B₂ (riboflavin). *Annual Review of Nutrition* 20:153-167.
- 369 16. Bacher A, Eberhardt S, Eisenreich W, Fischer M, Herz S, Illarionov B, Kis K, Richter
370 G. 2001. Biosynthesis of riboflavin. *Vitamins & Hormones* 61:1-49.

371 17. Dutta P. 1991. Enhanced uptake and metabolism of riboflavin in erythrocytes infected
372 with *Plasmodium falciparum*. The Journal Of Protozoology 38:479-483.

373 18. Seeler AO, Ott WH. 1944. Effect of riboflavin deficiency on the course of
374 *Plasmodium lophurae* infection in chicks. The Journal of Infectious Diseases 75:175-
375 178.

376 19. Kaikai P, Thurnham D. 1983. The influence of riboflavin deficiency on *Plasmodium*
377 *berghei* infection in rats. Transactions of the Royal Society of Tropical Medicine and
378 Hygiene 77:680-686.

379 20. Thurnham D, Oppenheimer S, Bull R. 1983. Riboflavin status and malaria in infants
380 in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and
381 Hygiene 77:423-424.

382 21. Geary TG, Divo AA, Jensen JB. 1985. Nutritional Requirements of *Plasmodium*
383 *falciparum* in Culture. II. Effects of Antimetabolites in a Semi Defined Medium 1.
384 The Journal Of Protozoology 32:65-69.

385 22. Graham D, Brown J, Ashton W, Brown R, Rogers E. 1977. Anticoccidial riboflavine
386 antagonists. Experientia 33:1274-1276.

387 23. Platz MS. 2005. Flavin N-oxides: new anti-cancer agents and pathogen eradication
388 agents. Google Patents.

389 24. Cowden WB, Butcher GA, Hunt NH, Clark IA, Yoneda F. 1987. Antimalarial activity
390 of a riboflavin analog against *Plasmodium vinckei* *in vivo* and *Plasmodium falciparum*
391 *in vitro*. The American Journal Of Tropical Medicine and Hygiene 37:495-500.

392 25. Cowden WB, Clark IA, Hunt NH. 1988. Flavins as potential antimalarials. 1. 10-
393 (Halophenyl)-3-methylflavins. Journal Of Medicinal Chemistry 31:799-801.

394 26. Otani S, Takatsu M, Nakano M, Kasai S, Miura R, Matsui K. 1974. Roseoflavin, a
395 new antimicrobial pigment from Streptomyces. The Journal of Antibiotics 27:88-89.

396 27. Landwehr W, Kämpfer P, Glaeser SP, Rückert C, Kalinowski J, Blom J, Goesmann
397 A, Mack M, Schumann P, Atasayar E, Hahnke RL, Rohde M, Martin K, Stadler M,
398 Wink J. 2018. Taxonomic analyses of members of the Streptomyces cinnabarinus
399 cluster, description of Streptomyces cinnabarigriseus sp. nov. and Streptomyces
400 davaonensis sp. nov. International Journal of Systematic and Evolutionary
401 Microbiology 68:382-393.

402 28. Walsh C, Fisher J, Spencer R, Graham DW, Ashton WT, Brown JE, Brown RD,
403 Rogers EF. 1978. Chemical and enzymic properties of riboflavin analogs.
404 Biochemistry 17:1942-1951.

405 29. Langer S, Nakanishi S, Mathes T, Knaus T, Binter A, Macheroux P, Mase T,
406 Miyakawa T, Tanokura M, Mack M. 2013. The flavoenzyme azobenzene reductase
407 AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high
408 affinity and is less active in its RoFMN form. Biochemistry 52:4288-4295.

409 30. Langer S, Hashimoto M, Hobl B, Mathes T, Mack M. 2013. Flavoproteins are
410 potential targets for the antibiotic roseoflavin in Escherichia coli. Journal of
411 Bacteriology 195:4037-4045.

412 31. Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Frei E, Mack M.
413 2013. Riboflavin analogs as antiinfectives: occurrence, mode of action, metabolism
414 and resistance. Current pharmaceutical design 19:2552-2560.

415 32. Shinkai S, Kameoka K, Honda N, Ueda K, Manabe O, Lindsey J. 1986. Coenzyme
416 models: 40. Spectral and reactivity studies of roseoflavin analogs: Correlation
417 between reactivity and spectral parameters. Bioorganic Chemistry 14:119-133.

418 33. Konjik V, Brünle S, Demmer U, Vanselow A, Sandhoff R, Ermler U, Mack M. 2017.
419 The crystal structure of RosB: insights into the reaction mechanism of the first

420 member of a family of flavodoxin-like enzymes. *Angewandte Chemie International*
421 Edition 56:1146-1151.

422 34. Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M. 2016. Identification of the
423 key enzyme of roseoflavin biosynthesis. *Angewandte Chemie International Edition*
424 55:6103-6106.

425 35. Jankowitsch F, Kühm C, Kellner R, Kalinowski J, Pelzer S, Macheroux P, Mack M.
426 2011. A novel N, N-8-amino-8-demethyl-d-riboflavin dimethyltransferase (RosA)
427 catalyzing the two terminal steps of roseoflavin biosynthesis in *Streptomyces*
428 *davawensis*. *Journal of Biological Chemistry* 286:38275-38285.

429 36. Hustad S, Ueland PM, Schneede J. 1999. Quantification of riboflavin, flavin
430 mononucleotide, and flavin adenine dinucleotide in human plasma by capillary
431 electrophoresis and laser-induced fluorescence detection. *Clinical Chemistry* 45:862-
432 868.

433 37. Peters W, Portus J, Robinson B. 1975. The chemotherapy of rodent malaria, XXII: the
434 value of drug-resistant strains of *P. berghei* in screening for blood schizontocidal
435 activity. *Annals of Tropical Medicine & Parasitology* 69:155-171.

436 38. Nicolas O, Margout D, Taudon N, Wein S, Calas M, Vial HJ, Bressolle FM. 2005.
437 Pharmacological properties of a new antimalarial bithiazolium salt, T3, and a
438 corresponding prodrug, TE3. *Antimicrobial Agents and Chemotherapy* 49:3631-3639.

439 39. Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC, Lux A, Gärtner W,
440 Mack M. 2011. The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from
441 *Streptomyces davawensis* are metabolized by human flavokinase and human FAD
442 synthetase. *Biochemical pharmacology* 82:1853-1859.

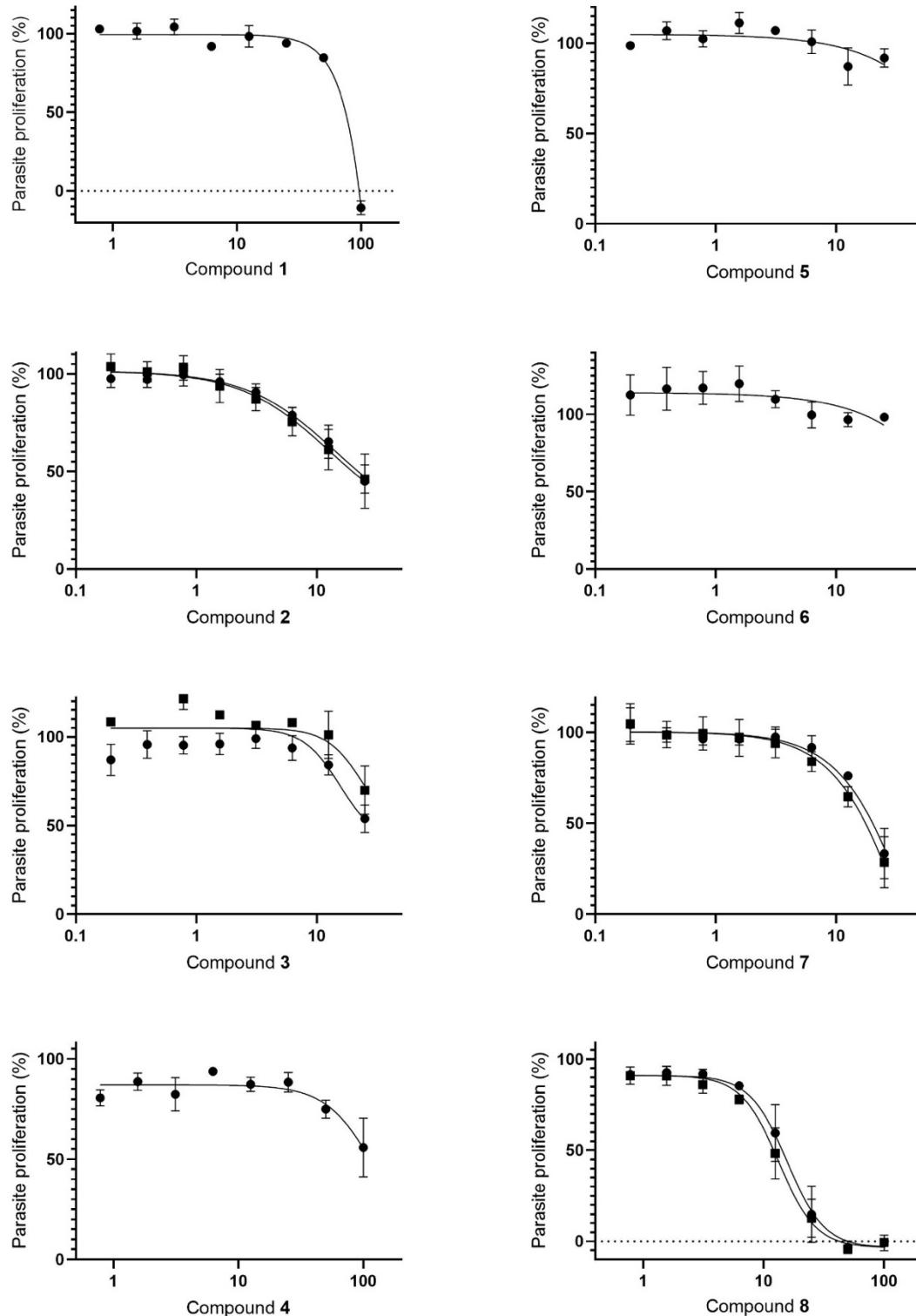
443 40. Pedrolli D, Jankowitsch F, Schwarz J, Langer S, Nakanishi S, Mack M. 2014. Natural
444 riboflavin analogs. *Flavins and Flavoproteins*:41-63.

445 41. Hasford JJ, Rizzo CJ. 1998. Linear free energy substituent effect on flavin redox
446 chemistry. *Journal of the American Chemical Society* 120:2251-2255.

447 42. Allen RJ, Kirk K. 2004. The membrane potential of the intraerythrocytic malaria
448 parasite *Plasmodium falciparum*. *Journal of Biological Chemistry* 279:11264-11272.

449 43. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. 2004. Simple and
450 inexpensive fluorescence-based technique for high-throughput antimalarial drug
451 screening. *Antimicrobial Agents and Chemotherapy* 48:1803-1806.

452 44. Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC.
453 2007. Assessment and continued validation of the malaria SYBR green I-based
454 fluorescence assay for use in malaria drug screening. *Antimicrobial Agents and*
455 *Chemotherapy* 51:1926-1933.


456 45. Marwood T, Vasudevan C, Brevig T. 2011. Increasing throughput in cellular assays:
457 Reduction of edge effect allows results to remain consistent across entire plate.
458 *Genetic Engineering & Biotechnology News* 31:22-23.

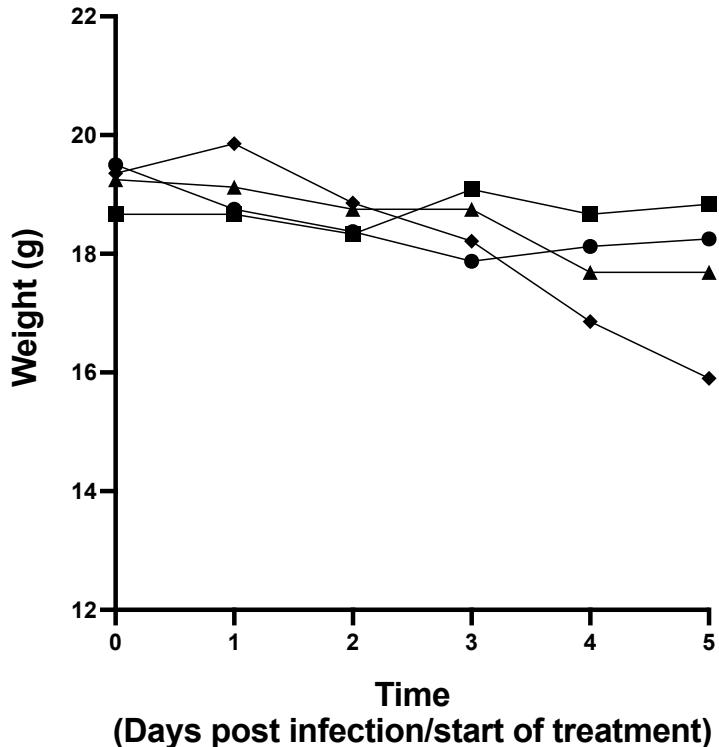
459 46. Markwalter CF, Davis KM, Wright DW. 2016. Immunomagnetic capture and
460 colorimetric detection of malarial biomarker *Plasmodium falciparum* lactate
461 dehydrogenase. *Analytical Biochemistry* 493:30-34.

462

463

464 **Supplementary Figures**

465


466 **Figure S1: The effect of eight riboflavin analogues on *P. falciparum* proliferation in RPMI-1640 medium**

467 containing 0.532 μM riboflavin (circles) or, for compounds 2, 3, 7 and 8, 5 μM riboflavin (squares). Values

468 are averaged from three independent experiments, each carried out in triplicate. Error bars represent SEM.

469

470
471
472
473

474
475
476 **Figure S2: Average weights of mice in each treatment group.** Average weight of mice treated with oral vehicle
477 control (circles; n = 4), 150 mg/kg oral roseoflavin (diamonds; n = 7), IP vehicle control (squares; n = 6) and 20
478 mg/kg IP RoF (triangles; n = 8), over time, starting on the day of infection/start of treatment. Error bars have
479 been omitted for clarity.

480
481