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ABSTRACT

Recent developments allowed generating multiple high quality ‘omics’ data that could increase
predictive performance of genomic prediction for phenotypes and genetic merit in animals and
plants. Here we have assessed the performance of parametric and non-parametric models
that leverage transcriptomics in genomic prediction for 13 complex traits recorded in 478
animals from an outbred mouse population. Parametric models were implemented using best
linear unbiased prediction (BLUP), while non-parametric models were implemented using the
gradient boosting machine algorithm (GBM). We also propose a new model named GTCBLUP
that aims to remove between-omics-layer covariance from predictors, whereas its counterpart
GTBLUP does not do that. While GBM models captured more phenotypic variation, their
predictive performance did not exceed the BLUP models for most traits. Models leveraging
gene transcripts captured higher proportions of the phenotypic variance for almost all traits
when these were measured closer to the moment of measuring gene transcripts in the liver.
In most cases, the combination of layers was not able to outperform the best single-omics
models to predict phenotypes. Using only gene transcripts, the GBM model was able to
outperform BLUP for most traits except body weight, but the same pattern was not observed
when using both SNP genotypes and gene transcripts. Although the GTCBLUP model was
not able to produce the most accurate phenotypic predictions, it showed highest accuracies
for breeding values for 9 out of 13 traits. We recommend using the GTBLUP model for

prediction of phenotypes and using the GTCBLUP for prediction of breeding values.
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INTRODUCTION

Predicting complex traits is a fundamental aim of quantitative genetics. The use of
whole genome single nucleotide polymorphisms (SNP) revolutionized the prediction of
breeding values, resulting in the process widely known as genomic prediction (GP)
(Meuwissen et al. 2001). A number of statistical approaches are now applied routinely in
breeding programs, such as genomic best linear unbiased prediction (GBLUP) (VanRaden
2008), ridge regression (Whittaker et al. 2000), or methods from the “Bayesian Alphabet”
(Gianola et al. 2009). More recently, machine learning algorithms have been tested in the
context of genomic prediction (Gonzalez-Recio et al. 2013; Pook et al. 2020; Zingaretti et al.
2020). These models may have several advantages when compared to traditional linear
models, such as capturing interactions between predictors (non-additive effects), automatic
variable selection and for making fewer assumptions regarding the underlying genetic
architecture of phenotypes (Nayeri et al. 2019; Pérez-Enciso and Zingaretti 2019). However,
compared to the linear models mentioned above, prediction performance from machine
learning methods has shown mixed results (Azodi et al. 2019; Abdollahi-Arpanahi et al. 2020;
Perez et al. 2022). There seems to be no “one-size-fits-all” model, as results are dependent

on trait genetic architecture, size of the data, and on fine tuning of hyperparameters.

Recent development of low-cost high throughput molecular technologies allowed
generating multiple high quality ‘omics’ data can be measured with high accuracy (Fernie and
Schauer 2009; Tohge and Fernie 2015; Chawade et al. 2016). This has led to interest in
utilizing these as new layers of information to improve the predictive performance of genomic
prediction models, ultimately contributing to improve efficiency of breeding programs (Guo et
al. 2016; Li et al. 2019). For example, gene expression levels measured in tissue samples by
direct RNA sequencing (RNA-seq) is now readily available to animal breeders (Ozsolak and
Milos 2011). To incorporate these new sources of data into genomic prediction models
requires new strategies for integration with the already widely used genome-wide marker data.

Although most of the literature focusing on the inclusion of gene-expression data into genomic
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models to improve predictive performance aimed at predicting phenotypes (Takagi et al. 2014;
Guo et al. 2016; Schrag et al. 2018; Azodi et al. 2019; Li et al. 2019; Morgante et al. 2020),
fitting gene transcript levels as an additional layer of information into genomic models could
indirectly improve the prediction of breeding values. Christensen et al. (2021) presented a two-
step method to incorporate such intermediate omics into genomic evaluations considering
complete and incomplete omics-data scenarios. Results were validated using simulated data
and suggested superiority of the single-step method including both the intermediate omics and
genomics data, over the traditional genomic best linear unbiased prediction (GBLUP) using
only genomics data. Similar results were observed by Michel et al. (2021) when investigating
the integration of gene expression into genomic prediction for disease resistance in wheat by
using a hybrid relationship matrix for merging both layers of omics data. A pending issue that
remains, is the adequate handling of associations between layers of data that may lead to
inflated relative contributions of individual layers when ignored (Holm et al. 2010; Christensen
et al. 2021). Wade et al. (2021) have suggested that the benefits of multi-omics integration
models over single-omic models are achieved once redundancy of predictors is decreased.
Therefore, multi-omics models should either automatically or through adequate
parametrization be able to identify and manage information redundancy across multiple omics-

layers.

In the present study we used data from the Diversity Outbred (DO) mouse population
(Churchill et al. 2012; Svenson et al. 2012) to evaluate the utility of gene expression in addition
to genome-wide genetic markers for genomic prediction using different modeling strategies.
To this end, the objectives of this study were to: (1) assess the proportions of phenotypic
variance explained by genetic markers and gene transcripts in complex traits recorded in at
least two time points; (2) evaluate the predictive accuracy for phenotypes using transcripts
and/or marker information for the traits investigated using linear models and the gradient
boosting algorithm; and (3) evaluate how the inclusion of transcripts affects estimation of

genomic breeding values (GEBV) from BLUP models. The linear models proposed vary in
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90 number of components, how interactions were modeled, and conditioning of one component
91 onanother. The gradient boosting machine algorithm was chosen for its ability to automatically
92  control redundancy and implicitly account for non-linear effects in prediction, while the BLUP
93  models tested comprise parametric approaches to incorporate genomics and transcriptomics,

94  considering or ignoring the interactions between them.

95

96 MATERIAL AND METHODS

97 Data

98  Phenotypes

99 Data used for this study were obtained from The Jackson Laboratory (Bar Harbor, ME)
100 and comprise a subset of the dataset used in Perez et al. (2022). The 478 DO mice originated
101  from 4 non-overlapping generations (4, 5, 7 and 11) with males and females represented
102  equally. The total number of animals per generation was 47, 47, 192 and 192 for generations
103 4, 5, 7 and 11, respectively, with slight variation in the numbers of missing records across
104 traits (Table 1). The mice were maintained on either standard high fiber (chow, n=239) or high
105 fat diet (n=239) from weaning until 23 weeks of age. The proportion of males and females
106  within each diet category was close to 50-50 for all generations, as well as within each litter-
107 generation combination (two litters per generation). This population is maintained under a
108 systematic mating scheme, designed to limit population structure and relatedness. On
109 average, the animals were related to each other at a level equivalent to first cousins, which is
110 by design (Svenson et al. 2012). More elaborate descriptions of population structure,
111  husbandry and phenotyping methods can be found in Svenson et al. (2012) and Tyler et al.

112 (2021).

113 Table 1 gives for each trait a brief description, the numbers of observations and the
114  estimated heritability. We considered six traits based on range of heritability and presumed

115 genetic architectures. The chosen traits were measured at two or three times during the

5
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116  animal’s life, resulting in 13 distinct traits in total. The analyzed traits were bone mineral density
117 at 12 (BMD12) and 21 (BMD21) weeks, body weight at 10, 15 and 20 weeks (BW10, BW15
118  and BW20); circulating cholesterol at 8 (CHOLS8) and 19 (CHOL19) weeks, adjusted body fat
119 percentage at 12 (FATP12) and 21 (FATP21), circulating glucose at 8 (GLUCS8) and 19
120 (GLUC19) weeks, circulating triglycerides at 8 (TRGLS8) and 19 weeks (TRGL19). These traits
121 can be categorized into measurements of body composition (bone mineral density, body
122 weights and fat percentage) and clinical plasma chemistries (circulating glucose and
123 triglycerides). Phenotypic records were pre-corrected for fixed effects of diet, generation, litter,
124  and sex (Perez et al. 2022). Therefore, the pre-corrected phenotypes (y*) analyzed here

125  comprise the sum of the additive genetic effect and residual terms.

126

127 TABLE 1

128

129  Genotypes

130 The genotype data used for the animals in this study, were obtained from their derived
131  founder haplotypes (for details: see Perez et al. 2022). The complete genotype file used for
132  the analyses included 64,000 markers on an evenly spaced grid, and the average distance
133  between markers was 0.0238 cM. The full genotype dataset was cleaned based on the
134  following criteria: variants with minor allele frequency < 0.05, call rates < 0.90 and linear
135  correlation between subsequent SNPs > 0.80 were removed. After quality control, a total of
136 50,122 SNP markers were available for the mice with phenotypic, genotypic and

137  transcriptomic records.

138
139  Transcript levels

140 Transcriptome-wide expression levels were measured from whole livers as previously

141  described (Munger et al. 2014; Chick et al. 2016) for 478 animals at 26 weeks of age. The
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142  RNA sample was sequenced using single-end RNA-Seq (Munger et al. 2014) and aligned
143 transcripts to strain-specific genomes from the DO founders (Chick et al. 2016). Read counts
144 were estimated using an  expectation maximization algorithm  (EMASE,
145  https://github.com/churchill-lab/emase). Read counts were previously corrected for the effects
146  of sex, diet, and batch by normalizing in each sample using upper quantile normalization and
147 applying a rank Z transformation across samples. After quality control, quantification of

148  transcripts was available for 11,770 genes (Tyler et al. 2017).
149
150  Statistical models

151 Below we introduce five best linear unbiased prediction (BLUP) models and three
152  gradient boosting machine (GBM) models with their acronyms and key features summarized

153  in Table 2.
154  Best linear unbiased prediction

155 GBLUP

156  The statistical model of GBLUP is:
157 y'=1u+g-+e,

158 wherey”* is the vector of pre-corrected phenotypes, 1is a vector of ones,pis the
159 intercept, g is the vector of random additive genetic values, where g~ N(O, Gaj), G is the
160 additive genomic relationship matrix between genotyped individuals, and 05 is the additive
161  genomic variance. The matrix G is constructed following the second method described by
162  VanRaden (2008) as Z% where Z is the matrix of centered and standardized genotypes for all

163  individuals and m is the number of markers. Finally, e is the vector of random residual effects

164  where e ~ N(0,Ic2) with 62 being the residual variance, and I is an identity matrix.

165
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166 TBLUP

167 To evaluate the performance of transcriptomic data for predicting complex traits, we
168 used a Transcriptomic Best Linear Unbiased Predictor (TBLUP) model. This model is similar
169  to GBLUP, but using a transcriptomic relationship matrix, which evaluates the similarity among

170  animals based on gene expression levels (Guo et al. 2016).

171  The statistical model of TBLUP is:

172 y'=1u+t+e,

173  wherey*, 1 and u are defined as above, tis the vector of random transcript level effects,
174  where t~ N(0,To?) and T is the transcriptomic relationship matrix built according to the

!
175 formula% where W is the matrix of centered and standardized expression levels for all

176  animals and k is the number of genes, and ¢ is the variance explained by gene transcripts.
177
178 GTBLUP and GTIBLUP

179 The GTBLUP model fitted the g and t as independent random effects, each with their
180  own variance component (Guo et al. 2016; Li et al. 2019). The modelisy* =1u+g+ t+e,

181  where all the parameters are as defined above.
182 The GTIBLUP model fitted g, t, and the interaction between g and t with an additional

183  variance component (Morgante et al. 2020). This model isy*=1u+g+ t+gt+ e,
184 wherey*, 1u, g, t and e are as defined above, and gt is the vector of interaction (between
185 genomic and transcriptomic) effects, where gt ~ N(O, G#Tajt) and # is the Hadamard
186  product.

187

188

189
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190 GTCBLUP

191 The GTCBLUP model was similar to GTBLUP in that the g and t that were fitted as
192 independent random effects, each with their own variance component. However, for this model
193  the transcript levels were conditioned on SNP genotypes, yielding a matrix W, computed as:
194 W,={-1Z(Z'Z+1N)"1Z)W, where Z(Z'Z +1N)"1Z' is the so-called “smoother matrix”
195 (Hastie et al. 2009), Z is the matrix of centered and standardized genotypes as before, I is an

196 identity matrix, and A = mﬂ;’e, oZ is the residual variance, and ¢/ is the additive genomic
g

197  variance, both variances estimated with the GBLUP model (including only g). Using the
198  smoother matrix, i.e. including IX rather than using I —Z(Z'Z)~1Z’, reflects that the effects
199  associated with the SNPs are estimated as random rather than fixed effects. The aim of this
200 model is to remove any variance from transcripts that is correlated to variance in genotypes,
201  such that any phenotypic variance both associated with variance in genotypes and transcripts

202  automatically will be associated with the genotypes only. The model isy* =1u+g+ t. +e,

203  where t, ~ N(0, T,6?) and T, is computed as % , and all other parameters are as defined
204  above.
205

206  Gradient boosting machine models

207 Gradient boosting machine (GBM) is an ensemble learning technique that applies an
208 iterative process of assembling “weak learners” into a stronger learner, being largely used for
209  both classification and regression problems (Friedman 2001). In the scope of this
210 investigation, the GBM algorithm represents a non-parametric approach capable of implicitly
211 fitting not only the additive effects of SNP and gene transcripts, but also the within- and
212 between-omics layers interactions. The GBM is also capable of performing automatic feature
213 selection, prioritization of important variables and discarding variables containing irrelevant or

214  redundant information. A detailed description of the gradient boosting machine algorithm and
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215 its application in genomic prediction can be found in Friedman (2002), Gonzalez-Recio et al.

216 (2010; 2013) and Perez et al., (2022).

217 To obtain the best possible results from the GBM algorithm, a grid search approach
218  was used to determine the combination of hyperparameters that minimized the mean squared
219  error of prediction within the inner training set for each trait. Details of the hyperparameter
220  search method used are found in Perez et al. (2022). We implemented the GBM model using

221  the “gbm” R package (Ridgeway 2020).

222 We tested three different GBM models. The first model considered only SNP
223  genotypes as predictors (GGBM), the second model considered only (standardized) gene
224 transcript levels as predictors (TGBM) and a third model that considered both genetic markers
225  and transcript levels together as predictors (GTGBM). Our objective was to investigate if GBM
226  models could capture within and between omics layers associations, while also reducing within
227 and between omics layers redundancy by performing automatic variable selection. It is
228  important to note here that although here we used “G” and “T” letters to refer to genomics and
229 transcriptomics data in the GBM model’s acronyms, predictors were fit directly in the model

230 and not as relationship matrices

231

232 TABLE 2

233

234  Variance explained by genetic markers, transcript levels and combinations of both

235 To understand how much of the phenotypic variance can be explained by using SNP
236  genotypes, gene transcript levels and the combinations of both sources of information, we
237 estimated variance components using the GBLUP, TBLUP, GTBLUP, GTIBLUP and
238  GTCBLUP models. Estimates of variance components along with the residual variance (c2)

239  were obtained from a Bayesian approach analysis, using the BGLR R package (Pérez and de

10
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240 los Campos 2014). For all models, the Gibbs sampler was run for 60,000 iterations, with a
241 20,000 burn-in period and a thinning interval of 10 iterations. Consequently, inference was

242 based on 4,000 posterior samples.

243 For the GTIBLUP model, we calculated the portion of variance explained by SNP

o o2

— 2
oZtoProl 03) gene transcripts (t* =

244  genotypes (h? =

G'+G'+O'

— 2) and from the interaction
gt

245  between effects from genetic markers and gene transcripts (gt? = —2)

o%+ot+al+ ol

246  Consequently, the sum of h%, t? and gt? represent the portion of phenotypic variance
247  explained by two layers of omics data and by the between-omics-layer interactions. The
248  parameters h?, t? and gt? for the other models were calculated similarly but omitted any

249  variance components associated with effects not included in the model.
250  Model Performance

251 Performance of predictions from the models was measured by the accuracy, computed

252 as the Pearson correlation (r,-3), and the relative root-mean squared error of prediction

253 (RRMSE) between predictions (y) and pre-corrected phenotypes (y*): RRMSE =

254 J Yiei(y* = 9)?/ o, where g, is the phenotypic standard deviation. In all analyses, we

255  used a forward prediction validation scheme in which animals from older generations (4, 5, 7)
256  were used as the reference and animals from the younger generation (11) as the validation
257  subset. The standard error (SE) around the - ; estimates were obtained by calculating the
258 standard deviations from 10,000 bootstrap samples (Davison and Hinkley 1997). The
259  bootstrapping procedure was implemented using the “boot” R package (Canty and Ripley
260  2021). We have also assessed prediction bias by obtaining the regression coefficient from the
261 linear regression of corrected phenotypes on model predictions. For these results, values

262  above 1 indicate deflation, while values below 1 indicate inflation of predicted values.

11
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263 To assess the proportion of variance explained by the models tested, we have
264  calculated the coefficient of determination (R?) from the regression of corrected phenotypes
265  on model predictions for all traits. For the GBM models we have used results from the model
266 using the previously obtained best hyperparameter set from the standard grid-search

267  procedure to assess the model R? for prediction within the reference set.

268 For the BLUP models proposed to integrate SNP genotypes and gene transcripts
269  (GTBLUP, GTIBLUP and GTCBLUP), in addition to r,-; we have also calculated the
270  correlations between the solutions for each random effect included in the model (g, t, t. or
271  gt) and y, as well as pairwise comparisons between all components in the model. Here, we
272 also focus on solutions from the additive genetic component from these models to assess if
273 the prediction of genomic breeding values (GEBV) can be improved by using models capable

274  of integrating SNP genotypes and gene transcripts for genomic prediction.

275
276  Data Availability

277  All data associated with this manuscript, and the code developed and used to perform
278  analyzes described in this manuscript, can be obtained at

279  https://doi.org/10.6084/m9.figshare.15081636.v1. All software used is publicly available.

280
281 RESULTS

282  Variance components estimation percentage of variance explained within the
283  reference set

284 Genomic heritabilities (h?) obtained with GBLUP ranged from 0.08 to 0.44,
285  representing a wide range of magnitudes across traits (Figure 1 and Figure 2). When only
286 fitting transcript levels as predictors (TBLUP), the percentage of variance explained (t?2)
287  ranged from 0.22 to 0.75 and in general it was higher than h? when comparing within the same
288 trait. The exceptions to that were observed for BMD12 (h? = 0.39 and t? = 0.35) and GLUCS8

289  (h? =0.30 and t? = 0.22). When comparing the same trait measured at different time points,

12
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290 t? from TBLUP was higher for phenotypes collected closer to the 26 weeks of age (i.e. the

291  age at mRNA data sampling).

292 In terms of the total phenotypic variance explained, GTBLUP and GTIBLUP showed
293  similar results (Figure 1 and Figure 2). For body weights (BW10, BW15, BW20) and fat
294  percentage (FATP12 and FATP21) traits, the variance explained by genetic markers (in
295  GTBLUP and GTIBLUP) was drasticly lower when compared to GBLUP for the same traits.
296  For the remaining traits the decrease in genetic variance captured by markers was much
297 lower. For the interaction component in GTIBLUP (gt?), results observed varied according to
298 the trait analysed but in general, it was low compared to h? and t2. The only exception to that
299  was observed for TRGLS, in which gt? was higher than h? and t2. For CHOL8, GLUC19 and

300 TRGL19, gt? was either similar to h? or t2.

301 For GTCBLUP, differently from GTBLUP and GTIBLUP, the additive genetic variance
302 captured was always in line with results from GBLUP. On the other hand, the variance
303  explained by transcripts (t?) from GTCBLUP was always lower than observed by other models

304 including transcripts as predictors (TBLUP, GTBLUP and GTIBLUP).

305

306 FIGURE1

307 FIGURE 2

308

309 The variance explained (represented by the R? parameter) within the reference data

310 by parametric models was in general lower than by the non-parametric counterparts (Table
311  3). Independent of being a parametric or non-parametric model, the use of gene transcripts
312 (TBLUP and TGBM) as predictors explained in most cases more of the variance than using
313  exclusively SNP genotypes (GBLUP and GGBM). For GTBLUP, GTIBLUP and GTGBM, the

314 variance explained was at least similar to observed for TBLUP and TGBM, but generally

13
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315  higher. For GTCBLUP, variance explained by the model was slightly to moderately higher than
316  observed for GBLUP model, but always smaller than observed for GTBLUP, GTIBLUP and
317 GTGBM. The average R? when considering only traits recorded earlier (suffixes 8, 10 or 12)
318 and later (suffixes 19, 20 or 21) moments were 76% and 83%, respectively, when using
319 TBLUP, being the largest differece observed across models when considering these two

320 groups of traits.

321

322 TABLE 3

323  Prediction performance — Phenotype prediction

324 In Table 4 accuracies are shown for predicted phenotypes for BLUP and GBM models
325 using either SNP genotypes, transcript levels or both as predictors. Here we considered
326 GBLUP to be the reference method. It showed prediction accuracies ranging from 0.01 to
327 0.29, these were highly positively correlated to the portion of variance explained by SNP
328  genotypes by the same model, except for CHOL19. When comparing predictive performance
329  between GBLUP and GGBM models, GBLUP yielded highest prediction accuracies for 7 traits,

330 while GGBM had best predictive performance for 6 traits out of 13.

331 For models that include only gene transcripts (TBLUP and TGBM), the TBLUP
332 approach showed predictive accuracies ranging from 0.03 to 0.61, having the best
333  performance for only 4 out of 13 traits. The TGBM model was able to overcome TBLUP for 7
334 traits, with prediction accuracies ranging from 0.04 to 0.58. For BMD21 and BW15, predictive
335  accuracy was identical between TBLUP and TGBM. The differences between accuracies from

336 TBLUP and TGBM was higher than between GBLUP and GGBM.

337 For models that combined SNP genotypes and gene transcripts levels (GTBLUP,
338 GTCBLUP, GTIBLUP and GTGBM), GTBLUP had the highest predictive accuracy for 5 traits
339  out of 13. The second-best model overall was GTGBM, with the highest predictive accuracy

340 for 4 traits. For every trait that GTIBLUP had the highest prediction accuracy, it was identical
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341  to the result for GTBLUP, while the GTCBLUP never had the highest predictive accuracy

342 (Table 4).

343 The prediction error (RRMSE) and bias (8) for model’s predictions are presented in
344  Supplementary Tables S1 and S2, respectively. Considering single-omics models, on average
345  BLUP models (GBLUP and TBLUP) yielded less biased predictions than GBM models (GGBM
346 and TGBM). For models integrating SNP genotypes and gene transcripts, GTBLUP and
347  GTIBLUP showed similar bias across traits, while GTGBM had on average less bias than the
348 BLUP models. For the GTCBLUP model, predictions were inflated (8 < 1) for all traits but
349 BMDZ21. In terms of prediction error, differences between models were smaller than observed
350 for bias (Supplementary Table S2) or predictive accuracies (Table 4). The lowest RRMSE
351  values were observed for FATP21, while the highest were observed for GLUC19. The RRMSE
352  values for all traits analyzed were all around 1, indicating the average prediction errors were

353  close to one phenotypic standard deviation.

354
355 TABLE 4
356

357  Predictive ability for GEBV and other model components, and the correlation between
358 them in BLUP models

359 In Table 5 the Pearson’s coefficient correlation between model components solutions
360 (g, t, £, and g,) for the different BLUP models and corrected phenotypes (y*) are shown.
361  Overall, results for GTBLUP and GTIBLUP were similar across traits. These two models had
362  the most accurate GEBV (pg ,+) exclusively for GLUCS, while for BMD12 results from these
363 models were matched by GTCBLUP. For GLUCL19, all four parametric multi-omics models
364  yielded the same accuracy for GEBV, which was the lowest (0.01) across traits. In 8 out of 13
365 traits the GEBV estimated using GTCBLUP model was the most accurate across all models.

366  The correlation between tand y* (p; ,+) was also similar between GTBLUP and GTIBLUP,

367 being always higher for these two models than observed for GTCBLUP. For
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368 GTCBLUP exclusively, p; ,» was low and negative for CHOL19 (-0.08), GLUC19 (-

369 0.05) and TRGL8 (-0.07). For most traits, although a slight increase in the total
370 variance explained was observed within the reference dataset (Figures 1 and 2) when
371 comparing GTBLUP and GTIBLUP, there was not a proportional increase in p; ,+ in
372 the validation (Table 5). For GTCBLUP on the other hand, for all traits there was an
373 increase in the variance explained by SNP genotypes (g2 in Figure 1 and Figure 2)
374  when compared to GTBLUP and GTIBLUP, and the same pattern was observed for

375  pg,+. Results for p, ; varied from +0.14 to +0.29 for GTBLUP and from +0.13 to +0.29
376  for GTIBLUP. For GTCBLUP, values for p; ¢, were all negative and close to zero,
377  ranging from -0.13 to -0.03 (Table 5). The values for p; &, only calculated for GTIBLUP,

378  were close to zero for most traits with an exception for CHOL8 and CHOL19, for which

379 pg g was 0.18. A similar pattern was observed for p; &, for which values varied from -

380 0.12to +0.06, with the largest differences from p; 5 observed for CHOL8 and CHOL19.

381
382 TABLE 5
383

384  DISCUSSION

385 Here, we investigated parametric and non-parametric approaches to leverage
386 transcriptomic data for the prediction of complex phenotypes. To accomplish that, we used
387 478 animals from the DO Mouse population (Svenson et al. 2012), for which information on
388  phenotypes (Churchill et al. 2012) for a wide range of quantitative traits, SNP genotypes and
389  gene transcript levels from liver tissue (Tyler et al. 2017) were available on the same animals.
390 We used the genomic (GBLUP) and transcriptomic (TBLUP) best linear unbiased prediction
391 models to evaluate the value of these omics data to predict phenotypes. In addition, we

392 evaluated models to integrate genome and transcriptome data by modelling both layers
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393 independently (GTBLUP) or including an interaction component between the genome and
394  transcriptome (GTIBLUP). Finally, we proposed the GTCBLUP model that removes the
395  between-omics-layer information redundancy. The gradient boosting machine (GBM)
396  algorithm was investigated as a non-parametric approach potentially able to perform variable
397 selection and capture non-linear effects by fitting either SNP genotypes (GGBM), gene
398 transcript levels (TGBM) or to integrate both layers implicitly modeling interactions within and

399  between omics layers (GTGBM).

400 Using data from six distinct traits measured at two or three time points (resulting in 13
401 traits in total), we first assessed the proportion of phenotypic variance explained by each
402  variance component in the parametric models (Figure 1 and Figure 2). The variance explained
403 by SNP genotypes and gene transcript levels (and their interaction) varied by trait, time of
404 measurement and the model used. When using transcripts as predictors, two main patterns
405  were observed. For 5 out 13 traits (Figure 1), the TBLUP model explained much more of the
406  phenotypic variance than GBLUP. For the other 8 out of 13 traits (Figure 2), TBLUP explained
407 less variance than GBLUP. The observation that the portion of variance explained by gene
408  transcripts is strongly trait-specific is in line with results observed when assessing the
409  proportion of variance from gene transcripts for complex traits in Drosophila (Morgante et al.
410 2020). Ehsani et al. (2012) have analyzed data from an F2 mice population using models
411  integrating genotype markers and liver transcriptomics data. The authors reported that
412  transcripts explained 79%, while genotypes explained 36% of the phenotypic variance for body
413  weight at 8 weeks of age. It is important to emphasize that in Ehsani et al., (2012), RNA
414  samples were measured at the same time point as phenotypes were collected. Other authors
415  have observed that the genetic markers always explained a bigger portion of variance than

416  transcripts in maize (Guo et al. 2016; Azodi et al. 2019) and Drosophila (Li et al. 2019).

417 There are several possible reasons for the conflicting results found in literature when
418  assessing the value of transcripts to explain variation in complex phenotypes. Differently from

419  genotypes, transcripts are affected by many factors such as the tissue from where samples
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420 are collected, the moment in life of sampling and the environmental conditions that the animal
421  was exposed to. These variables most likely impact the variance explained (and concomitantly
422  prediction performance) by transcripts. In Azodi et al. (2019) for example, transcripts were
423  quantified from whole seedlings while phenotypes were recorded at a much older age, which
424  could explain the limited predictive ability of transcriptomics data. In the present study
425  transcripts were measured when the mice were 26 weeks of age, while all phenotypes were
426  recorded at younger ages (from 8 to 21 weeks of age). In our results, phenotypes recorded
427  closer to 26 weeks of age had a larger proportion of phenotypic variance explained by
428  transcripts than measurements made earlier in the animal’s life for the same phenotype
429  (Figure 1 and Figure 2). For BW and FATP the transcripts explained a larger proportion of
430 phenotypic variance at all time points. For BMD, CHOL, GLUC and TRGL this was the case
431  when there was 4 (BMD) to 6 weeks (CHOL, GLUC and TRGL) in-between measuring
432  phenotypes and transcripts, while genomics explained more phenotypic variance when this
433  time frame increased to 14 (BMD) or 18 weeks (CHOL, GLUC and TRGL) in-between. It is
434  important to emphasize here that although this outcome may have been expected beforehand,
435  to our knowledge it is the first time that this link between amount of variance explained by
436  transcript versus the time difference between measuring transcripts and phenotypes has been
437  shown empirically. One other aspect that must be considered here is that the gene expression
438  from whole maize seedlings (Azodi et al. 2019) is probably much less related to traits collected
439 later in life than the gene expression from liver tissue available for the DO mouse dataset. It
440 is widely known that the liver is strongly linked to many metabolic pathways (Ponsuksili et al.
441  2019), and therefore likely also especially to the BW and FATP traits used here, while the
442  variation contained in a sample collected from whole seedlings do not reflect a specific tissue

443 but a pool of all tissues in this organism.

444 When fitting both SNP genotypes and gene transcripts as predictors the portion of
445  variance explained by SNP genotypes varied drastically from the GBLUP model. For all BW

446  and FATP traits, the proportion of variance explained by genotypes using GTBLUP and
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447  GTIBLUP was much lower than for GBLUP. Ehsani et al. (2012) and Takagi et al. (2014)
448  observed a reduction in captured genetic variance by SNP genotypes of around 50% when
449  fitting genotypes together with transcripts compared to models using fitting only genotypes as
450  predictors for complex traits in other mice populations. This seems to confirm the hypothesis
451 that there is redundant information between the genome and transcriptome layers (Wade et
452  al. 2021), as also shown to be the case in Drosophila (Morgante et al. 2020). In our experience,
453 it seems that the closer the phenotype analyzed is to the moment of RNA sampling, the higher
454  the decrease in genetic variance captured by SNP genotypes in GTBLUP and GTIBLUP. This
455  was observed for almost all traits we analyzed in different magnitudes. Takagi et al. (2014)
456  analyzed circulating cholesterol at 10 weeks of age in mice and reported a large decrease in
457 the genetic variance captured from SNP genotypes from models including only SNP
458  genotypes (g%= 46%) and together with liver transcripts (g?= 19%) also measured at 10 weeks
459  of age. In the present study, we observed only a slight decrease in genetic variance estimated
460  when comparing GTBLUP (g?= 28%) and GBLUP (g?= 38%) for CHOLS. This seems to
461  confirm that for the same phenotype, measurements made closer to the RNA sampling are
462  prone to exhibit this pattern in a higher magnitude than measurements. This was further
463  substantiated by the results observed for GTCBLUP. By conditioning the transcripts on the
464  genotypes, the portion of variance explained by SNP genotypes was similar to the GBLUP
465  model, while the variance explained by gene transcripts was much lower than estimated with

466  TBLUP, GTBLUP and GTIBLUP.

467 The formal variance partitioning achieved with the BLUP models cannot be achieved
468  with the non-parametric GBM models. To compare the performance of GBM and BLUP in
469 terms of explained variance we investigated the model R? within the reference set. For the
470 GBM models it was almost always higher than for the BLUP models (Table 3). From our
471  results, this pattern is recognizable for almost all traits analyzed, in which the GBM algorithm
472 is able to capture a higher portion of variance than the parametric counterpart within the

473  reference dataset (Table 3) but fails to outperform these models when predicting in the
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474  validation set (Table 4). The only exception to that is observed for GLUC19, for which in
475  addition to the much larger portion of variance explained within the reference set, the GBM
476  algorithm also outperformed BLUP models by a large margin for prediction purposes. The
477  presence of noise in the data, limited size of the training set and the underlying complexity of
478  the event being modelled are often cited as common causes of overfitting in machine learning
479  models (Vabalas et al. 2019; Ying 2019). Here we used a training dataset of 286 animals and
480 the high number of predictors in the models, coupled with the unavoidable presence of
481  collinearity within and between omics layers may have caused GBM models to overfit. Takagi
482 et al. (2014) have also analyzed datasets of similar size from another heterogeneous mice
483  population using parametric models that integrated genomics and transcriptomics data,
484  reporting large portions of phenotypic variance captured within training sets that weren’t
485  necessarily translated to high predictive accuracy in the validation set for circulating glucose
486 and cholesterol. The authors argue that the high number of model's parameters to be
487  estimated and the small number of animals with observations available could be the main
488  cause of this pattern. We have observed a big impact of hyperparameters on the in predictive
489  accuracies of the GBM models (results not shown). Having access to larger datasets could
490 help to elucidate the magnitude of this impact for the models analyzed here since it would
491 decrease the impact of hyperparameter definition in predictive performance, improving
492  strength of evidence for any differences found between GBM and other models tested. The
493  forward-prediction validation method adopted in the present study was previously described
494  in Perez et al. (2022) and mimics prediction in animal and plant breeding, where a predictive
495  model is trained based on data from individuals that have genomics (here also transcriptomics)
496 and phenotype data available, while prediction is intended for un-phenotyped younger
497 individuals. Here, training and validation generations were also 3 generations apart from each
498  other, which erodes strong relationships (e.g., parent-progeny) and therefore should not be

499 the cause of model overfitting suggested for the GBM models.
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500 Prediction performance for phenotypes can be improved by combining genotypes and
501 transcripts, however our results suggested that the magnitude of improvement is dependent
502 on the trait analyzed (Table 4). In line with the observed differences in variance explained by
503 model components, TBLUP showed a better predictive ability than GBLUP for most traits
504 except CHOL19, GLUCS8 and GLUC19. In contrast, Takagi et al. (2014) reported higher
505 predictive accuracies for circulating glucose and cholesterol when using liver transcripts as
506 predictors when compared to using genotypes in a different heterogeneous mice population
507 (Valdar et al. 2006). Two aspects may explain the differences observed between studies. First,
508 Takagi et al. (2014) performed a cross-validation scheme by randomly sampling individuals
509 as reference and validations sets while we performed a forward-validation scheme, in which
510 phenotype prediction for younger animals was based on estimates from older generations.
511  Even though animals are randomly sampled, the overall similarity between reference and
512  validation sets is higher in Takagi et al. (2014), which in general leads to higher magnitude of
513  predictive accuracy (Pszczola et al. 2012; Werner et al. 2020). It is important to emphasize
514 that although this is true when dealing exclusively with SNP genotypes, we cannot confirm
515 thatthe affirmative holds when dealing with transcripts as predictors. A second relevant aspect
516 isthatin the present study phenotypes for CHOL and GLUC were collected at 8 and 19 weeks,
517  while RNA samples were taken at 26 weeks of age. As previously mentioned, in Takagi et al.
518 (2014) RNA samples and phenotypes were collected at the same age (10 weeks). In the
519  present study, phenotypes recorded at a closer time point to transcript profiling result in higher

520 predictive performance from transcripts (Table 4).

521 The TGBM model was able to overcome the TBLUP model for several traits, which
522 was not the case when comparing GBLUP and GGBM. This result may indicate that
523 interactions between transcripts were more easily captured or are more relevant than between
524  SNPs. When fitting only genotype markers, the model is limited by incomplete linkage
525  disequilibrium between the SNP and quantitative trait loci to perform an accurate detection of

526  possible interactions, while there is no such limiting factor when using gene transcripts. One
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527  other hypothesis is that as transcripts are more strongly linked to phenotypes than genetic
528 markers, transcript-by-transcript interactions are also likely to affect the phenotype more
529  strongly than SNP-by-SNP interactions (Green et al. 2019), hence the former is expected to
530 have a clearer and more detectable signal. Morgante et al. (2020) have used the random
531 forest model, a non-parametric ensemble machine learning method like GBM, to predict
532  complex phenotypes in Drosophila using gene transcripts as predictors but did not observe a
533  superior predictive ability when compared to the TBLUP model. While TGBM consistently
534  outperformed TBLUP in our study, the GTGBM was only partly outperforming GTBLUP and
535  GTIBLUP. This could mean that the inclusion of SNP genotypes together with gene transcripts
536  as predictors in the GTGBM model may have impaired the ability of GBM to capture linear and
537 non-linear signals from within- and between-omics layers. The exact cause remains unclear,
538 but the size of dataset together with the substantial increase in number of predictors when
539 going from TGBM to GTGBM may be in the roots of it. It is likely that the GBM algorithm may
540 require more data to be able to accurately capture all patterns from the complex relationship
541  between omics layers underlying quantitative traits. If this is indeed the case, testing these
542  models using a larger dataset could help to confirm this hypothesis. In Azodi et al. (2019)
543  machine learning models integrating genomics and transcriptomics data were also not able to
544  outperform single-omics models in terms of predictive accuracy for three traits in maize using

545  a dataset of similarly limited size as in the present study.

546 The linear association for solutions from BLUP models’ components predicted for
547  animals within the validation set were very similar between GTBLUP and GTIBLUP. For these
548  two models pg .+, pz ,+ and pg ; were almost identical across all traits (Table 5). Although the
549 inclusion of an interaction component in GTIBLUP captured between 9% and 26% of
550 phenotypic variance (represented by gt? in Figure 1 and Figure 2) within the reference set, it
551  did not seem to affect the relationship between other components. The low values observed

552 for pg g and pgg in GTIBLUP also seem to suggest that the interaction component is

553  capturing a portion of variance not directly shared with g or £ components, and therefore it
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554  does not affect the relationship between other components. The linear association between g
555 and ¢ in GTBLUP and GTIBLUP models was always higher than the association between g
556 and £, in GTCBLUP across all traits analyzed. Since in the GTCBLUP model the transcript
557  relationship matrix was conditioned on the variance of SNP genotypes (t.), the linear
558  association between solutions for the two components was expected to closer to zero than

559  the observed in GTBLUP or GTIBLUP.

560 In this paper, we proposed the GTCBLUP model as an alternative to integrate genome
561 and transcriptome data for genomic prediction. There has been an increasing interest in the
562 use of intermediate omics data in animal and plant breeding (Guo et al. 2016; Yang et al.
563  2017; Azodi et al. 2019; Morgante et al. 2020; Christensen et al. 2021; Michel et al. 2021),
564  such as transcriptomics, metabolomics, or microbiome data. The inclusion of new layers of
565  omics data into genomic prediction models could arguably help in capturing additional portions
566  of variance not explained by genotype data, but at the same time, these layers most likely
567  contain overlapping information, increasing collinearity between predictors. Modelling the
568 relationship between G and T components could be an efficient way to realize the added value
569  of integrating such omics data into genomic prediction models (Wade et al. 2021), but this
570 could also be a challenge given the increase in number of parameters to be estimated. The
571  advantage of the GTCBLUP is that as pre-processing step it conditions the variance contained
572  in transcripts on the variance of genotypes to minimize the amount of redundant information
573  without having to increase model complexity. In general, the GTCBLUP model was able to
574  produce GEBYV that were at least as accurate as or slightly more accurate than the GBLUP
575 model. The percentage of variance explained by SNP genotypes in GTCBLUP was similar to
576  that with the GBLUP model, while it was always lower when using GTBLUP and GTIBLUP
577  (Figure 1 and Figure 2). The observed reduction in additive genetic variance for GTBLUP and
578  GTIBLUP when compared to GBLUP indicates strong redundancy in information contained in
579  the genomic and transcriptomic layers. So, the conditioning of transcripts on SNP genotypes

580 in GTCBLUP allowed this model to perform a more accurate variance partitioning for the
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581 additive genetic component, which consequently resulted in a more accurate estimation of
582 GEBV (Table 5). An interesting alternative way to consider the covariance between genomics
583 and transcriptomics layers, is by explicitly modelling it, as can be done using the CORE-
584  GREML method (Zhou et al. 2020), implemented in the MTG2 software (Lee and van der Werf
585  2016). We considered this method to evaluate its potential, as well as to try and assess the
586 magnitude of overlapping information between genotype and transcript data for the traits
587 analysed. Results (Supplementary Table S3) indicated correlations from -0.47 to +0.71, with
588  highest values observed for BW10, BW15, BW20, CHOL8 and CHOL19, FATP19 but the
589  correlation coefficient was never significantly different from 0. Coincidently for most of these
590 traits GTCBLUP obtained the most accurate GEBV when compared to GBLUP, GTBLUP and
591 GTIBLUP. These trends seem to further support that, for specific traits, genomics and
592  transcriptomics layers contain largely overlapping information, and although removing this
593  redundancy does not result in more accurate phenotype prediction, it may contribute to obtain
594  more accurate GEBV and consequently could improve breeding decisions. The lack of
595  significance of the estimated correlations between genomics and transcriptomics data may be
596  due to the limited size of the data used here, while based on the results obtained in the present

597  study this does not provide a limitation for the GTCBLUP model.

598 One limitation of the GTCBLUP model is that it does not accommodate missing omics
599 information, so all reference individuals must have genomics and transcriptomics data
600 available. In the context of breeding programs, a situation in which all reference animals have
601  multiple omics data available is unlikely to happen due to high costs involved in the collecting
602 this kind of information. However, based on the observed decrease in costs of genotyping
603  which has enabled large-scale genotyping, we may expect similar developments for the costs
604  of transcriptomics and other intermediate phenotypes in the near future (Uzbas et al. 2019).
605 At the same time, there have been some recent model developments that enable including
606  other omics data in genomic prediction, when these other omics data are not available for all

607 animals (Christensen et al. 2021; Zhao et al. 2022).
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608 CONCLUSION

609 We have assessed prediction models that incorporate genetic markers and
610  transcriptomics data in genomic prediction of complex phenotypes in mice. The proportion of
611  phenotypic variance explained by transcripts was almost always higher when traits were
612 measured closer to the time of measuring gene transcripts. While GBM models explained
613  more variance in the reference data, their predictive performance did not exceed the GBLUP
614  models. Models including SNP genotypes and gene transcripts did not consistently outperform
615 the best single-omics models to predict phenotypes. While TGBM model was able to
616  outperform TBLUP, this was not the case for GTGBM compared to GTBLUP and GTIBLUP.
617  The newly developed GTCBLUP model was able to force all phenotypic variance associated
618  with SNP genotypes into its additive genetic component, by conditioning gene transcripts on
619  SNP genotypes. GTCBLUP generally yielded considerably lower accuracies of phenotypic
620  predictions than the other models including SNP genotypes and gene transcripts, but it
621 showed the best accuracies for breeding values for most traits. We recommend using the
622  GTBLUP model for prediction of phenotypes, while the GTCBLUP should be preferred when

623  the aim is to estimate breeding values.
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766 Table 1. Number of available observations (N), the extended description of traits, age of the

767 animals at phenotype measurement, and estimated heritability.
Trait N Trait description meaé%?eari\ent hisr;['i[?baﬁﬁsl
BMD12 471 Bone mineral density 12 weeks 0.39
BMD21 471 Bone mineral density 21 weeks 0.41
BW10 478 Body weight 10 weeks 0.42
BW15 478 Body weight 15 weeks 0.35
BW20 478 Body weight 20 weeks 0.37
CHOLS8 474  Circulating cholesterol 8 weeks 0.38
CHOL19 474  Circulating cholesterol 19 weeks 0.45
FATP12 471 Body fat percentage 12 weeks 0.35
FATP21 471 Body fat percentage 21 weeks 0.32
GLUC8 425 Circulating glucose 8 weeks 0.31
GLUC19 425 Circulating glucose 19 weeks 0.22
TRGL8 473  Circulating triglycerides 8 weeks 0.36
TRGL19 473 Circulating triglycerides 19 weeks 0.31
768 1 Standard errors for the heritability ranged from 0.07 to 0.09
769
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770  Table 2. Overview of models applied to SNP genotypes and/or individual levels of gene

771  transcripts.

Model acronym

Explanatory variables

SNP GeMotypes yancorints  modelled.
GBLUP Yes No No
GGBM Yes No Yes (Implicitly)
TBLUP No Yes No
TGBM No Yes Yes (Implicitly)
GTBLUP Yes Yes No
GTCBLUP Yes Yes No
GTIBLUP Yes Yes Yes (Explicitly)
GTGBM Yes Yes Yes (Implicitly)
772
773
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774  Table 3. Model R? (x100) for the best linear unbiased prediction (GBLUP, GTBLUP,
775  GTCBLUP and GTIBLUP) and gradient boosting (GGBM, TGBM and GTGBM) approaches

776  within training data’.

Model?
Trait! Only SNP Only gene transcripts SNP + gene transcripts
GBLUP GGBM | TBLUP TGBM GTBLUP GTIBLUP GTCBLUP GTGBM

BMD12 75 90 79 96 85 92 88 95
BMD21 84 85 88 93 87 96 92 98
BW10 78 92 93 96 91 95 90 97
BW15 75 87 91 94 93 96 94 96
BW20 80 87 92 93 95 97 95 97
CHOLS 84 85 69 97 80 93 87 98
CHOL19 82 83 85 95 88 96 92 98
FATP12 75 76 89 97 92 96 95 98
FATP21 80 82 93 97 95 97 94 98
GLUCS 77 85 66 95 81 93 87 97
GLUC19 62 80 67 96 75 90 84 98
TRGLS8 65 81 62 92 80 96 88 97
TRGL19 71 86 70 96 78 95 84 98
Mean (all) 76 85 80 95 86 95 90 97
Mean (T1) 75 85 76 96 85 94 89 97
Mean (T2) 76 84 83 95 86 95 90 98

777 T1 = average R? of the column considering only traits recorded earlier in life (suffixes 8, 10 and 12).
778 T2 = average R? of the column considering only traits recorded later in life (suffixes 19, 20 and 21).
779 1For a description of the traits, see Table 1.

780 2For a description of the models, see Table 2.

781 3BW15 trait was ignored when calculating average performance considering exclusively T1 and T2.

782
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783  Table 4. Accuracies of predicted pre-corrected phenotypes for the validation subset with the

784  proposed models. For each group of models, the result with the highest accuracy is

785 indicated in bold, identical results between two or more models are indicated in underline.

Model?
Trait! Only SNP tcr):ri)é(?r?;tes SNP + gene transcripts
GBLUP GGBM TBLUP TGBM | GTBLUP GTIBLUP GTCBLUP GTGBM

BMD12 0.19 0.16 0.27 0.25 0.27 0.27 0.20 0.25
BMD21 0.29 0.28 0.38 0.38 0.42 0.40 0.29 0.38

BW10 0.18 0.20 0.48 0.42 0.47 0.47 0.19 0.42

BW15 0.15 0.12 0.52 0.52 0.51 0.51 0.22 0.49

BW20 0.18 0.16 0.61 0.58 0.60 0.60 0.30 0.54
CHOLS 0.14 0.17 0.14 0.15 0.18 0.17 0.16 0.16
CHOL19 0.25 0.20 0.19 0.16 0.26 0.23 0.22 0.23
FATP12 0.14 0.15 0.44 0.45 0.44 0.44 0.28 0.46
FATP21 0.21 0.20 0.54 0.56 0.54 0.53 0.35 0.52
GLUCS 0.10 0.12 0.03 0.04 0.08 0.09 0.11 0.15
GLUC19 0.01 0.10 0.03 0.05 0.04 0.05 -0.05 0.11
TRGLS 0.08 0.11 0.06 0.08 0.07 0.06 0.05 0.06
TRGL19 0.15 0.13 0.17 0.19 0.17 0.18 0.12 0.19

786 1For a description of the traits, see Table 1.

787 2For a description of the models, see Table 2.

788

34


https://doi.org/10.1101/2022.04.12.488053
http://creativecommons.org/licenses/by/4.0/

789  Table 5. Pearson’s coefficient correlation (p) between model’s components (g, t, £, and gt) solutions and corrected phenotypes (y*) for BLUP
790  models proposed'. Numbers in bold (per row) show the best values for the accuracy of GEBV (p; ,+) across models, identical results between
791  two or more models are indicated in underline.

Model?®
Trait? GTBLUP GTIBLUP GTCBLUP GBLUP
Pg y* Pty Pg it Pg y* Pty Pg i Pg gt Pt gt Pgy* Pi. y* Pg ¢, Pg y*

BMD12 0.20 0.24 0.22 0.20 0.22 0.21 -0.04 0.06 0.20 0.04 -0.10 0.19
BMD21 0.29 0.38 0.28 0.30 0.37 0.29 0.04 -0.03 0.31 0.08 -0.03 0.29

BW10 0.18 0.46 0.27 0.19 0.47 0.27 0.04 0.02 0.19 0.03 -0.13 0.18

BW15 0.15 0.52 0.29 0.15 0.51 0.28 0.02 -0.02 0.18 0.08 -0.06 0.15

BW20 0.17 0.61 0.25 0.17 0.60 0.26 -0.09 -0.02 0.21 0.16 -0.10 0.18
CHOLS8 0.14 0.13 0.16 0.14 0.13 0.15 0.18 -0.01 0.15 0.04 -0.08 0.14
CHOL19 0.24 0.14 0.16 0.25 0.12 0.15 0.18 -0.02 0.27 -0.08 -0.09 0.25
FATP12  0.18 0.43 0.14 0.18 0.42 0.13 -0.03 -0.12 0.20 0.15 -0.05 0.16
FATP21  0.22 0.52 0.16 0.22 0.53 0.16 -0.09 -0.10 0.26 0.16 -0.10 0.21
GLUCS8 0.12 0.02 0.22 0.12 0.01 0.20 0.02 0.06 0.11 0.04 -0.09 0.10
GLUC19 0.01 0.04 0.19 0.01 0.02 0.18 -0.04 0.05 0.01 -0.05 -0.11 0.01
TRGLS8 0.08 0.05 0.16 0.09 0.05 0.15 0.04 0.03 0.09 -0.07 -0.07 0.08
TRGL19 0.14 0.15 0.15 0.14 0.15 0.14 0.03 -0.05 0.17 0.03 -0.09 0.15

792 1pg_y* = correlation between additive genetic effect and corrected phenotypes; Pty = correlation between gene transcripts effect and corrected phenotypes; Pgt=

793 correlation between the additive genetic and gene transcripts effects; Ps gt = correlation between the additive genetic effect and the interaction between genetic and gene
794 transcript effects; Pege== correlation between the additive genetic effect and the interaction between genetic and gene transcript effects; Pg_y = correlation between gene
795 transcripts conditioned on SNP genotypes and corrected phenotypes; Ps e = correlation between the additive genetic effect and gene transcripts conditioned on SNP

796 genotypes.

797 2For a description of the traits, see Table 1.
798 3For a description of the models, see Table 2.
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Figure 1. Percentage of variance explained by SNP genotypes (g?), gene transcripts (t2), the
interaction between them (gt?) and not explained (e?) by GBLUP, TBLUP, GTBLUP,
GTIBLUP and GTCBLUP models tested for the traits BW and FATP.

1For a description of the traits, see Table 1.

2For a description of the models, see Table 2.

Figure 2. Percentage of variance explained by SNP genotypes (g?), gene transcripts (t2), the
interaction between them (gt?) and not explained (e?) by GBLUP, TBLUP, GTBLUP,

GTIBLUP and GTCBLUP models tested for the traits BMD, CHOL, GLUC and TRGL.

1For a description of the traits, see Table 1.

2For a description of the models, see Table 2.
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813 SUPPLEMENTARY MATERIAL
814

815 Table S1. Regression coefficient of the corrected phenotypes on prediction for validation
816  animals from all models tested. Values closer to 1 indicate less bias.

Model?
Trait! Only SNP? tgzlgcgriiﬂgz SNP + gene transcripts?
GBLUP GGBM TBLUP TGBM | GTBLUP GTIBLUP GTCBLUP GTGBM

BMD12 1.16 1.48 1.52 1.36 1.47 1.63 0.88 1.23
BMD21 1.47 1.82 1.67 1.34 1.65 1.95 1.13 1.21
BW10 1.07 1.46 1.25 1.46 1.28 1.44 0.85 1.16
BW15 0.80 1.82 1.08 1.44 1.06 1.17 0.70 1.12
BW20 1.01 1.82 1.09 1.36 1.09 1.16 0.82 1.07
CHOLS 1.17 1.78 0.92 1.31 1.05 1.06 0.76 0.79
CHOL19 0.99 0.79 0.79 1.43 0.92 1.00 0.83 0.69
FATP12 0.55 0.76 0.96 1.16 0.99 1.09 0.89 1.18
FATP21 1.10 0.83 1.02 1.25 1.04 1.12 0.99 1.14
GLUCS8 0.38 0.44 0.29 1.27 0.31 0.31 0.68 0.52
GLUC19 0.35 1.82 0.33 1.28 0.36 0.37 0.26 0.45
TRGLS8 0.54 0.61 0.36 1.83 0.37 0.36 0.58 0.86
TRGL19 0.96 1.12 0.75 1.15 0.74 0.85 0.72 1.23
Mean 0.89 1.27 0.93 1.36 0.95 1.04 0.79 0.97
Min 0.35 0.44 0.29 1.15 0.31 0.31 0.26 0.45
Max 1.47 1.82 1.67 1.83 1.65 1.95 1.13 1.23

817 1For a description of the traits, see Table 1.
818  ?For a description of the models, see Table 2.
819
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820 Table S2. Relative root-mean squared error (RRMSE) for predictions on the validation set.
821  Lower values indicate lower prediction error.

Model?
Trait! Only SNP tcr):ri)é(?r?;tes SNP + gene transcripts
GBLUP GGBM TBLUP  TGBM GTBLUP  GTIBLUP  GTCBLUP GTGBM

BMD12 1.00 1.02 0.99 1.02 0.98 0.99 1.01 0.99
BMD21 0.99 1.02 0.96 0.99 0.95 0.96 0.98 0.96
BW10 0.88 0.90 0.85 0.87 0.85 0.85 0.88 0.85
BW15 0.86 0.86 0.85 0.85 0.86 0.86 0.87 0.86
BW20 0.87 0.88 0.84 0.86 0.84 0.84 0.87 0.84
CHOLS 0.89 0.90 0.89 0.91 0.89 0.89 0.90 0.87
CHOL19 0.95 0.97 0.96 0.97 0.95 0.95 0.96 0.95
FATP12 0.91 0.91 0.86 0.87 0.86 0.86 0.89 0.87
FATP21 0.85 0.87 0.77 0.78 0.77 0.77 0.81 0.77
GLUCS 1.15 1.15 1.17 1.14 1.15 1.15 1.15 1.15
GLUC19 1.31 1.27 1.33 1.27 1.31 1.31 1.34 131
TRGLS 1.07 1.09 1.14 1.14 1.11 1.10 1.13 1.10
TRGL19 1.19 1.22 1.18 1.16 1.18 1.17 1.20 1.21
Mean 0.99 1.00 0.98 0.99 0.98 0.98 1.00 0.98
Min 0.85 0.86 0.77 0.78 0.77 0.77 0.81 0.77
Max 1.31 1.27 1.33 1.27 1.31 1.31 1.34 1.31

822 1For a description of the traits, see Table 1.
823 2For a description of the models, see Table 2.
824
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825 Table S3. Estimates of model parameters for the CORE-GREML model: the percentage of
826  variance explained by SNP genotypes (g?) and gene transcripts (t2), the estimated
827  correlation between g and t components (p ), p-values for the estimated correlation (p[p4:])
828 and p-values for the likelihood ratio tests to determine whether the model fit by CORE-
829 GREML was better than that by the standard model not including a covariance component
830 (p[LKH])).
Traitt CORE-GREML parameters GREML vs CORE-GREML
g° t? Pgt Plpge] GREML CORE-GREML  p[LKH]
BMD12 0.24 0.20 +0.21 0.62 -181.4712 -181.4062 0.71
BMD21 0.28 0.26 +0.14 0.55 -177.2119 -177.1537 0.60
BW10 0.04 0.40 +0.58 0.29 -695.5398 -695.3162 0.50
BW15 0.03 0.45 +0.60 0.45 -696.1394 -696.7851 0.25
BW20 0.01 0.60 +0.63 0.32 -679.8870 -680.7453 0.19
CHOLS 0.27 0.13 +0.55 0.45 -483.6665 -483.9623 0.44
CHOL19 0.21 0.18 +0.71 0.07 -388.3944 -389.8146 0.09
FATP12 0.17 0.73 -0.23 0.50 -17.1618 -17.0426 0.62
FATP21 0.08 0.89 -0.47 0.34 -3.5900 -3.4460 0.59
GLUCS 0.21 0.09 -0.22 0.76 -510.4316 -510.4436 0.87
GLUC19 0.02 0.15 -0.26 0.72 -402.9910 -403.0818 0.67
TRGLS 0.08 0.14 +0.26 0.23 -226.2193 -226.9104 0.25
TRGL19 0.09 0.25 +0.07 0.90 -171.9591 -171.9595 0.97
831 1For a description of the traits, see Table 1.
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