

1

2 **Tree diversity effects on productivity depend on mycorrhizae and**
3 **life strategies in a temperate forest experiment**

4 Peter Dietrich^{1,2}, Olga Ferlian^{1,2}, Yuanyuan Huang^{1,2}, Shan Luo^{1,2}, Julius Quosh^{1,2},
5 and Nico Eisenhauer^{1,2}

6 ¹ German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4,
7 04103 Leipzig, Germany

8 ² Institute of Biology, Experimental Interaction Ecology, Leipzig University, Puschstr. 4, 04103
9 Leipzig, Germany

10

11

12 **Data availability**

13 The data that support the findings of this study are openly available in BExIS at
14 [http://doi.org/\[doi\]](http://doi.org/[doi]), reference number [reference number].

15 **Abstract**

16 Tree species are known to predominantly interact either with arbuscular mycorrhizal (AM) or
17 ectomycorrhizal (EM) fungi. However, there is a knowledge gap whether these mycorrhizae
18 differently influence biodiversity-ecosystem functioning (BEF) relationships and whether a
19 combination of both can increase community productivity. In 2015, we established a tree-diversity
20 experiment by growing tree communities with varying species-richness levels (1, 2, or 4 species),
21 and either with AM or EM tree species, or a combination of both. We investigated basal area and
22 annual basal area increment from 2015 to 2020 as proxy for community productivity. We found
23 significant positive relationships between tree species richness and community productivity, which
24 strengthened over time. Further, AM and EM tree species differently influenced productivity;
25 however, there was no overyielding when AM and EM trees grew together. EM tree communities
26 were characterized by low productivity in the beginning, but an increase of increment over time,
27 and showed overall strong biodiversity effects. For AM tree communities the opposite was true.
28 While young trees did not benefit from the presence of the other mycorrhizal type, dissimilar
29 mechanisms underlying BEF relationships in AM and EM trees indicate that maximizing tree and
30 mycorrhizal diversity may increase ecosystem functioning in the long run.

31

32 Key words: biodiversity-ecosystem functioning, MyDiv, complementarity, selection, soil
33 nutrients, plant-soil interaction, mycorrhizal fungi, symbiotic soil fungi

34 **Introduction**

35 Numerous studies have shown a positive biodiversity-ecosystem functioning (BEF)
36 relationship in terrestrial ecosystems, and that this relationship strengthens over time (Bongers et
37 al., 2021; Cardinale et al., 2007; Fargione et al., 2007; Guerrero-Ramirez et al., 2017; Huang et al.,
38 2018; Reich et al., 2012; Urquiza et al., 2022). Typically, this relationship is explained by
39 complementary resource use among plants, as well as a growing intensity of negative plant-soil
40 interactions at low diversity and positive interactions at high diversity (Barry et al., 2019;
41 Eisenhauer 2012). Strong evidence was found for the first two mechanisms, while research on the
42 role of positive plant-soil interactions are, by contrast, underrepresented and often provided
43 inconclusive results (Barry et al., 2019; Wright et al., 2017). This is surprising considering that
44 soil-borne mutualists play a fundamental role for plants by influencing nutrient availability,
45 pathogen pressure or competition relationships and thereby have a key impact on plant growth
46 (Bennett et al., 2006; Tedersoo et al., 2020; Wagg et al., 2011). One of the possible reasons for
47 inconsistent results could be that plant-mutualist relationships are not always beneficial to the
48 plants. They can vary between beneficial and detrimental depending on factors like environmental
49 conditions, plant age, and developmental state of the association (Johnson et al., 1997). Considering
50 this, it is not yet fully understood whether and how plant-soil mutualist interactions contribute to
51 the strengthening of positive BEF relationship (Wright et al., 2017).

52 Among soil-borne mutualists, there is one group that is ubiquitous and has an extensive
53 influence on plants: mycorrhizal fungi (Tedersoo et al., 2020). These fungi form symbiotic
54 relationships with almost all terrestrial plants (92% of families) and significantly influence plant
55 productivity by enhancing nutrient acquisition, water supply and/or protection against pathogens,
56 in exchange for photosynthetically derived carbon (Bennett et al., 2006; Smith and Read 2008;
57 Wang and Qiu 2006). There are two main types of mycorrhizal symbiosis, arbuscular mycorrhizae

58 (AM), which are common in many different plant families, and ectomycorrhizae (EM), which
59 occur only in certain families (mainly tree and shrub families; Wang and Qiu (2006)). Both differ
60 considerably in their structure and cause dissimilar effects on plant growth: AM are more critical
61 for phosphorous uptake, while EM are mainly involved in nitrogen mineralisation and uptake
62 (Holste et al., 2017; Read 1991). Moreover, EM associations are known to have a competitive
63 advantage over AM, for example, due to saprotrophic activity and the development of a denser
64 hyphal network (Jones et al., 1998; Malloch et al., 1980; Read and Perez - Moreno 2003), but are
65 also more resource costly for plants and thus only beneficial under specific conditions (Rygiewicz
66 and Andersen 1994).

67 Almost all tree species are predominantly associated with either AM or EM fungi (Ferlian et
68 al., 2021), therefore are classified as AM or EM tree species (Wang and Qiu 2006). Tree
69 associations with specific mycorrhizal types may be related to their nutrient acquisition strategies
70 and functional traits (Averill et al., 2019; Cornelissen et al., 2001). Specifically, AM tree species
71 mainly rely on inorganic nutrient resources and therefore request fast nutrient cycling and
72 acquisitive traits, while EM tree species can benefit from saprotrophic activity of EM fungi and
73 thus are associated with conservative traits in slow-nutrient-cycling ecosystems. Those differences
74 between AM and EM trees may have influenced their life strategies: most AM tree species are fast-
75 growing, while most EM tree species are slow-growing species (Myking et al., 2013; Petrokas et
76 al., 2020). However, this does not always match, for example, the EM associated *Betula pendula*
77 Roth is a classic pioneer species that can grow very fast (Petrokas et al., 2020).

78 Given that AM and EM associations are fundamentally different (fungi as well as trees), it is
79 feasible to assume that all partners benefit from growing together (Ferlian et al., 2018). In such
80 AM+EM tree communities, resource use complementarity may be highest due to an efficient

81 exploitation of the available belowground and aboveground resources, i.e., soil nutrients and light
82 via differences in growth strategies and leaf trait expressions (Ferlian et al., 2018; Grossman et al.,
83 2017; Wagg et al., 2011). To test this assumption, we established a tree-diversity experiment
84 (MyDiv) by growing tree communities with varying species richness (1, 2, or 4), and either with
85 AM or EM tree species, or a combination of both (50:50). This experimental design has several
86 advantages and can answer still-open questions:

87 • Most knowledge about BEF relationships are based on findings in grasslands, but mechanical
88 understanding behind BEF relationship in forest ecosystem are still rare. It is necessary to test
89 the existing knowledge in forest ecosystems to be able to formulate general conclusions.

90 • It is still not well understood how AM and EM trees contribute to BEF relationships and how
91 this change over time. This is not only important for BEF research, but also has relevance for
92 forest management and the selection of tree species for plantations and reforestation.

93 • Previous biodiversity experiments have shown that diverse plant communities produce more
94 biomass and have higher diversity/abundance of soil-borne mutualists, but it is not clear who
95 influenced whom (Barry et al., 2019) under which conditions (e.g., along a plant diversity
96 gradient). The use of AM and EM trees as model organisms can help to answer this question by
97 a more direct manipulation of the functional diversity of mycorrhizae. This allows for a closer
98 look at the role of soil mutualists in BEF relationships and to disentangle causes from
99 consequences.

100 Here, we used plot-level basal area and annual basal area increment as proxy for productivity
101 (Bongers et al., 2020; Hutchison et al., 2018; Schnabel et al., 2019), and tested how tree species
102 richness and mycorrhizal type (only AM/EM trees, or both AM and EM trees) interactively
103 influenced productivity during the establishment phase of the MyDiv experiment (2015-2020).

104 Moreover, we tested whether potential positive diversity effects were caused by complementarity

105 among tree species or by high productivity of few species in mixtures (= selection effects), using

106 the additive partitioning method of Loreau and Hector (2001). Thereby, we hypothesized that

107 H1) tree species-rich communities are more productive than tree species-poor communities and

108 that this difference increases over time. This is explainable by differences in biodiversity effects

109 (complementarity vs. selection effects), with initially high selection effects and later high

110 complementarity effects in high-diversity mixtures, and generally low biodiversity effects in low-

111 diversity mixtures.

112 H2) communities containing both AM and EM tree species show a higher productivity than

113 communities with only AM or EM tree species. Differences among AM, EM and AM+EM tree

114 communities become greater with time.

115 H3) there is an interaction between species richness and mycorrhizal type, i.e., AM+EM tree

116 communities with four tree species have highest productivity, while EM only communities have

117 lowest productivity. This is explainable by different impacts of AM and EM species on biodiversity

118 effects caused by differences in life strategies (fast vs. slow).

119

120 **Materials and methods**

121 Study site and experimental design

122 The MyDiv experiment is a long-term tree diversity experiment located near Halle (Saxony-

123 Anhalt, Germany; 51°23' N, 11°53' E) at the Bad Lauchstädt Experimental Research Station of the

124 Helmholtz Centre for Environmental Research - UFZ (Ferlian et al., 2018). The elevation is 115 m

125 a.s.l. and the climate is continental. Mean annual air temperature for 2005-2014 (decade before the

126 experiment was established) was 10.0°C, and mean annual precipitation was 535.3 mm, both

127 recorded with an automatic meteorological station near the experimental site (Meteorological data

128 of Bad Lauchstädt, Helmholtz Centre for Environmental Research - UFZ, Department of Soil
129 System Science. <https://www.ufz.de/index.php?de=39439>). The soil is a Haplic Chernozem
130 developed from Loess with a pH range between 6.6 and 7.4 (Altermann et al., 2005; Ferlian et al.,
131 2018). Moreover, soil is rich in nitrogen, while phosphorous is more limited (Supporting
132 Information S1 Fig. S1; Ferlian *et al.* (2018)). Before the experiment was established in March
133 2015, the site had been used for agriculture until 2012 and as a grassland from 2013-2015. The
134 study site was divided into two blocks due to a gradient of abiotic and biotic parameters measured
135 before the establishment of the experiment (Ferlian et al., 2018).

136 The experiment consists of 80 11 x 11 m plots that are covered with a water-permeable weed
137 tarp (minimization of weed interference), with a core area of 8 x 8 m (64 m²). In March 2015, 140
138 two-year-old tree seedlings (nursery plants, bare-rooted, 50–80 cm height, no mycorrhiza
139 inoculation) were planted in a 1 x 1 m grid in each plot (64 trees in the core area). The species pool
140 included ten tree species (Table 1). The selection of species was made with a focus on similarity,
141 i.e., all species are deciduous angiosperms, are native to Germany, and are adapted to site
142 conditions including the ability to tolerate high light exposure (in the beginning) and shade (at later
143 stages; Ferlian et al. 2018). The only difference is that the tree species interact with different types
144 of mycorrhiza, whereby five of them predominantly associate with AM and the other five with EM
145 fungi (Table 1). This enabled us to test for pure mycorrhizae type effects, although we cannot
146 exclude that the selection of tree species also has some influence on the results. There was no direct
147 control of mycorrhizal fungal association; and the treatment was established through assignment
148 of tree species to dominant mycorrhizae based on literature review (Ferlian et al., 2018).
149 Assessments of mycorrhization in 2019 in the MyDiv experiment confirmed these assignments
150 (Ferlian et al., 2021). Tree species-richness levels range from one to four species (1, 2, 4), whereas
151 species richness was crossed with mycorrhizal type (i.e., two- and four-species mixtures contain

152 either only AM or EM tree species, or both AM and EM tree species (50:50)), while there was no
153 mixed mycorrhizal type in monocultures. Per species, there are two monoculture replicates, one in
154 each block (N=20). Furthermore, ten replicates per species richness level and mycorrhizal type
155 (AM, EM, AM+EM) were established, distributed over the two blocks ($N_{\text{two-species}}=30$; $N_{\text{four-}}$
156 $\text{species}=30$). More information about the design of the MyDiv experiment can be found in Ferlian et
157 al., (2018).

158

159 Data collection and calculations

160 Tree diameter was measured five cm above the ground (= basal diameter; d_0 ; m) for all 64
161 trees in the core area of the plots for basal area calculation, with a diameter tape, annually in
162 December/January 2015 – 2020. Vitality of the trees was assessed at the same time. Trees were
163 classified as dead when the phloem was clearly dead (brown instead of green), or the whole tree
164 was missing (for example, by trees falling over). From 2015 to 2018, dead trees were replaced by
165 new individuals that had grown next to the experimental site since March 2015 (same age, same
166 growth habit, similar environmental conditions). Replacement was low: 3.3% (168 out of 5120
167 trees) in the first year and less than 1.5% in all subsequent years (for more species- and richness-
168 level-specific information about replacement and number of missing trees, see Supporting
169 Information S1 Table S1 and S2).

170 With tree diameter, we calculated standing basal area ($\text{m}^2 \text{ m}^{-2}$) in each year and annual basal
171 area increment ($\text{m}^2 \text{ m}^{-2} \text{ year}^{-1}$) of the tree communities as proxy for productivity (= ecosystem
172 functioning). Dead trees that were missing in 2019 and 2020 were treated as zero values, whereas
173 the percentage was low (2019: 0.18% missing trees; 2020: 1.95% missing trees; Supporting
174 Information S1 Table S1). To account for differences among years, which were caused, *inter alia*,
175 by differences in weather conditions (Supporting Information S1 Fig. S2), we detrended the

176 calculated variables (basal area, annual basal area increment) by dividing each value per plot by
177 the averaged value of all plots per year (Dietrich et al., 2020).

178 Finally, we calculated net biodiversity effects (NEs), selection effects (SEs), and
179 complementarity effects (CEs) for basal area (absolute and detrended data) by using the additive
180 partitioning method of Loreau and Hector (2001), separately for each year and tree community.
181 These biodiversity effects depend on relative yields of species, which was calculated using
182 monoculture values as denominator. Thereby, we used monoculture values of block 1 for
183 biodiversity effect calculations of block 1 mixtures, and monoculture values of block 2 for block 2
184 mixtures. We skipped biodiversity effects calculation based on annual basal area increment,
185 because some communities (especially monocultures) had a very low annual increment, which
186 resulted in unrealistically high biodiversity effect values. For species-specific SEs and CEs (based
187 on basal area), we used the following equations

188
$$SE_i = (\Delta RY_i - \Delta \bar{RY}) \times (M_i - \bar{M})$$

189
$$CE_i = M_i \times \Delta RY_i - (\Delta RY_i - \Delta \bar{RY}) \times (M_i - \bar{M})$$

190 where ΔRY_i is the deviation from expected relative yield of species i in the mixture ($RY_{\text{observed}} - RY_{\text{expected}}$), and M_i is the yield of species i in monoculture (Huang et al., 2018). Net biodiversity
191 effects (NEs) were calculated by adding SE and CE per plot and year. RY_{observed} (hereafter referred
192 to as RY) of AM and EM trees in AM+EM tree communities was further used to study how trees
193 perform in presence of the other mycorrhizal type (i.e., in AM+EM communities).

195 To test whether positive diversity effects are caused by the different life strategies of the AM
196 and EM trees we used the fast-slow approach (Reich 2014). To do so, we grouped tree species of
197 the MyDiv experiment into fast and slow species, related to nutrient acquisition, growth strategy,
198 and life span. The grouping can be understood as different types of life strategies (fast vs. slow),
199 similar to the concept of different strategies of trees during succession (pioneers vs. climax

200 species). We clustered tree species based on the following variables: maximum age, maximum
201 growth height, wood density, specific leaf area, leaf C/N ratio, and basal area increment of
202 monoculture communities over time (Huston and Smith 1987; Reich 2014; Westoby and Wright
203 2006). All variables were derived from Ferlian et al., (2018); except maximum age, which came
204 from Brzeziecki and Kienast (1994), and increment, which was calculated as the slope of simple
205 linear regression between basal area increment (mean of both monocultures per species) and year
206 (2016-2020). Clustering revealed that five out of ten species have a fast life strategy, and other
207 species have a slow life strategy (Supporting Information S2 Fig. S1), based on Reich (2014), and
208 Huston and Smith (1987), and in line with Reuter et al., (2021). Slow species were characterized
209 by high growth height and maximum age, low specific leaf area (SLA), and an increase of basal
210 area increment over time; while fast species showed the opposite (Supporting Information S2 Table
211 S1; Fig. S2). Four out of five slow species were EM tree species (+ AM tree species *F. excelsior*),
212 and four out of five fast species were AM tree species (+ EM tree species *B. pendula*; Table 1;
213 Supporting Information S2 Fig. S1). We then grouped the tree communities into three community-
214 strategy types: (1) tree communities containing more than 50% fast species (i.e., 75% or 100%)
215 were considered as fast communities (31 communities), (2) tree communities with more than 50%
216 slow species as slow communities (31 communities), and (3) tree communities containing 50% fast
217 and 50% slow species as fast+slow communities (18 communities).

218

219 Statistical analysis

220 To test whether tree communities performed differently depending on tree species richness,
221 mycorrhizal type and whether this changed over time, linear mixed-effects models were fitted with
222 basal area, annual basal area increment (absolute and detrended data, respectively), and
223 biodiversity effects (NEs, SEs, CEs) as response variables, respectively. We used block, plot, and

224 the interaction of block and year as random effects and started with a null model with these random
225 effects only. Then, we added the fixed effects tree species richness (1, 2, 4; log-transformed),
226 mycorrhizal type (AM, EM, AM+EM), year (2015/16-2020), and all possible interactions in a
227 sequential order. Prior to analyses, biodiversity effects (NEs, SEs, CEs) were square-root-
228 transformed with sign reconstruction ($\text{sign}(y)=|y|$) to improve the normality of residuals (Loreau
229 and Hector 2001).

230 To test whether missing trees influenced community productivity, we added density of living
231 trees per plot as a covariate before the other fixed effects in separate models with absolute and
232 detrended basal area as response variables. Further, we performed sensitivity analyses to test
233 whether specific tree species played a significant role in community performance. We excluded all
234 plots containing a specific tree species from the dataset and analyzed data as described above (for
235 basal area). To test the impact of community strategies (fast, slow, fast+slow) on tree productivity,
236 we used the same models as described above, but replaced mycorrhizal type (AM, EM, AM+EM)
237 with community strategy. Differences among mycorrhizal types or community strategies in a
238 specific year were tested with mixed-effects models with block as random and mycorrhizal
239 type/community strategy as fixed effect, followed by Tukey's HSD test. All models were fitted
240 with maximum likelihood (ML), and likelihood ratio tests were used to decide on the significance
241 of the fixed effects.

242 To test whether biodiversity effects per year and group (mycorrhizal type/community
243 strategy/species richness) were significantly greater than zero, we used one-tailed t-tests. The
244 strength of the relationships between response variables and year, and response variables and tree
245 species richness were tested with simple linear regression analysis using the slope of the regression
246 line (positive slope indicate increase, negative slope indicate decrease, increase in slope over years
247 indicate strengthening and decrease of slope weakening of relationship). All calculations and

248 statistical analyses were done in R (version 3.6.1, R Development Core Team, <http://www.R-project.org>), including the package *lme4* (Bates et al., 2015) for mixed-effects model analysis,
249 *multcomp* (Hothorn et al., 2016) for Tukey HSD test, and *vegan* (Oksanen et al., 2007) for PCA
250 (Supporting Information S2 Fig. S2).

252

253 **Results**

254 Overall, we found similar results for absolute and detrended data (Table 2 and 3), indicating
255 that the impacts of tree species richness, mycorrhizal type, and community strategy on community
256 productivity was not strongly affected by yearly fluctuations (although the effect size may have
257 been influenced). Note that we calculated stem biomass and their annual increment as another
258 proxy of productivity, the results of which were similar to that of basal area (see Supporting
259 Information S3 for biomass calculation and results).

260

261 Hypothesis 1: Diversity-productivity relationships increase over time

262 Basal area and basal area increment significantly increased with tree species richness (Table
263 2; Fig. 1). Moreover, we found a significant interaction between tree species richness and linear
264 year on basal area, even if we controlled for differences among years (detrended values; Table 2),
265 which indicates that positive diversity effects can develop and increase over time (Fig. 1;
266 Supporting Information S1 Table S3). Those patterns remained the same after accounting for the
267 effects of tree density (Supporting Information S1 Table S4) and the identity of tree species
268 (Supporting Information S1 Table S5).

269 We found positive NEs, which increased over the years (Table 3; Fig. 2a). This was initially
270 caused by a steady increase of SEs from 2015 to 2019 (Fig. 2a). Complementarity effects (CEs)
271 also increased in the beginning (CEs higher than SEs in 2016), remained stable from 2017-2018

272 (CEs lower than SEs), and then continued to increase (CEs higher than SEs; Fig. 2a). From 2019
273 to 2020, SEs strongly decreased, thus NEs were mainly attributed by CEs in 2020 (Fig. 2a). All
274 biodiversity effects were significantly higher than zero (except for NEs and SEs in 2015, and SEs
275 in 2020; Fig. 2a; Supporting Information S1 Table S6). Overall, this pattern was found in two- and
276 four-tree species communities in similar way, while there were also differences between these
277 communities: we found higher SEs and a stronger increase in CEs in four- than in two-species
278 communities, which results in higher NEs (and CEs) in four- than in two-species communities in
279 2020 (Table 3; Fig. 2b, c; Supporting Information S1 Table S7).

280

281 Hypothesis 2: Tree communities assembled with different mycorrhizal types differ in productivity
282 over time

283 After eight months' growth (in December 2015), basal area differed among communities
284 assembled by different mycorrhizal types ($P<0.001$, Table 1), with highest basal area for AM tree
285 communities and lowest for EM tree communities, and this pattern was maintained during the
286 entire study period and in all species richness levels (Fig. 3a). However, differences in basal area
287 of AM, EM, and AM+EM tree communities decreased over time (Supporting Information S1 Table
288 S8). This was due to changes in basal area increment over the years: increment was highest in AM
289 tree communities, and lowest in EM tree communities after eight months' growth (Fig. 4a;
290 Supporting Information S1 Table S9), but decreased in AM tree communities ($P<0.001$), remained
291 stable in AM+EM tree communities ($P=0.335$), and increased in EM tree communities ($P=0.014$)
292 over time, leading to the highest annual increment in EM tree communities in 2020 (Fig. 4a).

293 Comparison of RY of AM and EM trees in AM+EM communities showed that there was no
294 difference in the first two years of the experiment, while from 2017 to 2020 RY of AM trees was
295 higher than RY of EM trees (mean of $RY_{AM}>0.5$; mean of $RY_{EM}<0.5$; Supporting Information

296 S1 Fig. S3). Moreover, RY of AM trees increased over time, while RY of EM trees decreased, in
297 AM+EM communities (Supporting Information S1 Fig. S3).

298

299 Hypothesis 3: Mycorrhizal types differentially influence biodiversity effects due to differences in
300 life strategies

301 We found a significant three-way interaction effect (species richness x mycorrhizal type x
302 year) on basal area (Table 2), which can be explained by differences in the relationships between
303 species richness and basal area in AM, EM, and AM+EM tree communities over the years (Fig. 3).

304 At the beginning of the experiment (2015), there was no significant relationship between species
305 richness and basal area in all communities. In 2016-2020, AM tree communities also showed no
306 significant relationship (Fig. 3a; Supporting Information S1 Table S10); whereas EM tree
307 communities had higher basal area in four-species communities than in monocultures (2016-2018:
308 marginally significant; 2019-2020: significant; Supporting Information S1 Table S10). In AM+EM
309 tree communities, basal area tended to increase with increasing species richness in 2020 (Fig. 3a;
310 Supporting Information S1 Table S10). For all three-types of communities, the slope of species
311 richness–basal area relationship increased over the years (except that the slope in AM tree
312 communities decreased from 2019 to 2020; Supporting Information S1 Table S10).

313 We found significant differences in biodiversity effects among communities with different
314 mycorrhizal types: EM tree communities showed the steepest increase of NEs, resulting in highest
315 NEs in 2020 (Table 3; Fig. 2d-f). These NEs were mainly caused by SEs until 2019. In 2020, NEs
316 were mainly caused by CEs due to the decrease of SEs (Fig. 2e; Supporting Information S1 Table
317 S11). In AM tree communities, NEs were primarily caused by CEs in the whole period, while SEs
318 were absent (2015, 2016, 2020) or weak (2017-2019; Fig. 2d; Supporting Information S1 Table

319 S11). In AM+EM tree communities, CEs and SEs contributed equally to NEs (Fig. 2f; Supporting
320 Information S1 Table S11).

321 Species-specific analyses revealed that a few species strongly contributed to changes in SEs
322 and CEs over the years: one of the most influential species was the EM tree species *B. pendula*,
323 which showed the highest basal area in mixtures, especially in four-species mixtures (Supporting
324 Information S1 Fig. S4). Consequently, this species had highes SE values among all species from
325 2015 to 2018 in four-species communities, while SEs were lower in two-species communities
326 (Supporting Information S1 Fig. S5, S6). In 2020, *B. pendula* showed a strong decrease in SEs,
327 which caused the overall loss in SEs in 2020 (Supporting Information S1 Fig. S5). Other species,
328 which showed a strong increase in SEs, mainly in four-species communities, were the EM species
329 *F. sylvatica* and *Q. petraea* and the AM species *P. avium* (Supporting Information S1 Fig. S6). For
330 species-specific CEs, again *B. pendula* had the most influential effect: CEs of this species showed
331 the strongest increase, and this increase tended to be higher in four- than in two-species
332 communities (Supporting Information S1 Fig. S6). The AM tree species *A. pseudoplatanus* and *P.*
333 *avium* also showed an increase of CEs over the years, while the EM tree species *C. betulus*, *F.*
334 *sylvatica*, and *Q. petraea*, and the AM tree species *A. hippocastanum* showed a decrease in CEs
335 over time (Supporting Information S1 Fig. S5).

336 There were significant differences in basal area among the three types of communities based
337 on community strategies (Table 2). Overall, fast communities had highest, and slow communities
338 lowest basal area (Fig. 3b). One exception were four-species communities, where fast+slow
339 communities had equal or slightly higher basal area than fast communities (significant interaction
340 of tree species richness and community strategy; Table 2; Fig. 3b). Next to this result, replacing
341 community strategy with mycorrhizal type in our model did not provide new insights (since most
342 fast tree species are AM associated and most slow tree species are EM associated). Therefore,

343 remaining results of community strategy analysis (e.g., for basal area increment and biodiversity
344 effects) can be found in Table 2, Figure 4b, and Supporting Information S2.

345

346 **Discussion**

347 Hypothesis 1: Diversity-productivity relationships increase over time

348 We found a significant positive effect of tree species richness on basal area, and the effect
349 steadily increased over the years. This is in line with previous findings in grasslands and forests
350 showing that biodiversity-ecosystem functioning relationships become steeper over time (Bongers
351 et al., 2021; Guerrero-Ramirez et al., 2017; Huang et al., 2018; Reich et al., 2012; Schnabel et al.,
352 2019). Notably, we found a significant effect of species richness on annual basal area increment
353 already in the second year of the experiment (2016) and then in almost all subsequent years. This
354 shows that tree communities can benefit from higher species richness during the very early
355 establishment phase. This can be explained by both selection and complementarity effects in the
356 beginning of our study. Highly-productive pioneer species, such as *B. pendula* or *P. avium*, caused
357 strong selection effects, and can function as shelter species in mixtures by reducing high light levels
358 and extreme temperature changes, providing nutrients (high leaf N and P concentration, fast litter
359 decomposition), and protection from wind, supporting neighbouring tree species during
360 establishment (Cornelissen et al., 2001; Löf et al., 2014; Stark et al., 2015; Wright et al., 2017).
361 Moreover, differences in belowground nutrient use and/or aboveground growth forms (canopy
362 packing) among species can increase resource use efficiency, complementarity effects, and thus
363 productivity in mixtures (Bongers et al., 2021; Morin et al., 2011; Reuter et al., 2021; Williams et
364 al., 2021). As pioneer species are fast-growing, selection effects increased more strongly in the first
365 years of the experiment (especially in four-species mixtures), but increasing biotic interactions and
366 changing competitive interactions altered this trajectory (Bongers et al., 2021). As a result,

367 selection effects decreased after four years in our experiment, while complementarity effects
368 continued to increase. This is in line with previous findings showing that selection effects play a
369 major role at the beginning, but are replaced by complementarity effects after some time (Fargione
370 et al., 2007; Jing et al., 2021; Lasky et al., 2014). Overall, our results support the hypothesis that
371 co-occurring species in high-diverse temperate forests differ in niches and competitive abilities,
372 which leads to strong biodiversity effects and higher productivity in mixtures compared to their
373 monospecific counterparts (Bongers et al., 2021; Huang et al., 2018; Morin et al., 2011; Urgoiti et
374 al., 2022). Our results extend this knowledge by showing that both complementarity and selection
375 effects contribute to biodiversity effects on tree growth in young tree stands.

376

377 Hypothesis 2: Tree communities assembled with different mycorrhizal types differ in productivity
378 over time

379 In contrast to our second hypothesis, we did not find overyielding when both mycorrhizal
380 types were present in the community. Consistently, AM and EM trees did not show complementary
381 use of resources, which is in line with a previous study in the MyDiv experiment (Reuter et al.,
382 2021). In fact, AM tree communities had the highest basal area in all diversity levels and over the
383 whole study period, which is consistent with a recent study in a subtropical forest (Ma et al., 2021).
384 The high productivity of AM tree communities could be due to two reasons: on the one hand, AM
385 tree species are known to have a fast growth strategy (Cornelissen et al., 2001; Ferlian et al., 2018),
386 and several species are pioneers at juvenile stages, e.g., *S. aucuparia* (Myking et al., 2013) and *P.*
387 *avium* (Petrokas et al., 2020); on the other hand, the soil of the experimental field is rich in nitrogen,
388 while phosphorous is more limited (Ferlian et al., 2018), which favours AM associations more than
389 EM associations (Holste et al., 2017; Read 1991). This can also explain why AM trees dominated
390 in the AM+EM communities, i.e., AM trees had increasing RY over time, while the opposite was

391 true for EM trees, which is in line with previous studies (Bennett et al., 2017; Chen et al., 2019;
392 Mao et al., 2019). The different growth strategies may also explain why AM communities
393 decreased in increment while EM communities increased increment over time. Previous work has
394 shown that fast-growing species lose and slow-growing species increase productivity, partly due
395 to differences in nutrient economy and interactions with soil mutualists (Dietrich et al., 2020).

396

397 Hypothesis 3: Mycorrhizal types differentially influence biodiversity effects due to differences in
398 life strategies

399 We found a significant positive diversity-productivity relationship in EM tree communities,
400 whereas no such relationships were found in AM tree communities. The positive diversity effect
401 in EM tree communities can be explained by two consecutive processes: First, selection effects
402 dominated from 2016 to 2019, when the EM species *B. pendula* was the most-productive species
403 causing strong selection effects. However, also two other EM species, *F. sylvatica* and *Q. petraea*,
404 caused high selection effects due to their very low productivity, across all species richness levels.
405 The phenomenon that species cause positive selection effects, when they were low-productive in
406 monocultures *and* mixtures, were also found in previous work (Huang et al., 2018). The fast growth
407 of *B. pendula*, with highest productivity across all species, and slow growth of *F. sylvatica* and *Q.*
408 *petraea*, with lowest productivity across all species, indicates that growth strategies of EM tree
409 species cover a broad spectrum (from very fast to very slow species), while in AM communities,
410 the growth strategies of the species were relatively similar in our experiment (Supporting
411 Information S1 Figure S7: change in basal area increment over time strongly differed among EM
412 species, while in AM species, there was a relative similar change in increment over time). The
413 fundamentally different growth strategies of EM tree species can be an explanation for stronger
414 biodiversity effects found in our study and is in line with previous assumptions (Brzeziecki and

415 Kienast 1994; Ferlian et al., 2018; Niklaus et al., 2017). The loss of many *B. pendula* individuals
416 in monoculture in 2020 and thus a loss of productivity can explain why the selection effect strongly
417 decreased from 2019 to 2020.

418 Second, we found an increase in complementarity effects over time in EM tree communities,
419 which is explainable by a disproportionate increase of complementarity effects of *B. pendula*
420 compared to other tree species. *B. pendula* had an intermediate productivity in monoculture in our
421 experiment, but strongly increased its productivity with tree species richness representing the most-
422 productive species in four-species mixtures. Consequently, *B. pendula* was responsible for the
423 positive complementarity effect in EM tree communities, while three out of four other EM tree
424 species showed a weak negative complementarity effect in 2020. With our data in hand, we can
425 only speculate why *B. pendula* is much more productive in mixture. The most likely explanation
426 is that *B. pendula* benefited from other EM trees growing more slowly, so that there was more light
427 available, while in monocultures, birch trees were in strong competition with each other (Jucker et
428 al., 2014; Williams et al., 2021). A further explanation could be plant-soil feedback effects (PSFs),
429 which were shown to be main drivers of positive BEF relationships in grasslands and forests
430 (Bennett et al., 2017; Eisenhauer et al., 2019; Guerrero - Ramírez et al., 2019; Thakur et al., 2021).
431 For example, it is possible that high mortality in *B. pendula* monocultures in 2020 was caused by
432 pathogen accumulation (= negative PSFs); however, it is also possible that harsh weather
433 conditions, such as summer drought, led to greater mortality (Schnabel et al., 2021; Schnabel et al.,
434 2019; Steckel et al., 2020). Thus, future studies should address in more detail how PSFs (especially
435 negative PSFs), extreme weather events and their combined effect contribute to BEF relationships
436 in the MyDiv experiment.

437 In AM tree communities, there was no significant BEF relationship; nevertheless, we found
438 strengthening complementarity effects. Currently, we can only speculate regarding the underlying
439 drivers (e.g., plant-soil feedback effects). Presumably there was no significant BEF relationship
440 because of highly productive AM monocultures reflecting that AM trees are often pioneer species.

441 An explanation for different biodiversity effects in AM and EM communities are differences
442 in life strategies. This is supported by our cluster analyses showing that most fast tree species were
443 AM associated and most slow tree species were EM associated (Averill et al., 2019; Cornelissen et
444 al., 2001), and that we therefore did not find strong differences between analyses using mycorrhizal
445 type (AM, EM, AM+EM) and using community strategy (fast, slow, fast+slow) as fixed effect.
446 Nevertheless, we gained one important new insight: tree communities containing fast and slow
447 species had similar or slightly higher productivity than fast or slow communities alone. This result
448 supports the hypothesis that an increase in the number of species pursuing different strategies (e.g.,
449 life strategies) can increase ecosystem functioning (Hao et al., 2020; Niklaus et al., 2017; Teste et
450 al., 2017). We found this effect only in four-species mixtures, indicating that two species may not
451 make full use of the available niches, and that both high tree species richness and high variability
452 in life strategies are needed to sustain a high ecosystem functioning in forest ecosystems (Bongers
453 et al., 2021; Niklaus et al., 2017). However, it is important to note that our community strategy
454 analysis is very basic. Future work should consider site-specific above- and belowground plant
455 traits and their plasticity across different tree diversity levels (Eisenhauer 2022) as well as how
456 different mycorrhizal types (AM, EM, AM+EM) influence trait expression and their link to
457 productivity.

458

459 **Conclusions**

460 Our study shows that tree species richness is essential to maintain high ecosystem
461 functioning, and that tree diversity effects increase over time. These findings provide empirical
462 evidence that species-rich plantations can be more productive than monocultures, whereby the
463 choice of tree species is important. Even though our experimental plots are relatively small (in
464 comparison to the size of “real” forests), our results can serve as a basis for further investigations
465 on larger scale with a more application-related focus (i.e., forest management and reforestation).
466 More precisely, we found that AM and EM tree communities differ strongly in their productivity
467 in terms of temporal development and tree diversity effects. Although we did not directly
468 manipulate mycorrhizal fungi in the MyDiv experiment, a recent study confirmed that AM trees
469 were significantly higher colonized by AM fungi, while EM trees were significantly higher
470 colonized by EM fungi in the MyDiv experiment (Ferlian et al., 2021). Therefore, we are convinced
471 that the effects we found were caused by specific fungus-tree interactions and that we were able to
472 successfully manipulate the functional diversity of mycorrhizae. Nevertheless, we did not find
473 overyielding when both mycorrhizal types were present in the community after five years of
474 growing. We assume that, shortly after planting the trees in a nitrogen-rich soil, aboveground
475 factors, such as light intensity and space competition, may play a more important role for
476 community productivity than complementarity in soil resource use. At later growth stages,
477 however, when nutrients become more limited, the combination of AM and EM trees may have a
478 greater impact on ecosystem functioning. Therefore, long-term observations are needed to fully
479 understand the role of plant-soil mutualist interactions for strengthening BEF relationships.
480

481 **Acknowledgments**

482 We thank Ulrich Pruschitzki for help setting up the experiment and maintaining the field site
483 in the first years. This work was supported by the European Research Council (ERC) under the

484 European Union's Horizon 2020 research and innovation program (grant agreement no. 677232),
485 and by the German Research Foundation (DFG) in the frame of the Gottfried Wilhelm Leibniz
486 Prize (Ei 862/29-1). Further support came from the German Centre for Integrative Biodiversity
487 Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). SL
488 was supported by a Humboldt Research Fellowship.

489

490 **References**

491 Altermann, M., J. Rinklebe, I. Merbach, M. Körschens, U. Langer, and B. Hofmann. 2005.
492 "Chernozem—Soil of the Year 2005." *Journal of Plant Nutrition and Soil Science* 168:
493 725-740.

494 Averill, C., J. M. Bhatnagar, M. C. Dietze, W. D. Pearse, and S. N. Kivlin. 2019. "Global imprint
495 of mycorrhizal fungi on whole-plant nutrient economics." *Proceedings of the National
496 Academy of Sciences* 116: 23163-23168.

497 Barry, K. E., L. Mommer, J. van Ruijven, C. Wirth, A. J. Wright, Y. Bai, J. Connolly, G. B. De
498 Deyn, H. de Kroon, F. Isbell, A. Milcu, C. Roscher, M. Scherer-Lorenzen, B. Schmid, and
499 A. Weigelt. 2019. "The future of complementarity: disentangling causes from
500 consequences." *Trends in Ecology & Evolution* 34: 167-180.

501 Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai, G.
502 Grothendieck, P. Green, and M. B. Bolker. 2015. "Package 'lme4'." *Convergence* 12: 2.

503 Bennett, A. E., J. Alers-Garcia, and J. D. Bever. 2006. "Three-way interactions among mutualistic
504 mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis." *The American
505 Naturalist* 167: 141-152.

506 Bennett, J. A., H. Maherli, K. O. Reinhart, Y. Lekberg, M. M. Hart, and J. Klironomos. 2017.
507 "Plant-soil feedbacks and mycorrhizal type influence temperate forest population
508 dynamics." *Science* 355: 181-184.

509 Bongers, F. J., B. Schmid, H. Bruelheide, F. Bongers, S. Li, G. von Oheimb, Y. Li, A. Cheng, K.
510 Ma, and X. Liu. 2021. "Functional diversity effects on productivity increase with age in a
511 forest biodiversity experiment." *Nature Ecology & Evolution* 5: 1594-1603.

512 Bongers, F. J., B. Schmid, Z. Sun, Y. Li, W. Härdtle, G. von Oheimb, Y. Li, S. Li, M. Staab, and
513 K. Ma. 2020. "Growth–trait relationships in subtropical forest are stronger at higher
514 diversity." *Journal of Ecology* 108: 256-266.

515 Brzeziecki, B., and F. Kienast. 1994. "Classifying the life-history strategies of trees on the basis of
516 the Grimian model." *Forest Ecology and Management* 69: 167-187.

517 Cardinale, B. J., J. P. Wright, M. W. Cadotte, I. T. Carroll, A. Hector, D. S. Srivastava, M. Loreau,
518 and J. J. Weis. 2007. "Impacts of plant diversity on biomass production increase through
519 time because of species complementarity." *Proceedings of the National Academy of
520 Sciences of the United States of America* 104: 18123-18128.

521 Chen, L., N. G. Swenson, N. Ji, X. Mi, H. Ren, L. Guo, and K. Ma. 2019. "Differential soil fungus
522 accumulation and density dependence of trees in a subtropical forest." *Science* 366: 124-
523 128.

524 Cornelissen, J., R. Aerts, B. Cerabolini, M. Werger, and M. van Der Heijden. 2001. "Carbon
525 cycling traits of plant species are linked with mycorrhizal strategy." *Oecologia* 129: 611-
526 619.

527 Dietrich, P., A. Roeder, S. Cesarz, N. Eisenhauer, A. Ebeling, B. Schmid, E. D. Schulze, C. Wagg,
528 A. Weigelt, and C. Roscher. 2020. "Nematode communities, plant nutrient economy and

529 life - cycle characteristics jointly determine plant monoculture performance over 12 years."

530 *Oikos* 129: 466-479.

531 Eisenhauer, N. 2012. "Aboveground–belowground interactions as a source of complementarity

532 effects in biodiversity experiments." *Plant and Soil* 351: 1-22.

533 Eisenhauer, N. 2022. "The shape that matters: how important is biodiversity for ecosystem

534 functioning?" *Science China Life Sciences* 65: 651-653.

535 Eisenhauer, N., M. Bonkowski, U. Brose, F. Buscot, W. Durka, A. Ebeling, M. Fischer, G.

536 Gleixner, A. Heintz-Buschart, J. Hines, A. Jesch, M. Lange, S. Meyer, C. Roscher, S.

537 Scheu, H. Schielzeth, M. Schloter, S. Schulz, S. Unsicker, N. van Dam, A. Weigelt, W.

538 Weisser, C. Wirth, J. Wolf, and B. Schmid. 2019. "Biotic interactions, community

539 assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem

540 functioning relationships." *Research Ideas and Outcomes* 5: e47042.

541 Fargione, J., D. Tilman, R. Dybzinski, J. H. R. Lambers, C. Clark, W. S. Harpole, J. M. Knops, P.

542 B. Reich, and M. Loreau. 2007. "From selection to complementarity: shifts in the causes of

543 biodiversity–productivity relationships in a long-term biodiversity experiment."

544 *Proceedings of the Royal Society B: Biological Sciences* 274: 871-876.

545 Ferlian, O., S. Cesarz, D. Craven, J. Hines, K. E. Barry, H. Bruelheide, F. Buscot, S. Haider, H.

546 Heklau, and S. Herrmann. 2018. "Mycorrhiza in tree diversity–ecosystem function

547 relationships: conceptual framework and experimental implementation." *Ecosphere* 9:

548 e02226.

549 Ferlian, O., K. Goldmann, N. Eisenhauer, M. T. Tarkka, F. Buscot, and A. Heintz-Buschart. 2021.

550 "Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal

551 fungi along a tree diversity gradient." *ISME Communications* 1: 40.

552 Grossman, J. J., J. Cavender - Bares, S. E. Hobbie, P. B. Reich, and R. A. Montgomery. 2017.

553 "Species richness and traits predict overyielding in stem growth in an early - successional
554 tree diversity experiment." *Ecology* 98: 2601-2614.

555 Guerrero-Ramirez, N. R., D. Craven, P. B. Reich, J. J. Ewel, F. Isbell, J. Koricheva, J. A. Parrotta,
556 H. Auge, H. E. Erickson, D. I. Forrester, A. Hector, J. Joshi, F. Montagnini, C. Palmborg,
557 D. Piotto, C. Potvin, C. Roscher, J. van Ruijven, D. Tilman, B. Wilsey, and N. Eisenhauer.
558 2017. "Diversity-dependent temporal divergence of ecosystem functioning in experimental
559 ecosystems." *Nature Ecology & Evolution* 1: 1639-1642.

560 Guerrero - Ramírez, N. R., P. B. Reich, C. Wagg, M. Ciobanu, and N. Eisenhauer. 2019.
561 "Diversity - dependent plant - soil feedbacks underlie long - term plant diversity effects
562 on primary productivity." *Ecosphere* 10: e02704.

563 Hao, M., C. Messier, Y. Geng, C. Zhang, X. Zhao, and K. von Gadow. 2020. "Functional traits
564 influence biomass and productivity through multiple mechanisms in a temperate secondary
565 forest." *European Journal of Forest Research* 139: 959-968.

566 Holste, E. K., R. K. Kobe, and C. A. Gehring. 2017. "Plant species differ in early seedling growth
567 and tissue nutrient responses to arbuscular and ectomycorrhizal fungi." *Mycorrhiza* 27:
568 211-223.

569 Hothorn, T., F. Bretz, P. Westfall, R. M. Heiberger, A. Schuetzenmeister, S. Scheibe, and M. T.
570 Hothorn. 2016. "Package 'multcomp'." *Simultaneous inference in general parametric
571 models. Project for Statistical Computing, Vienna, Austria.*

572 Huang, Y., Y. Chen, N. Castro-Izaguirre, M. Baruffol, M. Brezzi, A. Lang, Y. Li, W. Hardtle, G.
573 von Oheimb, X. Yang, X. Liu, K. Pei, S. Both, B. Yang, D. Eichenberg, T. Assmann, J.
574 Bauhus, T. Behrens, F. Buscot, X. Y. Chen, D. Chesters, B. Y. Ding, W. Durka, A.

575 Erfmeier, J. Fang, M. Fischer, L. D. Guo, D. Guo, J. L. M. Gutknecht, J. S. He, C. L. He,
576 A. Hector, L. Honig, R. Y. Hu, A. M. Klein, P. Kuhn, Y. Liang, S. Li, S. Michalski, M.
577 Scherer-Lorenzen, K. Schmidt, T. Scholten, A. Schuldt, X. Shi, M. Z. Tan, Z. Tang, S.
578 Trogisch, Z. Wang, E. Welk, C. Wirth, T. Wubet, W. Xiang, M. Yu, X. D. Yu, J. Zhang, S.
579 Zhang, N. Zhang, H. Z. Zhou, C. D. Zhu, L. Zhu, H. Bruelheide, K. Ma, P. A. Niklaus, and
580 B. Schmid. 2018. "Impacts of species richness on productivity in a large-scale subtropical
581 forest experiment." *Science* 362: 80-83.

582 Huston, M., and T. Smith. 1987. "Plant succession: life history and competition." *The American*
583 *Naturalist* 130: 168-198.

584 Hutchison, C., D. Gravel, F. Guichard, and C. Potvin. 2018. "Effect of diversity on growth,
585 mortality, and loss of resilience to extreme climate events in a tropical planted forest
586 experiment." *Scientific Reports* 8: 15443.

587 Jing, X., B. Muys, H. Bruelheide, E. Desie, S. Hättenschwiler, H. Jactel, B. Jaroszewicz, P. Kardol,
588 S. Ratcliffe, M. Scherer - Lorenzen, Federico Selvi, Karen Vancampenhout, Fons van der
589 Plas, Kris Verheyen, Lars Vesterdal, Juan Zuo, and K. V. Meerbeek. 2021. "Above - and
590 belowground complementarity rather than selection drives tree diversity - productivity
591 relationships in European forests." *Functional Ecology* 35: 1756-1767.

592 Johnson, N. C., J. Graham, and F. Smith. 1997. "Functioning of mycorrhizal associations along the
593 mutualism-parasitism continuum." *New Phytologist* 135: 575-585.

594 Jones, M. D., D. Durall, and P. Tinker. 1998. "A comparison of arbuscular and ectomycorrhizal
595 Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal
596 production." *New Phytologist* 140: 125-134.

597 Jucker, T., O. Bouriaud, D. Avacaritei, I. Dănilă, G. Duduman, F. Valladares, and D. A. Coomes.

598 2014. "Competition for light and water play contrasting roles in driving diversity–
599 productivity relationships in Iberian forests." *Journal of Ecology* 102: 1202-1213.

600 Lasky, J. R., M. Uriarte, V. K. Boukili, D. L. Erickson, W. John Kress, and R. L. Chazdon. 2014.
601 "The relationship between tree biodiversity and biomass dynamics changes with tropical
602 forest succession." *Ecology letters* 17: 1158-1167.

603 Löf, M., A. Bolte, D. F. Jacobs, and A. M. Jensen. 2014. "Nurse trees as a forest restoration tool
604 for mixed plantations: effects on competing vegetation and performance in target tree
605 species." *Restoration Ecology* 22: 758-765.

606 Loreau, M., and A. Hector. 2001. "Partitioning selection and complementarity in biodiversity
607 experiments." *Nature* 412: 72-76.

608 Ma, L., F. J. Bongers, S. Li, T. Tang, B. Yang, K. Ma, and X. Liu. 2021. "Species identity and
609 composition effects on community productivity in a subtropical forest." *Basic and Applied
610 Ecology* 55: 87-97.

611 Malloch, D., K. Pirozynski, and P. Raven. 1980. "Ecological and evolutionary significance of
612 mycorrhizal symbioses in vascular plants (a review)." *Proceedings of the National
613 Academy of Sciences* 77: 2113-2118.

614 Mao, Z., A. Corrales, K. Zhu, Z. Yuan, F. Lin, J. Ye, Z. Hao, and X. Wang. 2019. "Tree mycorrhizal
615 associations mediate soil fertility effects on forest community structure in a temperate
616 forest." *New Phytologist* 223: 475-486.

617 Morin, X., L. Fahse, M. Scherer - Lorenzen, and H. Bugmann. 2011. "Tree species richness
618 promotes productivity in temperate forests through strong complementarity between
619 species." *Ecology Letters* 14: 1211-1219.

620 Myking, T., E. J. Solberg, G. Austrheim, J. D. Speed, F. Bøhler, R. Astrup, and R. Eriksen. 2013.

621 "Browsing of sallow (*Salix caprea* L.) and rowan (*Sorbus aucuparia* L.) in the context of

622 life history strategies: a literature review." *European Journal of Forest Research* 132: 399-

623 409.

624 Niklaus, P. A., M. Baruffol, J. S. He, K. Ma, and B. Schmid. 2017. "Can niche plasticity promote

625 biodiversity–productivity relationships through increased complementarity?" *Ecology* 98:

626 1104-1116.

627 Oksanen, J., R. Kindt, P. Legendre, B. O'Hara, M. H. H. Stevens, M. J. Oksanen, and M. Suggs.

628 2007. "The vegan package." *Community Ecology Package* 10: 631-637.

629 Petrokas, R., V. Baliuckas, and M. Manton. 2020. "Successional categorization of european hemi-

630 boreal forest tree species." *Plants* 9: 1381.

631 Read, D., and J. Perez - Moreno. 2003. "Mycorrhizas and nutrient cycling in ecosystems—a journey

632 towards relevance?" *New phytologist* 157: 475-492.

633 Read, D. J. 1991. "Mycorrhizas in ecosystems." *Experientia* 47: 376-391.

634 Reich, P. B. 2014. "The world - wide 'fast - slow' plant economics spectrum: a traits

635 manifesto." *Journal of Ecology* 102: 275-301.

636 Reich, P. B., D. Tilman, F. Isbell, K. Mueller, S. E. Hobbie, D. F. B. Flynn, and N. Eisenhauer.

637 2012. "Impacts of biodiversity loss escalate through time as redundancy fades." *Science*

638 336: 589-592.

639 Reuter, R., O. Ferlian, M. Tarkka, N. Eisenhauer, K. Pritsch, and J. Simon. 2021. "Tree species

640 rather than type of mycorrhizal association drive inorganic and organic nitrogen acquisition

641 in tree–tree interactions." *Tree Physiology* 41: 2096–2108.

642 Rygiewicz, P. T., and C. P. Andersen. 1994. "Mycorrhizae alter quality and quantity of carbon
643 allocated below ground." *Nature* 369: 58-60.

644 Schnabel, F., X. Liu, M. Kunz, K. E. Barry, F. J. Bongers, H. Bruelheide, A. Fichtner, W. Härdtle,
645 S. Li, C.-T. Pfaff, B. Schmid, J. A. Schwarz, Z. Tang, B. Yang, J. Bauhus, G. v. Oheimb,
646 K. Ma, and C. Wirth. 2021. "Species richness stabilizes productivity via asynchrony and
647 drought-tolerance diversity in a large-scale tree biodiversity experiment." *Science Advances*
648 7: eabk1643.

649 Schnabel, F., J. A. Schwarz, A. Dănescu, A. Fichtner, C. A. Nock, J. Bauhus, and C. Potvin. 2019.
650 "Drivers of productivity and its temporal stability in a tropical tree diversity experiment."
651 *Global Change Biology* 25: 4257-4272.

652 Smith, S. E., and D. J. Read. 2008. *Mycorrhizal symbiosis*. Cambridge, UK: Academic press.

653 Stark, H., A. Nothdurft, J. Block, and J. Bauhus. 2015. "Forest restoration with *Betula* ssp. and
654 *Populus* ssp. nurse crops increases productivity and soil fertility." *Forest Ecology and
655 Management* 339: 57-70.

656 Steckel, M., M. del Río, M. Heym, J. Aldea, K. Bielak, G. Brazaitis, J. Černý, L. Coll, C. Collet,
657 and M. Ehbrecht. 2020. "Species mixing reduces drought susceptibility of Scots pine (*Pinus*
658 *sylvestris* L.) and oak (*Quercus robur* L., *Quercus petraea* (Matt.) Liebl.)—Site water supply
659 and fertility modify the mixing effect." *Forest Ecology and Management* 461: 117908.

660 Tedersoo, L., M. Bahram, and M. Zobel. 2020. "How mycorrhizal associations drive plant
661 population and community biology." *Science* 367: eaba1223.

662 Teste, F. P., P. Kardol, B. L. Turner, D. A. Wardle, G. Zemunik, M. Renton, and E. Laliberté. 2017.
663 "Plant-soil feedback and the maintenance of diversity in Mediterranean-climate
664 shrublands." *Science* 355: 173-176.

665 Thakur, M. P., W. H. van der Putten, R. A. Wilschut, G. C. Veen, P. Kardol, J. van Ruijven, E.
666 Allan, C. Roscher, M. van Kleunen, and T. M. Bezemer. 2021. "Plant–soil feedbacks and
667 temporal dynamics of plant diversity–productivity relationships." *Trends in Ecology &*
668 *Evolution* 36: 651-661.

669 Urigoiti, J., C. Messier, W. S. Keeton, P. B. Reich, D. Gravel, and A. Paquette. 2022. "No
670 complementarity no gain—Net diversity effects on tree productivity occur once
671 complementarity emerges during early stand development." *Ecology Letters*.

672 Wagg, C., J. Jansa, B. Schmid, and M. G. van der Heijden. 2011. "Belowground biodiversity effects
673 of plant symbionts support aboveground productivity." *Ecology Letters* 14: 1001-1009.

674 Wang, B., and Y. L. Qiu. 2006. "Phylogenetic distribution and evolution of mycorrhizas in land
675 plants." *Mycorrhiza* 16: 299-363.

676 Westoby, M., and I. J. Wright. 2006. "Land-plant ecology on the basis of functional traits." *Trends*
677 *in Ecology & Evolution* 21: 261-268.

678 Williams, L. J., E. E. Butler, J. Cavender - Bares, A. Stefanski, K. E. Rice, C. Messier, A. Paquette,
679 and P. B. Reich. 2021. "Enhanced light interception and light use efficiency explain
680 overyielding in young tree communities." *Ecology Letters* 24: 996-1006.

681 Wright, A. J., D. A. Wardle, R. Callaway, and A. Gaxiola. 2017. "The overlooked role of
682 facilitation in biodiversity experiments." *Trends in Ecology & Evolution* 32: 383-390.

683

684 **Tables**

685

686 **Table 1** Overview of tree species used in the MyDiv experiment (scientific and common name),
687 their mycorrhizal associations (AM=arbuscular mycorrhizae, EM=ectomycorrhizae), life
688 strategies, maximum age (in years), maximum tree height (in m), tree height in 2020 (in m; five
689 years after the establishment of the experiment), and increment over time, i.e., increase or decrease
690 of basal area increment during study period (2015-2020). Information about mycorrhizal
691 association and max. tree height were derived from Ferlian et al., (2018), max. age from Brzeziecki
692 and Kienast (1994); life strategies were determined by cluster analysis; tree height in 2020 was
693 calculated as mean of tree height of all tree individuals in 2020, and increment over time as the
694 slope of simple linear regression between basal area increment (mean of both monocultures per
695 species) and year (2016-2020).

Tree species	Common name	Mycor-rhizal association	Life strategy	Max. age (year)	Max. tree height (m)	Tree height in 2020 (m)	Increment ($m^2 m^{-2} year^{-1}$)
<i>Acer pseudoplatanus</i> L.	Sycamore, maple	AM	Fast	300	20	5.12	-0.06
<i>Aesculus hippocastanum</i> L.	Horse chestnut	AM	Fast	200	20	2.95	0.05
<i>Fraxinus excelsior</i> L.	Ash	AM	Slow	300	25	4.37	0.03
<i>Prunus avium</i> (L.) L.	Bird/wild cherry	AM	Fast	150	20	5.18	-0.20
<i>Sorbus aucuparia</i> L.	Rowan, rowanberry	AM	Fast	60	10	4.32	-0.01
<i>Betula pendula</i> Roth	Silver birch	EM	Fast	120	17.5	6.18	-0.36
<i>Carpinus betulus</i> L.	Hornbeam	EM	Slow	250	15	3.91	0.12
<i>Fagus sylvatica</i> L.	Copper beech	EM	Slow	300	25	2.39	0.21
<i>Quercus petraea</i> (Matt.) Liebl.	Sessile oak	EM	Slow	500	27.5	2.36	0.21
<i>Tilia platyphyllos</i> Scop.	Large-leaved lime	EM	Slow	400	27.5	4.08	0.29

696

697 **Table 2** Summary of mixed-effects model analyses testing the effects of log-transformed tree
698 species richness (1, 2, 4; Sr), mycorrhizal type (AM, EM, AM+EM; Myc), year (2015/16-2020),
699 and their interactions (upper part of the table), and log-transformed tree species richness,
700 community strategy (fast, slow, fast+slow; CS), year, and their interactions (lower part of the table)
701 on basal area and their annual increment (absolute and detrended values). Degrees of freedom (DF),
702 Chi²- and P-values (P) are shown. Significant effects (P<0.05) are given in bold and marginally
703 significant effects (P<0.1) in italics. Note that detrended values were calculated by dividing
704 absolute value per plot by the averaged value of all plots per year, to account for differences among
705 years due to climatic fluctuations.

	Basal area					Annual increment				
			absolute		detrended		absolute		detrended	
	Df	Chi ²	P							
Tree species richness (Sr)	1	5.98	0.014	3.55	0.060	7.71	0.005	9.35	0.002	
Mycorrhizal type (Myc)	2	19.36	<0.001	28.89	<0.001	4.79	0.091	2.95	0.229	
Year	1	43.31	<0.001	0.00	0.995	3.21	0.073	0.00	0.998	
Sr x Myc	2	1.58	0.453	0.93	0.627	2.28	0.320	2.27	0.322	
Sr x Year	1	29.81	<0.001	5.69	0.017	2.89	0.089	1.18	0.278	
Myc x Year	2	13.29	0.001	110.44	<0.001	24.63	<0.001	18.99	<0.001	
Sr x Myc x Year	2	7.36	0.025	5.56	0.062	0.51	0.774	0.27	0.875	
	Df	Chi ²	P							
Tree species richness (Sr)	1	5.98	0.014	3.55	0.060	7.71	0.005	9.35	0.002	
Community strategy (CS)	2	21.55	<0.001	37.22	<0.001	1.62	0.445	0.50	0.778	
Year	1	43.36	<0.001	<0.01	0.995	3.21	0.073	<0.01	0.998	
Sr x CS	2	4.61	0.100	6.08	0.048	1.11	0.573	0.80	0.670	
Sr x Year	1	29.81	<0.001	5.69	0.017	2.89	0.089	1.18	0.278	
LS x Year	2	4.64	0.098	201.69	<0.001	55.43	<0.001	48.24	<0.001	
Sr x CS x Year	2	3.96	0.138	11.43	0.003	10.17	0.006	8.20	0.017	

706

707 **Table 3** Summary of mixed-effects model analyses testing the effects of log-transformed tree
708 species richness (2, 4; Sr), mycorrhizal type (AM, EM, AM+EM; Myc), year (2015-2020), and
709 their interactions on net diversity effects (NEs), selection effects (SEs), and complementarity
710 effects (CEs) based on absolute and detrended basal area values. Shown are degrees of freedom
711 (DF), Chi²- and P-values (P). Significant effects (P < 0.05) are given in bold and marginally
712 significant effects (P < 0.1) in italics. Note that detrended basal area values were calculated by
713 dividing absolute value per plot by the averaged value of all plots per year, to account for
714 differences among years, e.g., due to climatic fluctuations. Furthermore, we did not show
715 biodiversity effects for annual increment, because some communities (especially monocultures)
716 had a very low annual increment, which resulted in unrealistically high biodiversity effect values.

Basal area (absolute)							
	NEs		SEs		CEs		
	Df	Chi ²	P	Chi ²	P	Chi ²	P
Tree species richness (Sr)	1	2.67	0.102	6.85	0.009	0.09	0.768
Mycorrhiza type (Myc)	2	4.81	<i>0.090</i>	10.23	0.006	0.45	0.797
Year	1	12.36	<0.001	2.28	0.131	4.16	0.041
Sr x Myc	2	2.41	0.300	1.21	0.545	1.22	0.542
Sr x Year	1	12.48	<0.001	2.13	0.145	3.48	0.062
Myc x Year	2	9.27	0.010	1.51	0.471	1.27	0.531
Sr x Myc x Year	2	5.60	<i>0.061</i>	4.61	<i>0.100</i>	4.30	0.117

Basal area (detrended)							
	NEs		SEs		CEs		
	Df	Chi ²	P	Chi ²	P	Chi ²	P
Tree species richness (Sr)	1	1.36	0.244	6.56	0.010	0.00	0.960
Mycorrhiza type (Myc)	2	3.90	0.142	12.14	0.002	0.63	0.728
Year	1	2.15	0.143	0.99	0.320	0.13	0.715
Sr x Myc	2	1.63	0.442	1.11	0.575	0.81	0.666
Sr x Year	1	11.80	0.001	1.48	0.223	6.38	0.012
Myc x Year	2	4.58	0.101	0.11	0.946	0.52	0.772
Sr x Myc x Year	2	3.57	0.168	4.43	0.109	3.17	0.205

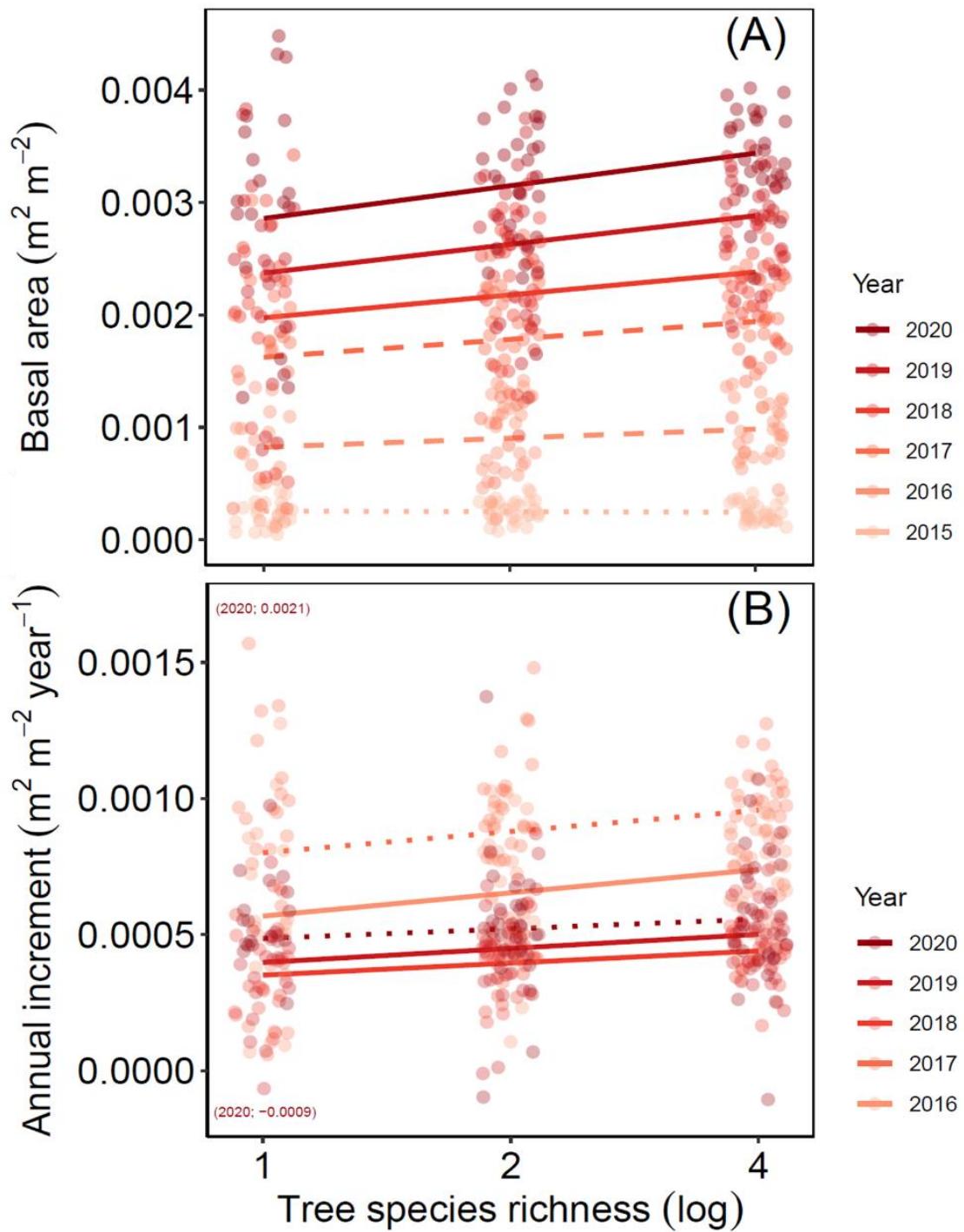
717 **Figure captions**

718

719 **Figure 1** Basal area (A) and its annual increment (B) as function of log-transformed tree species
720 richness from 2015/16 to 2020. Each dot represents a tree community and colors indicate different
721 years. Regression lines are based on mixed-effects models (predicted means), while solid lines
722 indicate significant relationships ($P < 0.05$), dashed lines marginally significant relationships
723 ($0.1 > P > 0.05$), and dotted lines non-significant relationships ($P > 0.1$). Note that two data points were
724 excluded from the figure, because they have either very high positive or negative values. These
725 data points are indicated as text in parentheses (year; value).

726

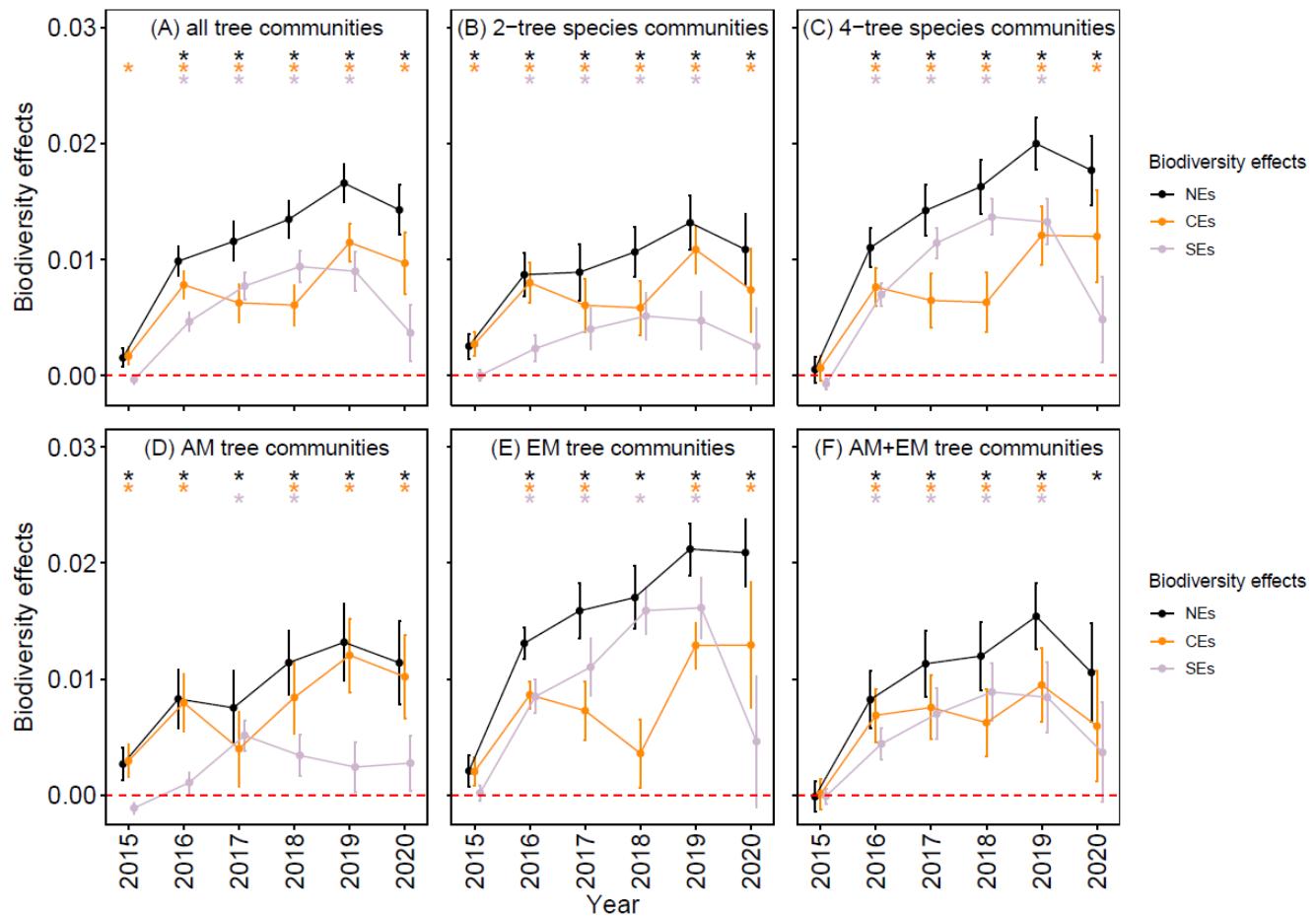
727 **Figure 2** Changes in net diversity effects (NEs), complementarity effects (CEs), and selection
728 effects (SEs; different colors) over time for all mixture tree communities (A), separately for two-
729 and four species communities (B, C), and for communities containing AM (C), EM (D), or both
730 AM and EM tree species (E). Dots represent mean values (\pm standard error) per year, and asterisks
731 indicate whether the biodiversity effects were significantly greater than zero (red dotted line = zero
732 line; detailed t-test results can be found in Supporting Information S1 Table S6, S7, and S11). The
733 y-axes are square root-transformed to reflect the quadratic nature of biodiversity effects (Loreau
734 and Hector 2001).


735

736 **Figure 3** Basal area as function of log-transformed tree species richness for 2015 to 2020, for
737 communities containing AM, EM, or both AM and EM tree species (A), and for communities
738 containing fast, slow, or both fast and slow tree species (B). Each dot represents a tree community,
739 and colors indicate different mycorrhizal types and community strategies. Regression lines are
740 based on mixed-effects models (predicted means), while solid lines indicate significant

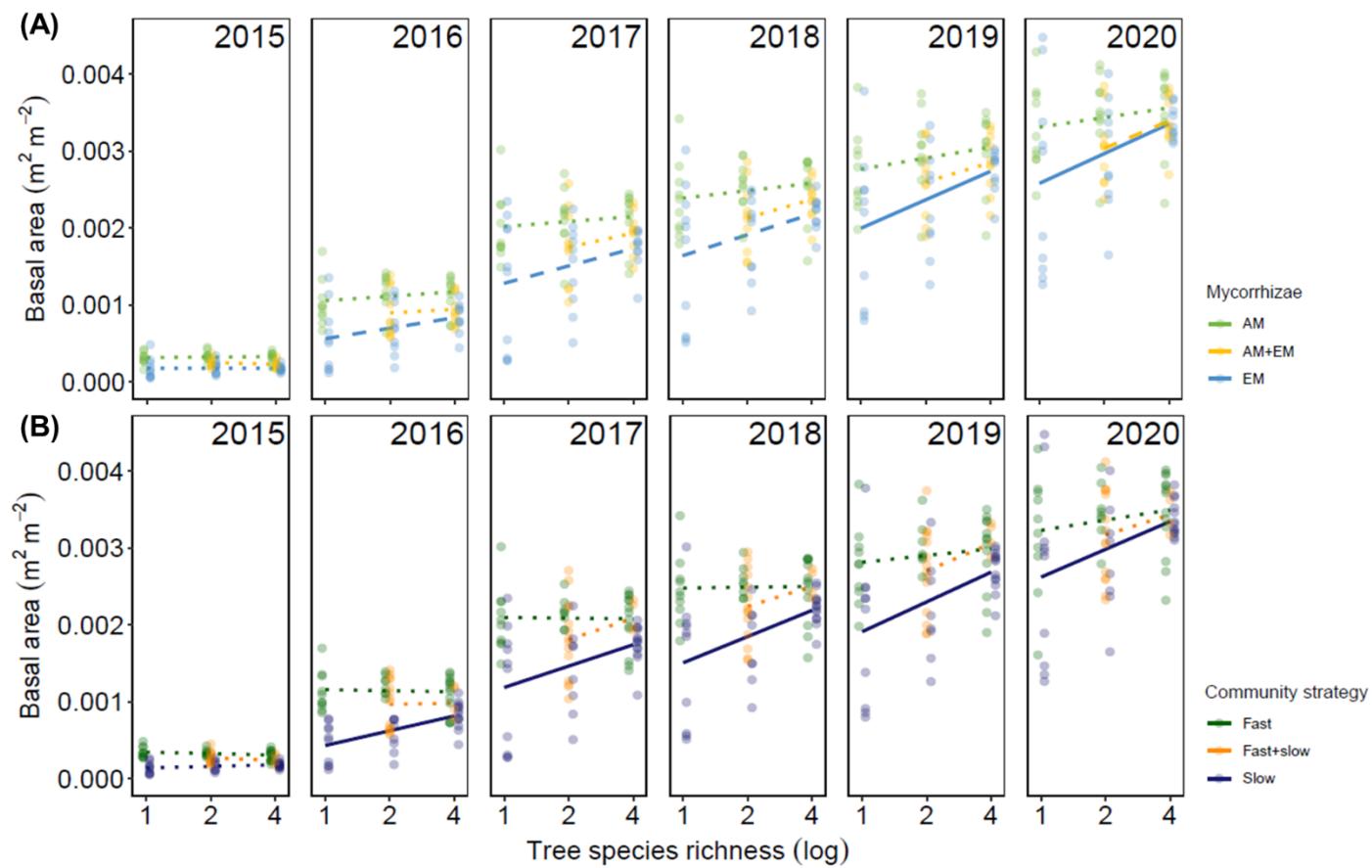
741 relationships ($P<0.05$), dashed lines marginally significant relationships ($0.1>P>0.05$), and dotted
742 lines non-significant relationships ($P>0.1$).

743 **Figure 4** Annual increment of basal area over time from 2016 to 2020, for communities containing
744 AM, EM, or both AM and EM tree species (A), and for communities containing fast, slow, or both
745 fast and slow tree species (B). Annual increment was detrended, i.e., each value per plot was
746 divided by the averaged value of all plots per year, to account for differences among years (e.g.,
747 climatic fluctuations). Each dot represents a tree community, and colors indicate different
748 mycorrhizal types and community strategies. Regression lines are based on mixed-effects models
749 (predicted means), while solid lines indicate significant relationships ($P<0.05$), dashed lines
750 marginally significant relationships ($0.1>P>0.05$), and dotted lines non-significant relationships
751 ($P>0.1$). Note that two data points were excluded from the figure, because they have either very
752 high positive or negative values. These data points are indicated as text in parentheses (mycorrhizal
753 type/community strategy; value).


754 **Figure 1**

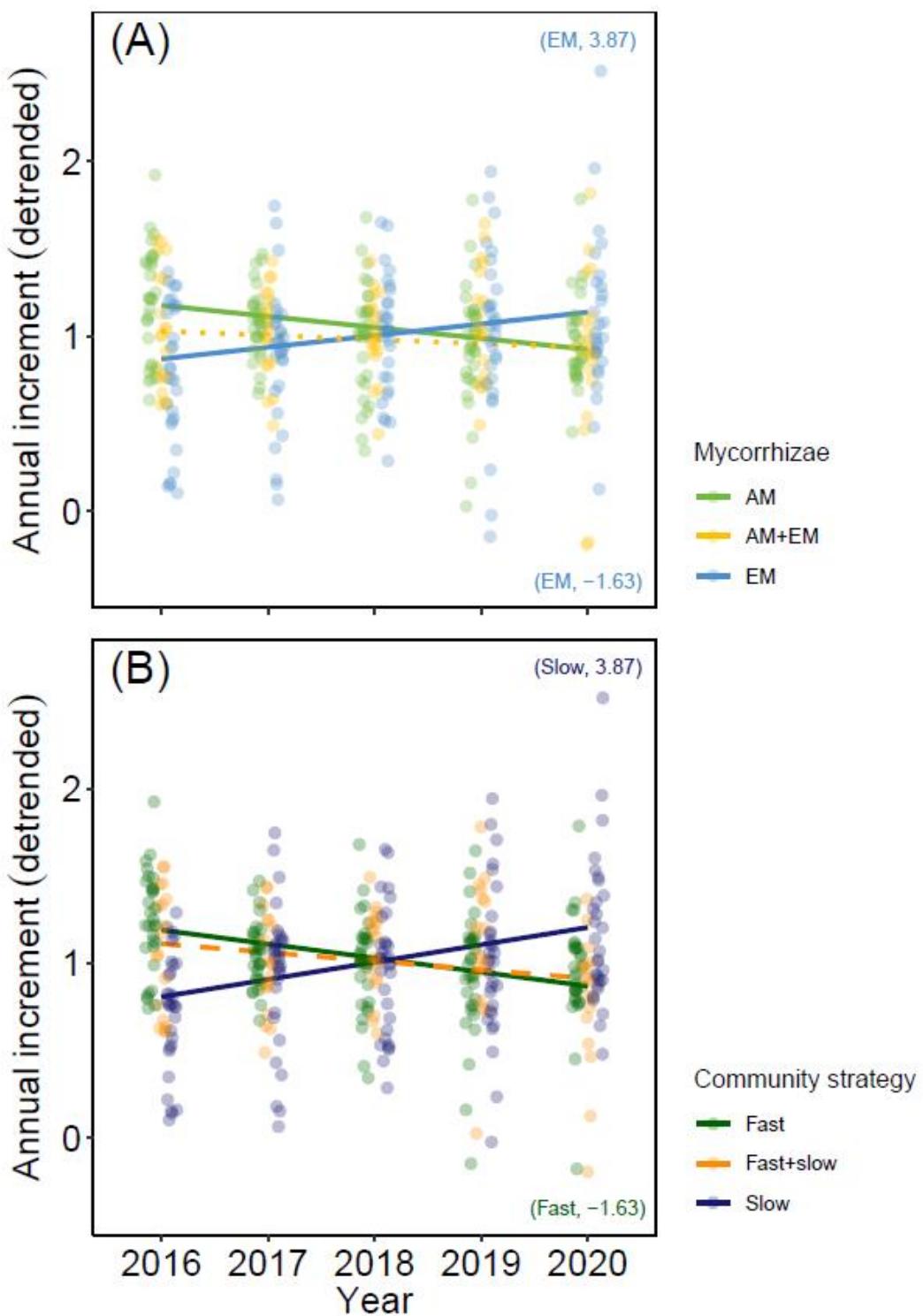
755

756


757 **Figure 2**

758

759


760 **Figure 3**

761

762

763 **Figure 4**

764