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Volumetric functional imaging is widely used for recording neuron activities in vivo, but there exist
tradeoffs between the quality of the extracted calcium traces, imaging speed, and laser power.
While deep-learning methods have recently been applied to denoise images, their applications to
downstream analyses, such as recovering high-SNR calcium traces, have been limited. Further,
these methods require temporally-linked pre-registered data with ultrafast rates. Here, we
demonstrate supervised deep-denoising methods to circumvent these tradeoffs for several
applications, including whole-brain imaging, large field-of-view imaging in freely moving animals,
andrecovering complexneurite structuresin C. elegans. Our framework has 30x smaller memory
footprint, and is fast in training and inference (50-70ms); it is highly accurate and generalizable,
and further, only small, non-temporally-sequential, independently-acquired training datasets
(~500 images) are needed. We envision that the framework will enable faster and long-term

imaging experiments necessary to study neuronal mechanisms of many behaviors.
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Introduction

Fluorescent functional imaging is ubiquitous in neuroscience research in model systems.
The persistent goal is to image wider (more cells and larger areas), deeper, and faster, while
enhancing signal-to-noise ratio (SNR). For commonly available functional imaging setups such
as point-scanning or spinning disk confocal systems, tradeoffs exist between SNR in images and
microscopy parameters such as imaging speed (exposure time), field-of-view (FOV), image
resolution, length of recording efc. While advancements in genetically encoded calcium and
voltage indicators and newmicroscopic techniques [1-10] with high spatiotemporal resolution and
large FOV have relaxed the requirements and driven the development of whole-brain imaging
methods in several organisms, tradeoffs still exist in several model organism systems. For
instance, inthe nematode C. elegans[3,4,11-13], SNRin images s limited due to the requirement
of small exposure time to capture neural dynamics at 3-6 volumes/s and to prevent motion
artifacts. While SNR can be improved by increasing laser power, this leads to photo-bleaching of
fluorophores and photo-toxicity, thus limiting the length of recordings, especially during longer
timescale behavior. To cover neurons in the whole animal, the FOV is further expanded [9], which
necessitates lower magnification and higher laser power, but again exacerbates photo-bleaching.

Recently deep learning enhanced microscopic techniques [14—16] have been developed
that significantly overcome the tradeoff between imaging speed and SNR in images. However,
these techniques either require expertise in characterizing the microscopy system at hand for
generating realistic training data, such as the axial light propagation [14] or they require light-field
microscopy setups [15,16] that are not commonly available to all researchers. Further, whether
these methods can perform at low laser power conditions that are critical to prevent
photobleaching and enable long-term recording of neuron activities is not currently shown. Thus,
an orthogonal method to enhance SNR, to circumvent the tradeoffs, would thus be enabling in

many studies.

An alternative strategy that has been established recently and has achieved state-of-the-
art results to overcome tradeoffs in microscopy is deep-learmning based image denoising [17-26].
In these methods, a deep neural network is trained to recover high SNR fluorescent images from
low SNR images acquired with low exposure time or low laser power conditions. These include
supervised [17—-22] and unsupervised [23,24,26,27] methods. Unsupervised methods offer the
benefit of training on the data to be denoised itself thus no training data collection is needed.
Despite the success of denoising methods, their application on downstream analyses such as
high SNR calciumtrace extraction from videos has been show in only a few model organisms and
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microscopic techniques, all using unsupervised methods. For instance, Deeplinterpolation [27]
and DeepCAD [26], demonstrate high-quality calcium trace extraction on 2D two-photon imaging
datain mice. While impressive, these methods do require large training dataset (~100,000 frames
for Deeplnterpolation and 3,500 frames for DeepCAD); further, pre-registration of the images (or
images with minor deviations) before training are required, which also necessitates ultrafast
imaging rates. DeepCAD also shows decreasing accuracy for data acquired at slower imaging
rates, demonstrating that information in temporally linked images is important for denoising.
Practically, these models also have a large memory requirement for training and inference. While
new advances in microscopy greatly improve imaging speed and field-of-view[10], generating
such large-scale ultrafast recordings for 3D imaging in models organisms is currently not feasible
for all researchers with commonly available confocal systems. Additionally, training these
methods on calcium activity recordings in moving animals would require a non-trivial pre-

registration step and training results would be contingent on the accuracy of registration step.

Compared to unsupervised methods, supervised methods for image processing are
expected to achieve higher denoising accuracyand are more generalizable. Currently, supervised
methods have notbeen used for video data denoising and extracting calciumtraces. Thisislikely
due to several factors. For instance, if supervised methods are to be trained using temporally
linked data, akin to unsupervised methods, custom microscope setups will be needed that can
collect low and high SNR video data simultaneously. In contrast, if supervised methods are to be
trained with non-temporally linked data, it is not immediately apparent whether the temporal
structural features in the dynamical data (as in calcium imaging experiments) can be preserved
fromindependently denoised images. It is also not obvious to what extent the supervised models
can be generalized. The wide deployment of these models will also be dependent on several
practicalities such as model size, inference speed, and memory requirement on the computation.
Here we show that supervised deep denoising can achieve high accuracy in extracting high-SNR
calciumtraces from noisy videos. Our optimized models are 20-30X smaller in memory footprint,
3-4X faster inference speeds and can be trained with as few as 500 single images that are
temporally independent and collected across different samples. With the use of temporally
independentdata for training, fastimaging rate for training data collection and pre-registered data
are not required; further, networks can be trained with a variety of images across animals with
different posture configurations, neuron morphology, cell labelling techniques (soma, membrane
etc.) and marker (RFP, GCaMP etc.), thus improving the generalizability across conditions and

noises.
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Optimized deep neural networks for denoising images

To address the challenges of extracting clean calcium traces from noisy calcium imaging
videos in common applications, we designed Neuro-Imaging Denoising via Deep Learning
(NIDDL), a convolutional neural network (CNN) pipeline that can be trained using only a small set
of training non-video data (Fig. 1). The ability to work with independently acquired image training
pairs (not from videos) greatly improves the generalizability because of the much relaxed
requirements in data acquisition. Forinstance, to obtain the ground truth for training, images can
be acquired for immobilized samples, with little photobleaching (by using independent samples),
at different times, and possible across different biological conditions (e.g. different strains). This
enables more researchers using a wider set of instruments and in wider biological settings to
denoise neuralimages and recordings. The pipeline takesinindependent pairs of noisy (acquired
either with low laser-power or short exposure-time) and high SNR image stacks, acquired across
samples and reagents (Fig. 1A). Subsequently, efficient denoising convolutional neural networks
are trained using the non-video data. In application phase, trained networks are applied to denoise
video data by independently denoising each volume in the video. Finally, high quality calcium
traces are extracted from denoised video using conventional calcium signal extraction pipeline in
C. elegans that involves cell segmentation, cell tracking, and signal extraction (Fig. 1A). As an
example, microscopic conditions used for whole-brain calcium activity recordings lead to
significant loss of SNR in images (Fig. 1B), thus making densely packed nuclei in images barely
distinguishable (Supplementary Figure 1). Low SNR in images can significantly reduce the
accuracy of intermediary tasks such cell segmentation and tracking, thus making downstream
analysis of neuron activity data extremely slow and challenging. We demonstrated that trained
networks can significantly recover nuclei structure from these noisy images (Fig. 1B,
Supplementary Figure 1).

To achieve a fast, small memory footprint, and data-efficient CNN, we optimized several
network hyper-parameters (Online methods — Network Optimization). For instance, starting with
vanilla UNet [17,28] and Hourglass architectures [29], we tested several design choices such as
kernel size, channel depth, depth of architecture, and presence or absence of residual
connections (Supplementary Figure 2,3). Additionally we compared architectures across L2 and
L1 loss functions used commonly in image restoration tasks [17,20] (Supplementary Figure 4)
and three different training modes (Supplementary Figure 5) including 2D mode, 2.5D mode and
3D mode (Methods section). The optimal models significantly reduce the number of parameters

and memory footprint by fixing channel depth across all layers. This allows 1) networks to be
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deeper, i.e. have more convolutional blocks compared to CARE using default parameters [17],
and 2) use residual connections within each convolutional block that are not presentin default
UNet. Compared to previously established methods such as CARE [17], RCAN [19], and default
UNet and Hourglass architectures, our optimized architectures are 20-30X smaller in memory
footprint, have 3-5Xfaster inference time, are 2-3Xfaster in training (Fig. 1B,C). We show that for
whole-brain imaging applications, model accuracy plateaus at training with 500-600 images
(corresponding to 25-40 whole-brain stacks) (Fig. 1D, Supplementary Figure 6), which is much
smaller than number of images used for training in recent methods DeepCAD (3,500 frames) and
Deeplnterpolation (~100,000 frames). Thus, networks can be easily trained in individual labs
specific to individual experimental and instrumentation conditions.

We have also tested CNNs trained with L2 or L1 loss and show that they achieve similar
accuracy (Supplementary Figure 4), with L1 loss training being more stable across different
instances oftraining. Further, we noticed thatL1 loss performs betterin RMSE and PSNR metrics
whereas L2 loss performs better in SSIM metric. This could be because L1 loss is more suitable
to handle the type of noise present in experimental data whereas L2 loss is more suitable to
preserve structural information. Finally, we tested three modes of training that differin 3D spatial
context used by networks for denoising (Supplementary Figure 5). These modes include 1) 2D
mode where input and output to the networks are 2D images, 2) 2.5D mode where input to the
network is a 3D stack consisting of z-planes above and below the image to be denoised and
outputis the middle denoised 2D image, and 3) full 3D mode where input to the networks is 3D
stack and output is also 3D stack. Comparisons showed that training with 2D images, rather than
3D stacks, is sufficient (Supplementary Figure 5), possibly because more training data is needed
for 3D mode of training. Practically, 2D images can be acquired easily using commonly available
setups thus simplifying the training step. Importantly, these memory-efficient and fast models can
be used widely without expensive GPUs. When comparing inference time of models without
GPUs, NIDDL achieves an average inference time of 1.25 s whereas CARE and RCAN denoise
images in much longer time of 2.67 s and 7.29 s respectively (Fig. 1E).

To characterize the performance of NIDDL, we worked with C. elegans strains with whole-
brain neuronal labels. We took advantage of microfluidic immobilization of animals to avoid the
complex image pre-registration step across image pairs before training the networks, and to
acquire data in high-throughput manner [30]. Acquired pairs of non-sequential image data across
samples is used as inputs to train the CNN. Trained networks are then applied to noisy video

frames independently to recover clean images. Subsequently high SNR calcium traces are
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extracted fromdenoised videos. We show that deep denoising recovers structures in noisy whole-
brain images with clear distinction of nuclei (Supplementary Figure 1, Fig. 2, Supplementary
Figure 7, Supplementary Video 1), which can greatly improve the nuclei segmentation
performance [31], and thus the accuracy of downstream tasks such as cell identity annotation
[32]. We bench-marked NIDDL’s performance with those from other approaches (Online methods
— Comparison against othermethods). Representativeimages showthat NIDDL produces cleaner
denoised images closer to the ground truth images, while simple denoising methods such as
Median and Gaussian filtering, as well as advanced non-deep learning based methods such as
NLM and BM3D, suffer from either blurring artifact or not recovering information (Supplementary
Figure 7). Quantitatively, the optimized NIDDL modelachieve high accuracy on held-out datasets,
outperforming traditional denoising methods, non-deep learning based methods such as NLM
and BM3D, and deep learning methods such as RCAN[19] (Fig. 2B, Supplementary Figure 8).
While the recently published algorithm CARE produces similar accuracy as NIDDL, the advantage
of NIDDL is smaller model size and real-time inference time (Fig. 1C), which would be important
for applications that would require near real-time feedback, e.g. closed-loop optogenetic

interventions.

To test the generalizability of the approach, we trained separate network instances on
data collected across a variety of conditions and compared within-condition accuracy with across-
condition accuracy. These include two whole-brain imaging strains with different levels of
fluorophore expression labelling all cells, three levels of laser powers, and three independent
experiments on different days. Models trained on independent experiments and strains are
particularly generalizable across conditions (Fig. 3A-D). As an example, denoised images output
by networks, when networks were either trained on the same strain or a different strain, visually
appear indistinguishable (Fig. 3A, 3B). In both cases, networks significantly recover
distinguishable nuclei structure from noisy images (Fig. 3B). When accuracies are characterized,
cross-strain model performance also appears similar to that of within-strain models (Fig. 3C). Our
results do show that models are sensitive to image-acquisition laser power (Fig. 3E,
Supplementary Figure 10). In comparison, models generalize with high degree of accuracy across
independentexperiments (Fig. 3D, Supplementary Figure 9). In parallel, we conducted an in silico
experiment to characterize the robustness of the optimized CNNs against noise levels; we
generated realistic 3D synthetic data with densely packed nuclei (Online Methods — Synthetic
whole-brain data generation) across a range of signal levels (photon counts), corrupted by
Poisson shot noise and Gaussian readout noise. We show that NIDDL consistently and efficiently

denoise theimages, better than traditional methods (Supplementary Figure 11). We hypothesized
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that as long as a minimum requirement for SNR is met, NIDDL can produce efficient denoising,
and that the corruption of the signal by noise beyond a certain threshold cannot be rescued by
denoising. Indeed, this notion is corroborated by the characterizations of the SNR in the actual
experiments (Fig. 3F) where the SNR levels across laser powers vary vastly, those across strains
vary less, and across independent experiments sessions have similar SNR levels. These results
demonstrate that as long as the imaging experiments meet a minimum SNR threashold (~20),
NIDDL can efficiently denoise. This points to the advantages of NIDDL, where training data sets
can be gathered in a distributed manner and from varied conditions (including from different

strains), which would greatly lower the barriers for use in practice.

High SNR calcium trace recovery using NIDDL

While denoising images in itself can improve accuracy of many tasks in whole-brain
imaging, including segmentation, tracking, and identification, the critical goal is to extract clean
calcium traces. We next denoised a whole-brain video (Online Methods — Calcium imaging data
collection) that was held out from the training (Fig. 4A, Supplementary Video 2) and extracted
traces (Methods — Denoising and extracting calcium traces). We note that methods used for
calcium signal extraction from two-photon recordings of spiking neurons [33-35] differ from
standard methods used for C. elegans [11,36—38]. The deep denoised video provides much
cleaner traces compared to the original noisy video (Fig. 4B) and correlated neuron activity is
detectable visually. Since NIDDL is trained using non-video data, denoising each frame of video
independently could introduce artifacts in calcium traces. To establish that NIDDL recovered
calciumtraces do not contain artifacts, we compared the traces extracted from denocised video to
traces extracted fromhigh-SNR ground-truth video for the same recording. Denoised traces show
the same temporal structure in neuron activity as present in high SNR video thus denoising does
not introduce artifacts (Fig. 4B). Furthermore, denoised traces show much lower mean absolute
error (Fig.4C) and higher correlation to the traces fromthe ground-truth low-noise video (Fig. 4D).
This demonstrates that denoising by NIDDL greatly improves SNR in the frames independently.
Further and perhaps more importantly, denoising with NIDDL recovers correlational structure
among neuron activities (Fig. 4E), crucial for downstream analyses and interpretation such as
PCA based latent activity recovery [11] commonly used in whole-brain data analysis pipelines
[39]. We further tested the robustness of NIDDL against different noise levels by denoising and
extracting traces fromsemi-synthetic videos across arange of SNR levels (Online method — Semi
synthetic video data generation). Deep denoising significantly removes noise from traces

(Supplementary Figure 12A, C) and performs better than traditional methods across all SNR
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levels (Supplementary Figure 13D). Lastly, we show that NIDDL denoised traces significantly
improve the performance of PCA analysis commonly used for analyzing whole-brain recording
datasets [11]. Neural activity trajectory in low dimensional space show smooth dynamics in
ground-truth video; however, such structure is lost in noisy video (Supplementary Figure 12B).
NIDDL denoised video successfully recovers the smooth dynamics (Supplementary Figure 12B).
Taken together, these results demonstrate that denoising using NIDDL requires a small set of
training data, is forgiving in many experimental constraints, and yet provides excellent
performance in accuracy, robustness, and generalizability while using minute inference time

potentially enabling on-line feedback manipulations from calcium dynamics.

Next, we sought to demonstrate denoising on large field-of-view (FOV) data acquired at
low magnification (Online Methods — Calcium imaging data collection). The advantage of large
FOV is to capture more cells simultaneously. The challenges with large FOV recording, however,
is low spatial resolution so that each cell corresponds to only a few pixels, and this necessitates
higher laser power to boost SNR. Here, we imaged simultaneously many ventral cord (VC) motor
neurons in C. elegans. To avoid photo-bleaching, we also used low laser power, which results in
worse SNR as compared to imaging at 40x (higher NA) [Fig. 5A, Supplementary Figure 13]. We
trained NIDDL with temporallyindependent (i.e. non-videodata) pairsof low and high-laser-power
images of ventral cord neurons expressing GCaMP. NIDDL was able to remove much of the noise,
enabling the detection of cells barely noticeable in noisy images (Fig. 5A, Supplementary Figure
13). Quantitative comparisons show, NIDDL significantly outperforms traditional denoising
methods and advanced non-deep learning based methods (Fig. 5A, 5B, Supplementary Figure
14, Supplementary Figure 15) and achieve similar accuracy as CARE and RCAN. Next, we
denoised low-SNR videos held out from training and extracted calcium traces from them. Again,
NIDDL enables extraction of high-quality calcium traces from noisy videos, making it much easier
to detect coordinated neuron activities (Fig. 5C, Supplementary Figure 16, Supplementary Video
3) barely visible in traces extracted from noisy videos. This demonstration suggests that NIDDL
is truly enabling tool for large FOV applications where SNR levels in images are very low, and
each cell correspondsto only a few pixels in images thus hindering extraction of clean calcium
traces. Further NIDDL can avoid photobleaching in large FOV by enabling imaging at low laser

power conditions.

While a simple use of the large FOV and deep denoising is to increase the number of cells
observed simultaneously and increase the throughput of experiments by enabling imaging

multiple animals simultaneously (Fig. 5C), the technique is truly enabling for imaging moving
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samples where low exposure time (to reduce blurring type motion artifact) is critical (Fig. 5D).
Conventionally for freely moving animals, neural activities are imaged at high magnification, while
behavior is tracked with a second low-magnification light path. Here, with large-FOV low-
magnification imaging and deep denoising, animals can be tracked directly on the fluorescent
images, while deep-denoising can extract clean calciumtraces fromthese videos, with more cells,
without compromising the imaging quality. We demonstrate this by imaging motor neurons’ along
the ventral nerve cord of freely moving animals. Deep denoising by NIDDL significantly removes
noise from calcium traces, resulting in clear bouts of neural activities (Fig. 5D, Supplementary
Video 4). Ext, we correlated activities of motor neurons to local body curvature of the animal as it
roams. Motor neuron activity recovered by NIDDL showed enhanced correlation to animal
curvature (Supplementary Figure 17B-D) compared to traces extracted from noisy videos. Thus,
NIDDL enables recordings where samples move significantly by enabling imaging using low
exposure time conditions. By requiring only low light, this approach will also enable more
prevalent longer-termimaging with behavior.

Complex neurite structure recovery with NIDDL

Another application of deep denoising is in imaging subcellular features such as the
dendritic processes, which are typically dimand difficult to quantify compared to imaging the soma.
Because denoising neurites presents different challenges, we sought to optimize network hyper-
parameters specifically for neurites (Supplementary Figure 18) and chose L2 loss for due to
slightly better performance. Optimized network recovers structure of neurites from noisy images
(Fig. 6A, Supplementary Figure 18, Supplementary Figure 19, Supplementary Video 5) showing
distinct processes barely visible in noisy images. Further, NIDDL enables quantitative
characterization of neurite morphology as recovered neurite structure significantly improves
neurite segmentation performance using simple methods (Online Methods — Neurite
segmentation) (Fig. 6D, Supplementary Figure 20). Compared to non-deep learning based
methods, NIDDL again performed better on accuracy (Fig. 6B, Supplementary Figure 21) while
only using pairs of training images, rather than video data. Further NIDDL achieved similar
accuracy to test generalizability across neurite morphology, we tested the performance across
two strains labelling neurons with distinct structures (the gentle touch neurons ALM, AVM, and
PLM, and the multimodal sensory neuron PVD in C. elegans). Models trained only on one strain’s
data achieved equivalent accuracy across other strain (Fig. 6C, Supplementary Figure 23). We
envision NIDDL being applied to study calcium signal distribution in complex morphologies of

mechanosensory neurons.
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Discussion

In this work, we present an easy-to-train, fast, data-efficient, and generalizable deep-
learning framework for denoising calcium activity volumetric recordings. While our method has
similarities to recently developed supervised learning methods for restoring images [17,20],
applications of supervised methods for extracting calcium traces from volumetric recordings in
model organisms have not been shown. Here, we demonstrate the utility of supervised denoising
methods for various calciumimaging applicationin C. elegans, and highlight key advantages over
previous methods, which make them attractive for researchers to adopt easily. First, we
demonstrate that networks trained with temporally independent (non-video) data collected across
animals, strains, and imaging conditions can be used to recover high-quality calcium traces from
video data, thus providing several experimental simplifications. For instance, ultrafast imaging
rates for training data collection are avoided, thus enabling more labs to collect data with
commonly available microscopy setups. Additionally, since networks are trained with non-video
data, complex pre-registration of images before training is circumvented, making the method

suitable for motile animals, such as C. elegans.

Second, we demonstrate that networks can be trained with order of magnitude smaller
training data (~500 images) compared to previous methods Deeplnterpolation and DeepCAD.
Temporally sequential data used in these previous methods closely resemble the approach of
Noise2Noise [23] where multiple samples of an image with independent noise presentin samples
are used to recover high SNR image. This is because consecutive images in pre-registered data
from ultrafast recordings can be thought of as coming from one sample with independent noise in
each image. Due to the need of multiple images of each sample with independent noise, the
amount of training data needed is typically very large. In comparison, supervised learning
methods, do not rely on multiple images of each sample and do not make assumptions on noises
in the data. Thus, supervised methods are advantageous for dynamic data, such as those from
(slow) volumetric functional imaging where consecutive frames may not have correlated signals,
and those frommoving samples where frames are notalready registered; furthermore, supervised
methods can also be trained with much smaller training data.

Third, we demonstrate the generalizability of networks trained in supervised manner
across different strains and experimental sessions. This is possible because the models are
trained with pairs of high SNR and low SNR images across a variety of conditions, animals, strains
etc., which capture the distribution of SNR levels across experimental conditions that the

researchers may expect under typical experimental conditions. Thus, these supervised methods
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can achieve higher denoising accuracy compared to unsupervised methods, making them
suitable for high quality calcium signal from new experimental recordings without retraining the
networks. In contrast, unsupervised methods trained on one functional recording dataset may
need to be trained again for every new video. Furthermore, to eliminate complex pre-registration
of images in moving animal recordings during training, supervised training only needs images of
stationary samples across various conditions, and trained networks can be applied to images in
videos independently to recover high SNR traces. Thus, the pipeline is much more accessible to
routine use in calcium imaging in a wide range of scenarios, e.g. in sensory behavior, mating

behavior, and social behavior.

Finally, we have optimized networks extensively to significantly reduce the memory
footprint and inference time compared to previous deep learning methods. Our current models
can achieve real-time denoising speeds making them suitable for experiments requiring real-time
feedback such as optogenetic perturbations. Our demonstrations on variety of data sets that
include high-magnification whole-brain calcium recordings, low-magnification large field-of-view
calcium recordings and recovering complex neurite morphology highlight the utility of deep
learning based denoising methods. We imagine that our demonstration of deep learning methods
for functional imaging denoising in C. elegans will inspire newer experiments in other model
systems such as hydra [40—42], Drosophila [43—46], and zebrafish [39,47], where long-term
whole-brain and functional recordings are needed to find neuronal bases of behaviors that evolve
over long time scales [48—50]. NIDDL facilitates such recordings by use of low laser power and
shorter exposure time. Combining this technology with microscopy techniques requiring low light
dosage [9], e.g. using light-sheet for developing neurons [47], or other microscopy techniques
such as virtual refocusing and light-field reconstruction, will enable recordings of longer durations
and fast frame rates previously not possible.
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Methods

Methods are described in Online Methods section.
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On-line methods:

C. elegans culture

For all experiments, animals were cultured using standard techniques [51]. A detailed list of

strains used in this work is provided below.
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Training data collection

All imaging was performed using Brucker Opterra Il Swept field confocal microscope, with an
EMCCD camera. Objective lenses used for each type of data and other imaging parameters are
described below.

1. Whole-brain data — Whole brain data was collected using ZIM504 and OH16230 strains.
Animals were synchronized to L4 stage and were immobilized in a microfluidic array
device to prevent motion. Two 3D stacks (25-30 z planes with 1 ym spacing) were
acquired for each animal, one atlowlaser power and one atthe highestlaser power setting
available in microscope, 10ms exposure time, and Plan Fluor 0.75 NA 40x air objective.
Low laser power image specifies the noisy (low SNR) image and high laser power image
specifies the clean (high SNR) image. Neural networks were trained to predict high SNR
image from low SNR image as described in section Network Training. To quantify
prediction generalizability across days, independent datasets were collected for strain
ZIM504 on differentdays using the same strategy. In this case, all datasets were collected
at same laser power setting. To quantify prediction generalizability across image SNR
levels, additional datasets were acquired using ZIM504 strain at very low and intermediate
low laser power levels. To quantify prediction generalizability accuracy across strains with
nuclear localized markers, data collected across three strains, ZC392 (nuclear localized
RFP expression in glutamatergic cells), OH16230 (nuclearlocalized GCaMP and CyOFP
expression in all neurons) and ZIM504 ((nuclear localized GCaMP5K expression in all
neurons) were used. In this case, data for all strains was collected at same laser power
settings.

2. Ventral cord neurons data — Images of ventral cord motor neurons were collected using
strain OH16230. Animals were synchronized to L4 stage and were immobilized in a
microfluidic array device. 3D stacks (40 z planes with 1 um spacing) were collected at
10ms exposure time, using SPlan Fluor ELWD 0.45 NA, 20X air objective. Two stacks
were acquired for each animal, one at low laser power and one at the highest laser power
setting available in microscope.

3. Neurite data - Images of neurites were collected using strain GT372 and GT366. These
strains label different cells with different neurite morphology. GT372 labels gentle touch
cells neurites that are sparser compared to harsh touch neuron PVD’s neurites labeled in
GT366. Animals were synchronized to L4 stage and were immobilized in a microfluidic
array device. 3D stacks (40 z planes with 1 um spacing) were collected at 10ms exposure
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time, using Plan Fluor 0.75 NA 40x air objective. Two stacks were acquired for each animal,

one at lowlaser power and one at the highest laser power setting available in microscope.

Synthetic whole-brain image data generation

To generate synthetic image data across a range of SNR levels, 3D stacks (128 by 128 by 30
pixels) were generated. Cells were simulated as 3D Gaussian distributions. Cell positions (mean
of Gaussian distributions), cell sizes (3D covariance matrices of Gaussian distributions), and cell
intensities (max peak of Gaussian distributions) were randomly generated for 60 cells and 3D
intensity profiles of all cells were added together to form the image stack. Intensity profile of the
resultant image was scaled to a maximum photon count level to specify the peak signal in image.
Six photon countlevels (20, 50, 100, 200, 500, 1000) were used. Thisimage specified the ground-
truth clean image. To generate the corresponding noisy image, two kinds of noises were added
tothe cleanimage, photon shot noise (no parameterneededas the noise depends on each pixel's
intensity level) and readout noise (normally distributed with mean 0 and 1 variance).

Semi synthetic whole-brain video data generation

To generate semi synthetic 4D (3D + t) calciumimaging video data, 3D stacks (512 by 512 by 30
pixels) were generated for 100 time points. Here again, cells were simulated as 3D Gaussian
distributions (as described in Synthetic image data generation section). However, here cell
positions (means of Gaussian distributions) were taken from OpenWorm atlas to mimic cell
configuration in C. elegans head. 130 cells were randomly selected from OpenWorm atlas and
positions of only those cells were used for a specific video. This mimics the fact that typically in
whole brain recordings, not all cells are imaged due to low fluorophore expression. Further,
temporal intensities for each cell were specified using experimental whole-brain recording
datasets published previously [11]. A 100 frame window was randomly selected from published
data, cell traces within the selected window were extracted from the published data, and each cell
in synthetic video was randomly assigned a trace from the selected chunk. Thus realistic
experimental calcium traces were present in synthetic video for each cell. Next, intensities of all
frames were scaled to a maximum photon count level (using the maximum and minimum pixel
intensity across all frames) to specify the peak signalin video. Four photon countlevels (100, 200,
500, 1000) were used. This specified the ground-truth clean video. To generate the corresponding
noisy video, two kinds of noises were added to each frame, photon shot noise (Poisson noise)

and readout noise (normally distributed with mean 0 and 1 variance).
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Calcium imaging data collection

We demonstrate deep denoising framework’s capability to extract high quality calciumtraces from

noisy videos for three applications.

1. High magnification head ganglion functional imaging - Data was collected using
ZIM504 strain. Animals were synchronized to L4 stage and were immobilized in a
microfluidic array device. Video (3D + t) stacks (30 z planes with 1 um spacing, x time
points) were acquired at 10ms exposure time, using Plan Fluor 0.75 NA 40x air objective.
Noisy (low SNR) frames were acquired atlowlaser power. For each noisy stack, a ground-
truth (high SNR) stack was acquired alternatively. Thus, the two stacks were not
completely synchronous, however the time difference between two stacks was very small
(~100ms) compared to the dynamics of calcium signal. We compared the traces extracted
from noisy video after denoising it with deep neural network with the traces extracted from
ground-truth video to ensure that deep denoising does not introduce artifacts in traces.

2. Low magnification functional imaging of ventral cord neurons in device - Data was
collected using OH16230 strain. Animals were synchronized to L4 stage and were
immobilized in a microfluidic array device. Video (3D + t) stacks (40 z planes with 1 ym
spacing, x time points) were acquired with 10ms exposure time and SPlan Fluor ELWD
0.45NA 20x air objective. All stacks were acquired at low laser power settings.

3. Low magnification functional imaging of ventral cord in freely moving animals -
Data was collected using OH16230 strain. Animals were synchronized to L4 stage and
were sandwiched between two agar pads on two cover-slips before imaging. 3D stacks
(20 z planes with 1 um spacing, x time points) were collected at 10 ms exposure time
using Plan Apo Lambda 0.75NA 20x air objective. All stacks were acquired at low laser
power settings. At 20x magnification, animals were tracked easily while imaging using z
stage x-y controller and kept in the field of view.

Network optimization

We experimented with UNet[17,28], Hourglass[29] and DFCAN[21] architectures given the past
success of these networks shown in several biological image analysis tasks such as image
restoration, pose prediction, segmentation etc. Architecture details of networks are shown in
Supplementary Figure 1, 2. We tested with three hyper-parameters and training settings as
described below. In all cases, the network takes as input a noisy (low SNR) image (512 X512 X

d) and through applications of convolutional layers with non-linearactivation (ReLU), max-pooling,
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up-sampling, feature concatenation or summation generates an outputimage (512 X 512 X d).
Here d is the depth of input and output images. We experimented with different d values as
described below. Parameters in networks were trained using stochastic gradient descent with
AdamOptimizer (learning rate 0.001) such thatthe outputimage is as close as possible (per some
loss function) to the corresponding clean (high SNR) image. Training was performed on
computing clusters using 16GB or 32 GB GPUs.

1. Architectures — The following convolutional neural network architectures were tested.

i. UNet — An architecture very similar to conventional UNet architecture was used
with 4 down-sampling/max pooling and 4 up-sampling layers. In this case, the
first feature map had 32 channels (i.e. 512 X 512 X 32). Depth (number of
channels) of feature maps after each maxpooling based down-sampling doubled
and depth of feature maps after each up-sampling layer halved. Similar to
conventional UNet, long range residual connections were included that
concatenate feature maps in down sampling to the feature maps in up-sampling
layers.

ii. UNet_fixed — This architecture is the same as the Unet architecture. However in
this case the depth of all feature maps was fixed to 32. Doing so significantly
reduced the model size compared to Unet and decreased the network training
and inference time without any decrease in accuracy (Fig. 1B, Supplementary
Figure 3).

iii. Hourglass_wores — An architecture very similar to the conventional Hourglass
architecture was used. Compared to the Unet architecture, where long range
residual connections are a direct concatenation of feature maps in down-
sampling layers to feature maps in up-sampling layers, Hourglass architecture
has side blocks with trainable parameters (see Supplementary Figure 2) that
extract features fromdown-sampling layers before max-pooling themand adding
them to the feature maps in up-sampling layers. This enables the network to
extract relevant information from feature maps in down-sampling layers. In our
implementation, different from conventional Hourglass architecture, depth of
feature maps within each convolutional block was not kept fixed thus it was not
possible to include short range residual connection within convolutional block as
it requires summation of input and output with same feature depth. Depth of the
firstfeature map was setas 32. Depth of feature maps after each down-sampling
layer doubled and depth of feature maps after each up-sampling layer halved
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iv. Hourglass_wres — Architecture same as Hourglass_wores was used. However,
in this case depth of feature maps in each layer was kept fixed as 32. Further,
short range residual connection within each convolutional block was used.
Keeping the depth of feature maps fixed to 32 significantly reduced the model
size compared to Hourglass_wores, and decreased the network training and
inference time without any decrease in accuracy (Fig. 1B, Supplementary Figure
3).

v. DFCAN — Architecture implementation was borrowed from previously published
code[21]. We were not able to train the network when input size was 512 X 512
X 1 with published architectureon 32GB memory GPU due to large GPU memory
requirements. Thus, we reduced the feature depth in FCAB (feature channel
attention blocks) to 32 compared to 64 in published implementation. Further, we
trained the network with 128 X 128 X 1 images instead of 512 X 512 X 1 (used
for previous methods in this section) to further reduce memory requirements.
The number of RCABs (residual channel attention blocks) was kept as 4 and
each RCAB contained 4 FCABs, same as published implementation. By design
for our task, the outputimage size is the same as the input image size; thus,
scale factor was set to 1. With these settings, we trained several instances of
networks with random selection of same of amount of training data used for
previous architectures. However, the network did not train well as the output
images of the trained networks looked empty across all training instances. This
could be due to not enough training data needed by DFCAN. Thus, DFCAN was
not considered for further optimization.

All models were trained on the same set of training data and accuracy was tested on a
separate held-out dataset consisting of 600 images. Based on comparable or higher
accuracy achieved by UNet_fixed and Hourglass_wres architectures compared to other
architectures and much smaller memory footprint of these architectures, we selected
these architectures for our applications. Small memory footprint also provides the benefit
of faster training and faster inference, thus making models user friendly and enabling real
time applications.

Apart from architecture type, we also sought to determine if larger filters in convolutional
layers can increase accuracy as they can take into account longer range spatial context
in images. To do so, we compared the prediction accuracy of the two selected
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architectures for two sizes of convolution filters (3 X 3 vs 5 X 5). Since we did not see
significant differences in accuracy when using 5 X 5 filters, and models with 3 X 3 filters
have smaller memory footprint, we used 3 X 3 filters.

2. Loss function — Two kinds of loss functions have been used previously for image
restoration tasks, L2 loss and L1 loss[17]. We asked if one loss function may achieve
higher denoising accuracy on some datasets whereas the other may achieve higher
accuracy on others. Thus, we trained the networks with both loss functions and compared
the accuracy of models across themfor all datasets. For high-magnification head ganglion
dataset, we found that accuracy of all architectures was comparable across L2 and L1
losses, with L2 loss performing slightly better in SSIM metric (Supplementary Figure 3).
Further, L1 loss showed more stable training, as different rounds of training the network
from scratch showed lower variability in accuracy. In comparison, L2 loss-trained network
showed greater variability in performance across different rounds of training. For harsh
and gentle touch mechanosensory neurons’ neurite data, L2 loss performed slightly better
than L1 loss (Supplementary Figure 18).

3. 2D vs 2.5D vs 3D training — To identify if depth contextin 3D image stacks can improve
de-noising performance, we tested several models (Supplementary Figure 4).

i. 2D models that take as input 1 low SNR image (512 X 512 X 1) and output 1
high SNR image (512 X512 X 1).

ii. 2.5D models that take as input a noisy 2D image and d z-planes above it and
belowit (512 X512 X (2d + 1)) and outputs 1 high SNR image (512 X512 X 1).
Thus the network uses contextual information in z planes above and below the
image to be de-noised. The output of the network correspondsto the center z-
plane of the input, i.e. the loss is minimized with respect to the center z plane.
We tested two values of d with d = 1, and d = 2. Higher values of d increases
the memory footprint of training.

iii. 3D models that take as input a 3D image stack consisting of d z-planes and
outputs a 3D stack consisting of d z-planes. Thus, all z-planes in the 3D input
stack are de-noised simultaneously. Here again we tested two values of d with
d=1,and d = 2.

All models were trained on the same set of training data, and accuracy was tested on a
separate held-out but same for all dataset consisting of 600 images. Across these models

we found that 2D models performed best. In principle, taking contextual information into
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consideration could improve performances. Our observation can be explained by the
following. For 2.5D models, noise in z-planes around the center z plane confused the
model to focus on denoising center z-plane; further, for 3D models we had to reduce the
batch size while training due to memory constraints, which could reduce training

performance.

Denoising and extracting calcium traces

Whole-brain video— Low SNR video collected at low laser power was first de-noised using a
network trained on whole-brain image dataset. The trained network takes as inputindividual noisy
z planes (5612 X512 X 1) of 3D image stacks in the video and outputs high SNR z planes (512 X
512X 1), which were subsequently combined to formthe de-noised video. Toobtain activity traces,
nuclei in ground-truth video were first segmented using a Gaussian mixture based segmentation
method. Segmented nuclei were tracked across frames using an automated tracking algorithm.
Generated tracks of cells were manually inspected and tracks for cells with minor tracking errors
were semi-manually corrected. Single pixel activity traces were extracted using the centers of the
tracked segmented masks. The same segmented masks were used to extract activity traces from
the noisy video and the de-noised video as well to get consistent activity traces across videos and
avoid any comparison artifacts due to differences in cell segmentation procedures across videos.

Ventral cord motor neurons in device — The process is same as that to extracting traces from
whole-brain videos except that here we de-noise maximum projection images of 3D stacks in the
video instead of whole 3D stacks as in whole-brain video denoising case. Thus, in this case the
trained network takes as input a maximum projection image of a noisy stack (512X 512 X 40
converted to 512 X 512 X 1) in the video and outputs high SNR maximum projection stack (512

X 512 X 1). Neuron activity traces were extracted from the maximum projection denoised output.

Ventral cord motor neurons in freely moving animal — Here again we de-noise maximum
projectionimages of 3D stacks in the video instead of whole 3D stacks. The trained network takes
as input a maximum projection image of a noisy stack (512 X512 X 20 converted to 512 X512 X
1) in the video; and outputs high SNR maximum projection stack (512 X512 X 1). Neuron activity
traces were extracted fromthe maximum projection de-noised output. Todo so, cells in maximum
projection images were tracked manually using ManualTracking plugin in Fiji. Subsequently,
single pixel activity traces were extracted from both noisy and de-noised videos using track

centers.
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Accuracy quantification

1. Image denoising accuracy — We quantify image denoising accuracy using 3 metrics — root
mean square error (RMSE), peak signal to noise ratio (PSNR) and Structural Similarity
Index (SSIM). For each of these metrics, high SNR (ground-truth) image was taken as the
reference, and corresponding low SNR (noisy) and network output (denoised) images
were compared to the reference. Since maximum intensity value or dynamic range of low
SNR (noisy) images is much lower than those in high SNR (clean) images, we normalized
intensity values in all images first before calculating the accuracy metrics to prevent
arbitrary inflation of errors. Same methodology was used for network optimization and
accuracy analysis across all datasets including high magnification whole-brain dataset,
low magnification ventral cord imaging, and high magnification neurite dataset).

2. Activity trace from experimental whole-brain video — Single pixel neuron activity traces
were extracted from the noisy video, ground-truth video and deep denoised video (see
Online Methods — Calciumimaging data collection for video acquisition details and Online
Methods — Denoising and extracting calcium traces for activity extraction details).
Accuracy was quantified by

a. Comparing MAE (mean absolute error) of traces extracted from noisy and

denoised videos to the traces extracted from ground-truth video.

T
1
MAEnoisy = 7_“2 Iynoisy,t - ygt,tl
t=1

T
1
MAE jenpisea = 7_w |ydenoised,t - 3’gt,t|
t=1

b. Comparing Pearson correlation coefficient of neuron activity traces extracted from

noisy and denoised videos to the traces extracted from the ground-truth video.

Neuron activity - curvature correlation in freely moving animal

To calculate the curvature of the body as C. elegans moves, a 4t" degree polynomial was fitted to
the coordinates of tracked ventral cord neuronsto get ventral cord backbone. Since some cells
go out of field of view during animal motion, cells that were consistently present across all frames
were used to extract a backbone chunk and curvature analysis was performed using this
backbone chuck only. The backbone chunk was divided into 100 segments (sampled at 100

points) and tangentangles to the backbone were calculated atthese points. Neuron activity traces
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were cross-correlated to tangent angles at all points (shown in heat maps in Supplementary
Figure 17D). To quantify improvement in neuron activity-curvature cross-correlation in deep
denoised videos, cell traces were cross-correlated to local tangent anglesi.e. tangent angles to
the backbone at cell’s location, and maximum absolute value of the cross-correlation across cells

was compared when activity traces were extracted from noisy videos or denoised videos.

Neurite segmentation

Harsh touch neuron PVD’s neurites were segmented in noisy and deep denoised images using
custom script in MATLAB. The custom script included basic operations with functionalities
available in MATLAB - 1) image was sharpened 2) binarized with adaptive thresholding, 3)
morphologically eroded to remove segmented noise 4) small holes were filled in image

complement, and 5) structures smaller than fixed pixel size were removed.

Comparisons against other methods

We compared the denoising performance of our optimized architectures with several methods
across three accuracy metrics; RMSE, SSIM, PSNR. The methods included traditional methods
such as Median Filtering and Gaussian Filtering, advanced non-deep leaming based methods
such as NLM [53], BM3D [54,55], and deep learning based methods such as CARE [17], and
RCAN [19]. Below we provide implementation details of these methods. Median Filtering was
implemented using default MATLAB function. Three window sizes (3, 5, and 7) for filtering were
tried for each dataset and results were reported for best performing window size. Gaussian
Filtering was implemented using default MATLAB function. Three kernel sizes or standard
deviation values (1, 3, and 5) were tried for each dataset and results were reported for best
performing window size. NLM method was implemented using default MATLAB function. No
parameters were setfor NLM method as it automatically estimates the degree of smoothing based
on standard deviation of noise in the image. BM3D method was implemented using MATLAB
implementation available here https://webpages.tuni.fi/foi/ GCF-BM3D/. Four different values of

noise standard deviation were tried (0.05, 0.1, 0.2, 0.5) and results were reported for best
performing value for each data set. CARE was implemented using the code provided at
https://github.com/CSBDeep/CSBDeep. Default parameters provided in code were used for

training except unet_n_depth was set as 4 to be comparable to vanilla UNet architecture that we
tried. RCAN was implemented using code provided at https://github.com/AiviaCommunity/3D-

RCAN. Default parameters set in code were used for training.
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Inference runtime comparisons - system configuration
To compare inference runtime across various deep learning methods, the following system

configurations were used.

1. GPU — Quadro M4000, memoryClockRate(GHz): 0.7725, compute capability: 5.2,
totalMemory: 8.00 GiB
2. CPU - Intel® Xeon® CPU E5-1620 v4 @ 3.50GHz, RAM: 32 GB, 64-bit Operating System,

x64-based processor

Code availability

Code with example datasets is available at https://github.com/shiveshc/whole-

brain_DeepDenoising. Instructions on how to run code on sample datasets and train on new

datasets are available in the same repository.
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Figure 1. Neuro-Image Denoising with Deep Learning (NIDDL) framework.
A) Overview of the SL framework to recover high SNR from a variety of imaging conditions.

B) An example noisy image (1 zplane from 3D stack) acquired at low laser power and corresponding
deep denoised image generated by trained network. Inset ‘a’ highlights nuclei are difficult to distinguish in


https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.13.488233; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

noisy image but can be easily distinguished in denoised image. Right bottom panel shows intensity along
dotted lines in noisy and deep denoised images. Data comes from strain OH16230.

C) The optimized neural network architectures ‘unet_fixed’ and ‘hourglass_wres’ have 20-30X lower
model size (3.77 MB and 3.66 MB) and 3-4X faster inference time (average 48.9 ms and 68.7 ms per 512
X 512 image calculated across 600 images) compared to CARE, RCAN, and non-optimized UNet,
Hourglass. Architectures highlighted in red correspond to NIDDL.

D) Per epoch training time comparison across neural network architecture variants with batch size of 50
and epoch training size of 1000 images. Each dot corresponds to average epoch train time across 100
epochs for each instance of trained networkss. Error bars indicate standard deviation across 5-10
instances of training with random subset of total data used for training each instance. Architectures
highlighted in red correspond to NIDDL.

E) Denoising time comparison of deep learning methods when inference is performed using GPU and
without GPU. (n = 50-600 images). Box indicates 25" and 75" percentile, whiskers indicate 5" and 95"
percentile

F) Training curves for the optimized neural network architectures and cumulative epoch training time with
batch size of 50 images and epoch training size of 1000 images. The optimized architectures train faster
(all within 400-800 s) compared to other methods. Error bars in training curve correspond to standard
deviation across 10 instances of training.

G) Accuracy vs training data size trade-off for optimized architectures. Each dot corresponds to mean
RMSE accuracy on 600 test images for one instance of trained network. In total, 10 instances were
trained for each condition with random condition specific subset of total data used for training each
instance. RMSE accuracy plateaus above 500 images for both architectures. Data comes from strain
ZIM504. Box indicates 25" and 75" percentile, whiskers indicate 5" and 95" percentile.
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Figure 2. NIDDL denoises whole-brain imagesin C. elegans.


https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.13.488233; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A) Left — Two example noisy images (single z planes) from noisy whole-brain image stacks (acquired at
low laser power). Right — corresponding denoised output generated by different methods. Cell nuclei are

labelled with nuclear localized GCaMP5K. Data comes from strain ZIM504. Inset shows intensity profile
along the dotted line.

B) Comparison of RMSE to ground-truth high SNR image across noisy images, and denoised images
output by various methods including Median filtered, Gaussian filtered, NLM, BM3D, CARE, RCAN and

NIDDL (n = 600 images). Boxes indicate 25" and 75" percentile, whiskers indicate 5" and 95" percentile
of data.
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Figure 3. NIDDL performance generalizes across strains and experiments

A) Denoising accuracy quantification on images from 2 different strains with different cell labelling
markers when model is trained with specific strain’s data only. Data comes from OH16230 (Strain— 1),
and ZIM504 (Strain — 2). A) Left — example noisy images from 2 strains, right — corresponding denoised
image outputs by 2 different network s trained on specific strain’s data.
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B) Intensity profiles along the dotted lines shown in insets in A for noisy images and denoised images
output by 3 different networks.

C) Comparison of within strain denoising performance and across strain denoising performance. Left—
RMSE accuracy, Middle - SSIM accuracy, and Right — PSNR accuracy on noisy images from 2 strains
when network s are trained on specific strain’s data. (n = 100, 3,006, 1,403, 50 images for 4 conditions,

p<0.001, Bonferroni paired comparison test). Boxes indicate 25" and 75" percentile. Whiskers indicate
5" and 95" percentile of data.

D) Denoising accuracy on images acquired with 3 different laser power settings (Ip1— extremely low laser
power, Ip2 — very low laser power, Ip3 — low laser power) when model is trained with specific laser power
setting’s data only. Data comes from strain ZIM504. (n = 88, 2,728, 2,728, 2,262, 100, 2,262, 2,806,
2,806, 226 images for 9 conditions, ***p<0.001, **p<0.01, *p<0.05 Bonferroni paired comparison test).

Boxes indicate 25" and 75" percentile. Whiskers indicate 5" and 95" percentile of data.

E) Denoising accuracy on images from 3 different days’imaging sessions when model is trained with
specific day’s data only. Data comes from ZIM504. (n = 40, 1,043, 1,043, 1,632, 50, 1,632 1,403, 1,403,
50 images for 9 conditions). Boxes indicate 25" and 75" percentile. Whiskers indicate 5" and 95"
percentile of data.

F) Comparisons of SNR levels in noisy images across conditions. Left — across different strains (n =
3,006, 1,403 images), middle — across different laser powers (n = 1,403, 1,364, 1,101 images), right —
across different days (n = 1,403, 1,532, 1,043 images). Boxes indicate 25" and 75" percentile. Whiskers
indicate 5™ and 95" percentile of data.
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Figure 4. High quality whole-brain Ca trace recovery using NIDDL.

A) Top — max projection of an example image stack from a noisy whole-brain video recording (acquired at
low laser power). Bottom — corresponding deep denoised output. Cell nuclei are labelled with nuclear
localized GCaMP5K. Data comes from strain ZIM504.

B) Neuron activity traces extracted from the noisy video (shown in A), high SNR ground-truth video for the
same recording (acquired at high laser power), and deep denoised video output by network trained only
on separate image data.


https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.13.488233; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

C) Cell-wise comparison of mean absolute errors (MAE) (Left) and Pearson correlation coefficients
(Right) of traces extracted from noisy video and denoised video to corresponding traces extracted

ground-truth video.

D) Pairwise Pearson correlation among neuron activity traces extracted from noisy video, ground-truth
video, and deep denoised video.
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Figure 5. High quality Ca trace recovery in large field-of-view imaging of spatially distributed
motor neurons.

A) Top - max projection of a large FOV noisy image stack (acquired at lowlaser power, 20X
magnification) showing motor neurons in ventral nerve cord. Bottom— denoised outputs generated by
various methods shown for square box marked in the top image. Inset shows intensity profile along the
dotted line. Cell nuclei are labelled with nuclear localized GCaMP6s. Data comes from strain OH16230.

B) B) Comparison of RMSE to ground-truth high SNR image across noisy images, and denoised images
output by various methods including Median filtered, Gaussian filtered, NLM, BM3D, CARE, RCAN and
NIDDL (n = 60-217 images). Images were collected in-device using strain OH16230. Box indicates 25"
and 75" percentile. Whiskers indicate 5" and 95" percentile.

C) Top left — maximum projection of an image stack from a noisy large FOV video recording (acquired at
low laser power, 20X magnification) showing motor neurons in ventral cord of two animals restrained in
microfluidic device. Top right— corresponding denoised output by NIDDL. Bottom left— single pixel
neuron activity traces extracted from the noisy video for worm 2 labeled in images above. Bottom right —
corresponding single pixel neuron activity traces extracted from the deep denoised video (arrows indicate
coordinated activities). Data comes from OH16230 strain.

D) Top left — max projection of an image stack from a noisy large FOV video recording (acquired at low
laser power, 20X magnification) showing motor neurons in ventral cord of a freely moving animal. Top
right — corresponding deep denoised output. Bottom left — single pixel neuron activity traces extracted
from the noisy video. Bottom right — corresponding single pixel neuron activity traces extracted from the
deep denoised video (arrows indicate coordinated activities). Data comes from OH16230 strain.
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Figure 6. NIDDL recovers complex neurite morphology of mechanosensory neurons

A) Top — max projection of a noisy image stack (acquired at lowlaser power) showing neurites of harsh
touch mechanosensory neuron PVD labeled with mScarlet. Data comes from strain GT366. Bottom —
denoised outputs generated by various methods shown for dotted box in top image. Cyan trace in inset
denotes pixel intensities along the dotted line.

B) Comparison of RMSE accuracy across noisy images, and denoised images output by various
methods. Data comes from strains GT372 and GT366. (n = 86-443 images). Boxes indicate 25" and 75"
percentile, whiskers indicate 5" and 95" percentile of the data.

C) NIDDL denoising of images facilitate neurite segmentation. Top - example noisy image showing harsh
touch mechanosensory neuron PVD’s neurites, no regions are detected in noisy images with simple
morphological operations (see Methods — Neurite segmentation). Bottom - corresponding NIDDL
denoised output and segmented neurites in denoised image. Data comes from strain GT366.

D) Deep denoising RMSE accuracy comparison on noisy images from 2 different strains, GT372 and
GT366 that label neurites of gentle touch and harsh touch mechanosensory neurons respectively, when
models are trained on specific strain’s data. (n = 129, 203, 118, 97 images for 4 conditions, ***p<0.001,
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*0<0.05, Bonferroni paired comparison. Boxes indicate 25" and 75" percentile, whiskers indicate 5" and
95" percentile of the data.
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Supplementary Figure 1. Additional examples of whole-brain noisy images denoised by trained network.
A) Top — random example noisy images (acquired at lowlaser power) from different animals (1 z-plane
from 3D image stack) and corresponding denoised output, bottom left — zoom ins of image portions
highlighted with dotted box in top panel, bottom right — pixel intensities extracted from noisy images and
deep denoised images along the dotted lines shown in insets. Clear peaks and valleys in intensity profiles
in denoised images correspond to individual nuclei. Data comes from strain ZIM504.
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Supplementary Figure 2: Architecture details of variants of UNets tried for denoising images. A)
Traditional UNet architecture. B) Optimized UNet architecture with fixed channel depth.
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Supplementary Figure 3: Architecture details of variants of Hourglass architecture tried for denoising
images. A) Optimized hourglass architecture with fixed channel depth and residual connections in
convolution block (conv block). B) Hourglass architecture with channel depth doubling after max-pooling
operations and no residual connections in conv block.
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Supplementary Figure 4. Denoising accuracy comparison across neural network architecture variants and
loss functions. A) Left - RMSE accuracy, middle — SSIM accuracy and right - PSNR of denoised images
across architectures trained with specific loss functions (L1 and L2 loss). Each dot in every panel
corresponds to mean accuracy on 600 testimages for one instance of trained network. In total, 10
instances were trained for each condition with random subset of total data used for training each
instance. Data comes from strain ZIM504. (n = 10, **p<0.01, *p<0.05, Bonferroni paired comparison test).
Boxes indicate 25" and 75" percentile, whisk ers indicate 5" and 95" percentile of data.
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Supplementary Figure 5. Denoising accuracy comparison across training modes for the optimized
architectures ‘unet fixed’and ‘hourglass_wres’. See Methods — Network Optimization 3 for description of
training modes. A) Left - RMSE accuracy, middle — SSIM accuracy and right - PSNR of denoised images
across training modes for ‘hourglass_wres’and ‘unet_fixed’ architectures. Each dot in every panel
corresponds to mean accuracy on 600 test images for one instance of trained network. In total, 10
instances were trained for each condition with random subset of total data usedfor training each
instance. Data comes from strain ZIM504. (n = 10, ***p<0.001, **p<0.01, *p<0.05, Bonferroni paired
comparison test). Boxes indicate 25" and 75" percentile, whiskers indicate 5" and 95" percentile of data.
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Supplementary Figure 6. Accuracy vs training data size trade-off for optimized architectures. A) Left —
SSIM accuracy, right— PSNR of denoised images vs number of images used for training the network s.
Each dot corresponds to mean accuracy on 600 test images for one instance of trained network. In total,
10 instances were trained for each condition with random condition specific subset of total data usedfor
each training instance. Data come from strain ZIM504. Boxes indicate 25" and 75" percentile, whiskers
indicate 5" and 95" percentile of data.
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Supplementary Figure 7. Additional qualitative comparison examples of denoising methods on whole-
brain images. Left - example noisy images (single z planes) from noisy whole-brain image stacks
(acquired at low laser power). Right — corresponding denoised output generated by different methods.
Cell nuclei are labelled with nuclear localized GCaMP5K. Data comes from strain ZIM504. Inset shows
intensity profile along the dotted line.
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Supplementary Figure 8. Additional accuracy comparison of various denoising methods for whole-brain
images. A) Left - SSIM accuracy, right— PSNR across noisy images, median filtered images, Gaussian
filtered images, and deep denoised images (n = 600 images). Data comes from strain ZIM504. Boxes
indicate 25" and 75" percentile, whiskers indicate 5" and 95" percentile of data.
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Supplementary Figure 9. Additional deep denoising accuracy quantification on images from 3 different
imaging sessions (different days) when model is trained with specific day’s data only. Data comes from
ZIM504 strain. A) Left — example noisy images from 3 imaging sessions, right — corresponding denoised
image outputs by 3 different network s trained on specific day’s data. B) Intensity profiles along the dotted
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lines shown in insets in A for noisy images and denoised images output by 3 different networks. C) SSIM
accuracy and D) PSNR achieved by deep denoising on noisy images from 3 imaging sessions when
network s are trained on specific strain’s data. (n = 40, 1,043, 1,043, 1,532, 50, 1,532, 1,403, 1,403, 50
images for 9 conditions, **p<0.01, Bonferroni paired comparison test). Boxes indicate 25" and 75"
percentile, whiskers indicate 5" and 95" percentile of data.
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Supplementary Figure 10. Additional deep denoising accuracy quantification on images acquired with 3
different lowlaser power settings when model is trained with specific setting’s data only. Data comes from
ZIM504 strain. A) Left — example noisy images acquired across 3 laser power settings, right —
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corresponding denoised image outputs by 3 different networks trained on specific settings’data. B)
Intensity profiles along the dotted lines shown in insets in A for noisy images and denoised images output
by 3 different networks. C) SSIM accuracy and D) PSNR achieved by deep denoising on noisy images
across 3 laser power settings when network s are trained on specific setting’s data. ((n = 88, 2,728, 2,728,
2,262, 100, 2,262, 2,806, 2,806, 226 images for 9 conditions, ***p<0.001, **p<0.01, *p<0.05, Bonferroni
paired comparison test). Boxes indicate 25" and 75" percentile, whiskers indicate 5™ and 95" percentile
of data.
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Supplementary Figure 11. Additional denoising accuracy quantification on synthetic images. A) Examples
of synthetic noisy and ground-truth image stacks across range of signal levels in images (photon count
levels, see Methods - synthetic image data generation for details), and corresponding denoised images
generated by median filtering, Gaussian filtering, deep denoising. B) Left— SSIM, Right - RMSE
comparison across methods on synthetic images across range of photon count levels (n = 100 image
stacks). Boxes indicate 25" and 75" percentile, whiskers indicate 5" and 95" percentile of data.
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Supplementary Figure 12. Accuracy quantification of traces extracted from deep denoised videos using
semi-synthetic whole-brain video datasets (see Methods — Semi synthetic video data generation). A)
Heatmap showing neuron activity traces of cells in a semi-synthetic noisy video, corresponding ground-
truth video, and traces extracted from video denoised with deep network. (Video corresponds to 200
photon count level). B) Neuron activities from noisy video, ground-truth video and deep denoised video in
A projected on to first 2 PC’s. Deep denoising recovers low-dimensional neuron activity dynamics. C)
Comparison of traces in noisy video to traces in ground-truth video for few example cells before and after
deep denoising (same video as in A). D) MAE of traces to ground-truth traces across denoising methods
and signal levels on videos (photon count levels). (N = 1 video, n = 130 cells in each video for each
condition). Boxes indicate 25" and 75" percentile, whiskers indicate 5™ and 95" percentile of data.
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Noisy Deep denoised

Supplementary Figure 13. Additional examples of deep denoising of large field of view (FOV) noisy image
stacks. Left - max projections of noisy images (acquired at low laser power, 20X magnification) showing
motor neurons in ventral nerve cord. Right — corresponding deep denoised outputs. Data comes from
strain OH16230. Arrows indicate example cells that are difficult to identity in noisy images but canbe
easily identified in denoised images.
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Supplementary Figure 14. Additional qualitative comparison examples of denoising methods on large
FOV (20X) motor neuron images. Left - max projections of noisy images (acquired at low laser power,
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20X magnification) showing motor neurons in ventral nerve cord. Right — corresponding denoised output
generated by different methods shown for dotted box in noisy images. Inset shows intensity profile along
the dotted line. Data comes from strain OH16230.


https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.13.488233; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B
1.0 40
0.8+
304
0.6 i é é é é
[a's
= : H - zo-é
(Y2} a
0.4+
104
0.24
O L] L] L] L] L] L] L] L] 0 L] L} L] L] L} L] L] L]
O I N A D 2 P & & O
F &L O P F & LT LTS
< & Q&Q} T EY & &@« VTS
&'bo ;_,\'b(\ 6\7}0 (__)Q
@e b’b& @Q/ 0,0\56

Supplementary Figure 15. Accuracy comparison of NIDDL with traditional denoising methods and deep
learning based methods on large FOV (20X magnification) ventral cord data as shown in Fig. 2F. A) Left
— SSIM accuracy, right — PSNR comparison across various methods. (n = 60-217 images). Boxes
indicate 25" and 75" percentile, whisk ers indicate 5" and 95" percentile of data.
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Supplementary Figure 16. Additional examples of ventral cord neurons’ activity traces extracted from in-
traces from deep denoised videos for A) worm 1 in Figure 2H, B) worm 2, C) worm 3, D) worm 4.

device recordings. Left panel — single pixel neuron activity traces from noisy videos
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Supplementary Figure 17. Deep denoising enables correlating neuron activity to behavior in freely moving
animal. A) Example frame from video recording of freely-moving C. elegans showing tracked ventral cord
neurons. B) Tangent angle along the body as it changes with time. ‘A’ denotes anterior side and ‘P’
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denotes posterior side. C) Comparison of maximum absolute value of correlation between neuron
activities and curvature (n = 15 cells, **p<0.01, Bonferroni paired comparison test). Boxes indicate 25"
and 75™ percentile, whisk ers indicate extreme data points D) Left and middle panels — heat map plots of
cross correlation of neuron activities to animal curvature. Body portion was discretized into 100 segments.
Rows in each heat map indicate cross correlation of neuron activity to curvature at the specific body
segment. ‘A’ denotes anterior side and ‘P’ denotes posterior side. White dotted line indicates the position
of the cell on the body portion. Right panels — cross correlation along the dotted white line in left and
middle panels i.e. cross correlation of neuron activity to local curvature of the body where the cell is
located.
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Supplementary Figure 18. Network performance comparisons across two different architectures and loss
functions for denoising neurite images. A) RMSE accuracy, B) SSIM accuracy and C) PSNR of deep
denoised images from test data set across optimized neural network architectures (‘unet_fixed’ and
‘hourglass_wres’) and loss functions (L1 and L2). Data comes from strains GT372 and GT366. (n = 174,
159, 79, 99 images for 4 conditions). Boxes indicate 25" and 75" percentile, whiskers indicate 5" and
95" percentile of data.
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Supplementary Figure 19. Additional examples of deep denoising of harsh touch mechanosensory
neuron PVD’s neurites. A) Left panels — noisy images (acquired at low laser power), right panels —
corresponding deep denoised output. Cyan traces in inset indicate pixel intensities along dotted lines.
Data comes from strain GT366.
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Supplementary Figure 20. Additional qualitative comparison examples of different denoising methods on
harsh touch mechanosensory neuron PVD'’s neurites. Left - max projections of noisy images (acquired at
low laser power, 20X magnification) showing motor neurons in ventral nerve cord. Right — corresponding
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denoised output generated by different methods shown for dotted box in noisy images. Inset shows
intensity profile along the dotted line. Data comes from strain OH16230.
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Supplementary Figure 21. Deep denoising of images facilitate neurite segmentation. A) Examples of
noisy images showing harsh touch mechanosensory neuron PVD's neurites, no regions are detected in
noisy images with simple morphological operations (see Methods — Neurite segmentation), corresponding
deep denoised outputs and segmented neurites in denoised images. Data comes from strain GT366.
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Supplementary Figure 22. Additional accuracy comparison of NIDDL with other non-deep-learning and
deep-learming based methods for neurites of gentle touch and harsh touch neurons. A) SSIM accuracy
and B) PSNR of noisy images, median filtered images, Gaussian filtered images, and deep denoised
images. Data comes from strains GT372 and GT366. (n = 86-443 images). Boxes indicate 25" and 75"
percentile, whiskers indicate 5" and 75" percentile.
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Supplementary Figure 23. Accuracy comparison on noisy images from 2 different strains, GT372 and
GT366 that label neurites of gentle touch and harsh touch mechanosensory neurons respectively, when
models are trained on specific strain’s data. A) Left — SSIM accuracy and right — PSNR achieved by deep
denoising when network s are trained on specific strain’s data. (n = 129, 203, 118, 97 images for 4
conditions, ***p<0.001, *p<0.05, Bonferroni paired comparison test). Boxes indicate 25" and 75"
percentile, whiskers indicate 5" and 95" percentile of data.


https://doi.org/10.1101/2022.04.13.488233
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.13.488233; this version posted April 14, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SupplementaryVideo Captions

SupplementaryVideo 1—- Deep denoising examples of low SNR whole-brain images. Video shows 3 low
SNR imagesfrom different animals (1 z-plane from 3D stack) acquired at low laser power and
corresponding deep denoised image generated by trained network. Data comes from strain ZIM504 and
OH16230. Scale bar corresponds to 5 um.

SupplementaryVideo 2—- Deep denoising of whole-brain recording. Max-projection imagesfor low SNR
video acquired at low laser power, high SNR video acquired at high laser power, and corresponding deep
denoised video generated by network. Cell nuclei are labelled with nuclear localized GCaMP5K. Data
comes from strain ZIM504. Scale bar corresponds to5 pum.

SupplementaryVideo 3 - Deep denoising of ventral cord neurons for animals restrained in microfluidic
device. Max projection images of low SNR video acquired at low laser power and corresponding deep
denoised video. Video shows two animals in microfluidic device. Data comes from strain OH16230. Scale
bar corresponds to 10.4 um.

SupplementaryVideo 4 - Deep denoising of ventral cord neurons for freely moving animal. Max
projection imagesof low SNR video acquired at low laser power and corresponding deep denoised
video. Data comes from strain OH16230. Scale bar corresponds to 10.4 um.

SupplementaryVideo 5- Deep denoising of neurites of harsh and gentle touch mechanosensory
neurons. Video shows 3 low SNR images (max-projections of 3D stack) from different animals acquired
at low laser power and corresponding deep denoised image generated by trained network. Data comes
from strain GT372 and GT366. Scale bar corresponds to 5 um.
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