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ABSTRACT

Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in sifu.
As a consequence, soils in HM contaminated sites like the U.S. Environmental Protection Agency
(EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential
ramifications for the health of organisms, including humans, that live nearby. Further, several
studies have shown that metal tolerant bacteria are often also resistant to antimicrobial agents
(AMR), and therefore HM contaminated soils could potentially act as reservoirs that could
disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility
soil samples were collected from six public locations in the zip code 35207 (the home of the North
Birmingham 35" Avenue Superfund site) and in six public areas in a neighboring reference zip
code (35214). Sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated
concentrations of HMs As, Mn, Pb, and Zn reduced microbial diversity and altered community
structure within each zip code. While there was no difference between zip codes in the proportion
of total culturable microbes that survived antimicrobial or metal exposure, bacterial isolates with
HMR almost always also exhibited AMR. Metagenomes inferred using PICRUST?2 also predicted
significantly higher mean relative frequencies in 35207 for several AMR genes related to both
specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that
chronic HM pollution alters soil bacterial community structure in ecologically meaningful ways
and may also select for bacteria with increased potential to contribute to AMR in human bacterial
disease.

INTRODUCTION

Heavy metals (HMs) are necessary for biological processes across all domains of life (e.g. by
acting as catalytic cofactors in proteins) but they can also be toxic in high concentrations. HMs in
soil environments are documented human health risks (Zhao et al. 2012), a fact all too familiar to
people in the community of North Birmingham. For decades, environmental injustice in the form
of industrial pollution from coke furnaces and steel plants has plagued residents living in this
Central Alabama area, over 90% of whom are African-American and 40% of whom live under the
federal poverty line (Allen et al., 2019). These facilities emit particulate matter containing HMs
like Cd, As, and Mn into the air and soil. In recognition of the potential health impacts caused by
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this large-scale pollution, the Environmental Protection Agency (EPA) designated North
Birmingham as the 35th Avenue Superfund Site in 2012 (henceforth referred to by its zip code,
35207), committing the U.S. federal government to fund pollution cleanup (Allen et al., 2019).
However, continued pollution and local politics have stalled EPA’s progress, and 35207 residents
have yet to see substantial progress towards confronting and overcoming the legacy of
environmental mismanagement. Grassroots organizations such as People Against Neighborhood
Industrial Contamination (PANIC) have asked for remediation and financial restitution for 35207
residents, but also more scientific studies to understand and quantify the environmental and health
impacts explicitly related to HM contamination in their community (GASP, 2014). In the words
of Charlie Powell, the founder of PANIC: “We been fighting this for years and we ain’t been
getting no justice.” (Hodgin, 2020)

Chronic HM exposure is known to have several effects on microbial communities. HM pollution
can select for specific bacterial taxa and physiological properties (Kandeler et al., 1996), which
can in turn impact the diversity of the microbial populations (Epelde et al., 2015; Kandeler et al.,
1996). For instance, HMs can affect soil properties, like spatial structure, in ways that in turn
increase bacterial community diversity (Bourceret et al. 2016; Rajeev et al., 2020; Thomas et al.,
2020). HMs are also known to cross-select for both heavy metal resistance (HMR) and broad
antibiotic/antimicrobial resistance (AMR) in bacteria (Baker-Austin et al., 2006; Seiler and
Berendonk, 2012), even at low levels (Gullberg et al., 2014), because many of the mechanisms
conferring resistance to one set of toxins are also effective at resisting the other as well (Baker-
Austin, Wright et al. 2006). Laboratory experiments in vivo showed, for example, that cadmium
exposure induced transmembrane efflux pump resistance to not only HMs like Zn and Cd, but also
to carbapenem antibiotics (Perron et al., 2004).

Thus, it is possible that 35207 soils contain microbial communities not only with different
microbial populations than surrounding soils, but also containing bacteria with high levels of
AMR. The development of bacterial cross-resistance between heavy metal and antibiotic genes
(Chen et al., 2019; Timoney et al. 1978) can occur through horizontal gene transfer (Schliiter et
al., 2008; Szczepanowski et al., 2008; Li et al., 2015), and therefore it is possible that these bacteria
could function as a reservoir from which AMR could spread to the human-associated bacteria of
35207 residents, creating an additional health risk beyond the direct impacts of HM exposure.
Alarmingly, many AMR genes confer broad resistance across antibiotic classes (Blair et al., 2015).
According to the World Health Organization, the spread of AMR is one of the most pressing
concerns for the 21% century (World Health Organization, 2014). Given that 35207 residents are
already more vulnerable to infectious diseases (Dyer, 2020) and that AMR infections continue to
rise globally (Levy, 2004), investigating the potential for industrial HM pollution to favor AMR
at sites like 35207 is a social justice imperative. In order to investigate this possibility, we collected
soil samples from 35207 as well as from a nearby Birmingham neighborhood with similar
demographics but farther from the EPA-designated Superfund site (henceforth also referred to by
its zip code, 35214) and used them to address the following questions:

1. How do soil bacterial communities from the HM-polluted neighborhood differ from those
in a lesser polluted neighborhood?

2. Do HM-polluted samples show physiological or predictive genetic evidence of AMR?
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METHODS
Site description and soil sampling

This project began as a set of course-based undergraduate research experiences using methods as
previously described (Adkins-Jablonsky et al., 2020). In August 2019, three soil samples each
were collected at six different public access parks in the North Birmingham 35207 zip code, for a
total of eighteen soil samples. Each sample (5g) was collected from the topsoil layer with an
ethanol-sanitized trowel and a sterile plastic bag. Sampling was repeated in the 35214 zip code for
18 additional soil samples. All three samples per park were then homogenized by vigorous
shaking, for a total of 12 homogenized soil samples (~15g each), six from 35207, and six from
35214 (Fig. 1A). To calculate percent organic mass via percent weight loss-on-ignition (LOI),
samples were oven dried at 100°C for 1 hour, weighed, heated in a muffle furnace at 400°C for 3
hours, and re-weighed. pH was measured via electrode after suspending 1g of soil in 2.5 mL
distilled water. Samples were stored at -80°C until further processing. In September 2020, soil
sampling was repeated from five of the original six parks per zip code to provide fresh soil cultures
for culture assays. One public park per zip code was not re-sampled due to access limitations
during the COVID-19 pandemic.

Heavy metal testing

Soil (56 g from each 2019 sample) was tested for heavy metal concentrations by Sutherland
Environmental Testing using EPA Method 6010B (EPA laboratory ID AL01084) through
Inductively Coupled Plasma-Atomic Emission Spectroscopy. Analytes reported were As, Cd, Pb,
Mn, and Zn. The estimated instrumental detection limits of As, Cd, Pb, Mn and Zn according to
EPA Method 6010B were 35, 2.3, 28, 0.93 and 1.2 pg/L, respectively. Estimated concentrations
below these detection limits were assumed to be 0 for the purposes of our analyses. K-mer
clustering of collection sites based on their HM profiles was done using the kmer package
(Wilkinson, 2018) in R v1.4.1717 (RStudio Team, 2020).

Nucleic Acid Purification and Sequencing

Bacterial genomic DNA was extracted from 0.20 g of soil from each of the 2019 collections using
the Qiagen Dneasy PowerSoil Pro kit (Germantown, MD, USA, Cat No./ID: 47016) according to
the manufacturer’s instructions. Presence and quality of DNA was confirmed by
spectrophotometry using Gen5 software with a Take3 Micro-Volume Plate in a BioTek Synergy
H1 microplate reader (Azso280 ~1.8; each sample contained at least 65 ng/ul. of DNA). At the
University of Alabama at Birmingham Heflin Center for Genomics (Birmingham, Alabama), an
amplicon library was created via PCR amplification of the hypervariable region 4 (V4) of the 16S
rRNA gene using barcoded oligonucleotide primers F515 (CACGGTCGKCGGCGCCATT) and
R806 (GGACTACHVGGGTWTCTAAT) (Caporaso et al., 2011). Genomic DNA was then gel-
purified and sequenced using the Illumina MiSeq platform.

Microbiome sequence processing and statistical analysis

DNA sequences were processed with the Quantitative Insights Into Microbial Ecology package
(qiime2-2020.11) (Bolyen et al., 2019; Caporaso et al., 2010) (Table S1). The demultiplexed paired
end reads obtained from Illumina sequencing were processed with the denoising algorithm
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DADAZ2? (Callahan et al., 2016). The minimum and maximum demultiplexed read counts were
163408 and 359799 respectively. The sequences were truncated to 250 base pairs length. The
representative sequences obtained after denoising were clustered using g2-vsearch (QIIME2
plugin) denovo clustering at 97% similarity threshold to remove singletons and obtain 4185 unique
operational taxonomic units (OTUs). The OTUs were classified using a pre-trained Naive Bayes
classifier on silva-138-99-515-806-nb-classifier, earlier trained on S15F/806R region of sequences
from the Silva-138 99% OTUs database (QIIME2 Data resources - MDS5:
e05afad0fe87542704be96ff483824d4 (Quast et al., 2013; Bokulich et al., 2018), link:
https://docs.qiime2.org/2021.2/data-resources) (Table S2). The q2-feature-classifier plugin was
used to taxonomically identify OTUs and remove non-bacterial OTUs (Bokulich et al., 2018).

Alpha diversity (Shannon and Simpson indices) at genus level was estimated using
MicrobiomeAnalyst (https.:// www.microbiomeanalyst.ca) (Chong et al., 2020, Dhariwal et al.,
2017) after applying filters for low count (<4 counts in more than 20% of samples) and low
variance (limited to the interquartile range) features and normalizing by total sum scaling. For
beta-diversity analyses, the OTU table was first rarefied to the level of the least deeply sequenced
sample using a ranked subsampling algorithm (Beule and Karlovsky 2020). Canonical
correspondence analysis (CCA) was completed using the VEGAN v2.5 package (Dixon, 2003) in
R v1.4.1717 (RStudio Team, 2020). Principle coordinates and NMDS ordination were performed
in mothur (Schloss, Westcott et al. 2009) using distance matrices generated with one of several
different algorithms; the ordination technique and distance method that gave the best r-squared
value on 3 axes (NMDS with the Yue-Clayton theta metric, r-squared = 0.97, stress = 0.065) was
retained for further analysis. Statistical significance of the impact of environmental metadata on
NMDS ordination was assessed by calculating the Spearman correlation coefficient between each
variable and the first two NMDS axes using the corr.axes command in mothur (Table S3). The
influence of individual OTUs on NMDS ordination was also determined with corr.axes (Table S2).

Differential abundance of OTUs between zip codes was determined using Metastats (implemented
through mothur) (Paulson, Pop et al. 2011) and LEFSe (implemented through
MicrobiomeAnalyst) (Segata, Izard et al. 2011) (Table S2). Spearman correlations between OTU
(Table S2) and higher taxon abundances (Table S4) and environmental metadata (metals, pH,
organic carbon) were calculated in R. Significance levels of differences in OTU abundances
between zip codes was computed using a simple 2-tail t-test for each OTU individually (Table S4).
Only OTUs that represented at least 1% of the overall community in at least one sample were
considered further for these OTU-level analyses.

Predictive metagenomic analysis

16S amplicon data was used to predict microbial population metagenomes using Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt v2.3.0)
(Langille et al., 2013) (Table S6). The 16S rRNA sequence and abundance biom (Biological
Observation Matrix) table was used to predict Kyoto Encyclopedia of Genes and Genomes
(KEGG) genes and pathway abundances. Sequences with Nearest Sequence Taxon ID (NSTI)
above a cut-off of 2.0 were removed along with their sequence counts (Table S5). The OTU
abundances were multiplied by the corresponding NSTI value of each OTU and weighted NSTIs
of each sample were calculated from the sum of the column per sample and divided by the total
read depth per sample (0.27 £ 0.02 from 35207 and 0.25 + 0.035 from 35214). Weighted NSTI
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values describe the degree to which microbes in samples are related to known genomes, where a
value of 0.10 would represent 90% representational similarity. While lower numbers are preferred,
NSTI values of up to 0.30 have been recorded for microbial populations derived from soil samples
and yielded useful representations of shotgun metagenomes (Langille, Zaneveld et al. 2013). The
predicted metagenomes were functionally annotated with PICRUSt2 using the KEGG pathway
database (Kanehisa and Goto, 2000). The KO IDs obtained were manually annotated using the
KEGG database to estimate AMR and HMR gene abundance. KEGG genes were compared
between the two zip codes using Welch’s T test in STAMP v2.1.3 (Statistical analysis of
taxonomic and functional profiles) Bioinformatics software (Parks et al 2014). The relationship
between gene abundances and environmental metadata was computed as a linear model in R, as
was the Fisher’s Exact Test to determine if AMR or HMR genes were more likely to be
significantly correlated with metals than other genes. Over-representation of KEGG pathways
between the zip codes was estimated using Over Representation Analysis (ORA) with the
command enrichKEGG in clusterProfiler (Table S7).

Microbial cultivation, identification, and antimicrobial sensitivity determination

Microbial cultures were isolated on PYT80 agar containing (per L) 80 mg each of peptone, yeast
extract, and tryptone, 1.95 g 2-(N-morpholino)ethanesulfonic acid, 15 g of purified agar (USP
Grade, MP Biomedicals), and 10 mg cycloheximide and adjusted to pH 6.50 (modified by Lin et
al., 2012). 1 mg of soil from each 2020 sample was suspended in 9 mL 0.085% sterile saline and
then serially diluted onto PYTS80 agar with or without additional heavy metals (0.5M Pb(NO3); at
a final concentration of 0.4mM; 1M MnCl; at a final concentration of 25mM; or 0.5M ZnCl; at a
final concentration of 0.5mM) or antibiotics (erythromycin at a final concentration of 50 pug/mL;
ampicillin at a final concentration of 100 pug/mL; or kanamycin at a final concentration of 25
pg/mL). After inoculation, plates were incubated at 20°C for a minimum of 72 hr. The overall
community sensitivity to the amendments was calculated as the log fold change of the ratio of
CFU/mL of HMR or AMR resistant culturable organisms to total culturable organisms
(determined by plate counts on amended vs. unamended PY T80 plates, respectively).

We also isolated a total of 46 HMR bacterial strains that could grow on PY T80 supplemented with
Mn, Zn, or Pb, including representatives from all 12 sites, and identified them by PCR
amplification of the 16S rRNA gene using primers UA1406R (5’-ACGGGCGGTGWGTRCAA-
3’) and U341F (5’-CCTACGGGRSGCAGCAG-3’) followed by Sanger sequencing at the UAB
Heflin Center for Genomics (Birmingham, Alabama). Sequences were trimmed using MEGA X
(v.10.2.4) (Kumar et al., 2018), and identified using the Basic Local Alignment Search Tool
(BLAST) 16S/ITS BLASTn function against the nr database (BLAST 2.11.0) (Altschul et al.,
1990) (Table S8). HMR isolates were subsequently tested for growth on PYT80 with ampicillin,
kanamycin, or erythromycin to determine prevalence of cross-resistance (Groves et al., 1975;
Wang et al., 2021); strains forming visible colonies in the presence of antibiotics within 7 days
were considered tolerant.

RESULTS

Impact of HM pollution on soil bacterial community structure
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Soils from sampling sites in 35207 had significantly higher levels of Pb, Mn, and Zn than those in
35214 (Mann-Whitney U-tests, p-value < 0.05). As and Cd were below detection limits for all
samples with the exception of 35207 site F having 37 ppm As. Average silhouette width k-mer
clustering based on metal concentrations supported clustering the samples into two groups that
corresponded exactly to the two neighborhood zip codes, supporting our hypothesis that 35207
soils were significantly more exposed to HM than 35214 (Fig. 1B). Despite the clear evidence of
elevated metals in 35207, only Mn (in all 12 samples) and As (in one 35207 sample) concentrations
exceeded EPA Residential Soil Regional Screening Level (RSL) guidelines for human health
concerns (As 0.68, Cd 7.1, Pb 400, Mn 180, and Zn 2300 ppm) (Li et al., 2019, Li, 2018).

Both NMDS and CCA ordination techniques revealed significant correlations of Mn concentration
and pH on soil community structure (Figs. 2A, S1A; NMDS ordination also showed a significant
effect of Zn). NMDS ordination did not show a significant clustering of samples by zip code (Fig.
S1A, AMOVA p > 0.05), but when ordination was constrained using soil metadata (HM
concentrations, pH, and organic carbon content) using CCA, the zip codes were clearly
differentiated (Fig. 2A). While pH was a significant structuring force, only metal concentrations
were important for separating the zip codes, with all 4 metal biplot vectors indicating movement
toward the upper right corner of the plot (Fig. 2A).

There was also some evidence of a negative impact of metals on soil bacterial diversity. The
Simpson alpha diversity index, calculated based on OTUs clustered phylogenetically at the genus
level, was significantly different between zip codes (Fig. 2B). However, the Shannon index
calculated the same way did not show a significant difference, nor did either metric calculated at
the OTU level without phylogenetic clustering. Interestingly, both metrics were correlated with
metadata; the Shannon index indicated that diversity decreased with increasing pH, and the
Simpson index was negatively correlated with Zn concentration (Fig. 2C).

Impact of metals on bacterial taxonomic groups

Across all samples, the most abundant bacterial phyla were Actinobacteriota, Acidobacteriota,
Proteobacteria, and Chloroflexi, representing 73%-83% of total bacteria (Fig. 3A). Nine of the
48 OTUs that reached a relative abundance of at least 1% in at least one sample were significantly
different between sites (Fig. 3B). Of these 9, 6 were more abundant in 35207, including the most
abundant of the 9, a representative of the gram-positive Solirubrobacterales 67-14 clade. Of
higher-level taxa comprising at least 1% of one sample, 2 phyla, 4 classes, 5 orders, 5 families, 6
genera, and 1 species were significantly different between sites (Fig. 3C). Notably, the highly
abundant phylum Proteobacteria was significantly less abundant in 35207, whereas
Methylomirabilota, a poorly studied group containing the as-yet uncultivated Rokubacteriales, was
more abundant in 35207. While the phyla Acidobacteriota and Actinobacteriota were not overall
different between zip codes, specific subgroups (e.g. the Blastocatellia and Solirubrobacterales,
both more abundant in 35207) were.

A number of taxa were significantly correlated with environmental parameters measured at the
sampling sites, including metals (Figures S2-S4). Higher organic carbon content was correlated
with higher ratios of archaea to eubacteria, driven by the abundance of OTUs similar to the
ammonia-oxidizing archaeal genus Nitrosphaera. Lower pH was correlated with greater
representation of bacteria from the phylum Planctomycetota. Two classes within the phylum
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Chloroflexi were also correlated with pH, with the Chloroflexia favoring low pH and the KD4-96
clade favoring higher pH. Unsurprisingly, the Acidobacteriota family Vicinamibacteraceae was
correlated with lower pH.

At the phylum level, only the Verrucomicrobiota were correlated with metal concentrations, being
rarer in higher Mn samples. Class Polyangia (Myxococcota) as well as Orders
Thermoanaerobaculales (Acidobacteriota) and Streptosporangiales (Actinobacteriota) were
negatively correlated with Zn, and Tepidisphaerales (Planctomycetota) was negatively correlated
with both Zn and Pb. Other taxa were positively correlated with metals: the Myxococcota
bacteriap25 class was more abundant in higher Zn samples, the Solirubrobacterales 67-14 clade
was positively associated with both Pb and Zn, and the Rokubacterales WX65 genus was positively
correlated with both Mn and Zn. No significant correlations were observed between any taxon
and As.

Interestingly, of the 48 OTUs that comprised at least 1% of at least 1 sample, no significantly
negative correlations with metal concentrations were observed, whereas 11, or 23%, were
positively correlated with at least one metal (Fig. S4). Of these, 5 were positively associated with
2 metals, and 3 with all three of Mn, Pb, and Zn. 6 of these OTUs were identified as significantly
different between zip codes by both Metastats and LEFSe analyses; of these, 5 were positively
correlated with at least 2 metals. 16 of the 48 (33%) were also significantly correlated with at least
one of the first two NMDS axes (Fig. S1B), with three biplot vectors (Pyrinomonadaceaec RB41,
Rubrobacteria sp., and Gemmatimonadaceae sp., all also positively correlated with metals)
pointing into the same quadrant as the metal biplot vectors.

Influence of metals on predicted soil metagenomes

We used PICRUSt2 to infer the metagenomes of our 12 soil samples based on 16S profiles,
predicting 7637 unique KO IDs which allowed us to predict the functional potential of the
microbial communities. The functional profiles of the two zip codes were structured significantly
differently (NMDS on Bray-Curtis distance, non-overlapping 95% confidence intervals of
centroids, Fig. S5B), with much greater dispersion in the ordination coordinates of the 35214
samples than those from 35207 (areas of the 95% confidence interval ellipsoids 0.011 and 0.003
respectively). The same general conclusions held when we constrained the ordination to just the
AMR and HMR genes in our predictions (Fig S5B, ellipsoid areas of 35214 and 35207 0.013 and
0.006 respectively). We found that genes from two-component sensory systems, carbon fixation
and catabolism pathways, and vancomycin resistance were most likely to differ between the zip
codes (Fig. 4a).

We assessed the difference between predicted gene abundances in the two zip codes using Welch’s
t-test in STAMP. Out of 7637 genes, 377 were differentially abundant between the two zip codes
(adjusted p-value < 5%, Table S6). 24 of these genes, or 6.4%, were associated with AMR
pathways, and 9 were associated with HMR (Fig. 4B, Table S9). Overall, 46.2% of the
significantly differently abundant genes were more abundant in 35207 samples, compared to 75%
of differently abundant AMR genes; AMR genes were thus significantly more likely to be different
between the sites based on a Fisher’s exact test (p = 0.005). All 7 identified genes related to
vancomycin resistance were more abundant in 35207, as well as 6 of 9 genes identified as being
involved in multidrug resistance. Interestingly, only 5 of 9 genes related to HMR were
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significantly more abundant in 35207, and HMR genes were not more likely to be significantly
different between zip codes than other types of genes (Fisher’s exact test, p = 0.41).

We also observed direct correlations between metal concentrations and the abundances of
predicted AMR and HMR genes. Altogether, Pb, Mn, and/or Zn were significant predictors of 21
AMR/HMR gene abundances (linear model, p < 0.05 for the slope of metal concentration vs.
abundance being not equal to zero, Table S10). 100% of the genes significantly impacted by Pb
were more abundant at higher Pb concentrations, and only 1 of 12 genes impacted by Mn was less
abundant at higher Mn concentrations (Table 1). Zn, on the other hand, was negatively related to
AMR/HMR gene abundance in 5 of 6 significant interactions, and in all 5 cases genes that were
negatively related to Zn concentration were positively related to Pb concentration.

Cross-resistance to antimicrobials in HMR bacterial isolates

We tested the ability of bacteria from each sample to grow on media containing metals or
antibiotics. There were no significant differences in AMR or HMR between samples in 35214 and
35207 when intact soil communities were diluted onto agar plates (Wilcoxon tests, p > 0.05, Fig.
5A), nor were samples from sites with higher metal concentrations significantly more AMR or
HMR (linear models, p > 0.05). With the exception of Pb (in both zip codes) and ampicillin (in
35207), all additions significantly reduced bacterial growth relative to the unamended control
plates (Wilcoxon signed rank tests, p < 0.05).

To assess the resistance phenotypes of individual strains from each zip code, we isolated 46 strains
across zip codes that were able to grow on PYT80-HM plates spiked with Mn (17 isolates) or Pb
(29 isolates); no isolates were obtained from Zn-spiked plates. Based on 16S sequences, 24
taxonomically distinct isolates were identified based on their closest match in the BLAST nr
database (Fig. S6). These isolates were heavily concentrated in the phyla Actinobacteriota and
Proteobacteria and were not broadly representative of the taxonomic diversity revealed by our 16S
tag sequencing efforts (Fig. 3). 12 of the bacterial isolates were unique to 35207, 8 were unique to
35214, and 4 were common across both zip codes. We then tested each of the 46 strains’ tolerance
to PYTR80 plates supplemented with ampicillin, kanamycin, or erythromycin. In contrast to the
broad inhibition of the bulk communities by antibiotics, 94% of HMR isolates were resistant to at
least one antibiotic, and 30% were resistant to all 3 (Fig. 5B). There was no significant difference
between zip codes or the metal spike used during strain isolation in the number of antibiotics a
strain was resistant to (linear mixed effects model with phylogenetic identification as the random
effect, p > 0.05 for each fixed effect predictor) or in the likelihood that a strain was specifically
resistant to ampicillin or kanamycin (binomial mixed effects regression, p > 0.05 for each
predictor). Strains isolated from 35214 were, however, significantly more likely to be resistant to
erythromycin (binomial mixed effects regression, p = 0.02). For taxa that were isolated multiple
times, there was substantial variation between strains in the antibiotic resistance profile (Table S8).
For instance, out of 9 Rhodococcus degradans isolates, 6 were resistant to all antibiotics, 2 were
susceptible to erythromycin, and one was susceptible to all three antibiotics tested.

DISCUSSION

The 35™ Avenue Superfund site in North Birmingham, Alabama, houses coke and coal industries
that have left a legacy of HM pollution behind, increasing the risk of lung and other diseases for
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local residents (Allen et al., 2019; GASP, 2014). Ongoing efforts to understand and mitigate the
human impacts of this environmental injustice have generally looked to the direct effects of HMs
on human biology, but to our knowledge there is little work exploring the possible relationship
between HM contamination and AR prevalence at a US Superfund site.

First, we asked simply whether soil bacterial communities from the 35" Avenue Superfund site
differed from those in a less polluted nearby neighborhood. HMs As, Pb, Mn and Zn were all more
abundant in 35207 compared to 35214, and kmer clustering confirmed that the zip codes could be
distinguished by their metal profiles (Fig. 1B). While only Mn and As ever surpassed EPA
guidelines determining unacceptable levels of residential soil pollution, HMs nevertheless had a
significant effect on microbial community composition (Fig 2A, Fig S1A). Metal contaminated
sites in 35207 were significantly less diverse than 35214 (Fig. 2B), with Zn having an especially
negative impact on overall diversity (Fig. 2C).

The abundance of a number of bacterial taxa were significantly affected by chronic metal polluted
soils (Fig. 3). Some taxa were significantly different between the zip codes, including highly
abundant groups such as the Proteobacteria (lower in 35207) and the Solirubrobacterales (higher
in 35207). Absolute metal concentrations were also significant predictors of taxon abundance, and
approximately 1 in 4 of the most abundant OTUs in our dataset were positively correlated with at
least one of the metals Mn, Pb, and/or Zn (Fig. S4). Overall, the magnitude of impact of metals
on community structure was roughly equivalent to that of pH, which has been shown previously
to be the dominant structuring factor for soil microbiomes across many diverse ecosystems (Fierer
and Jackson 2006, Lauber, Hamady et al. 2009).

Our hypothesis that AMR was more common in metal-contaminated soils in our study site was
supported by our inferred metagenomes, where numerous genes related to antimicrobial resistance
were significantly more abundant in 35207 (Fig. 4) and/or positively correlated with metal
concentration. We also found that bacterial isolates from our soil samples that were selected using
HM spiked agar were also highly likely to be resistant to multiple antibiotics (Fig. 5B). However,
we were unable to detect a significant difference in community-scale phenotypic AMR or HMR
in soil bacterial communities (Fig. SA). It is possible that this discrepancy reflects biases in our
metagenome inference software, as the NSTI values for our samples indicated relatively low
representation of many of our taxa in published databases (Langille, Zaneveld et al. 2013),
although our pipeline removed highly divergent OTUs from the metagenome inference to
minimize this problem. A more likely cause is that culture-based assays of soil communities are
potentially misleading due to the strong cultivation bias in these systems (Harwani, 2013). The
great majority of our isolates fell into a few clades that were not closely related to the most
abundant taxa from our tag sequencing analysis (Fig. S6), and it is noteworthy that only three of
the 48 OTUs comprising more than 1% of any sample (Bacillus, Rhizobium, and Streptomyces)
had a close relative amongst the isolates.

Our inferred metagenomes discovered AMR genes related to a wide variety of antibiotic targets
such as protein synthesis (tetracycline resistance), peptidoglycan synthesis (beta-lactam and
vancomycin resistance), and folate synthesis (trimethoprim resistance), nearly all of which were
significantly higher in samples from 35207 (Fig. 4B). Both vancomycin and trimethoprim
resistance have been previously shown to co-occur with resistance against various HMs (Zhong et
al., 2021; Dickenson et al., 2019). We also discovered a number of multi-drug resistance genes
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such as efflux pumps enriched in 35207 samples. Importantly, these genes include many of the
most clinically concerning AMR pathways and reinforce the importance of considering the impact
of environmental pollution as an additional vector for AMR evolution, along with clinical and
agricultural antibiotic use.

In conclusion, our study provides tentative support for the hypothesis that chronic heavy metal
pollution in soils may select for antimicrobial resistance that may negatively impact humans living
near those soils, reflecting an additional health concern beyond those caused by the HMs
themselves. However, our results fall short of demonstrating a strong connection between HMR
and AR at the 35" Avenue Superfund site due to methodological limitations. For example,
PICRUSt2 accuracy is higher for human microbiome samples than for soils (Langille et al., 2013)
so our prediction results should be cautiously interpreted, but also even under ideal circumstances
it is likely difficult to infer the presence of highly mobile genes like those involved in AMR merely
from the taxonomic information provided by 16S tag sequencing. Future work should target
specific HM or AMR genes of interest using quantitative PCR (Lin et al, 2012) or
plasmidomics/mobilomics to improve detection of resistance genes on mobile genetic elements
that may be exchanged between soil microbial species and possibly between those organisms and
counterparts in the human microbiome (Schliiter et al., 2008; Li et al., 2015). Culture-based assays
could also be improved, for instance by performing 16S tag sequencing of enrichment cultures
following exposure of intact communities to selective concentrations of HMs or antibiotics. Future
work should also incorporate more detailed datasets and ideally should also involve the human
residents of the zip codes. Ultimately, being able to connect the environmental microbiome to the
human microbiomes of 35207 residents could help determine the degree to which HMs impact AR
diagnoses like recalcitrant infections, and could help improve health care for this vulnerable
population.
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Table 1. AMR and HMR genes predicted by metal concentrations. +, positive slope of gene
abundance vs. metal concentration; -, negative slope

Class KO gene annotation Pb Mn 2Zn
ermC, 23S rRNA (adenine-N6)-dimethyltransferase
1 -
AMR — ko0se1 o A [EC:2.1.1.184] ¥
AMR  KO8217 mef MFS Tcransporter, DHA3 family, macrolide efflux N i
protein
tetM, . . . . .
AMR  K18220 tetO ribosomal protection tetracycline resistance protein  + -
AMR  KO8167 SMVA, MFS Tcransporter, DHA2 family, multidrug resistance
gacA, IfrA protein
AMR  K19062 arr rifampin ADP-ribosylating transferase +
AMR  K18909 mepR MarR family transcriptional regulator, repressor for . .
mepA
AMR  K18131 mexR MarR family transcrlp'?lonal regulator, repressor of N
the mexAB-oprM multidrug resistance operon
dfrAl, dihydrofolate reductase (trimethoprim resistance
1
AMR  K18589 gy protein) [EC:1.5.1.3] ¥
AMR  K18780 blaNDM metallo-beta-lactamase class B NDM [EC:3.5.2.6] +
AMR  K18792 ??OXA_ beta-lactamase class D OXA-10 [EC:3.5.2.6] +
AMR  K18824  sul2 dihydropteroate synthase type 2 [EC:2.5.1.15] +
AMR  K19096 blaCMY-2  beta-lactamase class C CMY-2 [EC:3.5.2.6] +
aminoglycoside 3'-phosphotransferase VI
192 -
AMR  K19274  aph3-VI (EC:2.7.1.95] +
aminoglycoside 6'-N-acetyltransferase Ib
AMR  K19278  aac6-lb (EC:2.3.1.82] +
aminoglycoside 3-N-acetyltransferase IV
192 - -
AMR  K19276  aac3-IV (EC:2.3.1.81]
Metal KO07156 cop€, copper resistance protein C + -
pcoC
Metal K07241 nixA high-affinity nickel-transport protein + -
two-component system, OmpR family, copper
cusR, .
Metal K07665 . resistance phosphate regulon response regulator +
copR, silR
CusR
Metal KO07230 pl9, ftrA  periplasmic iron binding protein +
Metal K07311  ynfG Tat-targeted selenate reductase subunit YnfG +

Metal K07490  feoC ferrous iron transport protein C +
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Figure 1. (a) Map of sampling sites from G-to-K numbered 7-12 from 35214 (in grey) and A-to-
F from 32507 (in red). Map generated by GoogleMaps ©. Map Customizer with longitude and
latitude points is accessible at https://www.mapcustomizer.com/map/Nbham%20paper; (b)
Relative metal concentrations are depicted in the bubble chart. Metal analytes expressed “0”
indicates Below Detection Limit (BDL) based on EPA Method 6010B (EPA laboratory ID
AL01084). Cd not shown as Cd analytes were BDL. The dendrogram on right of the chart shows
the k-mers clustering of sampling sites, clustering sites based on heavy metals (HMs) levels.
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Figure 2. (a) Multivariate canonical correspondence analysis (CCA), the ellipses represent 95%
confidence intervals of the centroid of the groups and the vectors indicate the impact of metal
concentrations and other environmental variables on the position of points in the plot.; (b) Alpha
diversity of bacterial community at genus level (Simpson Index). (¢) Spearman correlation
between metal concentrations and the indicated alpha diversity metrics.


https://doi.org/10.1101/2022.04.12.488090
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.12.488090; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

_—
Q
~

available under aCC-BY-NC-ND 4.0 International license.

Zip code: 35207 Zip code: 35214

20

@ Acidobacteriota

D Planctomycetota
. Proteobacteria

10/ e i . =11 o Streptosporangiales
O°ABCDETFGHI!I J KL (O] verrucomicrobiota Blastocatellia 11-24
i [Solirubrobacterales 67-14
Soil samples =
(b) = Myxococcota p25
i & Rokubacteriales
Bacillus sp.

Gemmatimonadaceae sp.
Pyrinomonadaceae RB41 sp.
Rokubacteriales WX65 sp.

Solirubrobacterales 67-14 sp. 3 Myxococcota p25
Solirubrobacterales 67-14 sp. é Rokubacteriales
Bradyrhizobium sp. Rokubacteriales WX65
Comamonadaceae sp. Sphingomonas
Sphingomonas sp. = Rubrobacteria sp. 0

I T T T
0.00 0.01 0.02 0.03

0.04 0.05

Mean Relative Abundance

(c)

Order

100 5 Methylomirabilota
— 90 @ Actinobacteriota Z ki
N3 . = Proteobacteria
< 80 @ Bacteroidota
> Myxococcota p25
g 70 . Chlorofiexi g Blastocatellia
g 60 - Firmicutes © Methylomirabilia
g 50 () Gemmatimonadota Polyangia
< 40 @ Methylomirabilota Blastocatellia 11-24
@ M ta p25
> 3 () Myxococcota .
=
8
[}

14

Rokubacteriales

Burkholderiales

Rokubacteriales WX65

Blastocatellia 11-24
Solirubrobacterales 67-14

T T T 8 T
0.00 0.05 0.10 0.15 0.20 0.25

Mean Relative Abundance

Figure 3 (a) Relative abundance of phyla of soil bacterial community from 16s rRNA sequencing.
The taxonomy bar plot only highlights phylum names which were at least 1% or more relatively
abundant; (b-c) Relative abundances of OTUs (b) or higher-level taxa (c) that were significantly
different between 35207 (dark gray bars) and 35214 (light gray bars). Only taxa that were at lease
1% of at least one community are shown.
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Figure 4 (a) Over-representation analysis of differences between gene presence/absence in 35207
vs. 35214 based on PICRUSt metagenome inference. Bars indicate the number of genes found to
significantly differ between the zip codes that fall into the indicated pathway; p-values indicate the
probability of finding that many differentially represented genes by chance. (b) Antimicrobial
genes that differ significantly between zip codes based on PICRUSt metagenome inference.
Positive values indicate enrichment in 35207; negative values indicate enrichment in 35214. Error
bars represent the 95% confidence interval of the estimate.
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Figure 5 (a) Recovery of colonies on antibiotic and heavy metal treated PYT80 plates from soil
samples taken from zip codes 35207 and 35214, shown in green yellow boxes respectively. Values
indicate the base 2 logarithm of the ratio of growth on metal- or antibiotic-treated plates to growth
on unamended plates. Bars represent the interquartile range, with the central bar representing the
median value and the whiskers extending to the most extreme points equal to or less than 1.5 times
the interquartile range from the median, with circles representing outliers beyond this range. (b)
Bars indicate the proportion of bacterial isolates taken from plates containing the indicated metal
that were also resistant to the indicated number of the 3 tested antibiotics (ampicillin,
erythromycin, and kanamaycin).
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