

1 **Short title:** PvC3H29 and PvNAPs co-modulate leaf senescence

2 **PvC3H29 interacts with and inhibits DNA binding of PvNAPs to finetune leaf**
3 **senescence in switchgrass (*Panicum virgatum*)**

4 **Authors:**

5 Zheni Xie^{1†}, Guohui Yu^{1†}, Shanshan Lei¹, Hui Wang², Bin Xu^{1*}

6 1 College of Agro-grassland Science, Nanjing Agricultural University, Nanjing,
7 210095, PR China

8 2 College of Grassland Science and Technology, China Agricultural University,
9 Beijing, 100193, PR China

10 † Equal contributions

11 ***Corresponding author:** Bin Xu binxu@njau.edu.cn

12 **One-sentence summary**

13 PvC3H29 interacts with transcription factors, PvNAP1&2, to inhibit their
14 transactivation on chlorophyll catabolism and leaf senescence in switchgrass.

15 **Author Contributions**

16 BX developed research and experimental designs; ZX, GY, SL, and HL performed
17 experiments; GY, BX and BH analyzed all data and wrote the manuscript.

18

19 **Email addresses:**

20 Zheni Xie, E-mail, xiezheni@hotmail.com;

21 Guohui Yu, E-mail, yuguohui86@126.com;

22 Shanshan Lei, E-mail, 2048921962@qq.com;

23 Hui Wang, E-mail, huiwang211@cau.edu.cn;

24 Bin Xu, E-mail, binxu@njau.edu.cn

25

26

27 **Abstract**

28 Finetuning the progression of leaf senescence is important for plant's fitness in nature,
29 while 'staygreen' with delayed leaf senescence has been considered as a valuable
30 agronomic trait in crop genetic improvement. In this study, a switchgrass CCCH-type
31 Zinc finger gene, *PvC3H29*, was characterized as a suppressor of leaf senescence that
32 over-expressing or suppressing the gene led to delayed or accelerated leaf senescence,
33 respectively. Transcriptomic analysis marked that chlorophyll catabolic pathway genes
34 were involved in the *PvC3H29*-regulated leaf senescence. *PvC3H29* was a
35 nucleus-localized protein with no transcriptional activity. By Y2H screening, we
36 identified its interacting proteins, including a pair of paralogous transcription factors,
37 *PvNAP1&2*. Over-expressing the *PvNAPs* led to precocious leaf senescence at least
38 partially by directly targeting and transactivating chlorophyll catabolic genes to
39 promote chlorophyll degradation. *PvC3H29*, through protein-protein interaction,
40 repressed the DNA-binding efficiency of *PvNAPs* and alleviated its transactivating
41 effect on downstream genes, thereby functioned as a 'brake' in the progression of leaf
42 senescence. Moreover, over-expressing *PvC3H29* resulted in up to 47% higher
43 biomass yield and improved biomass feedstock quality, reiterating the importance of
44 leaf senescence regulation in the genetic improvement of switchgrass and other
45 feedstock crops.

46 **Key words:** switchgrass; NAC; Zinc finger; senescence; Chl catabolism; staygreen;
47 feedstock quality; biomass

48

49 **Introduction**

50 The progression of leaf senescence is finely modulated in plants. On one hand,
51 leaf senescence is necessary for plants to recycle nutrient to new sink organs; on the
52 other hand, precocious leaf senescence shortens the photosynthetic period and limits
53 grain or whole biomass yield. For cereal, forage, and bioenergy crops, delayed leaf
54 senescence or functional ‘staygreen’ is often considered as an important agronomic
55 trait (Yang and Udvardi, 2018; Shin *et al.*, 2020).

56 One key feature of the ‘staygreen’ trait was the retention of green appearance in
57 aging leaves with delayed deconstruction of the photosynthetic apparatus (Thomas
58 and Howarth, 2000). Chl degradation is a key step in leaf senescence that is catalyzed
59 in the PAO (Pheophorbide a Oxygenase)/phyllobilin pathway involving a set of Chl
60 catabolic enzymes (CCEs), including NYC1 (NON-YELLOW COLORING 1, the
61 Chl *b* reductase), NOL (NYC1-like), HCAR (Hydroxymethyl Chl *a* Reductase),
62 SGR/NYE1 (STAYGREEN or Non-Yellowing Protein 1, the Chl *a*
63 Mg-dechelatase), PPH (PHEOPHYTINASE), PAO, and RCCR1 (Red Chl Catabolite
64 Reductase) (reviewed by Kuai *et al.*, 2018). Expression of these CCGs are tightly
65 controlled during leaf aging to avoid drastic Chl degradation under normal growth
66 condition. On the other hand, finetuning expression levels of CCGs showed promises
67 in crop genetic improvement (Zhou *et al.*, 2011; Shin *et al.*, 2020; Yu *et al.*, 2021).

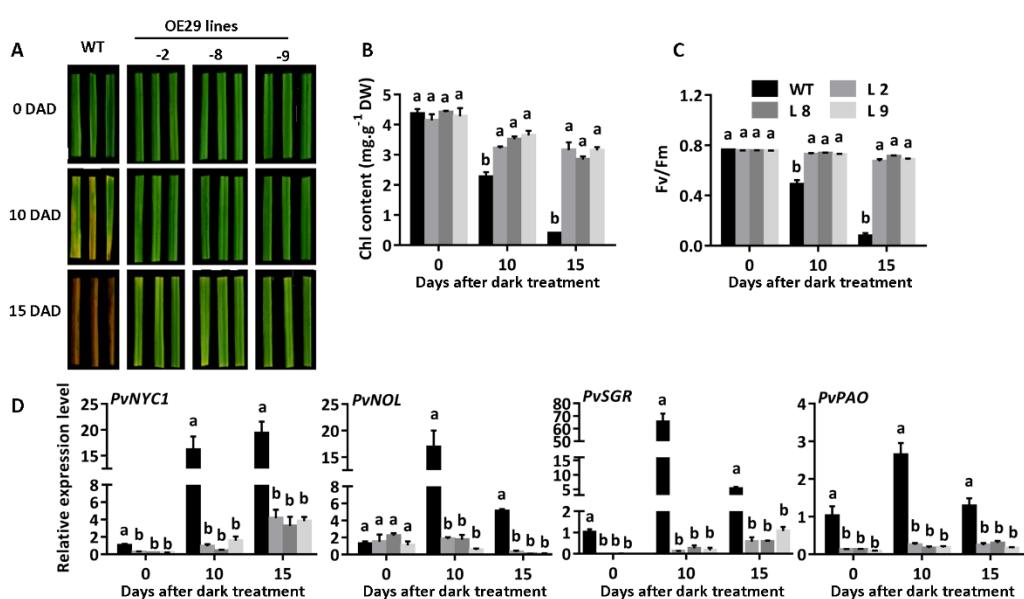
68 Plants employed a set of transcription factors to transactivate or repress the
69 expression of these CCGs. For example, NAP (NAC-LIKE, ACTIVATED BY
70 AP3/PI, NAC029) was one transcription factor targeting on CCGs and other
71 senescence-promoting genes to accelerate leaf senescence in different plant species,
72 such as Arabidopsis (*Arabidopsis thaliana*), cotton (*Gossypium hirsutum*), rice (*Oryza*
73 *sativa*), and bamboo (*Bambusa emeiensis*) (Chen *et al.*, 2011; Fan *et al.*, 2015; Yang
74 *et al.*, 2014; Liang *et al.*, 2014; Sakuraba *et al.*, 2014). In rice, expression of *OsNAP*
75 was tightly linked with the onset of leaf senescence in an age-dependent manner and
76 was induced specifically by abscisic acid (ABA); and OsNAP directly targeted genes

77 related to Chl degradation (i.e., *SGR*, *NYC1*, *NYC3/PPH*, and *RCCRI*) and several
78 other senescence associated genes (*SAGs*) (Liang *et al.*, 2014). In Arabidopsis, Yang
79 *et al.* (2014) found that NAP could directly target the ABA-biosynthesis gene,
80 *ABSCISIC ALDEHYDE OXIDASE3* (*AAO3*), to increase ABA content. One recent
81 study showed that NAP also acted as an indispensable regulator in GA (gibberellic
82 acid)-mediated leaf senescence that two DELLA proteins, namely GA-INSENSITIVE
83 (GAI) and REPRESSOR OF *ga1-3* (RGA), interacted with NAP, and the interaction
84 subsequently impaired the transcriptional activities of NAP to induce the expression
85 *SAG113* and *AAO3* (Lei *et al.*, 2020). Furthermore, reducing the expression of *NAP*
86 showed promises in crop genetic improvement. For examples, down-regulation of
87 *GhNAP* significantly delayed leaf senescence and improved 15% of lint yield in
88 cotton (Fan *et al.*, 2015), and reduced *OsNAP* expression delayed leaf senescence and
89 extended grain-filling period resulting in a 6.3-10.3% increase in rice grain yield
90 (Liang *et al.*, 2014). In short, the current working model pinpointed that NAP
91 perceived ABA and GA signals and further accelerated leaf senescence by activating
92 ABA-biosynthetic and Chl catabolic genes in a trifurcate feedback loop. Till now, it is
93 unclear whether there is a ‘brake’ regulator targeting on NAP to delay the rate of leaf
94 senescence.

95 CCCHs is a unique subfamily of zinc finger proteins, and several CCCHs were
96 known as negative regulators in leaf senescence, such as *OsDOS* (Kong *et al.*, 2006)
97 and *OsTZF1* (Jan *et al.*, 2013) in rice (*Oryza sativa*), *GhTZF1* in cotton (*Gossypium*
98 *hirsutum*) (Zhou *et al.*, 2014), and *PvC3H69* in switchgrass (*Panicum virgatum*) (Xie
99 *et al.*, 2021). Over-expressing of these CCCHs delayed leaf senescence with altered
100 expression of genes involved in reactive oxygen species (ROS) homeostasis and
101 ABA/JA signaling pathways (Kong *et al.*, 2006; Jan *et al.*, 2013; Xie *et al.*, 2021). Yet,
102 how exactly these CCCHs functioned in the regulation of leaf senescence is unclear.
103 Furthermore, zinc finger proteins make tandem contacts with their target molecules,
104 such as DNA, RNA, proteins, and lipids through their Zinc finger (Znf) motifs. It
105 remains unknown whether there was a link between these CCCH proteins and

106 senescence-promoting transcription factors (e.g. NAP) to finetune the senescence
107 process.

108 Switchgrass is a tall perennial C₄ grass species dedicated for bioenergy and
109 forage feedstock production (Anderson *et al.*, 1988; McLaughlin and Kszos, 2005).
110 ‘Stay-green’ is a highly desirable trait for the tall grass. In this study, we identified
111 one CCCH-type protein, PvC3H29, as a negative regulator in leaf senescence.
112 PvC3H29 *per se* had no transcriptional activity but physically interacts with a pair of
113 paralogous NAPs (PvNAP1&2). The PvNAPs promoted leaf senescence at least
114 partially by directly targeting and transactivating *CCGs*. Through the interaction,
115 PvC3H29 effectively attenuated the DNA binding efficiencies of the PvNAPs to delay
116 the progression of leaf senescence. Furthermore, over-expressing *PvC3H29* resulted
117 in up to 47% higher biomass yield in switchgrass. Thus, results of this study revealed
118 a new regulatory module in leaf senescence and demonstrated the effectiveness of leaf
119 senescence regulation in biomass improvement in switchgrass.

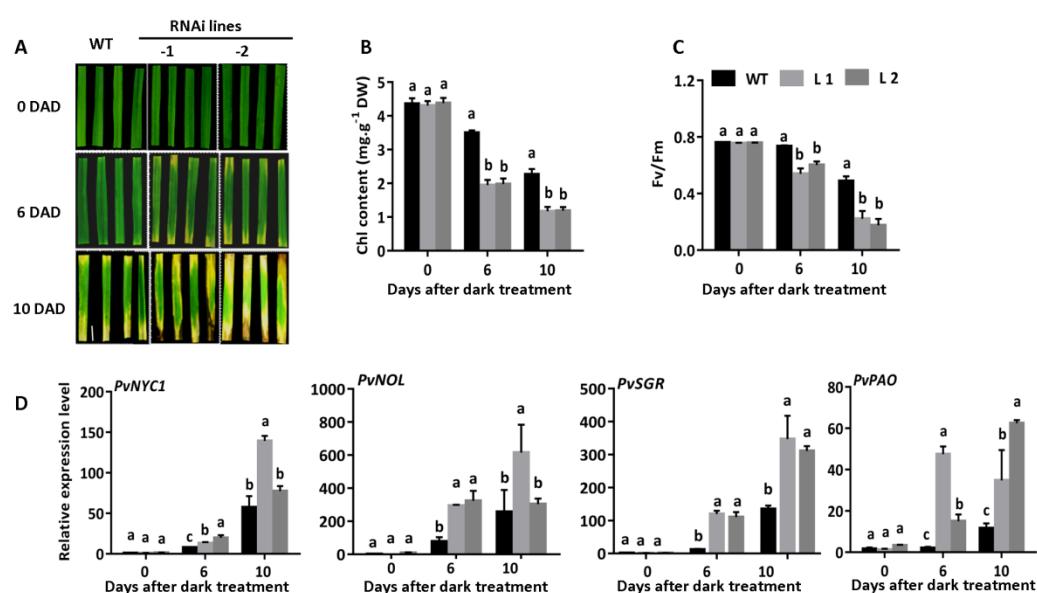

120 **Results**

121 **PvC3H29 is a negative regulator in leaf senescence**

122 To investigate the function of PvC3H29, we generated both over-expression and
123 RNA-interference switchgrass transgenic lines (abbreviated as OE29 and RNAi lines,
124 respectively) using the *Agrobacterium*-mediated transformation. The OE29 and RNAi
125 lines had 6-9 times higher or 50-60% lower expression levels of *PvC3H29* than the
126 wild type (WT) plants, respectively (Supplementary Fig. S1).

127 Phenotypically, the OE29 lines displayed a greener appearance than the WT (Fig
128 1a; Supplementary Fig. S2). At the ‘R3’ flowering stage of switchgrass (Hardin *et al.*,
129 2013), leaves of OE29 lines showed greener appearance, higher Chl contents, and
130 higher photochemical efficiencies (Fv/Fm) than those of WT (Supplementary Fig.
131 S2). Taking detached leaves for dark-induced leaf senescence, it showed that Chl
132 contents and Fv/Fm of WT leaves declined to less than 10%, while those of OE29
133 lines still retained over 70% after 15 days of dark treatment (DAD) (Fig.1A-C).

134 Consistently, relative expression levels of CCGs (e.g., *PvNYC1*, *PvNOL*,
135 *PvSGR*, and *PvPAO*) in OE29 lines were significantly lower than those in WT
136 (Fig.1D).

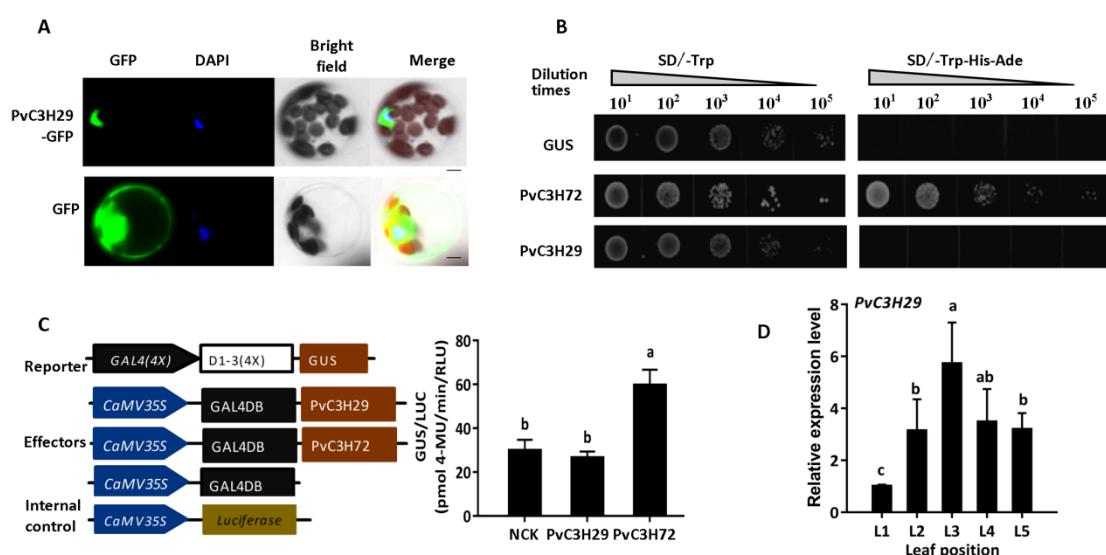

Fig. 1 Over-expressing *PvC3H29* delayed leaf senescence in switchgrass. A, Phenotype of WT and OE29 transgenic lines. Detached green leaves at the same developmental stage were placed in dark for 15 DAD (days after dark treatment). B-D, Chl contents, Fv/Fm values, and relative expression of four Chl catabolic genes (*PvNYC1*, *PvNOL*, *PvSGR*, and *PvPAO*) after 10 and 15 DAD in WT and OE29 lines. Letters above bars indicate significant difference at $P < 0.05$.

137 In contrast to OE29, the RNAi lines manifested precocious leaf senescence.
138 Compared with WT, RNAi lines showed earlier and severer leaf chlorosis with
139 significantly lower Chl contents, lower Fv/Fm values, but higher expression levels
140 of *PvNYC1*, *PvNOL*, *PvSGR*, and *PvPAO* at 6 and 10 DAD (Fig. 2). Together, these
141 results showed that *PvC3H29* was a negative regulator in leaf senescence.

142 Transcriptomic comparisons among WT, OE29, and RNAi transgenic lines

143 Transcriptomic comparisons among WT, OE29, and RNAi transgenic lines were
144 carried out using detached leaves at 7 DAD. As shown in supplementary figure S3,
145 there were a total of 14,027 and 15,285 differentially expressed genes (DEGs) in
146 ‘WT-7-vs-OE29-7’ and ‘WT-7-vs-RNAi-7’. For both ‘WT-7-vs-OE29-7’ and
147 ‘WT-7-vs-RNAi-7’, Gene Ontology (GO) analysis of the DEGs showed highly
148 similar results that the top two enriched ones were ‘catalytic activity’ and ‘binding’ in

149 the ‘molecular function’ category, ‘metabolic process’ and ‘cellular process’ in the
150 ‘biological process’ category, and ‘cell’, ‘cell part’ and ‘organelle’ in the ‘cellular
151 component’ category (Supplementary Fig. S4). Kyoto Encyclopedia of Genes and
152 Genomes (KEGG) pathway analysis showed that the top two enriched pathways were
153 ‘metabolic pathway’ and ‘biosynthesis of secondary metabolites’ for both
154 ‘WT-7-vs-OE29-7’ and ‘WT-7-vs-RNAi-7’ (Supplementary Fig. S5). Furthermore,
155 we found that in the comparison of ‘WT-7-vs-OE29-7’, five out of seven key *CCGs*
156 showed lower expression levels in OE29-7; while in ‘WT-7-vs-RNAi-7’; six out of
157 seven *CCGs* (except *NYC1*) showed higher expression levels in ‘RNAi-7’
158 (Supplementary Fig. S6).


Fig. 2 Suppressing *PvC3H29* accelerated leaf senescence in switchgrass. A, Phenotype of WT and *PvC3H29*-RNAi lines. Detached green leaves at the same developmental stage were placed in dark for 10 DAD (days after dark treatment). B-D, Chl contents, Fv/Fm values, and relative expression of four Chl catabolic genes (*PvNYC1*, *PvNOL*, *PvSGR*, and *PvPAO*) after 6 and 10 DAD in WT and RNAi lines. Letters above bars indicate significant difference at $P < 0.05$.

159

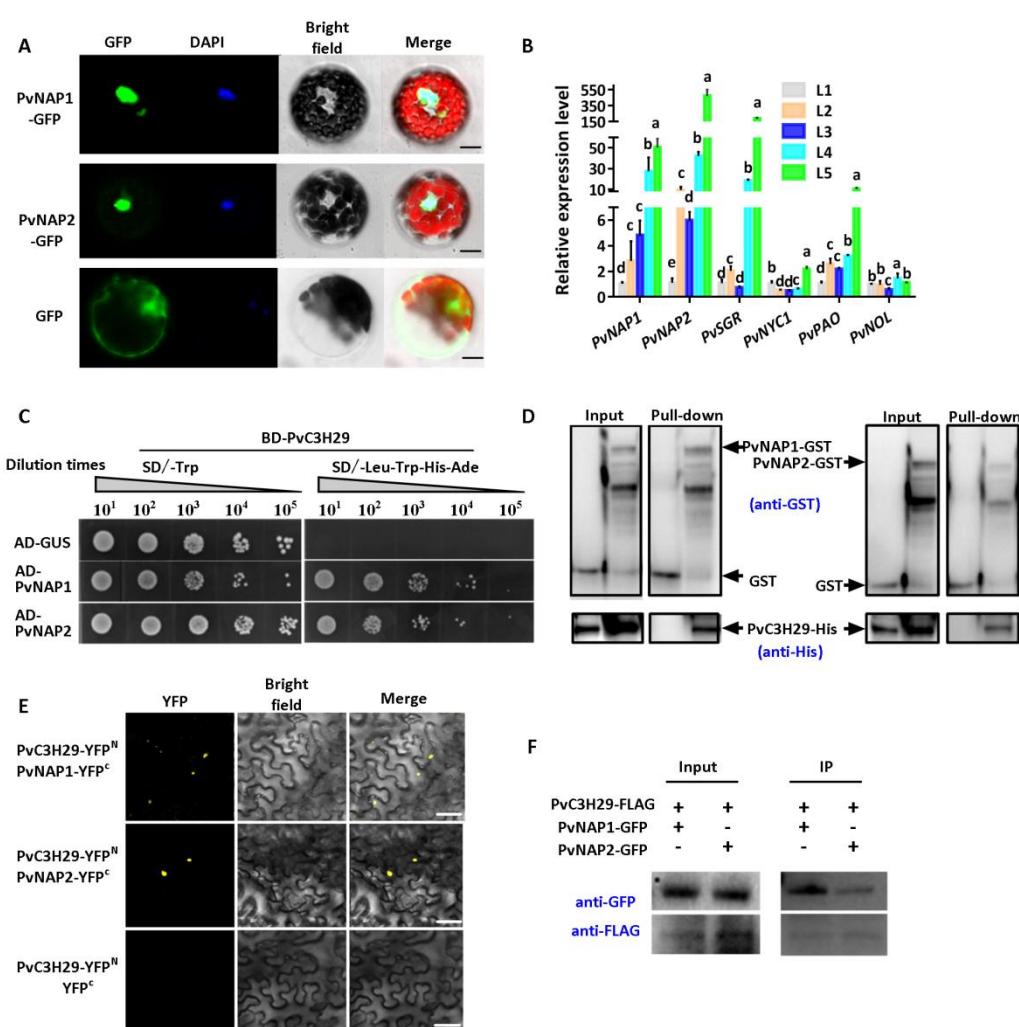
160 **PvC3H29 is a nuclear-localized protein with no transcriptional activity**

161 Subcellularly, PvC3H29 was a nuclear-localized protein that the fluorescent
162 signal of PvC3H29-GFP was merged with the DAPI-stained nuclear signal in ryegrass
163 protoplasts (Fig. 3A). Using the yeast auto-transactivation assay, we found that

164 neither *PvC3H29* nor the negative control (GUS) infusion with the GAL4
165 DNA-binding domain (GAL4-DB) activated the reporter gene, while the positive
166 control *PvC3H72* did (Xie *et al.*, 2019) (Fig. 3B). Furthermore, we used the
167 GAL4-DB and its binding sites (GAL4[4×]-D1-3[4×]-GUS)-based *in planta* transient
168 expression system to detect whether *PvC3H29* was a transcriptional repressor. As
169 shown in figure 3C, the *PvC3H29* had no transcriptional effect on the reporter gene
170 (Fig. 3C). Furthermore, the expression of *PvC3H29* was 3-5 times higher in the 2nd-5th
171 leaves from the top than in the 1st leaf (the flag leaf) at the R3 stage of switchgrass
172 (Hardin *et al.*, 2013). Together, these results showed the expression of *PvC3H29* was
173 related to leaf ages, and *PvC3H29* was a nucleus localized protein with no
174 transcriptional activity.

Fig. 3 *PvC3H29* is a nuclear-localized protein with no transcriptional activity. **A**, Subcellular location of *PvC3H29*-GFP and GFP (control) observed under GFP-fluorescence, DAPI, and bright field (BF). **B**, Transcriptional activity assay of *PvC3H29* in yeast. *PvC3H72*, the positive control, was a known transcriptional activator, while the *GUS* gene (*Uid4*) as the negative control. **C**, *In planta* transcriptional activity assay. *PvC3H72* was used as the positive control, and the empty vector as the negative control. Letters above bars indicate significant difference at $P < 0.05$. **D**, Relative expression of *PvC3H29* in leaves from the top at the R3 stage of switchgrass. L1 to L5 were leaves numbered from the top. Bar in (A) represent 5 μ m.

175 **PvC3H29 interacted with PvNAPs in switchgrass**


176 Given that *PvC3H29* *per se* had no transcriptional activity but suppressed leaf
177 senescence, there was a possibility that *PvC3H29* functioned through protein
178 interaction with senescence-associated transcription factors. To test this hypothesis,

179 we screened its potential interacting proteins with an emphasis on TFs using the Yeast
180 two-hybrid (Y2H) system. After three rounds of library screens, we identified a total
181 of 20 potential interacting proteins (Supplementary Table S1). Among these potential
182 interactors, one pair of paralogous transcription factors were orthologous to the
183 *OsNAP* in rice and were named as *PvNAP1* (Pavir.9KG092600 in ‘P. virgatum v5.1’)
184 and *PvNAP2* (Pavir.9NG600600), respectively. *PvNAP1* and *PvNAP2* are on two
185 homeologous chromosomes (Chr 9a and 9b) of the allotetraploid switchgrass, and
186 their encoded transcriptional factors shared an identical DNA-binding domain (DBD)
187 (Ooka *et al.*, 2003) (supplementary Fig. S7), suggesting that they likely targeted on
188 similar set of downstream genes.

189 Same to that of PvC3H29, subcellular localizations of PvNAP1 and PvNAP2
190 were in the nucleus (Fig. 4A). The expression of both *PvNAP1* and *PvNAP2* increased
191 along with leaf aging with a similar trend to those of two *CCGs* (*PvSGR* and *PvPAO*)
192 (Fig. 4B). The subcellular localization and expression results met the prerequisite for
193 the physical interaction between PvC3H29 and PvNAP1&2 in switchgrass leaves.

194 To further confirm the physical interaction between PvC3H29 and PvNAPs, we
195 cloned their full CDS and re-tested their interactions by Y2H (Fig. 4C). Secondly, we
196 carried out the pull-down assay and found that the His-tagged PvC3H29 protein could
197 be specifically pulled-down together with the GST-tagged PvNAP1 or PvNAP2 but
198 not with the GST alone (the negative control), confirming their direct interactions *in*
199 *vitro* (Fig. 4D). Thirdly, we applied the Bimolecular Fluorescence Complementation
200 (BiFC) assay with PvC3H29 infusion with the N-terminal YFP (nYFP) while
201 PvNAPs fused with the C-terminal YFP (cYFP). As shown in figure 4E, when
202 PvC3H29-nYFP was co-expressed with PvNAPs-cYFP in leaves of *Nicotiana*
203 *benthamiana*, the YFP signal was detected in nuclei, whereas no signal was detected
204 in negative controls. Fourthly, transiently co-expressed PvC3H29-FLAG and
205 GFP-PvNAPs were immunoprecipitated with anti-GFP and A/G magnetic beads and
206 then immunoblotted with anti-FLAG antibody. As shown in figure 4F,
207 PvC3H29-FLAG was co-precipitated together with PvNAPs. Taken together, the

208 Y2H, pull-down, BiFC, and co-Immunoprecipitation (co-IP) analyses proved that
209 PvC3H29 and PvNAPs directly interacted in the nucleus.

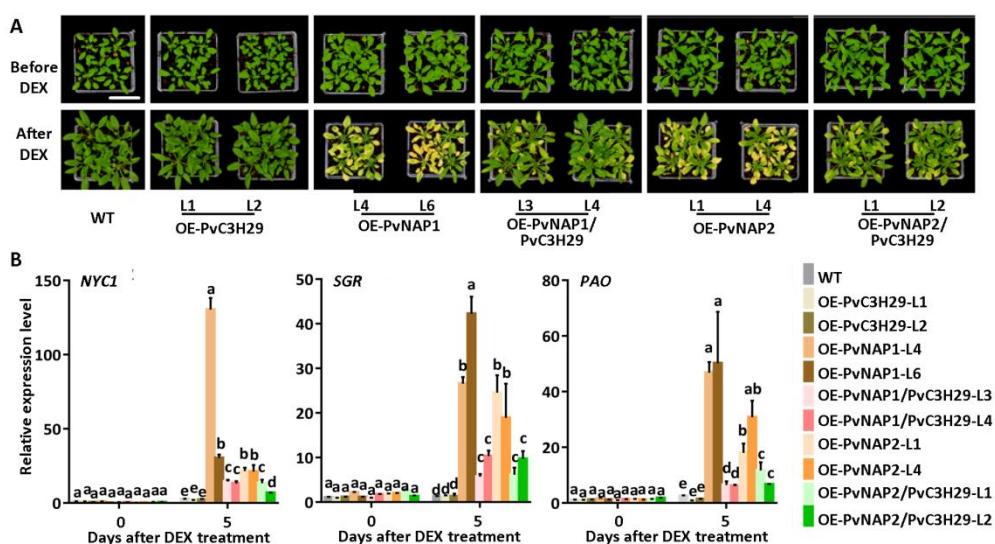


Fig. 4 PvC3H29 physically interacts with PvNAP1/2. A, Subcellular location of PvNAP1, PvNAP2, and GFP (control) observed under GFP-fluorescence, DAPI, and bright field (BF). B, Relative expression of *PvNAP1*, *PvNAP2*, *PvNYC1*, *PvNOL*, *PvSGR*, and *PvPAO* in leaves from the top at the R3 stage of switchgrass. L1 to L5 were leaves numbered from the top. C, Yeast two-hybrid assay of PvC3H29 and PvNAP1/2. D, Pull-down assay between PvC3H29-His and PvNAP1/2-GST. E, BiFC analysis using split YFP with PvC3H29-nYFP and PvNAP1/2-cYFP, and the YFP signal was observed in nucleus. BF stands for bright field. F, Co-IP assay. The protein extract was immunoprecipitated using anti-FLAG. Letters above bars in (B) indicate significant difference at $P < 0.05$. Bars in (A) and (E) represent 5 μ m.

210 **PvC3H29 suppressed PvNAPs-induced precocious leaf senescence**

211 To understand the biological implication of the interaction between PvC3H29
212 and PvNAPs, we ectopically over-expressed these genes in Arabidopsis. Firstly,
213 consistent with the switchgrass OE29 lines, ectopic over-expressing *PvC3H29* in
214 Arabidopsis also resulted in the ‘staygreen’ trait with significantly delayed leaf

215 senescence and Chl degradation (Supplementary Fig. S8). Using the Y2H system, we
216 found that PvC3H29 also interacted with the Arabidopsis NAP (Supplementary Fig.
217 S8), suggesting that PvC3H29 functioned in a conserved way in switchgrass
218 and Arabidopsis, likely through physical interaction with NAPs. Secondly, we
219 generated dexamethasone- (DEX) inducible *PvNAPs* (OE-*PvNAP1/2*) in Arabidopsis.
220 As shown in figure 5, after DEX induction, the OE-*PvNAP1/2* plants turned
221 precocious leaf senescence with activated expression of CCGs (i.e., *NYC1*, *SGR*, and
222 *PPH*). Thirdly, we co-expressed *PvC3H29* (35S::*PvC3H29*) and *PvNAP1/2*
223 (DEX-inducible) in Arabidopsis and found that *PvC3H29* effectively alleviated the
224 precocious leaf senescence caused by *PvNAP1/2* with suppressed expression levels of
225 CCGs (i.e., *NYC1*, *SGR*, and *PPH*) (Fig. 5). Together, these results suggested that
226 *PvC3H29* could alleviate *PvNAP1/2* effects on precocious leaf senescence.

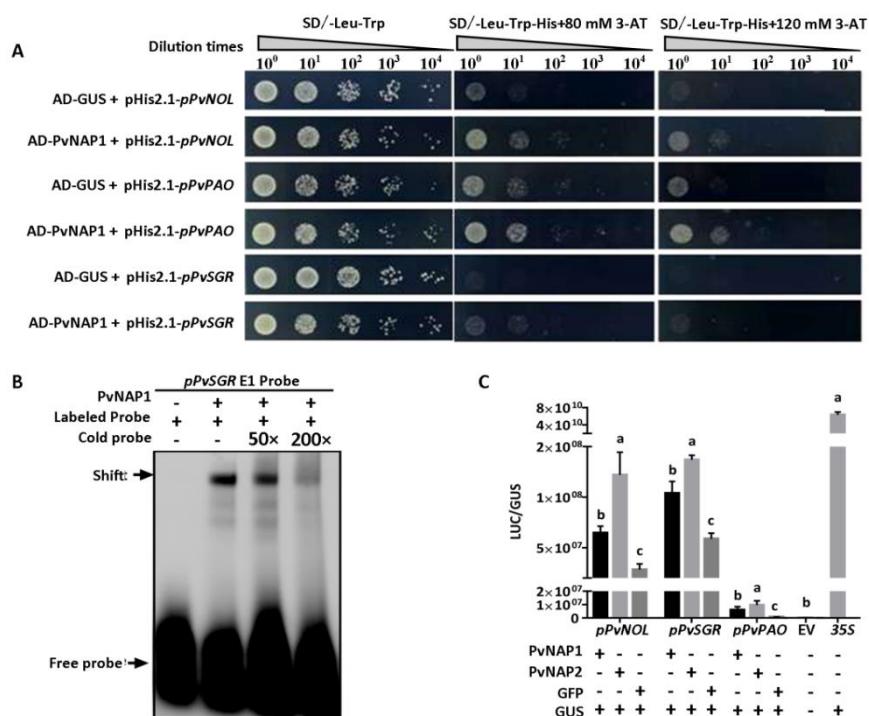


Fig. 5 Co-expression of *PvC3H29* suppressed *PvNAPs*-induced leaf senescence. A, Phenotype of WT and transgenic lines before and after DEX-induced expression of *PvNAP1/2*. B, Relative expression of *NYC1*, *SGR*, and *PAO* before and after DEX treatment. Letters above bars in (B) indicate significant difference at $P < 0.05$.

227 **PvNAPs directly targeted on Chl catabolic genes and transactivated gene
228 expression**

229 As stated above, over-expressing *PvC3H29* caused the typical ‘staygreen’
230 phenotype with repressed CCGs, while the contrary was true for *PvNAP1/2*. Since
231 OsNAP, the rice ortholog to *PvNAP1&2*, directly targeted on CCGs (Liang *et al.*,

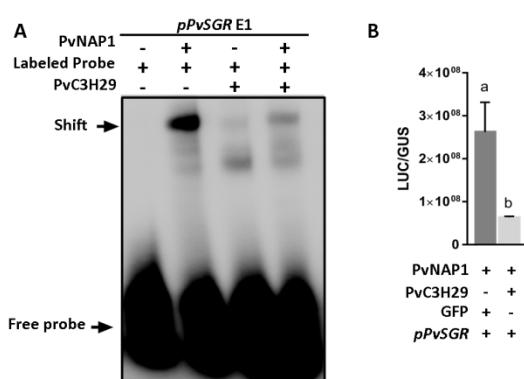
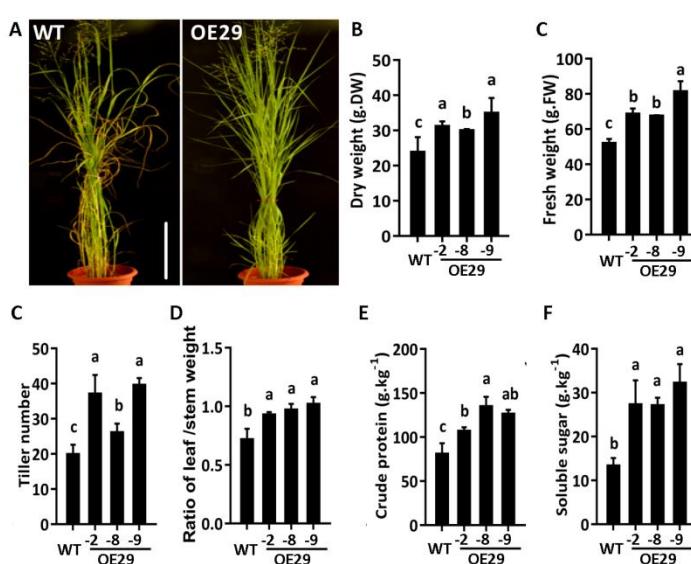

232 2014), we further verified whether PvNAPs could directly trans-activate *CCGs*. Since
 233 the DNA-binding domains (DBD) of PvNAP1 and PvNAP2 were of identical
 234 sequence (supplementary Fig. S7), we used PvNAP1 in the following Yeast
 235 one-hybrid (Y1H) and electrophoretic mobility shift assay (EMSA). Firstly, in the
 236 Y1H assay, PvNAP1 directly bound promoters of *PvSGR*, *PvPAO*, and *PvNOL*
 237 (abbreviated as *pPvSGR*, *pPvPAO*, and *pPvNOL*) (Fig. 6A). Secondly, the EMSA
 238 result showed that PvNAP1 caused gel-shift of four probes (E1-E4) of *pPvSGR*
 239 (supplementary Fig. S9), and the signal of shifted band decreased with increased
 240 concentrations (50 \times and 200 \times) of the unlabeled E1 probe (Fig. 6B). Thirdly, *in planta*
 241 transactivation analysis by co-expressing the effector (35S::PvNAP1/2,
 242 or 35S::GFP for control) and the reporter gene (*LUC*) driven under *pPvSGR*, *pPvPAO*,
 243 or *pPvNOL* showed that both PvNAP1 and PvNAP2 trans-activated these *CCGs* (Fig.
 244 6C). Together, these results showed that PvNAPs directly targeted and transactivated
 245 the expression of *PvNOL*, *PvSGR*, and *PvPAO*.

Fig. 6 PvNAPs directly targeted and transactivated the expression of *PvNOL*, *PvSGR*, and *PvPAO*. A, Yeast one-hybrid assay showing that PvNAP1 binds to promoters of *PvNOL*, *PvSGR*, and *PvPAO*. GUS was used as the negative control. B, EMSA showing that PvNAP1 directly bound to the promoter of *PvSGR*. C, *In planta* transcriptional activation assay by co-expression of *PvNAP1/2* and *LUC* driven under promoters of *PvNOL*, *PvSGR*, and *PvPAO*. GFP and empty vector (EV) were used as the negative effector control and the negative *LUC* control, 35S::*LUC* as the positive control, and 35S::*GUS* as the internal reference. Letters above bars indicate significant difference at $P < 0.05$.

246 **PvC3H29 inhibits the DNA binding efficiency of PvNAP1**

247 To further understand how PvC3H29 alleviated PvNAPs' effects on precocious
248 leaf senescence, we checked whether the interaction with PvC3H29 affected PvNAPs'
249 DNA binding efficiency using PvNAP1 and *pPvSGR* as the exemplar pair. Using
250 EMSA, we found that PvC3H29 *per se* did not bind the E1 probe, whereas incubation
251 PvNAP1 together with PvC3H29 weakened the signal of shifted E1 probe (Fig. 7A),
252 confirming that PvC3H29 inhibited the DNA binding efficiency of PvNAP1.
253 Furthermore, using the *in planta* transactivation assay, we showed that PvC3H29
254 significantly suppressed the transactivation of *pPvSGR* by PvNAP1 (Fig. 7B). Taken
255 together, these results proved that PvC3H29 inhibited the DNA-binding of PvNAP1
256 onto its target genes' promoters, thereby repressing leaf senescence.


Fig. 7 PvC3H29 blocked PvNAP1's DNA binding efficiency on its target promoter. A, EMSA showing that the addition of PvC3H29 reduced DNA-binding efficiency of PvNAP1 to the *pPvSGR-E1* probe. B, *In planta* transcriptional activation assay showing that co-expression of *PvC3H29* together with *PvNAP1* reduced the expression level of *LUC* driven under *pPvSGR*. GFP was used as the negative effector control, and 35S::GUS was used as the internal reference. Letters above bars indicate significant difference at $P<0.05$.

257

258 **Improved biomass yield and feedstock quality by over-expressing *PvC3H29* in**
259 **switchgrass**

260 Over-expressing *PvC3H29* resulted in functional staygreen phenotype with no
261 apparent growth penalty in the perennial tall grass. When harvested at the R3 stage
262 (Hardin *et al.*, 2013), the three switchgrass OE29 lines gained 30%~47% higher
263 biomass yields, 28%~40% higher leaf: stem ratios, 36%~98% more tiller numbers,
264 31%~66% higher crude protein contents, and 100%~140% higher soluble sugar
265 contents than those of WT (Fig. 8), and their cell wall compositions were similar to

266 that of WT (e.g., NDF, ADF, cellulose, and hemicellulose contents) (Supplementary
267 Fig. S10).

Fig. 8 Over-expressing *PvC3H29* improved biomass yield and feedstock quality in switchgrass. A, Phenotype of WT and OE29 at R3 stage. B-F, Dry weight (A), fresh weight (B), tiller number (C), leaf : stem weight ratio (D), crude protein content (E), and soluble sugar content (F) of the above-ground biomass of WT and OE29 lines harvested at R3 stage. Letters above bars indicate significant difference at $P < 0.05$.

268 **Discussion**

269 Leaf senescence is a complicated process involving extensive reprogramming
270 and gene regulatory network (Quirino *et al.*, 2000; Woo *et al.*, 2019). If we imagine
271 the progression of leaf senescence as an ‘one way train’, the operator needs both
272 ‘accelerators’ and ‘brakes’ to drive it to the final destination. Previous studies on the
273 transactivation of *CCGs* mainly focused on how senescence-related signals activated
274 *CCGs* through various TFs (Kuai *et al.*, 2018). Yet, the inhibitory mechanism to
275 repress *CCGs*’ expression in mature pre-senescing green leaves are not well studied.
276 In this study, we reported a new regulatory module in leaf senescence consisting of a
277 novel CCCH-type zinc finger protein, PvC3H29, and a pair of senescence-promoting
278 transcription factors, PvNAPs. Since either knocking-down *PvC3H29* or ectopic
279 over-expressing *PvNAPs* led to precocious leaf senescence, we proposed that the
280 regulatory module of PvC3H29-PvNAPs were indispensable for the proper rate of

281 leaf aging.

282 Up to date, there was little report on the interaction between CCCH Znf and
283 NAC TFs and their regulatory link in leaf senescence regulation was missing,
284 although a number of CCCH Znf proteins and NAC TFs are involved in leaf
285 senescence. In this study, we found PvC3H29 had a strong effect on leaf senescence
286 and Chl catabolism. Since PvC3H29 has no transactivation activity *per se*, we then
287 focused on its interacting proteins. The physical interaction between PvC3H29 and
288 the pair of leaf senescence positive TFs (PvNAP1&2) effectively suppressed the TF's
289 binding efficiency to CCGs' promoters and thereby repressed Chl degradation and
290 leaf senescence. TZF1, OsDOS, OsTZF1, and PvC3H69 also acted as negative
291 regulators in leaf senescence in Arabidopsis, rice, and switchgrass (Kong *et al.*, 2006;
292 Jan *et al.*, 2013; Pomeranz *et al.*, 2010; Qu *et al.*, 2014; Xie *et al.*, 2021). The direct
293 interaction between PvC3H29 and PvNAPs might be an exemplar link between the
294 CCCH-type Znfs and NACs to co-regulate Chl degradation and leaf senescence. In
295 the future, it would be interesting to test whether there is a similar regulatory module
296 between senescence-promoting transcription factors and the other CCCH-Znfs.

297 The paralogous pair of PvNAP1&2 shared the same DNA-binding domain and
298 presumably highly similar promoter-binding preferences, similar expression patterns,
299 and functions in leaf senescence. As stated before, these two paralogs are on
300 homeologous chromosomes (Chr 9a and 9b) of the allotetraploid switchgrass and
301 have exactly the same sequences in the putative DNA-binding domains to keep their
302 conserved functions. The orthologous NAPs seem to have very conserved functions in
303 accelerating leaf senescence not only within the grass family species but across dicot
304 and monocot species. For examples, the rice OsNAP and Arabidopsis NAP both
305 function as positive regulators of leaf senescence but targeting on different set of
306 senescence-related genes that the OsNAP targets on *CCGs* while the Arabidopsis NAP
307 targets on ABA-biosynthesis genes (Yang *et al.*, 2014; Liang *et al.*, 2014). It is
308 interesting to note that PvC3H29 also interacted with the Arabidopsis NAP that could
309 also explain the 'staygreen' phenotype of Arabidopsis OE29 lines. We argue that such

310 a conserved function among orthologous NAPs should reflect their essential roles in
311 the regulation of leaf senescence and the long-term survival of different plant species,
312 considering that the leaf senescence-associated nutrient remobilization to reproduction,
313 rhizome, and other sink organs was one crucial aspect for the success of both annual
314 and perennial plant species. On the other hand, precocious leaf senescence in an
315 ‘uncontrollable manner’ will be detrimental to plants’ fitness as well. Therefore, we
316 propose that there the sophisticated interacting network between the
317 senescence-promoting factors (‘accelerator’, PvNAPs in this case) and
318 senescence-delaying factors (‘brakes’, e.g., PvC3H29).

319 Over-expressing *PvC3H29* did not result in any obvious drawback in terms of
320 growth penalty or tillering re-growth after cut back for years in our controlled
321 environment. This observation suggested the plasticity of switchgrass genetic
322 manipulation with a promise for the use of the ‘staygreen’ trait. As a bioenergy and
323 animal feedstock crop, biomass yield and feedstock quality of switchgrass are the
324 primary traits for genetic improvement (Anderson *et al.*, 1988; McLaughlin and
325 Kszos, 2005). Switchgrass OE29 lines had up to 47% higher biomass yields, 66%
326 higher crude protein contents, and 140% higher soluble sugar contents than those of
327 WT, supporting that delayed leaf senescence is an important aspect to consider for
328 molecular breeding of bioenergy and forage grass. The longer leaf lifespan should
329 have contributed to the longer photosynthetic period and thus accumulation of more
330 biomass, while leaves of longer juvenile stage contributed to the higher soluble sugar
331 and protein contents (Yang *et al.*, 2018). Similar findings were also reported in the
332 major grain crop, rice, that natural variation in *SGR* promoters causes rapid Chl
333 degradation and is responsible for the early leaf senescence in indica-type rice (*O.*
334 *sativa* ssp. *indica*) (Shinet *et al.*, 2020). Introgression of the *SGR* promoter from the
335 *japonica*-type rice (*O. sativa* ssp. *japonica*) into the *indica*-type rice varieties delayed
336 Chl degradation and leaf senescence and led to 10.6-12.7% increase of grain yield in
337 the near isogenic lines of *indica* rice (Shin *et al.*, 2020). Previous studies on *SGR* in
338 alfalfa (Zhou *et al.*, 2011) and perennial ryegrass (Xu *et al.*, 2019) also showed that

339 the *sgr* mutant or RNAi lines had greener feedstock appearance as well as higher
340 protein contents. OE29 lines showed not only delayed leaf senescence but also
341 improvements in biomass yield and feedstock quality, thus further reiterated the
342 ‘staygreen’ trait in crop improvements.

343 In sum, PvC3H29 functioned as a repressor in Chl degradation and leaf
344 senescence at least partially through its interaction with PvNAPs to repress their DNA
345 binding efficiency on their downstream genes, such as *CCGs*.

346 Materials and Methods

347 Gene cloning and vector construction

348 The CDS of *PvC3H29*, *PvNAP1* and *PvNAP2* was amplified from cDNA of a
349 selected line ‘HR8’ of the tetraploid switchgrass ecotype ‘Alamo’ (Xu *et al.*, 2011a),
350 cloned into the Gateway entry vector pENTR/D (Invitrogen Life Technologies,
351 Carlsbad, CA, USA), and then subcloned into destination vectors, such as p2GWF7.0
352 for subcellular localization assay (Karimi *et al.*, 2002), pGBK7 and pGADT7
353 (Invitrogen) for yeast two hybrid and transactivity assays, pVT1629 (Xu *et al.*, 2011a),
354 pEarlygate103, and pTA7001 for genetic transformation of switchgrass or
355 *Arabidopsis*. A unique fragment of PvC3H29 were selected for RNAi (supplementary
356 Table S2), and subcloned into the RNAi vector, pGM-kannibal, to form the hairpin
357 structure, and then the hairpin structure was subcloned to the destination vector,
358 pVT1629. The primers used for cloning and vector construction are shown in
359 supplementary Table S3.

360 Switchgrass and *Arabidopsis* genetic transformation

361 Switchgrass genetic transformation was carried out following the protocol
362 described in Xu *et al.* (2011b). In brief, embryogenic calluses of the switchgrass line
363 ‘HR8’ was used for transformation, selected on 50 mg L⁻¹ hygromycin (Sigma). Plants
364 generated from different calluses were considered as independent transgenic events.

365 GUS staining and PCR for the presence of the T-DNA fragment of transgenic lines
366 were the same as described in Xu *et al.* (2011a).

367 *Arabidopsis* transformations were performed using the floral dip method (Zhang
368 *et al.*, 2006). *PvNAP1/2* were subcloned into the dexamethasone (DEX)-inducible
369 vector pTA7001 (Aoyama and Chua, 1997). *PvC3H29* were subcloned into
370 pEarlygate101 (Earley *et al.*, 2006). Then, the resultant vectors in *A. tumefaciens*
371 strain 'AGL1' were individually or co-transformed to *Arabidopsis*.

372 **Plant growth conditions and dark treatment**

373 Switchgrass plants were grown in a greenhouse with temperatures set at 28/22°C
374 (day /night) and a 14-h light/10-h darkness. The plants were watered twice a week. In
375 order to induce leaf senescence, the middle section of fully-expand leaves from
376 three-month-old plants were cut into 3 cm segments and placed in dampened paper
377 towels in a dark room with air temperature controlled at 28°C.

378 *Arabidopsis* ecotype 'Columbia-0' was used in this study. Seeds were surface
379 sterilized and grown on ½ Murashige and Skoog (MS) medium with 3% phyto-gel,
380 then stratified for 3 days at 4°C to synchronize germination. Seedlings were
381 transplanted to soil and grown in a growth chamber at 25/20°C (day /night), light
382 intensity of 120 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ under a 16-h light/8-h dark photoperiod.

383 **Feedstock quality analysis**

384 Four-month-old plants were used for phenotypic and physiological analysis of
385 natural senescence. The whole aboveground WT and over-expression plants were
386 collected for Fresh weight and then dried in a 70°C oven for two weeks for Dry
387 weight and feedstock Quality analysis. Total soluble sugar was determined by the
388 phenol sulfuric acid reagent method according to Dubois *et al.* (1956). Cellulose,
389 hemicellulose, ADF and NDF were determined in reference to Goering and Van Soest
390 (1970). The analysis of crude protein content was according to a protocol described
391 by Janicki and Stallings (1987). Leaf /steam was calculated by the ratio of leaf dry
392 weight and steam dry weight.

393 **Chl content and Fv/Fm measurements**

394 For Chl content measurement, leaves were soaked in dimethylsulfoxide (DMSO)
395 for 48h in dark, and the extract was measured at 663nm and 645nm (Barnes *et al.*,
396 1992) using a spectrophotometer (Spectronic Instruments, Rochester, NY, USA).

397 For Fv/Fm measurement, leaves were adapted to dark condition for 30 min prior
398 to the measurement, then the Fv/Fm values were measured using a fluorescence meter
399 (Dynamax, Houston, TX, USA).

400 **Subcellular localization**

401 *PvC3H29*, *PvNAP1* and *PvNAP2* were subcloned into a modified gateway
402 compatible P2GWF7.0 vector (Karimi *et al.*, 2002) to generate GFP fusion genes
403 driven under *CaMV* 35S promoter. The *PvC3H29*-GFP, *PvNAP1*-GFP and
404 *PvNAP2*-GFP fusion genes were transiently expressed in *Arabidopsis* protoplasts
405 through polyethylene glycol (PEG)-mediated protoplast transformation (Yoo *et al.*,
406 2007). DAPI was used to stain the nucleus, and the GFP signal was detected under a
407 Zeiss LSM 780 laser scanning confocal microscope (Carl Zeiss SAS, Jena, Germany).

408 **Transcriptional activity assay**

409 For the yeast-based auto-transactivation assay, the CDS of *PvC3H29*,
410 *UidA*(GUS-encoding gene, negative control), *PvC3H72* (positive control) was
411 subcloned into pGBK7 to fuse the gene with the DNA binding domain of *GAL4*. The
412 generated vectors were transformed into the yeast strain Y2HGold (Clonetech
413 Laboratories, Palo Alto, CA, USA), separately. The *PvC3H72* was a known
414 transcription activator(Xie *et al.*, 2019). The transformed positive clones were
415 selected on SD/-Trp, which were then grown on plates containing SD/-Trp-Ade-His
416 and SD/-Trp-Ade-His + 25 mM 3-AT for auto-transactivation assay.

417 *In planta* transcriptional activity assay was the same as described previously (Xie
418 *et al.*, 2019). *PvC3H29* were subcloned into the effector vector infusion with
419 *GAL4DB*, while *PvC3H72* and *UidA* genes were used as positive and negative

420 controls, respectively.

421 **Real time quantitative reverse transcription PCR (RT-qPCR)**

422 To analyze the relative expression levels of *PvC3H29*, *PvNAP1&2*, *PvNYCI*,
423 *PvNOL*, and *PvPAO* in leaves at different developmental stages, we collected the
424 leaves of different orders (i.e., the flag leaf as the 1st and followed by the 2nd to the 5th
425 leaves from the top) in switchgrass at the “R3” stage featured with fully emerged
426 spikelets and an emerged peduncle (Hardin *et al.*, 2013). For the analysis of the
427 staygreen trait among WT, OE29, and RNAi lines, we sampled detached leaves after
428 different days of dark treatment for the RT-qPCR analysis. Total RNA extraction, PCR
429 reaction and data analysis were the same as described before (Xie *et al.*, 2019).
430 Primers used in this study were listed in supplementary table S3.

431 **Transcriptome comparison among WT, OE29, and RNAi plants**

432 RNA-Seq was carried out using the paired-end technology of the Illumina
433 HiSeqTM 2000 platform, and the data can be achieved at NCBI
434 (SRA accession: PRJNA780344). Transcriptomic data analysis were performed by
435 Gene Denovo Co. (Guangzhou, China) following the same procedures as reported
436 before (Xu *et al.*, 2019). Detached leaves at the same developmental stage were
437 placed in dampened paper towels in a dark room with air temperature controlled at
438 28°C for seven days. Leaves from one plant were regarded as one biological sample,
439 and three independent WT, OE29, and RNAi lines were used. The RPKM values
440 (Number of uniquely mapped reads per kilobase of exon region per million mappable
441 reads) were used for identifying differentially expressed genes (DEGs) based on the
442 threshold of FDR=0.001 and an absolute value of \log_2 (RPKM of WT / RPKM of
443 OE29 or RNAi) ≥ 1 .

444 **Yeast two-hybrid**

445 The CDS of *PvC3H29* was subcloned into the vector PGBKT7, and the resultant
446 vector was transformed into the yeast strain ‘Y2H gold’. A cDNA library constructed
447 using switchgrass leaves’ cDNA were screened following the Matchmaker[®] Gold

448 Y2H system user manual (Clontech). The library screening was performed on
449 SD/-Trp-Leu-Ade-His medium. To verify the putative positive clones (preys) from the
450 library screening, we cloned the full length CDS of the preys first, subcloned them
451 into pGADT7, and then tested their interactions with PvC3H29 one by one in the Y2H
452 system again.

453 **Bimolecular fluorescence complementation assay (BiFC)**

454 The BiFC analysis, PvNAP1/2 and PvC3H29 were subcloned into pFGC-YC155
455 and pFGC-Y173 vectors (Lai *et al.*, 2011). The resultant vectors, harboring the target
456 genes in fusion with C-terminal or N-terminal of YFP, respectively, were transformed
457 into *A. tumefaciens* strain ‘EHA105’, and then transiently co-infiltrated into the leaves
458 of *N. benthamiana*. The images were captured using a confocal laser-scanning
459 microscope (Carl Zeiss SAS, Jena, Germany).

460 **Yeast one-hybrid**

461 The recombined pGADT7 vectors (pGADT7-PvNAP1, pGADT7-PvNAP2 and
462 pGADT7) and pHIS2.1 vectors (pHIS2.1-*pPvNOL*, -*pPvPAO*, and -*pPvSGR*) were
463 co-transformed into the yeast strain *Y187*. After three days growth, five clones for
464 each plate were picked, grown in liquid medium for three days at 30°C and then
465 dotted on solid media of SD/-Trp-Leu and SD/-Trp-Leu-His with 50, 80 and 120 mM
466 3-AT, respectively.

467 **Transient transactivation assay in *N. benthamiana***

468 Promoters of four *CCGs* (*pPvNOL*, *pPvPAO*, and *pPvSGR*), were subcloned into
469 the pCambia1381Z reporter vector. PvNAP1/2 and PvC3H29 were cloned
470 into pEarleyGate103 as the effector vector with pEarleyGate103-eGFP as the negative
471 control. pCambia1302-GUS-polyA was used as the internal control with *GUS* driven
472 by *CaMV 35S* promoter. For the activating effect of PvNAP1/2 on *CCGs*, the reporter,
473 effector, and internal control were mixed at the ratio of 1:1:1. While for the test on
474 repressing effect of PvC3H29 on PvNAP1/2, we used the ratio of 3:3:2:1 for each
475 effector, reporter and internal control, respectively. Injected leaves were sampled after

476 two days and ground with liquid nitrogen. The soluble proteins were extracted with a
477 extraction buffer (Yeasen Biotech, Shanghai, China) for LUC and GUS activity assays
478 using kits according to the providers' protocols (Coolaber, Beijing, China).

479 **Pull-down assay**

480 For protein expression and purification, the GST-PvNAP1/2 fusion proteins were
481 generated using the pGEX4T-1vector and the recombinant His-PvC3H29 fusion protein
482 was generated using the pColdTM TF vector and expressed in the *E. coli* strain 'BL21'
483 after isopropyl-D-1-thiogalactopyranoside (IPTG) induction at 16°C. Recombinant
484 proteins were purified using GST Resin and Ni Resin, respectively (Transgene,
485 Beijing, China). For Pull-down assay, GST-PvNAP1/2 or GST proteins(100μg) was
486 incubated with glutathione-Sepharose4Bresin(Transgene)at 4°C for one hour to make
487 the beads fully linked with the GST-PvNAP1/2 or GST proteins and then washed
488 three times with 500 μl Lysing buffer. Then, His-PvC3H29 protein at the same
489 volume was incubated with GST-PvNAP1/2 or GST linked beads for two hours. The
490 conjugated constructs were centrifuged and washed three times with lysing buffer to
491 prepare for the immunoblot analysis. Finally, the protein extract before and after
492 immunoprecipitation were analyzed using both anti-GST (Transgene, Beijing, China)
493 and anti-His antibodies (Transgene).

494 **Co-IP**

495 *PvC3H29* was subcloned into pEarlygate202 vector to generate PvC3H29-FLAG
496 fusion protein, while *PvNAP1/2* were into pEarlygate103 to generate PvNAP1/2-GFP
497 fusion proteins. These vectors were transiently co-expressed in *N. benthamiana* leaves.
498 After 48 h, leaves were homogenized in extraction buffer containing 50mM Tris-HCl
499 (pH 7.5), 150 mM NaCl, 1 mM EDTA, 0.1% (w/v) Triton X-100, and 1×complete
500 protease inhibitor cocktail (Roche). Then, the protein extract was immunoprecipitated
501 using an anti-FLAG antibody (Thermo Scientific, USA), and the
502 co-immunoprecipitated proteins were detected using an anti-GFP antibody (Thermo
503 scientific).

504 **DEX treatment**

505 For the inducible expression of PvNAP1/2 in *Arabidopsis*, 30 µM DEX was used
506 to spray the whole *Arabidopsis* plant. Leaf samples was taken prior to or 5 days after
507 the treatment for measurements of Chl content, Fv/Fm and for RNA extraction.

508 **EMSA**

509 pColdTM TF-PvNAP1 was constructed to generate HIS-PvNAP1 fusion gene.
510 The recombinant proteins were expressed and purified using the same protocol as
511 described in the Pull-down assay. Four candidate probes were firstly screened and one
512 of the highly shifted probes was used for the next competitive analysis by following
513 the protocol in the Light Shift Chemiluminescent EMSA Kit (Thermo Scientific).
514 Unlabeled competitors were added in a 50- or 100-fold molar excess. The detect assay
515 was the same as previously reported (Yu *et al.*,2022). As for the repressing activity of
516 PvC3H29 in PvNAP1 binding to *pPvSGR*, three-fold content of His-PvC3H29 was
517 pre-incubated with His-PvNAP1.

518 **Statistical analysis**

519 Data collected in this study were analyzed using SAS v9.2 (SAS Institute, Cary,
520 NC, USA), and were represented as mean ± standard error (SE). Fisher's protected
521 LSD was used to discriminate significant difference among sets of data at the
522 probability of 0.05.

523 **References**

524 **Anderson B, Ward JK, Vogel KP, Ward MG, Gorz HJ, Haskins FA** (1988) Forage
525 quality and performance of yearlings grazing switchgrass strains selected for differing
526 digestibility. *JAS* **66**: 2239-2244
527 **Aoyama T, Chua NH** (1997) A glucocorticoid-mediated transcriptional induction
528 system in transgenic plants. *Plant J* **11**: 605-612

529 **Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW** (1992) A reappraisal
530 of the use of DMSO for the extraction and determination of chlorophylls a and b in
531 lichens and higher plants. *Environ Exp Bot* **32**: 85-100

532 **Chen Y, Qiu K, Kuai B, Ding Y** (2011). Identification of an NAP-like transcription
533 factor BeNAC1 regulating leaf senescence in bamboo (*Bambusa emeiensis*
534 'Viridiflavus'). *Physiol Plant* **142**: 361-371

535 **De Lucas M, Daviere JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM,**
536 **Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat, S** (2008) A molecular
537 framework for light and gibberellin control of cell elongation. *Nature* **451**: 480-484

538 **Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F** (1956) Colorimetric
539 method for determination of sugars and related substances. *Anal Chem* **28**: 350-356

540 **Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS** (2006)
541 Gateway-compatible vectors for plant functional genomics and proteomics. *Plant J* **45**:
542 616-629

543 **Fan K, Bibi N, Gan S, Li F, Yuan S, Ni M, Wang M, Shen H, Wang X** (2015) A
544 novel NAP member GhNAP is involved in leaf senescence in *Gossypium hirsutum*. *J*
545 *Exp Bot.* **66**: 4669-4682

546 **Goering HK, Van Soest PJ** (1970) Forage fiber analyses (apparatus, reagents,
547 procedures, and some applications), US ARS pp: 387-598

548 **Hardin CF, Fu C, Hisano H, Xiao X, Shen H, Stewart CN, Parrott W, Dixon RA,**
549 **Wang ZY** (2013) Standardization of switchgrass sample collection for cell wall and
550 biomass trait analysis. *BioEnerg Res* **6**:755-762

551 **Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki**
552 **K, Nakashima K, Yamaguchi-Shinozaki K** (2013) OsTZF1, a CCCH-tandem zinc
553 finger protein, confers delayed senescence and stress tolerance in rice by regulating
554 stress-related genes. *Plant Physiol* **161**: 1202-1216

555 **Janicki F, Stallings C** (1987) Nitrogen fractions of alfalfa silage from
556 oxygen-limiting and conventional upright silos. *J Dairy Sci* **70**: 116-122

557 **Karimi M, Inzé D, Depicker A** (2002) GATEWAY™ vectors for
558 Agrobacterium-mediated plant transformation. *Trends Plant Sci* **7**: 93-195

559 **Kong Z, Li M, Yang W, Xu W, Xue, Y** (2006) A novel nuclear-localized CCCH-type
560 zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. *Plant*
561 *Physiol* **141**: 1376-1388

562 **Kuai B, Chen J, Hörtensteiner S** (2018) The biochemistry and molecular biology of
563 chlorophyll breakdown. *J Exp Bot* **69**: 751-767

564 **Lai Z, Li Y, Wang F, Cheng Y, Fan B, Yu JQ, Chen Z** (2011) *Arabidopsis* sigma
565 factor binding proteins are activators of the WRKY33 transcription factor in plant
566 defense. *Plant Cell* **23**: 3824–3841

567 **Lei W, Li Y, Yao X, Qiao K, Wei L, Liu B, Zhang D, Lin H** (2020) NAP is involved
568 in GA-mediated chlorophyll degradation and leaf senescence by interacting with
569 DELLAAs in *Arabidopsis*. *Plant Cell Rep* **39**: 75-87

570 **Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J et al**
571 (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid
572 biosynthesis and directly targeting senescence-associated genes in rice. *Proc Natl*
573 *Acad Sci USA* **111**:10013-10018

574 **McLaughlin SB, Kszos LA** (2005) Development of switchgrass (*Panicum virgatum*)
575 as a bioenergy feedstock in the United States. *Biomass Bioenergy* **28**: 515-535

576 **Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K,**
577 **Osato N, Kawai J, Carninci P et al** (2003) Comprehensive analysis of NAC family
578 genes in *Oryza sativa* and *Arabidopsis thaliana*. *DNA Res* **10**:239-247

579 **Pomeranz MC, Hah C, Lin PC, Kang SG, Finer JJ, Blackshear PJ, Jang JC**
580 (2010) The *Arabidopsis* tandem zinc finger protein AtTZF1 traffics between the
581 nucleus and cytoplasmic foci and binds both DNA and RNA. *Plant Physiol* **152**:
582 151–165

583 **Qu J, Kang SG, Wang W, Musier-Forsyth K, Jang JC** (2014) The *Arabidopsis*
584 *thaliana* tandem zinc finger 1 (AtTZF1) protein in RNA binding and decay. *Plant J* **78**:
585 452-467

586 **Quirino BF, Noh YS, Himelblau E, Amasino RM** (2000) Molecular aspects of leaf
587 senescence. *Trends Plant Sci* **5**:278-282

588 **Sakuraba Y, Jeong J, Kang MY, Kim J, Paek NC, Choi G**
589 (2014) Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf
590 senescence in *Arabidopsis*. *Nat Commun* **5**: 4636

591 **Shin D, Lee S, Kim TH, Lee JH, Park J, Lee J, Lee JY, Cho LH, Choi JY, Lee W**
592 **et al** (2020) Natural variations at the Stay-Green gene promoter control lifespan and
593 yield in rice cultivars. *Nat Commun* **11**:1-11

594 **Thomas H., Howarth C.J.** (2000) Five ways to stay green. *J Exp Bot* **51**:329-337.

595 **Woo HR, Kim HJ, Lim PO, Nam HG** (2019) Leaf senescence: systems and
596 dynamics aspects. *Annu Rev Plant Biol* **70**:347-376

597 **Xie Z, Lin W, Yu G, Cheng Q, Xu B, Huang B** (2019) Improved cold tolerance in
598 switchgrass by a novel CCCH-type zinc finger transcription factor gene, *PvC3H72*,
599 associated with ICE1-CBF-COR regulon and ABA-responsive genes. *Biotechnol*
600 *Biofuels* **12**:1-11

601 **Xie Z, Yu G, Lei S, Zhang C, Xu B, Huang B** (2021) CCCH protein-PvCCCH69
602 acted as a repressor for leaf senescence through suppressing ABA-signaling pathway.
603 *Hortic Res* **8**: 1-14

604 **Xu B, Yu G, Li H, Xie Z, Wen W, Zhang J, Huang B** (2019) Knockdown of
605 *STAYGREEN* in perennial ryegrass (*Lolium perenne* L.) leads to transcriptomic
606 alterations related to suppressed leaf senescence and improved forage quality. *Plant*
607 *Cell Physiol* **60**: 202-212

608 **Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Zhang PY,**
609 **Dixon RA, Zhao B** (2011a) Silencing of *4-coumarate: coenzyme A ligase* in
610 switchgrass leads to reduced lignin content and improved fermentable sugar yields for
611 biofuel production. *New Phytol* **192**: 611-625

612 **Xu B, Huang L, Shen Z, Welbaum GE, Zhang X, Zhao B** (2011b) Selection and
613 characterization of a new switchgrass (*Panicum virgatum* L.) line with high somatic
614 embryonic capacity for genetic transformation. *Sci. Hortic* **129**: 854-861

615 **Yang J, Worley E, Udvardi M** (2014) A NAP-AAO3 regulatory module promotes
616 chlorophyll degradation via ABA biosynthesis in *Arabidopsis* leaves. *Plant Cell* **26**:
617 4862-4874

618 **Yang J, Udvardi M** (2018) Senescence and nitrogen use efficiency in perennial
619 grasses for forage and biofuel production. *J Exp Bot* **69**: 855-865

620 **Yoo SD, Cho YH, Sheen J** (2007) *Arabidopsis* mesophyll protoplasts: a versatile cell
621 system for transient gene expression analysis. *Nat Protoc* **2**: 1565

622 **Yu G, Xie Z, Zhang J, Lei S, Lin W, Xu B, Huang B** (2021) NOL-mediated
623 functional stay-green traits in perennial ryegrass (*Lolium perenne* L.) involving
624 multifaceted molecular factors and metabolic pathways regulating leaf
625 senescence. *Plant J* **106**: 1219-1232

626 **Yu G, Xie Z, Lei S, Li H, Xu B, Huang B** (2022) LpNAL delays leaf senescence by
627 transcriptional repression of two chlorophyll catabolic genes, *LpSGR* and *LpNYC1*, in
628 perennial ryegrass. *Plant Physiol* <https://doi.org/10.1093/plphys/kiac070>

629 **Zhang X, Henriques R, Lin SS, Niu QW, Chua NH** (2006) Agrobacterium-mediated transformation of *Arabidopsis thaliana* using the floral dip
630 method. *Nat Protoc* **1**: 641

631 **Zhou C, Han L, Pislariu C, Nakashima J, Fu C, Jiang Q, Quan L, Blancaflor EB,**
632 **Tang Y, Bouton JH et al** (2011) From model to crop: functional analysis of a
633 *STAY-GREEN* gene in the model legume *Medicago truncatula* and effective use of the
634 gene for Alfalfa improvement. *Plant Physiol* **157**:1483-1496

635 **Zhou T, Yang X, Wang L, Xu J, Zhang X** (2014) GhTZF1 regulates drought stress
636 responses and delays leaf senescence by inhibiting reactive oxygen species
637 accumulation in transgenic *Arabidopsis*. *Plant Mol Biol* **85**: 163-177

638

639

640

641 **Acknowledgements**

642 We thank Dr. Binyu Zhao from Virginia Polytechnic Institute and State University for
643 providence of several vectors used in the study. This study was funded by National
644 Natural Science Foundation of China (NSFC) projects (31971757 and 31772659).

645 **Author contributions**

646 BX and GY designed the experiments; ZX and GY conducted the experiment; HW
647 and SL assisted with some of the experiments. ZX analyzed data; BX and ZX wrote
648 the manuscript.

649 **Conflict of interest**

650 There is no conflict of interest to declare.

651 **Supporting Information**

652 **Supplementary Fig. S1 GUS staining and RT-qPCR of *PvC3H29* over-expression
653 and RNAi transgenic lines. (A)** GUS staining of WT, OE29, and RNAi transgenic.
654 **(B)** Relative expression of *PvC3H29* lines in leaves of WT, OE29, and RNAi lines by
655 RT-qPCR. Letters above bars indicate significant difference at $P < 0.05$.

656 **Supplementary Fig. S2 Over-expressing *PvC3H29* delayed natural leaf
657 senescence in switchgrass. (A)** Leaves of WT and OE29 at R3 stage showing
658 different degrees of senescence. Leaves are numbered from the top. **(B-C)** Chl
659 contents and Fv/Fm values of the leaves. Letters above bars indicate significant
660 difference at $P < 0.05$.

661 **Supplementary Fig. S3 Number of differentially expressed genes (DEGs) in OE
662 29 and RNAi transgenic lines.** Detached leaves **treated** in dark for seven days were
663 sampled for the RNA-seq analysis.

664 **Supplementary Fig. S4 Gene Ontology (GO) analysis of DEGs. (A)** GO terms of
665 WT vs OE29; **(B)** GO terms of WT vs RNAi. Detached leaves treated in dark for
666 seven days were sampled for the RNA-seq analysis.

667 **Supplementary Fig. S5 Kyoto Encyclopedia of Genes and Genomes (KEGG)**

668 **analysis of DEGs.** **(A)** Enriched KEGG pathways in WT vs OE29; **(B)** Enriched
669 KEGG pathways in WT vs RNAi. Detached leaves treated in dark for seven days
670 were sampled for the RNA-seq analysis.

671 **Supplementary Fig. S6 Comparison between WT, OE29, and RNAi line for Chl**
672 **catabolic pathway genes.** Green arrows indicate down-regulated expression, while
673 red arrows indicate up-regulated expression in OE29 or RNAi lines. Detached leaves
674 treated in dark for seven days were sampled for the RNA-seq analysis.

675 **Supplementary Fig. S7 Ectopic over-expressing *PvC3H29* leads to stay-green in**
676 **Arabidopsis.** **(A)** Relative expression of *PvC3H29* in Arabidopsis transgenic lines.
677 Not detectable is abbreviated as n.d. **(B-C)** OE29 Arabidopsis lines showed stay-green
678 after 10 days after dark treatment (DAD), and the Chl contents in leaves of WT and
679 transgenic lines during the dark treatment. **(D)** *PvC3H29* interacted with the
680 Arabidopsis NAP in the Y2H assay.

681 **Supplementary Fig. S8 Electrophoretic mobility shift assay (EMSA) of PvNAP1's**
682 **binding to four probes in the promoter of *PvSGR*.**

683 **Supplementary Fig. S9 Neutral and acid detergent fiber (NDF and ADF),**
684 **cellulose and hemicellulose contents of aboveground biomass in WT and OE29**
685 **lines of switchgrass harvested at R3 stage.**

686 **Supplementary Table S1.** Potential interacting proteins of *PvC3H29* screened
687 through Yeast-two-hybrid (Y2H).

688 **Supplementary Table S2.** Fragment of *PvC3H29* were selected for RNAi.

689 **Supplementary Table S3.** Primers used in this study.

690 **Figure legends**

691 **Fig. 1 Over-expressing *PvC3H29* delayed leaf senescence in switchgrass.** A,
692 Phenotype of WT and OE29 transgenic lines. Detached green leaves at the same
693 developmental stage were placed in dark for 15 DAD (days after dark treatment). B-D,
694 Chl contents, Fv/Fm values, and relative expression of four Chl catabolic genes
695 (*PvNYC1*, *PvNOL*, *PvSGR*, and *PvPAO*) after 10 and 15 DAD in WT and OE29 lines.

696 Letters above bars indicate significant difference at $P < 0.05$.

697 **Fig. 2 Suppressing *PvC3H29* accelerated leaf senescence in switchgrass.** A,
698 Phenotype of WT and *PvC3H29*-RNAi lines. Detached green leaves at the same
699 developmental stage were placed in dark for 10 DAD (days after dark treatment). B-D,
700 Chl contents, Fv/Fm values, and relative expression of four Chl catabolic genes
701 (*PvNYC1*, *PvNOL*, *PvSGR*, and *PvPAO*) after 6 and 10 DAD in WT and RNAi lines.
702 Letters above bars indicate significant difference at $P < 0.05$.

703 **Fig. 3 *PvC3H29* is a nuclear-localized protein with no transcription activity.** A,
704 Subcellular location of *PvC3H29*-GFP and GFP (control) observed under
705 GFP-fluorescence, DAPI, and bright field (BF). B, Transcriptional activity assay of
706 *PvC3H29* in yeast. *PvC3H72*, the positive control, was a known transcriptional
707 activator, while the *GUS* gene (*UidA*) as the negative control. C, *In planta*
708 transcriptional activity assay. *PvC3H72* was used as the positive control, and the
709 empty vector as the negative control. Letters above bars indicate significant difference
710 at $P < 0.05$. D, Relative expression of *PvC3H29* in leaves from the top at the R3 stage
711 of switchgrass. L1 to L5 were leaves numbered from the top. Bar in (A) represent 5
712 μ m.

713 **Fig. 4 *PvC3H29* physically interacts with *PvNAP1/2*.** A, Subcellular location of
714 *PvNAP1*, *PvNAP2*, and GFP (control) observed under GFP-fluorescence, DAPI, and
715 bright field (BF). B, Relative expression of *PvNAP1*, *PvNAP2*, *PvNYC1*, *PvNOL*,
716 *PvSGR*, and *PvPAO* in leaves from the top at the R3 stage of switchgrass. L1 to L5
717 were leaves numbered from the top. C, Yeast two-hybrid assay of *PvC3H29* and
718 *PvNAP1/2*. D, Pull-down assay between *PvC3H29*-His and *PvNAP1/2*-GST. E, BiFC
719 analysis using split YFP with *PvC3H29*-nYFP and *PvNAP1/2*-cYFP, and the YFP
720 signal was observed in nucleus. BF stands for bright field. F, Co-IP assay. The protein
721 extract was immunoprecipitated using anti-FLAG. Letters above bars in (B) indicate
722 significant difference at $P < 0.05$. Bars in (A) and (E) represent 5 μ m.

723 **Fig. 5 Co-expression of *PvC3H29* suppressed *PvNAP1/2*-induced leaf senescence.**
724 A, Phenotype of WT and transgenic lines before and after DEX-induced expression of
725 *PvNAP1/2*. B, Relative expression of *NYC1*, *SGR*, and *PAO* before and after DEX

726 treatment. Letters above bars in (B) indicate significant difference at $P < 0.05$.

727 **Fig. 6 PvNAPs directly targeted and transactivated the expression of *PvNOL*,**
728 ***PvSGR*, and *PvPAO*.** A, Yeast one-hybrid assay showing that PvNAP1 binds to
729 promoters of *PvNOL*, *PvSGR*, and *PvPAO*. GUS was used as the negative control. B,
730 EMSA showing that PvNAP1 directly bound to the promoter of *PvSGR*. C, *In planta*
731 transcriptional activation assay by co-expression of *PvNAP1/2* and *LUC* driven under
732 promoters of *PvNOL*, *PvSGR*, and *PvPAO*. GFP and empty vector (EV) were used as
733 the negative effector control and the negative *LUC* control, *35S::LUC* as the positive
734 control, and *35S::GUS* as the internal reference. Letters above bars indicate
735 significant difference at $P < 0.05$.

736 **Fig. 7 PvC3H29 blocked PvNAP1's DNA binding efficiency on its target**
737 **promoter.** A, EMSA showing that the addition of PvC3H29 reduced DNA-binding
738 efficiency of PvNAP1 to the *pPvSGR-E1* probe. B, *In planta* transcriptional activation
739 assay showing that co-expression of *PvC3H29* together with *PvNAP1* reduced the
740 expression level of *LUC* driven under *pPvSGR*. GFP was used as the negative effector
741 control, and *35S::GUS* was used as the internal reference. Letters above bars indicate
742 significant difference at $P < 0.05$.

743 **Fig. 8 Over-expressing *PvC3H29* improved biomass yield and feedstock quality**
744 **in switchgrass.** A, Phenotype of WT and OE29 at R3 stage. B-F, Dry weight (A),
745 fresh weight (B), tiller number (C), leaf: stem weight ratio (D), crude protein content
746 (E), and soluble sugar content (F) of the above-ground biomass of WT and OE29 lines
747 harvested at R3 stage. Letters above bars indicate significant difference at $P < 0.05$.