
Chaudhary et al. 

1 
 

 

 

Fast, Efficient, and Accurate Neuro-Imaging Denoising via Deep Learning 

 

Shivesh Chaudhary1, Sihoon Moon1, Hang Lu1,2,* 

1School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 
Georgia, United States of America 

2Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 

Georgia, United States of America 

*Correspondence should be addressed to HL: hang.lu@gatech.edu 

 

 

Volumetric functional imaging is widely used for recording neuron activities in vivo, but there exist 
tradeoffs between the quality of the extracted calcium traces, imaging speed, and laser power. 

While deep-learning methods have recently been applied to denoise images, their applications to 

downstream analyses, such as recovering high-SNR calcium traces, have been limited. Further, 

these methods require temporally-linked pre-registered data with ultrafast rates. Here, we 
demonstrate supervised deep-denoising methods to circumvent these tradeoffs for several 

applications, including whole-brain imaging, large field-of-view imaging in freely moving animals, 

and recovering complex neurite structures in C. elegans. Our framework has 30x smaller memory 
footprint, and is fast in training and inference (50-70ms); it is highly accurate and generalizable, 

and further, only small, non-temporally-sequential, independently-acquired training datasets 

(~500 images) are needed. We envision that the framework will enable faster and long-term 

imaging experiments necessary to study neuronal mechanisms of many behaviors. 
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Introduction 
Fluorescent functional imaging is ubiquitous in neuroscience research in model systems. 

The persistent goal is to image wider (more cells and larger areas), deeper, and faster, while 

enhancing signal-to-noise ratio (SNR). For commonly available functional imaging setups such 

as point-scanning or spinning disk confocal systems, tradeoffs exist between SNR in images and 
microscopy parameters such as imaging speed (exposure time), field-of-view (FOV), image 

resolution, length of recording etc. While advancements in genetically encoded calcium and 

voltage indicators and new microscopic techniques [1–10] with high spatiotemporal resolution and 

large FOV have relaxed the requirements and driven the development of whole-brain imaging 
methods in several organisms, tradeoffs still exist in several model organism systems. For 

instance, in the nematode C. elegans [3,4,11–13], SNR in images is limited due to the requirement 

of small exposure time to capture neural dynamics at 3-6 volumes/s and to prevent motion 

artifacts. While SNR can be improved by increasing laser power, this leads to photo-bleaching of 
fluorophores and photo-toxicity, thus limiting the length of recordings, especially during longer 

timescale behavior. To cover neurons in the whole animal, the FOV is further expanded [9], which 

necessitates lower magnification and higher laser power, but again exacerbates photo-bleaching.  

Recently deep learning enhanced microscopic techniques [14–16] have been developed 

that significantly overcome the tradeoff between imaging speed and SNR in images. However, 

these techniques either require expertise in characterizing the microscopy system at hand for 

generating realistic training data, such as the axial light propagation [14] or they require light-field 
microscopy setups [15,16] that are not commonly available to all researchers. Further, whether 

these methods can perform at low laser power conditions that are critical to prevent 

photobleaching and enable long-term recording of neuron activities is not currently shown. Thus, 
an orthogonal method to enhance SNR, to circumvent the tradeoffs, would thus be enabling in 

many studies. 

An alternative strategy that has been established recently and has achieved state-of-the-

art results to overcome tradeoffs in microscopy is deep-learning based image denoising [17–26]. 
In these methods, a deep neural network is trained to recover high SNR fluorescent images from 

low SNR images acquired with low exposure time or low laser power conditions. These include 

supervised [17–22] and unsupervised [23,24,26,27] methods. Unsupervised methods offer the 
benefit of training on the data to be denoised itself thus no training data collection is needed. 

Despite the success of denoising methods, their application on downstream analyses such as 

high SNR calcium trace extraction from videos has been show in only a few model organisms and 
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microscopic techniques, all using unsupervised methods. For instance, DeepInterpolation [27] 

and DeepCAD [26], demonstrate high-quality calcium trace extraction on 2D two-photon imaging 
data in mice. While impressive, these methods do require large training data set (~100,000 frames 

for DeepInterpolation and 3,500 frames for DeepCAD); further, pre-registration of the images (or 

images with minor deviations) before training are required, which also necessitates ultrafast 

imaging rates. DeepCAD also shows decreasing accuracy for data acquired at slower imaging 
rates, demonstrating that information in temporally linked images is important for denoising. 

Practically, these models also have a large memory requirement for training and inference. While 

new advances in microscopy greatly improve imaging speed and field-of-view [10], generating 
such large-scale ultrafast recordings for 3D imaging in models organisms is currently not feasible 

for all researchers with commonly available confocal systems. Additionally, training these 

methods on calcium activity recordings in moving animals would require a non-trivial pre-

registration step and training results would be contingent on the accuracy of registration step. 

Compared to unsupervised methods, supervised methods for image processing are 

expected to achieve higher denoising accuracy and are more generalizable. Currently, supervised 

methods have not been used for video data denoising and extracting calcium traces.  This is likely 
due to several factors. For instance, if supervised methods are to be trained using temporally 

linked data, akin to unsupervised methods, custom microscope setups will be needed that can 

collect low and high SNR video data simultaneously. In contrast, if supervised methods are to be 

trained with non-temporally linked data, it is not immediately apparent whether the temporal 
structural features in the dynamical data (as in calcium imaging experiments) can be preserved 

from independently denoised images. It is also not obvious to what extent the supervised models 

can be generalized. The wide deployment of these models will also be dependent on several 
practicalities such as model size, inference speed, and memory requirement on the computation.  

Here we show that supervised deep denoising can achieve high accuracy in extracting high-SNR 

calcium traces from noisy videos. Our optimized models are 20-30X smaller in memory footprint, 

3-4X faster inference speeds and can be trained with as few as 500 single images that are 
temporally independent and collected across different samples. With the use of temporally 

independent data for training, fast imaging rate for training data collection and pre-registered data 

are not required; further, networks can be trained with a variety of images across animals with 

different posture configurations, neuron morphology, cell labelling techniques (soma, membrane 
etc.) and marker (RFP, GCaMP etc.), thus improving the generalizability across conditions and 

noises. 
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Optimized deep neural networks for denoising images 
To address the challenges of extracting clean calcium traces from noisy calcium imaging 

videos in common applications, we designed Neuro-Imaging Denoising via Deep Learning 

(NIDDL), a convolutional neural network (CNN) pipeline that can be trained using only a small set 

of training non-video data (Fig. 1).  The ability to work with independently acquired image training 
pairs (not from videos) greatly improves the generalizability because of the much relaxed 

requirements in data acquisition. For instance, to obtain the ground truth for training, images can 

be acquired for immobilized samples, with little photobleaching (by using independent samples), 

at different times, and possible across different biological conditions (e.g. different strains). This 
enables more researchers using a wider set of instruments and in wider biological settings to 

denoise neural images and recordings.  The pipeline takes in independent pairs of noisy (acquired 

either with low laser-power or short exposure-time) and high SNR image stacks, acquired across 

samples and reagents (Fig. 1A). Subsequently, efficient denoising convolutional neural networks 
are trained using the non-video data. In application phase, trained networks are applied to denoise 

video data by independently denoising each volume in the video. Finally, high quality calcium 

traces are extracted from denoised video using conventional calcium signal extraction pipeline in 
C. elegans that involves cell segmentation, cell tracking, and signal extraction (Fig. 1A). As an 

example, microscopic conditions used for whole-brain calcium activity recordings lead to 

significant loss of SNR in images (Fig. 1B), thus making densely packed nuclei in images barely 

distinguishable (Supplementary Figure 1). Low SNR in images can significantly reduce the 
accuracy of intermediary tasks such cell segmentation and tracking, thus making downstream 

analysis of neuron activity data extremely slow and challenging. We demonstrated that trained 

networks can significantly recover nuclei structure from these noisy images (Fig. 1B, 
Supplementary Figure 1).   

To achieve a fast, small memory footprint, and data-efficient CNN, we optimized several 

network hyper-parameters (Online methods – Network Optimization). For instance, starting with 

vanilla UNet [17,28] and Hourglass architectures [29], we tested several design choices such as 
kernel size, channel depth, depth of architecture, and presence or absence of residual 

connections (Supplementary Figure 2,3). Additionally we compared architectures across L2 and 

L1 loss functions used commonly in image restoration tasks [17,20] (Supplementary Figure 4) 
and three different training modes (Supplementary Figure 5) including 2D mode, 2.5D mode and 

3D mode (Methods section). The optimal models significantly reduce the number of parameters 

and memory footprint by fixing channel depth across all layers. This allows 1) networks to be 
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deeper, i.e. have more convolutional blocks compared to CARE using default parameters [17], 

and 2) use residual connections within each convolutional block that are not present in default 
UNet. Compared to previously established methods such as CARE [17], RCAN [19], and default 

UNet and Hourglass architectures, our optimized architectures are 20-30X smaller in memory 

footprint, have 3-5X faster inference time, are 2-3X faster in training (Fig. 1B,C). We show that for 

whole-brain imaging applications, model accuracy plateaus at training with 500-600 images 
(corresponding to 25-40 whole-brain stacks) (Fig. 1D, Supplementary Figure 6), which is much 

smaller than number of images used for training in recent methods DeepCAD (3,500 frames) and 

DeepInterpolation (~100,000 frames). Thus, networks can be easily trained in individual labs 
specific to individual experimental and instrumentation conditions.  

We have also tested CNNs trained with L2 or L1 loss and show that they achieve similar 

accuracy (Supplementary Figure 4), with L1 loss training being more stable across different 

instances of training. Further, we noticed that L1 loss performs better in RMSE and PSNR metrics 
whereas L2 loss performs better in SSIM metric. This could be because L1 loss is more suitable 

to handle the type of noise present in experimental data whereas L2 loss is more suitable to 

preserve structural information. Finally, we tested three modes of training that differ in 3D spatial 
context used by networks for denoising (Supplementary Figure 5). These modes include 1) 2D 

mode where input and output to the networks are 2D images, 2) 2.5D mode where input to the 

network is a 3D stack consisting of z-planes above and below the image to be denoised and 

output is the middle denoised 2D image, and 3) full 3D mode where input to the networks is 3D 
stack and output is also 3D stack. Comparisons showed that training with 2D images, rather than 

3D stacks, is sufficient (Supplementary Figure 5), possibly because more training data is needed 

for 3D mode of training. Practically, 2D images can be acquired easily using commonly available 
setups thus simplifying the training step. Importantly, these memory-efficient and fast models can 

be used widely without expensive GPUs. When comparing inference time of models without 

GPUs, NIDDL achieves an average inference time of 1.25 s whereas CARE and RCAN denoise 

images in much longer time of 2.67 s and 7.29 s respectively (Fig. 1E). 

To characterize the performance of NIDDL, we worked with C. elegans strains with whole-

brain neuronal labels. We took advantage of microfluidic immobilization of animals to avoid the 

complex image pre-registration step across image pairs before training the networks, and to 

acquire data in high-throughput manner [30]. Acquired pairs of non-sequential image data across 
samples is used as inputs to train the CNN. Trained networks are then applied to noisy video 

frames independently to recover clean images. Subsequently high SNR calcium traces are 
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extracted from denoised videos. We show that deep denoising recovers structures in noisy whole-

brain images with clear distinction of nuclei (Supplementary Figure 1, Fig. 2, Supplementary 
Figure 7, Supplementary Video 1), which can greatly improve the nuclei segmentation 

performance [31], and thus the accuracy of downstream tasks such as cell identity annotation 

[32]. We bench-marked NIDDL’s performance with those from other approaches (Online methods 

– Comparison against other methods). Representative images show that NIDDL produces cleaner 
denoised images closer to the ground truth images, while simple denoising methods such as 

Median and Gaussian filtering, as well as advanced non-deep learning based methods such as 

NLM and BM3D, suffer from either blurring artifact or not recovering information (Supplementary 
Figure 7). Quantitatively, the optimized NIDDL model achieve high accuracy on held-out datasets, 

outperforming traditional denoising methods, non-deep learning based methods such as NLM 

and BM3D, and deep learning methods such as RCAN[19]  (Fig. 2B, Supplementary Figure 8). 

While the recently published algorithm CARE produces similar accuracy as NIDDL, the advantage 
of NIDDL is smaller model size and real-time inference time (Fig. 1C), which would be important 

for applications that would require near real-time feedback, e.g. closed-loop optogenetic 

interventions. 

To test the generalizability of the approach, we trained separate network instances on 

data collected across a variety of conditions and compared within-condition accuracy with across-

condition accuracy. These include two whole-brain imaging strains with different levels of 

fluorophore expression labelling all cells, three levels of laser powers, and three independent 
experiments on different days. Models trained on independent experiments and strains are 

particularly generalizable across conditions (Fig. 3A-D). As an example, denoised images output 

by networks, when networks were either trained on the same strain or a different strain, visually 
appear indistinguishable (Fig. 3A, 3B). In both cases, networks significantly recover 

distinguishable nuclei structure from noisy images (Fig. 3B). When accuracies are characterized, 

cross-strain model performance also appears similar to that of within-strain models (Fig. 3C).  Our 

results do show that models are sensitive to image-acquisition laser power (Fig. 3E, 
Supplementary Figure 10). In comparison, models generalize with high degree of accuracy across 

independent experiments (Fig. 3D, Supplementary Figure 9). In parallel, we conducted an in silico 

experiment to characterize the robustness of the optimized CNNs against noise levels; we 

generated realistic 3D synthetic data with densely packed nuclei (Online Methods – Synthetic 
whole-brain data generation) across a range of signal levels (photon counts), corrupted by 

Poisson shot noise and Gaussian readout noise. We show that NIDDL consistently and efficiently 

denoise the images, better than traditional methods (Supplementary Figure 11). We hypothesized 
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that as long as a minimum requirement for SNR is met, NIDDL can produce efficient denoising, 

and that the corruption of the signal by noise beyond a certain threshold cannot be rescued by 
denoising.  Indeed, this notion is corroborated by the characterizations of the SNR in the actual 

experiments (Fig. 3F) where the SNR levels across laser powers vary vastly, those across strains 

vary less, and across independent experiments sessions have similar SNR levels. These results 

demonstrate that as long as the imaging experiments meet a minimum SNR threashold (~20), 
NIDDL can efficiently denoise. This points to the advantages of NIDDL, where training data sets 

can be gathered in a distributed manner and from varied conditions (including from different 

strains), which would greatly lower the barriers for use in practice. 

High SNR calcium trace recovery using NIDDL 
While denoising images in itself can improve accuracy of many tasks in whole-brain 

imaging, including segmentation, tracking, and identification, the critical goal is to extract clean 

calcium traces. We next denoised a whole-brain video (Online Methods – Calcium imaging data 
collection) that was held out from the training (Fig. 4A, Supplementary Video 2) and extracted 

traces (Methods – Denoising and extracting calcium traces). We note that methods used for 

calcium signal extraction from two-photon recordings of spiking neurons [33–35] differ from 
standard methods used for C. elegans [11,36–38]. The deep denoised video provides much 

cleaner traces compared to the original noisy video (Fig. 4B) and correlated neuron activity is 

detectable visually. Since NIDDL is trained using non-video data, denoising each frame of video 

independently could introduce artifacts in calcium traces. To establish that NIDDL recovered 
calcium traces do not contain artifacts, we compared the traces extracted from denoised video to 

traces extracted from high-SNR ground-truth video for the same recording. Denoised traces show 

the same temporal structure in neuron activity as present in high SNR video thus denoising does 
not introduce artifacts (Fig. 4B). Furthermore, denoised traces show much lower mean absolute 

error (Fig. 4C) and higher correlation to the traces from the ground-truth low-noise video (Fig. 4D). 

This demonstrates that denoising by NIDDL greatly improves SNR in the frames independently. 

Further and perhaps more importantly, denoising with NIDDL recovers correlational structure 
among neuron activities (Fig. 4E), crucial for downstream analyses and interpretation such as 

PCA based latent activity recovery [11] commonly used in whole-brain data analysis pipelines 

[39]. We further tested the robustness of NIDDL against different noise levels by denoising and 
extracting traces from semi-synthetic videos across a range of SNR levels (Online method – Semi 

synthetic video data generation). Deep denoising significantly removes noise from traces 

(Supplementary Figure 12A, C) and performs better than traditional methods across all SNR 
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levels (Supplementary Figure 13D). Lastly, we show that NIDDL denoised traces significantly 

improve the performance of PCA analysis commonly used for analyzing whole-brain recording 
datasets [11]. Neural activity trajectory in low dimensional space show smooth dynamics in 

ground-truth video; however, such structure is lost in noisy video (Supplementary Figure 12B). 

NIDDL denoised video successfully recovers the smooth dynamics (Supplementary Figure 12B). 

Taken together, these results demonstrate that denoising using NIDDL requires a small set of 
training data, is forgiving in many experimental constraints, and yet provides excellent 

performance in accuracy, robustness, and generalizability while using minute inference time 

potentially enabling on-line feedback manipulations from calcium dynamics. 

Next, we sought to demonstrate denoising on large field-of-view (FOV) data acquired at 

low magnification (Online Methods – Calcium imaging data collection). The advantage of large 

FOV is to capture more cells simultaneously. The challenges with large FOV recording, however,  

is low spatial resolution so that each cell corresponds to only a few pixels, and this necessitates 
higher laser power to boost SNR. Here, we imaged simultaneously many ventral cord (VC) motor 

neurons in C. elegans. To avoid photo-bleaching, we also used low laser power, which results in 

worse SNR as compared to imaging at 40x (higher NA) [Fig. 5A, Supplementary Figure 13]. We 
trained NIDDL with temporally independent (i.e. non-video data) pairs of low and high-laser-power 

images of ventral cord neurons expressing GCaMP. NIDDL was able to remove much of the noise, 

enabling the detection of cells barely noticeable in noisy images (Fig. 5A, Supplementary Figure 

13). Quantitative comparisons show, NIDDL significantly outperforms traditional denoising 
methods and advanced non-deep learning based methods (Fig. 5A, 5B, Supplementary Figure 

14, Supplementary Figure 15) and achieve similar accuracy as CARE and RCAN. Next, we 

denoised low-SNR videos held out from training and extracted calcium traces from them. Again, 
NIDDL enables extraction of high-quality calcium traces from noisy videos, making it much easier 

to detect coordinated neuron activities (Fig. 5C, Supplementary Figure 16, Supplementary Video 

3) barely visible in traces extracted from noisy videos. This demonstration suggests that NIDDL 

is truly enabling tool for large FOV applications where SNR levels in images are very low, and 
each cell corresponds to only a few pixels in images thus hindering extraction of clean calcium 

traces. Further NIDDL can avoid photobleaching in large FOV by enabling imaging at low laser 

power conditions.    

While a simple use of the large FOV and deep denoising is to increase the number of cells 
observed simultaneously and increase the throughput of experiments by enabling imaging 

multiple animals simultaneously (Fig. 5C), the technique is truly enabling for imaging moving 
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samples where low exposure time (to reduce blurring type motion artifact) is critical (Fig. 5D). 

Conventionally for freely moving animals, neural activities are imaged at high magnification, while 
behavior is tracked with a second low-magnification light path. Here, with large-FOV low-

magnification imaging and deep denoising, animals can be tracked directly on the fluorescent 

images, while deep-denoising can extract clean calcium traces from these videos, with more cells, 

without compromising the imaging quality. We demonstrate this by imaging motor neurons’ along 
the ventral nerve cord of freely moving animals. Deep denoising by NIDDL significantly removes 

noise from calcium traces, resulting in clear bouts of neural activities (Fig. 5D, Supplementary 

Video 4). Ext, we correlated activities of motor neurons to local body curvature of the animal as it 
roams. Motor neuron activity recovered by NIDDL showed enhanced correlation to animal 

curvature (Supplementary Figure 17B-D) compared to traces extracted from noisy videos. Thus, 

NIDDL enables recordings where samples move significantly by enabling imaging using low 

exposure time conditions. By requiring only low light, this approach will also enable more 
prevalent longer-term imaging with behavior. 

Complex neurite structure recovery with NIDDL  
Another application of deep denoising is in imaging subcellular features such as the 

dendritic processes, which are typically dim and difficult to quantify compared to imaging the soma. 

Because denoising neurites presents different challenges, we sought to optimize network hyper-

parameters specifically for neurites (Supplementary Figure 18) and chose L2 loss for due to 

slightly better performance. Optimized network recovers structure of neurites from noisy images 
(Fig. 6A, Supplementary Figure 18, Supplementary Figure 19, Supplementary Video 5) showing 

distinct processes barely visible in noisy images. Further, NIDDL enables quantitative 

characterization of neurite morphology as recovered neurite structure significantly improves 
neurite segmentation performance using simple methods (Online Methods – Neurite 

segmentation) (Fig. 6D, Supplementary Figure 20). Compared to non-deep learning based 

methods, NIDDL again performed better on accuracy (Fig. 6B, Supplementary Figure 21) while 

only using pairs of training images, rather than video data. Further NIDDL achieved similar 
accuracy to test generalizability across neurite morphology, we tested the performance across 

two strains labelling neurons with distinct structures (the gentle touch neurons ALM, AVM, and 

PLM, and the multimodal sensory neuron PVD in C. elegans). Models trained only on one strain’s 
data achieved equivalent accuracy across other strain (Fig. 6C, Supplementary Figure 23).  We 

envision NIDDL being applied to study calcium signal distribution in complex morphologies of 

mechanosensory neurons. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488233doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chaudhary et al. 

10 
 

Discussion  
In this work, we present an easy-to-train, fast, data-efficient, and generalizable deep-

learning framework for denoising calcium activity volumetric recordings. While our method has 

similarities to recently developed supervised learning methods for restoring images [17,20], 

applications of supervised methods for extracting calcium traces from volumetric recordings in 
model organisms have not been shown. Here, we demonstrate the utility of supervised denoising 

methods for various calcium imaging application in C. elegans, and highlight key advantages over 

previous methods, which make them attractive for researchers to adopt easily. First, we 

demonstrate that networks trained with temporally independent (non-video) data collected across 
animals, strains, and imaging conditions can be used to recover high-quality calcium traces from 

video data, thus providing several experimental simplifications. For instance, ultrafast imaging 

rates for training data collection are avoided, thus enabling more labs to collect data with 

commonly available microscopy setups. Additionally, since networks are trained with non-video 
data, complex pre-registration of images before training is circumvented, making the method 

suitable for motile animals, such as C. elegans. 

Second, we demonstrate that networks can be trained with order of magnitude smaller 
training data (~500 images) compared to previous methods DeepInterpolation and DeepCAD. 

Temporally sequential data used in these previous methods closely resemble the approach of 

Noise2Noise [23] where multiple samples of an image with independent noise present in samples 

are used to recover high SNR image. This is because consecutive images in pre-registered data 
from ultrafast recordings can be thought of as coming from one sample with independent noise in 

each image. Due to the need of multiple images of each sample with independent noise, the 

amount of training data needed is typically very large. In comparison, supervised learning 
methods, do not rely on multiple images of each sample and do not make assumptions on noises 

in the data. Thus, supervised methods are advantageous for dynamic data, such as those from 

(slow) volumetric functional imaging where consecutive frames may not have correlated signals, 

and those from moving samples where frames are not already registered; furthermore, supervised 
methods can also be trained with much smaller training data.  

Third, we demonstrate the generalizability of networks trained in supervised manner 

across different strains and experimental sessions. This is possible because the models are 
trained with pairs of high SNR and low SNR images across a variety of conditions, animals, strains 

etc., which capture the distribution of SNR levels across experimental conditions that the 

researchers may expect under typical experimental conditions. Thus, these supervised methods 
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can achieve higher denoising accuracy compared to unsupervised methods, making them 

suitable for high quality calcium signal from new experimental recordings without retraining the 
networks. In contrast, unsupervised methods trained on one functional recording dataset may 

need to be trained again for every new video. Furthermore, to eliminate complex pre-registration 

of images in moving animal recordings during training, supervised training only needs images of 

stationary samples across various conditions, and trained networks can be applied to images in 
videos independently to recover high SNR traces. Thus, the pipeline is much more accessible to 

routine use in calcium imaging in a wide range of scenarios, e.g. in sensory behavior, mating 

behavior, and social behavior. 

Finally, we have optimized networks extensively to significantly reduce the memory 

footprint and inference time compared to previous deep learning methods. Our current models 

can achieve real-time denoising speeds making them suitable for experiments requiring real-time 

feedback such as optogenetic perturbations. Our demonstrations on variety of data sets that 
include high-magnification whole-brain calcium recordings, low-magnification large field-of-view 

calcium recordings and recovering complex neurite morphology highlight the utility of deep 

learning based denoising methods. We imagine that our demonstration of deep learning methods 
for functional imaging denoising in C. elegans will inspire newer experiments in other model 

systems such as hydra [40–42], Drosophila [43–46], and zebrafish [39,47], where long-term 

whole-brain and functional recordings are needed to find neuronal bases of behaviors that evolve 

over long time scales [48–50]. NIDDL facilitates such recordings by use of low laser power and 
shorter exposure time. Combining this technology with microscopy techniques requiring low light 

dosage [9], e.g. using light-sheet for developing neurons [47], or other microscopy techniques 

such as virtual refocusing and light-field reconstruction, will enable recordings of longer durations 
and fast frame rates previously not possible.  
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Methods 
Methods are described in Online Methods section.  
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On-line methods: 

C. elegans culture 
For all experiments, animals were cultured using standard techniques [51]. A detailed list of 

strains used in this work is provided below. 
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Training data collection 
All imaging was performed using Brucker Opterra II Swept field confocal microscope, with an 

EMCCD camera. Objective lenses used for each type of data and other imaging parameters are 
described below. 

1. Whole-brain data – Whole brain data was collected using ZIM504 and OH16230 strains. 

Animals were synchronized to L4 stage and were immobilized in a microfluidic array 

device to prevent motion. Two 3D stacks (25-30 z planes with 1 μm spacing) were 
acquired for each animal, one at low laser power and one at the highest laser power setting 

available in microscope, 10ms exposure time, and Plan Fluor 0.75 NA 40x air objective. 

Low laser power image specifies the noisy (low SNR) image and high laser power image 
specifies the clean (high SNR) image. Neural networks were trained to predict high SNR 

image from low SNR image as described in section Network Training. To quantify 

prediction generalizability across days, independent datasets were collected for strain 

ZIM504 on different days using the same strategy. In this case, all datasets were collected 
at same laser power setting. To quantify prediction generalizability across image SNR 

levels, additional datasets were acquired using ZIM504 strain at very low and intermediate 

low laser power levels. To quantify prediction generalizability accuracy across strains with 

nuclear localized markers, data collected across three strains, ZC392 (nuclear localized 
RFP expression in glutamatergic cells), OH16230 (nuclear localized GCaMP and CyOFP 

expression in all neurons) and ZIM504 ((nuclear localized GCaMP5K expression in all 

neurons) were used. In this case, data for all strains was collected at same laser power 
settings. 

2. Ventral cord neurons data – Images of ventral cord motor neurons were collected using 

strain OH16230. Animals were synchronized to L4 stage and were immobilized in a 

microfluidic array device. 3D stacks (40 z planes with 1 um spacing) were collected at 
10ms exposure time, using SPlan Fluor ELWD 0.45 NA, 20X air objective. Two stacks 

were acquired for each animal, one at low laser power and one at the highest laser power 

setting available in microscope. 
3. Neurite data - Images of neurites were collected using strain GT372 and GT366. These 

strains label different cells with different neurite morphology. GT372 labels gentle touch 

cells neurites that are sparser compared to harsh touch neuron PVD’s neurites labeled in 

GT366. Animals were synchronized to L4 stage and were immobilized in a microfluidic 
array device. 3D stacks (40 z planes with 1 um spacing) were collected at 10ms exposure 
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time, using Plan Fluor 0.75 NA 40x air objective. Two stacks were acquired for each animal, 

one at low laser power and one at the highest laser power setting available in microscope. 

Synthetic whole-brain image data generation 

To generate synthetic image data across a range of SNR levels, 3D stacks (128 by 128 by 30 

pixels) were generated. Cells were simulated as 3D Gaussian distributions. Cell positions (mean 

of Gaussian distributions), cell sizes (3D covariance matrices of Gaussian distributions), and cell 

intensities (max peak of Gaussian distributions) were randomly generated for 60 cells and 3D 
intensity profiles of all cells were added together to form the image stack. Intensity profile of the 

resultant image was scaled to a maximum photon count level to specify the peak signal in image. 

Six photon count levels (20, 50, 100, 200, 500, 1000) were used. This image specified the ground-
truth clean image. To generate the corresponding noisy image, two kinds of noises were added 

to the clean image, photon shot noise (no parameter needed as the noise depends on each pixel’s 

intensity level) and readout noise (normally distributed with mean 0 and 1 variance).  

Semi synthetic whole-brain video data generation 

To generate semi synthetic 4D (3D + t) calcium imaging video data, 3D stacks (512 by 512 by 30 
pixels) were generated for 100 time points. Here again, cells were simulated as 3D Gaussian 

distributions (as described in Synthetic image data generation section). However, here cell 

positions (means of Gaussian distributions) were taken from OpenWorm atlas to mimic cell 

configuration in C. elegans head. 130 cells were randomly selected from OpenWorm atlas and 
positions of only those cells were used for a specific video. This mimics the fact that typically in 

whole brain recordings, not all cells are imaged due to low fluorophore expression. Further, 

temporal intensities for each cell were specified using experimental whole-brain recording 
datasets published previously [11]. A 100 frame window was randomly selected from published 

data, cell traces within the selected window were extracted from the published data, and each cell 

in synthetic video was randomly assigned a trace from the selected chunk. Thus realistic 

experimental calcium traces were present in synthetic video for each cell. Next, intensities of all 
frames were scaled to a maximum photon count level (using the maximum and minimum pixel 

intensity across all frames) to specify the peak signal in video. Four photon count levels (100, 200, 

500, 1000) were used. This specified the ground-truth clean video. To generate the corresponding 
noisy video, two kinds of noises were added to each frame, photon shot noise (Poisson noise) 

and readout noise (normally distributed with mean 0 and 1 variance). 
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Calcium imaging data collection 

We demonstrate deep denoising framework’s capability to extract high quality calcium traces from 

noisy videos for three applications. 

1. High magnification head ganglion functional imaging - Data was collected using 

ZIM504 strain. Animals were synchronized to L4 stage and were immobilized in a 

microfluidic array device. Video (3D + t) stacks (30 z planes with 1 μm spacing, x time 

points) were acquired at 10ms exposure time, using Plan Fluor 0.75 NA 40x air objective. 
Noisy (low SNR) frames were acquired at low laser power. For each noisy stack, a ground-

truth (high SNR) stack was acquired alternatively. Thus, the two stacks were not 

completely synchronous, however the time difference between two stacks was very small 
(~100ms) compared to the dynamics of calcium signal. We compared the traces extracted 

from noisy video after denoising it with deep neural network with the traces extracted from 

ground-truth video to ensure that deep denoising does not introduce artifacts in traces.  

2. Low magnification functional imaging of ventral cord neurons in device - Data was 
collected using OH16230 strain. Animals were synchronized to L4 stage and were 

immobilized in a microfluidic array device. Video (3D + t) stacks (40 z planes with 1 μm 

spacing, x time points) were acquired with 10ms exposure time and SPlan Fluor ELWD 

0.45NA 20x air objective. All stacks were acquired at low laser power settings. 
3. Low magnification functional imaging of ventral cord in freely moving animals - 

Data was collected using OH16230 strain. Animals were synchronized to L4 stage and 

were sandwiched between two agar pads on two cover-slips before imaging. 3D stacks 
(20 z planes with 1 um spacing, x time points) were collected at 10 ms exposure time 

using Plan Apo Lambda 0.75NA 20x air objective. All stacks were acquired at low laser 

power settings. At 20x magnification, animals were tracked easily while imaging using z 

stage x-y controller and kept in the field of view. 

Network optimization 

We experimented with UNet[17,28], Hourglass[29] and DFCAN[21] architectures given the past 

success of these networks shown in several biological image analysis tasks such as image 

restoration, pose prediction, segmentation etc. Architecture details of networks are shown in 
Supplementary Figure 1, 2. We tested with three hyper-parameters and training settings as 

described below. In all cases, the network takes as input a noisy (low SNR) image (512 X 512 X 

d) and through applications of convolutional layers with non-linear activation (ReLU), max-pooling, 
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up-sampling, feature concatenation or summation generates an output image (512 X 512 X d). 

Here 𝑑𝑑 is the depth of input and output images. We experimented with different 𝑑𝑑 values as 

described below. Parameters in networks were trained using stochastic gradient descent with 

AdamOptimizer (learning rate 0.001) such that the output image is as close as possible (per some 
loss function) to the corresponding clean (high SNR) image. Training was performed on 

computing clusters using 16GB or 32 GB GPUs. 

1. Architectures – The following convolutional neural network architectures were tested. 

i. UNet – An architecture very similar to conventional UNet architecture was used 
with 4 down-sampling/max pooling and 4 up-sampling layers. In this case, the 

first feature map had 32 channels (i.e. 512 X 512 X 32). Depth (number of 

channels) of feature maps after each max pooling based down-sampling doubled 

and depth of feature maps after each up-sampling layer halved. Similar to 
conventional UNet, long range residual connections were included that 

concatenate feature maps in down sampling to the feature maps in up-sampling 

layers. 
ii. UNet_fixed – This architecture is the same as the Unet architecture. However in 

this case the depth of all feature maps was fixed to 32. Doing so significantly 

reduced the model size compared to Unet and decreased the network training 

and inference time without any decrease in accuracy (Fig. 1B, Supplementary 
Figure 3). 

iii. Hourglass_wores – An architecture very similar to the conventional Hourglass 

architecture was used. Compared to the Unet architecture, where long range 
residual connections are a direct concatenation of feature maps in down-

sampling layers to feature maps in up-sampling layers, Hourglass architecture 

has side blocks with trainable parameters (see Supplementary Figure 2) that 

extract features from down-sampling layers before max-pooling them and adding 
them to the feature maps in up-sampling layers. This enables the network to 

extract relevant information from feature maps in down-sampling layers. In our 

implementation, different from conventional Hourglass architecture, depth of 
feature maps within each convolutional block was not kept fixed thus it was not 

possible to include short range residual connection within convolutional block as 

it requires summation of input and output with same feature depth. Depth of the 

first feature map was set as 32. Depth of feature maps after each down-sampling 
layer doubled and depth of feature maps after each up-sampling layer halved 
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iv. Hourglass_wres – Architecture same as Hourglass_wores was used. However, 

in this case depth of feature maps in each layer was kept fixed as 32. Further, 
short range residual connection within each convolutional block was used. 

Keeping the depth of feature maps fixed to 32 significantly reduced the model 

size compared to Hourglass_wores, and decreased the network training and 

inference time without any decrease in accuracy (Fig. 1B, Supplementary Figure 
3). 

v. DFCAN – Architecture implementation was borrowed from previously published 

code[21]. We were not able to train the network when input size was 512 X 512 
X 1 with published architecture on 32GB memory GPU due to large GPU memory 

requirements. Thus, we reduced the feature depth in FCAB (feature channel 

attention blocks) to 32 compared to 64 in published implementation. Further, we 

trained the network with 128 X 128 X 1 images instead of 512 X 512 X 1 (used 
for previous methods in this section) to further reduce memory requirements. 

The number of RCABs (residual channel attention blocks) was kept as 4 and 

each RCAB contained 4 FCABs, same as published implementation. By design 
for our task, the output image size is the same as the input image size; thus, 

scale factor was set to 1. With these settings, we trained several instances of 

networks with random selection of same of amount of training data used for 

previous architectures. However, the network did not train well as the output 
images of the trained networks looked empty across all training instances. This 

could be due to not enough training data needed by DFCAN. Thus, DFCAN was 

not considered for further optimization. 
 

All models were trained on the same set of training data and accuracy was tested on a 

separate held-out dataset consisting of 600 images. Based on comparable or higher 

accuracy achieved by UNet_fixed and Hourglass_wres architectures compared to other 
architectures and much smaller memory footprint of these architectures, we selected 

these architectures for our applications. Small memory footprint also provides the benefit 

of faster training and faster inference, thus making models user friendly and enabling real 

time applications. 
Apart from architecture type, we also sought to determine if larger filters in convolutional 

layers can increase accuracy as they can take into account longer range spatial context 

in images. To do so, we compared the prediction accuracy of the two selected 
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architectures for two sizes of convolution filters (3 X 3 vs 5 X 5). Since we did not see 

significant differences in accuracy when using 5 X 5 filters, and models with 3 X 3 filters 
have smaller memory footprint, we used 3 X 3 filters. 

2. Loss function – Two kinds of loss functions have been used previously for image 

restoration tasks, L2 loss and L1 loss[17]. We asked if one loss function may achieve 

higher denoising accuracy on some datasets whereas the other may achieve higher 
accuracy on others. Thus, we trained the networks with both loss functions and compared 

the accuracy of models across them for all datasets. For high-magnification head ganglion 

dataset, we found that accuracy of all architectures was comparable across L2 and L1 

losses, with L2 loss performing slightly better in SSIM metric (Supplementary Figure 3). 
Further, L1 loss showed more stable training, as different rounds of training the network 

from scratch showed lower variability in accuracy. In comparison, L2 loss-trained network 

showed greater variability in performance across different rounds of training. For harsh 

and gentle touch mechanosensory neurons’ neurite data, L2 loss performed slightly better 
than L1 loss (Supplementary Figure 18). 

3. 2D vs 2.5D vs 3D training – To identify if depth context in 3D image stacks can improve 

de-noising performance, we tested several models (Supplementary Figure 4). 

i. 2D models that take as input 1 low SNR image (512 X 512 X 1) and output 1 
high SNR image (512 X 512 X 1).  

ii. 2.5D models that take as input a noisy 2D image and 𝑑𝑑 z-planes above it and 

below it (512 X 512 X (2𝑑𝑑 + 1)) and outputs 1 high SNR image (512 X 512 X 1). 

Thus the network uses contextual information in z planes above and below the 

image to be de-noised. The output of the network corresponds to the center z-

plane of the input, i.e. the loss is minimized with respect to the center z plane. 

We tested two values of 𝑑𝑑 with 𝑑𝑑 = 1, and 𝑑𝑑 = 2. Higher values of 𝑑𝑑 increases 

the memory footprint of training. 
iii. 3D models that take as input a 3D image stack consisting of 𝑑𝑑 z-planes and 

outputs a 3D stack consisting of 𝑑𝑑 z-planes. Thus, all z-planes in the 3D input 

stack are de-noised simultaneously. Here again we tested two values of 𝑑𝑑 with 

𝑑𝑑 = 1, and 𝑑𝑑 = 2. 

All models were trained on the same set of training data, and accuracy was tested on a 

separate held-out but same for all dataset consisting of 600 images. Across these models 

we found that 2D models performed best. In principle, taking contextual information into 
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consideration could improve performances. Our observation can be explained by the 

following. For 2.5D models, noise in z-planes around the center z plane confused the 
model to focus on denoising center z-plane; further, for 3D models we had to reduce the 

batch size while training due to memory constraints, which could reduce training 

performance.  

Denoising and extracting calcium traces 

Whole-brain video – Low SNR video collected at low laser power was first de-noised using a 
network trained on whole-brain image dataset. The trained network takes as input individual noisy 

z planes (512 X 512 X 1) of 3D image stacks in the video and outputs high SNR z planes (512 X 

512 X 1), which were subsequently combined to form the de-noised video. To obtain activity traces, 
nuclei in ground-truth video were first segmented using a Gaussian mixture based segmentation 

method. Segmented nuclei were tracked across frames using an automated tracking algorithm. 

Generated tracks of cells were manually inspected and tracks for cells with minor tracking errors 

were semi-manually corrected. Single pixel activity traces were extracted using the centers of the 
tracked segmented masks. The same segmented masks were used to extract activity traces from 

the noisy video and the de-noised video as well to get consistent activity traces across videos and 

avoid any comparison artifacts due to differences in cell segmentation procedures across videos. 

Ventral cord motor neurons in device – The process is same as that to extracting traces from 
whole-brain videos except that here we de-noise maximum projection images of 3D stacks in the 

video instead of whole 3D stacks as in whole-brain video denoising case. Thus, in this case the 

trained network takes as input a maximum projection image of a noisy stack (512 X 512 X 40 
converted to 512 X 512 X 1) in the video and outputs high SNR maximum projection stack (512 

X 512 X 1). Neuron activity traces were extracted from the maximum projection denoised output. 

Ventral cord motor neurons in freely moving animal – Here again we de-noise maximum 

projection images of 3D stacks in the video instead of whole 3D stacks. The trained network takes 
as input a maximum projection image of a noisy stack (512 X 512 X 20 converted to 512 X 512 X 

1) in the video; and outputs high SNR maximum projection stack (512 X 512 X 1). Neuron activity 

traces were extracted from the maximum projection de-noised output. To do so, cells in maximum 
projection images were tracked manually using ManualTracking plugin in Fiji. Subsequently, 

single pixel activity traces were extracted from both noisy and de-noised videos using track 

centers. 
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Accuracy quantification  

1. Image denoising accuracy – We quantify image denoising accuracy using 3 metrics – root 

mean square error (RMSE), peak signal to noise ratio (PSNR) and Structural Similarity 
Index (SSIM). For each of these metrics, high SNR (ground-truth) image was taken as the 

reference, and corresponding low SNR (noisy) and network output (denoised) images 

were compared to the reference. Since maximum intensity value or dynamic range of low 

SNR (noisy) images is much lower than those in high SNR (clean) images, we normalized 
intensity values in all images first before calculating the accuracy metrics to prevent 

arbitrary inflation of errors. Same methodology was used for network optimization and 

accuracy analysis across all datasets including high magnification whole-brain dataset, 
low magnification ventral cord imaging, and high magnification neurite dataset). 

2. Activity trace from experimental whole-brain video – Single pixel neuron activity traces 

were extracted from the noisy video, ground-truth video and deep denoised video (see 

Online Methods – Calcium imaging data collection for video acquisition details and Online 
Methods – Denoising and extracting calcium traces for activity extraction details). 

Accuracy was quantified by  

a. Comparing MAE (mean absolute error) of traces extracted from noisy and 

denoised videos to the traces extracted from ground-truth video. 
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b. Comparing Pearson correlation coefficient of neuron activity traces extracted from 

noisy and denoised videos to the traces extracted from the ground-truth video. 

Neuron activity - curvature correlation in freely moving animal 

To calculate the curvature of the body as C. elegans moves, a 4th degree polynomial was fitted to 
the coordinates of tracked ventral cord neurons to get ventral cord backbone. Since some cells 

go out of field of view during animal motion, cells that were consistently present across all frames 

were used to extract a backbone chunk and curvature analysis was performed using this 
backbone chuck only. The backbone chunk was divided into 100 segments (sampled at 100 

points) and tangent angles to the backbone were calculated at these points. Neuron activity traces 
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were cross-correlated to tangent angles at all points (shown in heat maps in Supplementary 

Figure 17D). To quantify improvement in neuron activity-curvature cross-correlation in deep 
denoised videos, cell traces were cross-correlated to local tangent angles i.e. tangent angles to 

the backbone at cell’s location, and maximum absolute value of the cross-correlation across cells 

was compared when activity traces were extracted from noisy videos or denoised videos. 

Neurite segmentation 

Harsh touch neuron PVD’s neurites were segmented in noisy and deep denoised images using 
custom script in MATLAB. The custom script included basic operations with functionalities 

available in MATLAB - 1) image was sharpened 2) binarized with adaptive thresholding, 3) 

morphologically eroded to remove segmented noise 4) small holes were filled in image 
complement, and 5) structures smaller than fixed pixel size were removed. 

Comparisons against other methods 

We compared the denoising performance of our optimized architectures with several methods 

across three accuracy metrics; RMSE, SSIM, PSNR. The methods included traditional methods 

such as Median Filtering and Gaussian Filtering, advanced non-deep learning based methods 
such as NLM [53], BM3D [54,55], and deep learning based methods such as CARE [17], and 

RCAN [19]. Below we provide implementation details of these methods. Median Filtering was 

implemented using default MATLAB function. Three window sizes (3, 5, and 7) for filtering were 

tried for each dataset and results were reported for best performing window size. Gaussian 
Filtering was implemented using default MATLAB function. Three kernel sizes or standard 

deviation values (1, 3, and 5) were tried for each dataset and results were reported for best 

performing window size. NLM method was implemented using default MATLAB function. No 
parameters were set for NLM method as it automatically estimates the degree of smoothing based 

on standard deviation of noise in the image. BM3D method was implemented using MATLAB 

implementation available here https://webpages.tuni.fi/foi/GCF-BM3D/. Four different values of 

noise standard deviation were tried (0.05, 0.1, 0.2, 0.5) and results were reported for best 
performing value for each data set. CARE was implemented using the code provided at 

https://github.com/CSBDeep/CSBDeep. Default parameters provided in code were used for 

training except unet_n_depth was set as 4 to be comparable to vanilla UNet architecture that we 
tried. RCAN was implemented using code provided at https://github.com/AiviaCommunity/3D-

RCAN. Default parameters set in code were used for training. 
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Inference runtime comparisons - system configuration 

To compare inference runtime across various deep learning methods, the following system 

configurations were used.  

1. GPU – Quadro M4000, memoryClockRate(GHz): 0.7725, compute capability: 5.2, 

totalMemory: 8.00 GiB 

2. CPU – Intel® Xeon® CPU E5-1620 v4 @ 3.50GHz, RAM: 32 GB, 64-bit Operating System, 

x64-based processor 

Code availability 

Code with example datasets is available at https://github.com/shiveshc/whole-

brain_DeepDenoising. Instructions on how to run code on sample datasets and train on new 

datasets are available in the same repository. 
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Figure 1. Neuro-Image Denoising with Deep Learning (NIDDL) framework.  

A) Overview of the SL framework  to recover high SNR from a variety of imaging conditions.  

B) An example noisy image (1 zplane from 3D stack) acquired at low laser power and corresponding 
deep denoised image generated by trained network . Inset ‘a’ highlights nuclei are difficult to distinguish in 
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noisy image but can be easily distinguished in denoised image. Right bottom panel shows intensity along 
dotted lines in noisy and deep denoised images. Data comes from strain OH16230.  

C) The optimized neural network  architectures ‘unet_fixed’ and ‘hourglass_wres’ have 20-30X lower 
model size (3.77 MB and 3.66 MB) and 3-4X faster inference time (average 48.9 ms and 68.7 ms per 512 
X 512 image calculated across 600 images) compared to CARE, RCAN, and non-optimized UNet, 
Hourglass. Architectures highlighted in red correspond to NIDDL. 

D) Per epoch training time comparison across neural network architecture variants with batch size of 50 
and epoch training size of 1000 images. Each dot corresponds to average epoch train time across 100 
epochs for each instance of trained networks. Error bars indicate standard deviation across 5-10 
instances of training with random subset of total data used for training each instance. Architectures 
highlighted in red correspond to NIDDL. 

E) Denoising time comparison of deep learning methods when inference is performed using GPU and 
without GPU. (n = 50-600 images). Box indicates 25th and 75th percentile, whiskers indicate 5th and 95th 
percentile 

F) Training curves for the optimized neural network architectures and cumulative epoch training time with 
batch size of 50 images and epoch training size of 1000 images. The optimized architectures train faster 
(all within 400-800 s) compared to other methods. Error bars in training curve correspond to standard 
deviation across 10 instances of training. 

G) Accuracy vs training data size trade-off for optimized architectures. Each dot corresponds to mean 
RMSE accuracy on 600 test images for one instance of trained network. In total, 10 instances were 
trained for each condition with random condition specific subset of total data used for training each 
instance. RMSE accuracy plateaus above 500 images for both architectures. Data comes from strain 
ZIM504. Box indicates 25th and 75th percentile, whiskers indicate 5th and 95th percentile.  
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Figure 2. NIDDL denoises whole-brain images in C. elegans.   
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A) Left – Two example noisy images (single z planes) from noisy whole-brain image stacks (acquired at 
low laser power). Right – corresponding denoised output generated by different methods. Cell nuclei are 
labelled with nuclear localized GCaMP5K. Data comes from strain ZIM504. Inset shows intensity profile 
along the dotted line. 

B) Comparison of RMSE to ground-truth high SNR image across noisy images, and denoised images 
output by various methods including Median filtered, Gaussian filtered, NLM, BM3D, CARE, RCAN and 
NIDDL (n = 600 images). Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile 
of data. 
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Figure 3. NIDDL performance generalizes across strains and experiments  

A) Denoising accuracy quantification on images from 2 different strains with different cell labelling 
markers when model is trained with specific strain’s data only. Data comes from OH16230 (Strain – 1), 
and ZIM504 (Strain – 2). A) Left – example noisy images from 2 strains, right – corresponding denoised 
image outputs by 2 different networks trained on specific strain’s data.  
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B) Intensity profiles along the dotted lines shown in insets in A for noisy images and denoised images 
output by 3 different networks.  

C) Comparison of within strain denoising performance and across strain denoising performance. Left – 
RMSE accuracy, Middle - SSIM accuracy, and Right – PSNR accuracy on noisy images from 2 strains 
when networks are trained on specific strain’s data. (n = 100, 3,006, 1,403, 50 images for 4 conditions, 
***p<0.001, Bonferroni paired comparison test). Boxes indicate 25th and 75th percentile. Whiskers indicate 
5th and 95th percentile of data.  

D) Denoising accuracy on images acquired with 3 different laser power settings (lp1 – extremely low laser 
power, lp2 – very low laser power, lp3 – low laser power) when model is trained with specific laser power 
setting’s data only. Data comes from strain ZIM504. (n = 88, 2,728, 2,728, 2,262, 100, 2,262, 2,806, 
2,806, 226 images for 9 conditions, ***p<0.001, **p<0.01, *p<0.05 Bonferroni paired comparison test). 
Boxes indicate 25th and 75th percentile. Whiskers indicate 5th and 95th percentile of data. 

E) Denoising accuracy on images from 3 different days’ imaging sessions when model is trained with 
specific day’s data only. Data comes from ZIM504. (n = 40, 1,043, 1,043, 1,532, 50, 1,532, 1,403, 1,403, 
50 images for 9 conditions). Boxes indicate 25th and 75th percentile. Whiskers indicate 5th and 95th 
percentile of data.  

F) Comparisons of SNR levels in noisy images across conditions. Left – across different strains (n = 
3,006, 1,403 images), middle – across different laser powers (n = 1,403, 1,364, 1,101 images), right – 
across different days (n = 1,403, 1,532, 1,043 images). Boxes indicate 25th and 75th percentile. Whiskers 
indicate 5th and 95th percentile of data. 
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Figure 4. High quality whole-brain Ca trace recovery using NIDDL.  

A) Top – max projection of an example image stack from a noisy whole-brain video recording (acquired at 
low laser power). Bottom – corresponding deep denoised output. Cell nuclei are labelled with nuclear 
localized GCaMP5K. Data comes from strain ZIM504.  

B) Neuron activity traces extracted from the noisy video (shown in A), high SNR ground-truth video for the 
same recording (acquired at high laser power), and deep denoised video output by network  trained only 
on separate image data. 
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C) Cell-wise comparison of mean absolute errors (MAE) (Left) and Pearson correlation coefficients 
(Right) of traces extracted from noisy video and denoised video to corresponding traces extracted 
ground-truth video.  

D) Pairwise Pearson correlation among neuron activity traces extracted from noisy video, ground-truth 
video, and deep denoised video. 
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Figure 5. High quality Ca trace recovery in large field-of-view imaging of spatially distributed 
motor neurons.  

A) Top - max projection of a large FOV noisy image stack (acquired at low laser power, 20X 
magnification) showing motor neurons in ventral nerve cord. Bottom – denoised outputs generated by 
various methods shown for square box marked in the top image. Inset shows intensity profile along the 
dotted line. Cell nuclei are labelled with nuclear localized GCaMP6s. Data comes from strain OH16230. 

B) B) Comparison of RMSE to ground-truth high SNR image across noisy images, and denoised images 
output by various methods including Median filtered, Gaussian filtered, NLM, BM3D, CARE, RCAN and 
NIDDL (n = 60-217 images). Images were collected in-device using strain OH16230. Box indicates 25th 
and 75th percentile. Whiskers indicate 5th and 95th percentile. 

C) Top left – maximum projection of an image stack from a noisy large FOV video recording (acquired at 
low laser power, 20X magnification) showing motor neurons in ventral cord of two animals restrained in 
microfluidic device. Top right – corresponding denoised output by NIDDL. Bottom left – single pixel 
neuron activity traces extracted from the noisy video for worm 2 labeled in images above. Bottom right – 
corresponding single pixel neuron activity traces extracted from the deep denoised video (arrows indicate 
coordinated activities). Data comes from OH16230 strain.  

D) Top left – max projection of an image stack from a noisy large FOV video recording (acquired at low 
laser power, 20X magnification) showing motor neurons in ventral cord of a freely moving animal. Top 
right – corresponding deep denoised output. Bottom left – single pixel neuron activity traces extracted 
from the noisy video. Bottom right – corresponding single pixel neuron activity traces extracted from the 
deep denoised video (arrows indicate coordinated activities). Data comes from OH16230 strain. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488233doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 6. NIDDL recovers complex neurite morphology of mechanosensory neurons  

A) Top – max projection of a noisy image stack (acquired at low laser power) showing neurites of harsh 
touch mechanosensory neuron PVD labeled with mScarlet. Data comes from strain GT366. Bottom –
denoised outputs generated by various methods shown for dotted box in top image. Cyan trace in inset 
denotes pixel intensities along the dotted line.  

B) Comparison of RMSE accuracy across noisy images, and denoised images output by various 
methods. Data comes from strains GT372 and GT366. (n = 86-443 images). Boxes indicate 25th and 75th 
percentile, whiskers indicate 5th and 95th percentile of the data.  

C) NIDDL denoising of images facilitate neurite segmentation. Top - example noisy image showing harsh 
touch mechanosensory neuron PVD’s neurites, no regions are detected in noisy images with simple 
morphological operations (see Methods – Neurite segmentation). Bottom - corresponding NIDDL 
denoised output and segmented neurites in denoised image. Data comes from strain GT366.  

D) Deep denoising RMSE accuracy comparison on noisy images from 2 different strains, GT372 and 
GT366 that label neurites of gentle touch and harsh touch mechanosensory neurons respectively, when 
models are trained on specific strain’s data. (n = 129, 203, 118, 97 images for 4 conditions, ***p<0.001, 
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*p<0.05, Bonferroni paired comparison. Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 
95th percentile of the data. 
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Supplementary Figure 1. Additional examples of whole-brain noisy images denoised by trained network. 
A) Top – random example noisy images (acquired at low laser power) from different animals (1 z-plane 
from 3D image stack) and corresponding denoised output, bottom left – zoom ins of image portions 
highlighted with dotted box in top panel, bottom right – pixel intensities extracted from noisy images and 
deep denoised images along the dotted lines shown in insets. Clear peaks and valleys in intensity profiles 
in denoised images correspond to individual nuclei. Data comes from strain ZIM504. 
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Supplementary Figure 2: Architecture details of variants of UNets tried for denoising images. A) 
Traditional UNet architecture. B) Optimized UNet architecture with fixed channel depth. 
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Supplementary Figure 3: Architecture details of variants of Hourglass architecture tried for denoising 
images. A) Optimized hourglass architecture with fixed channel depth and residual connections in 
convolution block (conv block). B) Hourglass architecture with channel depth doubling after max-pooling 
operations and no residual connections in conv block. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488233doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 4. Denoising accuracy comparison across neural network architecture variants and 
loss functions. A) Left - RMSE accuracy, middle – SSIM accuracy and right - PSNR of denoised images 
across architectures trained with specific loss functions (L1 and L2 loss). Each dot in every panel 
corresponds to mean accuracy on 600 test images for one instance of trained network. In total, 10 
instances were trained for each condition with random subset of total data used for training each 
instance. Data comes from strain ZIM504. (n = 10, **p<0.01, *p<0.05, Bonferroni paired comparison test). 
Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Figure 5. Denoising accuracy comparison across training modes for the optimized 
architectures ‘unet_fixed’ and ‘hourglass_wres’. See Methods – Network  Optimization 3 for description of 
training modes. A) Left - RMSE accuracy, middle – SSIM accuracy and right - PSNR of denoised images 
across training modes for ‘hourglass_wres’ and ‘unet_fixed’ architectures. Each dot in every panel 
corresponds to mean accuracy on 600 test images for one instance of trained network. In total, 10 
instances were trained for each condition with random subset of total data used for training each 
instance. Data comes from strain ZIM504. (n = 10, ***p<0.001, **p<0.01, *p<0.05, Bonferroni paired 
comparison test). Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Figure 6. Accuracy vs training data size trade-off for optimized architectures. A) Left – 
SSIM accuracy, right – PSNR of denoised images vs number of images used for training the networks. 
Each dot corresponds to mean accuracy on 600 test images for one instance of trained network. In total, 
10 instances were trained for each condition with random condition specific subset of total data used for 
each training instance. Data come from strain ZIM504. Boxes indicate 25th and 75th percentile, whiskers 
indicate 5th and 95th percentile of data. 
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Supplementary Figure 7. Additional qualitative comparison examples of denoising methods on whole-
brain images. Left - example noisy images (single z planes) from noisy whole-brain image stacks 
(acquired at low laser power). Right – corresponding denoised output generated by different methods. 
Cell nuclei are labelled with nuclear localized GCaMP5K. Data comes from strain ZIM504. Inset shows 
intensity profile along the dotted line.  
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Supplementary Figure 8. Additional accuracy comparison of various denoising methods for whole-brain 
images. A) Left - SSIM accuracy, right – PSNR across noisy images, median filtered images, Gaussian 
filtered images, and deep denoised images (n = 600 images). Data comes from strain ZIM504. Boxes 
indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Figure 9. Additional deep denoising accuracy quantification on images from 3 different 
imaging sessions (different days) when model is trained with specific day’s data only. Data comes from 
ZIM504 strain. A) Left – example noisy images from 3 imaging sessions, right – corresponding denoised 
image outputs by 3 different networks trained on specific day’s data. B) Intensity profiles along the dotted 
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lines shown in insets in A for noisy images and denoised images output by 3 different networks. C) SSIM 
accuracy and D) PSNR achieved by deep denoising on noisy images from 3 imaging sessions when 
networks are trained on specific strain’s data. (n = 40, 1,043, 1,043, 1,532, 50, 1,532, 1,403, 1,403, 50 
images for 9 conditions, **p<0.01, Bonferroni paired comparison test). Boxes indicate 25th and 75th 
percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Figure 10. Additional deep denoising accuracy quantification on images acquired with 3 
different low laser power settings when model is trained with specific setting’s data only. Data comes from 
ZIM504 strain. A) Left – example noisy images acquired across 3 laser power settings, right – 
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corresponding denoised image outputs by 3 different networks trained on specific settings’ data. B) 
Intensity profiles along the dotted lines shown in insets in A for noisy images and denoised images output 
by 3 different networks. C) SSIM accuracy and D) PSNR achieved by deep denoising on noisy images 
across 3 laser power settings when networks are trained on specific setting’s data. ((n = 88, 2,728, 2,728, 
2,262, 100, 2,262, 2,806, 2,806, 226 images for 9 conditions, ***p<0.001, **p<0.01, *p<0.05, Bonferroni 
paired comparison test). Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile 
of data. 
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Supplementary Figure 11. Additional denoising accuracy quantification on synthetic images. A) Examples 
of synthetic noisy and ground-truth image stacks across range of signal levels in images (photon count 
levels, see Methods - synthetic image data generation for details), and corresponding denoised images 
generated by median filtering, Gaussian filtering, deep denoising. B) Left – SSIM, Right - RMSE 
comparison across methods on synthetic images across range of photon count levels (n = 100 image 
stacks). Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Figure 12. Accuracy quantification of traces extracted from deep denoised videos using 
semi-synthetic whole-brain video datasets (see Methods – Semi synthetic video data generation). A) 
Heatmap showing neuron activity traces of cells in a semi-synthetic noisy video, corresponding ground-
truth video, and traces extracted from video denoised with deep network . (Video corresponds to 200 
photon count level). B) Neuron activities from noisy video, ground-truth video and deep denoised video in 
A projected on to first 2 PC’s. Deep denoising recovers low-dimensional neuron activity dynamics. C) 
Comparison of traces in noisy video to traces in ground-truth video for few example cells before and after 
deep denoising (same video as in A). D) MAE of traces to ground-truth traces across denoising methods 
and signal levels on videos (photon count levels). (N = 1 video, n = 130 cells in each video for each 
condition). Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Figure 13. Additional examples of deep denoising of large field of view (FOV) noisy image 
stacks. Left - max projections of noisy images (acquired at low laser power, 20X magnification) showing 
motor neurons in ventral nerve cord. Right – corresponding deep denoised outputs. Data comes from 
strain OH16230. Arrows indicate example cells that are difficult to identity in noisy images but can be 
easily identified in denoised images. 
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Supplementary Figure 14. Additional qualitative comparison examples of denoising methods on large 
FOV (20X) motor neuron images. Left - max projections of noisy images (acquired at low laser power, 
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20X magnification) showing motor neurons in ventral nerve cord. Right – corresponding denoised output 
generated by different methods shown for dotted box in noisy images. Inset shows intensity profile along 
the dotted line. Data comes from strain OH16230.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.13.488233doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 15. Accuracy comparison of NIDDL with traditional denoising methods and deep 
learning based methods on large FOV (20X magnification) ventral cord data as shown in Fig. 2F. A) Left 
– SSIM accuracy, right – PSNR comparison across various methods. (n = 60-217 images). Boxes 
indicate 25th and 75th percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Figure 16. Additional examples of ventral cord neurons’ activity traces extracted from in-
device recordings. Left panel – single pixel neuron activity traces from noisy videos, right – corresponding 
traces from deep denoised videos for A) worm 1 in Figure 2H, B) worm 2, C) worm 3, D) worm 4.  
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Supplementary Figure 17. Deep denoising enables correlating neuron activity to behavior in freely moving 
animal. A) Example frame from video recording of freely-moving C. elegans showing tracked ventral cord 
neurons. B) Tangent angle along the body as it changes with time. ‘A’ denotes anterior side and ‘P’ 
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denotes posterior side. C) Comparison of maximum absolute value of correlation between neuron 
activities and curvature (n = 15 cells, **p<0.01, Bonferroni paired comparison test). Boxes indicate 25th 
and 75th percentile, whiskers indicate extreme data points D) Left and middle panels – heat map plots of 
cross correlation of neuron activities to animal curvature. Body portion was discretized into 100 segments. 
Rows in each heat map indicate cross correlation of neuron activity to curvature at the specific body 
segment. ‘A’ denotes anterior side and ‘P’ denotes posterior side. White dotted line indicates the position 
of the cell on the body portion. Right panels – cross correlation along the dotted white line in left and 
middle panels i.e. cross correlation of neuron activity to local curvature of the body where the cell is 
located. 
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Supplementary Figure 18. Network  performance comparisons across two different architectures and loss 
functions for denoising neurite images. A) RMSE accuracy, B) SSIM accuracy and C) PSNR of deep 
denoised images from test data set across optimized neural network architectures (‘unet_fixed’ and 
‘hourglass_wres’) and loss functions (L1 and L2). Data comes from strains GT372 and GT366. (n = 174, 
159, 79, 99 images for 4 conditions). Boxes indicate 25th and 75th percentile, whiskers indicate 5th and 
95th percentile of data. 
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Supplementary Figure 19. Additional examples of deep denoising of harsh touch mechanosensory 
neuron PVD’s neurites. A) Left panels – noisy images (acquired at low laser power), right panels – 
corresponding deep denoised output. Cyan traces in inset indicate pixel intensities along dotted lines. 
Data comes from strain GT366. 
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Supplementary Figure 20. Additional qualitative comparison examples of different denoising methods on 
harsh touch mechanosensory neuron PVD’s neurites. Left - max projections of noisy images (acquired at 
low laser power, 20X magnification) showing motor neurons in ventral nerve cord. Right – corresponding 
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denoised output generated by different methods shown for dotted box in noisy images. Inset shows 
intensity profile along the dotted line. Data comes from strain OH16230. 
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Supplementary Figure 21. Deep denoising of images facilitate neurite segmentation. A) Examples of 
noisy images showing harsh touch mechanosensory neuron PVD’s neurites, no regions are detected in 
noisy images with simple morphological operations (see Methods – Neurite segmentation), corresponding 
deep denoised outputs and segmented neurites in denoised images. Data comes from strain GT366. 
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Supplementary Figure 22. Additional accuracy comparison of NIDDL with other non-deep-learning and 
deep-learning based methods for neurites of gentle touch and harsh touch neurons. A) SSIM accuracy 
and B) PSNR of noisy images, median filtered images, Gaussian filtered images, and deep denoised 
images. Data comes from strains GT372 and GT366. (n = 86-443 images). Boxes indicate 25th and 75th 
percentile, whiskers indicate 5th and 75th percentile. 
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Supplementary Figure 23. Accuracy comparison on noisy images from 2 different strains, GT372 and 
GT366 that label neurites of gentle touch and harsh touch mechanosensory neurons respectively, when 
models are trained on specific strain’s data. A) Left – SSIM accuracy and right – PSNR achieved by deep 
denoising when networks are trained on specific strain’s data. (n = 129, 203, 118, 97 images for 4 
conditions, ***p<0.001, *p<0.05, Bonferroni paired comparison test). Boxes indicate 25th and 75th 
percentile, whiskers indicate 5th and 95th percentile of data. 
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Supplementary Video Captions 

 

Supplementary Video 1 – Deep denoising examples of low SNR whole-brain images. Video shows 3 low 

SNR images from different animals (1 z-plane from 3D stack) acquired at low laser power and 

corresponding deep denoised image generated by trained network. Data comes from strain ZIM504 and 

OH16230. Scale bar corresponds to 5 µm. 

 

Supplementary Video 2 – Deep denoising of whole-brain recording. Max-projection images for low SNR 

video acquired at low laser power, high SNR video acquired at high laser power, and corresponding deep 

denoised video generated by network. Cell nuclei are labelled with nuclear localized GCaMP5K. Data 

comes from strain ZIM504. Scale bar corresponds to 5 µm. 

 

Supplementary Video 3 – Deep denoising of ventral cord neurons for animals restrained in microfluidic 

device. Max projection images of low SNR video acquired at low laser power and corresponding deep 

denoised video. Video shows two animals in microfluidic device. Data comes from strain OH16230. Scale 

bar corresponds to 10.4 µm. 

 

Supplementary Video 4 – Deep denoising of ventral cord neurons for freely moving animal. Max 

projection images of low SNR video acquired at low laser power and corresponding deep denoised 

video. Data comes from strain OH16230. Scale bar corresponds to 10.4 µm. 

 

Supplementary Video 5 – Deep denoising of neurites of harsh and gentle touch mechanosensory 

neurons. Video shows 3 low SNR images (max-projections of 3D stack) from different animals acquired 

at low laser power and corresponding deep denoised image generated by trained network. Data comes 

from strain GT372 and GT366. Scale bar corresponds to 5 µm. 
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