

1 **EstG is a novel esterase required for cell envelope integrity**

2 Allison K. Daitch¹, Benjamin C. Orsburn², Zan Chen³, Laura Alvarez⁴, Colten D. Eberhard², Kousik
3 Sundararajan^{1*}, Rilee Zeinert⁵, Dale F Kreitler⁶, Jean Jakoncic⁶, Peter Chien⁵, Felipe Cava⁴,
4 Sandra B. Gabelli^{3,7,8}, Namandjé N. Bumpus², Erin D. Goley^{1*}

5
6 ¹ Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore,
7 MD, United States of America

8 ² Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of
9 Medicine, Baltimore, MD, United States of America

10 ³ Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD,
11 United States of America

12 ⁴ Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden,
13 Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.

14 ⁵ Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, MA,
15 United States of America

16 ⁶ National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000,
17 Upton, NY, 11973-5000, USA

18 ⁷ Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America

19 ⁸ Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America

20 *Present address: Department of Biochemistry, Stanford University, Stanford, CA , USA

21
22 *corresponding author, egoley1@jhmi.edu
23

24 **Abstract**

25 Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and
26 characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be
27 targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG,
28 whose activity protects cells from a variety of lethal assaults in the α -proteobacterium *Caulobacter*
29 *concentus*. Despite homology to transpeptidase family cell wall enzymes and an ability to protect
30 against cell wall-targeting antibiotics, EstG does not demonstrate biochemical activity towards cell
31 wall substrates. Instead, EstG is genetically connected to the periplasmic enzymes OpgH and
32 BglX, responsible for synthesis and hydrolysis of osmoregulated periplasmic glucans (OPGs),
33 respectively. The crystal structure of EstG revealed similarities to esterases and transesterases,
34 and we demonstrated esterase activity of EstG *in vitro*. Using biochemical fractionation, we
35 identified a cyclic hexamer of glucose as a likely substrate of EstG. This molecule is the first OPG
36 described in *Caulobacter* and establishes a novel class of OPGs, the regulation and modification
37 of which is important for stress survival and adaptation to fluctuating environments. Our data
38 indicate that EstG, BglX, and OpgH comprise a previously unknown OPG pathway in *Caulobacter*.
39 Ultimately, we propose that EstG is a novel enzyme that, instead of acting on the cell wall, acts
40 on cyclic OPGs to provide resistance to a variety of cellular stresses.

41

42

43 **Introduction**

44 The bacterial cell envelope is a multi-component structure that protects bacteria from the external
45 environment. The envelope is an essential physical barrier to the surroundings, and the factors
46 responsible for building and maintaining the envelope are therefore ideal targets for antibiotics.
47 The Gram-negative cell envelope consists of the inner and outer membranes, with the periplasmic
48 space (or periplasm) between them (Silhavy et al., 2010). The bacterial cell wall, made of
49 peptidoglycan (PG), forms a protective meshwork in the periplasm that prevents cell lysis due to
50 turgor pressure (Huang et al., 2008). During growth and division, essential PG metabolic enzymes
51 synthesize, modify, and hydrolyze the PG. Two major classes of PG synthetic enzymes include
52 the glycosyltransferases and transpeptidases (TPases), which catalyze polymerization of the
53 glycan strands and crosslinking of strands via the peptide stems, respectively (Daitch and Goley,
54 2020). For almost all bacteria, PG is an essential structural component, and the primary
55 biosynthetic PG enzymes are essential during normal growth and division (Daitch and Goley,
56 2020). Because of this function, these enzymes are the targets of bactericidal antibiotics, such as
57 β -lactams, which inhibit the TPase activity of penicillin-binding proteins (PBPs) (Fisher and
58 Mobashery, 2020). Though some of the most effective antibiotic targets are PG enzymes,
59 disruption of other components of the envelope can also sensitize cells to stress or antibiotics
60 (May and Grabowicz, 2018; Sutterlin et al., 2016). Thus, understanding the elements of the cell
61 envelope and their relationships to each other is crucial for identifying new drug targets.

62

63 In addition to PG, the periplasm of proteobacteria may contain glycopolymers important for
64 maintaining cell envelope integrity called osmoregulated periplasmic glucans (OPGs, also called
65 membrane-derived oligosaccharides). OPGs are glucose polymers that are made in the periplasm
66 and are thought to function as osmoprotectants in response to changes in the environment
67 (Bontemps-Gallo et al., 2017). Across Gram-negative species, OPGs vary in size, ranging from 5
68 to 24 glucose units, and geometry, exhibiting linear, branched, and/or cyclic structures depending

69 on which OPG metabolic enzymes are encoded in a given organism (Bohin, 2000; Bontemps-
70 Gallo et al., 2017). OPGs may also be modified with, for example, phospholipid moieties (e.g.
71 phosphoglycerol) or products of intermediary metabolism (e.g. succinyl), which can influence the
72 polymer's overall charge (Bohin, 2000; Bontemps-Gallo et al., 2017). Previously characterized
73 OPGs in α -proteobacteria are large (10-25 glucose units), cyclic, and highly modified (Bohin,
74 2000). In some bacteria, OPGs are implicated in stress tolerance, as disruption of OPG genes
75 results in increased sensitivity to antibiotics and cell envelope stresses (Bontemps-Gallo et al.,
76 2017; Bontemps-Gallo and Lacroix, 2015). Despite decades of research on OPGs, we have
77 limited knowledge about the diversity of OPG structures, modifications, and metabolic enzymes
78 across bacteria, suggesting the possibility of undiscovered OPG molecules, pathways, and
79 functions.

80

81 In this study, we sought to identify factors required to survive cell wall stress in the α -
82 proteobacterium *Caulobacter crescentus*, which is a well-studied model for morphogenesis and
83 PG metabolism (Woldemeskel and Goley, 2017). We used a genetic screen to identify an
84 uncharacterized protein required for survival during cell wall stress that we called EstG (*Esterase*
85 for *Stress Tolerance acting on Glucans*, described below). Although EstG is annotated as a
86 member of the TPase superfamily, which consists primarily of PG-acting enzymes, it has no
87 detectable activity towards PG. Our data indicate that EstG instead acts in the OPG metabolic
88 pathway in *Caulobacter*, as it has genetic interactions with the putative OPG enzymes BglX, a
89 periplasmic glucohydrolase, and OpgH, the OPG synthase. The crystal structure of EstG revealed
90 similarity to esterases and transesterases and we confirmed esterase activity *in vitro*. An unbiased
91 mass spectrometry approach identified a native substrate of EstG as a periplasmic, cyclic
92 hexamer of glucose. This is the first OPG identified in *Caulobacter* and establishes a new class
93 of OPGs in α -proteobacteria. We propose that EstG is a novel enzyme that, instead of acting on

94 the PG like most other well-characterized members of the TPase superfamily, acts on cyclic OPGs
95 to fortify the cell envelope and provide resistance to a variety of cellular stresses.

96

97

98 **Results**

99 **EstG is essential for suppression of toxic cell wall misregulation**

100 This study initiated with our interest in understanding *Caulobacter* PG metabolism during cell
101 division, which is orchestrated by the polymerizing tubulin homolog FtsZ. We previously
102 demonstrated that expression of a mutant of *ftsZ* lacking the C-terminal linker domain (called
103 Δ CTL) results in misregulation of PG enzymes and cell death, similar to the effects of β -lactam
104 antibiotic treatment (Figure 1A) (Sundararajan et al., 2015). We leveraged Δ CTL toxicity to
105 understand mechanisms of stress survival. To this end, we conducted a screen to identify
106 spontaneous suppressors of Δ CTL-induced lethality (Figure 1A) (Woldemeskel et al., 2020).
107 Whole genome sequencing of suppressors revealed mutations in genes largely involved in
108 nutrient stress responses (i.e., *spoT* (Boutte and Crosson, 2011), *cdnL* (Woldemeskel et al., 2020;
109 Gallego-Garcia et al., 2017), and *phoB* (Lubin et al., 2016)) (Figure 1A, Supplemental Table 1).
110 Although each of the Δ CTL suppressors reduce growth rate on their own, slow growth was not
111 sufficient to suppress Δ CTL-induced lethality as tested by growth at low temperature, or in the
112 presence of sub-lethal doses of chloramphenicol or fosfomycin to reduce translation or PG
113 synthesis respectively (Figure 1—Figure supplement 1A-F). This indicated that these mutations
114 suppressed Δ CTL through other mechanisms. We were especially intrigued by the identification
115 of suppressing mutations in *spoT*, since SpoT is the primary mediator of the stringent response
116 in *Caulobacter* and the stringent response has been implicated in antibiotic resistance (Boutte
117 and Crosson, 2011).

118

119 We determined that SpoT-mediated suppression of Δ CTL was a result of high levels of the
120 signaling alarmone (p)ppGpp using an inducible and constitutively activated form of the
121 *Escherichia coli* (*E. coli*) (p)ppGpp synthase, RelA (hereafter called RelA') (Figure 1—Figure
122 supplement 1G) (Gonzalez and Collier, 2014). To better understand how high levels of (p)ppGpp
123 suppress Δ CTL-induced lethality, we conducted comparative transposon sequencing (Tn-Seq) to

124 identify genes that were synthetically lethal with Δ CTL expression, using the following strains: wild
125 type (WT), RelA'-producing, and RelA'-producing with Δ CTL. Notably, we identified a gene,
126 CCNA_01638 (hereafter named *estG* for *Esterase for Stress Tolerance acting on Glucans*, for
127 reasons described below), that appeared to be essential only in the presence of Δ CTL stress
128 (Figure 1B). *estG* acquired abundant transposon insertions in WT and RelA' backgrounds,
129 suggesting that it is non-essential in those strains. However, there were almost no transposon
130 insertions in *estG* in RelA'-producing cells that also produced Δ CTL, indicating an essential
131 function of EstG in the presence of Δ CTL (Figure 1B). EstG is an uncharacterized protein that is
132 annotated as a β -lactamase family protein in the transpeptidase superfamily, which primarily
133 consists of PG enzymes. We were therefore interested in studying EstG and its relationship to
134 surviving PG stress.

135
136 To validate our Tn-Seq findings, we deleted *estG* in a strain with xylose-inducible production of
137 Δ CTL (Figure 1C-D). This strain grew comparably to a Δ CTL uninduced strain in the absence of
138 xylose (Figure 1C, solid lines). Production of Δ CTL in an otherwise WT background resulted in
139 cell filamentation and lysis over time, as expected (Figure 1C-D, black). Notably, producing Δ CTL
140 in a Δ *estG* background resulted in faster cell lysis compared to Δ CTL in a WT background (Figure
141 1C-D, grey). We were struck by the importance of *estG* in the presence of Δ CTL-induced stress
142 and sought to further understand the function of EstG.

143
144 ***estG* is non-essential in unstressed conditions, but required for survival during cell wall
145 stress**

146 Our Tn-Seq results, as well as prior Tn-Seq data, indicated that *estG* would be non-essential in
147 an otherwise WT background (Figure 1B) (Christen et al., 2011). We confirmed this by generating
148 a deletion of *estG* (Δ *estG*) and comparing its growth and morphology to WT. We confirmed
149 deletion of *estG* via western blotting with an affinity-purified EstG antibody (Figure 2—Figure

150 Supplement 1A). $\Delta estG$ cells grew comparably to WT by optical density (Figure 2A) and spot
151 dilution (Figure 2B), though the colony size of the $\Delta estG$ strain is slightly smaller than WT.
152 Additionally, by phase contrast microscopy, $\Delta estG$ cells look morphologically identical to WT
153 (Figure 2C). Therefore, *estG* is non-essential under normal growth conditions, but becomes
154 essential during the cell wall stress induced by Δ CTL.

155

156 After observing the essentiality of *estG* during Δ CTL production, we hypothesized that EstG may
157 also be required to survive other cell wall stresses, such as cell wall-targeting antibiotics. To test
158 this, we measured the minimum inhibitory concentrations (MIC) of a variety of antibiotics against
159 WT and $\Delta estG$ cells (Figure 2D). $\Delta estG$ was hypersensitive to every cell wall antibiotic tested
160 (mecillinam, vancomycin, ampicillin, fosfomycin, and cephalexin) compared to WT, represented
161 by a decreased MIC value. To confirm that hypersensitivity was specifically attributable to loss of
162 EstG, we complemented with a vanillate-inducible copy of *estG* and showed that resistance to
163 ampicillin was restored (Figure 2—Figure supplement 1B). This indicates a broadly important role
164 of EstG during cell wall stress.

165

166 While exploring the possible role of EstG, we noticed the gene immediately downstream from
167 *estG*, *CCNA_01639*, is also annotated as a β -lactamase family protein and we wondered if the
168 two might be functionally related. *CCNA_01639* has high sequence identity to EstG (52%), and
169 both are predicted to reside in the periplasm (Juan et al., 2019). Despite similarity to EstG,
170 however, deletion of *CCNA_01639* did not result in hypersensitivity to the β -lactam antibiotics
171 ampicillin or cephalexin (Figure 2—Figure Supplement 1C). Moreover, the double deletion,
172 $\Delta estG\Delta CCNA_01639$, phenocopied the single $\Delta estG$ mutant (Figure 2—Figure Supplement 1C).
173 Since $\Delta CCNA_01639$ had no detectable phenotype or genetic relationship to *estG*, we focused
174 the remainder of our study on characterizing EstG.

175

176 **EstG is periplasmic with no detectable cell wall activity**

177 EstG is 462 amino acids and has an N-terminal putative signal sequence, with cleavage predicted
178 between residues 30 and 31 (Juan et al., 2019). To study the periplasmic localization of EstG, we
179 expressed an inducible EstG- β -lactamase (EstG-BlaM) fusion protein in an otherwise β -
180 lactamase deficient strain ($\Delta blaA$; BlaA is the primary β -lactamase that confers β -lactam
181 resistance to *Caulobacter* (West et al., 2002)). These cells will only be resistant to ampicillin if
182 EstG contains a periplasmic signal sequence to transport the fused β -lactamase to the periplasm
183 (Möll et al., 2010). The EstG-BlaM strain, when plated in the presence of inducer, displayed
184 resistance to ampicillin, thus validating the predicted periplasmic localization of EstG (Figure 2—
185 Figure Supplement 1D).

186

187 The classification of EstG as a β -lactamase family protein as well as the hypersensitivity of $\Delta estG$
188 to ΔCTL and PG-targeting antibiotics suggested that EstG might act as a β -lactamase. However,
189 purified EstG displayed negligible activity against nitrocefin, a substrate used to detect β -
190 lactamase activity *in vitro* (Figure 2—Figure supplement 1E), compared to a *Caulobacter* enzyme
191 with moderate β -lactamase activity, EstA (Ryu et al., 2016). This, however, does not rule out an
192 activity against the cell wall, so we next tested for ability to bind to the cell wall. *In vitro*, purified
193 EstG pelleted with PG isolated from WT *Caulobacter*, whereas a non-cell wall binding protein
194 (glutathione S-transferase, GST) remained soluble (Figure 2—Figure supplement 1F). This
195 demonstrates the ability of EstG to bind to some component of the PG. Despite this, EstG did not
196 have detectable activity against any of the most abundant muropeptide species (M4, M5, D44,
197 and D45) or purified PG sacculi *in vitro* (Figure 2—Figure supplement 2A-G). Finally, we asked if
198 we could identify EstG-dependent chemical changes in PG via muropeptide analysis of sacculi
199 isolated from $\Delta estG$ cells as compared to WT. Again, there were no significant differences
200 between $\Delta estG$ and WT PG (Figure 2—Figure supplement 2H-I, Table 1). This was surprising
201 given the classification of EstG as a transpeptidase superfamily enzyme, consisting of TPases

202 and carboxypeptidases, which often have detectable activity on cell wall substrates. Considering
203 EstG's lack of activity against cell wall substrates *in vitro*, we hypothesized that EstG's substrate
204 is novel and not directly related to PG metabolism.

205

206 **estG interacts genetically with *opgH*, which encodes a putative OPG synthase**

207 To search for the molecular function of EstG in an unbiased fashion, we isolated and
208 characterized spontaneous suppressors of the ampicillin sensitivity of $\Delta estG$. We sequenced four
209 suppressors total (Supplemental Table 1), but were most intrigued by a suppressing mutation in
210 the essential gene, *opgH*, a periplasmic glucan glucosyltransferase ($OpgH_{L480P}$) (Figure 3A).
211 OpgH has been characterized in other organisms as the synthase of osmoregulated periplasmic
212 glucans (OPGs) (Bontemps-Gallo et al., 2017). By BLAST searching, OpgH is the only homolog
213 of known OPG-biosynthetic enzymes encoded in the *Caulobacter* genome, but the presence of
214 OpgH indicates the existence of an undiscovered OPG pathway. Isolation of a suppressing
215 mutation in OpgH led us to hypothesize that the sensitivities of $\Delta estG$ could be related to OPG
216 production or modification.

217

218 To characterize the suppressing mutation in *opgH*, we generated the suppressing mutation
219 ($opgH_{L480P}$) in a clean genetic background, in the presence or absence of *estG*. In the absence of
220 stress, $opgH_{L480P}$ did not impact growth, but did restore $\Delta estG$ cells to a WT colony size (Figure
221 3A). In the presence of ampicillin, $opgH_{L480P}$ completely restored growth in a $\Delta estG$ background
222 (Figure 3A). We also note that the $opgH_{L480P}$ mutation in a WT background exhibited moderate
223 growth defects in the presence of ampicillin.

224

225 We hypothesized that the $opgH_{L480P}$ mutation might result in a loss of function variant, as the
226 proline substitution is located within a predicted transmembrane domain (Figure 3B) (Krogh et al.,
227 2001; Sonnhammer and Krogh, 2008). To ensure that the L480P mutation was not destabilizing

228 the protein, we assessed the steady state levels of a 3x-Flag tagged version of the L480P mutant
229 expressed from the native *opgH* locus and saw no difference in protein levels compared to WT
230 (Figure 3—Figure supplement 1A). We then tested if OpgH_{L480P} could suppress $\Delta estG$ sensitivity
231 to stress in the presence of WT OpgH by expressing vanillate-inducible *opgH_{L480P}*. Indeed,
232 expression of *opgH_{L480P}* suppressed $\Delta estG$ sensitivity to ampicillin in a dominant fashion (Figure
233 3—Figure supplement 1B). These data led us to conclude that the OpgH_{L480P} mutant suppresses
234 $\Delta estG$ by altering OpgH activity or function and is not a loss of function variant.

235

236 Interestingly, in revisiting our original ΔCTL suppressors, we discovered an independent
237 suppressing mutation in *opgH* that restored growth in the presence of ΔCTL (Supplemental Table
238 1). This mutant, OpgH_{L434P} (Figure 1A), is also a leucine to proline mutation and is located at the
239 edge of a different predicted transmembrane domain (Figure 3B). We tested if, like L480P, the
240 L434P mutant could suppress $\Delta estG$ sensitivity in a dominant fashion. Strikingly, the OpgH_{L434P}
241 mutant completely restored growth of $\Delta estG$ in the presence of ampicillin (Figure 3C). Collectively,
242 our suppressor analyses solidify a genetic link between *estG* and *opgH*.

243

244 ***estG* and *bgIX* are synthetically sick**

245 To gain further insight into which pathway(s) EstG may impact, we examined *estG* on the Fitness
246 Browser database (Wetmore et al., 2015). This database includes sensitivities of a genome-wide
247 library of transposon mutants in *Caulobacter* to numerous stress and environmental conditions
248 and reports on each gene's mutant fitness profile. This resource reflected $\Delta estG$'s sensitivities to
249 cell wall antibiotics and also revealed genes that share a similar sensitivity profile to $\Delta estG$ when
250 disrupted (i.e., genes that are “co-fit”). The top hit for co-fitness with *estG* was an uncharacterized
251 gene, *bgIX* (CCNA_01162), predicted to encode a β -D-glucoside glucohydrolase. The BgIX
252 homolog in *Pseudomonas aeruginosa* (*P. aeruginosa*) cleaves glucose polymers (including

253 OPGs) *in vitro*, but BglX homologs are otherwise uncharacterized, with little known about their
254 physiological functions (Mahasenan et al., 2020).

255

256 We tested for activity of purified *Caulobacter* BglX as a glucohydrolase *in vitro* against the reporter
257 substrate 4-nitrophenyl- β -D-glucopyranoside (pNPG), where hydrolysis of pNPG results in a color
258 change that can be measured as absorbance over time (Mahasenan et al., 2020). BglX was able
259 to hydrolyze pNPG in a concentration dependent manner, confirming its activity as a
260 glucohydrolase (Figure 4A), while EstG displayed no activity against pNPG (Figure 4—Figure
261 supplement 1A). *In vivo*, we determined that *bgly* is non-essential and that its loss does not
262 appreciably affect growth or morphology (Figure 4B-C). As predicted, however, we found that
263 $\Delta bgly$ shares all of the antibiotic sensitivities we observed for $\Delta estG$ (Figure 2D). We also
264 confirmed periplasmic localization of BglX (Figure 4—Figure supplement 1B). Their similar
265 sensitivity profiles indicated a possible genetic interaction between *estG* and *bgly*. Indeed, when
266 both *estG* and *bgly* were deleted ($\Delta estG\Delta bgly$), cells had a growth defect and exhibited slight cell
267 filamentation in unstressed conditions when compared to WT or either single deletion mutant
268 (Figure 4B-C). The double deletion also had a lower MIC for all tested antibiotics compared to
269 either of the single deletions, confirming a synthetic sickness between *estG* and *bgly* (Figure 2D).

270

271 From this synthetic interaction, we hypothesized that EstG and BglX fulfill a similar function. If so,
272 overexpression of one of the enzymes may compensate for loss of the other. To test this, we
273 generated overexpression constructs of *estG* and *bgly*, placed them in a genetic background
274 lacking the other gene, induced overexpression, and subjected the strains to ampicillin treatment.
275 Overproduction of BglX in a $\Delta estG$ background completely rescued the β -lactam sensitivity of
276 $\Delta estG$ (Figure 4D). Surprisingly, the reverse was not true—overproduction of EstG did not
277 compensate for loss of $\Delta bgly$, which was still sensitive to ampicillin (Figure 4D). Therefore, though

278 there is a genetic interaction between *estG* and *bgIX*, these results suggest that EstG and BglX
279 are not functionally redundant.

280

281 **$\Delta estG$ and $\Delta bgIX$ sensitivities are similar to OPG deficient mutants**

282 Inspired by the genetic links to *bgIX* and *opgH* that implicated *estG* in the OPG pathway, we
283 wondered whether other aspects of the $\Delta estG$ phenotype align with the behavior of OPG mutants
284 in other bacteria. In *P. aeruginosa*, OPG production is important for resistance to the ribosome-
285 targeting aminoglycoside antibiotics (Bontemps-Gallo and Lacroix, 2015). Indeed, we found that
286 $\Delta estG$, $\Delta bgIX$, and $\Delta estG\Delta bgIX$ all have decreased MIC values when treated with the ribosome-
287 targeting antibiotics spectinomycin or tetracycline (Figure 2D). We hypothesized that, like OPG
288 mutants, deletion of *estG* or *bgIX* creates a general disruption of the cell envelope, allowing
289 antibiotics to more easily enter the cell, resulting in lower MIC values.

290

291 In *E. coli*, OPG synthesis mutants demonstrate increased sensitivity to outer membrane
292 detergents (Rajagopal et al., 2003). We therefore assessed *estG* and *bgIX* mutants for sensitivity
293 to the detergent sodium deoxycholate (NaDOC). At 0.6 mg/mL, NaDOC impaired growth of $\Delta estG$
294 and $\Delta bgIX$ mutants, and almost entirely inhibited growth of the double mutant (Figure 4—Figure
295 supplement 1C). The sensitivities of $\Delta estG$ and/or $\Delta bgIX$ strains to ribosome-targeting antibiotics
296 and detergents are consistent with a putative role for both EstG and BglX in maintaining cell
297 envelope integrity via the OPG pathway.

298

299 **$\Delta estG$ sensitivities are rescued by increasing osmolarity**

300 In some organisms, increased OPG production is thought to compensate for a decrease in
301 environmental osmolarity. In low osmolarity media, OPGs in *E. coli* comprise up to 5% of the dry
302 weight, while in high osmolarity media, OPGs account for as low as 0.5% of the dry weight
303 (Bontemps-Gallo et al., 2017). With our hypothesis that $\Delta estG$ and $\Delta bgIX$ are defective at some

304 point in the OPG pathway, we altered media osmolarity to assess reliance on OPGs in our
305 mutants. We tested this by adding solutes to the media to increase the osmolarity, which we
306 predicted would alleviate the sensitivities of $\Delta estG$ and $\Delta bglX$. When grown in complex media
307 (peptone yeast extract (PYE)), $\Delta estG$, $\Delta bglX$, and $\Delta estG\Delta bglX$ are all hypersensitive to 50 μ g/mL
308 ampicillin (Figure 4E). However, these sensitivities are almost completely alleviated when PYE +
309 ampicillin is supplemented with 50 mM Tris-HCl to increase the osmolarity (Figure 4E). The
310 change in osmolarity does not rescue all mutants with ampicillin sensitivity, as we do not see
311 rescue for a strain bearing deletion of the primary β -lactamase, *blaA* (West et al., 2002). We see
312 a similar result when sodium chloride is provided as an osmolyte instead of Tris-HCl (Figure 4—
313 Figure supplement 1D). This osmolarity-dependent rescue is further evidence supporting a link
314 between EstG, BglX, and OPGs, and led us hypothesize that EstG acts on OPGs.

315

316 **EstG structurally resembles and functions as an esterase *in vitro***

317 To obtain more insight into a putative substrate for EstG, we determined its structure to 2.1 \AA
318 resolution using X-ray crystallography (Figure 5A, PDB ID 7UIC). The EstG final map shows well-
319 defined density for amino acids 30 to 352 and 367 to 444 with excellent geometry (Figure 5A,
320 Table 2). EstG is annotated as a member of the transpeptidase superfamily, and within this family
321 are the well-studied PG enzymes with an α/β hydrolase fold, such as penicillin binding proteins
322 (PBPs) and carboxypeptidases. EstG displays a seven stranded, antiparallel β -sheet sandwiched
323 by the N- and the C-terminal helices in the front and other helices in the back (Figure 5A). The
324 hydrolase domain in EstG is formed by amino acids 30 to 121 and 218 to 444 and displays two
325 motifs that are highly conserved (Ryu et al., 2016). Motif I consists of the Ser-X-X-Lys sequence,
326 residues 101-104, in EstG (Figure 5B) located at the beginning of helix α 2, similar to the structure
327 of EstB, a cytoplasmic esterase from *Burkholderia gladioli* (PDB ID 1CI8, Figure 5—Figure
328 supplement 1). Motif II contains a highly conserved Tyr, which acts as a base to activate the serine

329 nucleophile. In EstG, this is Tyr218 (Figure 5B, Figure 5—Figure supplement 1) and is also
330 conserved in the other proteins that share this same fold (Figure 5—Figure supplement 1). Motif
331 I and II are both located in the active site at about 2.7 Å from each other (Figure 5A and B).

332

333 In total, we determined three structures of EstG: EstG bound to tris (EstG+TRS), EstG bound to
334 tris and sulfate (EstG+TRS+SO₄), and EstG bound to tris, sulfate, and tantalum bromide
335 (EstG+TRS+SO₄+(Ta₆Br₁₂)²⁻). The structures are very similar with a pairwise root-mean-square
336 deviation ranging 0.24 to 0.26 Å for amino acids 398-401 as calculated with SSM Coot (Emsley
337 and Cowtan, 2004). The binding of a SO₄ molecule close to Motif I and Motif II correlates with the
338 presence of clear electron density for the loop 346-357 (PDB ID 7UIC, 7UIB, Figure 5B, Figure
339 5—Figure Supplement 2). Structural alignment of EstG+TRS+SO₄ with EstB bound to diisopropyl
340 fluorophosphate (DFP, PDB ID 1CI9) highlights the partial overlap between the SO₄ in EstG and
341 the DFP bound to catalytic serine residue in EstB (Figure 5C).

342

343 In EstG, residues 122 to 217 are on top of the hydrolase fold (Figure 5A). Within it, residues 138
344 through 151 define an insertion of a hairpin formed by strand β4-β5 (Figure 5—Figure supplement
345 1, 3) which is also present in the transesterase enzyme, simvastatin synthase (*Aspergillus terreus*
346 LovD, PDB ID 4LCM). Notably, this hairpin is absent in EstB.

347

348 The structural alignment over those deposited in the PDB highlights a structural conservation
349 among enzymes in this large family of proteins. The most similar structures to EstG by
350 structure/sequence are esterases (EstB, PDB ID 1CI8), transesterases (LovD, PDB ID 3HLB),
351 carboxylesterases (PDB ID 4IVK), PBP homologs (PDB ID 2QMI), and D-amino acid amidases
352 (PDB ID 2DNS). All these enzyme classes are referenced in the literature as having homology to
353 β-lactamase folding esterases (Ryu et al., 2016). Interestingly, D-amino acid amidases and

354 aminohydrolases also lack the hairpin insertion described for EstG (Figure 5—Figure Supplement
355 3).

356

357 Based on the structural similarity of EstG to EstB, a cytoplasmic esterase with an unknown native
358 substrate, we sought to compare the two enzymatically. Despite the β -lactamase fold, EstB has
359 no β -lactamase or peptidase activity (Wagner et al., 2009), similar to our observations with EstG
360 (Figure 2—Figure supplement 1E, 2). EstB does, however, demonstrate esterase hydrolytic
361 activity (Wagner et al., 2009). *In vitro* esterase activity can be detected using p-nitrophenyl esters,
362 such as p-nitrophenyl butyrate (pNB), as hydrolysis of the substrate creates a visible color change
363 that can be measured as absorbance over time (similar to pNPG hydrolysis). Using this assay,
364 EstG significantly hydrolyzed pNB as compared to the negative control, GST (Figure 5D). We
365 sought to create a catalytically dead mutant of EstG by mutating the predicted active site serine,
366 Ser101, within motif I. Consistent with our prediction, the S101A mutant cannot hydrolyze pNB *in*
367 *vitro*, confirming that it is a catalytically dead variant (Figure 5D). Additionally, when Ser101 is
368 mutated to alanine (S101A) in the chromosomal copy of *estG*, this mutant phenocopies the β -
369 lactam sensitivity of $\Delta estG$ *in vivo* (Figure 5E). These data establish the essentiality of EstG's
370 enzymatic activity in protecting the cell against stress and confirms activity of EstG as an esterase.

371

372 **EstG enzymatically modifies a cyclic hexasaccharide periplasmic glucan**

373 EstG can act as an esterase *in vitro* and our genetic and osmolarity data implicate OPGs as a
374 substrate. However, *Caulobacter* OPGs have never been characterized, and the absence of
375 homologs of most characterized OPG-metabolizing enzymes in this organism precludes a simple
376 prediction of which OPG species may be present. To identify the native substrate of EstG, we
377 fractionated WT cells into periplast and spheroplast fractions followed by isolation of putative
378 periplasmic sugars (Figure 6A). Given that *E. coli* OPGs are between 1 to 10 kDa, we
379 hypothesized that *Caulobacter* OPGs might be of similar size. Therefore, we further fractionated

380 to isolate only components within our desired size range. The remaining sample was boiled to
381 remove contaminating proteins, leaving sugars or other heat-resistant metabolites intact. *In vitro*,
382 we combined this 1-10 kDa periplast isolate with purified EstG or the catalytically dead mutant,
383 EstG_{S101A}. We then separated molecules in the treated periplast by high-performance liquid
384 chromatography (HPLC) and selected for peaks that decreased in abundance when mixed with
385 EstG, but not when mixed with EstG_{S101A}. Peaks of interest were then identified by mass
386 spectrometry. Using this approach, we identified a molecule that decreased in abundance ~40%
387 when incubated with EstG (Figure 6B), indicating that EstG enzymatically modified this substrate
388 in some way. The mass of the parental ion led us to hypothesize that the molecule resembled α -
389 cyclodextrin (α -CD), a cyclic, hexameric glucose polymer. Notably, the MS/MS spectra for this
390 molecule in the periplast + EstG_{S101A} (top half of Figure 6C), most closely matches the library
391 spectra for α -CD (bottom half of Figure 6C). Greater than 80% of the fragmentation signal
392 generated from our experiments match the ion profile for α -CD. We next attempted to detect
393 chemical modification of α -CD by EstG using our periplast and mass spectrometry workflow.
394 However, due to the complexity of the periplast fraction and the small expected amount of
395 modified α -CD, we were not able to identify a modified α -CD molecule or determine a specific
396 activity of EstG on α -CD. Though this small, cyclic sugar is a novel structure for an OPG, it is
397 consistent with the existence of cyclic OPGs in other bacteria, notably Family IV cyclic OPGs
398 synthesized by OpgH in *Rhodobacter sphaeroides* and related α -proteobacteria (Bontemps-Gallo
399 et al., 2017).

400
401 We next sought to validate α -CD as an EstG substrate *in vitro*. If α -CD is a substrate for EstG,
402 we reasoned we could add α -CD to the pNB hydrolysis assay and inhibit pNB hydrolysis through
403 competition for the active site. Indeed, increasing amounts of α -CD reduced EstG's hydrolysis of
404 pNB in a concentration-dependent manner, while EstG_{S101A} remained unchanged with added α -

405 CD (Figure 6D). Though the inhibition is clearly concentration-dependent, we wanted to confirm
406 that α -CD was competitively inhibiting EstG's active site, consistent with it being a substrate. To
407 achieve this, we measured the rate of pNB hydrolysis with increasing concentrations of pNB and
408 a consistent amount of α -CD. For a competitive inhibitor, we expect to see a constant V_{max} and
409 an increased K_m value with added α -CD. By plotting the rate of hydrolysis +/- α -CD, the V_{max}
410 values of the two curves are close at 0.92 molecules/min without α -CD and 1.15 molecules/minute
411 with α -CD (Figure 6E, Figure 6—Figure supplement 1). However, the K_m values differ, at 11.2
412 mM without α -CD and 53.7 mM with α -CD (Figure 6E, Figure 6—Figure supplement 1). These
413 values produce the expected pattern for a competitive inhibitor and gave us confidence that α -
414 CD interacts directly with the active site of EstG and is thus structurally similar to the native
415 substrate. Collectively, these data suggest that EstG modifies a previously uncharacterized cyclic,
416 hexameric OPG in a novel manner, thereby contributing to cell envelope homeostasis during
417 stress (Figure 7).

418

419

420 **Discussion**

421 It is clear from our work that proteins and pathways that play critical roles in maintaining cell
422 envelope homeostasis remain undiscovered. Our identification of EstG and its novel role in the
423 *Caulobacter* OPG pathway suggests there might be unexplored substrates of other TPase family
424 enzymes. We identified EstG through a Tn-Seq screen as an essential factor for surviving Δ CTL-
425 induced cell wall stress (Figure 1). Though *estG* is non-essential in unstressed conditions (Figure
426 2), Δ *estG* is hypersensitive to cell envelope stresses (Figure 2D, Figure 4—Figure Supplement
427 1C). Despite its homology to TPase family proteins, EstG does not detectably modify the PG
428 (Figure 2—figure supplement 2, Table 1). Instead, genetic interactions with *opgH* (Figure 3),
429 encoding the predicted OPG synthase, and *bgI/X* (Figure 4), encoding a putative OPG hydrolase,
430 implicate EstG in the OPG pathway. *In vitro* biochemistry revealed a periplasmic substrate of EstG
431 as a cyclic hexamer of glucose, which is the first reported OPG in *Caulobacter* (Figure 6).

432

433 In this study, we originally set out to identify mechanisms of Δ CTL suppression. We were surprised
434 to primarily recover suppressing mutations in stress response pathways, instead of cell envelope-
435 or cell wall-related genes. Activation of stress response pathways typically leads to sweeping
436 changes in cellular physiology, suggesting that the stress imposed by Δ CTL is multifaceted and
437 cannot easily be suppressed by mutation of a single factor. We leveraged (p)ppGpp-mediated
438 suppression of Δ CTL to identify more direct factors involved in surviving Δ CTL-induced stress
439 and, through this approach, found *estG*. While following up on the role of EstG in (p)ppGpp-
440 dependent suppression of Δ CTL, we found that *estG* is unrelated to (p)ppGpp. Instead, it was the
441 additional antibiotic stress (e.g., introduction of gentamycin marked *relA'* to produce high
442 (p)ppGpp) in the presence of Δ CTL stress that made *estG* essential (data not shown). We further
443 confirmed this by deleting *estG* in a Δ CTL background suppressed by high (p)ppGpp through a
444 hyperactive *spoT* mutant, which was not lethal (data not shown). In retrospect, this finding is not

445 entirely surprising given the critical role we established for EstG in surviving a variety of antibiotic
446 stresses.

447

448 Both our own characterization of the $\Delta estG$ strain and information in the Fitness Browser database
449 (Price et al., 2018; Wetmore et al., 2015) indicated a wide range of antibiotic sensitivities. Those
450 we tested (Figure 2D) include many classes of PG- and ribosome-targeting antibiotics such as β -
451 lactam (ampicillin, mecillinam, cefaphlexin), glycopeptide (vancomycin), phosphonic (fosfomycin),
452 aminoglycoside (spectinomycin), and tetracycline antibiotics (Figure 2D). The Fitness Browser
453 additionally indicated sensitivities to a DNA-gyrase-targeting antibiotic (nalidixic acid) and an
454 inhibitor of lipid A biosynthesis (CHIR-090). Collectively, this establishes $\Delta estG$ hypersensitivity
455 to antibiotics that target at least four different cellular processes (PG metabolism, protein
456 synthesis, DNA topology, and outer membrane biosynthesis/homeostasis). We looked for
457 similarities among these drug classes but found no obvious biochemical similarities. For instance,
458 nalidixic acid and ampicillin are relatively small, while vancomycin is a large glycopeptide, and
459 though most molecules tested were polar and uncharged, others, such as chloramphenicol (data
460 not shown) and sodium deoxycholate are charged. Ultimately, these broad antibiotic sensitivities
461 support the idea of a global cell envelope defect resulting from loss of EstG's enzymatic activity,
462 and not a sensitivity specific to a particular molecular feature.

463

464 EstG is classified as a β -lactamase family protein within the TPase superfamily, which is why it
465 stood out as an attractive candidate from a cell wall stress screen. Of characterized proteins, EstG
466 shares the most structural and biochemical similarities to EstB from *B. gladioli*, another enzyme
467 in the β -lactamase family that adopts an α/β hydrolase fold. They both contain an active site
468 serine, but EstG lacks the common esterase motif, G-X-S-X-G, present in EstB. This esterase
469 motif is not required for EstB's hydrolase activity, however (Wagner et al., 2009). Our data provide

470 evidence of EstG acting as an esterase and not a β -lactamase, and we have also identified a
471 novel EstG substrate. Within *Caulobacter*, EstG is one of eight enzymes that are classified as
472 putative β -lactamases (West et al., 2002) that potentially do not function as β -lactamases at all.
473 EstG is just one example of the numerous enzymes across bacteria that fall into the TPase
474 superfamily but have novel activities or substrates.

475

476 Though not required under normal growth, our data demonstrate the importance of EstG acting
477 on its sugar substrate and implicates an essential role for OPGs in stress survival. OPGs have
478 not been previously identified in *Caulobacter*, though the presence of an *opgH/mdoH* homolog in
479 the genome was reported (Bohin, 2000). OPGs in several α -proteobacterial species of the orders
480 Rhizobiales and Rhodobacterales are characterized and have a wide variety of sizes and
481 structures, consisting of family II, III, and IV OPGs (Bohin, 2000). These OPGs can range from
482 10-25 glucose monomers, but all three classes are cyclic polymers, as opposed to the linear
483 family I OPGs commonly found in γ -proteobacteria. We were surprised to find that the only *opg*
484 gene in *Caulobacter* is *opgH*. As we report a cyclic OPG-like molecule, we would expect other
485 OPG genes responsible for cyclizing and modifying OPGs to be present in *Caulobacter*. Uniquely,
486 other α -proteobacteria encode OPG metabolic enzymes that are not homologs of the *opg* genes
487 in *E. coli* including *chvA* and *chvB* in *Agrobacterium tumefaciens*, *ndvA* and *ndvB* in *Sinorhizobium*
488 *meliloti*, and *cgs* and *cgt* in *Brucella abortus* (Bontemps-Gallo et al., 2017). Distinct from the well-
489 described *opg/mdo* genes, these genes imply the existence of a wide variety of OPG enzymes
490 and OPG structures across bacteria. Additionally, among these OPG metabolic genes, there are
491 proteins whose precise enzymatic functions remain elusive, such as *NdvD* in *S. meliloti*
492 (Bontemps-Gallo et al., 2017). We propose that EstG and BglX are additional examples of
493 enzymes with unique roles in OPG synthesis, modification, and/or hydrolysis.

494

495 Mutants of OPG enzymes in diverse bacteria typically have pleiotropic phenotypes, including
496 those discussed for *estG* and *bg/X* mutants (e.g. antibiotic sensitivity) as well as defects in motility,
497 biofilm formation, and/or virulence (Bontemps-Gallo et al., 2017). Despite the impact of OPGs on
498 important cellular behaviors and properties, we do not know the mechanism(s) behind OPG-
499 mediated effects. One model suggests OPGs function as osmoprotectants by establishing a
500 Donnan equilibrium across the outer membrane. The idea is that production of negatively charged
501 OPGs in the periplasm (as occurs in *E. coli*) creates a high concentration of fixed, charged
502 molecules that cannot cross the outer membrane. The accumulation of charged OPGs attracts
503 counterions to the periplasm, and maintains a Donnan membrane potential across the outer
504 membrane, allowing for isosmolarity of the periplasm and cytoplasm even in low osmolarity
505 environments (Kennedy et al., 1982; Stock et al., 1977). The Donnan potential has also been
506 suggested to play a role in permeability of the envelope to antibiotics (Alegun et al., 2021). These
507 mechanisms, however, presume that OPGs are always highly charged, which is not the case in
508 all bacteria, and may or may not be the case in *Caulobacter* (Bontemps-Gallo et al., 2017).
509 Though we were not able to determine the exact EstG-mediated modification on *Caulobacter*
510 OPGs, it is possible that EstG adds a charged moiety in order to mediate the Donnan potential
511 and protect the cell envelope.

512
513 Beyond the Donnan potential, OPGs are postulated to have other functions in cell envelope
514 homeostasis, such as a role in envelope organization, cell signaling, and protein folding
515 (Bontemps-Gallo et al., 2017). For instance, loss of OPGs in *E. coli* was reported to cause an
516 increase in the periplasmic space of plasmolyzed cells, perhaps reflecting a structural role in
517 maintaining envelope geometry (Holtje et al., 1988). Deletion of *estG*, however, did not result in
518 a notable increase in periplasmic space (data not shown) and suggests that *Caulobacter opg*
519 mutants may not directly impact the structure of the periplasm.

520

521 Despite the unclear mechanism of OPG-mediated envelope protection, our data suggest that the
522 modification and/or hydrolysis activity of EstG and BglX on *Caulobacter* OPGs contributes to
523 osmoprotective properties, most notably supported by the osmolarity-dependent rescue of
524 antibiotic sensitivity (Figure 4E). It is possible that more mechanistic insight can be revealed with
525 further study of OPG pathways and enzymes in other organisms. For instance, the *E. coli* OpgH
526 enzyme links nutrient availability with cell size by inhibiting FtsZ when UDP-glucose levels are
527 high (Hill et al., 2013). This is likely not a conserved function of *Caulobacter* OpgH, as it lacks
528 most of the N-terminal FtsZ-interacting region. Suppressor mutations within *opgH* have also been
529 identified in *E. coli* that further implicate OpgH with envelope homeostasis. A nonsense mutation
530 in *opgH* was isolated in a lipopolysaccharide (LPS) mutant that together conferred resistance to
531 a polypeptide antibiotic (bacitracin), a polyketide antibiotic (rifampin), and sodium dodecyl sulfate
532 (Falchi et al., 2018). Due to the integral role of LPS in outer membrane integrity, it was proposed
533 that either the lack of OPGs or loss of OpgH reduces membrane permeability to antibiotics, thus
534 conferring resistance. However, unlike the *opgH* suppressing mutations identified in this study
535 (L480P and L434), the *E. coli* *opgH* nonsense mutation was recessive to WT. Though this
536 suggests a different mechanism of suppression, it does not rule out the possibility of deficient
537 OPG production in the *Caulobacter* *opgH* mutants, resulting in a less permeable membrane and
538 our observed resistance to stress. Two spontaneous *opgH* mutants were also isolated in *Vibrio*
539 *cholerae* that suppressed the hyperosmotic lethality of a lytic transglycosylase (LTG) mutant
540 (Weaver et al., 2022). This model suggested that LTG mutants inadequately recycle PG products,
541 resulting in excessive periplasmic crowding (Weaver et al., 2022). Additional production of OPGs
542 exacerbated this periplasmic crowding, which was lethal in low osmolarity environments (Weaver
543 et al., 2022). Though the hyperosmotic growth defect of LTG mutants and periplasmic crowding
544 could indicate a similar role for EstG, the identification of an OPG substrate indicates a direct link
545 to OPG metabolism, rather than an indirect consequence of molecular crowding. An important
546 avenue for future work includes functional studies of OpgH and these mutants as well as

547 determination of the exact structure and potential modifications on *Caulobacter* OPGs. These
548 insights can ultimately bridge our gap in understanding of the mechanistic role of OPGs in the
549 *Caulobacter* envelope.

550

551 **Materials and methods**

552 ***Caulobacter crescentus* and *Escherichia coli* growth media and conditions**

553 *C. crescentus* NA1000 cells were grown at 30°C in peptone-yeast extract (PYE) medium. *E. coli*
554 Rosetta(DE3)/pLysS cells were grown at 30°C in Luria-Bertani (LB) medium. Xylose or glucose
555 were used at concentrations of 0.3% (w/v) for induction experiments. Antibiotics were used in
556 liquid (solid) medium at the following concentrations for *Caulobacter* growth: gentamycin, 1 (5)
557 µg/mL; kanamycin, 5 (25) µg/mL; spectinomycin, 25 (100) µg/mL. Streptomycin was used at 5
558 µg/mL in solid medium. *E. coli* antibiotics were used in liquid (solid) medium as follows: ampicillin,
559 50 (100) µg/mL; gentamicin, 15 (20) µg/mL; kanamycin, 30 (50) µg/mL; and spectinomycin, 50
560 (50) µg/mL. For growth curves, a Tecan Infinite M200 Pro plate reader measured absorbance
561 every 30 minutes at OD₆₀₀ of a 100 µL culture volume in a 96 well plate in biological triplicate with
562 intermittent shaking. For spot dilution assays, mid-log cells were diluted to an OD₆₀₀ of 0.05 and
563 serially diluted up to 10⁻⁶ before spotting 5 µL of each dilution onto a PYE plate with indicated
564 inducer and/or antibiotic. Plates were incubated at 30°C for 48 hours, or until the appearance of
565 colonies at the lowest dilution in the control strain. To determine the minimum inhibitory
566 concentration (MIC), mid-log phase cells were diluted to OD₆₀₀ of 0.5 and 200 µL were spread out
567 onto a PYE plate. Antibiotic strips with increasing concentration of antibiotic were placed on the
568 dried plate, inverted, and grown at 30°C for 48 hours. Some MIC values were estimated by loss
569 of growth on plates with a range of antibiotic added to the media. A summary of all strains,
570 plasmids, and primers used in this study can be found in Supplement Table 3.

571

572 **Atypical strain construction**

573 We were unable to generate the following strains in low osmolarity PYE media, so they were
574 constructed in M2G minimal media: EG3116 (Δ CTL+ Δ estG), EG3369 (*opgH*_{L480P}), EG3371
575 (Δ estG+*OpgH*_{L480P}), and EG3377 (*P_{van-opgH}*). For a 500 mL batch of M2G plates, 465 mL of water
576 and 7.5 g agar (1.5%) were autoclaved. Once cooled, 25 mL of 5x M2 salts, 500 µL of 500 mM

577 MgSO₄, 500 μ L of 10 mM FeSO₄ 10 mM EDTA (Sigma F-0518), and 0.3% glucose were added.

578 Additional antibiotics or media supplements needed for selection were also added at this time.

579

580 **Phase-contrast microscopy**

581 Exponential phase cells were spotted on 1% agarose pads and imaged using a Nikon Eclipse Ti

582 inverted microscope equipped with a Nikon Plan Fluor 100X (NA1.30) oil Ph3 objective and

583 Photometrics CoolSNAP HQ² cooled CCD camera. Images were processed using Adobe

584 Photoshop.

585

586 **Suppressor screening and whole genome sequencing**

587 For the Δ CTL suppressor screen, *Caulobacter* strains EG937 or EG1214 strains were inoculated

588 from individual colonies and grown overnight in PYE media (with no inducer) until stationary

589 phase. Cells were plated on PYE agar plates containing 0.3% (w/v) xylose to induce Δ CTL

590 expression and incubated at 30°C until the appearance of colonies (suppressors). Suppressors

591 were tested for growth in PYE media with 0.3% xylose overnight. Immunoblotting with FtsZ-

592 antiserum was used to confirm xylose-induced Δ CTL expression. Genomic DNA was extracted

593 from suppressors using Qiagen DNeasy Blood and Tissue Kit. Mutations were identified from

594 MiSeq analysis of genomic DNA from suppressor strains. Spontaneous suppressors of Δ estG

595 were isolated by plating Δ estG (EG2658) on PYE+100 μ g/mL ampicillin and isolating resistant

596 colonies. Resistance was confirmed by spot dilution on plates containing 50 μ g/mL ampicillin.

597 Genomic DNA was extracted from suppressors using Qiagen DNeasy Blood and Tissue Kit and

598 sent to Microbial Genome Sequencing Center (MiGS) for whole genome sequencing and BreSeq

599 analysis.

600

601 **Cell fractionation**

602 Cells were fractionated into periplasm and spheroplast using the previously described methods
603 in Judd et al, except that 2 µg/mL lysozyme was used (Judd et al., 2005). Briefly, cells were grown
604 at 30° to an OD₆₀₀ of 0.5 in 10 mL of PYE. Cells were pelleted at 3,500 x g for 10 minutes and the
605 supernatant removed. The pellet was resuspended in 1 mL of periplasting buffer (50 mM Tris-HCl
606 pH 8.0, 18% sucrose, and 1 mM CaCl₂) and then 2 µg/mL of lysozyme and 1 mM EDTA was
607 added. Contents were left on ice for 30 minutes and then spun at 3,140 x g for 5 minutes. The
608 supernatant (periplast fraction) was carefully removed to a fresh tube, and the pellet (spheroplast
609 fraction) was saved.

610

611 **Transposon library preparation, sequencing, and analysis**

612 Transposon libraries were prepared, sequenced, and analyzed using the same methods as
613 previously described in Woldemeskel et al. and Lariviere et al. (Woldemeskel et al., 2020;
614 Lariviere et al., 2019). Tn-Seq libraries were generated for WT (EG865), RelA' (EG1799) and
615 ΔCTL+RelA' (EG1616). 1L PYE cultures were harvested at OD₆₀₀ of 0.4–0.6, washed 5 times with
616 10% glycerol, and electroporated with the Ez-Tn5 <Kan-2> transposome (Epicentre, Charlotte,
617 North Carolina). Cells recovered at 30°C shaking for 90 minutes, and plated on PYE-Kan plates.
618 The RelA' library was plated on PYE-Kan with gentamycin and 0.003% xylose to induce RelA'
619 expression. ΔCTL+RelA' library was plated on PYE-Kan plates with spectinomycin, streptomycin,
620 gentamycin, and 0.003% xylose to induce RelA' and ΔCTL. Colonies were scraped off plates,
621 combined, resuspended to form a homogeneous solution in PYE, and flash frozen in 20%
622 glycerol. The DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) was used to extract
623 genomic DNA from each pooled library. Libraries were prepared for Illumina Next-Generation
624 sequencing through sequential PCR reactions. The initial PCR round used arbitrary hexamer
625 primers with a Tn5 specific primer going outward. The second round used indexing primers with
626 unique identifiers to filter artifacts arising from PCR duplicates. Indexed libraries were pooled and

627 sequenced at the University of Massachusetts Amherst Genomics Core Facility on the NextSeq
628 550 (Illumina, San Diego, California).

629

630 Sequencing reads were first demultiplexed by index, each library was concatenated and clipped
631 of the molecular modifier added in the second PCR using Je (Girardot et al., 2016):

632

633 `java -jar /je_1.2/je_1.2_bundle.jar clip F1 = compiled.gz LEN = 6`

634

635 Reads were then mapped back to the *Caulobacter crescentus* NA1000 genome (NCBI Reference
636 Sequence: NC_011916.1) using BWA (Li and Durbin, 2010) and sorted using Samtools (Li et al.,
637 2009):

638

639 `bwa mem -t2 clipped.gz | samtools sort -@2 - > sorted.bam`

640

641 Duplicates were removed using Je (Girardot et al., 2016) and indexed with Samtools (Li et al.,
642 2009) using the following command:

643

644 `java -jar /je_1.2/je_1.2_bundle.jar markdups I = sorted.bam O = marked.bam M = METRICS.txt`
645 `MM = 0 REMOVE_DUPLICATES = TRUE`

646

647 `samtools index marked.bam`

648

649 The 5' insertion site of each transposon were converted into .wig files comprising counts per
650 position and visualized using Integrative Genomics Viewer (IGV) (Robinson et al., 2011;
651 Thorvaldsdottir et al., 2012). Specific hits for each library were determined with coverage and
652 insertion frequency using a bedfile containing all open reading frames from NC_011916.1 and the

653 outer 20% of each removed to yield a clean and thorough insertion profile. This was determined
654 using BEDTools (McCarthy et al., 2012; Robinson et al., 2010) and the following commands:
655
656 bedtools genomecov -5 -bg marked.bam > marked.bed
657
658 bedtools map -a NA1000.txt -b marked.bed -c 4 > output.txt
659
660
661 Tn-Seq data have been deposited in the Sequence Read Archive (SRA) under accession
662 numbers:
663

664 **Protein purification**

665 All purified proteins were overproduced in Rosetta (DE3) pLysS *E. coli* from the following
666 plasmids: His₆-EstG-His₆, pEG1622; His₆-EstG_{S101A}-His₆, pEG1706; His₆-EstA, pEG1950; His₆-
667 BglX-His₆, pEG1779. Cells were induced with 1mM IPTG for 4 hours at 30°C. Cell pellets were
668 resuspended in Column Buffer A (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10% glycerol, 20 mM
669 imidazole, 1 mM β-mercaptoethanol) flash frozen in liquid nitrogen and stored at -80°C. To purify
670 the His-tagged proteins, pellets were thawed at 37°C, and 10 U/mL DNase 1, 1 µg/mL lysozyme,
671 and 2.5 mM MgCl₂ were added. Cell slurries were left on ice and occasionally inverted for 45
672 minutes, then sonicated and centrifuged for 30 minutes at 15,000 x g at 4°C. The protein
673 supernatant was then filtered and loaded onto a pre-equilibrated HisTrap FF 1mL column (Cytiva,
674 Marlborough, Massachusetts). The His-tagged proteins were eluted in 30% Column Buffer B
675 (same as Column Buffer A but with 1M imidazole). Peak fractions were concentrated and applied
676 to a Superdex 200 10/300 GL (Cytiva) column equilibrated with EstG storage buffer (50 mM
677 HEPES-NaOH pH 7.2, 150 mM NaCl, 10% glycerol, 1 mM β-mercaptoethanol). Peak fractions
678 were combined, concentrated, and snap-frozen in liquid nitrogen and stored at -80°C.

679

680 **Immunoblotting**

681 Purified His₆-EstG-His₆ was dialyzed into PBS and used to immunize a rabbit for antibody
682 production (Pocono Rabbit Farm & Laboratory, Canadensis, Pennsylvania). To affinity purify the
683 EstG antisera, His₆-EstG-His₆ in EstG storage buffer was coupled to Affigel 10 resin (Bio-Rad,
684 Hercules, California). After washing the resin 3 times with cold water, add approximately 10 mg
685 of protein to 1 mL of Affigel 10 resin to rotate at 4°C for 4 hours. 75 mM Tris pH 8.0 was added to
686 terminate the reaction and left to rotate at 4°C for 30 minutes. EstG-resin was washed in a column
687 with the following cold reagents: 10 mL EstG storage buffer, 15 mL Tris-buffered saline (TBS), 15
688 mL 0.2 M glycine-HCl pH 2.5 with 150 mM NaCl, 15 mL TBS, 15 mL guanidine-HCl in TBS, and
689 20 mL TBS. EstG antisera was combined with EstG-resin, and incubated, rotating, overnight at
690 4°C. Unbound sera flowed through the column and was washed with 25 mL TBS, 25 mL TBS with
691 500 mM NaCl and 0.2% Triton X-100, and a final wash of 25 mL TBS. Bound Anti-EstG was
692 eluted with 0.2 M glycine pH 2.5 and 150 mM NaCl, dialyzed into TBS, and diluted 1:1 with
693 glycerol. Anti-EstG antibody specificity was validated by western blot to recognize a band in wild
694 type lysate that is absent in a $\Delta estG$ mutant.

695

696 Western blotting was performed using standard lab procedures. Cells in log phase were isolated
697 and lysed in SDS-PAGE loading buffer and boiled for 10 minutes. For a given experiment,
698 equivalent OD units of cell lysate were loaded. SDS-PAGE and transfer of protein to nitrocellulose
699 membrane were performed using standard procedures. Antibodies were used at the following
700 concentrations: EstG-1:1000; SpmX-1:10,000 (Radhakrishnan et al., 2008); Flag-1:1,000 (Sigma,
701 St. Louis, Missouri); CdnL-1:2,500 (Woldemeskel et al., 2020).

702

703 ***In vitro* pNB hydrolysis or pNPG assay**

704 To test for serine hydrolase activity using p-nitrophenyl butyrate (pNB, Sigma), indicated proteins
705 were used at 10 μ M in a 50 μ L reaction containing 50 mM Tris-HCl pH 8. pNB was added last to
706 the samples at a concentration of 4 μ M. Absorbance was measured every minute at 405 nm for
707 10 minutes. To test for glucosidase activity using 4-Nitrophenyl- β -D-glucopyranoside (pNPG,
708 Sigma), indicated proteins were used at listed concentrations in a 50 μ L reaction containing 50
709 mM Tris-HCl pH 8. pNPG was added last at a final concentration of 4 μ M. Absorbance was
710 measured every minute at 405 nm for 10 minutes.

711

712 **Nitrocefin hydrolysis assay**

713 To assess β -lactamase activity through hydrolysis of nitrocefin, 10 μ M of indicated proteins were
714 mixed with 100 μ M nitrocefin (Calbiochem, Sigma) in a reaction buffer containing EstG storage
715 buffer (50 mM HEPES-NaOH pH 7.2, 150 mM NaCl, 10% glycerol, 1 mM BME) to a final volume
716 of 100 μ L. Absorbance was measured at 492 nm every 10 minutes for 4 hours.

717

718 **Sacculi purification and PG binding assay**

719 Sacculi for PG binding assay were prepared as previously described in Meier et al (Meier et al.,
720 2017). Wild type (EG865) *Caulobacter* cells were grown in 1L of PYE at 30°C to an OD₆₀₀ of 0.5.
721 Cells were pelleted by centrifugation at 6,000 \times g for 10 minutes and resuspended in 10 mL of 1X
722 PBS. The cells were added dropwise to a boiling solution of 4% SDS where they were
723 continuously mixed and boiled for 30 minutes, then incubated overnight at room temperature.
724 Sacculi were pelleted by ultracentrifugation at 42,000 \times g in an MLA-80 rotor for 1 hour at 25°C
725 and remaining pellet was washed four times with ultra-pure water with a final resuspension in 1
726 mL PBS with 20 μ L of 10 mg/mL amylase, left at room temperature overnight. Then the sacculi
727 were pelleted at 90,000 \times g in an MLA-130 rotor for 15 minutes at 25°C and washed three times
728 with ultra-pure water, with a final resuspension in 1 mL of PG binding buffer (20 mM Tris-HCl pH
729 6.8, 1 mM MgCl₂, 30 mM NaCl, 0.05% Triton X-100). To each reaction, 6 μ g of each protein was

730 added to either PG or buffer. Reactions were left on ice for 30 minutes and then centrifuged for
731 30 minutes at 90,000 x g in the MLA-130 rotor at 4°C. Supernatant was saved and the pellet was
732 resuspended in PG binding buffer and saved as the PG bound isolate. SDS-PAGE loading dye
733 was added to a final concentration of 1X to each sample and run on an SDS-PAGE gel,
734 Coomassie stained, and imaged.

735

736 **PG purification and analysis**

737 PG samples were analyzed as described previously (Alvarez et al., 2016; Desmarais et al., 2013).
738 In brief, samples were boiled in SDS 5% for 2 h and sacculi were repeatedly washed with MilliQ
739 water by ultracentrifugation (110,000 x g, 10 min, 20°C). The samples were treated with
740 muramidase (100 µg/mL) for 16 hours at 37°C. Muramidase digestion was stopped by boiling and
741 coagulated proteins were removed by centrifugation (10 min, 22,000 x g). The supernatants were
742 first adjusted to pH 8.5-9.0 with sodium borate buffer and then sodium borohydride was added to
743 a final concentration of 10 mg/mL. After reduction during 30 min at room temperature, the samples
744 pH was adjusted to pH 3.5 with orthophosphoric acid. UPLC analyses of muropeptides were
745 performed on a Waters UPLC system (Waters Corporation, USA) equipped with an ACQUITY
746 UPLC BEH C18 Column, 130 Å, 1.7 µm, 2.1 mm X 150 mm (Waters, USA) and a dual wavelength
747 absorbance detector. Elution of muropeptides was detected at 204 nm. Muropeptides were
748 separated at 45°C using a linear gradient from buffer A (formic acid 0.1% in water) to buffer B
749 (formic acid 0.1% in acetonitrile) in an 18-minute run, with a 0.25 mL/min flow.

750

751 To test the activity of EstG against cell wall substrates, sacculus or purified muropeptides were
752 used as substrate. Reactions were performed in triplicates and contained 10 µg of purified
753 enzyme, 50 mM Tris-HCl pH 7.5, 100 mM NaCl, and 10 µg of purified *Caulobacter* sacculus or 5
754 µg of purified M4, M5, D44 or D45, in a final 50 µL reaction volume. Reactions were incubated at
755 37°C for 24 h, then heat inactivated (100°C, 10 min) and centrifuged (22,000 x g, 15 min), for

756 separation of soluble and pellet fractions. Soluble fractions were adjusted to pH 3.5. Pellet
757 fractions were resuspended in water and further digested with muramidase for 16 h at 37°C.
758 Muramidase reactions were reduced and adjusted to pH 3.5 as explained before. Both soluble
759 and muramidase digested samples were run in the UPLC using the same PG analysis method
760 described above.

761

762 Relative total PG amounts were calculated by comparison of the total intensities of the
763 chromatograms (total area) from three biological replicas normalized to the same OD600 and
764 extracted with the same volumes. Muropeptide identity was confirmed by MS/MS analysis, using
765 a Xevo G2-XS QTof system (Waters Corporation, USA). Quantification of muropeptides was
766 based on their relative abundances (relative area of the corresponding peak) normalized to their
767 molar ratio. The program GraphPad PRISM® Software (Inc., San Diego, California,
768 www.graphpad.com) was used for all statistical analyses. To determine the significance of the
769 data, the t-test (unpaired) was performed.

770

771 **Crystallography, Data Collection, Structure Determination and Refinement**

772 EstG protein purified for crystallography was prepared the same way as described above, with
773 the exception of the storage buffer changed to 50 mM HEPES-NaOH pH 7.2, 150 mM NaCl, 1
774 mM DTT. Crystals of wild type EstG were grown by vapor diffusion in hanging drops set up with
775 a Mosquito LCP robot (SPT Labtech, Melbourn, United Kingdom). Crystal growth was monitored
776 using a crystallization imager ROCKIMAGER (Formulatrix, Bedford, Massachusetts). High quality
777 crystals grew with a reservoir solution containing 20% PEG500 MME, 10% PEG20000, 0.1 M
778 Tris/Bicine pH 8.5 and 90 mM mixture of sodium nitrate, sodium phosphate dibasic and
779 ammonium sulfate (called EstG+SO₄+TRS) or 20% PEG500 MME, 10% PEG20000, 0.1 M
780 Tris/Bicine pH 8.5 and 100 mM mixture of DL-Alanine, Glycine, DL-Lysine and DL-Serine, (called
781 EstG+TRS). Crystals grown in the first condition were soaked in 500 mM Tantalum bromide

782 heavy metal solution for 1 hour (crystals called EstG + TaBr). Crystals were flash-cooled in mother
783 liquor. Data of crystals of EstG +TRS (PDB ID 7UDA) were collected at National Synchrotron
784 Light Source-II at beamline 17-ID-2 (FMX) on a Dectris EIGER X 16M while crystals of EstG in
785 complex with SO₄ and TRS (PDB ID 7UIC, EstG+SO₄+TRS) and of EstG bound to tantalum
786 bromide (PDB ID 7UIB, EstG+TaBr) were collected at 17-ID-1 (AMX) on a Dectris EIGER X 9M
787 detector. Diffraction data were collected on a vector defined along the longest axis of the crystal
788 (Miller et al., 2019). The datasets were indexed, integrated, and scaled using fastdp, XDS, and
789 aimless (Kabsch, 2010). All EstG crystals belong to tetragonal space group and diffracted from
790 2.09 to 2.62 Å.

791

792 Since the N-terminal and C-terminal sequence of EstG differed from available homologous
793 proteins, a model of EstG to use in molecular replacement was generated with the RoseTTAFold
794 package (Baek et al., 2021). RoseTTAFold model weights as of July 16, 2021, UniRef30 clusters
795 as of June 2020, PDB templates as of March 3, 2021, and the BFD (Steinegger and Söding, 2018)
796 were used during model prediction. A C-terminal segment (Pro443-Arg462) that was predicted to
797 extend as a random coil away from the molecular envelope was truncated from the model with
798 the lowest predicted coordinate error to generate the final molecular replacement search model.
799 The structure of EstG was determined by molecular replacement using PHASER (McCoy et al.,
800 2007) with the RoseTTAFold model of EstG as a search model (Baek et al., 2021). The data were
801 refined to a final resolution of 2.47, 2.09 and 2.62 Å using iterative rounds of refinement with
802 REFMAC5 (Evans and Murshudov, 2013) and manual rebuilding in Coot (Emsley and Cowtan,
803 2004). Structures were validated using Coot (Emsley and Cowtan, 2004) and the PDB deposition
804 tools. Each of the three models have more than 95 % of the residues in the preferred regions
805 according to Ramachandran statistics (Table 2). Figures were render in PyMOL (v2.2.3,
806 Schrödinger, LLC).

807

808 **Comparison with other beta lactamase binding proteins**

809 A search using PDBeFOLD (Krissinel and Henrick, 2004) was conducted using EstG as a search
810 model. Among them carboxyesterases, penicillin binding protein EstY29, and simvastatin
811 synthase (PDBs 4IVK (Cha et al., 2013), 4P87 (Ngo et al., 2014), 3HLB (Gao et al., 2009)) aligned
812 with root-mean-square deviations of 1.39, 1.62, 1.82 Å over 404, 387 and 400 amino acids,
813 respectively. The structure of EstG was used to analyze and display the primary, secondary and
814 quaternary structure of homologous proteins with ENDscript (Robert and Gouet, 2014).

815

816 **LCMS Analysis**

817 All analysis was performed on a Dionex UHPLC and Q Exactive quadrupole Orbitrap system
818 (Thermo Fisher, Waltham, Massachusetts). Two micrograms of each reaction and unreacted
819 input was injected directly onto a HyperSil Gold C-18 2.1mm x 150mm reversed phase
820 chromatography column. Analytes were separated using an increasing gradient that consisted of
821 0.1% formic acid in LCMS grade water as buffer A and 0.1% formic acid in LCMS grade
822 acetonitrile as buffer B. Due to the hydrophilic nature of glucans, the gradient began with a 2-
823 minute acquisition at 100% buffer A with a rapid ramp to 100% buffer B by 15 minutes before
824 returning to baseline conditions for the remainder of the 20 minute experiment. The Q Exactive
825 was operated in positive ionization mode using a data dependent acquisition method. An MS1
826 scan was acquired at 140,000 resolution with a scan range of 150 to 1500 m/z. The three most
827 abundant ions from each MS1 scan were isolated for fragmentation using a three-step collision
828 energy of 10, 30 and 100 and the fragment scans were obtained using 15,000 resolution. Ions
829 with unassigned charge states or more than 3 charges were excluded from fragmentation. To
830 prevent repeat fragmentation any ion within 5 ppm mass deviation of the selected ion was
831 excluded from additional fragmentation for 30 seconds. The complete LCMS method in vendor
832 .meth format and a text adaptation have been uploaded to LCMSMethods.org under the following
833 DOI (dx.doi.org/10.17504/protocols.io.36wgq7djkvk5/v1). All Thermo .RAW instrument files have

834 been uploaded to the MASSIVE public repository (Vizcaíno et al., 2014) under accession
835 MSV000089142. The vendor .RAW files and processed results can be accessed during the
836 review process using the following link: <ftp://MSV000089142@massive.ucsd.edu> and reviewer
837 password EstG725.

838

839 **LCMS Data Analysis**

840 All downstream data analysis was performed with Compound Discoverer 3.1 and Xcalibur
841 QualBrowser 2.2 (Thermo Fisher). Briefly, all MS1 ions with a signal to noise of greater than 10:1
842 from the vendor .RAW files were considered for downstream analysis. The LCMS files were
843 chromatographically aligned using an adaptive curve on all ions within a maximum mass shift of
844 2 minutes and with less than a 5 ppm mass discrepancy. The files were also normalized to
845 compensate for concentration and loading differences between samples using a constant mean
846 normalization. Ion identities were assigned using the mzCloud and ChemSpider databases using
847 a maximum mass tolerance of 5ppm against library entries. In addition, a similarity search
848 algorithm and custom compound class scoring module were used to flag ions that exhibited
849 common glucose ions following fragmentation. Compounds of interest were flagged in the
850 resulting output report by use of custom filter that eliminated ions that were of decreased
851 abundance in the EstG reacted periplasm relative to both the unreacted periplast fraction and the
852 periplast fraction treated with the EstG_{S101A}.

853

854 **LCMS results**

855 A total of 1,166 LCMS features were identified in the study. After removal of background signal
856 and ions with an m/z of less than 600, 13 prospective ions were identified that appeared to be
857 downregulated following incubation with the EstG protein. Of these molecules only one possessed
858 a fragmentation pattern consistent with a glucan polymeric structure. This ion demonstrated an
859 exact match by mass and an 83.7% fragment similarity to the cyclic hexasaccharide α -

860 cyclodextrin. Figure 6C is a mirror plot that demonstrates the level of fragment sequence match
861 between the fragmentation of this ion and α -cyclodextrin.

862

863 **Data availability**

864 The final coordinates of EstG bound to TRS, EstG bound to SO₄ and TRS, EstG bound to
865 (Ta₆Br₁₂)² have been deposited in the PDB with accession codes (7UDA, 7UIC and 7UIB)
866 respectively.

867

868 **Acknowledgements**

869 We thank the members of the Goley lab for helpful discussions and input. We thank Jean Marie
870 Lacroix for helpful discussions about OPGs. We thank Patrick Viollier for SpmX antisera, Justine
871 Collier for RelA' plasmids, Martin Thanbichler for the periplasmic *blaM* plasmids, and Gyanu
872 Lamichhane for providing nitrocefin. We thank Caren Freel Meyers, Natasha Zachara, Ronald
873 Schnaar, Patrick Viollier, and Rico Rojas for helpful discussions regarding this work. We thank
874 Patrick Viollier and Jordan Costafrolaz for initial discussions about CCNA_01638. We used
875 Biorender.com to generate Figures 6 and 7. We would also like to thank BlaB, the original name
876 of EstG, for being so fun to say for so many years.

877

878 This work is funded in part by the NIH, National Institute of General Medical Science through
879 R35GM136221 (E.D.G.) R01GM108640 (E.D.G.), T32GM007445 (training grant support of
880 A.K.D.). Mass spectrometry support from the Bumpus lab was supported in part by National
881 Institutes of Health grant R01GM103853 (N.N.B.). Work at the AMX (17-ID-1) and FMX (17-ID-
882 2) beamlines is supported by the National Institutes of Health, National Institute of General
883 Medical Sciences (P41GM111244), and by the DOE Office of Biological and Environmental
884 Research (KP1605010), and the National Synchrotron Light Source II at Brookhaven National
885 Laboratory is supported by the DOE Office of Basic Energy Sciences under contract number DE-
886 SC0012704 (KC0401040). Research in the Cava lab is supported by The Swedish Research
887 Council (VR), The Knut and Alice Wallenberg Foundation (KAW), The Laboratory of Molecular
888 Infection Medicine Sweden (MIMS) and The Kempe Foundation. Research in the Chien lab is
889 supported in part by the NIH, National Institute of General Medical Science through
890 R35GM130320 (P.C.) and UMass NIH Chemistry Biology Interface Training Program
891 T32GM008515 (R.Z.).

892

893 **Disclosures**

894 S.B.G. is a founder and holds equity in AMS, LLC and is or was a consultant to Genesis

895 Therapeutics, XinThera, and Scorpion Therapeutics.

896

897 References

898 Alegun O, Pandeya A, Cui J, Ojo I, Wei Y. 2021. Donnan potential across the outer membrane
899 of gram-negative bacteria and its effect on the permeability of antibiotics. *Antibiotics* **10**.
900 doi:10.3390/antibiotics10060701

901 Alvarez L, Hernandez S, de Pedro MA, Cava F. 2016. Ultra-Sensitive, High-Resolution Liquid
902 Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell
903 Wall Chemistry and Structure. *Bact Cell Wall Homeost Methods Protoc* 11–27.
904 doi:https://doi.org/10.1007/978-1-4939-3676-2_2

905 Arima J, Shimone K, Miyatani K, Tsunehara Y, Isoda Y, Hino T, Nagano S. 2016. Crystal
906 structure of d -stereospecific amidohydrolase from Streptomyces sp. 82F2 - Insight into the
907 structural factors for substrate specificity. *FEBS J* **283**:337–349. doi:10.1111/febs.13579

908 Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch
909 LN, Dustin Schaeffer R, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira
910 JH, Rodrigues A V., Van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C,
911 Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Christopher Garcia K,
912 Grishin N V., Adams PD, Read RJ, Baker D. 2021. Accurate prediction of protein structures
913 and interactions using a three-track neural network. *Science (80-)* **373**:871–876.
914 doi:10.1126/science.abj8754

915 Bohin JP. 2000. Osmoregulated periplasmic glucans in Proteobacteria. *FEMS Microbiol Lett*
916 **186**:11–19. doi:10.1016/S0378-1097(00)00110-5

917 Bontemps-Gallo S, Bohin J-P, Lacroix J-M. 2017. Osmoregulated Periplasmic Glucans. *EcoSal*
918 *Plus* **7**. doi:10.1128/ecosalplus.esp-0001-2017

919 Bontemps-Gallo S, Lacroix JM. 2015. New insights into the biological role of the osmoregulated
920 periplasmic glucans in pathogenic and symbiotic bacteria. *Environ Microbiol Rep* **7**:690–
921 697. doi:10.1111/1758-2229.12325

922 Boutte CC, Crosson S. 2011. The complex logic of stringent response regulation in Caulobacter

923 crescentus: Starvation signalling in an oligotrophic environment. *Mol Microbiol* **80**:695–714.

924 doi:10.1111/j.1365-2958.2011.07602.x

925 Cha SS, An YJ, Jeong CS, Kim MK, Jeon JH, Lee CM, Lee HS, Kang SG, Lee JH. 2013.

926 Structural basis for the β -lactamase activity of EstU1, a family VIII carboxylesterase.

927 *Proteins Struct Funct Bioinforma* **81**:2045–2051. doi:10.1002/prot.24334

928 Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B, Coller JA, Fero MJ, McAdams

929 HH, Shapiro L. 2011. The essential genome of a bacterium. *Mol Syst Biol* **7**:1–7.

930 doi:10.1038/msb.2011.58

931 Daitch AK, Goley ED. 2020. Uncovering Unappreciated Activities and Niche Functions of

932 Bacterial Cell Wall Enzymes. *Curr Biol* **30**:R1170–R1175. doi:10.1016/j.cub.2020.07.004

933 Desmarais SM, De Pedro MA, Cava F, Huang KC. 2013. Peptidoglycan at its peaks: How

934 chromatographic analyses can reveal bacterial cell wall structure and assembly. *Mol*

935 *Microbiol* **89**:1–13. doi:10.1111/mmi.12266

936 Emsley P, Cowtan K. 2004. Coot: Model-building tools for molecular graphics. *Acta Crystallogr*

937 *Sect D Biol Crystallogr* **60**:2126–2132. doi:10.1107/S0907444904019158

938 Evans PR, Murshudov GN. 2013. How good are my data and what is the resolution? *Acta*

939 *Crystallogr Sect D Biol Crystallogr* **69**:1204–1214. doi:10.1107/S0907444913000061

940 Falchi FA, Maccagni EA, Puccio S, Peano C, De Castro C, Palmigiano A, Garozzo D,

941 Martorana AM, Polissi A, Dehò G, Sperandeo P. 2018. Mutation and suppressor analysis

942 of the essential lipopolysaccharide transport protein LptA reveals strategies to overcome

943 severe outer membrane permeability defects in *Escherichia coli*. *J Bacteriol* **200**.

944 doi:10.1128/JB.00487-17

945 Fisher JF, Mobashery S. 2020. Constructing and deconstructing the bacterial cell wall. *Protein*

946 *Sci* **29**:629–646. doi:10.1002/PRO.3737

947 Gallego-Garcia A, Iniesta AA, Gonzalez D, Collier J, Padmanabhan S, Eliis-Arnanz M. 2017.

948 *Caulobacter crescentus* CdnL is a non-essential RNA polymerase-binding protein whose

949 depletion impairs normal growth and rRNA transcription. *Sci Rep* **7**:1–16.

950 doi:10.1038/srep43240

951 Gao X, Xie X, Pashkov I, Sawaya MR, Laidman J, Zhang W, Cacho R, Yeates TO, Tang Y.

952 2009. Directed Evolution and Structural Characterization of a Simvastatin Synthase. *Chem*

953 *Biol* **16**:1064–1074. doi:10.1016/j.chembiol.2009.09.017

954 Girardot C, Scholtalbers J, Sauer S, Su S-Y, Furlong EEM. 2016. Open Access Je, a versatile

955 suite to handle multiplexed NGS libraries with unique molecular identifiers.

956 doi:10.1186/s12859-016-1284-2

957 Gonzalez D, Collier J. 2014. Effects of (p)ppGpp on the progression of the cell cycle of

958 *caulobacter crescentus*. *J Bacteriol* **196**:2514–2525. doi:10.1128/JB.01575-14

959 Hill NS, Buske PJ, Shi Y, Levin PA. 2013. A Moonlighting Enzyme Links *Escherichia coli* Cell

960 Size with Central Metabolism. *PLoS Genet* **9**. doi:10.1371/journal.pgen.1003663

961 Holtje J V., Fiedler W, Rotering H, Walderich B, Van Duin J. 1988. Lysis induction of

962 *Escherichia coli* by the cloned lysis protein of the phage MS2 depends on the presence of

963 osmoregulatory membrane-derived oligosaccharides. *J Biol Chem* **263**:3539–3541.

964 doi:10.1016/s0021-9258(18)68956-2

965 Huang KC, Mukhopadhyay R, Wen B, Gitai Z, Wingreen NS, Fisher ME. 2008. Cell shape and

966 cell-wall organization in Gram-negative bacteria.

967 Juan J, Armenteros A, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, Von

968 Heijne G, Nielsen H. 2019. Brief CommuniCation SignalP 5.0 improves signal peptide

969 predictions using deep neural networks. *Nat Biotechnol* **37**. doi:10.1038/s41587-019-0036-

970 z

971 Judd EM, Comolli LR, Chen JC, Downing KH, Moerner WE, McAdams HH. 2005. Distinct

972 constrictive processes, separated in time and space, divide *Caulobacter* inner and outer

973 membranes. *J Bacteriol* **187**:6874–6882. doi:10.1128/JB.187.20.6874-6882.2005

974 Kabsch W. 2010. Integration, scaling, space-group assignment and post-refinement. *Acta*

975 *Crystallogr Sect D Biol Crystallogr* **66**:133–144. doi:10.1107/S0907444909047374

976 Kennedy EP, Schneider [, Reinhold JE, Rumley V, Kennedy MK&, Biol] J. 1982. Osmotic
977 regulation and the biosynthesis of membrane derived oligosaccharides in *Escherichia coli*.
978 *Proc Natl Acad Sci U S A* **79**:1092–1095. doi:10.1073/PNAS.79.4.1092

979 Krissinel E, Henrick K. 2004. Secondary-structure matching (SSM), a new tool for fast protein
980 structure alignment in three dimensions. *Acta Crystallogr Sect D Biol Crystallogr* **60**:2256–
981 2268. doi:10.1107/S0907444904026460

982 Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein
983 topology with a hidden Markov model: Application to complete genomes. *J Mol Biol*
984 **305**:567–580. doi:10.1006/jmbi.2000.4315

985 Kuzin AP, Liu H, Kelly JA, Knox JR. 1995. Binding of Cephalothin and Cefotaxime to D-Ala-D-
986 Ala-Peptidase Reveals a Functional Basis of a Natural Mutation in a Low-Affinity Penicillin-
987 Binding Protein and in Extended-Spectrum β -Lactamases. *Biochemistry* **34**:9532–9540.
988 doi:10.1021/bi00029a030

989 Lariviere PJ, Mahone CR, Santiago-Collazo G, Howell M, Daitch AK, Zeinert R, Chien P, Brown
990 PJB, Goley ED. 2019. An Essential Regulator of Bacterial Division Links FtsZ to Cell Wall
991 Synthase Activation. *Curr Biol* **29**:1460-1470.e4. doi:10.1016/j.cub.2019.03.066

992 Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform
993 **26**:589–595. doi:10.1093/bioinformatics/btp698

994 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
995 Project G, Subgroup DP. 2009. The Sequence Alignment/Map format and SAMtools.
996 *Bioinforma Appl NOTE* **25**:2078–2079. doi:10.1093/bioinformatics/btp352

997 Lubin EA, Henry JT, Fiebig A, Crosson S, Laub MT. 2016. Identification of the PhoB regulon
998 and role of PhoU in the phosphate starvation response of *Caulobacter crescentus*. *J
999 Bacteriol* **198**:187–200. doi:10.1128/JB.00658-15/FORMAT/EPUB

1000 Mahasenan K V., Batuecas MT, De Benedetti S, Kim C, Rana N, Lee M, Hesek D, Fisher JF,

1001 Sanz-Aparicio J, Hermoso JA, Mobashery S. 2020. Catalytic Cycle of Glycoside Hydrolase
1002 BglX from *Pseudomonas aeruginosa* and Its Implications for Biofilm Formation. *ACS Chem*
1003 *Biol* **15**:189–196. doi:10.1021/acschembio.9b00754

1004 May KL, Grabowicz M. 2018. The bacterial outer membrane is an evolving antibiotic barrier.
1005 *PNAS* **115**. doi:10.1073/pnas.1812779115

1006 McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-Seq
1007 experiments with respect to biological variation. *Nucleic Acids Res* **40**.
1008 doi:10.1093/nar/gks042

1009 McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser
1010 crystallographic software. *J Appl Crystallogr* **40**:658–674.
1011 doi:10.1107/S0021889807021206

1012 Meier EL, Daitch AK, Yao Q, Bhargava A, Jensen GJ, Goley ED. 2017. FtsEX-mediated
1013 regulation of the final stages of cell division reveals morphogenetic plasticity in *Caulobacter*
1014 *crescentus*. *PLoS Genet* **13**:1–25. doi:10.1371/journal.pgen.1006999

1015 Miller MS, Maheshwari S, Shi W, Gao Y, Chu N, Soares AS, Cole PA, Mario Amzel L, Fuchs
1016 MR, Jakoncic J, Gabelli SB. 2019. Getting the most out of your crystals: Data collection at
1017 the new high-flux, Microfocus MX beamlines at NSLS-II. *Molecules* **24**.
1018 doi:10.3390/molecules24030496

1019 Möll A, Schlimpert S, Briegel A, Jensen GJ, Thanbichler M. 2010. DipM, a new factor required
1020 for peptidoglycan remodelling during cell division in *Caulobacter crescentus*. *Mol Microbiol*
1021 **77**:90–107. doi:10.1111/J.1365-2958.2010.07224.X

1022 Nakano S, Okazaki S, Ishitsubo E, Kawahara N, Komeda H, Tokiwa H, Asano Y. 2015.
1023 Structural and computational analysis of peptide recognition mechanism of class-C type
1024 penicillin binding protein, alkaline D-peptidase from *Bacillus cereus* DF4-B. *Sci Rep* **5**:1–
1025 12. doi:10.1038/srep13836

1026 Ngo TD, Ryu BH, Ju H, Jane EJ, Kim KK, Kim TD. 2014. Crystallographic analysis and

1027 biochemical applications of a novel penicillin-binding protein/β-lactamase homologue from
1028 a metagenomic library. *Acta Crystallogr Sect D Struct Biol* **D70**:2455–2466.

1029 Okazaki S, Suzuki A, Komeda H, Yamaguchi S, Asano Y, Yamane T. 2007. Crystal Structure
1030 and Functional Characterization of a D-Stereospecific Amino Acid Amidase from
1031 Ochrobactrum anthropi SV3, a New Member of the Penicillin-recognizing Proteins. *J Mol
1032 Biol* **368**:79–91. doi:10.1016/j.jmb.2006.10.070

1033 Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J, Liu H, Kuehl J V., Melnyk RA, Lamson
1034 JS, Suh Y, Carlson HK, Esquivel Z, Sadeeshkumar H, Chakraborty R, Zane GM, Rubin
1035 BE, Wall JD, Visel A, Bristow J, Blow MJ, Arkin AP, Deutschbauer AM. 2018. Mutant
1036 phenotypes for thousands of bacterial genes of unknown function. *Nature* **557**:503–509.
1037 doi:10.1038/s41586-018-0124-0

1038 Radhakrishnan SK, Thanbichler M, Viollier PH. 2008. The dynamic interplay between a cell fate
1039 determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter
1040 crescentus. *Genes Dev* **22**:212–225. doi:10.1101/gad.1601808

1041 Rajagopal S, Eis N, Bhattacharya M, Nickerson KW. 2003. Membrane-derived oligosaccharides
1042 (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli. *FEMS
1043 Microbiol Lett* **223**:25–31. doi:10.1016/S0378-1097(03)00323-9

1044 Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript
1045 server. *Nucleic Acids Res* **42**:320–324. doi:10.1093/nar/gku316

1046 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011.
1047 Integrative genomics viewer. *Nat Publ Gr.* doi:10.1038/nbt0111-24

1048 Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential
1049 expression analysis of digital gene expression data. *Bioinforma Appl NOTE* **26**:139–140.
1050 doi:10.1093/bioinformatics/btp616

1051 Ryu BH, Ngo TD, Yoo W, Lee S, Kim BY, Lee E, Kim KK, Kim TD. 2016. Biochemical and
1052 Structural Analysis of a Novel Esterase from Caulobacter crescentus related to Penicillin-

1053 Binding Protein (PBP). *Sci Rep* **6**:1–15. doi:10.1038/srep37978

1054 Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. *Cold Spring Harb Perspect Biol* **370**:1–17. doi:10.1098/rstb.2015.0019

1055 Sonnhammer ELL, Krogh A. 2008. A hidden Markov model for predicting transmembrane helices in protein sequence. *Sixth Int Conf Intell Syst Mol Biol* **8**.

1056 Steinegger M, Söding J. 2018. Clustering huge protein sequence sets in linear time. *Nat Commun* **9**. doi:10.1038/s41467-018-04964-5

1057 Stock JB, Rauch B, Roseman S. 1977. Periplasmic space in *Salmonella typhimurium* and *Escherichia coli*. *J Biol Chem* **252**:7850–7861. doi:10.1016/S0021-9258(17)41044-1

1058 Sundararajan K, Miguel A, Desmarais SM, Meier EL, Casey Huang K, Goley ED. 2015. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction. *Nat Commun* **6**:1–14. doi:10.1038/ncomms8281

1059 Sutterlin HA, Shi H, May KL, Miguel A, Khare S, Huang KC, Silhavy TJ. 2016. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. *Proc Natl Acad Sci* **113**:E1565–E1574. doi:10.1073/PNAS.1601375113

1060 Thorvaldsdottir H, Robinson JT, Mesirov JP. 2012. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* **14**. doi:10.1093/bib/bbs017

1061 Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martínez-Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H. 2014. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. *Nat Biotechnol* **32**:223–226. doi:10.1038/nbt.2839

1062 Wagner UG, Petersen EI, Schwab H, Kratky C. 2009. EstB from *Burkholderia gladioli*: A novel esterase with a β-lactamase fold reveals steric factors to discriminate between esterolytic and β-lactam cleaving activity. *Protein Sci* **11**:467–478. doi:10.1110/ps.33002

1079 Weaver A, Alvarez L, Rosch K, Ahmed A, Wang G, Van Nieuwenhze M, Cava F, Dörr T. 2022.

1080 Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall

1081 turnover products. *Elife* **11**:1–23. doi:10.7554/eLife.73178

1082 West L, Yang D, Stephens C. 2002. Use of the *Caulobacter crescentus* genome sequence to

1083 develop a method for systematic genetic mapping. *J Bacteriol* **184**:2155–2166.

1084 doi:10.1128/JB.184.8.2155-2166.2002

1085 Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, Blow MJ, Bristow J, Butland

1086 G, Arkin AP, Deutschbauer A. 2015. Rapid quantification of mutant fitness in diverse

1087 bacteria by sequencing randomly bar-coded transposons. *MBio* **6**:1–15.

1088 doi:10.1128/mBio.00306-15

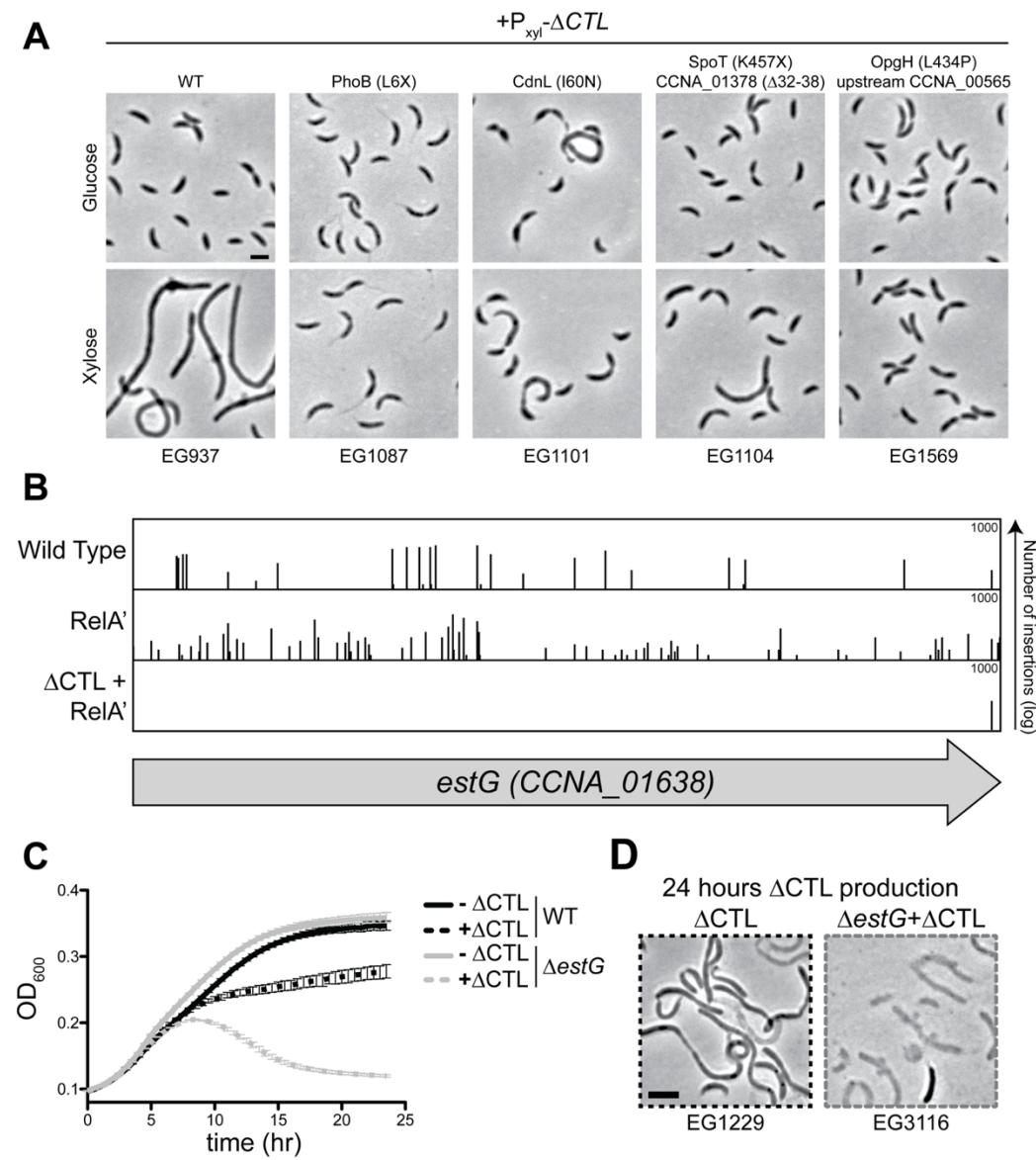
1089 Woldemeskel S, Daitch AK, Alvarez L, Panis G, Zeinert R, Gonzalez D, Smith E, Collier J,

1090 Chien P, Cava F, Viollier PH, Goley ED. 2020. The conserved transcriptional regulator

1091 CdnL is required for metabolic homeostasis and morphogenesis in *Caulobacter*.

1092 doi:10.1371/journal.pgen.1008591

1093 Woldemeskel SA, Goley ED. 2017. Shapeshifting to Survive : Shape Determination and

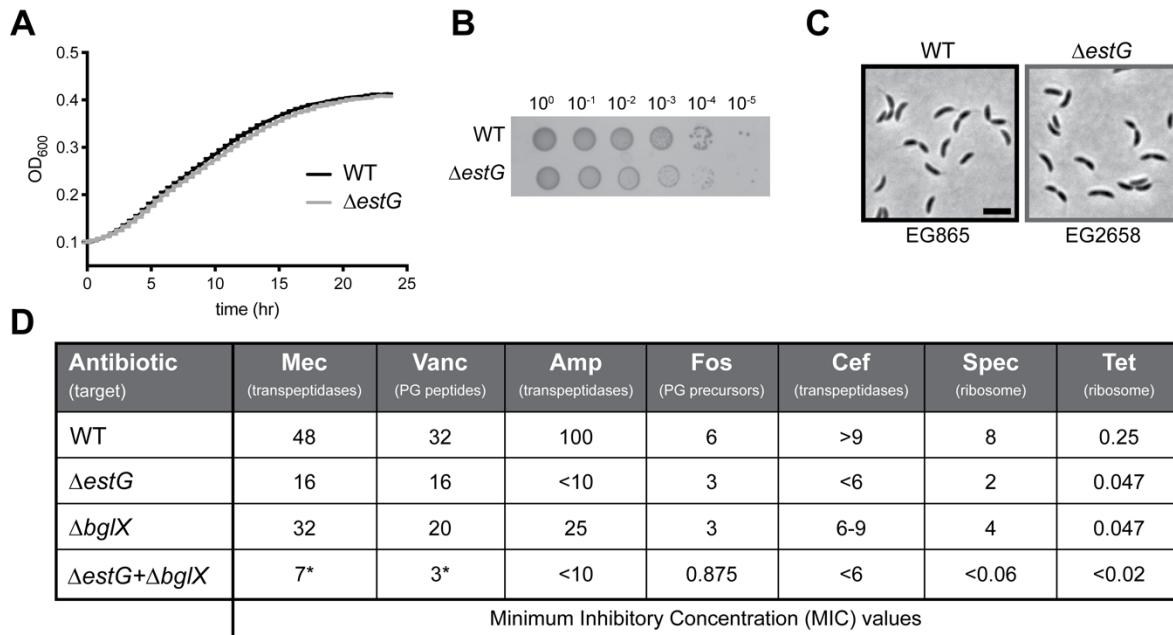

1094 Regulation in *Caulobacter crescentus*. *Trends Microbiol* **xx**:1–15.

1095 doi:10.1016/j.tim.2017.03.006

1096

1097

Figure 1

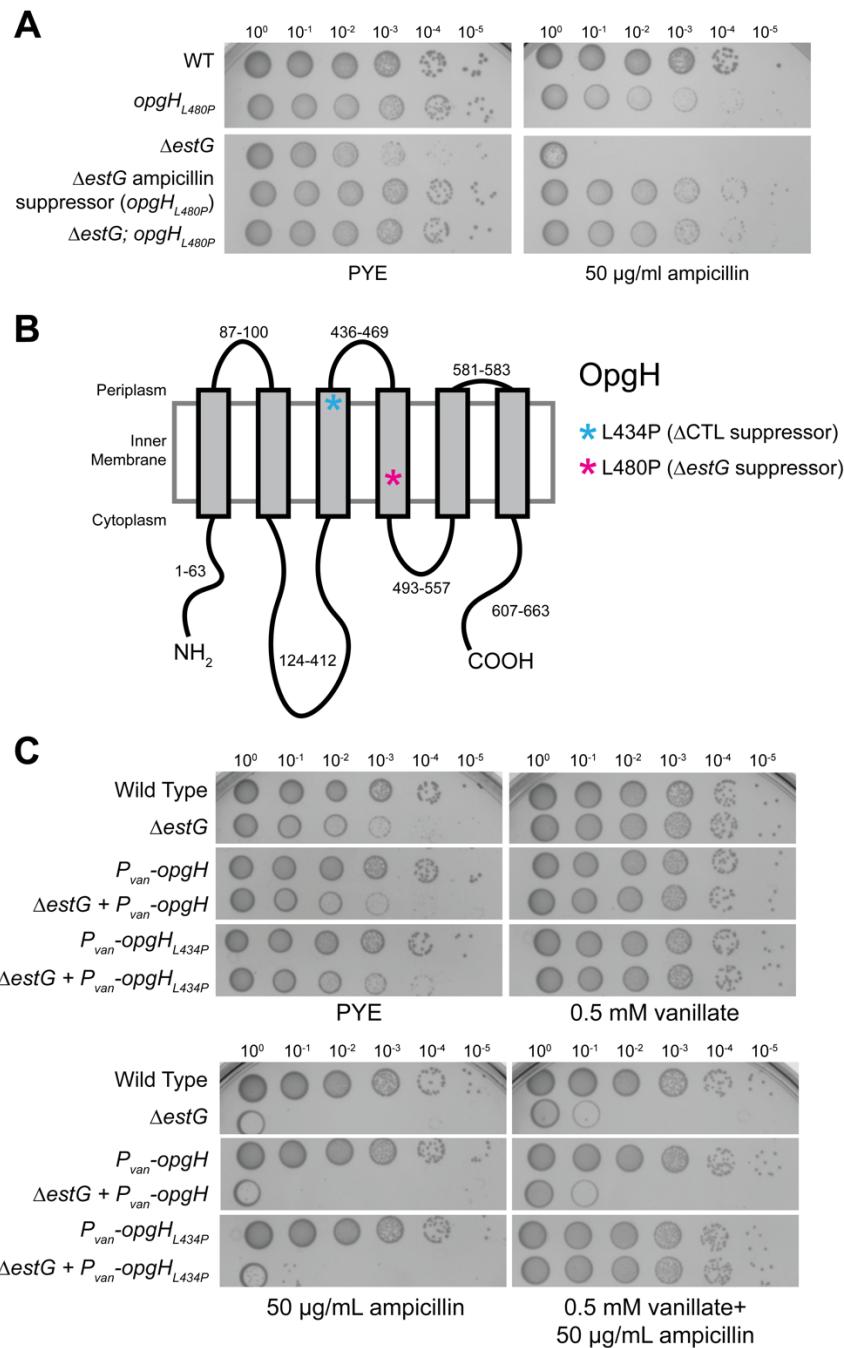


1100 **Figure 1: EstG is required to suppress ΔCTL -mediated lethality.**

1101 **A.** Phase contrast images of ΔCTL and suppressors +/- ΔCTL production. Indicated strains are
 1102 grown with 0.3% glucose (- ΔCTL) or 0.3% xylose (+ ΔCTL) for 7 hours before imaging. Scale bar,
 1103 2 μ m. Amino acid X represents a premature stop codon. **B.** Line plot of transposon insertion
 1104 frequency along the gene locus for CCNA_01638 (named *estG*) as determined by transposon
 1105 sequencing (Tn-Seq) analysis in wild type (WT; EG865), high (p)ppGpp production (RelA',

1106 EG1799), and Δ CTL with high (p)ppGpp production (Δ CTL+RelA', EG1616). **C.** Growth curve of
1107 strains EG1229 (WT) and EG3116 (Δ estG) with and without Δ CTL production (+/- 0.3% xylose)
1108 as monitored by OD₆₀₀. **D.** Phase contrast images of WT and Δ estG from the 24-hour timepoint
1109 of the growth curve in panel C. Scale bar, 2 μ m.
1110

Figure 2


1111

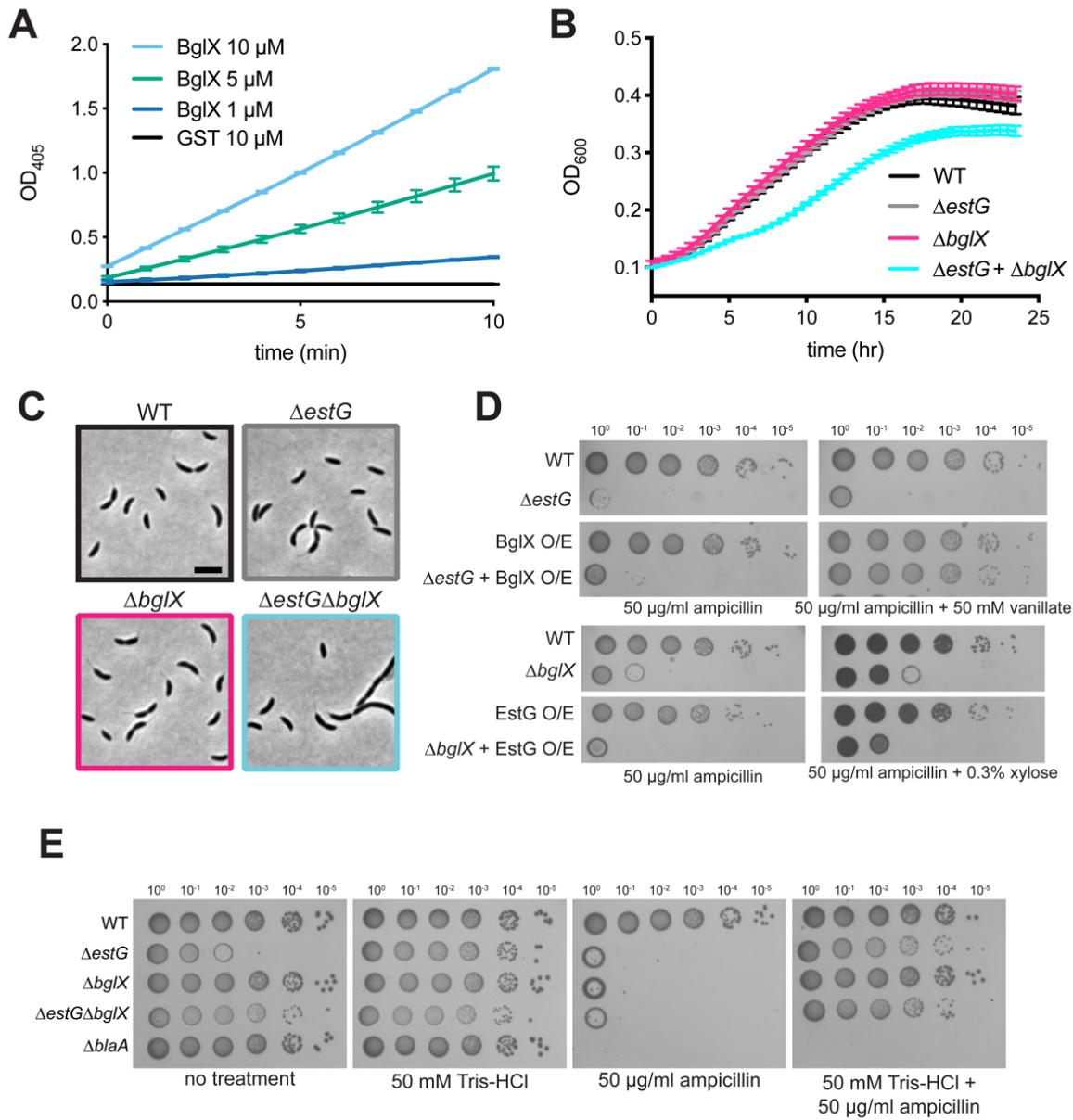
1112 **Figure 2: ΔestG does not impact cell viability or growth in unstressed conditions.**

1113 **A.** Growth curve, **B.** spot dilutions, and **C.** phase contrast images of wild type (WT, EG865) and
1114 ΔestG (EG2658). Culture dilutions are as indicated. Scale bar, 2 μm. **D.** Minimum inhibitory
1115 concentrations (MIC) of WT (EG865), ΔestG (EG2658), ΔbglX (EG3279), and ΔestGΔbglX
1116 (EG3282) against peptidoglycan (PG)- and ribosome-targeting antibiotics. Measurements in
1117 μg/mL. Mec=mecillinam; Vanc=vancomycin; Amp=ampicillin; Fos=fosfomycin; Cef=cephalexin;
1118 Spec=spectinomycin; Tet=tetracycline. Asterisk (*) represents value with a secondary zone of
1119 light inhibition.

1120

Figure 3

1121

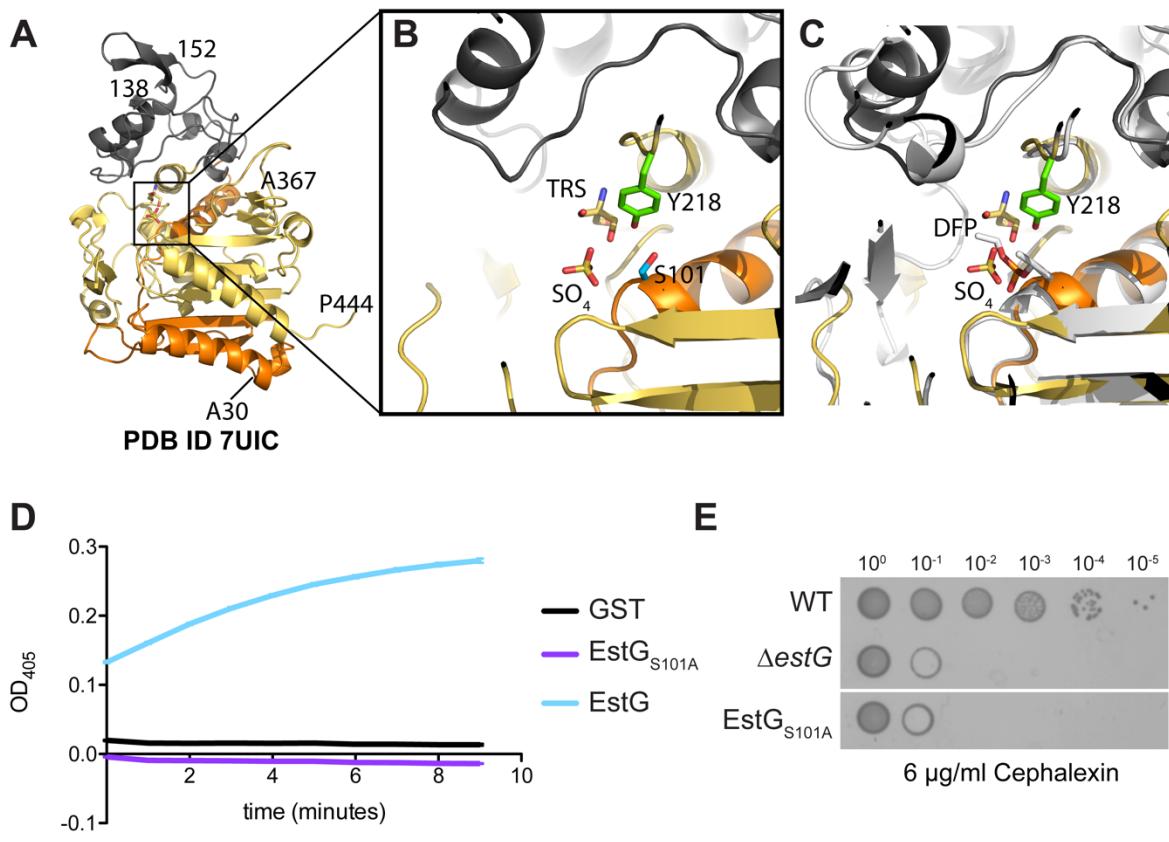

1122 **Figure 3: $opgH_{L480P}$ and $opgH_{L434P}$ suppress $\Delta estG$ sensitivities.**

1123 **A.** Spot dilutions of WT (EG865), *opgH_{L480P}* (EG3369), Δ estG (EG2658), Δ estG ampicillin
 1124 suppressor (EG3105), Δ estG; *opgH_{L480P}* (EG3371) grown on PYE agar alone or with 50 μ g/mL
 1125 ampicillin. Culture dilutions are as indicated. **B.** Schematic diagramming predicted topology of OpgH

1126 with grey boxes representing transmembrane domains and corresponding amino acids labeled.
1127 Asterisks represent approximate location of suppressing point mutations from the Δ CTL (EG1569)
1128 and Δ estG suppressors (EG3105). **C.** Spot dilutions of indicated strains on PYE agar alone or
1129 with added 0.5 mM vanillate and/or 50 μ g/mL ampicillin. Strains are WT (EG865), Δ estG
1130 (EG2658), P_{van} -*opgH* (EG3375) , Δ estG + P_{van} -*opgH* (EG3377), P_{van} -*opgH*_{L434P} (EG3577), and
1131 Δ estG + P_{van} -*opgH*_{L434P} (EG3579).

1132

Figure 4

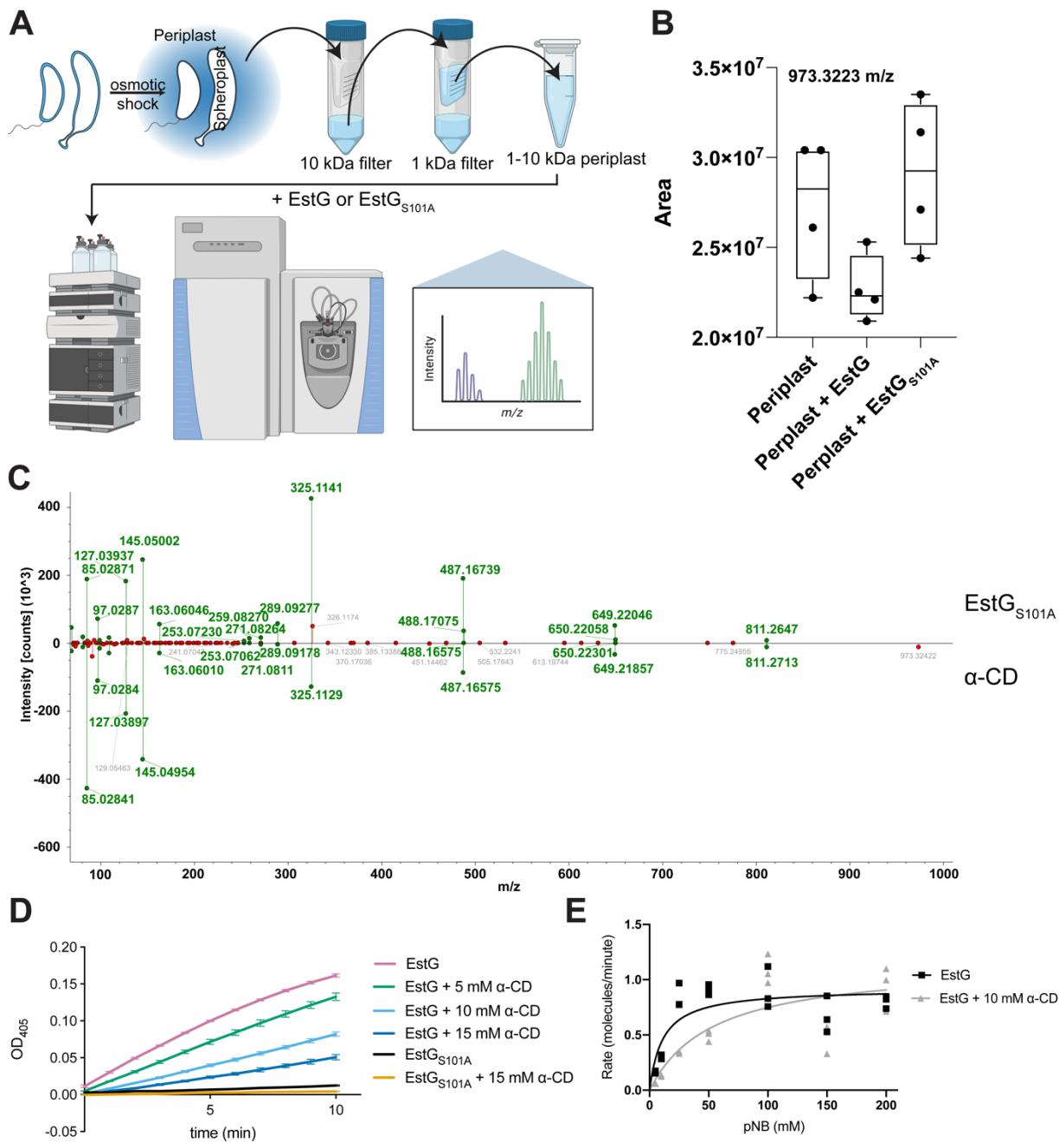

1133

1134 **Figure 4: BglX is a glucosidase that interacts genetically with estG.**

1135 **A.** 4-Nitrophenyl-β-D-glucopyranoside (pNPG) hydrolysis assay with purified BglX or GST at
1136 indicated amounts measured at OD₄₀₅. **B.** Growth curve and **C.** phase contrast images of WT
1137 (EG865), ΔestG (EG2658), ΔbglX (EG3279), and ΔestGΔbglX (EG3282). Scale bar, 2 μm. **D.**
1138 Spot dilutions on PYE agar with 50 μg/mL ampicillin +/- 50 mM vanillate or 0.3% xylose of WT

1139 (EG865), $\Delta estG$ (EG2658), $P_{van}\text{-}bgI\!X$ (BgI\!X O/E, EG3384), $\Delta estG\text{+} P_{van}\text{-}bgI\!X$ (EG3385), $\Delta bgI\!X$
1140 (EG3279), $P_{xyl}\text{-}estG$ (EG2759), and $\Delta bgI\!X\text{+} P_{xyl}\text{-}estG$ (EG3425). **E.** Spot dilutions on PYE agar
1141 alone (no treatment) or with added 50 mM Tris-HCl and/or 50 μ g/mL ampicillin of WT (EG865),
1142 $\Delta estG$ (EG2658), $\Delta bgI\!X$ (EG3279), $\Delta estG\Delta bgI\!X$ (EG3282), and $\Delta blaA$ (EG2408). Culture dilutions
1143 are as indicated.
1144

Figure 5


1145

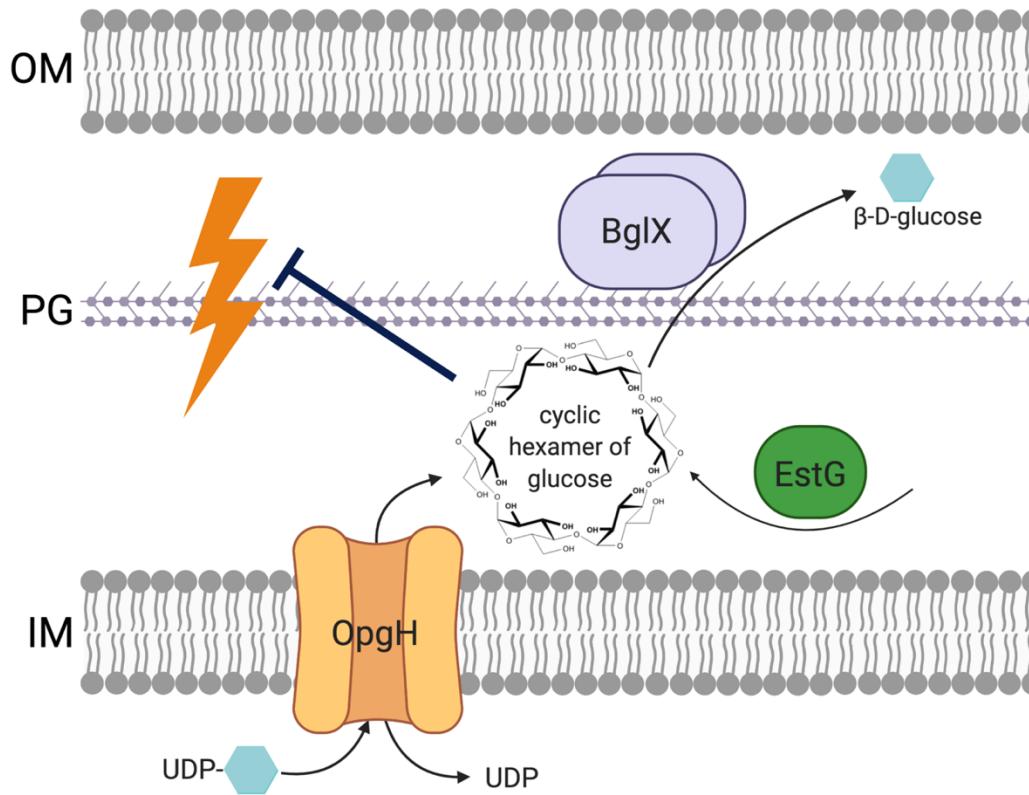
1146 **Figure 5: EstG is structurally similar to esterases in the β -lactamase family.**

1147 **A.** The structure of EstG displays an α/β hydrolase fold. Ribbon diagram of residues 30-444 with
1148 the N-terminal residues 30 to 121 colored in orange, 122-217 colored grey, 218 to 444 in yellow.
1149 **B.** Zoom in of putative active site identified by homology to esterases. Ser101 (S101) of motif I is
1150 2.7 Å away from Tyr218 (Y218) of motif II. The active site has a sulfate (SO₄) and a Tris (TRS)
1151 molecule bound. **C.** The structural alignment of EstG + TRS + SO₄ (PDB ID 7UIC) with EstB bound
1152 to diisopropyl fluorophosphate (DFP) (PDB ID 1CI8 (Wagner et al., 2009), colored in light grey)
1153 displays the partial overlap of the sulfate to the phosphonate of DFP. **D.** p-nitrophenyl butyrate
1154 (pNB) hydrolysis of purified EstG, EstG_{S101A}, and GST at 10 μ M measured at OD₄₀₅. **E.** Spot
1155 dilutions of WT (EG865), ΔestG (EG2658), and EstG_{S101A} (EG2990) on PYE agar plates with 6
1156 μ g/mL cephalexin. Culture dilutions are as indicated.

1157

Figure 6

1158


1159 **Figure 6: A cyclic hexameric glucose is the native substrate of EstG.**

1160 A. Schematic outlining the method for isolating periplasmic contents (periplast, blue) and
1161 sequential fractionation. Periplast 1-10 kDa was then combined with EstG or EstG_{S101A}, and

1162 contents were separated and identified with LCMS. **B.** A box-plot displaying the relative
1163 abundances of the cyclic hexaglycan with error bars across four technical replicates in the
1164 samples of periplast alone, periplast + EstG, or periplast + EstG_{S101A}. Mass of the parental ion is
1165 973.3223 m/z. **C.** MS/MS spectra with the experimental spectra observed in one of the injections
1166 of the periplast + EstG_{S101A} as the top of the mirror plot. Bottom half of the mirror plot is the
1167 mzCloud reference spectra for α -cyclodextrin (α -CD). **D.** p-nitrophenyl butyrate (pNB) hydrolysis
1168 of purified EstG or EstG_{S101A} with increasing amounts of α -CD showing concentration dependent
1169 inhibition. **E.** Michaelis–Menten saturation curve of the rates of pNB hydrolysis with EstG or EstG
1170 + 10 mM α -CD to show competitive inhibition of the active site. Rate was determined by the slope
1171 of the pNB hydrolysis curve at the indicated pNB concentration. Rate is presented as molecules
1172 of pNB hydrolyzed per minute. Parenthesis next to values for V_{max} and K_m represent 95%
1173 confidence interval.

1174

Figure 7

1175

1176 **Figure 7: EstG protects the cell envelope against stress through its activity on cyclic OPG**
1177 **polymers.**

1178 Cell envelope homeostasis during stress is maintained through the actions of EstG and the
1179 putative OPG pathway in *Caulobacter*. We propose that OpgH takes cytoplasmic UDP-glucose
1180 to synthesize small, cyclic OPG molecules into the periplasm. We believe BglX hydrolyzes these
1181 OPGs and EstG modifies it in some way to modulate the osmolarity of the periplasm. Without
1182 OPG production or modification, the cell envelope integrity is lost, resulting in hypersensitivity to
1183 a variety of environmental changes and antibiotic stresses (represented by yellow lightning bolt).
1184 OM=outer membrane, PG=peptidoglycan, IM=inner membrane.

1185

1186 **Table 1. Deletion of estG does not alter the muropeptide profile of *Caulobacter*.**

1187 Table outlines muropeptide relative molar abundance (%). GlcNAc: N-Acetyl glucosamine.
1188 MurNAc: N-Acetyl muramic acid. Ala: Alanine. Glu: Glutamic acid. mDAP: meso-diaminopimelic
1189 acid. Gly: Glycine. Statistical analysis performed using t-test analysis. * = P < 0.05 and > 10%
1190 variation compared to WT.

1191

Peak	Muropeptide	Structure	WT	$\Delta estG$
1	M3	GlcNAc-MurNAc-L-Ala-D-Glu-mDAP	0.42	0.3
2	M4 ^G	GlcNAc-MurNAc-L-Ala-D-Glu-mDAP-Gly	0.37	0.28
3	M5 ^G	GlcNAc-MurNAc-L-Ala-D-Glu-mDAP-D-Ala-Gly	10.32	10.17
4	M4	GlcNAc-MurNAc-L-Ala-D-Glu-mDAP-D-Ala	30.01	29.48
5	M2	GlcNAc-MurNAc-L-Ala-D-Glu	1.16	0.71
6	M5	GlcNAc-MurNAc-L-Ala-D-Glu-mDAP-D-Ala-D-Ala	19.08	18.26
7	D45 ^G	M4-M5G (DD-crosslink)	4.69	4.75
8	D44	M4-M4 (DD-crosslink)	7.79	7.78
9	M5 ^{G Anh}	GlcNAc-(1-6anhydro)MurNAc-L-Ala-D-Glu-mDAP-D-Ala-Gly	0.71	0.69
10	D45	M4-M5 (DD-crosslink)	7.02	6.98
11	M4 ^{Anh}	GlcNAc-(1-6anhydro)MurNAc-L-Ala-D-Glu-mDAP-D-Ala	0.75	0.72
12	T445 ^G	M4-M4-M5 ^G (DD-crosslink)	0.63	0.79
13	T444	M4-M4-M4 (DD-crosslink)	1.1	1.07
14	T445	M4-M4-M5 (DD-crosslink)	0.87	0.85
15	D45 ^{G Anh}	M4-M5 ^{G Anh} (DD-crosslink)	0.73	0.71
16	D44 ^{Anh}	M4-M4 ^{Anh} (DD-crosslink)	2.32	2.94
17	D45 ^{Anh}	M4-M5 ^{Anh} (DD-crosslink)	2.04	2.69
18	T445 ^{G Anh}	M4-M4-M5 ^{G Anh} (DD-crosslink)	1.68	1.81
19	T444 ^{Anh}	M4-M4-M4 ^{Anh} (DD-crosslink)	2.72	2.97
20	T445 ^{Anh}	M4-M4-M5 ^{Anh} (DD-crosslink)	1.88	2.04
21	T445 ^{G Anh,Anh}	M4-M4 ^{Anh} -M5 ^{G Anh} (DD-crosslink)	0.54	0.69
22	T444 ^{Anh,Anh}	M4-M4 ^{Anh} -M4 ^{Anh} (DD-crosslink)	2.46	2.44
23	T445 ^{Anh,Anh}	M4-M4 ^{Anh} -M5 ^{Anh} (DD-crosslink)	0.73	0.9

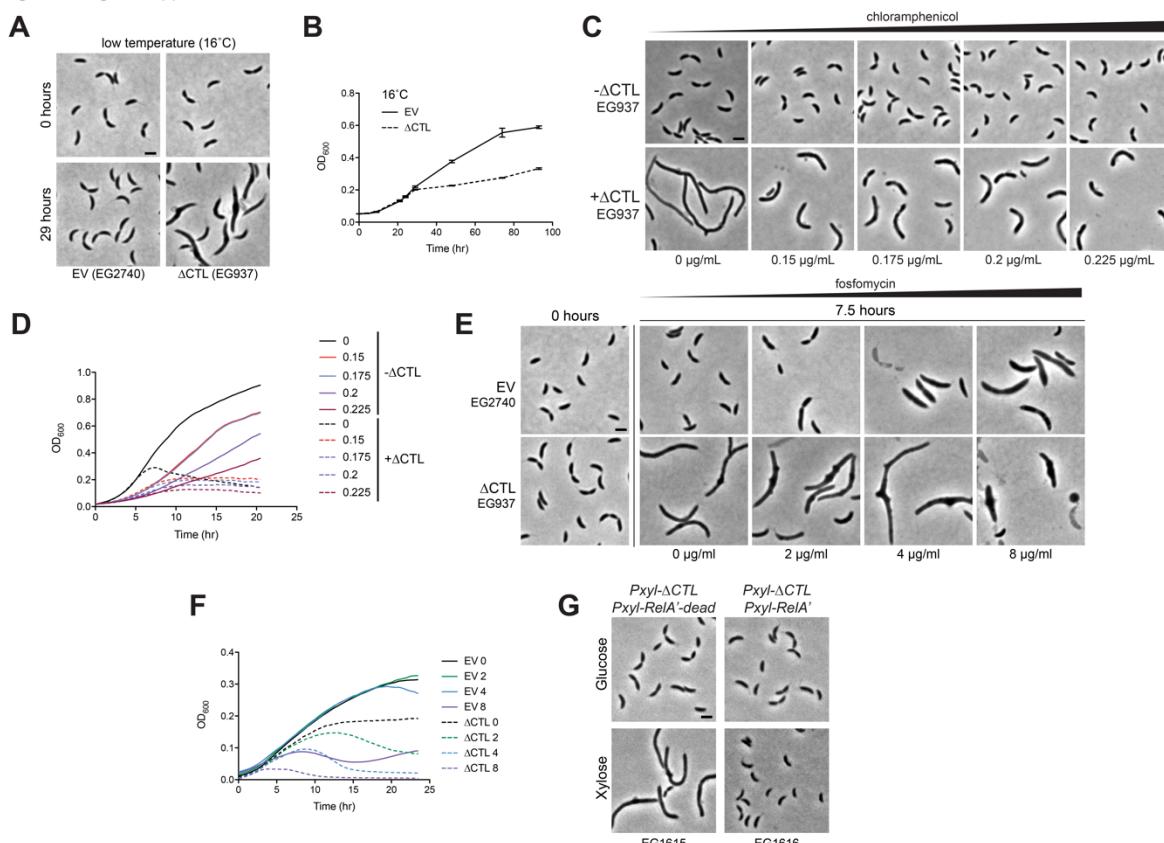
1192

1193

1194
1195

Table 2. X-ray crystallography data collection and refinement statistics.

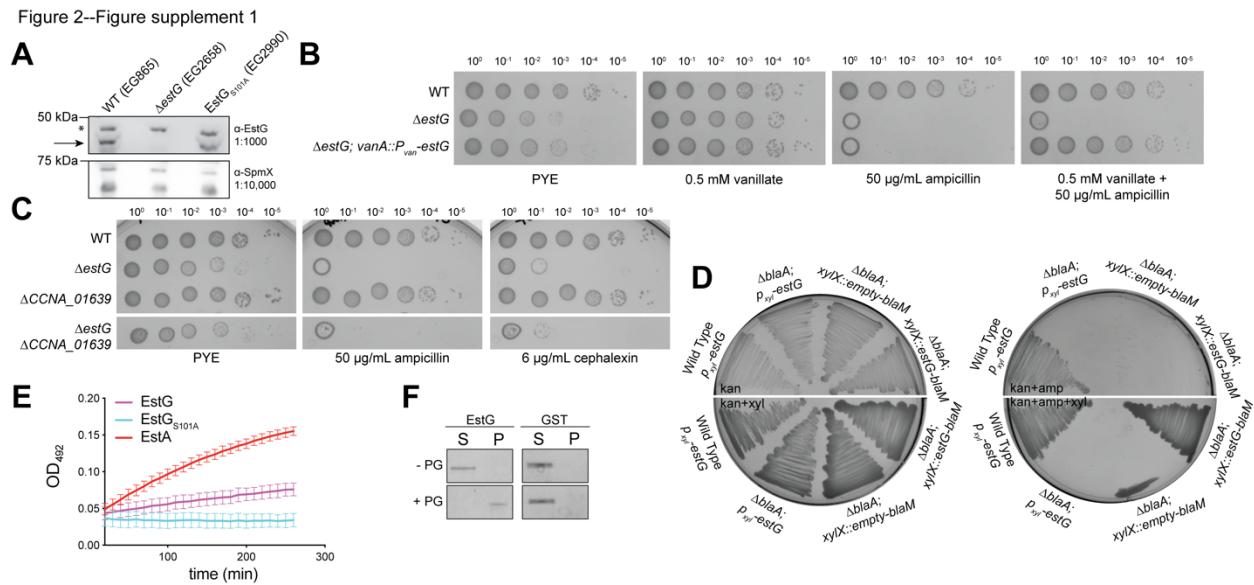
	EstG+TRS (PDB ID 7UDA)	EstG+SO₄+TRS (PDB ID 7UIC)	EstG+(Ta₆Br₁₂)² (PDB ID 7UIB)
Data Collection	May 27, 1v	Jul 16 (AMX), Au	Jul 16 (AMX)
Diffraction source	NSLS-II X17-ID-2	NSLS-II X17-ID-1	NSLS-II X17-ID-1
Wavelength (Å)	0.979321	0.920120	0.920120
Temperature (K)	100	100	100
Detector	Dectris EIGER X 16M	Dectris EIGER X 9M	Dectris EIGER X 9M
Space group	P4 ₁	P4 ₁	P4 ₁
<i>a, b, c</i> (Å)	110.3, 110.3, 55.9	111.2, 111.2, 56.8	111.7, 111.7, 57.4
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0
Resolution range (Å)	29.60–2.47 (2.57–2.47)	28.44–2.09 (2.14–2.09)	28.71–2.62 (2.75–2.62)
Total no. of reflections	162,539 (16,345)	288,425 (19,596)	195,511 (22,742)
No. of unique reflections	24,085 (2,515)	41,361 (2,900)	21,379 (2,741)
Completeness (%)	99.0 (91.9)	99.0 (91.9)	99.5 (96.9)
Redundancy	6.7 (6.5)	7.0 (6.8)	9.1 (8.3)
$\langle I/\sigma(I) \rangle$	10.9 (2.4)	12.4 (2.6)	16.9 (3.1)
R_{merge}	0.99 (0.71)	0.086 (0.77)	0.10 (0.76)
R_{meas}	0.11 (0.84)	0.10 (0.90)	0.11 (0.81)
R_{pim}	0.06 (0.44)	0.05 (0.47)	0.03 (0.27)
$CC_{1/2}$	0.99 (0.75)	0.99 (86.3)	0.99 (0.79)
Refinement			
Resolution range (Å)	29.62–2.47 (2.53–2.47)	27.83–2.09 (2.14–2.09)	27.96–2.70 (2.77–2.70)
No. of reflections, working set	22,895,1171	39,246	18,687
$R_{\text{work}}/R_{\text{free}}$	0.18/0.22 (0.30/0.35)	0.17/0.21 (0.24/0.25)	0.20/0.24 (0.30/0.32)
<i>No. of non-H atoms</i>			
EstG	3,093	3,031	3069
ligand	34	7	39
Total of non-H atoms	3,127	3,253	3,085
<i>R.m.s. deviations</i>			
Bonds (Å)	0.009	0.012	0.012
Angles (°)	1.74	0.001	1.731
Wilson B-factor (Å ²)	52	43	47
<i>Average B factors</i>			
(Å ²)			
EstG	54	42	52
ligand	58	43	80
Total average B factor	56	42	68


<i>Ramachandran (%)</i>			
Favorable	95.2	96.98	94.36
Allowed	3.8	2.26	3.92
Outlier	1.0	0.76	1.72

1196
1197

*Values in parentheses are for highest-resolution shell. All atoms refer to non-H atoms.

Figure 1--Figure supplement 1



1198

1199 **Figure 1--figure supplement 1: Slow growth does not suppress ΔCTL.**

1200 **A.** Phase contrast images and **B.** growth curve of empty vector (EV, EG2740) and ΔCTL (EG937) grown with 0.3% xylose at 16°C to slow growth. **C.** Phase contrast images and **D.** growth curve of EG937 in the presence of 0.3% glucose (-ΔCTL) or 0.3% xylose (+ΔCTL) for 7.5 hours with increasing concentrations of chloramphenicol to slow growth. **E.** Phase contrast images and **F.** growth curve of EV and ΔCTL grown with 0.3% xylose with increasing concentrations of fosfomycin to slow growth. **G.** Phase contrast images of ΔCTL producing strains with xylose inducible RelA' (high (p)ppGpp, EG1616) or catalytically dead RelA'dead (WT (p)ppGpp, EG1615) with 7 hours of 0.3% glucose or 0.3% xylose to induce ΔCTL and RelA'/RelA'dead. Scale bar, 2 μm.

1209

1210

1211 Figure 2--figure supplement 1: EstG is a periplasmic protein with broad antibiotic
1212 sensitivities.

1213 **A.** α -EstG (top) and α -SpmX (bottom) immunoblots of indicated strains at indicated dilutions.

1214 Arrow indicates band representing EstG. Asterisk denotes non-specific band. **B.** Spot dilutions of

1215 WT (EG865), Δ estG (EG2658), and Δ estG complemented with a vanillate inducible estG

1216 (EG3075) on PYE agar alone or with 0.5 mM vanillate, 50 μ g/mL ampicillin, or both. Culture

1217 dilutions are as indicated. **C.** Spot dilutions of WT (EG865), Δ estG (EG2658), Δ CCNA_01639

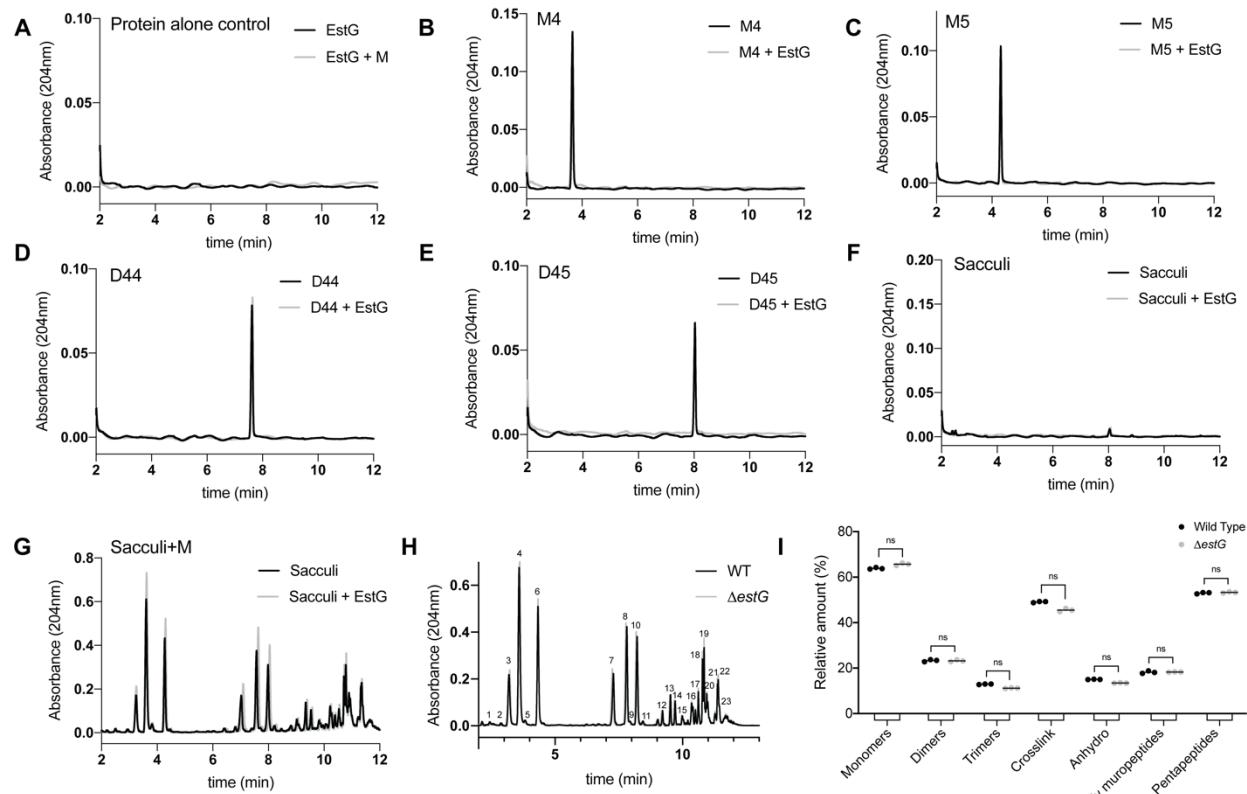
1218 (EG3044), and Δ estG Δ CCNA_01639 (EG3047) on PYE agar alone or with 50 μ g/mL ampicillin or

1219 6 μ g/mL cephalexin. Culture dilutions are as indicated. **D.** Periplasmic localization of EstG using

1220 indicated strains with fusions to blaM in a Δ blaA background. Cells are grown on PYE agar plates

1221 with indicated additives. Kanamycin 25 μ g/mL (kan), 0.3% xylose, and ampicillin 50 μ g/mL (amp).

1222 **E.** Nitrocefin hydrolysis of indicated proteins over time measured at OD₄₉₂. **F.** Peptidoglycan (PG)

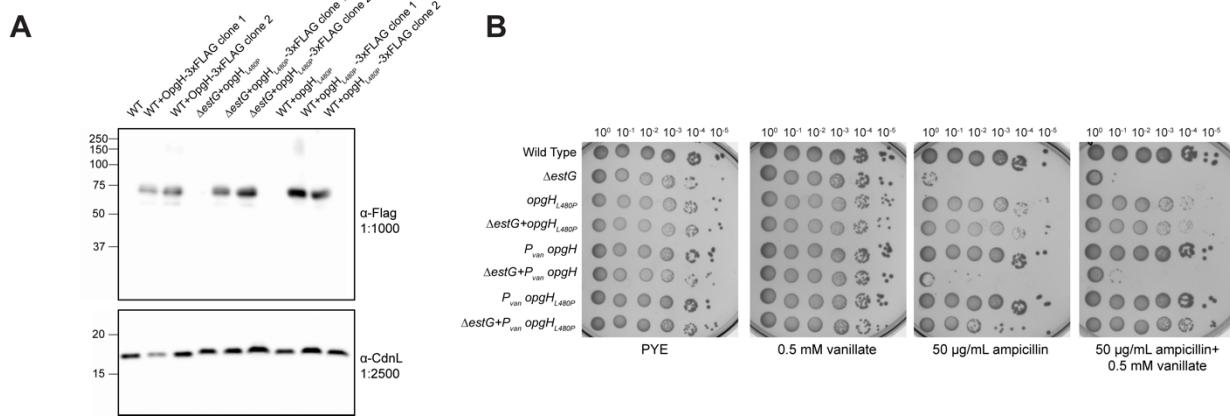

1223 binding ability of purified EstG or GST against wild type (WT) murein/sacculi. Upon

1224 ultracentrifugation, proteins unable to bind PG remain in the soluble fraction (S) and proteins that

1225 bind PG in the pellet (P).

1226

Figure 2--Figure supplement 2

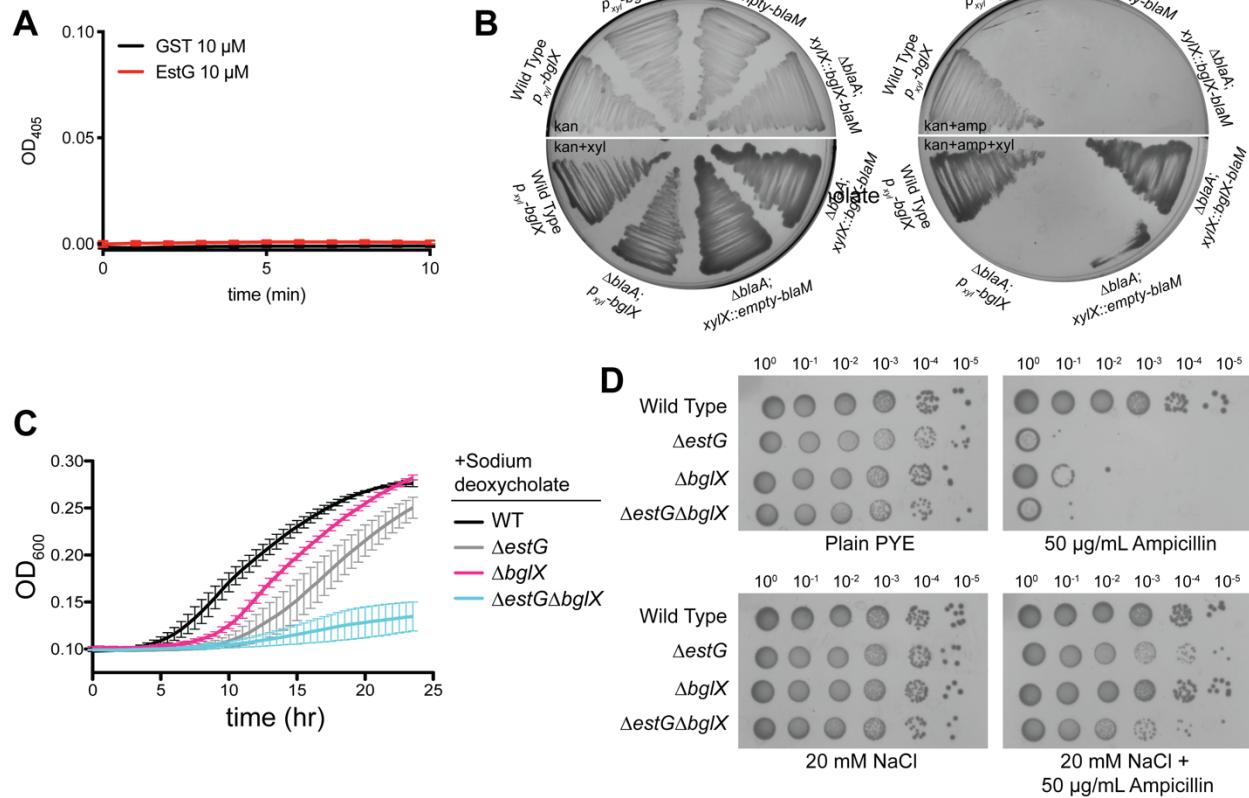

1227

1228 **Figure 2--figure supplement 2: EstG does not have activity towards the peptidoglycan or**
1229 **its substituent moieties.**

1230 *In vitro* reactions of EstG in the presence of **A.** protein alone, **B.** M4 (monomeric tetrapeptide), **C.**
1231 M5 (monomeric pentapeptide), **D.** D44 (dimeric tetrapeptide-tetrapeptide), **E.** D45 (dimeric
1232 tetrapeptide-pentapeptide), **F.** WT sacculi, and **G.** sacculi + muramidase treatment.
1233 **H.** Representative chromatograms of muropeptides prepared from WT (EG865) and Δ estG
1234 (EG2658). Relevant muropeptides are identified in Table 1. **I.** Relative molar abundance of the
1235 indicated muropeptide species from WT (EG865) and Δ estG (EG2658): monomers, dimers,
1236 trimers, crosslinkage, (1–6 anhydro) N-acetyl muramic acid containing muropeptides (anhydro,
1237 glycan chain termini), Gly containing muropeptides (Gly), and pentapeptides (penta).

1238

Figure 3--Figure supplement 1

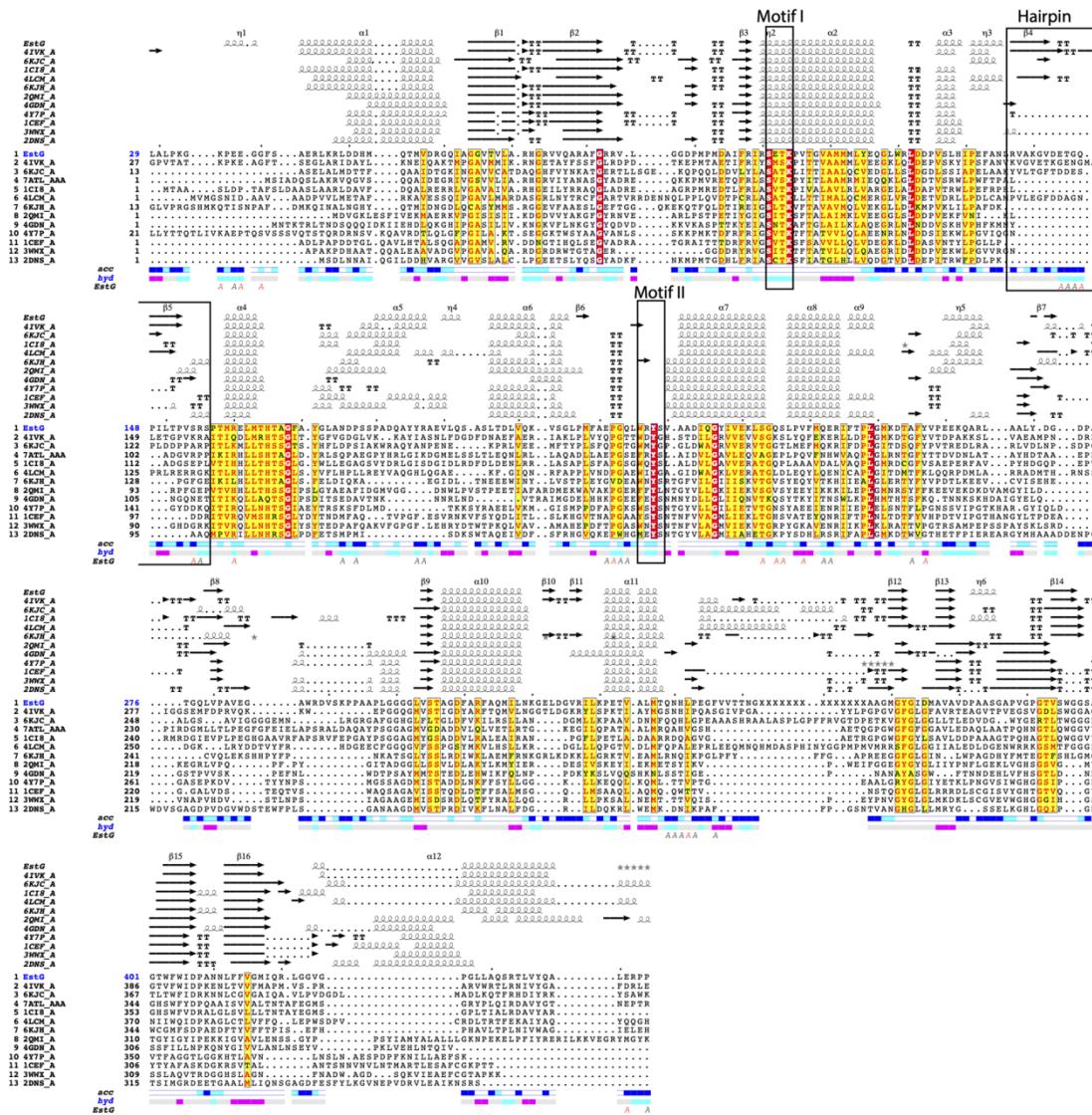


1240 **Figure 3--figure supplement 1: $OpgH_{L480P}$ is not degraded and can suppress $\Delta estG$ sensitivity in a dominant fashion.**

1242 **A.** α -Flag (top) and α -CdnL (bottom) immunoblots of indicated strains at indicated dilutions
1243 demonstrating the stability of a 3x-FLAG tagged variant of $OpgH_{L480P}$. **B.** Spot dilutions on PYE
1244 agar alone or with added 0.5 mM vanillate and/or 50 μ g/mL ampicillin of WT (EG865), $\Delta estG$
1245 (EG2658), $opgH_{L480P}$ (EG3369), $\Delta estG+opgH_{L480P}$ (EG3371), $P_{van-} opgH$ (EG3375) , $\Delta estG + P_{van-}$
1246 $opgH$ (EG3377), $P_{van-} opgH_{L480P}$ (EG3440), $\Delta estG+ P_{van-} opgH_{L480P}$ (EG3442). Culture dilutions are
1247 as indicated.

1248

Figure 4--Figure supplement 1


1249

1250 Figure 4--figure supplement 1: BgIX localization and sensitivities are similar to EstG.

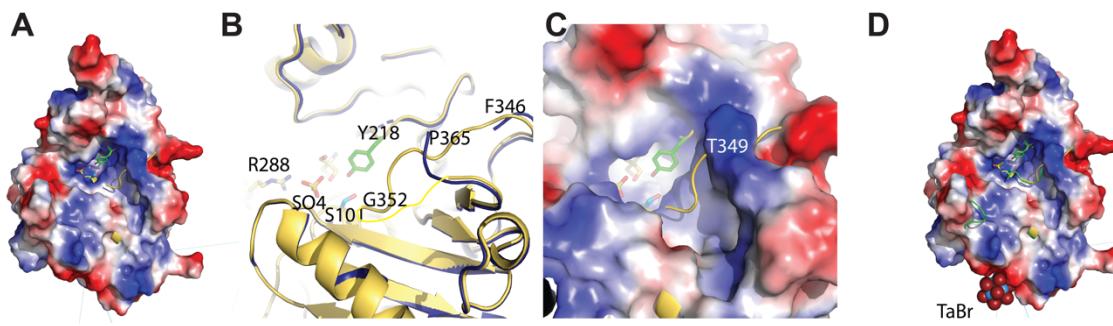
1251 **A.** 4-Nitrophenyl- β -D-glucopyranoside (pNPG) hydrolysis assay with 10 μ M purified EstG or GST
1252 measured at OD₄₀₅. **B.** Periplasmic localization of BglX using indicated strains with fusions to *blaM*
1253 in a Δ *blaA* background. Cells are grown on PYE agar plates with indicated additives. Kanamycin
1254 25 μ g/mL (kan), 0.3% xylose, ampicillin 50 μ g/mL (amp). **C.** Growth curve of WT (EG865), Δ *estG*
1255 (EG2658), Δ *bglX* (EG3279), and Δ *estG* Δ *bglX* (EG3282) with 0.6 mg/mL sodium deoxycholate. **D.**
1256 Spot dilutions of WT (EG865), Δ *estG* (EG2658), Δ *bglX* (EG3279), and Δ *estG* Δ *bglX* (EG3282) on
1257 PYE agar alone or with added 50 μ g/mL ampicillin and/or 20 mM NaCl. Culture dilutions are as
1258 indicated.

1259

Figure 5--Figure supplement 1

1260

1261 **Figure 5--figure supplement 1: EstG has structural similarity to related enzymes.**

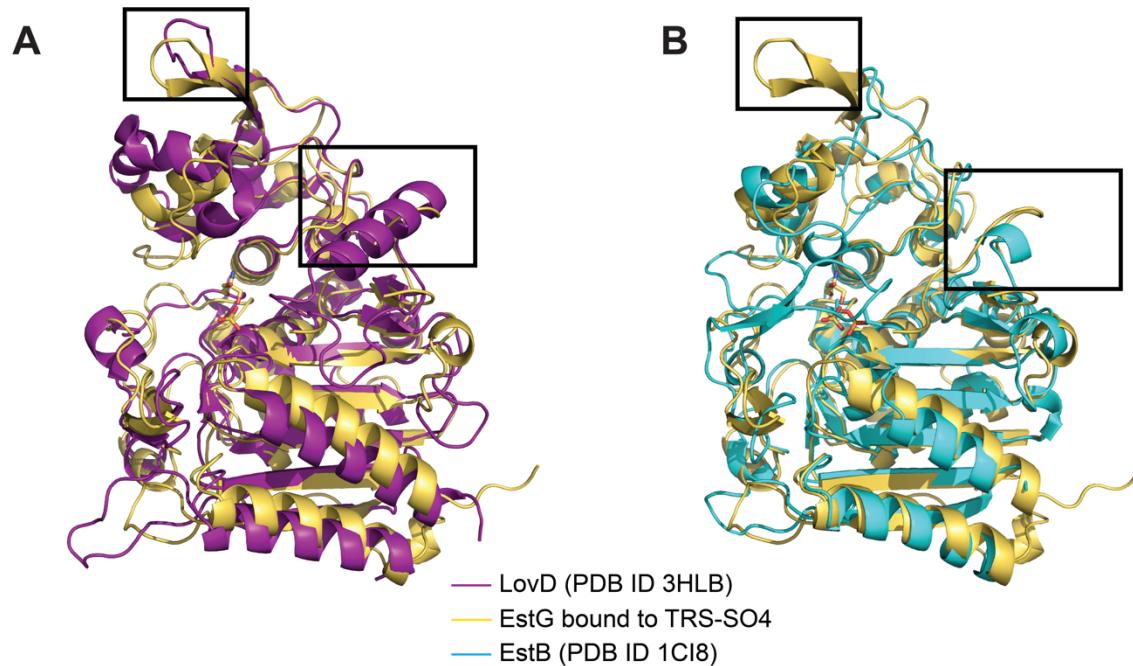

1262 Multiple sequence and structural alignment of EstG and related enzymes displaying primary to
1263 quaternary structure information. The secondary structure elements are shown as helices, strands
1264 (arrows) and tight turns (TT). The sequence alignment is colored according to residue
1265 conservation with red background with white letter for identical, yellow background with red letters
1266 for conserved. Solvent accessibility (turquoise and yellow) and hydropathy scales per residue.

1267 Letter A indicates protein:protein interaction. The figure was done with ENDscript 2 (Robert and

1268 Gouet, 2014).

1269

Figure 5--Figure supplement 2

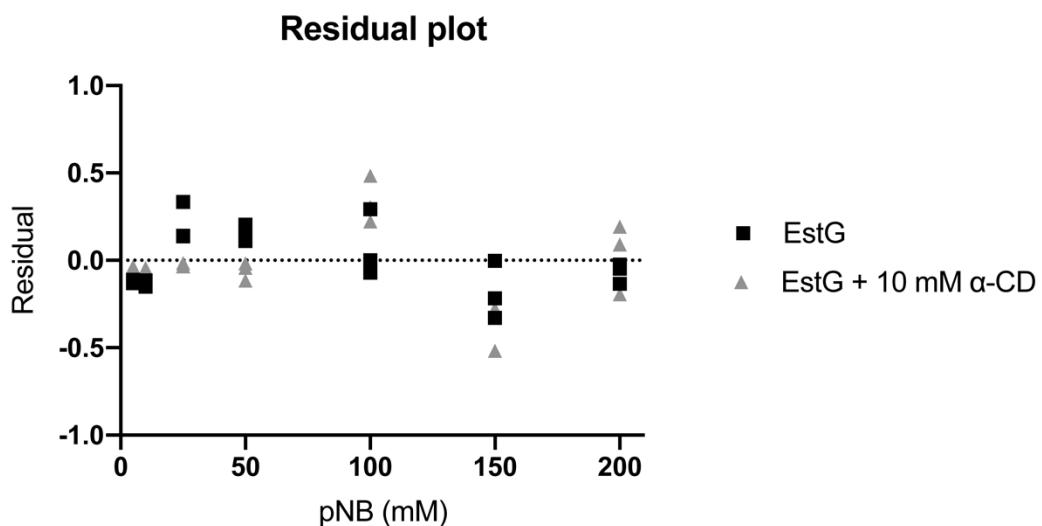

1270

1271 **Figure 5--figure supplement 2: Loop present in EstG could be involved in catalysis.**

1272 **A.** Electrostatic surface of EstG bound to Tris (TRS) structurally aligned to EstG bound to TRS
1273 and sulfate (SO_4) displays the ordered loop F346 to G352 (yellow) and how it might occlude the
1274 binding site. Residues Ser101 and Tyr218 are shown in sticks. **B.** Zoom in and **C.** electrostatic
1275 surface rendering of the structural differences in loop 346-352. **D.** Structure of EstG bound to
1276 TRS structurally aligned to EstG+ $(\text{Ta}_6\text{Br}_{12})^2$ (green cartoon). The tantalum bromide cluster,
1277 $(\text{Ta}_6\text{Br}_{12})^2$ is far from the loop, shown in spheres. EstG+ $(\text{Ta}_6\text{Br}_{12})^2$ structure shows an alternative
1278 conformation for loop 272-276 and so protrudes from the surface.

1279

Figure 5--Figure supplement 3


1280

1281 **Figure 5--figure supplement 3: Structural alignment of EstG with related enzymes.**

1282 **A.** Structural alignment of EstG with LovD (PDB ID 3HLB (Gao et al., 2009), purple) highlighting
1283 that EstG lacks the long helix between α 11 and β 12 (aa 340-350) present in 3HLB (aa 309-321).
1284 The hairpin insertion and the top of the hydrolase domain is in a different conformation. **B.**
1285 Structural alignment of EstG with EstB (PDB ID 1CI8 (Wagner et al., 2009), cyan) highlighting the
1286 insertion of the hairpin formed by β 4 and β 5 in EstG that is absent in EstB and in PDB IDs 4Y7P
1287 (Nakano et al., 2015), 1CEF (Kuzin et al., 1995), 3WWX (Arima et al., 2016), 2DNS (Okazaki et
1288 al., 2007).

1289

Figure 6--Figure supplement 1

1290

1291 **Figure 6--figure supplement 1: EstG residual in the presence and absence of α -
1292 cyclodextrin.**

1293 Residual plot of the rate data from Figure 6E, presenting the deviation of the data points from the
1294 respective Michaelis-Menten fit.

1295

1296 **Supplement Table 1.**

1297 Whole genome sequencing of suppressors for Δ CTL screen and Δ estG spontaneous
1298 suppressors.

1299

1300 **Supplement Table 2.**

1301 Tn-Seq data for WT (EG865), RelA' (EG1799), and Δ CTL+RelA' (EG1616).

1302

1303 **Supplement Table 3.**

1304 Strains and plasmids used in this study.