
1 
 

Adding gene transcripts into genomic prediction improves accuracy and reveals 1 

sampling time dependence 2 

B.C. Perez1, M.C.A.M. Bink1, K.L. Svenson2, G.A. Churchill2, M.P.L. Calus3* 3 

1 Hendrix Genetics B.V., Research and Technology Center (RTC), P.O. Box 114, 5830 AC 4 

Boxmeer, the Netherlands.  5 

2 The Jackson Laboratory, Bar Harbor, Maine, United States of America. 6 

3 Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 7 

AH Wageningen, the Netherlands. 8 

 9 

*Corresponding author: mario.calus@wur.nl Wageningen University & Research, Animal 10 

Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, the Netherlands 11 

 12 

Running title: Transcriptomic prediction accuracy 13 

  14 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488053doi: bioRxiv preprint 

mailto:mario.calus@wur.nl
https://doi.org/10.1101/2022.04.12.488053
http://creativecommons.org/licenses/by/4.0/


2 
 

ABSTRACT 15 

Recent developments allowed generating multiple high quality ‘omics’ data that could increase 16 

predictive performance of genomic prediction for phenotypes and genetic merit in animals and 17 

plants. Here we have assessed the performance of parametric and non-parametric models 18 

that leverage transcriptomics in genomic prediction for 13 complex traits recorded in 478 19 

animals from an outbred mouse population. Parametric models were implemented using best 20 

linear unbiased prediction (BLUP), while non-parametric models were implemented using the 21 

gradient boosting machine algorithm (GBM). We also propose a new model named GTCBLUP 22 

that aims to remove between-omics-layer covariance from predictors, whereas its counterpart 23 

GTBLUP does not do that. While GBM models captured more phenotypic variation, their 24 

predictive performance did not exceed the BLUP models for most traits. Models leveraging 25 

gene transcripts captured higher proportions of the phenotypic variance for almost all traits 26 

when these were measured closer to the moment of measuring gene transcripts in the liver. 27 

In most cases, the combination of layers was not able to outperform the best single-omics 28 

models to predict phenotypes. Using only gene transcripts, the GBM model was able to 29 

outperform BLUP for most traits except body weight, but the same pattern was not observed 30 

when using both SNP genotypes and gene transcripts. Although the GTCBLUP model was 31 

not able to produce the most accurate phenotypic predictions, it showed highest accuracies 32 

for breeding values for 9 out of 13 traits. We recommend using the GTBLUP model for 33 

prediction of phenotypes and using the GTCBLUP for prediction of breeding values. 34 

  35 
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INTRODUCTION 36 

Predicting complex traits is a fundamental aim of quantitative genetics. The use of 37 

whole genome single nucleotide polymorphisms (SNP) revolutionized the prediction of 38 

breeding values, resulting in the process widely known as genomic prediction (GP) 39 

(Meuwissen et al. 2001). A number of statistical approaches are now applied routinely in 40 

breeding programs, such as genomic best linear unbiased prediction (GBLUP) (VanRaden 41 

2008), ridge regression (Whittaker et al. 2000), or methods from the “Bayesian Alphabet” 42 

(Gianola et al. 2009). More recently, machine learning algorithms have been tested in the 43 

context of genomic prediction (González-Recio et al. 2013; Pook et al. 2020; Zingaretti et al. 44 

2020). These models may have several advantages when compared to traditional linear 45 

models, such as capturing interactions between predictors (non-additive effects), automatic 46 

variable selection and for making fewer assumptions regarding the underlying genetic 47 

architecture of phenotypes (Nayeri et al. 2019; Pérez-Enciso and Zingaretti 2019). However, 48 

compared to the linear models mentioned above, prediction performance from machine 49 

learning methods has shown mixed results (Azodi et al. 2019; Abdollahi-Arpanahi et al. 2020; 50 

Perez et al. 2022). There seems to be no “one-size-fits-all” model, as results are dependent 51 

on trait genetic architecture, size of the data, and on fine tuning of hyperparameters. 52 

Recent development of low-cost high throughput molecular technologies allowed 53 

generating multiple high quality ‘omics’ data can be measured with high accuracy (Fernie and 54 

Schauer 2009; Tohge and Fernie 2015; Chawade et al. 2016). This has led to interest in 55 

utilizing these as new layers of information to improve the predictive performance of genomic 56 

prediction models, ultimately contributing to improve efficiency of breeding programs (Guo et 57 

al. 2016; Li et al. 2019). For example, gene expression levels measured in tissue samples by 58 

direct RNA sequencing (RNA-seq) is now readily available to animal breeders (Ozsolak and 59 

Milos 2011).  To incorporate these new sources of data into genomic prediction models 60 

requires new strategies for integration with the already widely used genome-wide marker data. 61 

Although most of the literature focusing on the inclusion of gene-expression data into genomic 62 
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models to improve predictive performance aimed at predicting phenotypes (Takagi et al. 2014; 63 

Guo et al. 2016; Schrag et al. 2018; Azodi et al. 2019; Li et al. 2019; Morgante et al. 2020), 64 

fitting gene transcript levels as an additional layer of information into genomic models could 65 

indirectly improve the prediction of breeding values. Christensen et al. (2021) presented a two-66 

step method to incorporate such intermediate omics into genomic evaluations considering 67 

complete and incomplete omics-data scenarios. Results were validated using simulated data 68 

and suggested superiority of the single-step method including both the intermediate omics and 69 

genomics data, over the traditional genomic best linear unbiased prediction (GBLUP) using 70 

only genomics data. Similar results were observed by Michel et al. (2021) when investigating 71 

the integration of gene expression into genomic prediction for disease resistance in wheat by 72 

using a hybrid relationship matrix for merging both layers of omics data. A pending issue that 73 

remains, is the adequate handling of associations between layers of data that may lead to 74 

inflated relative contributions of individual layers when ignored (Holm et al. 2010; Christensen 75 

et al. 2021). Wade et al. (2021) have suggested that the benefits of multi-omics integration 76 

models over single-omic models are achieved once redundancy of predictors is decreased. 77 

Therefore, multi-omics models should either automatically or through adequate 78 

parametrization be able to identify and manage information redundancy across multiple omics-79 

layers. 80 

In the present study we used data from the Diversity Outbred (DO) mouse population 81 

(Churchill et al. 2012; Svenson et al. 2012) to evaluate the utility of gene expression in addition 82 

to genome-wide genetic markers for genomic prediction using different modeling strategies. 83 

To this end, the objectives of this study were to: (1) assess the proportions of phenotypic 84 

variance explained by genetic markers and gene transcripts in complex traits recorded in at 85 

least two time points; (2) evaluate the predictive accuracy for phenotypes using transcripts 86 

and/or marker information for the traits investigated using linear models and the gradient 87 

boosting algorithm; and (3) evaluate how the inclusion of transcripts affects estimation of 88 

genomic breeding values (GEBV) from BLUP models. The linear models proposed vary in 89 
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number of components, how interactions were modeled, and conditioning of one component 90 

on another. The gradient boosting machine algorithm was chosen for its ability to automatically 91 

control redundancy and implicitly account for non-linear effects in prediction, while the BLUP 92 

models tested comprise parametric approaches to incorporate genomics and transcriptomics, 93 

considering or ignoring the interactions between them.  94 

  95 

MATERIAL AND METHODS 96 

Data 97 

Phenotypes 98 

Data used for this study were obtained from The Jackson Laboratory (Bar Harbor, ME) 99 

and comprise a subset of the dataset used in Perez et al. (2022). The 478 DO mice originated 100 

from 4 non-overlapping generations (4, 5, 7 and 11) with males and females represented 101 

equally. The total number of animals per generation was 47, 47, 192 and 192 for generations 102 

4, 5, 7 and 11, respectively, with slight variation in the numbers of missing records across 103 

traits (Table 1). The mice were maintained on either standard high fiber (chow, n=239) or high 104 

fat diet (n=239) from weaning until 23 weeks of age. The proportion of males and females 105 

within each diet category was close to 50-50 for all generations, as well as within each litter-106 

generation combination (two litters per generation). This population is maintained under a 107 

systematic mating scheme, designed to limit population structure and relatedness. On 108 

average, the animals were related to each other at a level equivalent to first cousins, which is 109 

by design (Svenson et al. 2012). More elaborate descriptions of population structure, 110 

husbandry and phenotyping methods can be found in Svenson et al. (2012) and Tyler et al. 111 

(2021). 112 

Table 1 gives for each trait a brief description, the numbers of observations and the 113 

estimated heritability. We considered six traits based on range of heritability and presumed 114 

genetic architectures. The chosen traits were measured at two or three times during the 115 
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animal’s life, resulting in 13 distinct traits in total. The analyzed traits were bone mineral density 116 

at 12 (BMD12) and 21 (BMD21) weeks, body weight at 10, 15 and 20 weeks (BW10, BW15 117 

and BW20); circulating cholesterol at 8 (CHOL8) and 19 (CHOL19) weeks, adjusted body fat 118 

percentage at 12 (FATP12) and 21 (FATP21), circulating glucose at 8 (GLUC8) and 19 119 

(GLUC19) weeks, circulating triglycerides at 8 (TRGL8) and 19 weeks (TRGL19). These traits 120 

can be categorized into measurements of body composition (bone mineral density, body 121 

weights and fat percentage) and clinical plasma chemistries (circulating glucose and 122 

triglycerides). Phenotypic records were pre-corrected for fixed effects of diet, generation, litter, 123 

and sex (Perez et al. 2022). Therefore, the pre-corrected phenotypes (𝑦∗) analyzed here 124 

comprise the sum of the additive genetic effect and residual terms. 125 

 126 

TABLE 1 127 

 128 

Genotypes 129 

The genotype data used for the animals in this study, were obtained from their derived 130 

founder haplotypes (for details: see Perez et al. 2022). The complete genotype file used for 131 

the analyses included 64,000 markers on an evenly spaced grid, and the average distance 132 

between markers was 0.0238 cM. The full genotype dataset was cleaned based on the 133 

following criteria: variants with minor allele frequency < 0.05, call rates < 0.90 and linear 134 

correlation between subsequent SNPs > 0.80 were removed. After quality control, a total of 135 

50,122 SNP markers were available for the mice with phenotypic, genotypic and 136 

transcriptomic records. 137 

 138 

Transcript levels 139 

Transcriptome-wide expression levels were measured from whole livers as previously 140 

described (Munger et al. 2014; Chick et al. 2016) for 478 animals at 26 weeks of age. The 141 
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RNA sample was sequenced using single-end RNA-Seq (Munger et al. 2014) and aligned 142 

transcripts to strain-specific genomes from the DO founders (Chick et al. 2016). Read counts 143 

were estimated using an expectation maximization algorithm (EMASE, 144 

https://github.com/churchill-lab/emase). Read counts were previously corrected for the effects 145 

of sex, diet, and batch by normalizing in each sample using upper quantile normalization and 146 

applying a rank Z transformation across samples. After quality control, quantification of 147 

transcripts was available for 11,770 genes (Tyler et al. 2017). 148 

 149 

Statistical models 150 

Below we introduce five best linear unbiased prediction (BLUP) models and three 151 

gradient boosting machine (GBM) models with their acronyms and key features summarized 152 

in Table 2.    153 

Best linear unbiased prediction 154 

GBLUP 155 

The statistical model of GBLUP is: 156 

𝐲∗ = 𝟏𝜇 + 𝐠 + 𝐞, 157 

where 𝐲∗ is the vector of pre-corrected phenotypes, 1 is a vector of ones, 𝜇 is the 158 

intercept, 𝐠 is the vector of random additive genetic values, where 𝐠 ~ 𝑁(𝟎, 𝐆𝜎𝑔
2), 𝐆 is the 159 

additive genomic relationship matrix between genotyped individuals, and 𝜎𝑔
2 is the additive 160 

genomic variance. The matrix 𝐆 is constructed following the second method described by 161 

VanRaden (2008) as 
𝐙𝐙′

𝑚
 where 𝐙 is the matrix of centered and standardized genotypes for all 162 

individuals and 𝑚 is the number of markers. Finally, 𝐞 is the vector of random residual effects 163 

where 𝐞 ~ 𝑁(𝟎, 𝐈𝜎𝑒
2) with 𝜎𝑒

2 being the residual variance, and 𝐈 is an identity matrix. 164 

 165 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488053
http://creativecommons.org/licenses/by/4.0/


8 
 

TBLUP 166 

To evaluate the performance of transcriptomic data for predicting complex traits, we 167 

used a Transcriptomic Best Linear Unbiased Predictor (TBLUP) model. This model is similar 168 

to GBLUP, but using a transcriptomic relationship matrix, which evaluates the similarity among 169 

animals based on gene expression levels (Guo et al. 2016). 170 

The statistical model of TBLUP is: 171 

𝐲∗ = 𝟏𝜇 + 𝐭 + 𝐞, 172 

where 𝐲∗, 1 and 𝜇 are defined as above, 𝐭 is the vector of random transcript level effects, 173 

where 𝐭 ~ 𝑁(𝟎, 𝐓𝜎𝑡
2) and 𝐓 is the transcriptomic relationship matrix built according to the 174 

formula 
𝐖𝐖′

𝑘
  where 𝐖 is the matrix of centered and standardized expression levels for all 175 

animals and k is the number of genes, and 𝜎𝑡
2 is the variance explained by gene transcripts. 176 

 177 

GTBLUP and GTIBLUP 178 

The GTBLUP model fitted the 𝐠 and 𝐭 as independent random effects, each with their 179 

own variance component (Guo et al. 2016; Li et al. 2019). The model is 𝐲∗ = 𝟏𝜇 + 𝐠 +  𝐭 + 𝐞, 180 

where all the parameters are as defined above. 181 

The GTIBLUP model fitted 𝐠, 𝐭, and the interaction between 𝐠 and 𝐭 with an additional 182 

variance component (Morgante et al. 2020). This model is 𝐲∗ = 𝟏𝜇 + 𝐠 +  𝐭 + 𝐠𝐭 +  𝐞, 183 

where 𝐲∗, 𝟏𝜇, 𝐠, 𝐭 and 𝐞 are as defined above, and 𝐠𝐭 is the vector of interaction (between 184 

genomic and transcriptomic) effects, where 𝐠𝐭 ~ 𝑁(𝟎, 𝐆#𝐓𝜎𝑔𝑡
2 ) and # is the Hadamard 185 

product. 186 

 187 

 188 

 189 
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GTCBLUP 190 

 The GTCBLUP model was similar to GTBLUP in that the 𝐠 and 𝐭 that were fitted as 191 

independent random effects, each with their own variance component. However, for this model 192 

the transcript levels were conditioned on SNP genotypes, yielding a matrix 𝐖𝒄 computed as: 193 

𝐖𝒄 = (𝐈 − 𝐙(𝐙′𝐙 + 𝐈λ)−𝟏𝐙′)𝐖, where 𝐙(𝐙′𝐙 + 𝐈λ)−𝟏𝐙′ is the so-called “smoother matrix” 194 

(Hastie et al. 2009), 𝐙 is the matrix of centered and standardized genotypes as before, 𝐈 is an 195 

identity matrix, and  λ =
𝑚∗𝜎𝑒

2

𝜎𝑔
2 , 𝜎𝑒

2 is the residual variance, and 𝜎𝑔
2 is the additive genomic 196 

variance, both variances estimated with the GBLUP model (including only 𝐠). Using the 197 

smoother matrix, i.e. including 𝐈λ rather than using 𝐈 − 𝐙(𝐙′𝐙)−𝟏𝐙′, reflects that the effects 198 

associated with the SNPs are estimated as random rather than fixed effects. The aim of this 199 

model is to remove any variance from transcripts that is correlated to variance in genotypes, 200 

such that any phenotypic variance both associated with variance in genotypes and transcripts 201 

automatically will be associated with the genotypes only. The model is 𝐲∗ = 𝟏𝜇 + 𝐠 + 𝐭𝒄 + 𝐞, 202 

where 𝐭𝒄 ~ 𝑁(𝟎, 𝐓𝒄𝜎𝑡
2) and 𝐓𝒄 is computed as 

𝐖𝒄𝑾𝒄
′

𝑘
 , and all other parameters are as defined 203 

above. 204 

 205 

Gradient boosting machine models 206 

Gradient boosting machine (GBM) is an ensemble learning technique that applies an 207 

iterative process of assembling “weak learners” into a stronger learner, being largely used for 208 

both classification and regression problems (Friedman 2001). In the scope of this 209 

investigation, the GBM algorithm represents a non-parametric approach capable of implicitly 210 

fitting not only the additive effects of SNP and gene transcripts, but also the within- and 211 

between-omics layers interactions. The GBM is also capable of performing automatic feature 212 

selection, prioritization of important variables and discarding variables containing irrelevant or 213 

redundant information. A detailed description of the gradient boosting machine algorithm and 214 
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its application in genomic prediction can be found in Friedman (2002), González-Recio et al. 215 

(2010; 2013) and Perez et al., (2022).  216 

To obtain the best possible results from the GBM algorithm, a grid search approach 217 

was used to determine the combination of hyperparameters that minimized the mean squared 218 

error of prediction within the inner training set for each trait. Details of the hyperparameter 219 

search method used are found in Perez et al. (2022). We implemented the GBM model using 220 

the “gbm” R package (Ridgeway 2020). 221 

We tested three different GBM models. The first model considered only SNP 222 

genotypes as predictors (GGBM), the second model considered only (standardized) gene 223 

transcript levels as predictors (TGBM) and a third model that considered both genetic markers 224 

and transcript levels together as predictors (GTGBM). Our objective was to investigate if GBM 225 

models could capture within and between omics layers associations, while also reducing within 226 

and between omics layers redundancy by performing automatic variable selection. It is 227 

important to note here that although here we used “G” and “T” letters to refer to genomics and 228 

transcriptomics data in the GBM model’s acronyms, predictors were fit directly in the model 229 

and not as relationship matrices 230 

 231 

TABLE 2 232 

 233 

Variance explained by genetic markers, transcript levels and combinations of both 234 

 To understand how much of the phenotypic variance can be explained by using SNP 235 

genotypes, gene transcript levels and the combinations of both sources of information, we 236 

estimated variance components using the GBLUP, TBLUP, GTBLUP, GTIBLUP and 237 

GTCBLUP models. Estimates of variance components along with the residual variance (𝜎𝑒
2) 238 

were obtained from a Bayesian approach analysis, using the BGLR R package (Pérez and de 239 
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los Campos 2014). For all models, the Gibbs sampler was run for 60,000 iterations, with a 240 

20,000 burn-in period and a thinning interval of 10 iterations. Consequently, inference was 241 

based on 4,000 posterior samples. 242 

For the GTIBLUP model, we calculated the portion of variance explained by SNP 243 

genotypes (ℎ2 =  
𝜎𝑔

2

𝜎𝑔
2+𝜎𝑡

2+𝜎𝑔𝑡
2 + 𝜎𝑒

2), gene transcripts (𝑡2 =  
𝜎𝑡

2

𝜎𝑔
2+𝜎𝑡

2+𝜎𝑔𝑡
2 + 𝜎𝑒

2) and from the interaction 244 

between effects from genetic markers and gene transcripts (𝑔𝑡2 =  
𝜎𝑔𝑡

2

𝜎𝑔
2+𝜎𝑡

2+𝜎𝑔𝑡
2 + 𝜎𝑒

2). 245 

Consequently, the sum of ℎ2, 𝑡2 and 𝑔𝑡2 represent the portion of phenotypic variance 246 

explained by two layers of omics data and by the between-omics-layer interactions. The 247 

parameters ℎ2, 𝑡2 and 𝑔𝑡2 for the other models were calculated similarly but omitted any 248 

variance components associated with effects not included in the model. 249 

Model Performance 250 

Performance of predictions from the models was measured by the accuracy, computed 251 

as the Pearson correlation (𝑟𝑦∗,𝑦̂), and the relative root-mean squared error of prediction 252 

(RRMSE) between predictions (𝑦̂) and pre-corrected phenotypes (𝑦∗): RRMSE = 253 

√
1

𝑛
 ∑ (𝑛

𝑖=1 𝑦∗ − 𝑦̂)2 / 𝜎𝑝, where 𝜎𝑝 is the phenotypic standard deviation. In all analyses, we 254 

used a forward prediction validation scheme in which animals from older generations (4, 5, 7) 255 

were used as the reference and animals from the younger generation (11) as the validation 256 

subset. The standard error (SE) around the 𝑟𝑦∗,𝑦̂ estimates were obtained by calculating the 257 

standard deviations from 10,000 bootstrap samples (Davison and Hinkley 1997). The 258 

bootstrapping procedure was implemented using the “boot” R package (Canty and Ripley 259 

2021). We have also assessed prediction bias by obtaining the regression coefficient from the 260 

linear regression of corrected phenotypes on model predictions. For these results, values 261 

above 1 indicate deflation, while values below 1 indicate inflation of predicted values. 262 
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To assess the proportion of variance explained by the models tested, we have 263 

calculated the coefficient of determination (R2) from the regression of corrected phenotypes 264 

on model predictions for all traits. For the GBM models we have used results from the model 265 

using the previously obtained best hyperparameter set from the standard grid-search 266 

procedure to assess the model R2 for prediction within the reference set. 267 

For the BLUP models proposed to integrate SNP genotypes and gene transcripts 268 

(GTBLUP, GTIBLUP and GTCBLUP), in addition to 𝑟𝑦∗,𝑦̂ we have also calculated the 269 

correlations between the solutions for each random effect included in the model (𝐠, 𝐭,  𝐭𝐜 or 270 

𝐠𝐭) and 𝐲̂, as well as pairwise comparisons between all components in the model. Here, we 271 

also focus on solutions from the additive genetic component from these models to assess if 272 

the prediction of genomic breeding values (GEBV) can be improved by using models capable 273 

of integrating SNP genotypes and gene transcripts for genomic prediction. 274 

 275 

Data Availability 276 

All data associated with this manuscript, and the code developed and used to perform 277 

analyzes described in this manuscript, can be obtained at 278 

https://doi.org/10.6084/m9.figshare.15081636.v1. All software used is publicly available. 279 

 280 

RESULTS 281 

Variance components estimation percentage of variance explained within the 282 
reference set 283 

 Genomic heritabilities (ℎ2) obtained with GBLUP ranged from 0.08 to 0.44, 284 

representing a wide range of magnitudes across traits (Figure 1 and Figure 2). When only 285 

fitting transcript levels as predictors (TBLUP), the percentage of variance explained (𝑡2) 286 

ranged from 0.22 to 0.75 and in general it was higher than ℎ2 when comparing within the same 287 

trait. The exceptions to that were observed for BMD12 (ℎ2 = 0.39 and 𝑡2 = 0.35) and GLUC8 288 

(ℎ2 = 0.30 and 𝑡2 = 0.22). When comparing the same trait measured at different time points, 289 
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𝑡2 from TBLUP was higher for phenotypes collected closer to the 26 weeks of age (i.e. the 290 

age at mRNA data sampling). 291 

 In terms of the total phenotypic variance explained, GTBLUP and GTIBLUP showed 292 

similar results (Figure 1 and Figure 2). For body weights (BW10, BW15, BW20) and fat 293 

percentage (FATP12 and FATP21) traits, the variance explained by genetic markers (in 294 

GTBLUP and GTIBLUP) was drasticly lower when compared to GBLUP for the same traits. 295 

For the remaining traits the decrease in genetic variance captured by markers was much 296 

lower. For the interaction component in GTIBLUP (𝑔𝑡2), results observed varied according to 297 

the trait analysed but in general, it was low compared to ℎ2 and 𝑡2. The only exception to that 298 

was observed for TRGL8, in which 𝑔𝑡2 was higher than ℎ2 and 𝑡2. For CHOL8, GLUC19 and 299 

TRGL19, 𝑔𝑡2 was either similar to ℎ2 or 𝑡2. 300 

For GTCBLUP, differently from GTBLUP and GTIBLUP, the additive genetic variance 301 

captured was always in line with results from GBLUP. On the other hand, the variance 302 

explained by transcripts (𝑡2) from GTCBLUP was always lower than observed by other models 303 

including transcripts as predictors (TBLUP, GTBLUP and GTIBLUP).  304 

 305 

FIGURE1  306 

FIGURE 2 307 

 308 

The variance explained (represented by the R2 parameter) within the reference data 309 

by parametric models was in general lower than by the non-parametric counterparts (Table 310 

3). Independent of being a parametric or non-parametric model, the use of gene transcripts 311 

(TBLUP and TGBM) as predictors explained in most cases more of the variance than using 312 

exclusively SNP genotypes (GBLUP and GGBM). For GTBLUP, GTIBLUP and GTGBM, the 313 

variance explained was at least similar to observed for TBLUP and TGBM, but generally 314 
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higher. For GTCBLUP, variance explained by the model was slightly to moderately higher than 315 

observed for GBLUP model, but always smaller than observed for GTBLUP, GTIBLUP and 316 

GTGBM. The average R2 when considering only traits recorded earlier (suffixes 8, 10 or 12) 317 

and later (suffixes 19, 20 or 21) moments were 76% and 83%, respectively, when using 318 

TBLUP, being the largest differece observed across models when considering these two 319 

groups of traits. 320 

 321 

TABLE 3 322 

Prediction performance – Phenotype prediction 323 

 In Table 4 accuracies are shown for predicted phenotypes for BLUP and GBM models 324 

using either SNP genotypes, transcript levels or both as predictors. Here we considered 325 

GBLUP to be the reference method. It showed prediction accuracies ranging from 0.01 to 326 

0.29, these were highly positively correlated to the portion of variance explained by SNP 327 

genotypes by the same model, except for CHOL19. When comparing predictive performance 328 

between GBLUP and GGBM models, GBLUP yielded highest prediction accuracies for 7 traits, 329 

while GGBM had best predictive performance for 6 traits out of 13. 330 

For models that include only gene transcripts (TBLUP and TGBM), the TBLUP 331 

approach showed predictive accuracies ranging from 0.03 to 0.61, having the best 332 

performance for only 4 out of 13 traits. The TGBM model was able to overcome TBLUP for 7 333 

traits, with prediction accuracies ranging from 0.04 to 0.58. For BMD21 and BW15, predictive 334 

accuracy was identical between TBLUP and TGBM. The differences between accuracies from 335 

TBLUP and TGBM was higher than between GBLUP and GGBM. 336 

 For models that combined SNP genotypes and gene transcripts levels (GTBLUP, 337 

GTCBLUP, GTIBLUP and GTGBM), GTBLUP had the highest predictive accuracy for 5 traits 338 

out of 13. The second-best model overall was GTGBM, with the highest predictive accuracy 339 

for 4 traits. For every trait that GTIBLUP had the highest prediction accuracy, it was identical 340 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488053
http://creativecommons.org/licenses/by/4.0/


15 
 

to the result for GTBLUP, while the GTCBLUP never had the highest predictive accuracy 341 

(Table 4). 342 

 The prediction error (RRMSE) and bias (𝛽) for model’s predictions are presented in 343 

Supplementary Tables S1 and S2, respectively. Considering single-omics models, on average 344 

BLUP models (GBLUP and TBLUP) yielded less biased predictions than GBM models (GGBM 345 

and TGBM). For models integrating SNP genotypes and gene transcripts, GTBLUP and 346 

GTIBLUP showed similar bias across traits, while GTGBM had on average less bias than the 347 

BLUP models. For the GTCBLUP model, predictions were inflated (𝛽 < 1) for all traits but 348 

BMD21. In terms of prediction error, differences between models were smaller than observed 349 

for bias (Supplementary Table S2) or predictive accuracies (Table 4). The lowest RRMSE 350 

values were observed for FATP21, while the highest were observed for GLUC19. The RRMSE 351 

values for all traits analyzed were all around 1, indicating the average prediction errors were 352 

close to one phenotypic standard deviation.  353 

 354 

TABLE 4 355 

 356 

Predictive ability for GEBV and other model components, and the correlation between 357 
them in BLUP models 358 

In Table 5 the Pearson’s coefficient correlation between model components solutions 359 

(ĝ, t̂, t𝑐̂ and ĝt) for the different BLUP models and corrected phenotypes (𝑦∗) are shown. 360 

Overall, results for GTBLUP and GTIBLUP were similar across traits. These two models had 361 

the most accurate GEBV (ρĝ_𝑦∗) exclusively for GLUC8, while for BMD12 results from these 362 

models were matched by GTCBLUP. For GLUC19, all four parametric multi-omics models 363 

yielded the same accuracy for GEBV, which was the lowest (0.01) across traits. In 8 out of 13 364 

traits the GEBV estimated using GTCBLUP model was the most accurate across all models. 365 

The correlation between t̂ and 𝑦∗ (ρ𝑡̂_𝑦∗) was also similar between GTBLUP and GTIBLUP, 366 

being always higher for these two models than observed for GTCBLUP. For 367 
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GTCBLUP exclusively, ρ𝑡̂_𝑦∗ was low and negative for CHOL19 (-0.08), GLUC19 (-368 

0.05) and TRGL8 (-0.07). For most traits, although a slight increase in the total 369 

variance explained was observed within the reference dataset (Figures 1 and 2) when 370 

comparing GTBLUP and GTIBLUP, there was not a proportional increase in ρĝ_𝑦∗ in 371 

the validation (Table 5). For GTCBLUP on the other hand, for all traits there was an 372 

increase in the variance explained by SNP genotypes (𝑔2 in Figure 1 and Figure 2) 373 

when compared to GTBLUP and GTIBLUP, and the same pattern was observed for 374 

ρĝ_𝑦∗. Results for ρĝ_𝑡̂ varied from +0.14 to +0.29 for GTBLUP and from +0.13 to +0.29 375 

for GTIBLUP. For GTCBLUP, values for ρĝ_𝑡𝑐̂
 were all negative and close to zero, 376 

ranging from -0.13 to -0.03 (Table 5). The values for ρĝ_g𝑡̂, only calculated for GTIBLUP, 377 

were close to zero for most traits with an exception for CHOL8 and CHOL19, for which 378 

ρĝ_g𝑡̂ was 0.18. A similar pattern was observed for ρt̂_g𝑡̂, for which values varied from -379 

0.12 to +0.06, with the largest differences from ρĝ_g𝑡̂ observed for CHOL8 and CHOL19. 380 

 381 

TABLE 5 382 

 383 

DISCUSSION 384 

Here, we investigated parametric and non-parametric approaches to leverage 385 

transcriptomic data for the prediction of complex phenotypes. To accomplish that, we used 386 

478 animals from the DO Mouse population (Svenson et al. 2012), for which information on 387 

phenotypes (Churchill et al. 2012) for a wide range of quantitative traits, SNP genotypes and 388 

gene transcript levels from liver tissue (Tyler et al. 2017) were available on the same animals. 389 

We used the genomic (GBLUP) and transcriptomic (TBLUP) best linear unbiased prediction 390 

models to evaluate the value of these omics data to predict phenotypes. In addition, we 391 

evaluated models to integrate genome and transcriptome data by modelling both layers 392 
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independently (GTBLUP) or including an interaction component between the genome and 393 

transcriptome (GTIBLUP). Finally, we proposed the GTCBLUP model that removes the 394 

between-omics-layer information redundancy. The gradient boosting machine (GBM) 395 

algorithm was investigated as a non-parametric approach potentially able to perform variable 396 

selection and capture non-linear effects by fitting either SNP genotypes (GGBM), gene 397 

transcript levels (TGBM) or to integrate both layers implicitly modeling interactions within and 398 

between omics layers (GTGBM). 399 

Using data from six distinct traits measured at two or three time points (resulting in 13 400 

traits in total), we first assessed the proportion of phenotypic variance explained by each 401 

variance component in the parametric models (Figure 1 and Figure 2). The variance explained 402 

by SNP genotypes and gene transcript levels (and their interaction) varied by trait, time of 403 

measurement and the model used. When using transcripts as predictors, two main patterns 404 

were observed. For 5 out 13 traits (Figure 1), the TBLUP model explained much more of the 405 

phenotypic variance than GBLUP. For the other 8 out of 13 traits (Figure 2), TBLUP explained 406 

less variance than GBLUP. The observation that the portion of variance explained by gene 407 

transcripts is strongly trait-specific is in line with results observed when assessing the 408 

proportion of variance from gene transcripts for complex traits in Drosophila (Morgante et al. 409 

2020). Ehsani et al. (2012) have analyzed data from an F2 mice population using models 410 

integrating genotype markers and liver transcriptomics data. The authors reported that 411 

transcripts explained 79%, while genotypes explained 36% of the phenotypic variance for body 412 

weight at 8 weeks of age. It is important to emphasize that in Ehsani et al., (2012), RNA 413 

samples were measured at the same time point as phenotypes were collected. Other authors 414 

have observed that the genetic markers always explained a bigger portion of variance than 415 

transcripts in maize (Guo et al. 2016; Azodi et al. 2019) and Drosophila (Li et al. 2019).  416 

There are several possible reasons for the conflicting results found in literature when 417 

assessing the value of transcripts to explain variation in complex phenotypes. Differently from 418 

genotypes, transcripts are affected by many factors such as the tissue from where samples 419 
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are collected, the moment in life of sampling and the environmental conditions that the animal 420 

was exposed to. These variables most likely impact the variance explained (and concomitantly 421 

prediction performance) by transcripts. In Azodi et al. (2019) for example, transcripts were 422 

quantified from whole seedlings while phenotypes were recorded at a much older age, which 423 

could explain the limited predictive ability of transcriptomics data. In the present study 424 

transcripts were measured when the mice were 26 weeks of age, while all phenotypes were 425 

recorded at younger ages (from 8 to 21 weeks of age). In our results, phenotypes recorded 426 

closer to 26 weeks of age had a larger proportion of phenotypic variance explained by 427 

transcripts than measurements made earlier in the animal’s life for the same phenotype 428 

(Figure 1 and Figure 2). For BW and FATP the transcripts explained a larger proportion of 429 

phenotypic variance at all time points. For BMD, CHOL, GLUC and TRGL this was the case 430 

when there was 4 (BMD) to 6 weeks (CHOL, GLUC and TRGL) in-between measuring 431 

phenotypes and transcripts, while genomics explained more phenotypic variance when this 432 

time frame increased to 14 (BMD) or 18 weeks (CHOL, GLUC and TRGL) in-between. It is 433 

important to emphasize here that although this outcome may have been expected beforehand, 434 

to our knowledge it is the first time that this link between amount of variance explained by 435 

transcript versus the time difference between measuring transcripts and phenotypes has been 436 

shown empirically. One other aspect that must be considered here is that the gene expression 437 

from whole maize seedlings (Azodi et al. 2019) is probably much less related to traits collected 438 

later in life than the gene expression from liver tissue available for the DO mouse dataset. It 439 

is widely known that the liver is strongly linked to many metabolic pathways (Ponsuksili et al. 440 

2019), and therefore likely also especially to the BW and FATP traits used here, while the 441 

variation contained in a sample collected from whole seedlings do not reflect a specific tissue 442 

but a pool of all tissues in this organism. 443 

When fitting both SNP genotypes and gene transcripts as predictors the portion of 444 

variance explained by SNP genotypes varied drastically from the GBLUP model. For all BW 445 

and FATP traits, the proportion of variance explained by genotypes using GTBLUP and 446 
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GTIBLUP was much lower than for GBLUP. Ehsani et al. (2012) and Takagi et al. (2014) 447 

observed a reduction in captured genetic variance by SNP genotypes of around 50% when 448 

fitting genotypes together with transcripts compared to models using fitting only genotypes as 449 

predictors for complex traits in other mice populations. This seems to confirm the hypothesis 450 

that there is redundant information between the genome and transcriptome layers (Wade et 451 

al. 2021), as also shown to be the case in Drosophila (Morgante et al. 2020). In our experience, 452 

it seems that the closer the phenotype analyzed is to the moment of RNA sampling, the higher 453 

the decrease in genetic variance captured by SNP genotypes in GTBLUP and GTIBLUP. This 454 

was observed for almost all traits we analyzed in different magnitudes. Takagi et al. (2014) 455 

analyzed circulating cholesterol at 10 weeks of age in mice and reported a large decrease in 456 

the genetic variance captured from SNP genotypes from models including only SNP 457 

genotypes (𝑔2= 46%) and together with liver transcripts (𝑔2= 19%) also measured at 10 weeks 458 

of age. In the present study, we observed only a slight decrease in genetic variance estimated 459 

when comparing GTBLUP (𝑔2= 28%) and GBLUP (𝑔2= 38%) for CHOL8. This seems to 460 

confirm that for the same phenotype, measurements made closer to the RNA sampling are 461 

prone to exhibit this pattern in a higher magnitude than measurements. This was further 462 

substantiated by the results observed for GTCBLUP. By conditioning the transcripts on the 463 

genotypes, the portion of variance explained by SNP genotypes was similar to the GBLUP 464 

model, while the variance explained by gene transcripts was much lower than estimated with 465 

TBLUP, GTBLUP and GTIBLUP. 466 

The formal variance partitioning achieved with the BLUP models cannot be achieved 467 

with the non-parametric GBM models. To compare the performance of GBM and BLUP in 468 

terms of explained variance we investigated the model R2 within the reference set. For the 469 

GBM models it was almost always higher than for the BLUP models (Table 3). From our 470 

results, this pattern is recognizable for almost all traits analyzed, in which the GBM algorithm 471 

is able to capture a higher portion of variance than the parametric counterpart within the 472 

reference dataset (Table 3) but fails to outperform these models when predicting in the 473 
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validation set (Table 4). The only exception to that is observed for GLUC19, for which in 474 

addition to the much larger portion of variance explained within the reference set, the GBM 475 

algorithm also outperformed BLUP models by a large margin for prediction purposes. The 476 

presence of noise in the data, limited size of the training set and the underlying complexity of 477 

the event being modelled are often cited as common causes of overfitting in machine learning 478 

models (Vabalas et al. 2019; Ying 2019). Here we used a training dataset of 286 animals and 479 

the high number of predictors in the models, coupled with the unavoidable presence of 480 

collinearity within and between omics layers may have caused GBM models to overfit. Takagi 481 

et al. (2014) have also analyzed datasets of similar size from another heterogeneous mice 482 

population using parametric models that integrated genomics and transcriptomics data, 483 

reporting large portions of phenotypic variance captured within training sets that weren’t 484 

necessarily translated to high predictive accuracy in the validation set for circulating glucose 485 

and cholesterol. The authors argue that the high number of model’s parameters to be 486 

estimated and the small number of animals with observations available could be the main 487 

cause of this pattern. We have observed a big impact of hyperparameters on the in predictive 488 

accuracies of the GBM models (results not shown). Having access to larger datasets could 489 

help to elucidate the magnitude of this impact for the models analyzed here since it would 490 

decrease the impact of hyperparameter definition in predictive performance, improving 491 

strength of evidence for any differences found between GBM and other models tested. The 492 

forward-prediction validation method adopted in the present study was previously described 493 

in Perez et al. (2022) and mimics prediction in animal and plant breeding, where a predictive 494 

model is trained based on data from individuals that have genomics (here also transcriptomics) 495 

and phenotype data available, while prediction is intended for un-phenotyped younger 496 

individuals. Here, training and validation generations were also 3 generations apart from each 497 

other, which erodes strong relationships (e.g., parent-progeny) and therefore should not be 498 

the cause of model overfitting suggested for the GBM models. 499 
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Prediction performance for phenotypes can be improved by combining genotypes and 500 

transcripts, however our results suggested that the magnitude of improvement is dependent 501 

on the trait analyzed (Table 4). In line with the observed differences in variance explained by 502 

model components, TBLUP showed a better predictive ability than GBLUP for most traits 503 

except CHOL19, GLUC8 and GLUC19. In contrast, Takagi et al. (2014) reported higher 504 

predictive accuracies for circulating glucose and cholesterol when using liver transcripts as 505 

predictors when compared to using genotypes in a different heterogeneous mice population 506 

(Valdar et al. 2006). Two aspects may explain the differences observed between studies. First, 507 

Takagi et al. (2014) performed a cross-validation scheme by randomly sampling individuals 508 

as reference and validations sets while we performed a forward-validation scheme, in which 509 

phenotype prediction for younger animals was based on estimates from older generations. 510 

Even though animals are randomly sampled, the overall similarity between reference and 511 

validation sets is higher in Takagi et al. (2014), which in general leads to higher magnitude of 512 

predictive accuracy (Pszczola et al. 2012; Werner et al. 2020). It is important to emphasize 513 

that although this is true when dealing exclusively with SNP genotypes, we cannot confirm 514 

that the affirmative holds when dealing with transcripts as predictors. A second relevant aspect 515 

is that in the present study phenotypes for CHOL and GLUC were collected at 8 and 19 weeks, 516 

while RNA samples were taken at 26 weeks of age. As previously mentioned, in Takagi et al. 517 

(2014) RNA samples and phenotypes were collected at the same age (10 weeks). In the 518 

present study, phenotypes recorded at a closer time point to transcript profiling result in higher 519 

predictive performance from transcripts (Table 4).  520 

The TGBM model was able to overcome the TBLUP model for several traits, which 521 

was not the case when comparing GBLUP and GGBM. This result may indicate that 522 

interactions between transcripts were more easily captured or are more relevant than between 523 

SNPs. When fitting only genotype markers, the model is limited by incomplete linkage 524 

disequilibrium between the SNP and quantitative trait loci to perform an accurate detection of 525 

possible interactions, while there is no such limiting factor when using gene transcripts. One 526 
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other hypothesis is that as transcripts are more strongly linked to phenotypes than genetic 527 

markers, transcript-by-transcript interactions are also likely to affect the phenotype more 528 

strongly than SNP-by-SNP interactions (Green et al. 2019), hence the former is expected to 529 

have a clearer and more detectable signal. Morgante et al. (2020) have used the random 530 

forest model, a non-parametric ensemble machine learning method like GBM, to predict 531 

complex phenotypes in Drosophila using gene transcripts as predictors but did not observe a 532 

superior predictive ability when compared to the TBLUP model. While TGBM consistently 533 

outperformed TBLUP in our study, the GTGBM was only partly outperforming GTBLUP and 534 

GTIBLUP. This could mean that the inclusion of SNP genotypes together with gene transcripts 535 

as predictors in the GTGBM model may have impaired the ability of GBM to capture linear and 536 

non-linear signals from within- and between-omics layers. The exact cause remains unclear, 537 

but the size of dataset together with the substantial increase in number of predictors when 538 

going from TGBM to GTGBM may be in the roots of it. It is likely that the GBM algorithm may 539 

require more data to be able to accurately capture all patterns from the complex relationship 540 

between omics layers underlying quantitative traits. If this is indeed the case, testing these 541 

models using a larger dataset could help to confirm this hypothesis. In Azodi et al. (2019) 542 

machine learning models integrating genomics and transcriptomics data were also not able to 543 

outperform single-omics models in terms of predictive accuracy for three traits in maize using 544 

a dataset of similarly limited size as in the present study. 545 

The linear association for solutions from BLUP models’ components predicted for 546 

animals within the validation set were very similar between GTBLUP and GTIBLUP. For these 547 

two models ρĝ_𝑦∗, ρ𝑡̂_𝑦∗ and ρĝ_𝑡̂ were almost identical across all traits (Table 5). Although the 548 

inclusion of an interaction component in GTIBLUP captured between 9% and 26% of 549 

phenotypic variance (represented by 𝑔𝑡2 in Figure 1 and Figure 2) within the reference set, it 550 

did not seem to affect the relationship between other components. The low values observed 551 

for ρĝ_g𝑡̂ and ρt̂_g𝑡̂  in GTIBLUP also seem to suggest that the interaction component is 552 

capturing a portion of variance not directly shared with ĝ or t̂ components, and therefore it 553 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488053
http://creativecommons.org/licenses/by/4.0/


23 
 

does not affect the relationship between other components. The linear association between 𝑔 554 

and 𝑡̂ in GTBLUP and GTIBLUP models was always higher than the association between 𝑔 555 

and 𝑡𝑐̂ in GTCBLUP across all traits analyzed. Since in the GTCBLUP model the transcript 556 

relationship matrix was conditioned on the variance of SNP genotypes (𝑡𝑐), the linear 557 

association between solutions for the two components was expected to closer to zero than 558 

the observed in GTBLUP or GTIBLUP. 559 

In this paper, we proposed the GTCBLUP model as an alternative to integrate genome 560 

and transcriptome data for genomic prediction. There has been an increasing interest in the 561 

use of intermediate omics data in animal and plant breeding (Guo et al. 2016; Yang et al. 562 

2017; Azodi et al. 2019; Morgante et al. 2020; Christensen et al. 2021; Michel et al. 2021), 563 

such as transcriptomics, metabolomics, or microbiome data. The inclusion of new layers of 564 

omics data into genomic prediction models could arguably help in capturing additional portions 565 

of variance not explained by genotype data, but at the same time, these layers most likely 566 

contain overlapping information, increasing collinearity between predictors. Modelling the 567 

relationship between G and T components could be an efficient way to realize the added value 568 

of integrating such omics data into genomic prediction models (Wade et al. 2021), but this 569 

could also be a challenge given the increase in number of parameters to be estimated. The 570 

advantage of the GTCBLUP is that as pre-processing step it conditions the variance contained 571 

in transcripts on the variance of genotypes to minimize the amount of redundant information 572 

without having to increase model complexity. In general, the GTCBLUP model was able to 573 

produce GEBV that were at least as accurate as or slightly more accurate than the GBLUP 574 

model. The percentage of variance explained by SNP genotypes in GTCBLUP was similar to 575 

that with the GBLUP model, while it was always lower when using GTBLUP and GTIBLUP 576 

(Figure 1 and Figure 2). The observed reduction in additive genetic variance for GTBLUP and 577 

GTIBLUP when compared to GBLUP indicates strong redundancy in information contained in 578 

the genomic and transcriptomic layers. So, the conditioning of transcripts on SNP genotypes 579 

in GTCBLUP allowed this model to perform a more accurate variance partitioning for the 580 
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additive genetic component, which consequently resulted in a more accurate estimation of 581 

GEBV (Table 5). An interesting alternative way to consider the covariance between genomics 582 

and transcriptomics layers, is by explicitly modelling it, as can be done using the CORE-583 

GREML method (Zhou et al. 2020), implemented in the MTG2 software (Lee and van der Werf 584 

2016). We considered this method to evaluate its potential, as well as to try and assess the 585 

magnitude of overlapping information between genotype and transcript data for the traits 586 

analysed. Results (Supplementary Table S3) indicated correlations from -0.47 to +0.71, with 587 

highest values observed for BW10, BW15, BW20, CHOL8 and CHOL19, FATP19 but the 588 

correlation coefficient was never significantly different from 0. Coincidently for most of these 589 

traits GTCBLUP obtained the most accurate GEBV when compared to GBLUP, GTBLUP and 590 

GTIBLUP. These trends seem to further support that, for specific traits, genomics and 591 

transcriptomics layers contain largely overlapping information, and although removing this 592 

redundancy does not result in more accurate phenotype prediction, it may contribute to obtain 593 

more accurate GEBV and consequently could improve breeding decisions. The lack of 594 

significance of the estimated correlations between genomics and transcriptomics data may be 595 

due to the limited size of the data used here, while based on the results obtained in the present 596 

study this does not provide a limitation for the GTCBLUP model. 597 

One limitation of the GTCBLUP model is that it does not accommodate missing omics 598 

information, so all reference individuals must have genomics and transcriptomics data 599 

available. In the context of breeding programs, a situation in which all reference animals have 600 

multiple omics data available is unlikely to happen due to high costs involved in the collecting 601 

this kind of information. However, based on the observed decrease in costs of genotyping 602 

which has enabled large-scale genotyping, we may expect similar developments for the costs 603 

of transcriptomics and other intermediate phenotypes in the near future (Uzbas et al. 2019). 604 

At the same time, there have been some recent model developments that enable including 605 

other omics data in genomic prediction, when these other omics data are not available for all 606 

animals (Christensen et al. 2021; Zhao et al. 2022). 607 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488053
http://creativecommons.org/licenses/by/4.0/


25 
 

CONCLUSION 608 

 We have assessed prediction models that incorporate genetic markers and 609 

transcriptomics data in genomic prediction of complex phenotypes in mice. The proportion of 610 

phenotypic variance explained by transcripts was almost always higher when traits were 611 

measured closer to the time of measuring gene transcripts. While GBM models explained 612 

more variance in the reference data, their predictive performance did not exceed the GBLUP 613 

models. Models including SNP genotypes and gene transcripts did not consistently outperform 614 

the best single-omics models to predict phenotypes. While TGBM model was able to 615 

outperform TBLUP, this was not the case for GTGBM compared to GTBLUP and GTIBLUP. 616 

The newly developed GTCBLUP model was able to force all phenotypic variance associated 617 

with SNP genotypes into its additive genetic component, by conditioning gene transcripts on 618 

SNP genotypes. GTCBLUP generally yielded considerably lower accuracies of phenotypic 619 

predictions than the other models including SNP genotypes and gene transcripts, but it 620 

showed the best accuracies for breeding values for most traits. We recommend using the 621 

GTBLUP model for prediction of phenotypes, while the GTCBLUP should be preferred when 622 

the aim is to estimate breeding values. 623 
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Table 1. Number of available observations (N), the extended description of traits, age of the 766 

animals at phenotype measurement, and estimated heritability. 767 

Trait N Trait description 
Age at 

measurement 
Estimated 

heritability1 

BMD12 471 Bone mineral density 12 weeks 0.39 

BMD21 471 Bone mineral density 21 weeks 0.41 

BW10 478 Body weight 10 weeks 0.42 

BW15 478 Body weight 15 weeks 0.35 

BW20 478 Body weight 20 weeks 0.37 

CHOL8 474 Circulating cholesterol 8 weeks 0.38 

CHOL19 474 Circulating cholesterol 19 weeks 0.45 

FATP12 471 Body fat percentage 12 weeks 0.35 

FATP21 471 Body fat percentage 21 weeks 0.32 

GLUC8 425 Circulating glucose 8 weeks 0.31 

GLUC19 425 Circulating glucose 19 weeks 0.22 

TRGL8 473 Circulating triglycerides 8 weeks 0.36 

TRGL19 473 Circulating triglycerides 19 weeks 0.31 

1 Standard errors for the heritability ranged from 0.07 to 0.09 768 
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Table 2. Overview of models applied to SNP genotypes and/or individual levels of gene 770 

transcripts. 771 

Model acronym 

Explanatory variables 

SNP genotypes 
Gene 

transcripts 
Interaction 
modelled  

GBLUP  Yes No No 

 GGBM Yes No Yes (Implicitly) 

TBLUP  No Yes No 

 TGBM No Yes Yes (Implicitly) 

GTBLUP  Yes Yes No 

GTCBLUP  Yes Yes No 

GTIBLUP  Yes Yes Yes (Explicitly) 

 GTGBM Yes Yes Yes (Implicitly) 

 772 
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Table 3. Model R2 (x100) for the best linear unbiased prediction (GBLUP, GTBLUP, 774 

GTCBLUP and GTIBLUP) and gradient boosting (GGBM, TGBM and GTGBM) approaches 775 

within training data1. 776 

Trait1 

Model2 

Only SNP Only gene transcripts SNP + gene transcripts 

GBLUP GGBM TBLUP TGBM GTBLUP GTIBLUP GTCBLUP GTGBM 

BMD12 75 90 79 96 85 92 88 95 

BMD21 84 85 88 93 87 96 92 98 

BW10 78 92 93 96 91 95 90 97 

BW15 75 87 91 94 93 96 94 96 

BW20 80 87 92 93 95 97 95 97 

CHOL8 84 85 69 97 80 93 87 98 

CHOL19 82 83 85 95 88 96 92 98 

FATP12 75 76 89 97 92 96 95 98 

FATP21 80 82 93 97 95 97 94 98 

GLUC8 77 85 66 95 81 93 87 97 

GLUC19 62 80 67 96 75 90 84 98 

TRGL8 65 81 62 92 80 96 88 97 

TRGL19 71 86 70 96 78 95 84 98 

Mean (all) 76 85 80 95 86 95 90 97 

Mean (T1) 75 85 76 96 85 94 89 97 

Mean (T2) 76 84 83 95 86 95 90 98 

T1 = average R2 of the column considering only traits recorded earlier in life (suffixes 8, 10 and 12). 777 

T2 = average R2 of the column considering only traits recorded later in life (suffixes 19, 20 and 21). 778 

1For a description of the traits, see Table 1. 779 

2For a description of the models, see Table 2. 780 

3BW15 trait was ignored when calculating average performance considering exclusively T1 and T2. 781 
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Table 4. Accuracies of predicted pre-corrected phenotypes for the validation subset with the 783 

proposed models. For each group of models, the result with the highest accuracy is 784 

indicated in bold, identical results between two or more models are indicated in underline. 785 

Trait1 

Model2 

Only SNP 
Only gene 
transcripts 

SNP + gene transcripts 

GBLUP GGBM TBLUP TGBM GTBLUP GTIBLUP GTCBLUP GTGBM 

BMD12 0.19 0.16 0.27 0.25 0.27 0.27 0.20 0.25 

BMD21 0.29 0.28 0.38 0.38 0.42 0.40 0.29 0.38 

BW10 0.18 0.20 0.48 0.42 0.47 0.47 0.19 0.42 

BW15 0.15 0.12 0.52 0.52 0.51 0.51 0.22 0.49 

BW20 0.18 0.16 0.61 0.58 0.60 0.60 0.30 0.54 

CHOL8 0.14 0.17 0.14 0.15 0.18 0.17 0.16 0.16 

CHOL19 0.25 0.20 0.19 0.16 0.26 0.23 0.22 0.23 

FATP12 0.14 0.15 0.44 0.45 0.44 0.44 0.28 0.46 

FATP21 0.21 0.20 0.54 0.56 0.54 0.53 0.35 0.52 

GLUC8 0.10 0.12 0.03 0.04 0.08 0.09 0.11 0.15 

GLUC19 0.01 0.10 0.03 0.05 0.04 0.05 -0.05 0.11 

TRGL8 0.08 0.11 0.06 0.08 0.07 0.06 0.05 0.06 

TRGL19 0.15 0.13 0.17 0.19 0.17 0.18 0.12 0.19 
1For a description of the traits, see Table 1. 786 

2For a description of the models, see Table 2. 787 
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Table 5. Pearson’s coefficient correlation (ρ) between model’s components (ĝ, t̂, t𝑐̂ and gt̂) solutions and corrected phenotypes (𝑦∗) for BLUP 789 

models proposed1. Numbers in bold (per row) show the best values for the accuracy of GEBV (ρĝ_𝑦∗) across models, identical results between 790 

two or more models are indicated in underline. 791 

Trait2 

Model3 

GTBLUP GTIBLUP GTCBLUP GBLUP 

𝛒𝐠̂_𝒚∗ 𝛒𝒕_𝒚∗ 𝛒𝐠̂_𝒕 𝛒𝐠̂_𝒚∗ 𝛒𝒕_𝒚∗ 𝛒𝐠̂_𝒕 𝛒𝐠̂_𝐠𝒕̂ 𝛒𝒕_𝐠𝒕̂ 𝛒𝐠̂_𝒚∗ 𝛒𝒕𝒄̂_𝒚∗ 𝛒𝐠̂_𝒕𝒄̂
 𝛒𝐠̂_𝒚∗ 

BMD12 0.20 0.24 0.22 0.20 0.22 0.21 -0.04 0.06 0.20 0.04 -0.10 0.19 

BMD21 0.29 0.38 0.28 0.30 0.37 0.29 0.04 -0.03 0.31 0.08 -0.03 0.29 

BW10 0.18 0.46 0.27 0.19 0.47 0.27 0.04 0.02 0.19 0.03 -0.13 0.18 

BW15 0.15 0.52 0.29 0.15 0.51 0.28 0.02 -0.02 0.18 0.08 -0.06 0.15 

BW20 0.17 0.61 0.25 0.17 0.60 0.26 -0.09 -0.02 0.21 0.16 -0.10 0.18 

CHOL8 0.14 0.13 0.16 0.14 0.13 0.15 0.18 -0.01 0.15 0.04 -0.08 0.14 

CHOL19 0.24 0.14 0.16 0.25 0.12 0.15 0.18 -0.02 0.27 -0.08 -0.09 0.25 

FATP12 0.18 0.43 0.14 0.18 0.42 0.13 -0.03 -0.12 0.20 0.15 -0.05 0.16 

FATP21 0.22 0.52 0.16 0.22 0.53 0.16 -0.09 -0.10 0.26 0.16 -0.10 0.21 

GLUC8 0.12 0.02 0.22 0.12 0.01 0.20 0.02 0.06 0.11 0.04 -0.09 0.10 

GLUC19 0.01 0.04 0.19 0.01 0.02 0.18 -0.04 0.05 0.01 -0.05 -0.11 0.01 

TRGL8 0.08 0.05 0.16 0.09 0.05 0.15 0.04 0.03 0.09 -0.07 -0.07 0.08 

TRGL19 0.14 0.15 0.15 0.14 0.15 0.14 0.03 -0.05 0.17 0.03 -0.09 0.15 
1ρĝ_𝑦∗ = correlation between additive genetic effect and corrected phenotypes; ρ𝑡̂_𝑦∗  = correlation between gene transcripts effect and corrected phenotypes; ρĝ_𝑡̂ = 792 

correlation between the additive genetic and gene transcripts effects; ρĝ_g𝑡̂ = correlation between the additive genetic effect and the interaction between genetic and gene 793 

transcript effects; ρ𝑡̂_g𝑡̂ = = correlation between the additive genetic effect and the interaction between genetic and gene transcript effects; ρt𝑐̂_𝑦∗  = correlation between gene 794 

transcripts conditioned on SNP genotypes and corrected phenotypes; ρĝ_t𝑐̂
 = correlation between the additive genetic effect and gene transcripts conditioned on SNP 795 

genotypes. 796 

2For a description of the traits, see Table 1. 797 
3For a description of the models, see Table 2. 798 
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Figure 1. Percentage of variance explained by SNP genotypes (𝑔2), gene transcripts (𝑡2), the 799 

interaction between them (𝑔𝑡2) and not explained (𝑒2) by GBLUP, TBLUP, GTBLUP, 800 

GTIBLUP and GTCBLUP models tested for the traits BW and FATP. 801 

1For a description of the traits, see Table 1. 802 

2For a description of the models, see Table 2. 803 

 804 

 805 

Figure 2. Percentage of variance explained by SNP genotypes (𝑔2), gene transcripts (𝑡2), the 806 

interaction between them (𝑔𝑡2) and not explained (𝑒2) by GBLUP, TBLUP, GTBLUP, 807 

GTIBLUP and GTCBLUP models tested for the traits BMD, CHOL, GLUC and TRGL. 808 

 809 

1For a description of the traits, see Table 1. 810 

2For a description of the models, see Table 2. 811 

  812 
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SUPPLEMENTARY MATERIAL 813 

 814 

Table S1. Regression coefficient of the corrected phenotypes on prediction for validation 815 
animals from all models tested. Values closer to 1 indicate less bias. 816 

Trait1 

Model2 

Only SNP2 
Only gene 

transcripts2 
SNP + gene transcripts2 

GBLUP GGBM TBLUP TGBM GTBLUP GTIBLUP GTCBLUP GTGBM 

BMD12 1.16 1.48 1.52 1.36 1.47 1.63 0.88 1.23 

BMD21 1.47 1.82 1.67 1.34 1.65 1.95 1.13 1.21 

BW10 1.07 1.46 1.25 1.46 1.28 1.44 0.85 1.16 

BW15 0.80 1.82 1.08 1.44 1.06 1.17 0.70 1.12 

BW20 1.01 1.82 1.09 1.36 1.09 1.16 0.82 1.07 

CHOL8 1.17 1.78 0.92 1.31 1.05 1.06 0.76 0.79 

CHOL19 0.99 0.79 0.79 1.43 0.92 1.00 0.83 0.69 

FATP12 0.55 0.76 0.96 1.16 0.99 1.09 0.89 1.18 

FATP21 1.10 0.83 1.02 1.25 1.04 1.12 0.99 1.14 

GLUC8 0.38 0.44 0.29 1.27 0.31 0.31 0.68 0.52 

GLUC19 0.35 1.82 0.33 1.28 0.36 0.37 0.26 0.45 

TRGL8 0.54 0.61 0.36 1.83 0.37 0.36 0.58 0.86 

TRGL19 0.96 1.12 0.75 1.15 0.74 0.85 0.72 1.23 

Mean 0.89 1.27 0.93 1.36 0.95 1.04 0.79 0.97 

Min 0.35 0.44 0.29 1.15 0.31 0.31 0.26 0.45 

Max 1.47 1.82 1.67 1.83 1.65 1.95 1.13 1.23 
1For a description of the traits, see Table 1. 817 
2For a description of the models, see Table 2. 818 
  819 
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Table S2. Relative root-mean squared error (RRMSE) for predictions on the validation set. 820 
Lower values indicate lower prediction error. 821 

Trait1 

Model2 

Only SNP 
Only gene 
transcripts 

SNP + gene transcripts 

GBLUP GGBM TBLUP TGBM GTBLUP GTIBLUP GTCBLUP GTGBM 

BMD12 1.00 1.02 0.99 1.02 0.98 0.99 1.01 0.99 

BMD21 0.99 1.02 0.96 0.99 0.95 0.96 0.98 0.96 

BW10 0.88 0.90 0.85 0.87 0.85 0.85 0.88 0.85 

BW15 0.86 0.86 0.85 0.85 0.86 0.86 0.87 0.86 

BW20 0.87 0.88 0.84 0.86 0.84 0.84 0.87 0.84 

CHOL8 0.89 0.90 0.89 0.91 0.89 0.89 0.90 0.87 

CHOL19 0.95 0.97 0.96 0.97 0.95 0.95 0.96 0.95 

FATP12 0.91 0.91 0.86 0.87 0.86 0.86 0.89 0.87 

FATP21 0.85 0.87 0.77 0.78 0.77 0.77 0.81 0.77 

GLUC8 1.15 1.15 1.17 1.14 1.15 1.15 1.15 1.15 

GLUC19 1.31 1.27 1.33 1.27 1.31 1.31 1.34 1.31 

TRGL8 1.07 1.09 1.14 1.14 1.11 1.10 1.13 1.10 

TRGL19 1.19 1.22 1.18 1.16 1.18 1.17 1.20 1.21 

Mean 0.99 1.00 0.98 0.99 0.98 0.98 1.00 0.98 

Min 0.85 0.86 0.77 0.78 0.77 0.77 0.81 0.77 

Max 1.31 1.27 1.33 1.27 1.31 1.31 1.34 1.31 
1For a description of the traits, see Table 1. 822 
2For a description of the models, see Table 2. 823 
  824 
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Table S3. Estimates of model parameters for the CORE-GREML model: the percentage of 825 

variance explained by SNP genotypes (𝑔𝟐)  and gene transcripts (𝑡𝟐), the estimated 826 

correlation between g and t components (𝜌𝑔𝑡), p-values for the estimated correlation (𝑝[𝜌𝑔𝑡]) 827 

and p-values for the likelihood ratio tests to determine whether the model fit by CORE- 828 
GREML was better than that by the standard model not including a covariance component 829 
(𝑝[𝐿𝐾𝐻]). 830 

Trait1 
CORE-GREML parameters GREML vs CORE-GREML 

𝒈𝟐 𝒕𝟐 𝝆𝒈𝒕 𝒑[𝝆𝒈𝒕] GREML CORE-GREML 𝒑[𝑳𝑲𝑯] 

BMD12 0.24 0.20 +0.21 0.62 -181.4712 -181.4062 0.71 

BMD21 0.28 0.26 +0.14 0.55 -177.2119 -177.1537 0.60 

BW10 0.04 0.40 +0.58 0.29 -695.5398 -695.3162 0.50 

BW15 0.03 0.45 +0.60 0.45 -696.1394 -696.7851 0.25 

BW20 0.01 0.60 +0.63 0.32 -679.8870 -680.7453 0.19 

CHOL8 0.27 0.13 +0.55 0.45 -483.6665 -483.9623 0.44 

CHOL19 0.21 0.18 +0.71 0.07 -388.3944 -389.8146 0.09 

FATP12 0.17 0.73 -0.23 0.50 -17.1618 -17.0426 0.62 

FATP21 0.08 0.89 -0.47 0.34 -3.5900 -3.4460 0.59 

GLUC8 0.21 0.09 -0.22 0.76 -510.4316 -510.4436 0.87 

GLUC19 0.02 0.15 -0.26 0.72 -402.9910 -403.0818 0.67 

TRGL8 0.08 0.14 +0.26 0.23 -226.2193 -226.9104 0.25 

TRGL19 0.09 0.25 +0.07 0.90 -171.9591 -171.9595 0.97 
1For a description of the traits, see Table 1. 831 
 832 

 833 
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