

1 **Ventral attention network connectivity is linked to cortical maturation**
2 **and cognitive ability in childhood**

3 Hao-Ming Dong^{1*}, Xi-Han Zhang¹, Loïc Labache¹, Shaoshi Zhang², Leon Qi Rong
4 Ooi², B.T. Thomas Yeo^{2,3,4}, Daniel S. Margulies⁵, Avram J. Holmes^{6**#}, Xi-Nian
5 Zuo^{7,8,9**#}

6 ¹Department of Psychology, Yale University, New Haven, Connecticut, USA

7 ²Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance
8 Research, Yong Loo Lin School of Medicine, Singapore, National University of
9 Singapore, Singapore, Singapore

10 ³Department of Electrical and Computer Engineering, National University of
11 Singapore, Singapore, Singapore

12 ⁴N.1 Institute for Health & Institute for Digital Medicine, National University of
13 Singapore, Singapore, Singapore

14 ⁵Centre National de la Recherche Scientifique, Frontlab, Institut du Cerveau et de la
15 Moelle Epinière, Paris, France

16 ⁶Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway,
17 USA

18 ⁷State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal
19 University, Beijing 100875, China

20 ⁸National Basic Science Data Center, Beijing 100190, China

21 ⁹Developmental Population Neuroscience Research Center, IDG/McGovern Institute
22 for Brain Research, Beijing Normal University, Beijing 100875, China

23

24 **Correspondence:** * To whom correspondence may be addressed. Emails:

25 donghaomingnd@gmail.com, avram.holmes@rutgers.edu, xinian.zuo@bnu.edu.cn.

26 # These authors have contributed equally to this work

27

28 **Keywords:** ventral attention network, connectivity gradient, cortical organization,

29 development, adolescence

30

31

Abstract

32 The human brain experiences functional changes through childhood and
33 adolescence, shifting from an organizational framework anchored within
34 sensorimotor and visual regions into one that is balanced through interactions
35 with later-maturing aspects of association cortex. Here, we link this profile of
36 functional reorganization to the development of ventral attention network
37 connectivity across independent datasets. We demonstrate that maturational
38 changes in cortical organization preferentially link to within-network
39 connectivity and heightened degree centrality in the ventral attention network,
40 while connectivity within network-linked vertices predicts cognitive ability. This
41 connectivity is closely associated with maturational refinement of cortical
42 organization. Children with low ventral attention network connectivity exhibit
43 adolescent-like topographical profiles, suggesting that attentional systems
44 may be relevant in understanding how brain functions are refined across
45 development. These data suggest a role for attention networks in supporting
46 age-dependent shifts in cortical organization and cognition across childhood
47 and adolescence.

48

49

50

Introduction

51 The human brain undergoes a series of staged developmental cascades across
52 childhood and adolescence progressing from unimodal somatosensory/motor and
53 visual regions through the transmodal association cortex territories that support
54 complex cognitive functions¹⁻³. Evidence for the scheduled timing of these
55 neurodevelopmental events has emerged across biological scales, from regional
56 profiles of cellular maturation⁴, synapse formation and dendritic pruning⁵, and
57 intracortical myelination⁶ through macro-scale morphological features including
58 folding patterns⁷ and associated areal expansion⁸. These processes are imbedded
59 within age dependent anatomical changes across lifespan⁹, particularly the
60 prolonged development of association cortex territories. In parallel, substantial
61 progress has been made characterizing the organization^{10,11} and spatiotemporal
62 maturation of large-scale functional systems across the cortex^{12,13}. Here, *in vivo*
63 imaging work strongly supports the development of a hierarchical axis, or gradient, of
64 cortical organization, with association territories anchored at the opposite end of a
65 broad functional spectrum from primary sensory and motor regions¹⁴. Despite clear
66 evidence for age-dependent shifts in the macroscale organization of the cortex from
67 childhood through adolescence, the manner and extent to which specific functional
68 networks may contribute to the widespread process of cortical maturation remains to
69 be determined.

70 The focused study of discrete functional circuits has provided foundational
71 insights in core maturational processes. For example, discoveries have linked
72 hierarchical changes within amygdala- and ventral striatal-medial prefrontal cortex
73 (mPFC) circuitry to the development of emotional and social functioning in
74 adolescence^{1,3,15,16}. Yet, the maturational refinement of these subcortical-cortical
75 circuits does not occur in isolation. Rather, they are embedded within a broad
76 restructuring of functional systems across the cortical sheet¹⁷. Here, areal and
77 network boundaries become more clearly defined throughout development¹⁸, while

78 the predominance of local connectivity patterns in childhood gradually gives way to
79 long distance, integrative, connections in adolescence^{13,19,20}. This reflects a
80 developmental transition from an anatomically constrained organizational motif to a
81 topographically distributed system²¹. In children, this complex functional architecture
82 is situated within the unimodal cortex, between somatosensory/motor and visual
83 regions. Conversely, adolescents transition into an adult-like gradient, anchored at
84 one end by unimodal regions supporting primary sensory/motor functions and at the
85 other end by the association cortex¹⁴. While the organizational profiles of large-scale
86 cortical networks are distinct across childhood and adolescence²², the extent to
87 which developmental changes within select functional couplings may contribute to
88 the drastic reorganization in the brain hierarchy is an open question. By one view, the
89 developmental transition from unimodal through association cortices reflects the
90 coordinated and shared influence of maturational changes across multiple functional
91 systems spanning the entire connectome. An alternative, although not mutually
92 exclusive, possibility is that specific brain networks may play a preferential role in the
93 widespread developmental refinement of cortical connectivity.

94 Individual cortical parcels are functionally organized along a global gradient that
95 transitions from somato/motor and visual regions at one end and multimodal
96 association cortex at the other²³. The hierarchical nature of these functional
97 relationships reflects a core feature of brain organization in both adolescents¹⁴ and
98 adults²³. Incoming sensory information undergoes a process of extensive elaboration
99 and attentional modulation as it cascades into deeper layers of cortical processing.
100 Visual system connectivity, as one example, moves along the dorsal and ventral
101 visual streams, uniting within aspects of the dorsal and ventral attention networks
102 including the anterior insula, superior parietal cortex, and operculum parietal before
103 eventually filtering through multimodal convergence zones, particularly within the
104 default network²⁴. Although speculative, these data suggest a possible preferential
105 role for sensory orienting and attentional systems in the integrity of the information

106 processing hierarchies in the human brain. Intriguingly, there is mounting evidence to
107 suggest the staged development of a ventral attention network, encompassing
108 aspects of anterior insula, anterior prefrontal cortex and anterior cingulate cortex^{11,25}
109 (see also, cingulo-opercular network²⁶ and salience network²⁷), that follows the age-
110 dependent shifts in cortical organization across childhood and adolescence¹⁴. The
111 salience/ventral attentional network, together with frontoparietal network, have been
112 proposed to constitute a dual-network system for the 'top-down' and 'bottom-up'
113 processing necessary for adaptive behavioral responses^{26,28,29}, supporting the
114 functional propagation of information across primary somato/motor, visual, auditory
115 cortex through the default network²⁴. These dissociable attentional and control
116 systems are interconnected in children but later segregate over the course of
117 adolescence to eventually form the parallel architectures that support adaptive
118 behavior in adulthood¹⁸. These data suggest that the attention system may play a
119 preferential role in the transformative brain changes occurring throughout childhood
120 and adolescence. Recent work has also revealed that the lateralization of functional
121 gradients may coincide with attention system lateralization³⁰. As such, characterizing
122 the relationships linking attention network connectivity and age-dependent changes
123 in the macroscale brain organization would provide a tremendous opportunity to
124 understand how the functional architecture of cortex is shaped and sculpted across
125 the human lifespan. In turn, this would provide the opportunity to examine how the
126 hierarchical reorganization of the cortical sheet may contribute to the emergence of
127 cognitive and emotional abilities that mark the transition from childhood to
128 adolescence.

129 In the present study we examined the extent to which specific functional
130 networks may serve to underpin the age-dependent maturation of functional gradient
131 patterns across the cortical sheet. To directly address this open question, we first
132 established the cortical territories exhibiting pronounced functional changes in a
133 longitudinal sample of children and adolescents, revealing the preferential presence

134 of developmental shifts within the ventral attention network. Follow-up analyses
135 excluding regions exhibiting the maximal developmental change in children resulted
136 in the emergence of adolescent-like gradient patterns, suggesting ventral attention
137 territories may play a core role in the expression of adolescent-like connectivity
138 gradients. Moreover, across independent datasets, children with low ventral attention
139 connectivity exhibited a profile of cortical organization that closely resembles prior
140 reports in adolescents and adults. Highlighting the importance of attention network
141 connectivity in cognitive functioning, standardized measures of intelligence linked
142 with reduced attention network degree centrality in children and adolescents.
143 Collectively, these data suggest that ventral attention system functioning in childhood
144 and adolescence may underpin the developmental reorganization and maturation of
145 functional networks across the cortical sheet.

146

147 **Results**

148 **Ventral attention network territories demonstrate high degree centrality and
149 pronounced shifts across development**

150 Vertex-level functional connectivity (FC) matrices ($20,484 \times 20,484$) were first
151 generated using the data provided by the Chinese Color Nest Project (CCNP)^{21,32}. In
152 line with prior work^{10,11,14}, the top 10% connections of each vertex were retained to
153 enforce sparsity. Degree centrality maps for both children (6 to 12 years of age;
154 n=202) and adolescents (12 to 18 years of age; n=176) were generated to
155 characterize the broad organizational properties of the functional connectome across
156 development (Figure 1A,B). Here, degree centrality reflects the count of above
157 threshold connections for a given vertex to all other vertices (see Methods).

158 The observed profiles of degree centrality were highly similar between children
159 and adolescents (Pearson $r=0.947$, $p_{\text{spin}} \leq 0.001$). Significance was established using
160 permuted spin tests, which preserve the spatial autocorrelation structure of the
161 data³³. Heightened degree centrality values in both children and adolescents were

162 preferentially evident in aspects of the ventral attention network, including portions of
163 anterior insula, medial prefrontal cortex, and anterior cingulate cortex/midline
164 supplementary motor area (Figure 1). Increased degree centrality was also present in
165 adolescents within default network territories including portions of posterior inferior
166 parietal lobule, posterior cingulate cortex, and precuneus. Additionally, visual system
167 areas including superior and transverse occipital sulcus at the boundary between
168 dorsal and visual network demonstrated high degree centrality values. Conversely,
169 primary somatosensory and motor areas as well as regions within the lateral
170 prefrontal cortex and temporal lobe exhibited relatively low degree centrality. Broadly,
171 these data reflect the presence of dense connectivity within medial and posterior
172 territories along the cortical sheet, while relatively low centrality was evident in lateral
173 prefrontal and somato/motor areas, highlighting a stable pattern of degree centrality
174 across childhood and adolescence.

175 Degree centrality broadly summarizes profiles of cortical connectivity, to examine
176 developmental changes in functional connectivity strength at the vertex level, we
177 calculated the associated Euclidean distance in functional connectivity similarity
178 between children and adolescents (Figure 1C). Despite the presence of broadly
179 consistent population-level patterns of degree centrality, analyses revealed spatially
180 non-uniform shifts in hub regions of functional connectivity across groups. The
181 maximum developmental changes were anchored within the ventral attention network
182 (Figure 1C-E), encompassing aspects of anterior and posterior insula as well as
183 cingulate cortex. One-way ANOVA revealed the presence of between-network
184 differences ($F=790.94$, $df=6$, $p\leq 0.001$), with increased Euclidean distance in the
185 ventral attention network, relative to other networks (see multiple comparisons results
186 in Supplemental Table 2). Prior work indicates that maturational age broadly follows
187 the theorized hierarchy of cortical information processing²³, with somato/motor and
188 visual networks maturing in childhood, while medial prefrontal aspects of default and
189 limbic networks, peak later during adolescence^{14,34}. However, in the present

190 analyses, the default network exhibited relatively less developmental change in
191 Euclidean distance between groups, followed by visual network (Figure 1E). Although
192 speculative, these data suggest the presence of specific network-level similarities in
193 connectivity between children and adolescents that may precede broader age-
194 dependent shifts in the macroscale organization of cortex, highlighting the need to
195 consider the manner, in which individual functional networks (e.g., default and
196 attention) are embedded within the broader functional architecture of the brain.

197

198 **A core role for the ventral attention network in the macroscale organization of**
199 **cortex across childhood and adolescence**

200 The transition from childhood to adolescence is marked by pronounced changes
201 in the functional organization of cortex^{14,22}. Broadly, this is reflected in the presence
202 of age-dependent transitions across macroscale gradients that extend from unimodal
203 (somato/motor and visual) regions through the cortical association areas that support
204 complex cognition^{2,3,15,16} (Figure 2A). Of note, such a transition is observed not only
205 when restricting analyses to retain the top 10% connections of each vertex to enforce
206 sparsity, but also revealed by when varying sets connections are included in the
207 gradient analyses. Here, the primary transmodal gradient emerges in a higher
208 percentile of excluded connections at each vertex (90%) in adolescents than in
209 children (85%; see (Extended Data Fig.1). Next, we examined whether age-
210 dependent alterations in ventral attention network connectivity might partly account
211 for the maturation of the cortical processing hierarchy as reflected in these
212 overlapping organizing axes, or gradients. Brain areas with maximum differences in
213 Euclidean distance were extracted (See Methods; Figure 2B), and then removed
214 from brain connectivity matrix while we rederived the functional gradients. Here,
215 diffusion map embedding^{10,35,36} was used to decompose participant-level connectivity
216 matrices into a lower dimensional space. The resulting functional components, or
217 gradients, reflect dissociable spatial patterns of cortical connectivity, ordered by the
218 variance explained in the initial functional connectivity matrix^{10,14}.

219 As identified in our prior study¹⁴, the primary gradient in children closely matches
220 the second gradient in adolescents and adults. Here, dropping ventral attention areas
221 (a simulation of lesion) generates adolescent- and adult-like gradient architectures in
222 children. The simulated removal of ventral attention network regions led to the
223 formation of a primary gradient in children that closely assembles the first gradient in
224 both adolescents ($r=0.68$, $p_{\text{spin}}\leq 0.001$) and adults ($r=0.84$, $p_{\text{spin}}\leq 0.001$). The rederived
225 second gradient in children most closely assembled the second gradient in both

226 adolescents ($r=0.66$, $p_{\text{spin}}\leq 0.001$) and adults ($r=0.85$, $p_{\text{spin}}\leq 0.001$). However, while the
227 primary gradient derived from ventral attention network simulated lesioned data in
228 children broadly recapitulated the primary gradient in adults¹⁰, several
229 inconsistencies were observed. Notably, in the simulated lesioned data from the child
230 group, one end of the primary gradient of connectivity was anchored in the visual
231 areas, with the regions at the other end encompassed broad swaths of the
232 association cortex. Prior work in adults has revealed visual territories along with
233 somato/motor and auditory cortex serve to anchor one end of the primary cortical
234 gradient¹⁰. Additionally, although the second gradient derived from ventral attention
235 network simulated lesioned data in children closely resembles the second gradient in
236 adults, a muted default network profile can still be observed. While the dropped
237 clusters are not anchored at the extreme end of the primary gradient in children
238 (Figure 2A), it is densely connected and spatially adjacent to somato/motor
239 territories. Further control analysis revealed that areas within ventral attention
240 network primarily contributed to the reversal in gradients. Although speculative,
241 dropping of ventral attention vertices from the gradient analyses may decrease the
242 number of functional connections attributed to somato/motor network, indirectly
243 shifting its position along the gradient spectrum.

244 Most vertexes from the dropped clusters were from the ventral attention
245 (45.96%) and somato/motor networks (36.57%). Accordingly, the observed transition
246 to an adolescent- and adult-like functional architecture in children may reflect an
247 artifact, resulting from lesioning the data in a manner that removes of aspects of the
248 unimodal territories that anchor the primary gradient in children (Figure 2A). To
249 address this possibility and identify the primary drivers of adolescent-like profiles of
250 brain function in children, we subdivided the dropped clusters into 2 categories:
251 clusters falling within the borders of the somato/motor network and clusters outside
252 the somato/motor network. Gradients were then rederived in the child group to
253 explore the consequences associated with the individual removal of each cluster

254 component. The removal of somato/motor cluster preserves the developmentally
255 typical gradient architecture, in children the first gradient closely resembles the
256 second gradient in adolescents ($r=0.94$, $p_{\text{spin}} \leq 0.001$) and adults ($r=0.91$, $p_{\text{spin}} \leq$
257 0.001), while the second gradient closely assemble the first gradient in adolescents
258 ($r=0.95$, $p_{\text{spin}} \leq 0.001$) and adults ($r=0.91$, $p_{\text{spin}} \leq 0.001$). Conversely, and consistent
259 with the analyses reported above (Figure 2B), dropping the cluster outside
260 somato/motor network led to the generation of an adolescent- and adult-like gradient
261 architecture in children. Here, the first gradient in children matched the first gradient
262 in adolescents ($r=0.78$, $p_{\text{spin}} \leq 0.001$), while the second gradient in children resembled
263 the second gradient in adolescents ($r=0.78$, $p_{\text{spin}} \leq 0.001$). Namely, dropping the
264 clusters outside somato/motor network in children results in a gradient organization
265 that resembles prior reports in adolescents.

266 We next examined the extent to which the observed elimination of age-
267 dependent shifts in the macroscale organization of the cortex is specific to the
268 removal of ventral attention network-dominated vertices. Here, we generated 500 null
269 models in the child group with clusters dropped at random locations across the
270 cortical sheet, but with shapes and sizes that match the ventral attention network
271 vertices (reflecting the maximum differences in Euclidean Distance between children
272 and adolescents). For each random model, the first and second gradients of child
273 group were extracted and correlated with the corresponding first and second
274 gradients in adults. Providing evidence for the role of the ventral attention network in
275 the formation of adult-like gradient architectures in children, for the primary gradient
276 the observed correlation was greater than the correlations from the null distribution
277 ($p \leq 0.002$) across 499/500 permutations (Figure 2C). For the second gradient the
278 observed correlation was greater than the correlations from the null distribution
279 ($p \leq 0.001$) across all 500 permutations. While the present analyses are consistent
280 with a core role for the ventral attention network in age-dependent changes in the
281 macroscale organization of the cortex, longitudinal future work should examine the

282 role of person level factors and possible relationships linking large-scale gradient
283 transitions with shifts in attention network functioning across development.

284

285 **Cortical development is linked to a pattern of heightened within-ventral**
286 **attention network connectivity**

287 Extending upon the prior Euclidean Distance analyses, connectome-level
288 changes in functional connectivity between children and adolescents are displayed in
289 a chord diagram (Figure 3) and grouped into networks according to Yeo's 7-network
290 solution¹¹. These data reveal broad increases in within network connectivity for the
291 ventral attention, somato/motor, and default networks as well as a general flattening
292 of cross-network connectivity across development. The within-network connections
293 for the ventral attention, between-network connections for the dorsal attention, and
294 visual networks were increased, while other between-network connectivity with
295 somato/motor, limbic, frontoparietal and default networks are decreased from
296 childhood to adolescence. Individual developmental changes were examined by
297 linear mixed effect (LME) model. Decreased between-network connectivity for the
298 somato/motor network was observed ($p \leq 0.05$), while heightened between-network
299 connectivity was evident for the visual ($p \leq 0.05$), dorsal attention ($p \leq 0.001$), limbic
300 ($p \leq 0.05$), and frontoparietal control ($p \leq 0.01$) networks. The degree centrality of
301 ventral attention network increased with age in children ($p \leq 0.05$), stabilizing in
302 adolescence where no other age-related associations were revealed in within-
303 network connections for ventral attention network.

304 When considering the other large-scale association networks, the present
305 analyses suggest a pattern where default network connectivity with other functional
306 systems is pruned during development, indicating a bias towards within network
307 connectivity and an associated differentiation from other network processes. A
308 developmental profile that may coincide with the emergence of the default network at
309 the apex of the network hierarchy in adolescence. Conversely, the frontoparietal

310 control network exhibited increased connectivity with dorsal and ventral attention
311 networks in adolescents, suggesting a potential association between cognitive
312 processes and attentional resources allocation during development.
313

314 **Attention network connectivity links with cognitive ability and reveals the**
315 **presence of adult-like gradient architectures in childhood**

316 The analyses above provide evidence for a relationship between ventral
317 attention network connectivity and the formation of adult-like gradient architectures in
318 children. Significant connectome-level changes were also observed in heightened
319 within-network functional connectivity and degree centrality of ventral attention
320 network (Figure 3). However, it is not yet clear the extent to which individual
321 variability in attention network functioning may link with the adult-like gradient
322 architectures across development. To distinguish it from the typical developmental
323 pattern, we refer to these early-emerging adult-like gradient architectures as an
324 "accelerated maturation pattern". To examine this potential relationship, we divided
325 participants into subgroups based on their individual ventral attention network
326 connection counts (Figure 4A). Here, to avoid potential bias introduced by
327 confounding factors like scan parameters, population and preprocessing steps, the
328 group split was determined based on the median connection count in the CCNP
329 oldest participants (>17 years of age; dotted line in Figure 4A) instead of independent
330 adult population samples. Participants with fewer connections than this median value
331 were assigned to a low ventral attention group (child n=95 adolescent n=76), all other
332 participants were assigned to a high ventral attention group (child n=107; adolescent
333 n=100). The gradients were then rederived for high and low attention groups across
334 both children and adolescents. No significant associations were observed between
335 the degree centrality of ventral attention network and demographic factors including
336 in age ($p=0.45$), gender ($p=0.82$) and head motion ($p=0.87$). Further comparisons
337 reveal matched demographic features between child the high and low ventral
338 attention groups in age ($p=0.0572$), gender ($p=0.7716$) and head motion ($p=0.5346$).
339 In adolescents, both the primary ($r=0.98$, $p_{\text{spin}}\leq 0.001$) and secondary ($r=0.99$,
340 $p_{\text{spin}}\leq 0.001$) gradient architectures were consistent within the low and high ventral
341 attention network participants (Figure 4B,C). For children with high salience and

342 ventral attention connectivity, their functional organization follows the typical pattern
343 of brain maturation¹⁴ (Figure 2A). Here the primary gradient in the high ventral
344 attention children matched the secondary gradient in both adolescents ($r=0.89$,
345 $p_{\text{spin}} \leq 0.001$) and adults ($r=0.91$, $p_{\text{spin}} \leq 0.001$), while the second gradient in high ventral
346 attention children matched the primary gradient in both adolescents ($r=0.89$,
347 $p_{\text{spin}} \leq 0.001$) and adults ($r=0.91607$, $p_{\text{spin}} \leq 0.001$). In these children, somato/motor
348 areas were anchored at the opposite extreme from visual regions, revealing a
349 unimodal dominant gradient architecture. However, in children with low ventral
350 attention connectivity we observed a developmentally accelerated pattern of gradient
351 organization that broadly matches the primary and secondary gradients previously
352 identified in both adolescents (Gradient 1: $r=0.93$, $p_{\text{spin}} \leq 0.001$; Gradient 2: $r=0.92$,
353 $p_{\text{spin}} \leq 0.001$) and adults (Gradient 1: $r=0.68$, $p_{\text{spin}} \leq 0.001$; Gradient 2: $r=0.65$,
354 $p_{\text{spin}} \leq 0.001$).

355 Permutation analyses were conducted to examine the significance of the
356 dissociable gradient architectures across the groups. Here, 95 and 107 child
357 participants were randomly assigned to two groups corresponding to the number of
358 participants in low and high ventral attention child group for 500 permutations. In the
359 adolescent group, 76 and 100 participants were randomly assigned to two groups
360 corresponding to the number of participants in low and high ventral attention
361 adolescent group for 500 times, then the gradient maps were recomputed and the
362 associated variances were extracted to generate a set of null models.

363 Children with low ventral attention connectivity exhibit a gradient organization
364 that broadly matches the primary and secondary gradients previously identified in
365 both adolescents and adults. Conversely, children with high ventral attention
366 connectivity exhibit functional organization that follows the typical pattern of brain
367 maturation. The permutation analyses demonstrate that the amount of variance
368 accounted for by the association cortex anchored gradient is increased in the low
369 (Gradient 1 variance: 0.3648) relative to high ventral attention connectivity

370 participants (Gradient 2 variance: 0.1052; p=0, 0/500 permutations revealed greater
371 difference than the real situation). Consistent with this profile the amount of variance
372 accounted for by the unimodal anchored gradient is decreased in the low (Gradient 2
373 variance: 0.1161) relative to high ventral attention connectivity participants (Gradient
374 1 variance: 0.3846; p=0, 0/500 revealed greater difference than the real situation).

375 Conversely, in the adolescence, we did not observe a significant difference
376 between the high and low ventral attention groups in the first association cortex
377 anchored gradient (0.3807 vs. 0.3595, p=0.0620), while the second gradient in high
378 ventral attention adolescent group (0.1052) accounted for a significantly lower
379 amount of variance (p=0.008, 4 in 500 permutations revealed lower difference than
380 the real situation) than low ventral attention adolescent group (0.1161).

381 The accelerated longitudinal design of the Chinese Color Nest Project^{32,37}, which
382 includes longitudinal tracking data with a visiting interval of 1.25 years, provided for
383 additional analyses in participants who were scanned both before (child group) and
384 after their 12th birthday (adolescent group). Here, we identified a set of child
385 participants (n=22) from the low ventral attention group who were also subsequently
386 scanned in their adolescence (n=26, mean age of initial scan=10.98±0.64; mean age
387 of second scan=12.90±0.69). In the participants classified as low ventral attention in
388 childhood, when they transition to adolescence, their first gradient in childhood is
389 highly correlated ($r=0.9429$, $p<0.01$) with the first gradient that in their adolescence. A
390 consistent group profile that was also evident when considering their second
391 gradients in both childhood and adolescence ($r=0.9353$, $p<0.01$; see Figure 4D).

392 Conversely, high ventral attention children (n=21), who were also scanned in
393 their adolescence (n=24, mean age of initial scan=11.09±0.63; mean age of second
394 scan=12.94±0.71), displayed a normative developmental trajectory. Here, their first
395 gradient in childhood was highly correlated with their second gradient in adolescence
396 (absolute $r=0.9793$, $p<0.01$), while their second gradient in childhood were highly

397 correlated with the first gradient in their adolescence (absolute $r=0.9748$, $p<0.01$; see
398 Figure 4D).

399 If the salience/ventral attention network contributes to the maturation of cortical
400 hierarchy, the functional integrity of attentional systems may also associate with
401 changes in cognitive and behavioral performance. To examine this hypothesis, we
402 next assessed the relationship between standardized measures of cognitive
403 functioning (IQ) and the degree centrality of the ventral attention network with an
404 LME model. LME models for IQ subdomain scores in verbal, perceptual reasoning,
405 working memory, processing speed, and a composite total score were constructed
406 separately. Age, gender, head motion and the vertex-level connectivity counts with
407 ventral attention network were fed into each LME model as fixed effects, repeated
408 measurements were set as the random effect. Results revealed significant negative
409 associations between ventral attention network connectivity and verbal ($p\le0.05$),
410 perceptual reasoning ($p\le0.01$) and the composite IQ scores ($p\le0.05$). Associations
411 with participant age and verbal score ($p\le8\times10^{-6}$), perceptual reasoning score
412 ($p\le0.05$) and total score ($p\le0.001$), as well as associations with gender and verbal
413 score ($p\le0.05$), perceptual reasoning score ($p\le0.05$), and total score ($p\le0.05$) were
414 also observed. Suggesting that this pattern was not due to variability in data quality,
415 no significant associations between IQ scores and head motion were evident
416 ($p>0.05$; see LME results in Supplemental Tables 3-7 for each IQ subdomain score).

417 Collectively, these results demonstrate that individual variability within the
418 attention network in children associates with dissociable motifs of connectivity across
419 the functional connectome and covaries with the cognitive functioning. Children with
420 low ventral attention connectivity exhibit an accelerated profile of cortical maturation
421 that closely resembles prior reports in adolescents and adults. Although additional
422 longitudinal analyses are warranted, these data suggest a fundamental relationship
423 between individual variability within the ventral attention network and the age-

424 dependent changes in the macroscale properties of human brain organization and
425 cognitive ability.

426 **Ventral attention network connectivity reliably associates with accelerated**
427 **cortical maturation and cognitive ability across populations**

428 The analyses above reveal a relationship between ventral attention network
429 connectivity, the functional maturation of the cortical connectome, and cognitive
430 functioning in a population of healthy developing children and adolescents from the
431 Chinese Color Nest Project³². To examine the generalizability of the above results,
432 we utilized 2186 participants from the ABCD³⁸ study, where participant data differed
433 from the CCNP in sample population, study site, MRI scanner, acquisition
434 parameters and longitudinal designs. Here, the ABCD data was limited to participants
435 between 9 to 11 years old. Highlighting the robustness of the analyses reported
436 above, we observed a profile of heightened degree centrality in ventral attention
437 network areas that was consistent with the CCNP analyses (Figure 1A). Broadly, the
438 ABCD degree centrality map demonstrated a lower degree centrality distribution
439 along the cortex than the CCNP dataset (Figure 5A). Here, the inferior parietal gyrus
440 and supramarginal gyrus, together with middle anterior cingulate cortex exhibited
441 highly connected architecture. Hub regions of default network including the angular
442 gyrus, middle temporal gyrus, and post cingulate cortex also revealed heightened
443 degree centrality in the ABCD data, which might again indicate the role of default
444 network as a significant cortical core across the transition to adolescence.

445 Next, we assessed the reliability of a relationship linking the maturation of
446 functional gradient architecture of the cortical sheet with individual variability in
447 ventral attention connectivity across populations. To do so, we split the children in the
448 ABCD study in a manner consistent with the CCNP analyses to examine whether the
449 ventral attention network connections are coupled with the functional gradient
450 maturation. No significant associations were observed between the degree centrality
451 of ventral attention network and demographic factors like age ($p=0.21$), gender
452 ($p=0.60$), head motion ($p=0.12$) and family income ($p=0.15$). Further comparisons
453 reveal matched demographic features between child groups in age ($p=0.80$), gender

454 (p=0.39), head motion (p=0.51) and family income (p=0.15). Consistent with our
455 findings in the CCNP children group, the gradient profiles of children with high ventral
456 attention network connectivity in the ABCD study (n=1367) displayed the
457 developmentally typical gradient profile (Figure 4B). In this group, the primary visual
458 and somato/motor areas occupied the ends of the primary gradient, matched the
459 second gradients in CCNP adolescents ($r=0.896$, $p_{\text{spin}}\leq 0.001$) and HCP adults
460 ($r=0.93$, $p_{\text{spin}}\leq 0.001$); while the second gradient revealed transmodal organization
461 matching the first gradients in CCNP adolescents ($r=0.918$, $p_{\text{spin}}\leq 0.001$) and HCP
462 adults ($r=0.944$, $p_{\text{spin}}\leq 0.001$). An accelerated developmental profile was revealed in
463 the ABCD children with low ventral attention network links (n=819), broadly matching
464 the primary and secondary gradients previously identified in CCNP adolescents
465 (Gradient 1: $r=0.865$, $p_{\text{spin}}\leq 0.001$; Gradient 2: $r=0.856$, $p_{\text{spin}}\leq 0.001$), and
466 demonstrating a hybrid organization comparing with HCP adults (correlations
467 between the first gradient in ABCD low attention group and gradients in HCP adults:
468 $r=0.61$, $p_{\text{spin}}\leq 0.001$, $r=0.73$, $p_{\text{spin}}\leq 0.001$; correlations between the second gradient in
469 ABCD low attention group and gradients in HCP adults: $r=0.71$, $p_{\text{spin}}\leq 0.001$, $r=0.62$,
470 $p_{\text{spin}}=0.002$). These data provide converging evidence, across independent collection
471 efforts, of an association between attention system connectivity and the broader
472 functional organization and maturational properties of cortex.

473 As a final step we repeated the behavior association analysis in the ABCD
474 project. Here, NIH toolbox scores were used to access the cognitive abilities
475 including crystallized (picture vocabulary and oral reading recognition) and fluid
476 components (pattern comparison processing speed, list sorting working memory,
477 picture sequence memory, flanker test and dimensional change card sort)³⁹. As
478 above, a linear regression model was conducted to examine the relationship between
479 the degree centrality of the ventral attention network and cognitive functioning. Age,
480 sex and head motion were set as covariates in the model. Consistent with our CCNP
481 results, these analyses revealed the functional connections of ventral attention

482 network were significantly associated with the cognition total composite standard
483 score ($p=0.0024$), crystallized composite standard score ($p=0.022$), cognition fluid
484 composite standard score ($p=0.0058$), picture vocabulary ($p=0.0048$), and list sorting
485 working memory ($p=0.0025$). Other significant associations are reported in the
486 Supplemental Tables. Only the cognition total composite standard score ($p=0.0024$)
487 and list sorting working memory ($p=0.0025$) in the ABCD dataset were significant
488 after Bonferroni correction to address multiple comparisons across a total of 15
489 Linear Mixed Effects (LME) and Linear regression models, no significant association
490 was revealed in the CCNP dataset after the correction.

491 The replication analysis in the ABCD dataset highlight a potentially key role for
492 the ventral attention network in the maturation process of both cortical hierarchy and
493 cognitive ability. Notably, speaking to the robustness of the observed results, the
494 differences across datasets are quite substantial, including but not limited to
495 participant race, ethnicity, culture, and environment as well as scanner, scanning
496 parameters, socioeconomic factors, and education. In particular, the distinct
497 ethnic/racial composition of study samples can impact the generalizability of brain-
498 behavior associations^{40,41}. Here, we applied the connection counts with ventral
499 attention network derived from the CCNP dataset directly on the children in the
500 ABCD dataset, and revealed consistent findings. Across sample collections, children
501 with high ventral attention network connectivity demonstrated typical developmental
502 patterns in functional gradients, while those with lower relative connectivity exhibited
503 adolescent- and adult-liked gradients. The degree centrality of the ventral attention
504 network is significantly associated with similar cognitive components in the CCNP
505 and ABCD datasets. Collectively, these analyses suggest a close and generalizable
506 relationship between the ventral attention network and the process of cortical
507 maturation, as reflected in the presence of macroscale functional gradients. These
508 data are in line with the hypothesis that the ventral attention network may

509 preferentially drive the refinement in the macroscale organization of cortex and
510 cognitive ability during the transition from childhood to adolescence.

511

512 Discussion

513

514 A fundamental goal of developmental systems neuroscience is to identify the
515 mechanisms that underlie the scheduled emergence and maturation of the large-
516 scale functional networks central to the information processing capabilities of the
517 human brain. Prior work has demonstrated age-dependent shifts in macroscale
518 organization of cortex^{6,9}, revealing the presence of a dominant profile of unimodal
519 cortical organization in children that is later replaced in adolescence by a distributed
520 transmodal architecture spanning from unimodal regions through association cortex.
521 In the current study, we further demonstrated that more connections were required in
522 children to attain a transmodal dominant feature (Extended Data Fig.1), indicating
523 that diffuse connections across broad swaths of association cortex gradually replace
524 the local connections in higher percentiles during adolescence. While this sweeping
525 developmental reorganization of network relationships across the cortical sheet
526 coincides with the transition from childhood to adolescence, reflecting an inflection
527 point at around age 12 to 14, the neurobiological processes underpinning these
528 profound functional changes have yet to be established. Here, by first identifying the
529 densely connected hub regions across development, we demonstrate that ventral
530 attention network regions¹¹ encompassing aspects of anterior insula, medial
531 prefrontal cortex, and dorsal anterior cingulate cortex/midline supplementary motor
532 area (also see salience²⁷ and cingulo-opercular²⁶ networks) may be linked to age-
533 dependent shifts in the macroscale organization of cortex across childhood and
534 adolescence.

535 Although the attention regions identified in the present analyses are recognized
536 as a single system at a coarse scale^{42,43}, this broad architecture is comprised of

537 multiple spatially adjacent but functionally dissociable networks^{11,26,27,44}. This complex
538 system is theorized to underpin a cascade of functions supporting information
539 processing, from the control of stimulus driven attention⁴³ to the initialization of task
540 sets and maintenance of sustained attention during goal pursuit²⁹. Further analysis
541 revealed that virtually lesioning the entire frontoparietal network also generates
542 transmodal organization in the first gradient (See Extended Data Fig.4). Importantly,
543 the salience/ventral attentional network was proposed to have a causal effect on
544 switching between default and frontoparietal networks during task execution⁴⁵. The
545 hierarchical flow of information from sensory regions to deeper levels of cortical
546 processing is also reflected in the spatial continuity of associated functional parcels
547 along cortical surface, for example, the salience network^{25,27}, spanning orbital fronto-
548 insular and dorsal anterior cingulate areas through broad posterior areas of insula
549 and dorsal anterior cingulate cortex^{25,29}. Broadly, information propagates along
550 posterior to anterior as well as dorsal to ventral axes across cortex and the
551 associated organization of functionally linked parcels is reflected through the
552 presence of continuous functional gradients^{10,14}. Here, the ventral attention network is
553 situated at an intermediate position along this functional spectrum transiting from
554 primary sensory/motor networks to the default network that anchors association
555 cortex, which is commonly identified as the first gradient in adolescence and
556 adulthood, while reflecting the second gradient in childhood¹⁴. This transmodal
557 organizational profile has been inferred to reflect the hierarchy of information flow
558 across cortical territories¹⁰. Converging evidence for this functional motif has been
559 revealed through analyses of step-wise connectivity. Consistent with classic theories
560 regarding the integration of perceptual modalities into deeper layers of cortical
561 processing²³, functional relationships spread from primary somato/motor, visual and
562 auditory cortex before converging within ventral attention territories, and eventually
563 the default network²⁴. As a whole, these data provide clear evidence situating the
564 ventral attention network between primary unimodal and association cortices,

565 highlighting a role for attention systems in the functional propagation of sensory
566 information to the multimodal regions that support higher-order cognitive functions.
567 The cingulo-opercular/ventral attention network, together with frontoparietal
568 network, have been proposed to constitute a parallel architecture of executive
569 functioning and cognitive control, supporting adaptive goal pursuit and flexible
570 behavioral adjustments²⁸. Although the frontoparietal network, encompassing aspects
571 of dorsolateral prefrontal, dorsomedial prefrontal, lateral parietal, and posterior
572 temporal cortices, is functionally dissociable from cingulo-opercular/ventral attention
573 network in adulthood, studies in developmental populations have revealed that they
574 are functionally linked prior to adolescence¹⁸. Moreover, in children, the ventral
575 attention network possesses a broad distributed connectivity profile with reduced
576 segregation from salience networks⁴⁶, perhaps reflecting fluid community boundaries
577 in those areas. Anterior prefrontal cortex is shared by the two networks in children but
578 later segregated into ventral attention network in early adolescence, with dorsal
579 anterior cingulate cortex incorporated into frontoparietal network in adulthood¹⁸. This
580 aspect of network development is consistent with evidence for increased, but more
581 diffuse, patterns of task-evoked activity in children relative to adults⁴⁷, reflecting the
582 presence of scattered pattern of community assignments in prefrontal territories,
583 particularly those supporting attentional processes²².

584 Suggesting a key role for the attentional systems in cognition, our present
585 analyses revealed reliable associations between attention network connectivity and
586 broad measures of intellectual functioning across populations. A recent study also
587 revealed abnormal functioning within limbic and insular networks and associated
588 cognitive deficits in adolescents who were extremely preterm at birth⁴⁸. The
589 maturational course of large-scale brain network coincides with the emergence of
590 adult-like performance on cognitive tasks (e.g., processing speed, shifting and
591 response inhibition)^{49,50}. A pattern of attention network development that is theorized
592 to reflect a transition from the over-representation of bottom-up attention to greater

593 top-down attentional and executive functioning capabilities⁴⁶. Converging evidence
594 indicates that ventral attention network functions are intricately linked with the
595 frontoparietal network in both anatomy and function. Although speculative, the
596 corresponding segregation and integration of associated processes likely underpins
597 the maturation of adaptive human cognition.

598 In the present data, the observed maturational changes were not uniformly
599 distributed across cortical surface, suggesting a key role for the ventral attention
600 network during development. Intriguingly, the greatest functional changes were not
601 evident within the default or primary sensory territories that anchor the functional
602 gradients in adolescence and adulthood. Rather, ventral attention and frontoparietal
603 networks reflected the predominate sources of functional variation across childhood
604 and adolescence (Figure 1E). Of note, developmental changes were not exclusive to
605 attentional network regions, default network and the somato/motor network also
606 demonstrated age related variations across childhood and adolescence. These data
607 are consistent with prior reports suggesting that somato/motor and ventral attention
608 networks are functionally coupled in children, highlighting a distinct community
609 architecture in children relative to adults²². Even in adulthood, the ventral areas in
610 somato/motor network can be identified as a separate cluster from dorsal areas as
611 network parcellations increase in their granularity (i.e., 7-network relative to 17-
612 network resolutions in Yeo et al., 2011¹¹; or in Gordon et al., 2017⁴⁴).

613 Prior work has revealed a dramatic developmental change in the topography of
614 ventral attention network, while the spatial organization of default network
615 approaches an adult-like form in childhood²². However, it should be noted that the
616 developmental changes in brain's functional hierarchy are driven by comprehensive
617 reconfigurations across broad swaths of cortex, rather than solely reflecting
618 developmentally mediated shifts in the ventral attention network alone. As illustrated
619 in Figure 3, there are substantial alterations in both between- and within-network
620 connections across different age groups. This is particularly evident in the default

621 network, where a profile of age-linked increases in within-network connectivity
622 replaced between-network connections. These extensive changes along the cortical
623 surface indicate that network organization is not stabilized during development,
624 raising a critical issue that whether a given cortical area belongs to a fixed network
625 across puberty and into adulthood. Future studies should further establish an
626 accurate network affiliation for the developing population. Of note, the size and shape
627 of the human brain undergoes significant changes throughout the lifespan. While it's
628 indicated that the growth velocities of brain tissues peak before 6 years old⁹, caution
629 is essential when interpreting MRI studies that span development populations.
630 Factors such as head motion and registration errors might bias the results.
631 Therefore, validating with large, independent datasets and alternate methods of
632 assessing brain functioning is crucial to assess the reproducibility, robustness, and
633 generalizability of the current results.

634 To further characterize how changes in ventral attention network connectivity
635 might underlie the broad functional maturation of cortex, we directly excluded the
636 developmentally dissociable aspects of ventral attention network from the brain
637 connectome and rederived the functional gradients previously characterized in
638 children, adolescence¹⁴ and adults¹⁰. The present analyses revealed that virtually
639 lesioning ventral attention clusters characterized by the greatest developmental
640 changes generates adolescent- and adult-like gradient architectures in children, a
641 profile that was specific to attention network territories. Although follow-up work is
642 necessary, our analyses are consistent with the presence of a relative increase in
643 local connections between ventral attention network and adjacent somato/motor
644 territories in childhood, biasing a functional motif in childhood dominated by unimodal
645 organization. Later, diffuse connections across broad swaths of association cortex
646 emerge with age, until eventually the presence of interactions across distinct systems
647 becomes the dominant feature of cortical organization. The increased emphasis on

648 such transmodal integration is consistent with the developmental principle that, over
649 time, local connections are replaced by remote distributed interactions¹³.

650 Individual level analysis further reveals the influence of ventral attention network
651 on the formation of adult-like functional organization. Children with fewer ventral
652 attention network connections exhibited an accelerated transmodal profile of cortical
653 organization, while the typical unimodal dominated architecture was presented in
654 children with more ventral attention connections. However, an open unanswered
655 question remains the manner through which ventral attention network functioning
656 may reshape the macroscale organization of cortex. Although speculative, the
657 observed results might reflect a consequence of repeated co-activation between
658 ventral attention network regions and associated cortical systems¹⁸. Accordingly, the
659 dense associations with somato/motor areas²² as well as frontoparietal areas¹⁸ in
660 children indicates ventral attention network is preferentially connected by both
661 primary and association cortex during development, which is also evident in our
662 degree centrality map (Figure 1A and B). While a dense profile of connections may
663 ensure system integrity, excessive or redundant connections are pruned across
664 development in order to optimize efficient information processing as neurons that are
665 not fully integrated within local circuits are eliminated to ensure stable network
666 function⁵¹. A profile of network segregation and integration that is hypothesized to
667 underpin functional specialization and computational efficiency^{19,52}.

668 Along with the stabilization of its functional organization, cortical maturation is
669 also marked by increased flexibility in resource allocation during task execution.
670 Evidence from task-based fMRI suggests that the salience/ventral attention network,
671 especially the right fronto-insular cortex, plays a critical role in switching between the
672 default mode and frontoparietal networks⁴⁵. This finding supports our hypothesis that
673 the ventral attention network not only serves as a transfer hub between unimodal and
674 transmodal cortices but also coordinates the information flow within the transmodal
675 cortex. In addition to refining the unstable local connections associated with unimodal

676 areas, the ventral attention network may drive the predominance of transmodal
677 organization through a parallel mechanism, which likely involves strengthening the
678 transmodal interactions among higher-order networks to ensure the flexible
679 reallocation of resources. Future work should focus on characterizing the specific
680 properties of ventral attention network across development, for instance, extending to
681 early points in the lifespan, examining its interactions with other network under the
682 background of task execution or considering the roll of individual experience on
683 network development⁵³.

684 Accumulating evidence has revealed a dramatic restructuring of the macroscale
685 organization of the cortex across development, suggesting the scheduled maturation
686 of functional gradient patterns may be critically important for understanding how
687 cognitive and behavioral capabilities are refined across development. However, the
688 underlying developmental processes driving these functional changes remain to be
689 established. Here, by first localizing the significant maturational changes in functional
690 connectome across childhood and adolescence, we demonstrate that the ventral
691 attention network may play a critical role in the onset of the age-dependent shifts that
692 characterize the macroscale organization of cortex across development. Children
693 with fewer functional connections within the ventral attention network exhibit the
694 appearance of an accelerated maturation of gradient architecture and increased
695 cognitive functioning. Although the process of brain maturation emerges through
696 complex interactions across environmental experience and biological systems that
697 span genes and molecules through cells, networks, and behavior, the current
698 findings suggest a core role for attention network-linked territories. The multiscale
699 interactions linking the longitudinal development of the ventral attention network with
700 these maturational processes, and the associated consequences on behavior across
701 health and disease, remains an open question to be answered in future work.

702

703 **Acknowledgements:** This work was supported by the STI 2030 - the major projects
704 of the Brain Science and Brain-Inspired Intelligence Technology (2021ZD0200500 to
705 X.N.Z.), the National Institute of Mental Health (Grants R01MH120080 and
706 R01MH123245 to A.J.H.), the Major Fund for International Collaboration of National
707 Natural Science Foundation of China (81220108014 to X.N.Z.), the National Basic
708 Science Data Center “Interdisciplinary Brain Database for In vivo Population Imaging”
709 (ID-BRAIN to X.N.Z.) and the Start-up Funds for Leading Talents at Beijing Normal
710 University (to X.N.Z.). BTTY is supported by the NUS Yong Loo Lin School of
711 Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore National Medical Research
712 Council (NMRC) LCG (OFLCG19May-0035), NMRC CTG-IIT (CTGIIT23jan-0001),
713 NMRC STaR (STaR20nov-0003), Singapore Ministry of Health (MOH) Centre Grant
714 (CG21APR1009), the Temasek Foundation (TF2223-IMH-01), and the United States
715 National Institutes of Health (R01MH120080 & R01MH133334). Any opinions,
716 findings and conclusions or recommendations expressed in this material are those of
717 the authors and do not reflect the views of the Singapore NRF, NMRC or MOH.

718
719 **Author Contributions:** H-MD, AJH and X-NZ designed the research. AJH and X-NZ
720 supervised the research. H-MD and AJH conducted analyses and made figures. X-
721 HZ, LL, S-SZ and LRO conducted validation analyses based on the ABCD dataset.
722 All authors contributed during writing and edited the paper.

723
724 **Declaration of Interests:** The authors declare they have no competing interests.

725
726 **Figure Legends**

727
728 **Figure 1. Ventral attention network areas demonstrate high population-level**
729 **degree centrality but pronounced functional changes across development.**
730 Degree Centrality maps in children (A) and adolescents (B) reveal consistent dense

731 connectivity in ventral attention network areas throughout development. Scale bar
732 reflects the count of above threshold connections from a given vertex to all other
733 vertices. Larger values indicate higher degree centrality. (C) Euclidean Distance of
734 the functional connectome at each vertex between children and adolescents reveals
735 a clear switch within the ventral attention network. Larger values indicate greater
736 dissimilarity. (D) Regions based on the Schaefer et al., 400-parcel³¹ atlas and colored
737 by the Yeo et al., 7-network solution¹¹. (E) Bar graph reflects changes in the
738 Euclidean Distance of functional connectome at network level (mean network values
739 \pm standard error). The ventral attention network (6.5518 ± 1.2002) shows the largest
740 developmental change while visual network (4.2584 ± 1.1257) and default networks
741 (4.9813 ± 1.1207) are most stable between children and adolescents. DorsAttn, dorsal
742 attention (5.1157 ± 1.2499); Sal, salience; Som/Mot, somato/motor (5.8618 ± 1.6067);
743 VentAttn, ventral attention; Control (5.4065 ± 1.1681); and Limbic (6.2337 ± 2.6297).

744

745

746 **Figure 2: Ventral attention territories play a core role in the expression of**
747 **adolescent-like connectivity gradients.** (A) The principal cortical gradients of
748 connectivity in children, adolescents (data from Dong et al., 2021¹⁴) and adults (data
749 from Margulies et al., 2016¹⁰). (B) Clusters with maximum developmental changes in
750 Euclidean Distance were extracted (Figure 1c), denoted as black on the cortical
751 surface. Associated vertices were then dropped from the cortical connectome in the
752 child group prior to rederiving the gradients. Results reveal that default and visual
753 networks anchor the extremes along the principal gradient (Gradient 1), mirroring the
754 principal gradient in both adolescents ($r=0.68$, $p_{\text{spin}} \leq 0.001$, two-sided spin test) and
755 adults ($r=0.84$, $p_{\text{spin}} \leq 0.001$, two-sided spin test). In children, the rederived second
756 gradient (Gradient 2) revealed a unimodal architecture separating somato/motor
757 network from visual network, which closely corresponds on the second gradient in
758 both adolescents ($r=0.66$, $p_{\text{spin}} \leq 0.001$, two-sided spin test) and adults ($r=0.85$,

759 $p_{\text{spin}} \leq 0.001$, two-sided spin test). (C) To further assess the significance of the results,
760 we constructed a permuted null model in the present data. Clusters with same size
761 and shape as (B) but shuffled locations on the cortical sheet were generated and
762 excluded from analyses in child group 500 times. For each shuffle, the principal
763 gradient was extracted and compared with the principal gradient in adults. The
764 permuted null model shows only 1 case revealing a higher correlation than that
765 observed in the real data, the x-axis indicates the absolute correlation values, the y-
766 axis indicates the frequency of correlations, dotted line refers to the hypothesis being
767 tested.

768

769

770

771 **Figure 3: Developmental shifts in functional connectivity between childhood**
772 **and adolescence.** Differences in network-level connectome (The degree centrality
773 matrix of adolescents subtracts the degree centrality matrix of children) functioning
774 between children and adolescents are demonstrated in a chord diagram. For each
775 network, the number connections within the top 10% of each vertex are first
776 summarized at network level, displayed as the links from right half circle with larger
777 radius to left half circle with smaller radius. Reflecting the asymmetrical nature of the
778 thresholded connectivity matrix, links from the left to right half circle indicate the
779 connections within each network that are included in the top 10% of connections to
780 other vertices. Line width highlights the number of connections, with broader lines
781 indicating increased connectivity. Dark colored lines indicate increased values in
782 adolescents, relative to children. Light color lines indicate decrease values in the
783 adolescent group.

784

785

786

787 **Figure 4: Individual differences in ventral attention network connectivity reveal**
788 **a functional profile that resembles accelerated cortical maturation in some**
789 **children.** (A) The number of functional connections linked with ventral attention
790 network at individual level. Male participants are marked in blue, female participants
791 are marked in red. Repeated imaging sessions within the same participants are
792 linked by lines. The x-axis represents age range from 6 to 18 years. The y-axis
793 reflects the number of connections that are linked to the ventral attention network
794 following thresholding. Participants were divided into high and low ventral attention
795 connectivity groups according to the median value in age 17-year-old participants
796 (dotted line). (B) The gradient maps in high ventral attention connectivity groups
797 reveal typical patterns identified in our previous work in both children and
798 adolescents¹⁴. (C) The gradient maps in low ventral attention connectivity groups
799 reveal an accelerated maturation process in children, with both the primary and
800 secondary gradients demonstrated a transmodal architectures. Functional
801 organization was broadly preserved across the high and low attention groups in
802 adolescents, with a subtle muting of the ventral attention gradient values in the low
803 attention participant group. The primary gradient maps in (D) high and low ventral
804 attention connectivity groups derived from longitudinal data. These surface maps
805 display a developmentally normative pattern of gradient reversals in the high ventral
806 attention group children, later scanned in adolescence. Conversely, low ventral
807 attention group children exhibit a stable adolescent-like gradient architecture in both
808 childhood and adolescence. See Extended Data Fig.2 & 3 for the longitudinal
809 analyses of Gradient 1 and Gradient 2 in both hemispheres.

810

811

812 **Figure 5: Relationship between ventral attention network connectivity and**
813 **accelerated cortical maturation reliable across independent datasets. (A)**

814 Degree Centrality maps in children (9~11 years old, n=2186) from the ABCD project
815 reveals dense connectivity in ventral attention network areas in a pattern that is
816 consistent with the CCNP participants (Figure 1A). Scale bar reflects the count of
817 above threshold connections from a given vertex to all other vertices. Larger values
818 indicate higher degree centrality. (B) The gradient maps in the ABCD high ventral
819 attention connectivity groups reveal typical patterns identified in our previous work in
820 children¹⁴ as well as the CCNP high ventral attention group (Figure 4B,C children).
821 (C) The gradient maps in the ABCD low ventral attention connectivity groups closely
822 resemble the profile of accelerated maturation observed in the CCNP sample.

823

824

825

References

826 1 Casey, B. J., Heller, A. S., Gee, D. G. & Cohen, A. O. Development of the
827 emotional brain. *Neurosci Lett* **693**, 29-34, doi:10.1016/j.neulet.2017.11.055
828 (2019).

829 2 Casey, B. J., Getz, S. & Galvan, A. The adolescent brain. *Dev Rev* **28**, 62-77,
830 doi:10.1016/j.dr.2007.08.003 (2008).

831 3 Luna, B. *et al.* Maturation of widely distributed brain function subserves
832 cognitive development. *Neuroimage* **13**, 786-793,
833 doi:10.1006/nimg.2000.0743 (2001).

834 4 Kang, H. J. *et al.* Spatio-temporal transcriptome of the human brain. *Nature*
835 **478**, 483-489, doi:10.1038/nature10523 (2011).

836 5 Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in
837 synaptogenesis in human cerebral cortex. *J Comp Neuro* **387**, 167-178,
838 doi:10.1002/(Sici)1096-9861(19971020)387:2<167::Aid-Cne1>3.0.Co;2-Z
839 (1997).

840 6 Paquola, C. *et al.* Shifts in myeloarchitecture characterise adolescent
841 development of cortical gradients. *eLife* **8**, doi:10.7554/eLife.50482 (2019).

842 7 Zilles, K., Palomero-Gallagher, N. & Amunts, K. Development of cortical
843 folding during evolution and ontogeny. *Trends Neurosci* **36**, 275-284,
844 doi:10.1016/j.tins.2013.01.006 (2013).

845 8 Reardon, P. K. *et al.* Normative brain size variation and brain shape diversity
846 in humans. *Science* **360**, 1222-1227, doi:10.1126/science.aar2578 (2018).

847 9 Bethlehem, R. A. I. *et al.* Brain charts for the human lifespan. *Nature*, **604**,
848 525-533, doi:10.1038/s41586-022-04554-y (2022).

849 10 Margulies, D. S. *et al.* Situating the default-mode network along a principal
850 gradient of macroscale cortical organization. *Proc Natl Acad Sci U S A* **113**,
851 12574-12579, doi:10.1073/pnas.1608282113 (2016).

852 11 Yeo, B. T. *et al.* The organization of the human cerebral cortex estimated by
853 intrinsic functional connectivity. *J Neurophysiol* **106**, 1125-1165,
854 doi:10.1152/jn.00338.2011 (2011).

855 12 Gao, W. *et al.* Temporal and spatial evolution of brain network topology
856 during the first two years of life. *PLoS One* **6**, e25278,
857 doi:10.1371/journal.pone.0025278 (2011).

858 13 Fair, D. A. *et al.* Functional Brain Networks Develop from a "Local to
859 Distributed" Organization. *Plos Comput Biol* **5**, e1000381,
860 doi:10.1371/journal.pcbi.1000381 (2009).

861 14 Dong, H. M., Margulies, D. S., Zuo, X. N. & Holmes, A. J. Shifting gradients of
862 macroscale cortical organization mark the transition from childhood to
863 adolescence. *Proc Natl Acad Sci U S A* **118**, e2024448118,
864 doi:10.1073/pnas.2024448118 (2021).

865 15 Somerville, L. H., Hare, T. & Casey, B. J. Frontostriatal maturation predicts
866 cognitive control failure to appetitive cues in adolescents. *J Cogn Neurosci*
867 **23**, 2123-2134, doi:10.1162/jocn.2010.21572 (2011).

868 16 Tottenham, N. & Sheridan, M. A. A review of adversity, the amygdala and the
869 hippocampus: a consideration of developmental timing. *Front Hum Neurosci*
870 **3**, 68, doi:10.3389/neuro.09.068.2009 (2009).

871 17 Sydnor, V. J. *et al.* Neurodevelopment of the association cortices: Patterns,
872 mechanisms, and implications for psychopathology. *Neuron* **109**, 2820-2846,
873 doi:10.1016/j.neuron.2021.06.016 (2021).

874 18 Fair, D. A. *et al.* Development of distinct control networks through segregation
875 and integration. *Proc Natl Acad Sci USA* **104**, 13507-13512,
876 doi:10.1073/pnas.0705843104 (2007).

877 19 Betzel, R. F. *et al.* Changes in structural and functional connectivity among
878 resting-state networks across the human lifespan. *Neuroimage* **102 Pt 2**, 345-
879 357, doi:10.1016/j.neuroimage.2014.07.067 (2014).

880 20 Betzel, R. F. *et al.* Generative models of the human connectome. *Neuroimage*
881 124, 1054-1064, doi:10.1016/j.neuroimage.2015.09.041 (2016).

882 21 Zuo, X. N. *et al.* Human Connectomics across the Life Span. *Trends Cogn Sci*
883 21, 32-45, doi:10.1016/j.tics.2016.10.005 (2017).

884 22 Tooley, U. A., Bassett, D. S. & Mackey, A. P. Functional brain network
885 community structure in childhood: Unfinished territories and fuzzy boundaries.
886 *Neuroimage* 247, 118843, doi:10.1016/j.neuroimage.2021.118843 (2022).

887 23 Mesulam, M. M. From sensation to cognition. *Brain* 121 (Pt 6), 1013-1052,
888 doi:10.1093/brain/121.6.1013 (1998).

889 24 Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H. & Johnson, K. A. Stepwise
890 connectivity of the modal cortex reveals the multimodal organization of the
891 human brain. *J Neurosci* 32, 10649-10661, doi:10.1523/JNEUROSCI.0759-
892 12.2012 (2012).

893 25 Power, J. D. *et al.* Functional network organization of the human brain.
894 *Neuron* 72, 665-678, doi:10.1016/j.neuron.2011.09.006 (2011).

895 26 Dosenbach, N. U. *et al.* Distinct brain networks for adaptive and stable task
896 control in humans. *Proc Natl Acad Sci U S A* 104, 11073-11078,
897 doi:10.1073/pnas.0704320104 (2007).

898 27 Seeley, W. W. *et al.* Dissociable intrinsic connectivity networks for salience
899 processing and executive control. *J Neurosci* 27, 2349-2356,
900 doi:10.1523/JNEUROSCI.5587-06.2007 (2007).

901 28 Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S.
902 E. A dual-networks architecture of top-down control. *Trends Cogn Sci* 12, 99-
903 105, doi:10.1016/j.tics.2008.01.001 (2008).

904 29 Dosenbach, N. U. *et al.* A core system for the implementation of task sets.
905 *Neuron* 50, 799-812, doi:10.1016/j.neuron.2006.04.031 (2006).

906 30 Labache, L., Ge, T., Yeo, B. T. T. & Holmes, A. J. Language network
907 lateralization is reflected throughout the macroscale functional organization of
908 cortex. *Nat Commun* **14**, 3405, doi: 10.1038/s41467-023-39131-y (2023).

909 31 Schaefer, A. *et al.* Local-Global Parcellation of the Human Cerebral Cortex
910 from Intrinsic Functional Connectivity MRI. *Cereb Cortex* **28**, 3095-3114,
911 doi:10.1093/cercor/bhx179 (2018).

912 32 Liu, S. *et al.* Chinese Color Nest Project : An accelerated longitudinal brain-
913 mind cohort. *Dev Cogn Neurosci* **52**, 101020, doi:10.1016/j.dcn.2021.101020
914 (2021).

915 33 Alexander-Bloch, A. F. *et al.* On testing for spatial correspondence between
916 maps of human brain structure and function. *Neuroimage* **178**, 540-551,
917 doi:10.1016/j.neuroimage.2018.05.070 (2018).

918 34 Gogtay, N. *et al.* Dynamic mapping of human cortical development during
919 childhood through early adulthood. *Proc Natl Acad Sci USA* **101**, 8174-8179,
920 doi:DOI 10.1073/pnas.0402680101 (2004).

921 35 Langs, G. *et al.* Identifying Shared Brain Networks in Individuals by
922 Decoupling Functional and Anatomical Variability. *Cereb Cortex* **26**, 4004-
923 4014, doi:10.1093/cercor/bhv189 (2016).

924 36 Coifman, R. R. & Lafon, S. Diffusion maps. *Appl Comput Harmon A* **21**, 5-30,
925 doi:10.1016/j.acha.2006.04.006 (2006).

926 37 Fan, X. R. *et al.* A longitudinal resource for population neuroscience of
927 school-age children and adolescents in China. *Sci Data* **10**, 545,
928 doi:10.1038/s41597-023-02377-8 (2023).

929 38 Casey, B. J. *et al.* The Adolescent Brain Cognitive Development (ABCD)
930 study: Imaging acquisition across 21 sites. *Dev Cogn Neurosci* **32**, 43-54,
931 doi:10.1016/j.dcn.2018.03.001 (2018).

932 39 Luciana, M. *et al.* Adolescent neurocognitive development and impacts of
933 substance use: Overview of the adolescent brain cognitive development

934 (ABCD) baseline neurocognition battery. *Dev Cogn Neurosci* **32**, 67-79,
935 doi:10.1016/j.dcn.2018.02.006 (2018).

936 40 Ricard, J. A. *et al.* Confronting racially exclusionary practices in the
937 acquisition and analyses of neuroimaging data. *Nat Neurosci* **26**, 4-11,
938 doi:10.1038/s41593-022-01218-y (2023).

939 41 Li, J. *et al.* Cross-ethnicity/race generalization failure of behavioral prediction
940 from resting-state functional connectivity. *Sci Adv* **8**, eabj1812,
941 doi:10.1126/sciadv.abj1812 (2022).

942 42 Fox, M. D. *et al.* The human brain is intrinsically organized into dynamic,
943 anticorrelated functional networks. *Proc Natl Acad Sci U S A* **102**, 9673-9678,
944 doi:10.1073/pnas.0504136102 (2005).

945 43 Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven
946 attention in the brain. *Nat Rev Neurosci* **3**, 201-215, doi:10.1038/nrn755
947 (2002).

948 44 Gordon, E. M. *et al.* Precision Functional Mapping of Individual Human
949 Brains. *Neuron* **95**, 791-807 e797, doi:10.1016/j.neuron.2017.07.011 (2017).

950 45 Sridharan, D., Levitin, D. J., & Menon, V. A critical role for the right fronto-
951 insular cortex in switching between central-executive and default-mode
952 networks. *Proc Natl Acad Sci U S A* **105**, 12569-12574,
953 doi:10.1073/pnas.0800005105 (2008).

954 45 Farrant, K. & Uddin, L. Q. Asymmetric development of dorsal and ventral
955 attention networks in the human brain. *Dev Cogn Neurosci* **12**, 165-174,
956 doi:10.1016/j.dcn.2015.02.001 (2015).

957 46 Casey, B. J., Giedd, J. N. & Thomas, K. M. Structural and functional brain
958 development and its relation to cognitive development. *Biol Psychol* **54**, 241-
959 257, doi:10.1016/s0301-0511(00)00058-2 (2000).

960 47 Molloy, M. F. *et al.* Effect of Extremely Preterm Birth on Adolescent Brain
961 Network Organization. *Brain Connect* **13**, 394-409,
962 doi:10.1089/brain.2022.0077 (2023).

963 48 Huizinga, M., Dolan, C. V. & van der Molen, M. W. Age-related change in
964 executive function: developmental trends and a latent variable analysis.
965 *Neuropsychologia* **44**, 2017-2036,
966 doi:10.1016/j.neuropsychologia.2006.01.010 (2006).

967 49 Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A. & Sweeney, J. A.
968 Maturation of cognitive processes from late childhood to adulthood. *Child Dev*
969 **75**, 1357-1372, doi:10.1111/j.1467-8624.2004.00745.x (2004).

970 50 Pfisterer, U. & Khodosevich, K. Neuronal survival in the brain: neuron type-
971 specific mechanisms. *Cell Death Dis* **8**, e2643, doi:10.1038/cddis.2017.64
972 (2017).

973 51 Bullmore, E. & Sporns, O. The economy of brain network organization. *Nat
974 Rev Neurosci* **13**, 336-349, doi:10.1038/nrn3214 (2012).

975 52 Gee, D. G. *et al.* Early developmental emergence of human amygdala-
976 prefrontal connectivity after maternal deprivation. *Proc Natl Acad Sci U S A*
977 **110**, 15638-15643, doi:10.1073/pnas.1307893110 (2013).

978 53 Dong, H. M. *et al.* Charting brain growth in tandem with brain templates at
979 school age. *Sci Bull* **65**, 1924-1934, doi:10.1016/j.scib.2020.07.027 (2020).

980

981

982

983

Methods

984 *Datasets*

985 **Chinese Color Nest Project (CCNP):** CCNP is a five-year accelerated longitudinal
986 study across the human life span^{21,32,54}. A total of 176 scans in adolescents and 202
987 scans in typically developing children were included in the analysis, details of the
988 dataset and exclusion criteria can be found in our previous work¹⁴. All MRI data was
989 obtained with a Siemens Trio 3.0T scanner at the Faculty of Psychology, Southwest
990 University in Chongqing. The reported experiments were approved by the
991 Institutional Review Board from Institute of Psychology, Chinese Academy of
992 Sciences. All participants and their parents/guardians provided written informed
993 consent before participating in the study.

994

995 **Adolescent Brain Cognitive Development Study (ABCD):** ABCD is a multi-site
996 longitudinal cohort following the brain and cognition development of over ten
997 thousand 9~10 years old children. MRI scans including T1-weighted, T2-weighted
998 and resting-state fMRI was obtained with 3T Siemens Prisma, General Electric 750
999 and Phillips scanners across 21 sites, details of the scan parameters can be found in
1000 reference⁵. Here, we utilized the MRI baseline data from 2186 children (female
1001 54.4%, mean age 10.01 years old) for the reproducibility analysis. The study was
1002 approved by the Institutional Review Board from the University of California, San
1003 Diego⁵⁵. All participants and their parents/guardians provided written informed
1004 consent⁵⁶.

1005

1006 *MRI Data Preprocessing*

1007 **CCNP dataset:** Anatomical T1 images were visually inspected to exclude individuals
1008 with substantial head motion and structural abnormalities. Next, T1 images were fed
1009 into the volBrain pipeline (<http://volbrain.upv.es>)⁵⁷ for noise removal, bias correction,
1010 intensity normalization and brain extraction. All brain extractions underwent visual

1011 inspection to ensure tissue integrity. After initial quality checks, T1 images were
1012 passed into the Connectome Computation System (CCS)⁵⁸ for surface-based
1013 analyses. CCS pipeline is designed for preprocessing multimodal MRI datasets and
1014 integrates publicly available software including SPM⁵⁹, FSL⁶⁰, AFNI⁶¹ and
1015 FreeSurfer⁶². Resting-state fMRI data preprocessing included a series of steps
1016 common to intrinsic functional connectivity analyses: (1) dropping the first 10s (4
1017 TRs) for the equilibrium of the magnetic field; (2) estimating head motion parameters
1018 and head motion correction; (3) slicing time correction; (4) time series de-spiking; (5)
1019 registering functional images to high resolution T1 images using boundary-based
1020 registration; (6) removing nuisance factors such as head motion, CSF and white
1021 matter signals using ICA-AROMA⁶³; (7) removing linear and quadratic trends of the
1022 time series; (8) projecting volumetric time series to surface space (the *fsaverage5*
1023 model with medial wall masked out); (9) 6mm spatial smoothing. All preprocessing
1024 scripts are publicly available on GitHub (<https://github.com/zuoxinian/CCS>). Any
1025 resting-state scan with a mean head motion above 0.5 mm was excluded from further
1026 analysis. The demographic information of subjects included in the analyses is listed
1027 in Supplemental Table 1.

1028
1029 **ABCD dataset:** Minimally preprocessed T1 images⁶⁴ were fed into Freesurfer⁶² for
1030 surface reconstruction. Resting-state fMRI data⁶⁴ preprocessing included a series of
1031 steps as following: (1) dropping the initial frames for the equilibrium of the magnetic
1032 field; (2) estimating head motion parameters and voxel-wise differentiated signal
1033 variance (DVARS) and head motion correction; (3) registering functional images to
1034 high resolution T1 images using boundary-based registration; (4) Scrubbing the
1035 frames with FD > 0.3 mm or DVARS > 50, along with one volume before and two
1036 volumes after. (5) removing nuisance factors such as global signal, head motion,
1037 CSF and white matter signals; (6) band-pass filtered (0.009 Hz ≤ f ≤ 0.08 Hz); (7)
1038 projecting volumetric time series to surface space (the *fsaverage5* model with medial

1039 wall masked out); (8) 6mm spatial smoothing. Full details of data preprocessing can
1040 be found in previous study⁶⁵. All preprocessing scripts are publicly available
1041 (https://github.com/ThomasYeoLab/ABCD_scripts) on GitHub. Any resting-state scan
1042 with a max head motion above 5 mm and over half of their volumes censored was
1043 excluded from further analysis.

1044

1045 *Degree Centrality Mapping.* Functional connectivity (FC) matrices and the
1046 corresponding Fisher-z transformed values were first generated for each resting-scan
1047 per visit. Then the two test-retest FC fisher-z (FCz) matrices within one visit were
1048 averaged to increase signal-to-noise ratio for generating individual FCz matrix for
1049 each visit, which was later averaged across individuals to form group-level FCz
1050 matrices. For the group-level FCz matrices, only the top 10% functional
1051 connectivities of each vertex were retained, other elements and negative FCs in the
1052 matrix were set to 0 to enforce sparsity, yielding an asymmetrical matrix, of which the
1053 rows are corresponding to the connectome of each vertex. Degree centrality map
1054 was obtained by counting the non-zero elements in each column of the FCz matrix.
1055 We then calculated the cosine distance between any two rows of the FCz matrix and
1056 subtracted from 1 to obtain a symmetrical similarity matrix, this similarity matrix was
1057 later used to derive the gradients.

1058

1059 *Euclidean Distance.* To characterize the developmental changes between children
1060 and adolescents, the Euclidean distance was computed for each row of the cosine
1061 distance matrix between children and adolescents. Then most changed clusters were
1062 extracted according to the following two criteria: the top 10% in Euclidean distance
1063 map and the cluster size above 500 vertexes. One-way ANOVAs were performed to
1064 test the statistical differences between networks.

1065

1066 *Gradients Analysis.* The extracted clusters and their FCs were firstly dropped in the
1067 initial FCz matrix of children group, and then cosine similarity matrix was calculated.
1068 Diffusion map embedding^{10,35} was implemented on the similarity matrix to derive
1069 gradients (https://github.com/NeuroanatomyAndConnectivity/gradient_analysis).
1070 Within each age bin, the functional connectivity matrix from participants with repeated
1071 imaging scans were averaged with scans of other participants to generate a group-
1072 level matrix, and then used to derive functional gradients. Pearson correlations were
1073 computed between the derived gradients in children and adults. To examine the
1074 statistical significance of the observed Pearson correlations, null distributions were
1075 generated by randomly rotated the locations of the extracted clusters across the
1076 cortical surface while keeping the shape and size fixed. For each permutation, the
1077 gradients and correlations were rederived. A total of 500 permutations were
1078 performed to generate the null model.
1079
1080 *Chord diagram.* Chord diagram was utilized to demonstrate the differences in
1081 numbers of functional connectivity between children and adolescents at network
1082 level. For each vertex, its connectome was represented as the corresponding row in
1083 the FCz matrix. The associated number of network-level connections was obtained
1084 by counting the non-0 elements in each network according to the Yeo 7-network
1085 solution, generating a matrix with dimension 20,484 (number of vertex) by 7 (number
1086 of networks). Vertices were grouped into networks to generate the final network to
1087 network FC matrix (7 by 7). The rows of this network-to-network matrix are displayed
1088 as the links from right half circus with larger radius to the left smaller half circus,
1089 referring to the FCs with networks in its own connectome, the opposite links from left
1090 to right circus represent the columns in the network-to-network matrix, referring to the
1091 FCs of each network that were existed in other networks' connectome (Figure 3).
1092

1093 *High and Low Ventral Attention Network Group Definition.* Ventral attention network
1094 linked connections were extracted as the corresponding column in network-to-
1095 network matrix, referring to the functional connectivity other networks linked with
1096 ventral attention network. As we found in prior work¹⁴, gradient maps became stable
1097 in 15-year-old participants, although they still possess a hybrid organization relative
1098 to adult participants. The gradient pattern in 17-year-old participants closely
1099 resembles what is observed in adults. As such, we hypothesized that the functional
1100 connections may reach a stable status at the end of adolescence when compared
1101 with younger participants, thus we take the median value of functional connectivity
1102 number in 17-year-old age group as the reference. Any single scan with a
1103 connectivity number above the threshold was assigned to the “high” ventral attention
1104 subgroup, other scans were assigned to the “low” ventral attention group. The
1105 gradients were then rederived for each group.

1106
1107 *Association Analysis with IQ Score in the CCNP Dataset.* The association between
1108 connections number with ventral attention network and IQ scores was estimated with
1109 LME model. IQ scores were obtained by Wechsler Children Intelligence Scale IV,
1110 including scores in following subdomains: verbal, perception reasoning, working
1111 memory, processing speed ability. The LME was conducted using the following
1112 formula:

1113
1114 $IQ_score \sim 1 + Age + Gender + (Ventral\ attention)_{DC} + HeadMotion + (1 | Subid)$
1115
1116 Here (Ventral attention)_{DC} refers to the connections with ventral attention
1117 network, together with age, gender, head motion and the intercept set as the fixed
1118 effect factor. Subid refers to the participant IDs, multi measurements for a single
1119 participant were coded as an identical nominal variable, set as the random effect
1120 factor. LME models were applied for the total IQ and subdomain scores separately.

1121
1122 *Association Analysis with Cognitive Score in the ABCD Dataset.* Linear regression
1123 model was applied to estimate the association between connections number with
1124 ventral attention network and cognitive scores in the ABCD dataset. Cognitive scores
1125 were accessed by NIH toolbox, including scores in following domains: crystallized
1126 (picture vocabulary and oral reading recognition) and fluid components (pattern
1127 comparison processing speed, list sorting working memory, picture sequence
1128 memory, flanker test and dimensional change card sort)¹⁰. The model was conducted
1129 using the following formula in MATLAB:

1130 Cognitive_score ~ 1 + Age + Gender + (Ventral attention)_DC + HeadMotion
1131
1132 *Developmental Effects on Degree Centrality of Ventral Attention Network.* The
1133 association between connections number with ventral attention network and age,
1134 gender head motion was also estimated with LME model, which was conducted
1135 using the following formula in MATLAB:
1136 (Ventral attention)_DC ~ 1 + Age + Gender + HeadMotion + (1 | Subid)
1137
1138
1139 **Data Availability:** Data from the CCNP dataset used here are available at Chinese
1140 Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community at
1141 Science Data Bank (<https://ccnp.scidb.cn/en>) including both anonymized
1142 neuroimaging data (<https://doi.org/10.57760/sciencedb.07860>) and unthresholded
1143 whole-brain connectivity matrices grouped by relevant ages (children and
1144 adolescents) (<https://doi.org/10.11922/sciencedb.00886>). The raw CCNP data are
1145 available from the website upon reasonable request. The ABCD data used in this
1146 report came from the Annual Release 2.0 (<https://doi.org/10.15154/1503209>) of the
1147 ABCD BIDS Community Collection (ABCC; NDA Collection 3165). Source data are
1148 provided with this paper.

1149

1150 **Code Availability:** Code is available online at our GitHub page:

1151 <https://github.com/HolmesLab/GradientMaturation>

1152

1153 **Methods References**

1154 54 Auchter, A. M. *et al.* A description of the ABCD organizational structure and
1155 communication framework. *Dev Cogn Neurosci* **32**, 8-15,
1156 doi:10.1016/j.dcn.2018.04.003 (2018).

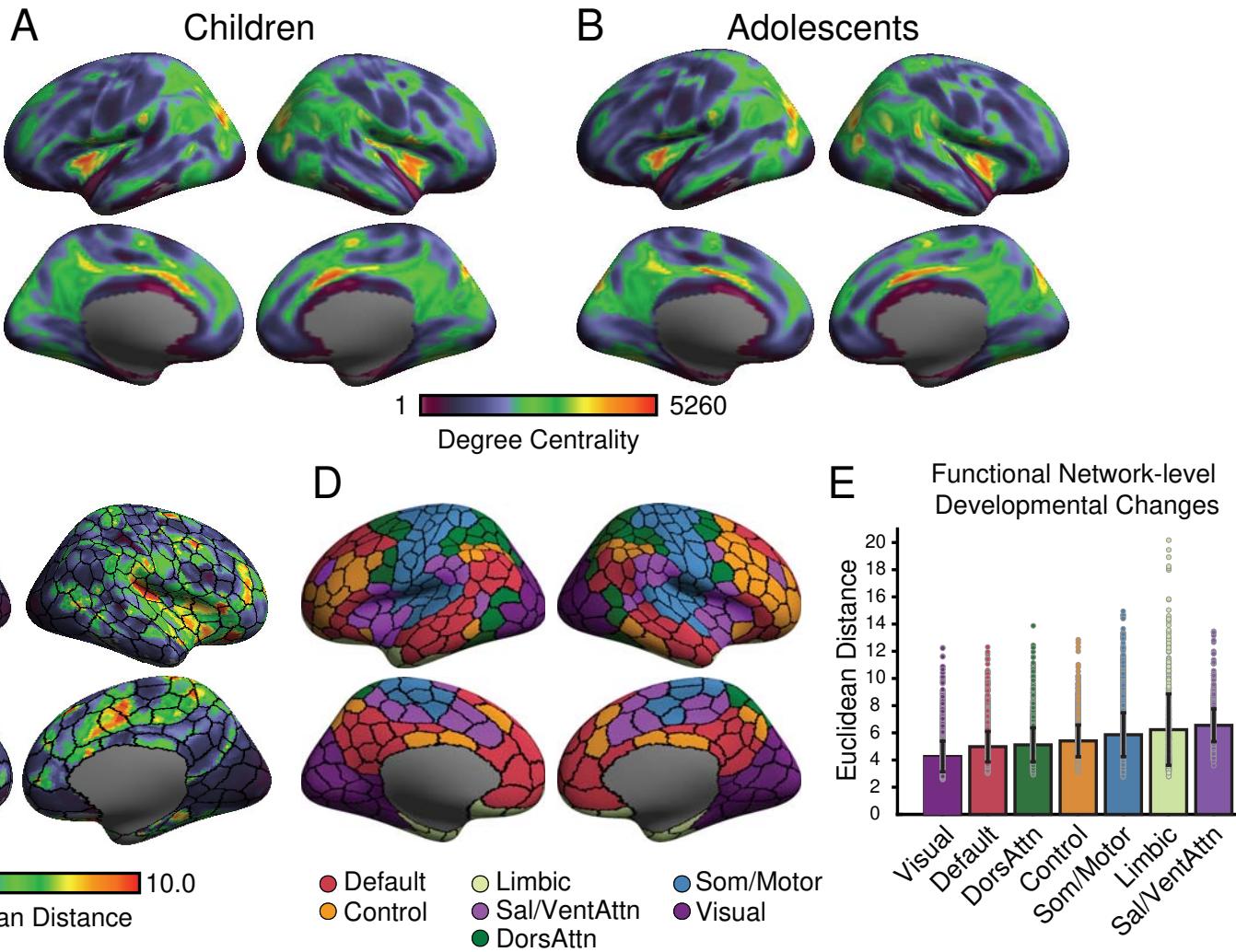
1157 55 Clark, D. B. *et al.* Biomedical ethics and clinical oversight in multisite
1158 observational neuroimaging studies with children and adolescents: The ABCD
1159 experience. *Dev Cogn Neurosci* **32**, 143-154, doi:10.1016/j.dcn.2017.06.005
1160 (2018).

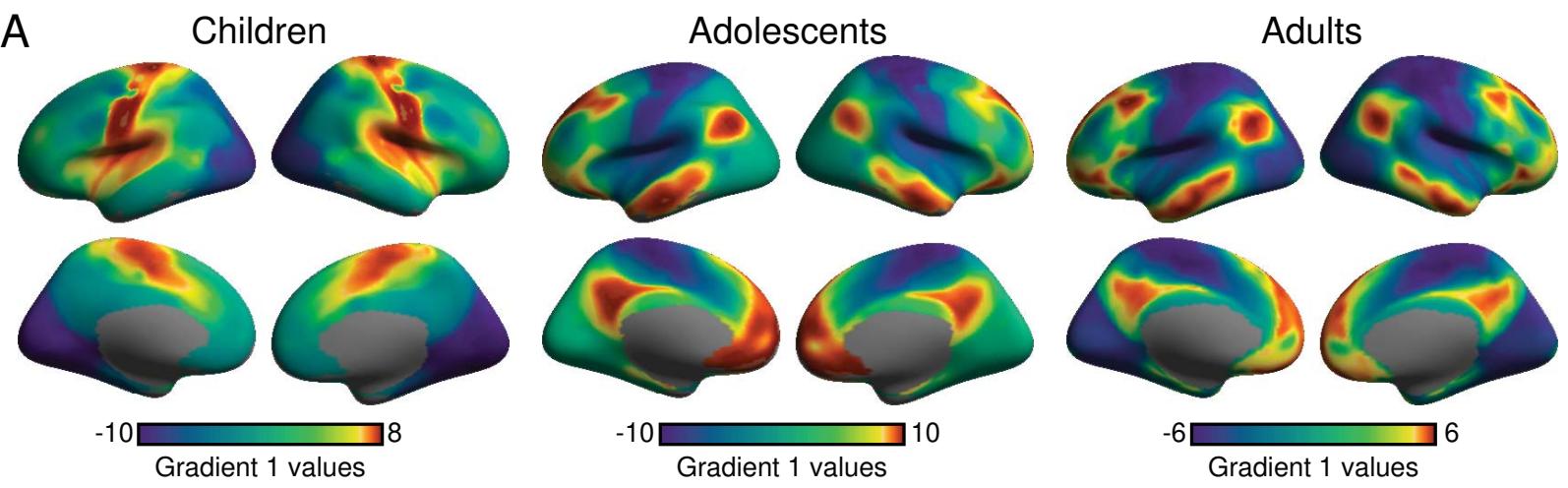
1161 56 Manjon, J. V. & Coupe, P. volBrain: An Online MRI Brain Volumetry System.
1162 *Front Neuroinform* **10**, 30, doi:10.3389/fninf.2016.00030 (2016).

1163 57 Xu, T. *et al.* A Connectome Computation System for discovery science of
1164 brain. *Sci Bull* **60**, 86-95, doi:10.1007/s11434-014-0698-3 (2015).

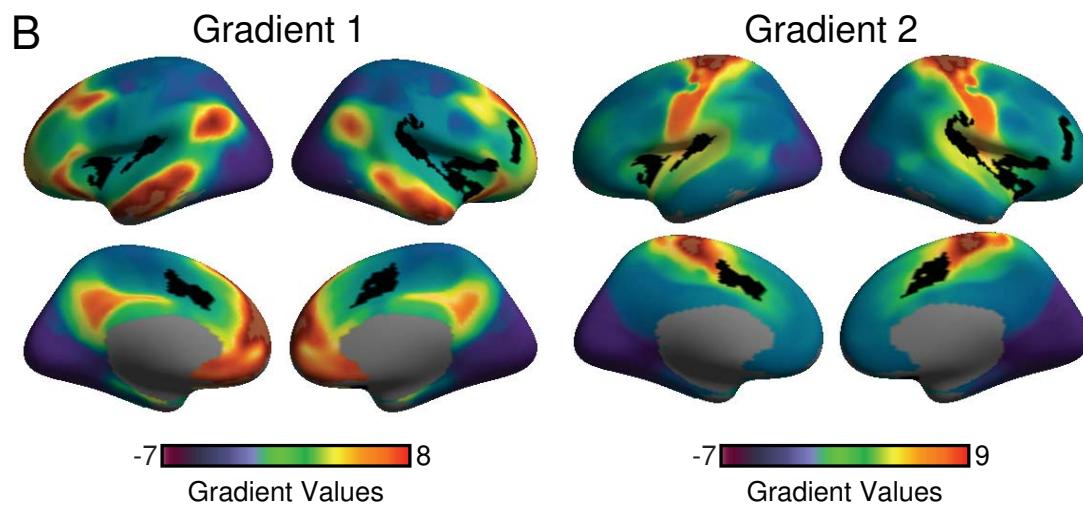
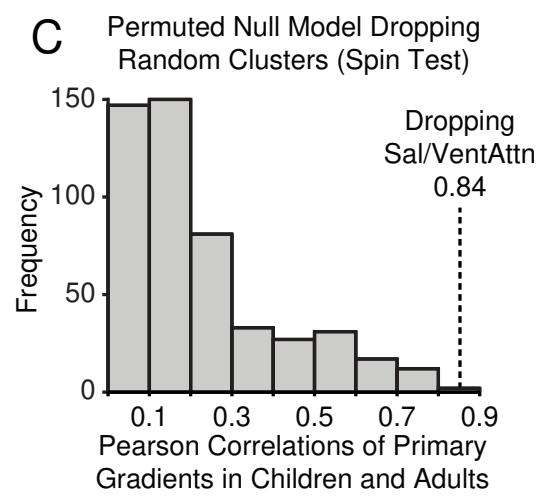
1165 58 Friston, K. J. *et al.* Statistical parametric maps in functional imaging: a general
1166 linear approach. *Hum Brain Mapp* **2**, 189-210, doi:10.1002/HBM.460020402
1167 (1994).

1168 59 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S.
1169 M. FSL. *Neuroimage* **62**, 782-790 (2012).

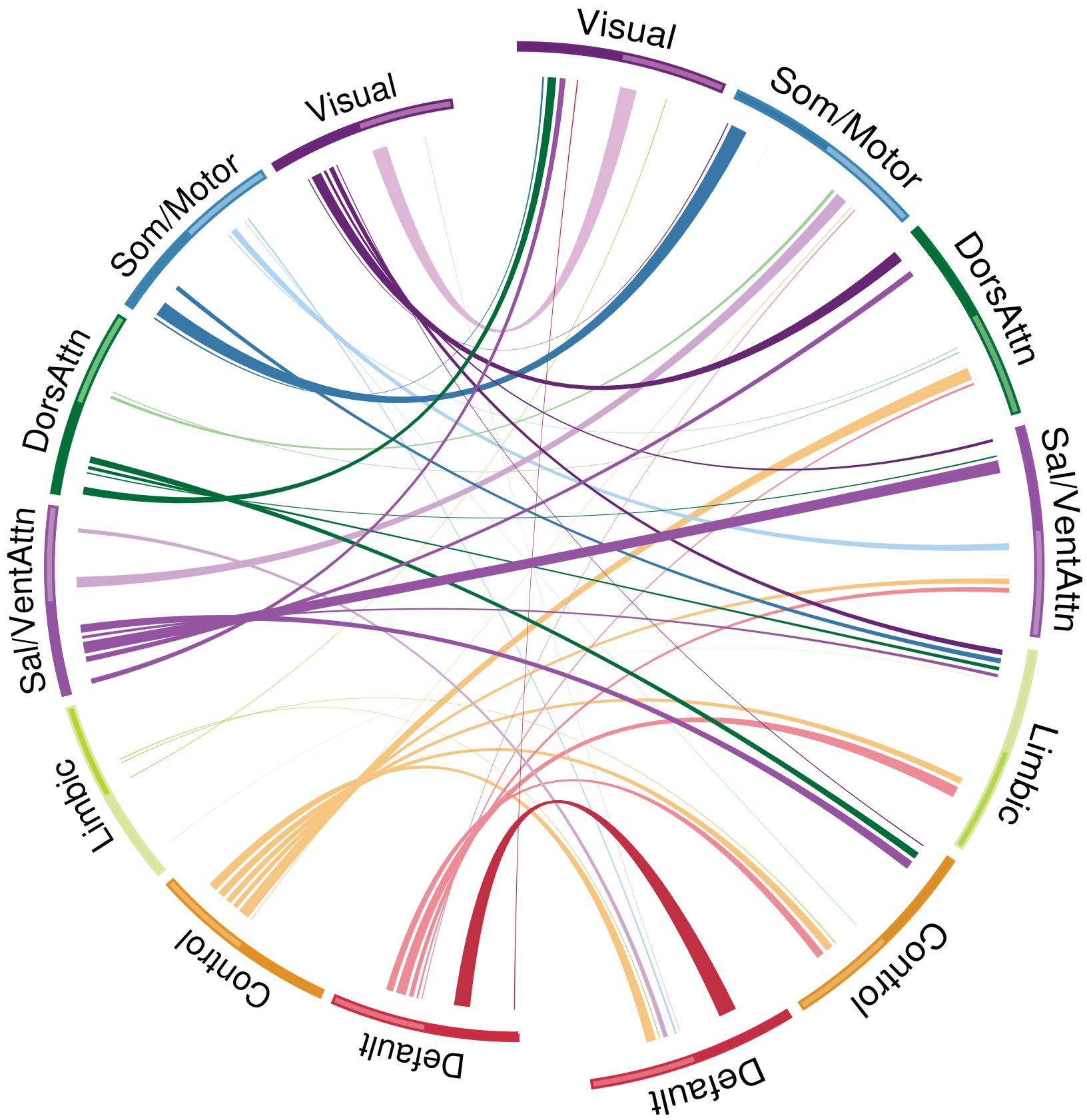

1170 60 Cox, R. W. AFNI: Software for analysis and visualization of functional
1171 magnetic resonance neuroimages. *Comput Biomed Res* **29**, 162-173 (1996).

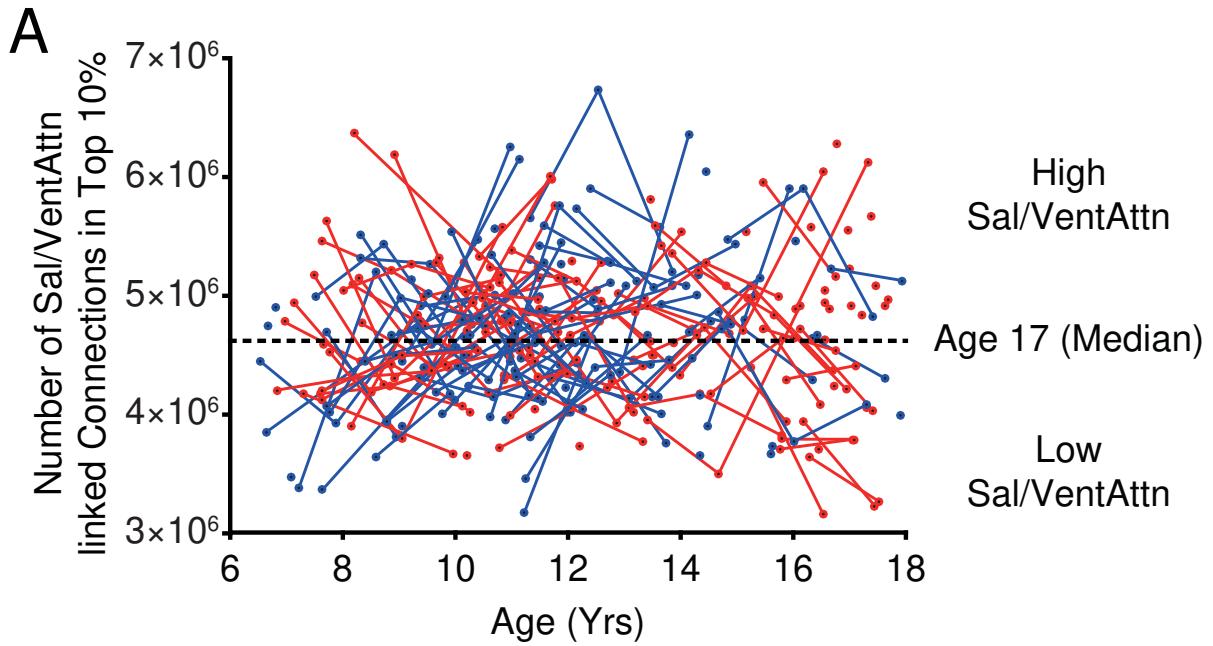

1172 61 Fischl, B. FreeSurfer. *Neuroimage* **62**, 774-781,
1173 doi:10.1016/j.neuroimage.2012.01.021 (2012).

1174 62 Pruim, R. H. R. *et al.* ICA-AROMA: A robust ICA-based strategy for removing
1175 motion artifacts from fMRI data. *Neuroimage* **112**, 267-277,
1176 doi:10.1016/j.neuroimage.2015.02.064 (2015).



1177 63 Hagler, D. J., Jr. *et al.* Image processing and analysis methods for the
1178 Adolescent Brain Cognitive Development Study. *Neuroimage* **202**, 116091,
1179 doi:10.1016/j.neuroimage.2019.116091 (2019).

1180 64 Chen, J. *et al.* Shared and unique brain network features predict cognitive,
1181 personality, and mental health scores in the ABCD study. *Nat Commun* **13**,
1182 2217, doi:10.1038/s41467-022-29766-8 (2022).

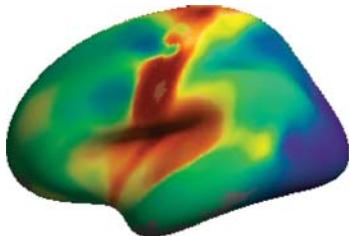

A

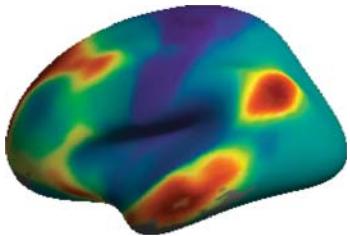

Dropping Ventral Attention Clusters
Generates Adolescent-Like Gradient Architectures in Children

B**C**

Functional Connectivity Developmental Changes

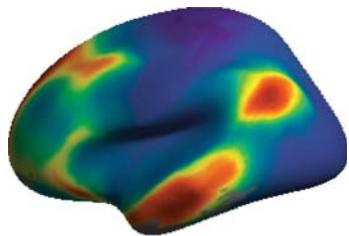
Degree Centrality_{ADOLESCENTS} - Degree Centrality_{Children}



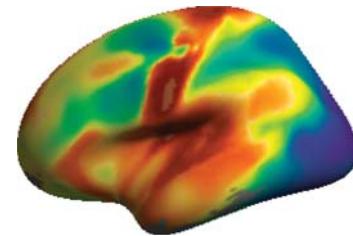

High Salience and Ventral Attention Connectivity Participants

B Gradient 1

Children



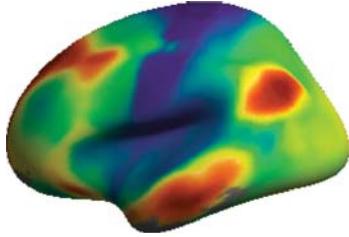
Adolescents



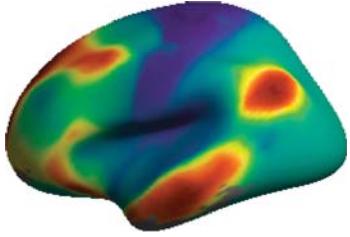
Gradient 2

Children

Adolescents

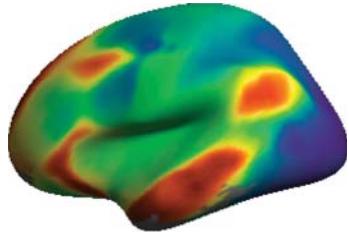


Low Salience and Ventral Attention Connectivity Participants

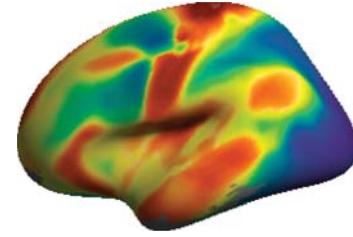

C

Gradient 1

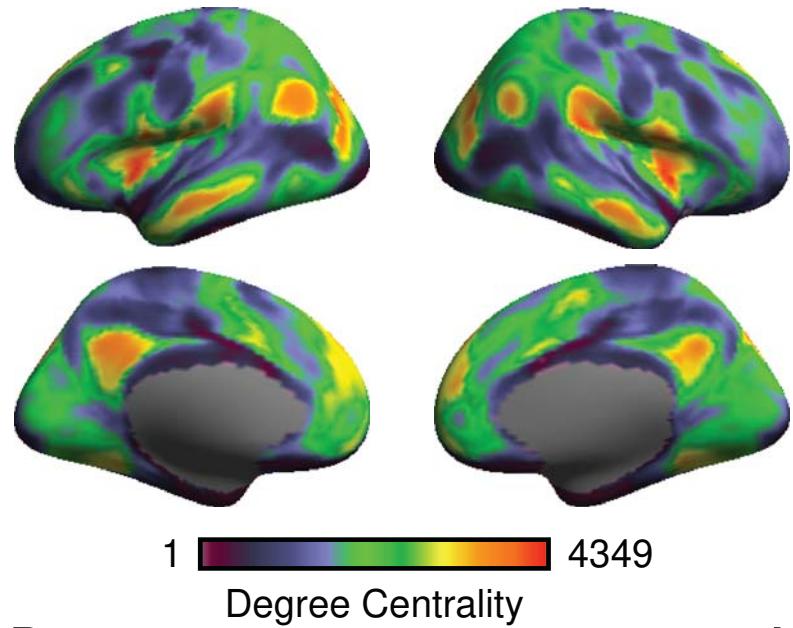
Children



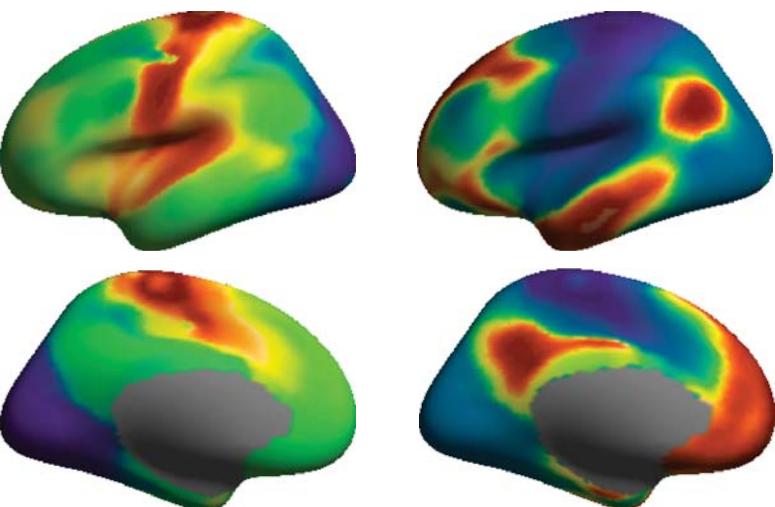
Adolescents



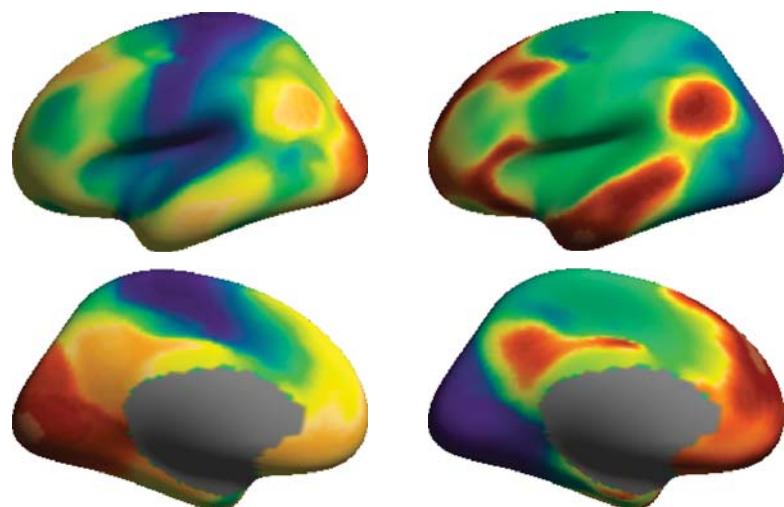
Gradient 2


Children

Adolescents



A ABCD
Degree Centrality


B ABCD

High Ventral Attention
Gradient 1 Gradient 2

ABCD

Low Ventral Attention
Gradient 1 Gradient 2

