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Abstract. 

Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells 
and tissues. We present DeePiCt (Deep Picker in Context), an open-source deep-learning framework for 
supervised structure segmentation and macromolecular complex localization in cellular cryo-electron 
tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 
tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore 
complexes, organelles and cytosol. By comparing our method to state-of-the-art approaches on this dataset, 
we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study 
compositionally-distinct subpopulations of cellular ribosomes, with emphasis on their contextual 
association with mitochondria and the endoplasmic reticulum. Finally, by applying pre-trained networks to 
a HeLa cell dataset, we demonstrate that DeePiCt achieves high-quality predictions in unseen datasets from 
different biological species in a matter of minutes. The comprehensively annotated experimental data and 
pre-trained networks are provided for immediate exploitation by the community.  
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Main. 
Introduction 
Cryo-Electron Tomography (cryo-ET) produces three-dimensional (3D) snapshots of cellular landscapes at 
molecular resolution, making it possible to investigate the structural and functional states of 
macromolecular complexes in their native environment, and to unveil how different macromolecular 
populations interact with other cellular structures1–8. With improved instrumentation, sample preparation 
protocols, and automation, high-quality in-cell cryo-ET data are rapidly being generated, opening the 
possibility to conduct high-throughput studies9–12. However, due to the complex and crowded nature of the 
intracellular milieu, together with limitations arising from cryo-ET image acquisition (low signal-to-noise 
ratio (SNR) and incomplete angular sampling) data mining of 3D cryo-ET volumes remains a major 
bottleneck13,14. Data mining in terms of reliable identification of a relatively homogenous set of 
macromolecular complexes constitutes a fundamental prerequisite for structural analysis15,13,14. 
 
A range of available semi-automated methods for segmentation of cellular structures and localization of 
macromolecular complexes (from here on, particles) in cryo-ET datasets are broadly classified as template-
based and template-free approaches16. Traditional Template Matching (TM)17 is a commonly applied 
computational approach and is based on a point-wise numerical computation of a similarity coefficient 
(cross-correlation) to a known template of the complex in question. TM is accurate in the localization of 
ribosomes and cytoskeletal filaments, but fails at identifying smaller or less dense particles18, and is 
computationally intensive. On the other hand, current template-free methods implementing classical image 
processing approaches are purposely designed for and thus limited to specific molecular shapes, or to 
special configurations in which particles are associated with large cellular structures such as membranes or 
microtubules16,19,20. These methods together with TM require manual inspection and are therefore laborious 
and time-consuming. The advent of deep learning methods, and particularly convolutional neural networks 
(CNNs)21–23, has enabled developing more generally applicable and automated approaches to accelerate the 
tasks of segmentation and localization in cryo-ET. The first of such methods was a two-dimensional (2D) 
CNN for semantic segmentation of ribosomes and large structures, such as cellular organelles or 
membranes24. However, its 2D nature makes it less suitable for particle localization, where probing the 3D 
structure becomes beneficial. More recently, DeepFinder, a fully supervised method based on the U-Net 
architecture25 for multi-class semantic segmentation, has positioned itself as the state-of-the-art in 
automated particle localization in both simulated and real cryo-ET datasets26–29. Remaining limitations 
include the identification of less prevalent particles, as well as the interpretation of the obtained predictions 
within their cellular context. Furthermore, the field lacks publicly available non-synthetic expert-annotated 
cryo-ET data to train new models and to benchmark the available methods.  
 
Here we present DeePiCt (Deep Picker in Context), our open-source software which synergizes supervised 
convolutional networks for segmentation of cellular compartments (organelles or cytosol) and structures 
(membranes or cytoskeletal filaments), and localization of particles. We generated a set of comprehensively 
annotated tomograms of wild-type S. pombe for training and benchmarking our method, which we make 
publicly available to overcome the critical limitations arising from the absence of publicly available 
annotated experimental datasets. From here on, we refer to the term network as the deep learning algorithm 
itself and model as the algorithm once already trained. We provide DeePiCt models, trained on this dataset 
which show high data-mining performance and can be readily applied across species and datasets.  
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Results 
 
DeePiCt: A deep-learning approach for automated compartment segmentation and particle 
localization  
DeePiCt is based on deep learning technologies. It combines a 2D CNN for segmentation of cellular 
compartments and a 3D CNN for particle localization, membrane, and cytoskeletal filament annotations 
(Fig. 1). This synergy allows for more precise particle picking and interpretation of their cellular context. 
The 2D and 3D CNN are adapted from the original U-Net architecture25 (Fig. 1a, Supplementary Note 1). 
Since cellular compartments are easily recognizable in 2D image data, the compartment segmentation 
network operates in 2D, which has the advantage of requiring little training data. The 2D CNN employs a 
fixed depth (D) of 5 (4 max-pooling layers) and 16 initial filters (IF) (Fig. 1a). Our implementation of the 
3D CNN allows multi-label learning (Supplementary Note 1) and adjustable architectural parameters D, 
number of IF, a batch normalization layer (BN), and the dropout parameter in the encoder and decoder 
paths (ED and DD, respectively) (Fig. 1a). These parameters can be set according to the amount and quality 
of training data, and the shape complexity, size and abundance of the particle of interest as suggested in 
Supplementary Table 1. In general, larger particles benefit from larger values of D to increase the 
network’s receptive field, and particles with a low-density print (low SNR with respect to the surrounding 
context) require larger IF values. The remaining optional layers, BN and dropout, are well known 
techniques in computer vision to avoid overfitting30,31. 
 
For training, each network requires tomograms and corresponding 3D binary masks, which represent the 
segmentation of the structures of interest, e.g. organelle segmentations for the 2D U-Net and spheres 
representing particles for the 3D U-Net (Fig. 1b.1). The raw input tomograms are optionally preprocessed 
using an amplitude spectrum equalization filter (Fig. 1b.2, Extended Data Fig. 1) to enhance image 
contrast by matching the amplitude spectrum of the input tomogram to a preselected target amplitude 
spectrum distribution (Extended Data Fig. 1). Both CNNs use the Adam optimizer algorithm and the Dice 
Loss function for training (Supplementary Note 1). In the 2D network, tiles are randomly flipped and 
rotated in 90-degree increments during training to improve generalization. For the 3D CNN, we 
implemented a data augmentation strategy by applying a number of optional random transformations to the 
input images (Supplementary Note 1). In our experience, more than 700 annotated instances are required 
for particle learning in the 3D CNNs, while about 5 tomograms are sufficient for membrane segmentation. 
In the case of 2D CNNs, 6 fully segmented tomograms are enough for training networks identifying either 
a cytosol class or a single class including all cellular organelles. 
 
For predicting, the trained networks receive as input unseen tomograms pre-processed in the same way as 
the training data, and output 3D probability maps that are subsequently post-processed (Fig. 1b.3). 
Automated post-processing for the 2D network includes the combination of predicted 2D slices into a 3D 
volume, application of a 1D Gaussian filter along the z-axis for smoothing the predictions across the z 
slices, and thresholding (user-definable, default=0.75) (Extended Data Fig. 2a-c). The 3D CNN post-
processing entails the generation of a predicted segmentation. To that end, the 3D CNN output is 
thresholded by a probability value set by the user and then clustered. The clustered output can be integrated 
with contextual information from a binary map representing a tomographic region (e.g. the cytosol 
segmentation from the 2D CNN). The mode of integration can be chosen among three different options: 
intersection, contact, or colocalization, depending on the users’ specific application (Fig. 1b.4, 
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Supplementary Note 1, Supplementary Fig. 1). In the case of particle localization, the clusters’ centroids 
are used to obtain a list of the particle coordinates; their orientations and structural features can then be 
obtained by subtomogram analysis in external softwares (e. g. Warp32, M33, RELION34, Dynamo35, 
PyTom36 or EMAN237). For more details on the method, we refer to Supplementary Note 1 and our github 
repository (Code and data availability). 
 
Generation of comprehensive ground-truth annotations in S. pombe 

The ultimate requirement for developing and benchmarking any deep neural network is the existence of a 
ground truth (gt) non-synthetic dataset. Since this was not available at the outset of this study, we first 
created a comprehensive annotation of cellular features in wild-type S. pombe representing diverse 
structures, sizes and abundances. 
 
In cryo-ET data, the complete annotation of a given cellular structure or particle species is a challenging 
process, even for large compartments or complexes with a clear structural signature like the ribosome. To 
achieve the most comprehensive annotation possible, we devised an iterative workflow to mine patterns in 
three different datasets (Online Methods). In a set of 10 tomograms acquired by combining defocus and 
Volta potential phase plate (VPP38,39) and a second set of 10 tomograms using defocus only (DEF), we 
annotated ribosomes (RIBO), fatty acid synthases (FAS), membranes, organelles and cytoplasm  (Fig. 2, 
Extended Data Tables 1-3). For the nuclear pore complex (NPC), given its structural flexibility, low 
abundance (on average 3 per tomogram), and large size, a third dataset denoted by DEF* was used40. It 
consists of 127 tomograms featuring a total of 2,830 NPC subunits (~354 NPCs) to ensure enough training 
data and is composed of two subsets: one of higher and one of lower quality classified based on lamella 
thickness and tilt-series alignment error. A detailed description of the ground truth construction is available 
in the Online Methods.  
 
The resulting ground truth RIBO annotation in VPP consisted of 25,311 particles. An initial TM annotation 
contributed 61.6% (1,559 particles per tomogram (ppt), on average) of the final ground truth, whereas 
iterative rounds of DeePiCt on the incomplete ground truth contributed to a total of additional 21.36% (541 
ppt on average) and final manual annotations to 17.05% (431 ppt on average) (Fig. 2j, Extended Data Fig. 
3a,e, Extended Data Table 2). 
 
The final ground truth annotation of FAS in the 10 VPP datasets amounts to 731 particles, from which 
58.96% (43 ppt on average) constituted the initial annotations from manual picking, as TM failed. The 
combined predictions of DeePiCt on the incomplete ground truth contributed to 21.88% (16 ppt on average). 
For FAS we performed only one round of DeePiCt using the initial manual annotations, since we observed 
a high false positive rate in subsequent rounds, which is likely a consequence of the natural lower abundance 
of FAS in the tomograms and its low imprint density. The final manual picking added a significant fraction 
of 19% (14 ppt on average) (Extended Data Fig. 3c,e, Extended Data Table 3). 
 
The final ground truth RIBO annotations on the DEF dataset sum a total of 25,901 particles across the 10 
tomograms, from which only 19.23% (498 ppt on average) were included in the initial TM annotation (step 
1), 19.39% (502 ppt on average) were a contribution of DeePiCt on incomplete ground truth, and 61.36% 
(1,590 ppt on average) were manually identified (Fig. 2k-m, Extended Data Fig. 3b,e), highlighting the 
value of our carefully curated annotations. In the case of FAS, the ground truth annotations across the 10 
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tomograms amount to 366 particles, from which 48.63% (18 ppt on average) came from the initial manual 
annotations (as TM failed), 36.88% (14 ppt on average) from DeePiCt trained on incomplete ground truth, 
and 14.48% (5 ppt on average) from the final manual picking (Fig. 2k-m, Extended data Fig. 3d,f). 
Overall, a final round of manual picking for RIBO ground truth annotation was notably more crucial in 
DEF compared to VPP.  
 
Total numbers of RIBO in both acquisition types are comparable, while for FAS fewer particles were 
detected in DEF likely due to the lower SNR despite the application of an equalization filter (Extended 
Data Fig. 3, Extended Data Table 2-3, Supplementary Note 2). FAS annotations were similarly 
distributed among the ground truth construction steps in the two acquisition conditions (Extended Data 
Fig. 3). Comparison to previous proteomics studies41,42 shows that our annotations of fully assembled FAS 
in cryo-electron tomograms is in agreement with levels of FAS-𝛼 and FAS-𝛽 quantified by means of mass 
spectrometry, while the abundance of cytosolic ribosomal proteins detected by mass spectrometry are 
underestimated (Extended Data Fig. 4).  
 
To assess the quality of the RIBO and FAS particle annotations in the VPP and DEF datasets, we processed 
the tomograms in Warp and performed structural 3D classification and refinement of the subtomograms in 
RELION (Extended Data Tables 4-5, Supplementary Note. 2, Supplementary Fig. 2-4). Subtomogram 
averages of RIBO particles detected only by DeePiCt ('tp new'), represent 80S ribosomes, consistent with 
maps of all cytosolic RIBO particles for both VPP and DEF datasets (Fig. 2l-m, blue and gray, 
respectively). 3D classifications performed in both data types for FAS demonstrated that the 3D CNN 
together with manual annotations were capable of recovering these challenging shell-like structures 
independent of the data acquisition type (Supplementary Note 2, Supplementary Fig. 3).  
 
In conclusion, using DeePiCt, we provide comprehensive annotations for large macromolecular complexes 
and cellular structures in S. pombe cryo-electron tomograms acquired with VPP and DEF, which set the 
ground for benchmarking the method’s performance and for future developments in particle detection 
approaches. 
 
Performance analysis and hyperparameter tuning of the DeePiCt workflow 
 
Performance analysis of 2D CNN in VPP 
For the 2D CNN, basic hyperparameter tuning had close to no effect and a fixed architecture produced 
sufficiently good segmentations. Hence, no extensive hyper-parameter tuning was performed. The 2D 
CNN's performance was evaluated on 10 manually annotated ground-truth VPP tomograms in a 5-fold 
cross-validation (CV). For each CV fold, two tomograms were split off from the training data to evaluate 
model performance during training. Two binary segmentation tasks were evaluated: segmentation of all 
organelles, i.e. all membrane-enclosed organelles and the nucleoplasm, and segmentation of the cytosol. 
The results show that the 2D CNN achieves high areas under the precision-recall curve (AUPRC, 
Supplementary Note 1), with a median AUPRC of 0.98 for cytosol and 0.92 for organelles (Fig. 3a, 
Extended Data Fig. 5). 
 
The 2D CNN showed an average false positive rate (FPR) of 0.054 for cytosol and 0.024 for organelle 
segmentation, with the post-processing step providing marginal improvements (reducing FPR to 0.049 for 
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cytosol and 0.021 for organelles, Extended Data Fig. 2). In addition to the two segmentation tasks 
described here, the 2D CNN has the potential to segment individual organelle types when provided with 
sufficient amounts of training data (Extended Data Table 1). Operating in 2D rather than 3D results in 
only little memory requirement (<1GB at the default batch size) and short training time (~15 minutes to 
train on ten tomograms using a Nvidia V100 GPU; Online Methods). 
 
Hyperparameter tuning for the 3D CNN 
The 3D CNN is built on a flexible architecture for which we performed hyperparameter tuning. We 
characterized the effect of varying the adjustable hyperparameters (Online Methods) on the DeePiCt 
workflow using a CV approach for RIBO, FAS and membranes in the VPP dataset, and for NPC in the 
DEF* dataset.  
 
In each case we combined the 3D CNN segmentation of the target structure with an appropriate region 
mask (Supplementary Fig. 1, Supplementary Table 1) and determined the 3D CNN hyperparameter 
combination that optimizes the task of localization or segmentation (Extended Data Fig. 6, 
Supplementary Table 1). Our results show that the best hyperparameter selection for the 3D CNN is 
structure-dependent, and not only related to the size of the complex or to the receptive field of the network 
(a function of the depth parameter D), but also to the particle’s density, symmetry and abundance, among 
others. Therefore, the architecture flexibility of our implementation of the 3D CNN is essential for the 
accurate segmentation of a diverse set of biological structures. In particular, BN shortens the learning speed 
(and notably improves the performance results in the case of NPCs and FAS). Dropout layers and a number 
of data augmentation strategies (Gaussian noise, salt-and-pepper noise, rotations, elastic transformations, 
see Supplementary Note 1) did not improve performance. 
 
Performance of DeePiCt in the same-domain setting 
Once the 3D CNN architectures which optimized the tasks of particle localization (for FAS and RIBO) and 
structure segmentation (membranes and NPC) were determined, we analyzed the performance of the 
DeePiCt workflow in the same-domain setting (i.e. training and testing in the same domain). The 3-fold 
CV tests in VPP (Fig. 3b, Extended Data Fig. 7a-c), showed that it achieved a performance F1 score 
between 0.68-0.80 for RIBO (median F1 of 0.79), 0.21-0.64 for FAS (median F1 of 0.46) and 0.58-0.90 for 
membranes (median voxel-F1 of 0.71). The results in DEF* for NPC segmentation (Fig. 3c) show that, 
even if the network is trained on the whole DEF* dataset (23% of which is high quality data, Online 
Methods), the performance of the method is clearly different in the high- versus lower-quality DEF* 
tomograms: with a median voxel-F1 of 0.47 in high-quality data, while a median voxel-F1 of 0.19 in lower-
quality DEF* tomograms. 
 
Comparison of DeePiCt to state-of-the-art particle localization tools 
To benchmark DeePiCt in the particle localization task, we compared it to TM and DeepFinder in the tasks 
of RIBO and FAS in the VPP dataset (Fig. 3d,e). Following the suggestions by the authors28, DeepFinder 
was trained in a multi-class fashion, where both particles were learnt simultaneously by a single network. 
For the training, we used the same 3-fold CV splitting of the VPP datasets as for DeePiCt. In RIBO 
localization, DeepFinder achieved a median F1 of 0.83, comparable to DeePiCt. For FAS localization, 
DeepFinder achieved a median F1 of 0.11 (significantly below DeePiCt, t-test p-value of 0.007; Fig. 3d). 
It is worth mentioning that single-class DeepFinder networks tested for FAS localization completely failed 
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by not localizing any particles. DeePiCt needs ~17h for training vs ~3h for DeepFinder, while predicting 
and post processing is equally fast for both (~500 clusters/minute) (Online Methods). Furthermore, 
DeePiCt’s trained networks (models) for all structures mentioned in this work are open source and publicly 
available (Code and data availability).  
 
Finally, the analysis of TM performance was done with the raw output with respect to the top 2000 peaks 
in the case of RIBO and to the top 1000 peaks in the case of FAS. TM also takes several hours (s. parameters 
in Online Methods) and our results confirm that TM has lower performance than both deep-learning 
methods for the localization of RIBO and FAS, completely failing at the latter (Fig. 3e).  
 
Domain generalization of DeePiCt across image acquisition conditions 
The DEF data is characterized by a lower SNR and lower contrast in the image, as compared to VPP 
(Supplementary Note 2). This makes the task of particle localization and structure segmentation more 
challenging, but has the advantage that the resulting subtomogram averages generally provide better 
resolutions43. The comprehensive ground truth construction in DEF enabled us to study the generalization 
potential of the DeePiCt workflow across image acquisition conditions, from VPP to DEF data. To that 
end, we predicted cytosol, organelles, membranes, FAS and RIBO in 10 DEF tomograms, with networks 
trained in the yeast VPP data (Fig. 3f-g).  
 
Compared to segmentation of VPP data, the 2D CNN shows slightly poorer performance on DEF data for 
cytosol (Fig. 3a,f). By employing amplitude spectrum equalization for the 2D CNN, the domain 
generalization capabilities greatly improved for both cytosol (from initial median AUPRC=0.82 to median 
AUPRC=0.95) and organelles (from AUPRC=0.42 to 0.74) (Fig. 3f, Extended Data Fig. 5). For DeePiCt, 
the performance scores in this domain generalization setting also showed a decay with respect to the same 
domain setting: with a median F1 of 0.59 for RIBO, a median F1 of 0.15 for FAS, and a median voxel-F1 
of 0.41 for membranes (Fig. 3g). Importantly, as in the case of the 2D CNN, the spectrum equalization filter 
in the preprocessing step improved the domain generalization results (Extended Data Fig. 7d-f). 
Furthermore, we confirmed that using the cytosol predictions as a region mask to clean particle annotations 
also improved the performances (Extended Data Fig. 7g-h). An example of DeePict segmentation outcome 
in the cross-domain setting is shown in Fig. 4a-b and visually resembles the ground truth annotation 
(Extended Data Fig. 8a). The DeePiCt predictions and the ground truth annotations enabled us to analyze 
the DEF tomograms in the same way as we had done for the VPP data, by downstream 3D structural 
classification and refinement (Fig. 5).  
 
DeePiCt predictions result in high quality subtomogram averages  
In the case of FAS in the DEF dataset, fewer particles were predicted than in the ground truth (Extended 
Data Tables 5, 6). Nevertheless, the subtomogram average of the detected particles revealed the two half 
domes of the barrel-shaped type I FAS with applied D3 symmetry, consistent with the ground truth average 
and published structures of this fungal 2.6-megadalton heterododecameric (α6β6) complex from other yeast 
species (Fig. 4c-d, Extended Data Fig. 8b-e). The phosphopantetheine transferase (PPT) domains required 
for activation of FAS could be observed along the equatorial plane of the complex. In addition, three 
equatorial densities were resolved that could not be assigned based on published structures. Three densities 
inside each half dome connected to the central α wheel and in close proximity to the ketosynthase (KS) fit 
with the acyl carrier protein (ACP) of Saccharomyces cerevisiae44 (Fig. 4d, PDB: 2uv8) and Pichia 
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pastoris45 (Extended Data Fig. 8c, EMD-12139). The ACP shuttles the growing acyl-chain between the 
different catalytic sites, and its localization has been suggested in connection with the activity of the whole 
multi-enzyme complex44,46–49. Here, S. pombe FAS complexes within FIB-lamellae prepared from 
exponentially growing cells revealed a specific ACP site, which had not been observed by cryo-ET and 
thus in its native state before (Fig. 4d, Extended Data Fig. 8, Supplementary Note 2). 
 
For ribosomes, the particle averages and numbers purely derived from DeePiCt predictions are comparable 
to the ground truth annotations in DEF (Extended Data Tables 5, 6; Supplementary Note 2, 
Supplementary Fig. 4, 5) complementing the performance analysis results described above. 3D 
refinements of these lamella-derived ribosomal particles from both ground truth and DeePiCt resulted in 
subtomogram averages with the nominal resolutions of 11 Å and 15 Å after multi-particle refinement in 
M33, respectively (Fig. 4e, Extended Data Fig. 8f, Extended Data Tables 5, 6). Hierarchical 3D 
classification revealed in both datasets a well-aligned class that was further refined in M to subnanometer 
resolutions of 9.3 Å and 9.4 Å for ground truth and DeePiCt predictions, respectively (Fig. 4f-h, Extended 
Data Fig. 8i-k, Extended Data Tables 5, 6, Supplementary Note 2, Supplementary Fig. 4, 5). This 
allowed the identification of tRNA occupying the P-site of the peptidyl transferase center (PTC) as well as 
the L1 stalk facing the E-site (Fig. 4g-h, Extended Data Fig. 8j-k).  
 
DeePiCt-predicted ribosomes reveal functional sub-populations 
The large number of particles that DeePiCt localized in DEF in a high throughput manner allows for 
examining subpopulations of macromolecular complexes that are functionally distinct by downstream 
subtomogram analysis. Further classification of all DeePiCt-predicted ribosomes focused on the head of 
the 40S small subunit revealed a subset with additional densities close to the head and at the exit tunnel 
(Fig. 4i, Supplementary Fig. 6). This class was also detected in VPP and in DEF ground truth datasets 
(Extended Data Tables 4-6). In the DEF ground truth dataset, densities for P- and E-site tRNAs and the 
L1 stalk facing inwards are resolved (Extended Data Fig. 9a-e). The ribosome-bound ATPase eEF3 from 
S. cerevisiae50 fitted well into the additional head density (CC 0.8972, EMD-12062, Fig. 5i, Extended Data 
Fig. 9 a-c). During translation, this eukaryotic elongation factor facilitates binding of a new tRNA to the 
A-site of the ribosome via the ternary aminoacyl-tRNA–eEF1A–GTP complex50,51. In addition, unassigned 
density at the ribosomal exit tunnel is observable for this class. Focused classification of all DeePiCt-
predicted ribosomes at this location revealed a subtomogram average fitting the S. cerevisiae ribosome52 
(CC 0.9657, EMD-1667) with the rRNA expansion segment ES27L in a particular configuration53 (CC 
0.7938, PDB-3izd) connecting to an additional density close to the ribosomal exit tunnel (Fig. 4j, 
Supplementary Fig. 7). ES27L plays a role in translation fidelity and recruits enzymes to the ribosomal 
exit tunnel, such as the methionine aminopeptidase (MetAP) that co-translationally processes the nascent 
peptide chain54,55. The nuclear export factor Arx1, which is released during cytosolic ribosomal 60S 
maturation in S. cerevisiae56, and its human homologue Ebp1, a translation regulator57,58, similarly bind at 
locations of the observed extra density (Fig. 4j, Extended Data Fig. 9h). These binding factors recruit the 
flexible rRNA scaffold ES27L and cover the ribosomal exit tunnel with their MetAP-like folds. This 
structural class was also detected in DEF gt and VPP gt datasets (Extended Data Fig. 9f-j, Extended Data 
Tables 4-5).  
 
Thus, DeePiCt predictions combined with structural analysis revealed functional subpopulations of 
ribosomes. Mapping them back into the tomograms revealed their 3D spatial distributions in relation to 
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other macromolecules such as FAS and organelles in the cellular context (Fig. 4b). 
 
DeePiCt's combination of organelle segmentation and high-throughput particle localization 
enables structural insights into ribosome-mitochondria association  
One advantage of DeePiCt over state-of-the-art tools is that it allows studying particle populations within 
their cellular context, by recovering particles in close proximity to specific organelles selected from 
predictions by the 2D CNN. We recovered cytosolic ribosomes within 25 nm distance to predicted 
endoplasmic reticulum (ER) and mitochondria from 7 and 3 DEF tomograms, respectively. Using 
subtomogram analyses for both subsets, two classes could be separated, one with and one without a 
membrane density (Supplementary Fig. 8-9). In the first class, ribosomes associated with the membrane 
in a specific orientation, whereas they were randomly oriented in the second class. The latter class likely 
arises from the highly crowded nature of the S. pombe cytoplasm (Fig. 4k-l), which in the case of DeePiCt 
predictions in DEF data, is also affected by imperfect organelle segmentations (Fig. 4b). ER-bound 
ribosomes faced the membrane with the ribosomal exit tunnel in agreement with published structures from 
other species such as S. cerevisiae1,52,59 (Extended Data Fig. 9 k-n, Extended Data Table 6). 
Mitochondria-bound ribosomes, which posed a particular challenge to structural analysis in previous 
studies59,60, were found to interact with the membrane at an angular offset of around 35° in comparison to 
the ER-bound ribosomes (Fig. 4m-n, Extended Data Fig. 9o-r, Extended Data Table 6). Interestingly, a 
density connecting the ribosome to the mitochondrial membrane was detected at the bottom of the large 
subunit in close proximity to the small subunit, but not to the ribosomal exit tunnel. It possibly represents 
the ribosome nascent chain complex (NAC) in contact with the mitochondrion receptor OM1461–63 which 
has yet to be structurally described.  
 
In summary, ribosomes close to mitochondria and ER exhibit different interfaces with the respective 
membranes, facilitating specific protein nascent chain membrane insertion or transfer into the 
organelle2,52,62. These results highlight the power of DeePiCt for high-throughput particle localization and 
cryo-electron tomogram segmentation to rapidly gain new biological insights. 
 
Trained networks can be readily applied to other species 
As a demonstration of the domain generalization potential of our workflow across species, we predicted 
segmentations of ribosomes, membranes and cytoskeleton structures (actin filaments and microtubules) in 
a published VPP HeLa cell dataset1 (Fig. 5). The application of the DeePiCt pipeline employed a manually 
generated mask using Amira64 of the cytoplasmic volume, excluding the nucleus. For the evaluation of our 
results, we computed the voxel-F1 score in comparison to the publicly available annotations (EMD-
119921). For ribosomes and membranes, we used the ribosome- and membrane-networks trained on the 10 
VPP-tomograms from S. pombe described in previous sections. This resulted in a voxel-F1 of 0.55 for 
ribosomes and a voxel-F1 of 0.18 for membranes (Extended Data Fig. 10a). However, the available expert 
membrane segmentation for the dataset covered only ER membranes, which makes the voxel-F1 value less 
meaningful. Visual inspection of the predicted membrane segmentation revealed a good fit (Fig. 5). 
 
Additionally we generated models for microtubules prediction, initially training a network for simultaneous 
actin and microtubule segmentations in 4 tomograms of cryo-FIB milled Human retinal pigment epithelial-
1 (RPE-1) cells65. Due to the high preferential orientation of the cytoskeletal filaments in this data exhibiting 
stress fibers, the performance for microtubules’ segmentation was low resulting in a voxel-F1 score of 0.26 
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(Extended Data Fig. 10a). We therefore trained a second 3D CNN for microtubule segmentation on 11 
tomograms from lamella of cryo-FIB-milled, dissociated C. elegans cells, containing 890 microtubules in 
a wide range of orientations. This new microtubule segmentation network achieved a voxel-F1 score of 
0.83 (Extended Data Fig. 10a), exemplifying the importance of a training set with a high number of 
structures, as well as orientations to mitigate the effect of the missing wedge on the prediction performance.  
 
Finally, we trained a dedicated network for predicting actin-filaments on 5 manually curated tomograms, 2 
from RPE-1 cells and 3 from Mouse embryonic fibroblasts (MEF) 3T3 cells, that contained approximately 
3,740 actin filaments (Online Methods). The actin filaments network shows a low voxel-F1 score of 0.10 
in the HeLa cell tomogram (Fig. 5, Extended Data Fig. 10a), which is likely caused by the finer structure 
of actin in comparison to microtubules, the minimal set of orientations sampled in the small amount of 
training data, and to the fact that most training filaments are arranged in bundles, probably causing the CNN 
to learn this superstructure rather than individual filaments (Extended Data Fig. 10b). 
 
Overall, these results show that the prediction of ribosomes and microtubules, representing large 
macromolecular complexes, is especially well-preserved across species and that the availability of diverse 
and well-annotated training datasets are crucial for good performance of DeePiCt. The results shown in 
Fig. 5 highlight the use of trained networks from DeePiCt to segment novel datasets spanning different 
species.  
 
Discussion 
Our DeePiCt workflow facilitates accurate and fast localization of diverse structures in cryo-ET of intact 
cells. The demonstrated high performance and the flexibility of the 3D CNN architecture offer the user a 
reliable tool for pattern recognition. This enabled us to detect particle species, such as FAS, that are low in 
abundance and have a less dense structural signature in comparison to ribosomes. The integration of 
structure segmentation (predicted by the 3D CNN) with the contextual information excludes false positives 
in the 3D localization of particles and structures segmentation task, and harnesses the cellular context to 
carry out spatial studies focused on regions of biological interest. This enabled us to investigate the 3D 
spatial distribution of macromolecules such as ribosomes in proximity to specific organelles (e.g. 
mitochondria) and to obtain structural insights with functional implications. 
 
Here, we provide the first publicly available experimental cryo-ET dataset of 20 S. pombe tomograms under 
two microscopy acquisition settings (VPP and DEF), together with a high-quality comprehensive 
annotation of RIBO and FAS, membranes, organelle and cytosol segmentations. This constitutes the first 
gold-standard dataset in the field that is large enough for unbiased model training, which will enable 
benchmarking of current methods, and spur the development of future computational tools for unbiased 
data mining in cryo-ET data.  
 
Subtomogram averaging of the annotated particles from either ground truth or DeePiCt predictions resulted 
in the first density maps of the S. pombe ribosome and fatty acid synthase. We observed differences in the 
analysis of subtomograms derived from either VPP and DEF tomograms, despite both being derived from 
wild-type S. pombe cryo-FIB lamellae (Supplementary Note 2). Due to the preservation of high frequency 
features in DEF data, a subset of well-aligned ribosomes could be identified and refined to subnanometer 
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resolution densities from cryo-FIB lamellae. The obtained maps provide detailed structural insights; for 
example, the P-site tRNA occupying the PTC, which together with the elongation factor eEF3 detected 
close to the head of the 40S subunit in a subset of ribosomes, suggest active translation. Further 
classifications close to the ribosomal exit tunnel revealed ES27L in a specific configuration providing a 
platform for other factors to interact with the exit tunnel and a potentially protruding nascent chain. By 
utilizing the contextual information of the DeePiCt predictions, differences in relative membrane 
orientation of mitochondria- and ER-bound S. pombe ribosomes were detected. The observed connecting 
density between ribosomes and mitochondria likely highlights the not yet structurally characterized 
ribosome-bound NAC in contact with OM-1461–63  facilitating protein import into mitochondria60,61.  
 
The analysis of DeePiCt's performance confirmed that data quality is an important factor in its predictive 
ability, as demonstrated in the case of NPC predictions in the DEF* dataset, which we classified into high 
and lower quality subsets based on lamella thickness and tilt-series alignment error. As the NPC has a high 
degree of structural flexibility on the subunit and diameter level inside cells40 it is a more challenging target 
than for example ribosomes and thus emphasizes the importance of higher quality data to achieve sufficient 
performance. The introduction of a pre-processing equalizing filter is also an important element of the 
pipeline that improves both the learning process during the training of 3D segmentation networks for 
particles with less dense print than the ribosome (e.g. FAS), and especially the generalization power across 
domains, including different microscopy acquisition conditions. Thus, amplitude spectrum equalization 
allows localizing macromolecules across different data acquisition types. In the case of the 2D network, 
although pre-processing did not improve model performance on the same-domain inference, it led to cross-
domain improvements when training on VPP data and inferring on DEF data, or when training on both data 
types combined to segment organelles and cytosol. More elaborate tasks, such as prediction of individual 
organelle types, will likely require more training data or training of a dedicated 3D CNN with a tailored 
network architecture. 
 
Our workflow allows easy adaptation to the segmentations of other structures, as demonstrated by the 
application of cytoskeleton segmentation networks. The networks show high-quality performance for 
microtubules in the HeLa cell dataset after training on data with broad orientation sampling of the filaments. 
Actin predictions revealed a low F1 score and therefore likely require more training data sampling different 
orientations of the structural features to improve performance. Altogether, the application of multiple 
segmentation networks to the HeLa cell dataset revealed that DeePiCt trained on datasets from different 
microscopes, species, and conditions lead to reasonably good results when the quality of data is high. 
Although more in-depth analysis is needed to study the specific limitations for the applicability of DeePiCt 
networks on other datasets, the results presented here constitute the first step towards conducting large-
scale quantitative analyses for structural biology using cryo-ET on cells from different laboratories and 
open source datasets. In this sense, the generated ground truth annotations in this study are a starting point 
to provide the community with a resource to improve and further develop cryo-ET object segmentation and 
detection tools, which will ultimately enable further exploration of particles in their cellular context. 
Together with the trained networks and their demonstrated applicability to other species, as well as the 
flexibility of the DeePiCt workflow, the software harbors great potential for quantitative cryo-ET studies 
in the future. 
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Structural comparisons were performed with S. cerevisiae FAS (PDB: 2uv844), P. pastoris FAS (EMD-
1213945), eEF3 from S. cerevisiae (EMD-1206250), the S. cerevisiae ribosome (EMD-166752) with the 
rRNA expansion segment ES27L in a particular configuration (PDB-3izd53), the nuclear export factor Arx1 
bound to the 60S large ribosomal subunit S. cerevisiae (EMD-216956), the human Ebp1 (EMD-106857), S. 
cerevisiae ribosomes derived from extracted ER (EMD-376459), and the ER-bound HeLa ribosomes (EMD-
80561). The large subunit (LSU, 60S) of a published S. cerevisiae 80S ribosome map (EMD-322866) and 
the S. cerevisiae FAS map (EMD-162346) were used as references for TM in S. pombe tomograms. The 
HeLa cell dataset is available via accession code EMD-119921. 
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Figure 1 | DeePiCt 2D and 3D CNN architecture implemented in an automated workflow combining 
compartment segmentations and particle localizations in cryo-ET data. a. The CNN U-Net architecture: the 2D 
network performs all tensor operations on the two-dimensional spatial coordinates, with D=5 and IF=16; the 3D 
network performs tensor operations on the three spatial dimensions, and the architectural hyperparameters in red can 
be set by the user. b. The DeePiCt pipeline is used to train and predict various structural features in cryo-electron 
tomograms. b.1 The DeePiCt pipeline consists of two independent CNNs: a 2D network for compartment 
segmentation and a 3D network for particle localization. b.2 Trained networks are applied to input tomograms which 
can be pre-processed with a spectrum-matching filter to improve image contrast. The example 2D tomographic slice 
visualizes the cytoplasm with the endoplasmic reticulum (ER), vacuoles (V), nucleus and extracellular space (ECS). 
b.3 DeePict raw predictions for cytosol, membranes, ribosomes and fatty acid synthase (FAS) are post-processed by 
thresholding, cluster size and centroid fitting. b.4 The outputs of the two networks can be combined to include the 
cellular context by intersecting particle predictions with cytosol masks (top), selecting particles (NPC, green) in 
contact with specific membranes (nuclear envelope, middle), and to identify particles (e.g. ribosomes, orange) 
associated with specific organelles (e.g. ER).        
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Figure 2 | Iterative comprehensive annotation of ground truth for non-synthetic data. The three columns (left to 
right) show: the annotation process for RIBO (a, d, g), FAS (b, e, h), membranes (c, f). a-f Show the cumulative 
predictions of 3 rounds of DeePiCt for RIBO and one round for FAS as cross-section overlaid on a tomographic slice 
(a-c) and in 3D view (d-f). Particles are classified as true positives recovered from the initial annotation (tp recovered; 
yellow for RIBO; green for FAS), new true positives provided by DeePiCt predictions (tp new; blue), and the 
corresponding false positives (fp; red). g, h. 3D views of the resulting ground truth, including false negatives (fn) 
distinguishing unrecovered fn from the initial annotations (pink) and final round of manual picking (salmon). i. 
Combined ground truth annotation of RIBO, FAS, membranes, and NPC (green cylindrical mask, manual annotation). 
j-k. Relative contributions of the DeePiCt rounds for RIBO (j) and FAS (k) identification are plotted across 10 VPP 
and 10 DEF S. pombe tomograms: contribution of step 1 (yellow: TM and manual annotation for RIBO; green: manual 
annotation for FAS; salmon: initial annotations not detected by DeePiCt), step 2 (blue); and step 3 (pink bars). For 
FAS the initial annotation was not based on TM, and instead was purely manual. l, m. Subtomogram averages of all 
RIBO, exclusively DeePiCt-detected (tp new; blue) and all FAS particles in VPP and DEF ground truth, respectively. 
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Figure 3 | DeePiCt performance, cross-domain generalization and comparison with other methods. a. 2D CNN 
performance results for organelle and cytosol segmentation under a 5-fold CV scheme, when training and testing 
datasets are both in the same domain (VPP). The median AUPRC scores are indicated (black dotted lines). b. 
Performance of DeePiCt for the same-domain setting. The RIBO localization, FAS localization, and membrane 
segmentation tasks are shown (left to right), under a 3-fold CV scheme. In each case, the corresponding architectures 
of the 3D CNN were optimized by hyperparameter tuning (Supplementary Table 1, Extended Data Fig. 6). The 
median F1 score for RIBOS and FAS, and a median voxel-F1 for membranes are indicated (black dotted lines). c. 
Same-domain NPC segmentation results using a 3-fold CV scheme. From left to right: performance in all DEF* 
tomograms, high quality DEF* tomograms, and lower quality DEF* tomograms. d-e. DeepFinder (d) and TM (e) 
particle localization results for RIBO and FAS localization. The median F1 values are indicated in each case (black 
dashed line), along with corresponding values of DeePiCt’s performance for comparison (red dashed line). d. 
DeepFinder results are based on the same 3-fold CV scheme as in b, by training a multiclass DeepFinder network that 
simultaneously segments FAS and RIBO. e. TM results are shown for the VPP tomograms. f-g. Results of the cross-
domain generalization for the 2D CNN (f) and DeePiCt (g) (training on 10 VPP tomograms, testing on 10 DEF 
tomograms). Dashed lines and their numerical labels indicate median performance values either of the corresponding 
plot (black), or the corresponding experiment performed in the same domain with DeePiCt (red), or in the same domain 
with the 2D CNN (green).  
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Figure 4 | DeePiCt enables exploration of macromolecular complexes in their cellular context. a. 2D slice of a 
DEF S. pombe cytoplasm tomogram. Mitochondrion (M), vesicle (V), the ER and the cell wall (CW) are detectable in 
the raw (bottom left) and with improved contrast after amplitude spectrum equalization (top right). b. DeePiCt 
predictions generated with models trained in VPP data. Organelles (gray), membranes (purple), FAS (pink, c, d), 
ribosomes (yellow, e-h) and subsets classified in RELION (head density, dark blue, i; exit tunnel density, bright blue, 
j), and within 25 nm to mitochondria (mito-bound, green, m) and the ER (ER-bound, orange, n). c. FAS subtomogram 
average (pink) fits the S. cerevisiae structure (cyan) including PPT domains. An extra density cannot be assigned. d. 
Cross-section of c close to the alpha-wheel with three densities fitting ACPs (white asterisks). e. Subtomogram average 
of all ribosomes from 10 DEF tomograms. f. Well-aligned ribosome subset detected by hierarchical 3D classification 
in RELION and refined in M. g, h. Slices through (f) reveal the PTC with a P-site tRNA and the L1 stalk facing the 
E-site. i. Ribosome subclass with additional densities (white arrowheads) close to the head of the small ribosomal 
subunit which fits eEF3 (red), and close to the ribosomal exit tunnel. j. Ribosomes classified for a density below the 
ribosomal exit tunnel (white arrowhead). The S. cerevisiae ribosome with ES27L in a particular configuration (left, 
purple) connects to the additional exit-tunnel density which fits Arx1 bound to the 60S pre-ribosome (middle and 
right, purple). k, l. Different z slices of the tomogram in a (white dashed boxes) show ribosomes bound to the ER (k) 
and a mitochondrion (l). m. ER-bound ribosomes from 7 tomograms show a connection of the peptide exit tunnel of 
the large subunit to the membrane density. n. Mitochondria-bound ribosomes from 3 tomograms show a linker 
connecting the large subunit, at a site close to the small subunit, to the membrane density. Overlay of the ribosomes 
in m and n shows different interfaces with the respective organelle membranes.   
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Figure 5 | DeePiCt’s generalization across species. A dataset depicting a HeLa cell nuclear periphery1 is segmented 
by applying four independently trained DeePiCt networks. The results show the segmentation of actin filaments (red) 
trained on RPE-1 and MEF 3T3 tomograms, microtubules (MTs, cyan) trained on C. elegans tomograms, and cytosolic 
ribosomes (yellow) and membranes (purple) trained on S. pombe tomograms.  
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Online Methods 

Yeast cell culture 
S. pombe K972 Sp h- wt haploid was kindly provided by C. Haering, originally from P. Nurse. Cells were 
recovered from frozen stock by streaking on YE5S agar plates (YES Broth, Formedium, 20 g agarose/L) 
and incubated at 30 °C for 1-3 days. Colonies were re-streaked on fresh YES agar plates and incubated 1-
3 days at 30 °C. Single colonies were inoculated in 5 mL of YES medium (YES Broth, Formedium, 
PCM0302, FM0618/8573) and grown at 30 °C, 170 rpm overnight (NCU-Shaker mini, Benchmark). On 
the next day, cultures were grown to their log phase at OD600 of 0.5 - 0.6 and diluted beforehand in YES if 
necessary.  
  
Vitrification of yeast cells 
A Leica EM GP (Leica Microsystems) was utilized to vitrify yeast cells at liquid nitrogen temperature. 
Yeast cells were either diluted to OD600 of 0.2-0.4 in YES medium or, following a prior wash step, in PBS 
containing 5 % or 10 % BSA as cryoprotectant. In the chamber, 4 µl were directly applied to TEM grids 
(Quantifoil R1/2, Cu 200 mesh, holey carbon or SiO2 film), which were glow discharged on both sides for 
45 s (Pelco Easy glow) immediately before usage. Blotting from the back side of the support was performed 
for 1-2 s at 22 °C and 99% humidity. Cells were plunge-frozen in liquid ethane cooled by liquid nitrogen 
and transferred into grid boxes until further usage. 
  
Cryo-FIB of S. pombe 
TEM grids containing vitrified yeast cells were clipped into an autogrid with a cut-out enabling cryo-
focused ion beam (cryo-FIB) milling at shallow angles67. Mounted on a 45° pre-tilt shuttle, grids were 
transferred into an Aquilos Dual beam microscope (ThermoFisher Scientific). Prior to cryo-FIB milling at 
liquid nitrogen temperature, cells were sputter-coated with platinum for 10-15 s (1 kV, 10 mA, 10 Pa). 
Subsequently, a layer of organometallic platinum (reservoir at 28°C) was applied by opening the gas 
injection system (GIS) for 8 sec at a stage Z position of 3-4 mm below the coincidence point. In three 
independent sessions, three grids with 5 lamellae each were prepared at a milling angle of 15°. 
Agglomerations of several cells were micromachined in three steps of rough milling to a thickness of 5 µm 
at 1 nA ion beam current, 3 µm at 0.5 nA and 1 µm at 0.1 nA. Milling progress was visually monitored 
between each milling step with the scanning electron microscope beam (SEM, 10 kV, 50 pA). Fine milling 
was performed at 50 pA to a target thickness of 200 nm. To render the lamellae conductive for TEM 
imaging, they were sputtered with platinum for 5 s (1 kV, 10 mA, 10 Pa) and transferred into cryo boxes. 
  
Cryo-electron tomography of S. pombe 
Autogrids containing lamellae were loaded into a Titan Krios (Thermo Fisher Scientific) such that the axis 
of the pre-tilt introduced by FIB milling was aligned perpendicular to the tilt axis of the microscope68. Cryo-
electron tomography acquisition parameters are summarized in Extended Data Tables 4-5. Tomograms 
were acquired at 300 kV on a K2 Summit direct detection camera (Gatan) operating in dose fractionation 
mode and utilizing a Quantum post-column energy filter operated at zero-loss (Gatan). Magnification of 
42,000 (EFTEM) with a calibrated pixel size of 3.37 Å was used for the ground truth VPP and DEF datasets 
and 3.45 Å for NPC data. Up to 14 tilt series were collected on a single lamella in low dose mode using 
SerialEM69. Starting from the lamella pre-tilt, images were acquired at 2.0 - 4.0 µm underfocus, in 2° 
increments within a range of + 58° to - 40° using a dose-symmetric tilt scheme70. The total dose was up to 
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120 e-/Å2 with a constant electron dose per tilt image. For the ground truth data, a set of 10 tilt-series were 
either collected with a 70 µm objective aperture or a Volta potential phase plate (VPP, Thermo Fisher 
Scientific39) with prior conditioning for 5 min. NPC data was collected as described in previous work71,40, 
but at 1.5 - 4.5 µm underfocus, with 3° increments and an effective tilt range of + 50° to - 50°.  
 
Tomogram reconstruction 
Tilt movie frames were aligned using a SerialEM plugin. Tilt series were filtered according to the 
accumulated electron dose by Fourier cropping using the mtffilter function in etomo 
(IMOD/BETA4.10.1273), and sorted by tilt angle using a python script. Four times binned tilt images (movie 
sums) were aligned in etomo (IMOD/4.9.4) software package73 using patch tracking (residual error 0.291 - 
0.569 px) and tomograms were reconstructed via weighted back projection. Tomogram thicknesses 
measured in 3dmod ranged between 80 - 310 nm. 

Ground truth annotation for organelles, cytoplasm, and membranes in VPP and DEF 

Cellular compartment segmentation was performed for both the VPP and DEF datasets. The annotations 
include 10 different organelle classes (mitochondria, vesicle, tube, ER, nuclear envelope, nucleus, vacuole, 
lipid droplet, Golgi apparatus, vesicular body, see Extended Data Table 1) and cytosol annotations, each 
identified through a unique numerical label to allow for selection of specific subsets of compartments.. 
Segmentations of the 10 VPP tomograms were performed manually in Amira64. These annotations were 
used to train a 2D CNN and to predict the initial segmentations in 10 DEF tomograms, which were first 
pre-processed with the spectrum equalization filter. These predictions were then manually corrected to 
obtain high-quality ground truth segmentations in DEF (Extended Data Table 1).  

Membrane annotations were performed on the 10 VPP tomograms and 5 DEF tomograms. Initially, 5 VPP 
tomograms were annotated using Amira to manually segment every 2 to 3 slices, which were subsequently 
interpolated by means of Amira's interpolation tool. These 5 VPP tomograms were then used to train a 
membrane segmentation 3D CNN, whose predictions on the remaining 5 VPP tomograms as well as in 5 
DEF tomograms, were manually corrected in Amira.  

Ground truth particle annotation in VPP 
RIBO and FAS were localized in 4-times binned tomograms (13.48 Å pixel size) in an iterative workflow. 
TM (RIBO) or manual annotations (FAS) (step 1, Extended Data Tables 2-3) were used for training 3D 
CNNs (step 2). CNN predictions were masked with a segmentation of the cytosol. Step 2 was repeated 
several times and each training round trained on the combined predictions of step 1 and the preceding round. 
Each round in step 2 consisted of three simultaneously trained networks sharing the same set of default 
hyperparameters (Supplementary Tables 2-3), except for the number of IF=4, 8, and 32, to provide a 
cumulative prediction less overfitted to the incomplete training data. The cumulative total predictions from 
steps 1 and 2 were then complemented by a round of visual inspection to eliminate false positives and 
manual picking to recover remaining false negatives (step 3, Extended Data Tables 2-3). Finally, the 
particle lists were cleaned for duplicates by applying elliptic distance constraints to the coordinates 
(Supplementary Note 1, Extended Data Tables 2-3). 
 
In particular, for RIBO in the VPP dataset, the initial annotation (step 1) was performed as a combination 
of two sub-steps: step 1a employed TM performed with the pyTOM toolbox36. In detail, a 3D cross-
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correlation search over 1,944 Euler angle combinations was conducted using the large subunit (LSU, 60S) 
of a published S. cerevisiae 80S ribosome map (EMD-322866) scaled to the corresponding pixel size, and a 
spherical mask with a diameter of 337 Å applied. The obtained coordinates corresponding to the top 2000-
3000 highest cross correlation scores were manually revised in Gaussian filtered tomograms (sigma = 3) 
with tom_chooser (pyTOM toolbox36). This was followed by step 1b, which consisted of a non-exhaustive 
complementary manual annotation of particles missed by TM (Extended Data Tables 2-3). These initial 
ribosome coordinates served as input for step 2: three training rounds of CNNs were successively applied, 
as a global visual inspection confirmed that the false positive rate was low, while the fraction of true 
positives recovered was substantial. The resulting CNN predictions were manually revised in tom_chooser 
as described above. In step 3, remaining particles that were not detected by either TM or CNN were 
manually localized in either spectrum-matched or Gaussian filtered tomograms (sigma = 3) for up to 3 
rounds in EMAN2 spt2_boxer74. 
  
FAS in the VPP dataset was localized in step 1 manually in EMAN2, as TM with a published S. cerevisiae 
FAS46 map (EMD-1623) as reference failed (Extended Data Tables 3). In step 2 we performed only one 
round of training with these initial annotations and the resulting predictions were revised in EMAN2. 
Additional FAS particles were localized manually.  

Ground truth particle annotation in DEF 

In the DEF dataset, the annotation procedure was the same as the one described for the VPP dataset, except 
that: 1) for RIBO the initial annotations relied on manually cleaned TM results and for FAS on incomplete 
manual picking, and 2) in step 2 of the RIBO ground truth construction, the first of the 3 rounds of CNN 
predictions used the DEF training data (from the TM results), while for the remaining 2 rounds the 
predictions were obtained using the models from the first and second rounds of RIBO VPP ground truth 
construction (trained only on VPP data, Supplementary Table 2). The visual inspection in step 2 was 
performed over the combined predictions of both the previously mentioned VPP networks and a round of 
DEF networks (IF=4, 8, 32) based on DEF TM results. After the final manual picking for missing particles 
(not present in either the initial TM results or the manually cleaned network predictions), we achieved 
comprehensive RIBO and FAS annotations (Extended Data Tables 2-3).  
 
Comparison of cryo-ET-derived particle numbers with proteomics 
Copy numbers of ribosomes and FAS per cell were calculated with the ground truth annotations for an S. 
pombe cell with the assumption of 30 % cytosolic volume75 of a total of 150 µm3 average cell volume76,77. 
It was also considered in the case of FAS that one fully assembled FAS complex is constituted by each six 
alpha and beta subunits. 
 
NPC manual localization 
NPCs were manually localized as described previously40. In brief, coordinates and initial orientations of 
354 NPCs were manually determined in 127 4-times binned, SIRT-like filtered73 defocus-only tomograms, 
as described earlier71. Two points located at opposing inner and outer nuclear membrane (INM-ONM) 
fusion points were manually picked for each NPC using IMOD. A third point was then chosen located at 
the INM-ONM fusion ring such that all three points define the horizontal plane of the NPC particle. The 
mean coordinates between the first two points were then used to assign the center of the NPC. The initial 
orientation of the NPCs was defined based on the normal vector to the defined NPC plane. A fourth point 
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was chosen in the cytoplasmic side of the horizontal plane to assign the correct initial orientation and 
prevent false upside-down assignment of initial orientations. The annotated NPC data was divided based 
on quality criteria: 38 tomograms of quality 1 have a thickness below 300 nm, thus display optimal image 
contrast, and a tilt-series alignment residual error below 0.7 px. Quality 0 was assigned to 89 tomograms 
with 300 - 395 nm thickness and a residual error of 0.7 - 5.0 for tilt series alignments. 
 
Voxel-level representation of ground truth 
As the final product of our ground truth generation process, we obtain voxel-based masks for membranes, 
cellular organelles, cytoplasm, and particles (RIBO, FAS, NPC). For RIBO and FAS, the lists of coordinates 
obtained were used to paste spherical masks (with radii of 10.78 nm for RIBO and 13.48 nm for FAS) 
centered on each of these points using a python script (Code and data availability). For the NPCs in DEF*, 
a subunit mask obtained by prior 3D averaging in novaSTA78, was pasted at each of the 8 subunit locations. 
The RIBO, FAS, membrane, organelle and cytosol masks in DEF and VPP along with the list of coordinates 
and respective tomograms are used in the subsequent training and performance analysis and are available 
on EMPIAR (Code and data availability).  
 
Cytoskeletal filaments segmentation 
Microtubule and actin networks were trained on tomograms of Human retinal pigment epithelial-1 (RPE-
1) cells previously described65. Segmentations of the individual cytoskeletal elements performed using the 
filament tracing function in Amira79,80, followed by manual curation. Trained networks were applied to a 
tomogram depicting the nuclear periphery of a HeLa cell and compared against the corresponding 
segmentations (EMD-11992). 

Subtomogram analysis for ribosomes and FAS 
Contrast transfer function (CTF) estimations, generation of 3D CTF models and subtomogram 
reconstructions were performed in Warp32. CTFs were first estimated in the sums of raw tilt movies and 
subsequently in the tilt series taking the tilt angles into account. Subtomograms containing ribosomes and 
their respective CTF models were reconstructed in volumes of 140³ pixels with a pixel size of 3.3702 Å 
and a particle diameter of 350 Å. Initial alignments of the subtomograms were performed in RELION 
version 3.0.734 in 25 iterations of 3D classification, with the S. cerevisiae 80S ribosome (EMD-3228, low-
pass filtered to 60 Å) as reference to generate an initial single class average. 3D refinements were performed 
with the resulting average as a reference. In the case of DEF data, this RELION-refined average was further 
refined in M33 to optimize particle poses, images and volumes warping to model non-linear deformations. 
Particles were re-extracted and hierarchical 3D classifications (25 iterations each) were performed in 
RELION. In the case of VPP data, hierarchical 3D classifications were performed directly after 3D 
refinements in RELION. Focused classifications were performed with binary masks indicated in the 
respective figures. Masks were generated from spheres produced in Matlab (MathWorks) in a cubic volume 
of 50 pixels per side and a radius of 20 pixels, scaled to a pixel size of 3.3702 Å and converted into binary 
masks resulting in a radius of around 130 Å using RELION, and placed relative to the area of interest using 
Chimera81. 
 
FAS particles and CTF models were reconstructed in cubic volumes of 160 pixels per side with a pixel size 
of 3.3702 Å and a particle diameter of 400 Å. Initial alignments were performed in RELION in 25 iterations 
of 3D classification into a single class, and followingly refined with the 3D refinement option and applying 
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D3 symmetry using the S. cerevisiae FAS map (EMD-162346, low-pass filtered to 60 Å) as reference. 
Hierarchical 3D classifications (25 iterations each) were performed either after 3D refinements in RELION 
(VPP data) or after subtomogram re-extraction using the ribosome-optimized image and volume models in 
M (described above). 
 
Final subtomogram averages of each particle class were obtained by 3D refinement and post-processing, 
including filtering to their respective resolutions determined by Fourier Shell Correlation (FSC) of two 
independently refined half maps at a cut-off of 0.143. Details of particle numbers and resolutions for each 
subtomogram average are summarized in Extended Data Tables 4-6. Visualization and calculation of 
cross-correlations (CC) between different maps and models, was performed with the UCSF ChimeraX 
package82.  
 
CNN Pre- and post-processing 
Preprocessing 
Tomograms are normalized to obtain uniform mean of 0 and variance of 1 in the frequency domain, prior 
to training. Additionally, the spectrum equalization filter is applied by matching the amplitude spectrum of 
the tomogram that is to be transformed to the target spectrum of one manually selected high-contrast VPP 
tomogram (Tomogram TS_001, Extended Data Fig. 1b). Extraction of spectra amplitudes is done using 
fast Fourier transform (FFT) followed by radially averaging amplitudes across the frequency domain. If the 
target tomogram’s Nyquist frequency is lower than the input tomogram’s, the target spectrum is padded 
with zeros to match the input spectrum’s size. Next, an equalization vector is created by dividing entry-
wise the target spectrum by the respective input spectrum. The resulting equalization vector is converted 
into a rotational kernel and multiplied by the input tomograms in the frequency domain in combination with 
a sigmoidal-shaped low-pass filter to eliminate high frequency noise. After back transformation, the 
tomogram exhibits a similar contrast to the target tomogram (Extended Data Fig. 1). Tomogram intensities 
are additionally normalized to obtain uniform mean and variance. For the 2D CNN, tomograms and training 
segmentations are processed slice-wise into 2D tiles with a fixed size of 288x288 pixels (256x256 pixels 
and 16 pixels padding on each side). For the 3D CNN, tomograms are by default split into cubic patches of 
64x64x64 voxels, and 12 voxels overlap in each dimension.  
 
Post-processing (2D CNN) 
The post-processing steps for the 2D network are focused on assembling the per-slice prediction into a 3D 
segmentation. To that aim, predicted tile segmentations are cropped on each side by 48 pixels to reduce 
artifacts around the edges, followed by reassembly into 3D stacks, with remaining overlapping areas being 
averaged. A 1D Gaussian filter is successively applied along the z axis in order to reduce single-slice false 
positives (Extended Data Fig. 2). 
 
Post-processing (3D CNN) 
After reassembly of the individual 64x64x64 voxel patches into the probability map resulting from the 3D 
CNN, the post processing step includes the clustering of the thresholded map (usually at threshold value of 
0.5). According to user preferences, only clusters that lie within or close to a given mask consisting of an 
organelle or cytosol segmentation outputted by the 2D network, and whose size lies within a given range 
of numbers of voxels, are considered for the final prediction map (Supplementary Note 1). This ‘cleaning’ 
procedure allows adding a priori information on the size of the particles in question. Additionally, for 
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macromolecular complex localization, the user has the option to export a list of coordinates of cluster-
centroids, which represent the particles’ locations prediction. 
 
Precision-Recall and Performance Analysis 
Cross-validation approach 
The analysis of performance for RIBO and FAS localization, as well as membrane segmentation, were done 
using a 3-fold CV scheme, where 8 out of the 10 VPP tomograms were used for training, and the remaining 
2 VPP tomograms were used for testing. In the test for domain generalization, the same three networks 
(trained on the 8 VPP tomograms) were applied to the 10 DEF tomograms. 
 
The analysis of performance in the NPC segmentation task was done in the dedicated DEF* of 127 
tomograms. Importantly, in order to apply the DeePiCt pipeline, we employed a predicted segmentation of 
the nuclear envelope as the region mask in the contact mode during post-processing of the NPC prediction 
(Supplementary Note 1). The NPC prediction was studied under a 3-fold CV scheme, where each split 
consisted of roughly 42 tomograms. The nuclear envelope prediction was achieved through an 
independently trained 3D CNN on 18 tomograms belonging to the DEF* dataset for which a manual 
annotation of the nuclear envelope was available, and which were uniformly split across the 3 CV subsets.  
 
For organelle and cytosol segmentation evaluation, model performance was evaluated on the voxel-level 
for the post-processed 2D CNN predictions produced by each CV fold’s individually trained model, using 
5000 voxels picked randomly from each tomogram of the CV fold’s respective test set. Precision and recall 
(Supplementary Note 1) were computed at threshold values varying from 0 to 1 on the picked voxels to 
compute the area under the precision-recall curves (AURPC) for each tomogram.  
 
Evaluation metrics 
In the case of particles (RIBO and FAS), the localization evaluation was made directly from the predicted 
lists containing their centroids’ voxel coordinates. In the case of DeePict, the lists of particles’ coordinates 
are sorted according to a decreasing score (cluster size) value. For both RIBO and FAS, we defined a true 
positive when a predicted coordinate matched a ground-truth particle coordinate within a tolerance radius 
of 130 Å (Supplementary Note 1). The F1 score, which is calculated as the harmonic mean of the precision 
and the recall, provides a measure of the quality of the predictions. We chose this measure for easier 
comparison to previous studies for particle localization methods in the field of cryo-ET26,27,29,83. Other 
metrics such as the area under the precision recall curve (AUPRC) generated by increasing length of 
particles’ list were disregarded as the ordering of the list (a function of cluster size) does not necessarily 
reflect the method’s confidence on positive classification. 
 
The evaluation of the segmentation task is of a totally different nature, as the shape of the object should be 
taken into account voxel-wise. For the 2D CNN predictions of organelles and cytosol, we used the AUPRC 
score with varying threshold over the network’s output map (Supplementary Note 1). For Deepict’s 
predictions of NPC and membrane segmentation, we instead used the voxel-based F1 score 
(Supplementary Note 1), to maintain hegemony with DeePiCt particle prediction evaluations. 
Hyperparameter tuning of DeePiCt and performance assessment 
The previously described cross-validation schemes and evaluation metrics were not only used for the final 
assessment of methods’ performance (Fig. 3), but to study the effect of the different hyperparameters that 
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could be set by the user in the case of the 3D CNN (IF, D, ED, DD, and BN). The experiments’ starting 
point was always the default hyperparameter combination 𝐷 = 2, 𝐼𝐹 = 4, 𝐵𝑁 = 0, 𝐸𝐷 = 0, 𝐷𝐷 = 0 
(Supplementary Note 1). In all cases, we tested first for different values of D, while keeping the rest fixed. 
Then, we fixed D=D*, where D* denotes the value for which best performance was achieved and repeated 
the same process for IF. We continued with each of the remaining parameters, BN, ED and DD. The results 
are reported in Extended Data Fig. 6. They allowed us to define the best hyperparameter combination for 
each of the structures studied, which are summarized in Supplementary Table 1. 
 
In each case we combined the 3D CNN segmentation of the target structure with an appropriate region 
mask (Supplementary Note 1, Supplementary Table 1): in the RIBO and FAS localization task, we used 
a cytosol prediction from the 2D CNN in intersection mode to eliminate false positives in organelles and 
the extracellular space; for membrane segmentation we used again the predicted cytosol from the 2D CNN, 
this time in contact mode to eliminate clusters that are in the extracellular space or within organelles; for 
NPCs we used a 3D CNN prediction of the nuclear envelope in contact mode to eliminate false NPC 
segmentations far from the nuclear boundary. For RIBO, FAS and membrane, both 3D CNN (for target 
structure prediction) and 2D CNN (for region mask prediction) in DeePiCt employed a 3-fold CV in the 
VPP dataset. In each fold, 8 tomograms were used for training and model selection while the remaining 2 
tomograms were used for testing (Extended Data Fig. 6a-c). The NPC predictions, which we treat as 
segmentation tasks, were evaluated in the DEF* independent data selected for that purpose 
(Supplementary Note 1 and Extended Data Fig. 6d-f). The region mask of predicted nuclear envelope 
segmentation was generated by a fixed 3D CNN trained on 18 of the 127 DEF* tomograms. These 18 
tomograms were evenly distributed among the 3 splits of the DEF* dataset used for the corresponding 3-
fold CV scheme employed for the hyperparameter tuning analysis of NPC segmentation by DeePiCt 
(Extended Data Fig. 6d-f). We used a 3-fold CV where the total 127 tomograms were split into 3 random 
subsets with roughly the same number of tomograms each. Each fold consists of two such sets as training 
data and the remaining one for testing. Throughout our experiments, high-quality DEF* tomograms 
(defined based on lamella thickness and tomographic alignment residual error as described above) 
consistently showed higher performance for the NPC segmentation task than the low-quality DEF* 
tomograms, regardless of architectural variations (Extended Data Fig. 6d-f). This hints at the importance 
of high data-quality in segmentation and localization tasks. 
 
For the evaluation of the particle localization task, we compared the lists of coordinates of the particles in 
our ground truth data with the predicted coordinate lists. For both RIBO and FAS, we considered a true 
positive when coordinates coincide within a tolerance radius of 10 voxels (corresponding to approximately 
130 Å). In this way, we computed the recall (the proportion of ground truth particles that were recovered 
by the method) and the precision (the proportion of predicted particles that were true positives) and reported 
the F1 score, which is the harmonic mean of precision and recall (Supplementary Note 1, Supplementary 
Table 1). For the structure segmentation task (such as the membrane or the NPC segmentation evaluation), 
we compared the ground truth masks with the DeePiCt predicted post-processed segmentation by 
calculating their voxel-wise precision and recall, and reporting the corresponding voxel-based F1 (voxel-
F1) score, also known as Sørensen-Dice coefficient (Supplementary Note 1).  
 
All experiments for the 3D CNN of the DeePiCt pipeline and DeepFinder were performed using NVIDIA 
2080 Ti GPU, Cuda 10.0, Python 3 and Pytorch 1.3.1. For the 2D CNN, training was conducted using an 
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NVIDIA 2080 Ti GPU and an NVIDIA V100S GPU used for performance evaluation, using CUDA 10.0, 
Python 3 and Keras 2.3.1 with a tensorflow 2.0.0 backend. Detailed lists of parameters used for the 2D and 
3D CNN are available alongside DeePiCt’s source code (Code and data availability). 
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Extended Data Fig. 1 | Pre-processing of input data by spectrum equalization. a. Input DEF tomogram with 
low signal-to-noise ratio. b. Target VPP tomogram with high signal-to-noise ratio. c. Output showing the 
tomogram in a after spectrum matching. d. Amplitude spectra of target, input and output tomograms, as well as 
per-frequency (1/Å) scaling factors of the rotational equalization kernel (y-axis cropped). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488077
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 

 
 
Extended Data Fig. 2 | 2D CNN organelle and cytosol segmentations. Isosurface view of organelle ground 
truth annotations (a), model output prior to (b) and after 3D post-processing (c). d-f. Organelle (d) and cytosol 
(e) predictions of the tomogram in Fig. 1 b. The 2D CNN’s segmentations (red) are overlaid with the manually 
created ground truth (blue), with overlapping regions (i.e. true positives) in white. Ground truth annotations in the 
top and bottom left corners in e (yellow arrowheads) are artifacts resulting from cross-slice interpolation in the 
manual annotation process. f. 3D post-processing improves performance of the 2D CNN as exemplified in (a-c). 
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Extended Data Fig. 3 | Details of the construction of ground truth for RIBO and FAS in VPP and DEF 
tomograms. a-b. Contributions of the steps applied during the construction of RIBO ground truth in the VPP (a) 
and DEF (b) datasets. Upper subplots show the absolute number of particles per tomogram (ppt): true positives 
from the initial annotations that were recovered in step 2 (yellow), newly identified true positives in step 2 (blue), 
particles that were in the initial annotation but that were not recovered in step 2 (false negatives from initial 
annotation; pink), unidentified particles from any of the two first steps, which were manually picked in step 3 
(fuchsia), and total false negatives (red) in step 2. Lower subplots show the associated relative contribution, as a 
percentage of the ground truth per tomogram (ground truth panel) or as percentage of the predictions per tomogram 
in step 2 (prediction panel). c-d. Equivalent plots for FAS ground truth construction, where the only difference is 
that the recovered true positives originate from an initial manual annotation (green), as opposed to RIBO where 
we used TM additionally. e-f. Summary of the relative contributions in the RIBO (e) and FAS (f) ground truth 
across the 10 VPP and 10 DEF tomograms. 
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Extended Data Fig. 4 | S. pombe ribosome and FAS complex abundances in cryo-electron tomograms in 
comparison to proteomics analysis. In this study (cryo-ET, left), fully assembled ribosomes (a) and FAS (b) 
were iteratively annotated in 20 ground truth cryo-electron tomograms and cytosolic concentrations calculated 
using the cytosol segmentations. Copy numbers per cell were calculated for an S. pombe cell with the assumption 
of 30 % cytosolic volume1 of a total of 150 µm3 average cell volume2,3. a. With cryo-ET, an average of 671,303 
土 96,708 ribosomes/cell were annotated. Ribosome counts from individual tomograms are represented as 
individual points (red). Proteomics data of individual ribosomal proteins were derived from Marguerat et al.4 
(yellow) and Carpy et al.5 (purple) and resulted in average of 97,795 土 99,298 and 343,511 土 244,226 
ribosomes/cell, respectively. b. Each measurement displayed in the plot corresponds to 6 times fully assembled 
FAS counts per tomogram (the complex is constituted by six alpha and beta subunits). With cryo-ET, an average 
of 106,282 土 86,247 FAS subunits/cell were observed. Proteomics data of individual FAS proteins (subunit alpha 
in purple, beta in yellow) were derived from Marguerat et al.4 and Carpy et al.5 and resulted in average of 67,035 
土 12,600 and 202,263 土 47,086 FAS subunits/cell, respectively. 
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Extended Data Fig. 5 | Effects of spectrum equalization on cross-validation and performance evaluation 
across domains of the 2D CNN. a-f. Performance was evaluated for 2D networks in three different scenarios 
(training on VPP in cross-validation, cross-domain generalization from VPP to DEF, training on VPP and DEF in 
cross validation), for either organelles or cytoplasm, without (-EQ) and with (+EQ) spectrum equalization. Areas 
under the precision-recall curves (AUPRCs) were computed by randomly picking 1000 voxels from each 
tomogram in test set (for the two cross-validation scenarios) or from the DEF tomograms (for the cross-domain 
tasks), while restricting evaluation to z-slices with any positive label. AUPRCs were computed after 3D post-
processing. The baselines are defined as the fraction of positive labels within those z-slices and averaged across 
test tomograms. g-h. Precision, recall and F1-score of organelle (g) and cytosol (h) segmentation depending on 
probability threshold used. Scores were computed on the cross-validation results for the spectrum-equalized VPP 
tomograms. 
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Extended Data Fig. 6 | Hyperparameter tuning and performance analysis of 3D CNN for RIBO, FAS, 
membranes and NPCs. a-c. CV analysis for the performance of RIBO, FAS and membranes, respectively. In 
these experiments we follow an incremental search: from left to right, the starting subplot corresponds to the 
default configuration of the 3D CNN, D=2, BN=0, and (ED, DD)=(0,0), except for variable IF. The best value of 
IF (denoted by IF*) is fixed in the subsequent subplot to the right, where D is varied over 1, 2, and 3. The next 
subplot to the right compares the effect of not applying and applying the batch normalization layer (BN=0 and 
BN=1, respectively), under the best IF=IF* and D=D* from previous subplots. Finally, the right most subplot 
varies the encoder- and decoder-dropout parameters (ED, DD), with fixed best IF=IF*, D=D*, and BN=BN* from 
previous subplots. d-f. Results of hyperparameter exploration for NPC; in all DEF* tomograms (left), in the subset 
of high-quality DEF* tomograms (middle), and in the subset of lower quality DEF* tomograms (right). d. Shows 
the variations in IF, when D=2, BN=0, and (ED, DD) = (0,0); e. Variations in IF, when D=3, BN=0, and (ED, 
DD) = (0,0); f. Variations in IF, when D=3, BN=1, and (ED, DD) = (0,0). The summary of best hyperparameters’ 
combination is provided in Supplementary Table 1. 
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Extended Data Fig. 7 | Effects of spectrum equalization and cytosol masking on DeePiCt performance. a-c 
Performance of the DeePiCt pipeline within the VPP domain for RIBO, FAS and membranes, without (-EQ) and 
with (+EQ) spectrum equalization pre-processing. The F1 score distribution shows that although for RIBO and 
membranes the spectrum equalization does not have a clear positive effect, for FAS it brings better results with a 
shift in median F1 score from 0.25 to 0.46. d-f. The same networks were used to test performance of the DeePiCt 
pipeline across the VPP and DEF domains (training on VPP and testing in DEF) for RIBO, FAS and membranes 
without (-EQ) and with (+EQ) spectrum equalization pre-processing. The F1 score distribution shows that while 
for ribosomes the spectrum equalization does not bring benefits, for FAS and membrane prediction across 
domains, its use brings a positive median F1 shift from 0.03 to 0.15 and from 0.16 to 0.41, respectively. g-h. 
Effects of employing a segmentation of cytosol as a region mask (+ mask) or not (- mask) during DeePiCt’s post-
processing, for the localization of RIBO and FAS. The plots show the results under a 3-fold CV in VPP data, 
where the cytosol segmentation was obtained by a 2D CNN. g. RIBO localization does not show a significant 
improvement in F1 score when the cytosol masking is used. h. FAS results show a stronger difference in F1 score, 
with a shift of median F1 from 0.10 to 0.46. 
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Extended Data Fig. 8 | Ground truth annotations and 3D refinement of ribosomes and FAS in DEF 
tomograms. a. Complete annotation of ribosomes (yellow, orange, green, dark and light blue; sub-populations 
described in (f) and in Extended Data Figure 9), FAS (pink), membranes (purple) and organelles (gray) in the 
tomogram depicted in Fig. 4. Ribosome subclasses in the context of specific organelles were identified by a 
maximal distance of 25 nm to mitochondria (mito-bound, green) or ER (ER-bound, orange). Focused classification 
on densities close to the head of the 40S small ribosomal subunit or in proximity to the exit tunnel recovered 
ribosome subsets with head (dark blue) and exit tunnel density (cyan). b-e. FAS subtomogram averages (pink) fit 
of the S. cerevisiae X-ray structure (b, cyan) and the single particle cryo-EM density of P. pastoris (c, cyan) 
including the PPT domains. An extra density cannot be assigned. The cross section views close to the alpha-wheel 
reveal three densities fitting three and one ACPs of S. cerevisiae and P. pastoris, respectively (white asterisks, 
bottom). d. Overlay with FAS from VPP ground truth (gt) tomograms (gray) shows overall similarity, but the 
ACPs could not be resolved (white asterisks, bottom). e. FAS predicted by DeePiCt (gray) matches the DEF gt 
average with three ACP densities close to the alpha-wheel. f-h. Subtomogram average of all ribosomes (yellow) 
matches the DeePiCt- predicted (g, gray) and VPP-derived (h, gray) ribosome densities. i-k. Well-aligned 
ribosomes (yellow) detected by hierarchical 3D classification in RELION and refined in M (Supplementary Figure 
3). j-k. Slicing through the average depicted in (i) at different axes reveals the PTC with a P-site tRNA and the 
L1 stalk facing the E-site. 
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Extended Data Fig. 9 | Comparison of ribosome subtomogram averages in DEF ground truth (gt). a-e. 
Subtomogram average of ribosomes (blue) with electron density in proximity to the head of the 40S small subunit 
(white arrowhead) which fits the ribosome-bound eEF36 (CC 0.8972, red). b. Cross section of (a) showing the 
PTC with P- and E-site tRNAs and the L1 stalk facing inwards. c. Zoom into the additional head density fitting 
eEF3. d-e. Overlay with the same ribosome class from DeePiCt predictions in DEF (d, gray) and from VPP gt 
data (e, gray). f. Ribosome subset (cyan) with electron density in proximity to the exit tunnel (white arrowhead). 
g. Overlay with the S. cerevisiae ribosome7 (CC 0.9651, purple) and a specific conformation of the expansion 
segment ES27L8 (CC 0.7806, purple). h. Zoom into the exit tunnel area in (g) highlights the additional density 
connected to ES27L that colocalizes with for example the human Ebp19 (gray, lower panel, CC 0.8495, EMD-
1068). i-j. Overlay with the same ribosome class from DeePiCt predictions in DEF (i, gray) and from VPP gt data 
(j, gray). k-n. Overlay of ribosomes within 25 nm distance to the ER (orange) with ER-bound ribosomes from 
DeePiCt predictions in DEF (k, gray), from VPP gt data (l, gray), with the published density of S. cerevisiae 
ribosomes derived from extracted ER10 (k, gray, CC 0.8972, EMD-3764), and the ER-bound HeLa ribosome11 (n, 
gray, CC 0.9105, EMD-8056). All densities show the same interface between ribosome and ER membrane. o-p. 
Overlay of ribosomes within 25 nm distance to mitochondria (green) with mito-bound ribosomes from DeePiCt 
predictions in DEF (o, gray), and VPP gt data (p, gray). All densities show the same interface between ribosome 
and mitochondria membrane. q-r. Comparisons between ER-bound (orange) and mitochondria-bound (mito-
bound, green) subtomogram averages in DEF gt (q) and VPP gt (r) data reveal an angular offset of the membrane 
interfaces of 35° and 33°, respectively. 
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Extended Data Fig. 10 | Domain generalization of different cellular structures and species. a. Performance 
results of five DeePiCt networks trained on a variety of cell types for the segmentation of different cellular 
structures used for predictions in a HeLa cell dataset11. Left: plot of performance scores when employing the 
spectrum equalization (+EQ) filter in both the training and on the HeLa cell data. The results correspond to 
segmentations of actin filaments and microtubules (MT) (trained on 4 RPE1 tomograms; pink), RIBO (trained on 
10 VPP S. pombe tomograms; yellow-green), membranes (trained on 10 S. pombe VPP tomograms; aquamarine), 
MT (trained on 11 C. elegans tomograms; blue) and actin filaments (trained on 2 RPE1 and 3 MEF 3T3 tomograms 
with actin filaments at different orientations; light purple). Right: performance for RIBO and membrane without 
employing the equalization filter (-EQ) in the HeLa cell dataset. b. RPE1 training data examples (left and middle, 
tomograms on top, ground truth annotations at the bottom) and predictions (right) of the actin filament and MT 
models in the HeLa cell dataset. The training examples show 2 of the RPE1 tomograms12 used for this model. The 
performance of actin and microtubule predictions in the HeLa cell dataset is poor (voxel-F1=0.09 for actin and 
0.26 for MT; a left) despite the high-quality training data (left). This is likely due to the high unidirectional 
orientation of the filaments in the training data (bundles in stress fibers).  
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Supplementary Information Guide 
 
Extended Data Figures.docx 
10 Figures supporting main text. 

 
Supplementary Material.docx 
Contents:  

● Supplementary Note 1: Architectural description of 2D and 3D CNNs, post processing steps 
and evaluation metrics. Includes Supplementary Figure 1. 

● Supplementary Tables:  
○ Supplementary Table 1: Selected hyperparameters of DeePiCt CNNs for different 

cellular features. 
○ Supplementary Table 2: Specifications of 3D-CNN training and prediction rounds 

performed for FAS ground truth construction. 
○ Supplementary Table 3: Hyperparameter tuning experiment settings. 

● Supplementary Note 2: Considerations for structural analysis following CNN predictions 
under different image acquisition conditions. Includes Supplementary Figures 2-9 detailing 
subtomogram hierarchical classification results. 

 
Extended Data Tables.xlsx 
Contents: Excel file with the following 6 tables as separate sheets: 

● Table 1: Organelle content per tomogram in DEF and VPP datasets. 
● Table 2: RIBO gt construction. 
● Table 3: FAS gt construction. 
● Table 4: VPP gt data acquisition, refinement statistics. 
● Table 5: DEF gt data acquisition, refinement statistics. 
● Table 6: Refinement statistics for subtomograms from DeePiCt in DEF data. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488077doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488077
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

Supplementary Note 1  

Architectural description of 2D and 3D CNN, post processing steps and 
evaluation metrics 

 
The general architecture of the 3D and 2D CNN is based also on the U-Net architecture1 and consists 
of two consecutive symmetric paths: an encoder and a decoder path connected by skip-connections and 
a transitional base-layer (Fig. 1a), where:  
 
(a) The encoder path is a sequence of alternated convolutional blocks and max-pooling layers. In turn, 
the convolutional blocks are a series of convolutions (kernel size 𝑘	 = 	3, stride 𝑠 = 1 and zero padding 
𝑝	 = 	2) followed by a rectified linear unit (ReLU). In the case of the 3D CNN, optional batch 
normalization (BN) and dropout layers can be alternated (Fig. 1a). The max-pooling layer has fixed 
window size 𝑤 = 2 and stride 𝑠 = 2. 
In our implementations, the initial convolutional block has a variable number of initial filters (IF) in its 
first convolutional layer, which must be set by the user. In all cases, subsequent convolutional blocks 
duplicate the number of feature maps from the previous level. The number of downsampling layers plus 
1, is referred to as the network’s depth (D), which is also a hyperparameter to be set by the user. It 
determines the size of the receptive field (𝑅𝐹) of the network (𝑅𝐹	 = 	2 ∗ 𝐷). For the 2D CNN, the 
depth is a fixed value 𝐷 = 5. 
 
(b) The base of the CNNs is the transitional convolutional layer between the encoder and decoder paths.  
 
(c) The decoder path is symmetric with respect to the encoder path, and is a sequence of alternated 
convolutional and upsampling (via transposed convolution) layers2, with kernel size 𝑘 = 3, stride 𝑠 =
1 and padding 𝑝 = 1. For the 3D CNN, analogous optional layers can be alternated between 
convolutional and upsampling blocks (BN and dropout). The encoder and decoder paths’ associated 
parameters are denoted throughout the text as ED and DD, respectively. 
Essential to the U-Net architecture are the skip-connections, which consist of concatenating the feature 
maps from the encoder to the decoder path at every level. The last activation layer is in our case a 
sigmoid function, compatible with our choice of the Dice Loss function3. By definition, this is a multi-
label approach, where single voxels may belong to multiple semantic classes, and which frees the user 
from defining additional weighting parameters to compensate for class imbalance necessary for other 
loss function choices such as categorical cross-entropy. In our experience, the use of Dice Loss provided 
better qualitative results in all cases. 
All models were trained using Adam Optimiser4. Application of these networks to unseen tomograms 
requires scaling of their pixel size to match (at least approximately) that of the training data. 
 
Data Augmentation 
For the 2D CNN, tiles are randomly flipped and rotated in 90-degree increments during training to 
improve generalization.  
 
Although it did not provide improved results in our hands (not shown), data augmentation for training 
the 3D CNN is available and optional. The number of times that each of the original training examples 
is augmented is given by a parameter 𝑛01 that can be set by the user. Each augmentation includes 4 
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different types of random volumetric transformations (applied to the original image and the labels, 
except in the case of noise), that we describe in what follows. Let A in 𝑅2×2×2 be a single channel 
cubic image of side-length 𝑛 > 0. Then:  
 
1. Additive Gaussian noise. Given a predefined modulation factor 𝜖	 > 	0 , the Additive Gaussian 
noise transformation 𝐺8 is defined by 𝐺8(𝐴) 	= 	𝐴	 + 	𝜖𝐵, where 𝐵>?@ ~ 𝑁(0, 1) are independent and 
identically distributed random variables (i.i.d.r.v.), and 𝑁(𝜇, 𝜎E) denotes a normally distributed 
Gaussian random variable with mean 𝜇 and variance 𝜎E. 
 
2. Salt-and-pepper noise. Given user-defined modulation factor 𝑎 > 0 and a probability rate 1 > 𝑝	 >
	0 , the salt-and-pepper noise transformation is defined by 𝑆H,I(𝐴) 	= 	𝐴	 + 	𝑎 ∗ 𝐵, where 𝐵>?@ ~ 
𝑈(𝑝, [−1, 1]) are i.i.d.r.v., and 𝑈(𝑝, 𝐼) denotes a uniformly distributed random variable in a real interval 
𝐼. 
 
3. Elastic transformation. Given coordinate entries of A that are located at a coarse regular grid of 
thickness 𝑛O > 1 are displaced by a random vector of i.i.d.r.v. uniform random variables. To achieve a 
smooth displacement vector field for all the points of the image 𝐴 (i.e. on the fine grid), we generate the 
elastically transformed image as the interpolated vector field (via polynomial interpolation of order 𝑘 >
0, defined by the user). 
 
4. Random rotation. Given a probability of rotation 𝑝 ∈ (0, 1) and angle range 𝛼 ∈ (0, 180), the image 
A is rotated with a probability 𝑝 with and angle in [−𝛼, 𝛼], with respect to the 𝑧 −axis.  
 
3D CNN default hyperparameters 
A default, starting point set of hyperparameters values for the 3D CNN for this study: 𝐷 = 2, 𝐼𝐹 = 4, 
𝐵𝑁 = 0, 𝐸𝐷 = 0, 𝐷𝐷 = 0, and 𝑛01 = 0. We used them to later, through testing variations on them, 
study the optimal combinations of hyperparameters in the different segmentation and localization tasks 
(Supplementary Table 1). 
 
2D CNN post-processing  
Post-processing of the 2D CNN includes the reassembly of predicted tile segmentations, by cropping 
48 px on each side to reduce artifacts around the edges. Areas of sets of tiles still overlapping are 
averaged after cropping. In order to remove inter-slide discontinuities, a Gaussian filter with parameter 
𝜎 > 0 (default 𝜎 = 5) is then applied along the z axis.  
 
3D CNN post-processing  

1. Thresholding of the final probability map outputted by the last layer of the neural network 
(default threshold is the unbiased value 0.5, but is set by the user in the pipeline’s configuration 
file). 

2. Clustering of the resulting thresholded map via the connected component labeling label 
algorithm, using the function morphology.label of the scikit-image python library5.  

3. Integration with other segmentation maps, e.g. with the output of the 2D CNN. Importantly, a 
subsequent selection of clusters is made with respect to a region_mask provided by the user, 
which consists of an auxiliary binary image defining a tomographic region of interest (Fig 1b). 
We then allow 3 types of options (intersection, contact, or colocalization) for employing the 
region_mask through the corresponding contact_mode parameter, as follows: 
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a. contact_mode: intersection 
The region_mask is used to directly mask the output of point 2, by considering only the 
overlapping region, e.g. including particles that are within an organelle’s mask. 

b. contact_mode: contact 
Only clusters that have voxels in common with the region of interest are kept, e.g. 
selecting NPC on the nuclear envelope. 

c. contact_mode: colocalization  
Only clusters whose centroid is located at a given distance (colocalization_radius) 
from the region of interest are kept, e.g. particles within a distance to an organelle. 

At this step, only clusters within the size range [𝑚,𝑀] are kept, where 0 ≤ 𝑚	 < 	𝑀	 ≤ 	∞ are 
defined by the user in the configuration file. 
 

 
Supplementary Fig. 1 | 3D CNN post-processing steps. The clustered 3D CNN output (yellow) and a 
region mask (white) are combined according to the three contact modes. Cluster centroids are represented 
by the red dots.  
 

4. If the calculate_motl parameter is set to True, a list of the clusters’ centroids resulting from 
previous steps is saved as a 4-columns comma separated values (csv) file, where the first 
column is the score (cluster size), and the three remaining columns indicate the (𝑥, 𝑦, 𝑧) centroid 
voxel coordinates. The list is sorted according to decreasing-score. 

 
Segmentation evaluation 
Given a 3D cellular segmentation prediction 𝐼H]^_  (resulting either from the 2D or the 3D CNN), its 
quality can be voxel-wise evaluated, by comparison to a ground truth binary image 𝐼 a , according to 
different metrics: 
  

1. Voxel-based precision (P) is defined by: 
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𝑃	 = cdefg∗	chi
|cdefg	|

, 

  
where the bars || indicate the number of entries different from 0. Thus, P is the proportion of 
voxels in the predicted segmentation that truly belong to the wanted structure. 

2. Voxel-based recall (R) is defined by: 

𝑅	 = cdefg∗	chi
	|chi|

, 

thus indicating the proportion of voxels of the ground truth segmentation that were correctly 
recovered by the prediction. 

3. Area under the precision-recall curve (AUPRC).  
Since 𝐼H]^_  is dependent on the threshold value 0 ≤ 𝑡ℎ𝑟 ≤ 	1 applied to the probability map, 
both precision and recall depend in ii as well, 𝑃 = 𝑃no] and 𝑅 = 𝑅no].  
The area under the precision-recall curve (AUPRC) is the area under the parametrized curve 
(𝑃no], 𝑅no]) is a widely used tool to summarize the power of the method. 

4. Voxel-based F1-score (also known as Sørensen-Dice coefficient). 
A common metric to calculate the performance of the method by combining the P and R values 
is simply through the F1 score, defined by their harmonic mean: 
 

𝐹p 	= 	
E∗q∗r
q	sr

. 
Notice that here no account of the dependence with respect to the 𝑡ℎ𝑟 value is used. 
 

Particle detection evaluation 
In the case of particles as discrete objects that are small enough to be defined by their coordinates, the 
evaluation of the object detection task requires the following definitions: 

1. Given a sorted list of predicted particles’ centroids, one by one (in that order) they are either 
classified as false positives (fp) or true positives (tp). 

2. A predicted particle coordinate is considered a true positive if and only if given a pre-defined 
tolerance radius r (𝑟 = 10 vox for both RIBO and FAS), there exists a ground-truth coordinate 
not previously matched to any other predicted particle. 

3. Then the coordinate-based precision (p), recall (r), F1 score and area under the precision-recall 
curve (AUPRC) are defined by: 
𝑝	 = nH

nH	s	tH
, 𝑟	 = 	 nH

nH	s	t2
, 𝐹p 	=

E∗H∗]
H	s	]

	, and AUPRC is the area under the curve defined by the 

(𝑝, 𝑟) points when parametrized with respect to the cluster number (from 0 to all). 
 
Merging several lists for ground truth construction 
To account for possible duplicates when merging lists of particle coordinates from different methods 
(e.g. manually-, TM- and CNN-originated lists), we integrate them by restricting the distance between 
centroid coordinates, i.e. with the constraint 𝑑(𝑝, 𝑞) > 1, where the elliptic distance 𝑑(𝑝, 𝑞) is defined 
by: 
 

𝑑(𝑝, 𝑞)E 	= p
wx
	(𝑝p 	−	𝑞p)E +	

p
yx
(𝑝E 	−	𝑞E)E 	+	

p
Ox
(𝑝z 	−	𝑞z)E,  

 
for 𝑎 = 𝑏 = 9, 𝑐 = 15 , and where 𝑝 = (𝑝p, 𝑝E, 𝑝z) and 𝑞 = (𝑞p, 𝑞E, 𝑞z). 
The choice of the elliptic distance coefficients takes on account both the effect of elongation along the 
z-axis in the cryo-ET images and the size of the particle in voxels of the tomogram (1 vox = 13.48 Å).  
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Supplementary Tables 
 
Supplementary Table 1: Selected hyperparameters of DeePiCt for varying cellular structures. Performances 
were calculated by cross-validation (CV) within the same domain, or in the case of microtubules and actin 
networks, in evaluations for generalization across cellular species with respect to expert annotations in the HeLa 

cell tomogram (!"!). DeePiCt networks were applied to the test datasets with the following region mask and contact 
mode combinations: cytosol and intersection for ribosome and FAS; cytosol and contact for membranes; nuclear 
envelope and contact for NPCs; cytosolic volume and intersection for microtubules and actin filaments.  
 

Cellular 
feature Method 

Depth 
(D) 

Initial 
filters 
(IF) BN 

Median 
Performance 

Training 
dataset Testing dataset 

Cytoplasm 2D CNN 5 16 1 AUPRC=0.97 VPP VPP 

Organelles 2D CNN 5 16 1 AUPRC=0.92 VPP VPP 

Ribosomes DeePiCt 2 4 1 F1=0.79 VPP VPP 

FAS DeePiCt 2 16 1 F1=0.46 VPP VPP 

Membranes DeePiCt 2 4 1 voxel-F1=0.79 VPP VPP 

NPCs DeePiCt 3 16 1 

voxel-F1=0.24 DEF* DEF* 

voxel-F1=0.47 DEF* 
DEF* (high 
quality) 

voxel-F1=0.19 DEF* 
DEF* (lower 
quality) 

Microtubules DeePiCt 2 4 1 #$%&'()*+,-./" VPP HeLa cell 

Actin DeePiCt 3 8 0 #$%&'()*+,-*," VPP HeLa cell 
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Supplementary Table 2: Specifications of three 3D-CNN training and prediction rounds performed for 
ribosome ground truth construction. Each of the rounds in step 2 of the RIBO ground truth construction 
consisted of training 3 different 3D CNNs with default parameters except the IF number (Supplementary Note 
1). The first training was performed on manually curated TM results of the corresponding dataset (VPP or DEF). 
For VPP, in the second round, the 3D CNN were trained on aggregated TM results and first round predictions; 
whereas the third CNN round was trained on all previous aggregated results. For DEF, the second and third round 
of 3D CNNs corresponded to the VPP 3D CNNs of first and second rounds, respectively. 
 

traini
ng 
round 

Training 
dataset 

Prediction 
dataset 

Training set 
annotations 

Initial filters output 

1 VPP VPP TM annotations IF=4, 8, and 32 vpp_output_rou
nd1 

2 VPP VPP TM annotations + 
vpp_output_round1 

IF=4, 8, and 32 vpp_output_rou
nd2 

3 VPP VPP TM annotations + 
vpp_output_round1 + 
vpp_output_round2 

IF=4, 8, and 32 vpp_output_rou
nd3 

1 DEF DEF TM annotations IF=4, 8, and 32 def_output_roun
d1 

2 DEF DEF TM annotations + 
def_output_round1 

IF=4, 8, and 32 def_output_roun
d2 

3 VPP DEF TM annotations + 
vpp_output_round1 + 
vpp_output_round2 

IF=4, 8, and 32 def_output_roun
d3 

 
 
 
Supplementary Table 3: Specifications of 3D-CNN training and prediction rounds performed for FAS 
ground truth construction. Step 2 in FAS ground truth construction consisted of a single round of 3D CNN 
training, performed separately per dataset type (VPP and DEF). The round consisted of 3 networks with default 
parameters (Supplementary Note 1) except for the IF number, set to IF=4, 8, and 32. The networks were trained 
on an initial incomplete manual picking. 
 

Training dataset Prediction dataset Training set 
annotations 

Initial filters output 

VPP VPP Initial manual 
annotations 

IF=4, 8, and 32 fas_vpp_output_round
1 

DEF DEF Initial manual 
annotations 

IF=4, 8, and 32 fas_def_output_round
1 
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Supplementary Note 2 

Considerations for structural analysis following CNN predictions under 
different imaging conditions 

 
Cryo-ET datasets of S. pombe utilized in this study were derived from cryo-FIB lamellae of wild-type, 
native, yeast cells. 20 tomograms used for comprehensive annotations were acquired with a dose-
symmetric tilt scheme6 employing similar acquisition parameters (Extended Data Tables 4-6, Online 
Methods), with the only difference being imaging with traditional defocus-only (DEF) or, in addition, 
the usage of a VPP. All RIBO and FAS particles annotated in the two datasets (DEF and VPP) were 
subjected to subtomogram analysis including CTF correction utilizing CTF fitting and model creation 
in Warp, and 3D refinements, hierarchical, and focused 3D classifications in RELION. During this 
structural analysis we made several observations which will be discussed in the following.  
  
As described previously7,8,9, acquiring tomography data with a VPP emphasizes low frequencies. 
Pronounced low frequencies lead to improved image contrast which can facilitate data mining. With 
our method, more particles were detected in VPP than in DEF ground truth annotations of FAS 
complexes, which represent more challenging targets for data mining due to their low abundance and 
hollow structural signature. The increased SNR in VPP was also advantageous in hierarchical 
classifications of ribosomes (Supplementary Fig. 2), while no difference was apparent for FAS likely 
due to the low particle numbers (Supplementary Fig. 3). For VPP, all ribosomes clustered in defined 
averages which confirmed the high performance of DeePiCt and enabled the classification of a subset 
of 60S large subunits (Supplementary Fig. 2). In comparison, most DEF ribosomes from ground truth 
annotations or DeePiCt predictions clustered in poorly defined classes and no 60S large subunits could 
be separated even when classification results were improved by optimized particle poses (coordinates 
and orientations) after multi-particle refinement in M10 (Supplementary Fig. 4, 5). Also, in 
classifications focused on an area close to the head of the ribosomal small subunit and at the peptide 
exit tunnel the additional head density was already apparent in 2D slices of the respective classes in the 
VPP data (Supplementary Fig. 6 and 7, respectively). Similarly, ribosomes close to ER and 
mitochondria that clustered into classes with adjacent membrane densities are more pronounced in VPP 
(Supplementary Fig. 8 and 9, respectively). 
  
However, fine structural details that provide insights into functional configurations of molecular 
complexes are lost or cannot be recovered in the final reconstructions of VPP tomography data9. This 
has been suggested to be caused by inaccurate weighing9 and a signal loss at high spatial frequencies11. 
The preservation of high-resolution information in DEF in comparison to VPP becomes especially 
apparent when looking at fine structural details in the subtomogram averages. Densities fitting ACPs of 
FAS (Extended data Fig. 8 d-e), P-site tRNAs (Extended data Fig. 8 j-k) inside the 80S ribosome 
and densities connecting ribosomes to an adjacent mitochondrion membrane (Supplementary Fig. 9) 
could only be resolved in DEF data. 
  
We conclude that the usage of a VPP in tomography acquisition facilitated data mining including the 
demonstrated domain generalization of applying DeePiCt models trained in VPP to DEF, and improved 
3D classifications. This makes it a valuable tool that ultimately provides benefits at the exploratory 
phase of structural analysis, helping the design of experiments and analysis pipelines that can eventually 
be performed on DEF data from which higher resolution reconstructions can be obtained. 
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Supplementary Fig. 2 | Hierarchical 3D classification of cytosolic ribosomes in VPP ground truth. 2D slices 
through 3D class averages of iteration 25 are displayed. The highlighted class (cyan box) shows the 60S large 
ribosomal subunit class. 
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Supplementary Fig. 3 | 3D classification of VPP and DEF ground truth, and DeePiCt prediction in DEF 
dataset for FAS. a-c. 2D slices through 3D-refined subtomogram average of FAS using D3 symmetry recovered 
from VPP ground truth (gt), DEF gt or DeePiCt prediction on DEF datasets. 3D classifications separated in all 3 
datasets into two classes of which one is better structurally defined than the other. 3D refinements for DEF were 
performed in M. 
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Supplementary Fig. 4 | Hierarchical 3D classification of cytosolic ribosomes in DEF ground truth starting 
from M-refined alignments. 2D slices through 3D class averages of iteration 25 are displayed. The highlighted 
class (yellow box) was further refined in M, resulting in a well aligned class with a resolution of 9.3 Å. 
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Supplementary Fig. 5 | Hierarchical 3D classification of cytosolic ribosomes from DeePiCt predictions in 
DEF data starting from M-refined alignments. 2D slices through 3D class averages of iteration 25 are 
displayed. The highlighted class (yellow box) was further refined in M resulting in a well-aligned class with a 
resolution of 9.4 Å. The right side of the classification representing the vast majority of ribosomes does not 
converge into a well defined map. 
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Supplementary Fig. 6 | 3D classifications and refinements of cryo-EM densities in proximity to the head of 
the 40S small ribosomal subunit in VPP gt, DEF gt, and DeePiCt predictions in DEF datasets. a-c. 2D slices 
through 3D-refined subtomogram average of all cytosolic ribosomes from VPP ground truth (gt), DEF gt or 
DeePiCt predictions on DEF datasets. Focused 3D classifications (blue sphere mask displayed in a) separated in 
all 3 datasets one class (dark blue) with an additional density close to the head of the 40S small ribosomal subunit. 
3D refinements for DEF were performed in M. 
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Supplementary Fig. 7 | 3D classifications and refinements of ribosomes at the exit tunnel in VPP gt, DEF 
gt, and DeePiCt predictions in DEF datasets. a-c. 2D slices through 3D-refined subtomogram average of all 
ribosomes from VPP ground truth (gt), DEF gt or DeePiCt prediction on DEF datasets. Focused 3D classifications 
(cyan sphere mask displayed in a) separated in all 3 datasets one class (cyan) with an additional exit tunnel density. 
3D refinements for DEF were performed in M. 
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Supplementary Fig. 8 | 3D classifications and refinements of ER-bound ribosomes in VPP gt, DEF gt, and 
DeePiCt predictions in DEF datasets. a-c. 2D slices through 3D-refined subtomogram average of ribosomes in 
25 nm distance to the ER recovered from VPP ground truth (gt), DEF gt or DeePiCt predictions on DEF datasets. 
Focused 3D classifications (cyan sphere mask displayed in Supplementary Fig. 7a) separated in all 3 datasets one 
class (orange) with membrane density. 3D refinements for DEF were performed in M. 
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Supplementary Fig. 9 | 3D classifications and refinements of mitochondria-bound ribosomes in VPP gt, 
DEF gt, and DeePiCt predictions in DEF datasets. a-c. 2D slices through 3D-refined subtomogram average of 
ribosomes in 25 nm distance to the mitochondria recovered from VPP ground truth (gt), DEF gt or DeePiCt 
prediction on DEF datasets. Focused 3D classifications (cyan sphere mask displayed in Supplementary Fig. 7a) 
separated in all 3 datasets one class (green) with membrane density. 3D refinements for DEF were performed in 
M. 
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