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Abstract

The posterior parietal cortex (PPC) exhibits choice-selective activity during perceptual decision-making tasks.
However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here, we
combined virtual reality behavior, two-photon calcium imaging, high throughput electron microscopy, and circuit
modeling to analyze how synaptic connectivity between neurons in PPC relates to their selective activity. We found
that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn,
inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent
inhibition motif. Using circuit models, we show that opponent inhibition amplifies selective inputs and induces
competition between neural populations with opposite selectivity, thereby improving the encoding of trial-type
information. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned
decision-making task.
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underlying synaptic connectivity has not previously
been measured.

Until recently, direct measurements of
synaptic  connectivity within large neuronal
populations have not been technically feasible.
However, advances in high-throughput electron
microscopy (EM) have now made it possible to
comprehensively map synaptic connectivity within
circuits'”*°. Such connectomic approaches in cortex
have focused mainly on sensory areas such as visual
cortex’*>°,  where interneuron activity and
connectivity is generally less selective than
excitatory”>! (but see **7*). As a result, little is
known about synaptic connectivity in association
areas such as PPC or how it may differ from sensory
cortex.

Here, we combined a decision task, 2-photon
calcium imaging, and automated serial-section
EM*!'73 to measure how synaptic connectivity of
hundreds of cortical neurons relates to their functional
selectivity in PPC. We found selective excitatory-to-
inhibitory (E-to-I) and inhibitory-to-excitatory
connectivity (I-to-E): excitatory neurons
preferentially targeted inhibitory neurons with the
same selectivity, while inhibitory neurons preferred
excitatory targets with opposite selectivity. Together,
these preferences form an opponent inhibition motif,
in which the activity of left-selective excitatory
neurons suppresses the activity of right-selective
ones, and vice versa. To investigate the functional
implications of this connectivity motif, we modeled
recurrent circuits with excitatory and inhibitory
populations and found that opponent inhibition
supports competition between opposing pools and
amplification of input selectivity, which promotes
reliable encoding of the trial type.

Results

Behavior, Functional Imaging, and EM

We trained mice to perform a two-alternative
forced-choice task in a virtual reality T-maze and
used 2-photon calcium imaging to measure activity of
layer 2/3 neurons in left-hemisphere PPC during task

performance™® (Fig. 1a, Ext. Data Fig. 1a-c). These
behavioral and functional imaging data were included
in a previous study®’. Consistent with previous
results*!**>, we found that many PPC neurons
exhibited activity that was selective for trial-type (left
or right turn trials, Fig. 1b, Supp. Fig. 1). To quantify
this selectivity, we defined a selectivity index (SI)
based on the peak mutual information between the
neuronal activity and trial-type across the maze (Fig.
1b, Ext Data Fig. 1d, Methods).

We preserved the brain immediately after the
conclusion of behavioral experiments and used EM to
generate a high-resolution structural map of the same
neurons whose activity was previously measured in
vivo (Fig. 1c, Methods). We used the GridTape
automated transmission EM pipeline'’ to collect and
image 2500 serial 40 nm thin sections and aligned
them to form a 3D volume spanning all six cortical
layers with ~1.2 mm extent (medial-lateral) and ~100
um depth (anterior-posterior). This dataset
encompasses approximately 0.1 mm® at 4.3 x 4.3 x 40
nm per voxel resolution (Fig. 1d). We then co-
registered the in vivo and EM data to match calcium
imaging regions of interest to cell somata in the EM
volume (Ext. Data Fig. 1e,f, Methods). Thus, we were
able to relate behavior, neuronal activity, and high-
resolution anatomy (including synaptic connectivity)
for individual neurons in PPC.

Using the EM data, we reconstructed the
axons and dendrites of the functionally characterized
cells within the volume (Fig. 1¢) and classified them
as excitatory pyramidal cells or inhibitory
interneurons based on their morphology (n = 125
pyramidal, 17 non-pyramidal, Supp. Fig. 2,3). Non-
pyramidal cells in PPC were generally as selective as
pyramidal cells (Ext. Data Fig. 1g, p=0.37, K-S test),
which is consistent with recent functional imaging
experiments'®. Selectivity of interneurons in PPC
contrasts with V1, where interneurons are more
broadly tuned to stimulus orientation than pyramidal
cells313638 (hut see 234).

To map connectivity of the functionally
characterized neurons, we annotated all of the
outgoing synapses from their axons within the EM
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volume (2214 excitatory and 2418 inhibitory
synapses) and traced the corresponding post-synaptic
dendrites back to their somata (Fig, le inset). We also
quantified the area of the post-synaptic densities
(PSD areas) associated with each of the synapses
(Fig. 1d inset, Methods), which correlates with

b

left-selective neuron right-selective neuron

functional synaptic strength®®. To enable comparisons
between PPC and V1, we also analyzed a previously
generated EM volume of V1 containing layer 2/3
neurons with corresponding in vivo measurements of
orientation tuning®® (Ext Data Fig. 1h,i).
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Fig. 1: Behavior, functional imaging, and electron microscopy (a) Schematic of decision-making behavior consisting of
a navigational two-alternative forced-choice memory task performed in virtual reality. (b) Trial average activity for left
(blue) and right (red) trials from two example selective neurons, plotted along with mutual information with trial type
(bottom). The magnitude of the selectivity index was defined as the peak of the mutual information (dotted horizontal line).
(c) Image of the cranial window, showing location of overlapping calcium imaging (green) and EM (black) datasets within
PPC. (d) Schematic of volumetric EM dataset consisting of 2500 serial sections. Insets: images at progressively higher
resolution, highlighting cell somata (magenta) and an individual synapse (cyan, arrows indicate PSD). (e) Reconstructed
circuit in PPC, consisting of 125 excitatory (E, triangles) and 17 inhibitory (I, circles) neurons color coded by selectivity.
Inset: summary of reconstructed circuit, indicating number of neurons of each type (within shapes) and number of synaptic
connections (next to arrows). Direct E-to-1 and I-to-E connections, which are analyzed in detail in Figs. 2 & 3, are shown in
bold. ax — axon, den — dendrite, L — layer, WM — white matter.
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Ext. Data Fig. 1: (a) Performance on the navigational two-alternative forced-choice memory task plotted over different
daily sessions. Functional data from the last 4 sessions (“late”), which were closest in time to when the brain was preserved
for EM, were used for most analyses. Earlier sessions (“early”, “middle”) were used for additional analyses investigating
how structure-function relationships evolve over time (see Ext. Data Fig 2i-1, Ext. Data Fig. 3b-c). (b) Approximate location
of cranial window and calcium imaging ROI relative to cortical regions (adapted from the Allen Mouse Brain Common
Coordinate Framework*’). Although this figure depicts the right hemisphere, the experimental data was collected from the
left hemisphere. (¢) Calcium imaging ROI: 4 500 um x 500 pm planes in layer 2/3 (separated by 25 um in z) were imaged
at 5.3 Hz volume rate. (d) Selectivity index for functionally characterized neurons contained within the EM volume (n=142).
(e) Corresponding slices from co-registered 2-photon calcium imaging (top) and EM (bottom) datasets. Cyan arrows — blood
vessels used as landmarks. (f) Example cellular ROIs (green) co-registered to calcium imaging (top) and EM data (bottom).
(g) Cumulative histograms of mutual information with trial type, demonstrating that selectivity was not statistically different
between inhibitory (purple) and excitatory (green) neurons (p = 0.37, K-S test). Shading indicates 95% confidence intervals
generated via bootstrap analysis. (h) EM volumes sizes for PPC and V1%. (i) Summary of reconstructed V1 connectivity,
indicating number of neurons of each type (within shapes) and number of synaptic connections (next to arrows) among these
neuron types.

Selective E-to-I Connectivity

We first investigated how E-to-I connectivity
in PPC is related to selective activity. Using
reconstructed connectivity from EM, we estimated
rates of excitatory connectivity with local inhibitory

and excitatory partners (Fig. 2a, Methods). Local E-
to-I connectivity rates were several times higher than
E-to-E (Fig. 2b, E-to-E = 0.4£0.1%, E-to-I: =
1.7£0.1%, p<le-14 Mann-Whitney U-test). This was
largely due to preferential targeting of inhibitory
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neurons: 67% of excitatory synapses were E-to-1 even
though inhibitory neurons make up only about 20%
of local neurons” (Ext. Data Fig. 2a). Local
excitatory connectivity rates were also lower in PPC
than V1 (Ext. Data Fig. 2b), which was is surprising
given that cortical association areas exhibit stronger
functional coupling than sensory areas***. This
difference likely arose because PPC pyramidal axons
had a lower density of synapses (Ext. Data Fig. 2¢c-d),
and their collaterals branched at right angles from
their trunks, making them less likely to immediately
ascend back to the local layer 2/3 circuit (Ext. Data
Fig. 2e).

To determine if local E-to-1 connectivity was
functionally specific, we investigated if the selectivity
of pre- and post-synaptic neurons predicted the
likelihood of them forming synaptic connections. We
hypothesized that the frequency of synaptic
connections would be higher between neurons with
the same selectivity (“co-selective”) than those with
opposite selectivity (“anti-selective”) (Fig. 2¢). To
account for the distribution of selectivity strengths
across neurons (Ext. Data. Fig. 1d), we defined a
“selectivity similarity index”, which quantifies both
how selective the pre- and post-synaptic neurons are
and whether they are co- or anti-selective (Fig. 2d,
Methods). Since the opportunity for neurons to make
synaptic connections is limited to locations where
their axons and dendrites come into close proximity,
we normalized the number of synaptic connections by
their axon/dendrite overlap®®*. This “normalized
synapse frequency" measures the likelihood of
connections between neurons independent of their
locations and morphologies (Fig. 2e, Methods). We
found that normalized synapse frequency was over
two times higher for co-selective than anti-selective
neuron pairs (Fig. 2f, anti = 0.024%0.004; co:
0.051£0.006 pm?; p = 0.005 Mann-Whitney U test).

Furthermore, the highest and lowest synapse
frequencies tended to be connections between
strongly selective neurons (Fig. 2g-i). Indeed, the
selectivity similarity index was strongly correlated
with normalized synapse frequency (Fig. 2j, ¢ = 0.68,
p < 0.001, permutation test, Supp. Table 1). In
contrast, in V1 we did not find a significant difference
in normalized synapse density between co- and anti-
selective E-to-I pairs (<45° or >45° difference in
orientation tuning, respectively) (Ext. Data Fig. 2f,g),
consistent with random E-to-I connectivity*'.

We next asked if the strength of individual
synapses was correlated with selectivity. Previously,
it has been shown that the size of cortical excitatory
synapses (PSD area) correlates with functional
strength®. Here, we found that co-selective E-to-I
synapses were nearly 2 times larger than anti-
selective (Fig. 2k-n, anti: 0.13£0.02 pm?* co:
0.23+£0.03 um?% p = 0.014 Mann-Whitney U test).
Synapse size was also strongly correlated with
selectivity similarity index (Fig. 20, ¢ = 049, p =
0.002, permutation test). In contrast, E-to-I synapses
between co-selective neurons in V1 were not larger
than anti-selective neurons (Ext. Data Fig. 2h),
providing additional evidence that selective
connectivity differs between PPC and V1.

Given that the functional selectivity of PPC
neurons can change over time periods of a few days®,
we hypothesized that the observed structure-function
relationships would be stronger for trials closer to
when the brain was preserved. Comparing earlier
with later behavioral sessions (Ext. Data Fig. 1a)
revealed that structure-function correlations become
weaker as one looks further back in time (Ext. Data
Fig. 2i-1), suggesting that synaptic connections in
PPC may also change over timescales of days.
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Figure 2: Co-selective Excitatory-to-Inhibitory Connectivity. (a) Local connectivity for a given source neuron (orange
outline), is considered for neurons with cell bodies within 200 pum. The local connectivity rate is the proportion of excitatory
(triangles) or inhibitory (circles) neurons with which the source neuron makes synaptic connections (lines). (b) Local E-to-
I connectivity rates are several times higher than E-to-E in PPC (n = 70 source neurons, E-to-E: 0.410.1%, E-to-1: 1.720.1%,
p < le-14, Mann-Whitney U test). (¢) Schematic of E-to-I connections among functionally-characterized neurons.
Connections are classified as co-selective (green) or anti-selective (purple). (d) Selectivity similarity index as a function of
the selectivity index of the source and target neurons. Co-selective pairs have positive (green) and anti-selective pairs have
negative values (purple). (e) Schematic of “normalized synapse frequency” metric which quantifies the likelihood of
synapses between a specific axon-dendrite pair per um of cable overlap (axon path length within 5 pm of the dendrite). (f)
Normalized synapse frequency between co-selective (green) neurons are more than twice as frequent as anti-selective
(purple) (anti = 0.024+0.004, n=8 connections; co: 0.051£0.006 um?, n=13; p = 0.005, Mann-Whitney U test). (g-i) Example
connections, including (g) strongly anti-selective, (h) weakly anti-selective, and (i) strongly co-selective pairs, colored as in
(e). Gray — presynaptic axon, orange — post-synaptic dendrites, black — axon-dendrite overlap, cyan arrows — synaptic
connections. Left/right selectivity of pre and post-synaptic neurons is indicated by colored icons. Number of synapses and
total length of axon-dendrite overlaps (black) are indicated. Neuron pairs correspond to datapoints indicated by arrows in (f)
and (j). (j) Left: Normalized synapse frequency is correlated to selectivity similarity index (n =21 connections). Dotted line
indicates linear fit. Right: Spearman’s rank correlation coefficient for data compared to random shuffles (c =0.68, p <0.001,
permutation test). (k) Synapses between co-selective (green) neurons are almost twice as large as anti-selective (anti:
0.13£0.02, n=10 synapses; co: 0.23+0.03 um?, n=19; p = 0.014, Mann-Whitney U test). (I-n) EM images showing example
synapses between (1) strongly anti-selective, (m) weakly anti-selective, and (n) strongly co-selective neuron pairs. PSDs are
indicated by cyan arrows and calculated PSD areas are shown by labels. Synapses correspond to datapoints indicated by
arrows in (k) and (o) and are from the same connections shown in g,h,i, respectively. (o) Left: PSD area is correlated with
selectivity similarity index (n = 29 synapses). Dotted line indicates linear fit. Right: Spearman’s rank correlation coefficient
for data compared to random shuffles (c = 0.49, p = 0.002, permutation test). All statistics reported as mean + standard error.
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Extended Data Figure 2: (a) Proportion of excitatory synapses that target inhibitory neurons is higher in PPC than V1
(PPC: 66 £ 2%, n = 59 neurons; V1: 44 £ 4%, n=16 neurons, p<le-4, Mann-Whitney U test) and higher than the overall
proportion of inhibitory neurons (~20%, dashed line). (b) Local excitatory connectivity rates are lower in PPC than V1 for
both E-to-E (PPC: 0.4 + 0.1%, n = 73 source neurons; V1: 1.6 £ 0.3%, n =22, p < 0.001, Mann-Whitney U test) and E-to-
I connections (PPC: 1.7 = 0.1%,n=73; V1: 7.0 £ 1.2%, n = 22, p < le-4, Mann-Whitney U-test). (¢) V1 axon collaterals
have higher synapse density compared to PPC (PPC: 0.036 = 0.001 syn/um, n =260 collaterals; V1 =0.069 £ 0.004 syn/pm,
n = 56, p < le-16, Mann-Whitney U test). (d) V1 axon trunks have higher synapse density compared to PPC (PPC:
0.012£0.001 syn/um, n = 78 neurons; V1: 0.020£0.002 syn/um, n = 21, p = 0.001, Mann-Whitney U test). (¢) Example
morphology of a pyramidal neuron, showing dendrites (blue), descending axon trunk (red), axon collaterals (green) and
outgoing synapses (green). Inset: Initial angles for pyramidal axon collaterals are clustered near 90° in PPC, whereas V1
collaterals sample a broader range, including smaller angles that allow collaterals to ascend immediately back towards local
layer 2/3 (n= 2811, 112 collaterals for PPC, V1; p=.007, K-S test). (f) Schematic of E-to-I connections among functionally-
characterized neurons in V1. Connections are classified as co-selective (<45° difference in peak orientation, green) or anti-

selective (>45°, purple). (g) Normalized synapse frequencies are not significantly different for anti- (purple) and co-tuned
(green) E-to-I connections in V1 (anti = 0.031+0.003, n=9 connections; co: 0.030£0.006 um?, n=9; p = 0.18, Mann-Whitney
U test). (h) Synapse size for co-selective (green) E-to-I connections are slightly smaller than anti-selective (purple) in V1
(anti: 0.1240.009, n=31 synapses; co: 0.10+£0.01 um?, n=29; p = 0.03, Mann-Whitney U-test). (i) Correlations between
normalized synapse frequency and similarity index for E-to-I connections in PPC, calculated using functional data from
early (10-8 days before sacrifice), middle (7-4 days before), and late sessions (3-0 days before). (j) Spearman’s rank
correlation coefficients corresponding to (i) are lower for earlier sessions (early: ¢ = 0.30, n = 15 connections, p = 0.13,
permutation test, middle: ¢ =0.31,n=19, p=10.09, late: ¢ =0.68, n =21, p=.001), but the trend (positive slope) is not quite
significant (p = 0.08, permutation test). Dotted line shows linear fit. (k) Correlations between PSD area and similarity index
for E-to-I synapses in PPC, calculated for early, middle, and late sessions. (I) Spearman’s rank correlation coefficient
corresponding to (k) are lower for earlier sessions (early: ¢ = 0.01, n = 19 synapses, p = .49, permutation test, middle: ¢ =
0.35,n=24, p=.03, late: ¢ = 0.49, n =29, p=.003), and the trend (positive slope) is significant (p = 0.03, permutation test).
Dotted line shows linear fit. All statistics reported as mean + standard error.
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Selective I-to-E Connectivity

Having found functionally selective E-to-I
connectivity in PPC, we next asked if I-to-E
connectivity was also selective. Rates of local I-to-E
connectivity were more than 3 times higher than E-
to-I (Fig. 3a, I-to-E: 5.741.1%, E-to-I: 1.7£0.1, p <
.001, Mann-Whitney U test), and inhibitory neurons
were less biased towards targeting inhibitory post-
synaptic partners compared to excitatory neurons
(Ext. Data Fig. 3a).

To test if I-to-E connectivity is correlated
with functional selectivity, we compared normalized
synapse frequencies between co- and anti-selective
neuron pairs (Fig. 3b). Normalized synapse frequency
was slightly higher for anti-selective pairs (Fig. 3c,
anti: 0.02740.003 syn/um, co: 0.022+0.002 syn/um;
p=0.01, Mann-Whitney U test), suggesting that
inhibitory neurons preferentially target excitatory
partners with opposite selectivity. Indeed, we found
that the normalized synapse frequency of I-to-E
connections was negatively correlated with selectivity
similarity index (Fig. 3d: ¢ = -0.23, p = 0.005,
permutation test, Supp. Table 2). These correlations
were weaker when using functional data from earlier
sessions (Ext. Data Fig. 3b,c). In contrast to E-to-I
connectivity, we did not find a significant correlation
between the individual synapse sizes and selectivity
similarity index (Fig. 3e, ¢ =0.08, p = 0.13, permutation
test, cf. Fig. 20), suggesting that selectivity I-to-E
connectivity may be mediated more by number of
synapses than the strength of individual synapses.

Cortical inhibitory interneurons consist of
several genetically, physiologically, and
morphologically distinct subtypes that can target
specific compartments of pyramidal dendrites*. For
example, basket cells (BCs) target cell somata and
proximal dendrites, while Martinotti cells (MCs)
project their axons upwards towards layer 1 where

they target apical tufts*®. We characterized inhibitory
neurons as basket cells (BCs), Martinotti cells (MCs),
or other dendrite-targeting cells based on their axon
targeting (Fig. 3f, Ext. Data Fig. 3d,e, Methods) and
compared their connectivity.

MCs and other dendrite-targeting cells exhibited a
significant negative correlation between normalized
synapse frequency and selectivity similarity, while
BCs had weaker negative correlation (Fig. 3g,h: BC:
c=-0.14, p=0.19, permutation test, MC: c¢=-0.30,
p=0.04, other: c¢=-0.36, p=0.02). However, the
differences in correlation coefficient between cell
types were not significant.

Although the inhibitory subtypes each
preferentially target a specific pyramidal dendrite
compartment (Fig. 31), they still make synapses onto
multiple compartments (Fig. 3j). We hypothesized
that connections targeting distinct dendrite
compartments may exhibit different amounts of
selectivity. To test this, we calculated normalized
synapse frequencies for connections targeting apical,
proximal, and basal dendrites separately, and
quantified correlations with selectivity similarity
index (Methods). We found that connections
targeting basal dendrites were strongly anti-selective
(Fig. 3k,1, ¢=-0.47, p =0.004, permutation test), and
significantly more anti-selective than those targeting
apical dendrites (p=0.04, permutation test with
Bonferroni correction), which appeared largely
unselective (c=0.04, p =0.33, permutation test).
Connections targeting proximal dendrites were anti-
selective, but not significantly so (Fig. 3k,I, ¢=-0.18,
n=47, p=0.10), which is consistent with the overall
weak anti-selectivity of basket cells (Fig. 3g,h). These
results suggest that the anti-selectivity of I-to-E
connections is driven primarily by synapses targeting
basal dendrites and (to a lesser extent) proximal
dendrites.
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Fig. 3: Anti-selective Inhibitory-to-Excitatory Connectivity. (a) Local I-to-E connectivity rates are higher than E-to-1 (E-
to-I: 1.7£0.1%, n = 70 source neurons, I-to-E: 5.7£1.1, n = 11, p < .001, Mann-Whitney U test). (b) Schematic of I-to-E
connections among functionally-characterized neurons. Connections are classified as co- (green) or anti-selective (purple).
(c) Normalized synapse frequency is greater for anti- (purple) than co-selective (green) I-to-E connections (anti: 0.027+£0.003
syn/um, n=40 connections, co: 0.022+0.002 syn/um, n=71, p=0.01, Mann-Whitney U test). (d) Left: Normalized synapse
frequency is negatively correlated with selectivity similarity index (n = 111 connections). Dotted line indicates linear fit.
Right: Spearman’s rank correlation coefficient for data compared to random shuffles (¢ = -0.24, p = 0.004, permutation
test). (e) Left: PSD area is not significantly correlated with selectivity similarity index (n = 169 synapses). Dotted line
indicates linear fit. Right: Spearman’s rank correlation coefficient for data and random shuffles (¢ = 0.08, p = 0.13,
permutation test). (f) Examples of basket cell (BC), Martinotti cell (MC), and other dendrite-targeting interneuron
morphologies. Axons — cyan, dendrites — blue. (g) Normalized synapse frequency plotted as a function of selectivity
similarity index for I-to-E connections from basket, Martinotti, and other interneuron subtypes. (h) Martinotti and other cell
types have a significant negative correlation (basket: c=-0.14, n=43, p=0.19, permutation test, Martinotti: c=-0.30, n=36,
p=0.04, other: ¢=-0.36, n=32, p = 0.02). Differences in correlation between cell types are not statistically significant. (i)
Example pyramidal neuron with dendritic compartments labeled (apical — magenta, proximal — green, basal — orange, axon
— blue). (j) Proportion of synapses made onto apical (pink, top), proximal (green, middle), and basal (orange, bottom)
pyramidal dendrites for BC, MC, and other interneurons. Despite having a preferred target, all interneuron subtypes synapse
onto a mix of dendritic compartments. (k) Normalized synapse frequency plotted as a function of selectivity similarity index
for I-to-E connections targeting apical, proximal, and basal dendrites. () Basal-targeting connections have a significantly
negative correlation (apical: ¢=0.05, n=44, p=0.33, proximal: ¢c=-0.18, n=47, p=0.10, basal: c=-0.47, n=32, p =0.004), and
basal dendrite connections are significantly more anti-selective than apical (p=0.04, permutation test with Bonferroni
correction). All statistics reported as mean + standard error.
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Extended Data Figure 3: (a) PPC excitatory neurons target inhibitory partners at higher rates than inhibitory (excitatory:
66+2%, n=59 neurons, inhibitory: 38+5%, n=11, p < 104, Mann Whitney U test). Dotted line — estimated overall proportion
of inhibitory neurons (~20%)*. (b) Normalized synapse frequency plotted as a function of selectivity similarity index for I-
to-E connections in PPC, calculated using functional data from early (10-8 days before sacrifice), middle (7-4 days before),
and late (3-0 days before) sessions (early: n=93, middle: n=107, late: n=111). (¢) Spearman’s rank correlation coefficients
corresponding to (b) are less negative for earlier sessions (early: c=-0.06, p=0.29; middle: c=-0.11, p=0.12; late: ¢=-0.23,
p=-004, permutation tests) but the trend (negative slope) is not quite significant (p = 0.09, permutation test). Dotted line
shows linear fit. (d) Geodesic (along-the-dendrite) distances to post-synaptic soma from synapses made by basket cells
(green, n=557 synapses) and other interneurons (gray, n=404). Basket cells preferentially target somata and proximal
dendrites. Dotted line — threshold that maximally separates basket and non-basket synapses used to define proximal dendrites
in further analysis (64 pum). (e) Depth (pia-to-white matter) of synapses from Martinotti (magenta, n = 255) and other
interneurons (gray, n = 783). Martinotti axons ascend towards the pia and make synapses in layer 1. All statistics reported

as mean = standard error.

Circuit Modeling

Together, selective E-to-I (Fig. 2) and I-to-E
connectivity (Fig. 3) comprise an opponent inhibition
motif (Fig. 4a, top). We used network modeling to
investigate how opponent inhibition may support
decision-making computations. We first studied a
linear rate model'****"** comprising two excitatory
and two inhibitory units. Left or right selective
excitatory neurons (Er, Er) receive elevated external
input during left or right trials and interact with left
and right inhibitory neurons (Ir, Ir) (Fig. 4a,
Methods). In networks with opponent inhibition,
input onto Er decreases Er activity through feed-
forward inhibition, which further amplifies Er activity
via feedback disinhibition**' (Fig 4b, Ext. Data Fig.
4b). In left trials, both suppression of Er and
amplification of Er increased the distance between
neural activity on left and right trials (Ext. Data Fig
4a, Methods), and this distance was thus larger for
networks with stronger opponent inhibition (Ext.
Data Fig 4b,c). As a consequence, networks with
stronger opponent inhibition supported more accurate
decoding of trial type in the presence of readout noise
(Fig 4c,d, Ext. Data Fig 4d,e, Methods). This signal
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amplification through opponent inhibition occurs
over a broad range of values of E-to-E selectivity, and
even without recurrent excitatory connections (Supp.
Fig. 4). When time-varying input noise was included,
opponent inhibition amplified the signal more than it
amplified the noise, therefore enhancing trial-type
encoding (Supp. Fig. 5).

While the linear rate model explains how
opponent inhibition affects network coding, it does
not include heterogeneity of connection weights nor
capture the sequential dynamics observed in PPC***.
To determine if its predictions hold for models
incorporating these more realistic features, we built a
recurrent neural network (RNN) model with the same
number of excitatory and inhibitory neurons as the
experimentally reconstructed circuit (Fig. 4e), and
trained the connection weights of several individual
RNNs to reproduce the measured calcium activity >
. After training, the RNNs generated dynamics
which accurately reproduced PPC activity™? (Fig. 4f).
Although we did not place any constraints on the
selectivity of the RNN connections, we found that the
trained RNNs consistently exhibited co-selective E-
to-I and anti-selective I-to-E motifs, similar to those
found experimentally (Fig. 4g,h). To investigate if
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these motifs supported signal amplification, as
predicted by the linear rate model, we systematically
manipulated the RNN connectivity’®> by perturbing
the E-to-I or I-to-E selectivity around the trained
values, and re-generated the dynamics using the new

(stronger E-to-I co-selectivity or I-to-E anti-
selectivity) amplified the separation between left and
right population responses (Fig. 4i), further
suggesting that opponent inhibition may enhance the
coding of trial-type signals in PPC.

connections (Methods). Stronger opponent inhibition
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- 0’54
g 2.0 1 > 2 opp. |Dh_lt|>ltl0n1 3 g 4/1‘
\a'; 3 unstable ! = e =
> 3 : 288 ® 0 1 2
0 @ S 0.0 D 1 e 33 T E-tol selectivity
S iy | 1 Tgs §5] i
M 84 83 3 N i 2 3
< -2.0 - w o . | 0 < 0
<_ant| Se|0 “ose >t 0.0 100.0 200.0 2 < 0 > 2 o 20 2
I-to-E selectivity Time (a.u.) |-to-E selectivity I-to-E selectivity
e f o h i
Recurrent Neural Network Output 05 “to- -
€ '] RNN = 001 i §
‘; 001t | en 09; 1.0 O . g '6 0.04 0.07 _ 0.10
§ 00 5.0 100 2 05 ItoE é ] v E-to-l selectivity
=P G : gL, @ 0.00 +------ = 512
S1o A 8 i P o=
[ — 0.0 §~ = [J] 1.0
T 0.5 1 e i 005 Py &1
= 00 - 054 Eomen — 0.8
0.0 50 100 0.2 0.0 02 S & 02 00 02
Time (s) Select. Similarity & I-to-E selectivity

Fig. 4: Opponent inhibition connectivity motif supports trial-type signal separation. (a) Top: Illustration of the linear
rate model, comprising two excitatory and two inhibitory units. Left (or right) trial-type input is fed to the EL (or Er)
population. Bottom: Schematic of network variants in which I-to-E selectivity differs. Purple and green arrows indicate
stronger anti- and co-selectivity, respectively. (b) Change in EL and Er activity in response to a left trial-type input for a
network with opponent inhibition (co-selective E-to-1 and anti-selective I-to-E). Er is amplified and Er is suppressed relative
to the input (dotted lines). (¢) Relative decoding accuracy, defined as the ratio of output to input decoding accuracy, as a
function of E-to-I and I-to-E selectivity. The decoding accuracy is computed by linearly decoding the trial-type from the
excitatory population in presence of readout noise. The black square denotes parameters used for panel (b). The region with
anti-selective I-to-E selectivity (purple arrow and box) corresponds to networks with opponent inhibition. The grey area
corresponds to unstable network dynamics. (d) Relative decoding accuracy as a function of E-to-I (top) and I-to-E (bottom)
selectivity, corresponding to two cuts of the phase plot (dashed lines in panel (c)). Purple and green arrows correspond to
anti- and co-selectivity. (e) Illustration of a recurrent neural network (RNN) fit to the PPC population activity. The number
of excitatory and inhibitory neurons in the RNN is matched to the experimental data. The networks are trained to reproduce
trial-averaged PPC activity of matched neurons for left and right trials. (f) Examples of the PPC activity (colored lines) and
RNN fits (black lines) for one excitatory (top) and one inhibitory (bottom) neuron. (g) Correlations between connectivity
strength and selectivity similarity for E-to-I (top) and I-to-E (bottom) connections for a single RNN. E-to-I connections have
a positive correlation (co-selective) while I-to-E have a negative correlation (anti-selective). (h) Spearman’s rank correlation
coefficient between connection strengths and selectivity similarity for many trained RNNs (n=192). E-to-I connections are
co-selective whereas I-to-E connections are anti-selective. (i) Normalized distance between left- and right RNN activity
(averaged across time) as a function of selectivity perturbations. E-to-1 (top) and I-to-E (bottom) connection weights were
perturbed in a way that increases anti- (purple arrow) or co-selectivity (green arrows) without changing the average
connection weight. The distance between trajectories is normalized by its value in the unperturbed network (dashed lines).
Single networks and median values are shown by gray and colored dots, respectively (n=192).
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Extended Data Figure 4: (a) Distance between mean responses to left and right trial types (colored dots) in the state-space
of the excitatory neuron activity. This distance is enhanced by opponent inhibition between trial-type selective subnetworks.
On left trial-types, both suppression of Er and amplification of EL (grey arrows) contribute to increased separation along the
signal axis (and symmetrically for right trials). (b) Values of the steady state activity of EL (top) and Er (bottom) units as a
function of the I-to-E (x-axis) and E-to-I (line colors) connection selectivity. (¢) Normalized distance between mean activities
corresponding to left and right trial-types (see panel (a)), as a function of I-to-E and E-to-I connection selectivity. (d)
Decoding accuracy computed by linearly decoding the trial-type from the excitatory population in presence of readout noise,
as a function of the E-to-1 and I-to-E connection selectivity. The region with anti-selective I-to-E selectivity (purple arrow
and box) corresponds to networks with opponent inhibition, the black square denotes the parameter values used in
simulations of Fig 4b. The grey area corresponds to unstable network dynamics. (e) Decoding accuracy as a function of E-
to-I (top) and I-to-E (bottom) selectivity, corresponding to two cuts of the phase plot (dashed lines in panel (d)). In all panels,
purple and green arrows indicate the directions where connection motifs increase respectively their anti- and co-selectivity

(see Fig. 4a).

Discussion

Functional Connectomic Dataset in PPC

We sought to understand relationships
between trial-type selective neuron activity and
synaptic connectivity in PPC. Although selective
activity in PPC has been reported in many previous
studies*™!!, accompanying connectivity data has not
been previously available. Here, we used automated
serial-section transmission EM'” to image a volume
in PPC with synapse resolution. Because neuronal
arborizations extend over large distances in
mammalian cortex, it is critical to image a large
enough volume to sample them. The EM volume
collected here in PPC contains a much larger volume
than previous cortical EM datasets?*>**3%¢ (but see
2957) " enabling reconstruction of substantial portions
of axonal and dendritic arborizations, including
synaptic connections made on distal branches. The
resulting connectivity data, combined with behavioral
and functional imaging data from the same animal,
allowed us to reveal circuit motifs that support
decision-making. Still, these connectivity motifs stem
from a modest sample size of functionally-
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characterized neurons and synapses between them,
which was constrained by the volume of the dataset.
Future functional connectomic datasets involving
much larger networks will likely reveal additional
circuit motifs.

Functionally Selective Connectivity Motifs

We found that the frequency and size of
synaptic connections in PPC depended significantly
on the selectivity of pre- and post-synaptic neurons.
For E-to-I connections, co-selective synapses were
larger and more frequent, whereas for I-to-E
connections, anti-selective synapses were more
frequent. We did not detect a difference in synapse
size between and anti-selective [-to-E
connections. However, synapse-size analysis for both
E-to-I and I-to-E connections should be interpreted
cautiously, as the correlation between synapse size
and functional strength in cortex has only been
directly measured for E-to-E synapses™.

The combination of co-selective E-to-I and
anti-selective I-to-E  comprises a competitive
opponent inhibition motif, in which the activity of
left-selective excitatory neurons suppresses the
activity of right-selective ones, and vice versa. This

CoO-
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motif has been shown to mediate action selection in
zebrafish and Drosophila®®®, and a related motif has
been proposed in ferret visual cortex®', but motifs of
this type have not previously been found in cortical
connectomes.

Previous work in mouse PPC proposed that selective
connectivity motifs underlie choice-selective
inhibitory activity, but could not rule out models with
non-selective inhibition!®. Here, the combination of
neuronal activity measurements and EM-based
connectomics in the same neurons has allowed
identification of the underlying connectivity motifs.

Further analysis of I-to-E connectivity
revealed that connections targeting basal dendrites
were more selective than those targeting apical
dendrites. This difference suggests that apical and
basal dendrites can perform distinct computational
roles®”, and is consistent with the general idea that
basal dendrites primarily receive local feedforward
input while apical dendrites receive feedback
signals®®. However, we found that basket cells,
Martinotti  cells, and other dendrite-targeting
interneurons were broadly similar in their overall
selectivity, likely because they target a mix of
dendrite types and the sample size of functionally-
characterized interneurons was limited.

Selective inhibitory connectivity in PPC
contrasts with V1, where previous connectomic
analysis has suggested that E-to-I connectivity is non-
selective in mice® (but see ). This suggests that
specific inhibitory connectivity may be a distinct
feature of PPC relative to V1, or alternatively is a
consequence of plasticity induced by task training.
These differences may underlie specialized functional
roles of different cortical areas. Indeed, the selective
inhibitory motifs we found in PPC promote
separation of neural trajectories associated with
competing behavioral choices, while primary sensory
areas may privilege reliable encoding of diverse
external stimuli. We also observed that E-to-E
connectivity was sparser in PPC than in V1, which
limited the sample size of E-to-E connections within
the dataset and prevented us from confidently
evaluating E-to-E selectivity in PPC. Sparse E-to-E
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connectivity in PPC is surprising given that V1
exhibits dense, like-to-like connectivity?®, association
areas exhibit stronger functional coupling between
#2243 and models of cortical decision-making
often feature recurrent E-to-E connectivity'®. It is
possible that selective E-to-E connectivity may still
occur over longer length-scales than the local circuit
measured here. On the other hand, our circuit
modelling suggests that decision-making
computations can be achieved via opponent inhibition
even with sparse or non-selective E-to-E connectivity
(Supp. Fig. 4). Likewise, our dataset did not include
enough functionally characterized inhibitory neurons
to assess selectivity of I-to-I connectivity, but the
effects of opponent inhibition are also robust over a
wide range of values of I-to-I selectivity (Supp. Fig.
4).

ncurons

Decision-Making in Cortical Circuits

In models of decision-making, the formation
of categorical choices is often facilitated by non-
selective lateral inhibition'*. Recently, it has been
proposed that selective inhibition could play one of
two possible roles: promoting competition with anti-
selective I-to-E connectivity, or stabilizing dynamics
through co-selective I-to-E connectivity'®. These
distinct contributions are also present in the linear rate
model presented here (Supp. Fig. 4). Our anatomical
data suggests that PPC lies in the competition regime
and V1 lies in an intermediate regime characterized
by non-selective I-to-E connectivity.

Although some decision-making models
focus on the production of categorical choices via
winner-take-all dynamics in nonlinear attractor
models'>*"*® previous work suggests that during
navigational tasks PPC produces more complex
dynamics in which multiple activity patterns arise for
each trial type®®. These neural trajectories in PPC
likely represent a wide range of task and behavioral
variables, including the choice, its
navigational movements and position, and sensory
cues from the environment*'>3>%-"2_ For this reason,
the model developed here focuses on a graded
encoding of the choice signal, where the PPC circuit

mouse’s
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helps separate these multifaceted neural trajectories inhibitory neurons in PPC. Using two complementary

to enhance the encoding of the signals relevant for modeling approaches, we showed that this opponent

decision-making. inhibitory motif improves the encoding of trial-type
In summary, we discovered an anatomical information. Together, these results identify an

opponent inhibition motif consisting of functionally anatomical connectivity motif in PPC that supports

selective connectivity between excitatory and decision-making
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