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Abstract 

Understanding the dynamic responses of living cells upon genetic and environmental perturbations 

is crucial to decipher the metabolic functions of organisms. The rates of enzymatic reactions and their 

evolution are key to this understanding, as metabolic fluxes are limited by enzymatic activity. In this 

work, we investigate the optimal modes of operations for enzymes with regard that the evolutionary 

pressure drives enzyme kinetics toward increased catalytic efficiency. We use an efficient mixed-

integer formulation to decipher the principles of optimal catalytic properties at various operating 

points. Our framework allows assessing the distribution of the thermodynamic forces and enzyme 

states, providing detailed insight into the mode of operation. Our results confirm earlier theoretical 

studies on the optimal kinetic design using a reversible Michaelis-Menten mechanism. The results 

further explored the optimal modes of operation for random-ordered multi-substrate mechanisms. 

We show that optimal enzyme utilization is achieved by unique or alternative modes of operations 

depending on the reactant's concentrations. Our novel formulation allows investigating the optimal 

catalytic properties of all enzyme mechanisms with known elementary reactions. We propose that 

our novel framework provides the means to guide and evaluate directed evolution studies and 

estimate the limits of the direct evolution of enzymes. 
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Introduction 

Describing the dynamic and adaptive responses of living organisms upon genetic or environmental 

perturbations requires understanding the dynamics of the underlying biochemical and biophysical 

processes. It is well known that cells constantly break down energy-rich molecules from the 

environment and use the energy and products from these reactions to construct the building blocks 

to replicate themselves. These reactions can occur at moderate temperatures and proceed faster 

because they are catalyzed by enzymes reducing energy barriers. Understanding how genetic and 

environmental perturbations propagate in the large reaction networks that comprise the cell's 

metabolism requires capturing the reaction kinetics of the enzymes in the context of the cell. To this 

end, metabolic kinetic models have been used to assess how changes in the enzyme levels 1–9 and the 

environmental conditions affect the intracellular reaction rates and concentrations 10,11 and how 

these changes propagate dynamically12–14.  

Such metabolic kinetic models require a mathematical description of the enzymatic reaction rates, 

i.e., a function of the metabolite concentrations and kinetic parameters. This reaction kinetics of an 

enzyme can be defined precisely using the elementary binding and catalytic steps of the reaction. 

However, to reduce the number of kinetic parameters, the resulting rate equations are often 

simplified using an approximate reaction rate law such as quasi-steady-state approximation and 

quasi-equilibrium approximation 1,15,16. 

Kinetic models use parameter estimation methods 1,12,13,17,18 or Monte Carlo sampling methods  2,5–

7,10,11,19,20  to overcome the scarcity of kinetic data if the experimental measurement is not available. 

Although these methods have proven useful for estimating kinetic parameters, a complete 

understanding of the estimated parameters with biological and mechanistic details is generally not 

provided21,22. However, unlike chemical systems, biological systems are an outcome of natural 

selection, and they should be studied accordingly. These systems have evolved to achieve states 

where they can fulfill their biological functions efficiently23–26. The crucial point to investigate 

biological systems in the light of evolution is to formulate appropriate fitness functions whose 

maximum or minimum value potentially corresponds to an evolutionary outcome of the metabolism 

21,27. 

Various studies previously addressed the application of evolutionary principles to biological systems 

based on specific selective pressures. These studies range from explaining isolated enzymes' kinetic 

parameters 24,25,28 to the structural design of metabolic networks 27, e.g., maximization of steady-state 

fluxes 24,28, minimization of transient times 29, metabolic concentrations of intermediates 30, or 

maximization of thermodynamic efficiency22. These studies showed that exploring these parameters 

considering they are an outcome of the evolutionary process, can help us decipher the underlying 

design principles that govern enzyme catalytic rates. 
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One of the targets of natural selection on cellular metabolism is to make efficient use of its resources 

to grow, reproduce and respond to changes in their environments 21,31.  As metabolic reactions are 

catalyzed by cellular enzymes, this selection will translate to evolutionary pressure toward 

maximizing the catalytic efficiency of these enzymes, such that the enzyme utilization is optimized. 

The hypothesis is strongly supported by the high reaction rates observed for the enzyme catalyzed 

reactions compared to their corresponding uncatalyzed reactions 22. One of the early examples of a 

catalytically efficient enzyme is the triosephosphate isomerase (TIM/TPI) shown by Knowles and 

Albery26. Although recent meta-studies analyzing a large dataset of available enzyme kinetic 

parameters suggest that the evolution drives most enzymes toward "good enough" rather than 

perfect, 32,33 we still have limited information on the driving forces and the constraints that have 

shaped natural enzymes. Understanding the fitness landscape of enzymes toward catalytic optimality 

can improve our understanding of the parameters that govern the design of enzymes and potentially 

overcome the scarcity of kinetic parameters.  

Previous studies have addressed the hypothesis of catalytic optimality by solving a nonlinear 

optimization problem maximizing the reaction rates for unbranched enzymatic reactions. These 

studies investigated kinetic parameters of ordered enzyme-mechanisms at enzyme constrained 

maximal catalytic activity. Their results indicated that reactant concentrations significantly impacted 

the optimal rate constants, dividing the concentration space into different sub-regions, with distinct 

binding characteristics21,24,28. Furthermore, they have shown that the reactant concentrations and 

Michaelis constants change in the same direction in an evolutionary time-scale 24,28. Their findings are 

corroborated by experimental observations34,35. 

Although these studies were useful for understanding enzyme evolution, they rely on assuming 

ordered enzyme mechanisms and do not account for the general topology of enzyme kinetics. 

Furthermore, as cells contain hundreds to thousands of enzymatic reactions with different 

mechanisms, deriving solutions for all possible combinations for numerous mechanisms can be 

cumbersome and, in some cases, not possible with the analytical formulation. For this reason, there 

is a need to develop computational methods to analyze the enzymes' catalytic efficiency. In this study, 

we have developed a novel computationally efficient MILP formulation to overcome this challenge. 

Our framework estimates optimal kinetic parameters of complex enzyme mechanisms and assesses 

the coupling between thermodynamic displacements, saturation, and elementary rate constants at 

the optimal state. The presented framework provides novel insights into the selective pressures that 

shape the catalytic efficiency of enzymes. Furthermore, it can be used to estimate kinetic parameters 

for kinetic models, filling in the knowledge gaps in enzyme kinetics from an evolutionary perspective. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 13, 2022. ; https://doi.org/10.1101/2022.04.12.488028doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.488028
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Results and Discussion 

A generalized framework to study optimal enzyme utilization for arbitrary 

elementary mechanisms 
In the presented work, we study how enzymatic reactions operate if the total amount of enzyme is 

utilized optimally under the biophysical constraints posed by nature. We, therefore, use an 

optimization formulation to maximize the net steady-state flux given a fixed amount of enzymes, as 

has been done in previous studies 24,28,36. Maximizing the flux subject to enzyme level and biophysical 

constraints allows us to assess the operating conditions at a catalytically optimal state. These 

operating conditions are comprised of i) a set of elementary rate constants, ii) elementary 

thermodynamic displacements, i.e., equivalent to the thermodynamic driving forces, and iii) the 

distribution of the enzyme states, i.e., the relative allocation of the total amount of enzyme to 

substrate-bound, product-bound or free states.  

In contrast to previous work, we formulate our optimization problem using elementary reactions, 

thermodynamic displacements, and enzyme state distribution, allowing our framework to apply to all 

enzymatic mechanisms with known elementary reaction schemes. The framework further allows to 

directly assess the distribution of the thermodynamic forces and enzyme states, providing detailed 

insight into the mode of operation.  

The proposed framework allows us to compute these modes of operation given: i) The elementary 

enzyme mechanism, ii) the intracellular concentrations of the substrates and products, and iii) their 

thermodynamic properties in the form of the reactions standard Gibbs free energy (Figure 1).  

We formulate four sets of biophysical constraints. First, we assume that the enzyme operates at a 

quasi-steady state. Thus, the concentrations of substrates, product, and enzyme-states are time-

invariant, resulting in a set of equality constraints (Figure 1). Secondly, we assume that transcription 

and translation dynamics of the enzyme are sufficiently slow compared to the metabolic dynamics 

meaning that the total amount of enzyme is constant. Further, we link the ratio of the elementary 

forward and reverse fluxes to their respective thermodynamic force 𝛾𝑖37. Finally, we consider 

biophysical limits27,38 for the elementary rate constants by limiting bimolecular rate constants by 

their diffusion limit, varying within the range 108 − 1010 M−1s−127,33 . The monomolecular rate 

constants are limited by the frequency of molecular vibrations, which was found to vary in the interval 

104-106 s-1  for enzymatic reactions 28,36.  

The formulation of the biophysical constraints encompasses four sets of variables and two sets of 

parameters for a given enzyme mechanism. The variables consist of the elementary rate constants 

𝑘∓𝑖 (𝑘̃𝑖,𝑓 , 𝑘̃𝑖,𝑏), thermodynamic displacements 𝛾𝑖 and enzyme states 𝑒̃𝑖 , and parameters are the 

metabolite concentrations and the overall equilibrium constant 𝐾𝑒𝑞  (or the overall thermodynamic 

displacement Γ).  
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To obtain dimensionless quantities, we normalize certain variables and parameters, namely rate 

constants 𝑘𝑖,𝑓 and 𝑘𝑖,𝑏 , enzyme states 𝑒𝑖 , metabolite concentrations [P] [S], and the overall 

equilibrium constant 𝐾𝑒𝑞 . We normalize the elementary rate constants by their respective biophysical 

limits as done previously by Wilhelm et al28. We also used the aforementioned limits and introduced 

a characteristic concentration [C]ch to normalize metabolite concentrations and the overall 

equilibrium constant. Lastly, we used the total enzyme concentration to normalize the enzyme states. 

Normalization yields 𝑆̃,  𝑃̃,  𝐾𝑒𝑞   as parameters and 𝑘̃𝑖,𝑓 , 𝑘̃𝑖,𝑏 ,  𝑒̃𝑖 and 𝛾𝑖 as variables (see Materials and 

Methods and Figure 1). 

In the next step, we linearized the bilinear terms and the nonlinear constraints to overcome the 

nonlinear nature of the problem. As the normalized elementary rate constants 𝑘̃∓𝑖(𝑘̃𝑖,𝑓 , 𝑘̃𝑖,𝑏) are well-

bounded between 0 and 1, we replaced the bilinear terms 𝑘̃∓𝑖𝑒̃𝑖  for each elementary step by one new 

variable and one new constraint. To replace the nonlinear constraint posed by the thermodynamics, 

we eliminated one of the displacements using the overall thermodynamic displacement from 

equilibrium. We estimate the remaining elementary displacements or mechanistically meaningful 

independent combinations of them by a piecewise-constant function. The resulting problem is 

piecewise-linear and can be solved efficiently with a MILP formulation using the Peterson 

linearization scheme 39,40(See Materials and Methods). The reformulation of the problem as a MILP 

ensures global optimality and enumeration of alternative solutions. 

Finally, the resulting mixed-integer linear program (MILP) allows us to optimize the net enzyme flux 

for the respective operating conditions, i.e., substrate, product concentrations, and standard Gibbs 

free-energy. The optimization results will yield a set of elementary rate constants, displacements, and 

an enzyme distribution that allow for this optimal flux. The constraint-based formulation of the 

problem then allows assessing potential alternative modes of operation by constraining the flux to its 

maximum and applying variability analysis on the operational variables. Using the same principle 

further allows exploring the suboptimal space enabling us to study the fitness landscape of optimal 

enzyme utilization for specific operating conditions.  
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Figure 1: Workflow to formulate optimal enzyme utilization as a MILP for arbitrary elementary 

mechanisms. Inputs: Elementary reaction mechanism, operating conditions: metabolite 

concentrations, and standard Gibbs free-energy. Formulate biophysical constraints based on i) quasi-
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steady-state operation, ii) total enzyme conservation, iii) thermodynamics and iii) upper limits of the 

rate constants. Normalize parameters and variables to yield dimensionless quantities using i) 𝑘∓𝑖
𝑚𝑎𝑥  , 

subscripts +,- refer to forward and backward rate constants respectively. ii) [C]ch iii) [ET]. Linearize 

constraints to overcome the nonlinearity of the problem by applying i) change of variables ii) 

piecewise-constant approximation of the independent displacement variables. Optimize enzyme 

utilization with the MILP formulation, by maximizing the net steady-state flux of the enzymatic 

reaction, applications: Perform analysis: mode of operation at optimality, sub-optimality analysis 
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Optimally used Michaelis-Menten enzymes require condition-specific saturation 

regimes 

We first applied our novel framework to study the modes of operation of the prototypical three-step 

reversible Michaelis-Menten (Scheme 1) mechanism.  Our results show that the elementary MILP 

formulation presented here captures the results previously obtained by Wilhelm et al 28.  

(Supplementary Figure S1).  

𝐸 + 𝑆
𝑘1,𝑓
⇌
𝑘1,𝑏

𝐸𝑆
𝑘2,𝑓
⇌
𝑘2,𝑏

𝐸𝑃
𝑘3,𝑓
⇌
𝑘3,𝑏

𝐸 + 𝑃 Scheme 1 

Additionally, our novel formulation allowed us to assess optimal enzyme state distributions and 

thermodynamic forces directly. Our results show that the operating conditions govern the enzyme 

state and thermodynamic force distribution at a catalytically optimal state.  

A comprehensive analysis of enzyme-state distributions showed that optimal enzyme utilization 

requires the enzyme to operate at a low enzyme saturation if the substrate and product 

concentrations are small compared to the characteristic concentration of the system. With increasing 

substrate and product concentrations, the optimal operating conditions require increasing enzyme 

saturation. The optimal saturation increases rapidly with substrate and product concentration when 

both substrate and product concentrations are below the characteristic concentration [C]ch , whereas 

for larger substrate or product concentrations, this increase is significantly smaller (Figure 2a). To 

our surprise, this phenomenon appears to be independent of the thermodynamic displacement Γ 

(Figure 2a ).   

To understand the precise mechanism by which this strong dependence of the optimal saturations 

emerges, we analyzed the characteristic operating conditions for the low-mid and high saturation 

regimes (Figure 2b ). The data revealed three optimal prototypical mechanisms by which the optimal 

enzyme utilization is achieved:  

In the low saturation regime, we observe that the thermodynamic potential of the reaction is mainly 

used to drive the substrate association reaction as about 60% of the potential is allocated to drive this 

reaction. Most of the remaining thermodynamic potential is used to drive the product dissociation, 

and only a minimal amount is allocated to displace the biotransformation step from equilibrium. This 

distribution of the thermodynamic forces manifests itself in a fast turnover between the enzyme-

bound substrate and product and a comparatively slow turnover for substrate and product 

association and dissociation. As indicated by the low saturation, most enzymes are free enzymes, 

providing the necessary driving force to capture the substrate molecules present in low quantities.  

At intermediate saturations , the thermodynamic driving forces (Δ𝐺′) of the biotransformation step 

increase to the same order of magnitude as the product dissociation. This shift in thermodynamic 
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forces comes mainly at the expense of the driving force for the substrate association reaction, with 

some contribution from reducing the driving force of the product dissociation reaction. This 

redistribution results in an overall reduced contribution of the substrate association and product 

binding steps compared to the low saturation case, with the substrate association being the slowest 

step. Still, most enzymes are free enzymes indicating that capturing the substrate molecules is a 

limiting factor.  

In the high saturation regime, the thermodynamic driving forces are equally distributed, resulting in 

a similar turnover between the three steps. Comparing the actual elementary fluxes shows that the 

product dissociation association has become the slowest step after the biotransformation and the 

substrate product association dissociation exhibits the fastest turnover. Further, in the high 

saturation regime, the free enzyme is the least abundant species, showing that with increasing 

substrate concentrations capturing substrate molecules becomes less of a limiting factor. 

Nevertheless, the decreasing dependency of the enzyme saturation on product and substrate 

concentration also indicates the minimum amount of free enzyme is required for the enzyme to 

operate optimally.  

 

Figure 2: Optimal modes of operations of the reversible Michaelis-Menten mechanism (Scheme 1) a) 

Enzyme saturation (σ) of the reversible Michaelis-Menten mechanism  at a catalytically optimal state 

b) Three different operating points along the Γ=0.6 isoline with low (blue), medium (nude), and high 

(red) saturations c) Prototypical operating conditions for optimal enzyme utilization, net-flux, 

elementary fluxes, enzyme state, and free energy distribution, for 𝐾𝑒𝑞 = 2 ( data for different 𝐾𝑒𝑞′𝑠 

can be found in  Supplementary Figure  S4) . Subscripts refer to the elementary steps denoted in 

Scheme 1. 
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Optimality principles of multi-substrate enzymes indicate concentrations 

dependent binding preferences 

We also applied our framework to multi-substrate enzymes to investigate the optimal modes of 

operation for more complex mechanisms. To this end, we first studied the Bi-Uni mechanism ( Scheme 

2) with a compulsory order for substrate binding. Our MILP formulation can capture subdivision of 

the concentration space into different regions classified based on the rate-constants, which was 

previously derived by Wilhelm et al. 28. (Supplementary Figure S5) 

𝐸 + 𝐴
𝑘1,𝑓
⇌
𝑘1,𝑏

𝐸𝐴 + 𝐵
𝑘2,𝑓
⇌
𝑘2,𝑏

𝐸𝐴𝐵
𝑘3,𝑓
⇌
𝑘3,𝑏

𝐸𝑃
𝑘4,𝑓
⇌
𝑘4,𝑏

𝐸 + 𝑃 Scheme 2 

In addition to the elementary rate constants, our framework can capture saturation at different 

operating conditions for the optimally utilized enzyme. The analysis of the enzyme-state distributions 

revealed that similar to the reversible three-step Michaelis-Menten mechanism, saturation at optimal 

state increases with product concentration. Interestingly, we observed that the order in which the 

substrates bind to the enzyme plays a role in saturation at a catalytically optimal state. Our results 

show that saturation increases with the increasing substrate concentration that binds first to the 

enzyme. In contrast, the concentration of the second substrate does not result in any significant 

change in saturation (See Supplementary Figure S6). 

Since our generalized MILP formulation allows us to study any kind of elementary mechanisms in an 

unbiased fashion we extended the scope to investigate a generalized Bi-Uni mechanism, where any 

substrate can bind first to the enzyme, resulting in the following branched mechanism (Scheme 3).  

 

Scheme 3 

Our results suggest that optimal enzyme have a preferential binding mechanism dependent on their 

operating conditions. To quantify this preference, we introduced the splitting ratio, 𝛼 = 𝑣𝑛𝑒𝑡,𝑢𝑝 / 𝑣𝑛𝑒𝑡, 

which is defined as the fraction of the flux that goes through the upper branch, where the substrate A 

binds first to the enzyme (Scheme 3). 

A detailed analysis of the optimal splitting ratio at various operating points revealed three 

phenomenological features for the substrate binding preference. Our results show that if operating 

points for the substrate concentrations are interchanged symmetrically (𝐴̃, 𝐵̃ →  𝐵̃, 𝐴̃), optimal 

splitting ratio 𝛼 switches, leaving 𝛼𝐵,𝐴 = 1 − 𝛼𝐴,𝐵 (Fig 3 a,b,c). This finding demonstrates that the 
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splitting ratio shows an antisymmetric behavior with symmetric changes in the substrate 

concentrations.  

Secondly, we observe that the splitting ratio and the optimal modes of operation are unique for 

distinct concentrations of the substrates (𝐴̃ ≠ 𝐵̃). However, when both substrates are equally 

available (𝐴̃ = 𝐵̃), we observe flexibility of the splitting ratio, leading to alternative modes of 

operation considering the net fluxes through the upper and lower branch and enzyme state 

distributions. Performing variability analysis for these operating conditions revealed that this 

flexibility is always around 𝛼 = 0.5, suggesting at optimal state equal distribution of the net steady-

state flux is always a solution when substrate concentrations are identical. Interestingly, this 

flexibility does not occur at all operating points where the substrate concentrations are equal (Figure 

3 a,b,c). Our results suggest that flexibility appears when substrate concentrations are comparable or 

slightly higher than the product concentration. Indicating that the product concentration affects the 

flexibility of preferential binding for the unbiased Bi-Uni mechanism. 

Lastly, our findings reveal that there exists a relation between the preferential binding mechanism 

and reactant concentrations. As mentioned above, the preferential binding mechanism shows an 

antisymmetric behavior over the substrate concentration space. However, for the operating 

conditions where one substrate concentration is greater than the other ( 𝐵̃ > 𝐴̃ 𝑜𝑟 𝐴̃ > 𝐵̃ ), i.e., upper 

or lower concentration spaces, the data reveals two characteristic behaviors for the preference of the 

binding mechanism. To our surprise, substrate concentrations are not the sole determinants for these 

behaviors (Figure 3a).  

The data shows that when the concentration of the least abundant substrate (e.g.  𝐵̃ for the lower and 

𝐴̃ for the upper concentration space) is lower than the product concentration 𝑃̃, preferential binding 

is through the mechanism where the most abundant substrate binds first to the enzyme. On the 

contrary, when the concentration of the least abundant substrate is comparable or higher than the 

concentration of the product, most of the flux is carried through the branch where the least abundant 

substrate binds first to the enzyme. The shift between the two behaviors can be seen clearly when the 

product concentration is equal to 1  𝑃̃ = 1 (Figure 3a). Whereas when the product concentration is 

low 𝑃̃ = 0.1, we do not see this shift but rather the convergence of all operating points to the latter 

behavior where the lowest substrate concentration defines the preference for the binding (Figure 

3b). Likewise, when the product concentration is high 𝑃̃ = 5, we see that the results converge to the 

behavior where the concentration of the most abundant substrate defines the preferential binding 

mechanism (Figure 3c). Our results suggest that contrary to the common belief, the preferential 

binding mechanism is not only determined by the substrate concentrations but also by their relative 

magnitudes to the product concentration. 

To decipher the mechanistic details behind the phenomenological features, we performed a detailed 

analysis of the modes of operation at an optimal state. Similar to the reversible Michaelis-Menten 

mechanism, we analyzed three prototypical operating conditions: two symmetric operating 
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conditions for distinct substrate concentrations and one with identical concentrations for the 

substrates. 

Our results indicate that symmetric operating conditions result in symmetric modes of operation at 

an optimal state. In other words, thermodynamic forces, net fluxes, and enzyme state distributions 

are interchanged between the upper and lower branch for the substrate associations dissociations. 

On the other hand, modes of operation for the biotransformation and the product association 

dissociation steps remain identical (Figure 3d). 

For the selected symmetric operating conditions, preferential binding is through the mechanism 

where the most abundant substrate binds first to the enzyme. When B concentration is high, 68% of 

the net flux goes through the lower branch resulting in 𝛼 = 0.32 (Figure 3d upper ). Around 40% of 

the thermodynamic potential is used to drive the association-dissociation steps for the substrate A 

(steps 1 or 6), which can be attributed to the low concentration of A at this operating condition. Most 

of the remaining potential is used to drive the biotransformation and the product association-

dissociation steps, whereas a minimal amount of potential is allocated to the binding of substrate B. 

The distribution of the thermodynamic forces can also be explained from the fastest turnover 

observed for the association dissociation step of the substrate B to the free enzyme, which is then 

followed by the biotransformation and product association-dissociation steps. The slowest turnover 

is observed for the association and dissociation steps for substrate A (steps 1 or 6). A similar analysis 

also applies for the symmetric operating condition when A concentration is high. In this case, 68% of 

the net flux goes through the upper branch, which leads to 𝛼 = 0.68 (Figure 3d lower). Nearly 40% 

of the thermodynamic potential is allocated to drive the association-dissociation reactions for 

substrate B, followed by the biotransformation and the product association-dissociation steps. The 

minimal amount of potential is used to drive the reactions for the association-dissociation of the 

substrate A.   

As a result of the symmetric modes of operations, identical optimal saturation is observed for 

symmetric operating conditions. Further analysis of the enzyme-state distributions revealed that the 

total concentration allocated to the substrate-bound and product-bound enzyme states stays the 

same, leaving the saturation unchanged between symmetric operating conditions. The only difference 

arises for the specific substrate-bound enzyme states, namely EA and EB, which interchange for 

symmetric operating conditions. If most of the flux goes through the branch where the substrate B 

binds first to the enzyme, B- bound enzyme state, EB, will be more occupied than the A-bound enzyme 

state, EA ( Figure 3d upper). Likewise, for the symmetric operating condition, EA concentration will 

increase at the expense of reducing the amount attributed to the EB concentration (Figure 3d upper 

). 

A detailed analysis of the modes of operation at flexible operating points shows that the saturation 

and the thermodynamic force displacement remain the same across the alternative solutions (Figure 

3d lower ). On the other hand, the flexibility in splitting ratio expresses itself as alternating flux 
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distributions for the branched pathway and on the distribution of the substrate-bound enzyme states, 

EA and EB.  The occupancy of the remaining enzyme states or the flux distributions through the 

biocatalysis and product dissociation steps remain the same for all alternative solutions. 

 

Figure 3: Optimal splitting ratio 𝛼 =
𝑣̃𝑛𝑒𝑡,𝑢𝑝

𝑣̃𝑛𝑒𝑡
 for the general bi-uni mechanism on the concentration 

space of the substrates 𝐴̃ and 𝐵̃ for 𝐾𝑒𝑞 = 2. a) for 𝑃̃ =1  b) for 𝑃̃=0.1 and c) for 𝑃̃=5, colors indicate 

the magnitude of 𝛼, if 𝛼 > 0.5 (red) most of the flux at optimal state goes through the branch where 

A binds first to the enzyme, and similarly if 𝛼 < 0.5 (blue) most of the flux goes through the branch 

where B binds first. A splitting ratio of 0.5 (white) indicates that the flux is equally distributed 

between both branches. Dashed line style for the scatters indicates the flexibility of the splitting ratio 

at optimal state. Solid line indicates the equilibrium, dashed isolines indicate the displacements from 

equilibrium d)Prototypical operating conditions for optimal enzyme utilization, net-flsux, elementary 

fluxes, enzyme state, and free energy distribution, for the selected data points (triangles) indicated in 

part a, for 𝑃̃=1. Subscripts refer to the elementary steps denoted in Scheme 3 
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Conclusion 

In this study, we presented a novel computational framework to explore the catalytically optimal 

modes of operations of enzymatic reactions. We formulated a MILP problem maximizing the net-

steady state reaction rate at a given total enzyme concentration, and estimated the optimal kinetic 

parameters, saturation and thermodynamic-force displacements for the three-step reversible 

Michaelis-Menten mechanism and the random-ordered multi-substrate mechanism. 

We showed that our framework can capture the results  from the previous studies28,36, for the optimal 

elementary rate-constants. In addition, we showed that the optimal enzyme utilization requires 

condition-specific saturations. Our results demonstrate that Michaelis-Menten enzyme operates at 

low-saturation to compensate for the low-reactant concentrations. The saturation increases rapidly 

with the increasing substrate and product concentrations and is above 50% for most of the reactant 

space at optimal state. To show that our formulation can be applied to any enzyme mechanism, we 

estimated the optimal modes of operations of a random-ordered multi-substrate mechanism, which 

to our knowledge is provided for the first time. Our results demonstrate that differing from the 

ordered mechanisms, optimal state can be achieved by alternative modes of operations if both 

substrates are equally available. We showed that the multiplicity of solutions manifests itself in 

flexible splitting-ratios, which was found to vary around 0.5, indicating that the equal distribution of 

the net steady-state flux is always a solution at optimal state. 

A key advantage of our formulation is the independence of a priori knowledge of different solution 

types for the optimization problem. By describing the problem as a MILP, we don't need to derive 

solutions for all possible types of kinetic designs, as was done in previous studies28,36. Instead, we 

showed the emergence of diverse kinetic designs by solving the optimization problem at given 

reactant concentrations and thermodynamic constraints.  

Throughout the study, we used normalized values for all variables and parameters, without direct 

comparison of the estimated kinetic parameters with their experimentally measured counterpart. By 

estimating the standard Gibbs free energies of metabolic reactions using group contribution 

method41, and the experimentally measured metabolite concentrations34 our computational 

framework can be extended in the future to study cellular enzymes from an evolutionary perspective. 

Furthermore, identifying the correspondence between the optimal kinetic parameters and the 

experimentally measured values can allow assessing how far the in vivo enzymes operate from their 

optimally utilized counterparts. The presented framework can be further used to estimate the missing 

kinetic parameters for the given steady-state flux profiles, and thereby overcome the scarcity of 

kinetic parameters and advance development of kinetic models. In addition, the estimated modes of 

operation at a catalytically optimal state can be translated into enzyme engineering strategies and 

guide the design of enzymes for maximal catalytic activity. 
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The results presented in this study are based on the assumption that the evolution drives cellular 

enzymes toward maximal reaction rates. However, for a comprehensive understanding of enzyme 

evolution, several optimality criteria have to be considered, which can be accounted for with 

multiobjective programming. Moreover, biochemical reactions within cells do not occur in dilute 

solution but in highly crowded environments altering the enzyme kinetics, which was recently shown 

to decrease the effective Michaelis-Menten parameters significantly42. Therefore, in the future our 

formulation can be extended to account for the influence of crowding and provide insights on how 

evolution and physicochemical constraints have shaped enzyme catalysis. 

It was previously suggested that although nearly optimal enzymes exist, most enzymes show 

moderate catalytic efficiencies and are far from catalytic perfection32,33. Most of these studies have 

focused on "composite" efficiency quantities to study the evolutionary pressure, neglecting the 

independent effect of each dimension on the evolutionary processes43,44. In this study, our analysis 

was focused and limited to the kinetic design and modes of operations of enzymes at maximal 

reaction-rates. However, we proposed an efficient computational framework, which alternatively 

allows to explore the suboptimal solutions using traditional sampling methods. Therefore, the 

presented study can serve as a valuable tool to decipher the fitness landscape of "moderately efficient 

enzymes", and shed light into the driving forces and constraints that have shaped the natural enzymes 

considering their detailed kinetic mechanism. 

Overall, the framework presented here allows us to study complex enzyme mechanisms in the light 

of evolution, paving the way to fill in the knowledge gaps in enzyme kinetics.  
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Materials and Methods 

Normalization of parameters 

For our formulation, we used the normalized parameters and variables as was done in previous 

studies28,36. Additionally. we also normalized the concentrations of the enzyme states with the total 

enzyme concentration (See Figure 1). We considered two limits considering the elementary rate-

constants, one for the bimolecular (second-order) rate constants, 𝑘±𝑖
𝑚𝑎𝑥,2 and one for the 

monomolecular (first-order) rate constants, 𝑘±𝑖
𝑚𝑎𝑥,1. In the current analysis we didn't make any 

distinction between the isomerization and dissociation steps and constrained both with the same 

upper-limit. However, the methodology presented can be generalized by introducing different upper 

limits for different types of monomolecular rate constants as was done previously by Klipp and 

Heinrich 24,36. 

Describing the rate of reaction 

We describe the reaction rate at the elementary reaction level using mass-action kinetics. Considering 

that all the elementary steps are reversible, at steady-state, reaction rates are written by decomposing 

each reversible flux into two separate irreversible fluxes. To do so, we introduce displacements from 

thermodynamic equilibrium 𝛾𝑖  for each elementary step, for 𝑖 = 1,… , 𝑁𝑒  where 𝑁𝑒   is the number of 

elementary reactions. 

𝛾𝑖 =
𝑣𝑖,𝑏
𝑣𝑖,𝑓

 1 

For convenience the subscripts 𝑓and 𝑏 are used to denote forward and backward variables 

respectively instead of +,- throughout this section. Where 𝑣𝑖,𝑓 and 𝑣𝑖,𝑏 denotes the forward and 

backward reaction rates for the ith elementary step respectively. We assume that the net rate of 

reaction is positive, that is the reaction operates in the forward direction. This implies that  𝛾𝑖 ≤ 1 for 

𝑖 ∈ {1, … ,𝑁𝑒}.  

The displacement of a reaction from its thermodynamic equilibrium Γ, is defined as the ratio between 

the backward reaction rate 𝑣̃𝑏  to the forward reaction rate, 𝑣̃𝑓  for the overall reaction and is defined 

as follows for a reaction with n substrates and m products: 37,45 

Γ =
𝑣̃𝑏 

 𝑣̃𝑓 
=

1

 𝐾̃𝑒𝑞 

∏ 𝑃̃𝑘 
𝑚
𝑘=1

 ∏ 𝑆̃𝑗 
𝑛
𝑗=1

 2 
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 𝑣̃𝑓 − 𝑣̃𝑏 = 𝑣̃𝑛𝑒𝑡  3 

 

𝐾𝑒𝑞  stands for the reaction equilibrium constant and is defined as 
∏ 𝑃̃𝑘

𝑒𝑞𝑚
𝑘=1

 ∏ 𝑆̃𝑗
𝑒𝑞𝑛

𝑗=1

= 𝑒−∆𝑟𝐺
′°/𝑅𝑇 , where ∆𝑟𝐺

′° 

is the standard Gibbs free energy of the reaction; R is the ideal gas constant and T is the temperature. 

𝑣𝑛𝑒𝑡  is the net steady-state flux for the overall reaction and is defined as the difference between the 

forward and backward reaction rates. The Gibbs free energy of the reaction can be written as: 

∆𝑟𝐺
′ = ∆𝑟𝐺

′° + 𝑅𝑇 ln
∏ 𝑃̃𝑘 
𝑚
𝑘=1

 ∏ 𝑆̃𝑗 
𝑛
𝑗=1

 4 

Using equations 1 and 4, Γ can also be expressed as : 

Γ = 𝑒 ∆𝑟𝐺 ′
 /𝑅𝑇   5 

Consequently, for reactions operating toward the production of products, Gibbs free energy of the 

reaction is negative and Γ ∈ [0,1]. Similarly, if the reaction operates in the reverse direction, ∆𝑟𝐺 ′
  is 

positive and Γ ∈ [1, +∞]. Note that Γ close to 1 indicates a reaction operating close to equilibrium. 

Γ is linked to the elementary displacements according to the following equation: 

Γ = ∏ 𝛾𝑘
𝑘 ∈ 𝐶 

 6 

The multiplication is over a set C, and its content depends on the kinetic mechanism of the reaction. 

In the case of unbranched enzymatic reactions (e.g. ordered mechanisms), set C contains all 

elementary reactions. On the other hand, for a random-ordered mechanism equation 6 needs to be 

satisfied for each fundamental cycle 46, ∀𝐶 ∈ 𝐶𝑓 , where set C is a subset of 𝐶𝑓 , which contains all 

fundamental cycles.  

As we assume that the reaction proceeds toward the production of products, equation 6 constraints 

the thermodynamic displacements of elementary reactions as follows: Γ ≤ 𝛾
𝑖
≤ 1. Without loss-of-

generality the presented framework can also be applied for the reactions operating in the reverse 

direction (toward production of the substrates) by applying: Γ →
1

Γ
 , γi →

1

γi
, 𝐾̃𝑒𝑞 →

1

𝐾̃𝑒𝑞 
 and 𝑣̃𝑛𝑒𝑡 →

−𝑣̃𝑛𝑒𝑡  
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The net steady-state reaction rate can be written from 2𝑁𝑒  equality constraints, where 𝑁𝑒  is the 

number of elementary steps. 

𝑣̃𝑖,𝑓 = 𝑘̃𝑖,𝑓 𝑒̃𝑖−1𝑐̃𝑖 =
𝑣̃𝑖,𝑛𝑒𝑡 
(1 − 𝛾𝑖)

 7 

𝑣̃𝑖,𝑏 = 𝑘̃𝑖,𝑏 𝑒̃𝑖𝑐̃𝑖 =
𝑣̃𝑖,𝑛𝑒𝑡 𝛾𝑖
(1 − 𝛾𝑖)

 8 

 

𝑣̃𝑖,𝑛𝑒𝑡 − 𝑘̃𝑖,𝑓 𝑒̃𝑖−1𝑐̃𝑖(1 − 𝛾𝑖) = 0 9 

𝑣̃𝑖,𝑛𝑒𝑡𝛾𝑖 − 𝑘̃𝑖,𝑏 𝑒̃𝑖𝑐̃𝑖(1 − 𝛾𝑖) = 0 10 

 𝑣̃𝑛𝑒𝑡,𝑖  denotes net steady-state flux for the elementary reaction i, 𝑘̃𝑖,𝑓  and 𝑘̃𝑖,𝑏  stand for the forward 

and backward elementary rate constants of the ith elementary step (𝑖 ∈ {1, … ,𝑁𝑒}), 𝑒̃𝑖 is the 

corresponding enzyme state abundance for the ith elementary step, and 𝑒̃0 = 𝑒̃𝑛. The cyclic notation 

holds for ordered enzyme mechanisms, whereas for random-ordered mechanisms corresponding 

enzyme state can be generated using the King-Altman method47. 𝑐̃𝑖 is the concentration of the 

reactants, which is a parameter in our formulation, 𝑐̃𝑖  is equal to 1 for all dissociation steps and 

interconversion steps, whereas it is equal to the concentration of the substrates or the product for the 

ith association step, to account for the substrate or product binding.  

Note that the net steady-state fluxes for elementary reactions are the same as the net flux for the 

overall reaction, for unbranched mechanisms 𝑣𝑖,𝑛𝑒𝑡 = 𝑣𝑛𝑒𝑡  .  Whereas it is different for the random-

ordered mechanisms (See Scheme 3), adding the following relation: 𝑣𝑗,𝑛𝑒𝑡 = 𝑣𝑛𝑒𝑡  𝑗 ∈ 𝑀,

∑ 𝑣𝑟,𝑛𝑒𝑡 𝑟 ∈ 𝐵𝑘 = 𝑣𝑛𝑒𝑡. The set M contains all the elementary steps in the unbranched pathway and the 

set B contains all combinations for the elementary steps (𝐵𝑘) from each branch in the mechanism (for 

Scheme 3 𝐵 ∈ [{1,5}, {2,5}, {1,6}, {2,6}]), Using the ratio 𝑣𝑟,𝑛𝑒𝑡 /𝑣𝑛𝑒𝑡  we also define the splitting ratio 

𝛼 for the random-ordered mechanisms.  

Considering conservation of the total enzyme adds an additional constraint:  

∑𝑒̃𝑛 = 1

𝑁

𝑛=1

    11 

 

The sum is over all enzyme mechanistic states for a given mechanism, where N is the total number of 

enzyme states. 𝑁 = 𝑁𝑒  for ordered mechanisms, and 𝑁 = 𝑁𝑒 − 𝑛𝑏 for random-ordered mechanisms, 

where 𝑛𝑏 is the number of branching points in a mechanism. As enzyme states are normalized with 

the total enzyme concentration right hand side of Equation 11 is equal to 1.  
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With all the constraints described our optimization problem can be stated as follows: 

max 𝑣𝑛𝑒𝑡  

12 

s.t.   

 𝑣̃𝑖,𝑛𝑒𝑡 − 𝑘̃𝑖,𝑓 𝑒̃𝑖−1𝑐̃𝑖(1 − 𝛾𝑖) = 0 ∀𝑖 = 1,⋯ ,𝑁𝑒  

 𝑣̃𝑖,𝑛𝑒𝑡𝛾𝑖 − 𝑘̃𝑖,𝑏 𝑒̃𝑖 𝑐̃𝑖(1 − 𝛾𝑖) = 0 ∀𝑖 = 1,⋯ ,𝑁𝑒  

 𝑣𝑗,𝑛𝑒𝑡 − 𝑣𝑛𝑒𝑡 = 0 ∀𝑗 ∈   𝑀 

 ∑ 𝑣𝑟,𝑛𝑒𝑡 
𝑟 ∈ 𝐵𝑘

− 𝑣𝑛𝑒𝑡 = 0 
∀𝐵𝑘  ∈   𝐵 

 ∏ 𝛾𝑘 = Γ

𝑘 ∈ 𝐶 

 ∀𝐶 ∈   𝐶𝑓 

 
∑𝑒̃𝑛 = 1

𝑁

𝑛=1

 
 

 𝑘̃𝑖,𝑓 ≤ 1,  𝑘̃𝑖,𝑏 ≤ 1 ∀𝑖 = 1,⋯ ,𝑁𝑒  

 Γ ≤ 𝛾𝑖 ≤ 1 ∀𝑖 = 1,⋯ ,𝑁𝑒  

 𝑣̃𝑖,𝑛𝑒𝑡 , 𝑘̃𝑖,𝑓 , 𝑘̃𝑖,𝑏 , 𝑒̃𝑖 , 𝛾𝑖  ∈ ℝ+ ∀𝑖 = 1,⋯ ,𝑁𝑒  

 

Change of Variables 

Due to the non-linearity of the rate equation given by equations 9 and 10, we first apply the change 

of variables. We replaced each of the bilinear terms, denoting the multiplication of elementary rate 

constants and the corresponding enzyme state variables by a new variable ( 𝑧̃𝑖,𝑓 and 𝑧̃𝑖,𝑏) and a 

constraint. As described above, elementary rate constants are normalized with their corresponding 

biophysical limit; hence they can take values in the interval [0,1]. Thus, replacing the bilinear terms 

with new variables implies that they (𝑧̃𝑖,𝑓  and 𝑧̃𝑖,𝑏) are bounded above by their corresponding enzyme 

states. Reformulation of equations 9 and 10 with the change of variables results in the following 

constraints. 
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𝑣̃𝑖,𝑛𝑒𝑡 − 𝑧̃𝑖,𝑓 𝑐̃𝑖(1 − 𝛾𝑖) = 0 13 

𝑣̃𝑖,𝑛𝑒𝑡 𝛾𝑖 − 𝑧̃𝑖,𝑏 𝑐̃𝑖(1 − 𝛾𝑖) = 0 14 

𝑧̃𝑖,𝑓 − 𝑒̃𝑖−1 ≤  0 15 

𝑧̃𝑖,𝑏 − 𝑒̃𝑖 ≤  0 16 

 

Introduction of new variables removes elementary rate constants from the rate equation, leaving the 

𝑧̃, 𝑒̃ 𝛾′𝑠 and 𝑣̃𝑛𝑒𝑡 as variables of the optimization problem. 

 

Approximation of the elementary displacements from thermodynamic equilibrium 

To remove the remaining non-linearity in Equations 13 and 14, we approximate the elementary 

displacements from thermodynamic equilibrium (𝛾𝑖′𝑠) with a piecewise-constant function 𝛾̂𝑖 or in 

other words with a 0th order approximation. If 𝛾̂𝑖 is piecewise-constant, then the products 𝑣̃𝑖,𝑛𝑒𝑡 𝛾̂𝑖, 

𝑧̃𝑖,𝑓𝛾̂𝑖 and 𝑧̃𝑖,𝑏𝛾̂𝑖 are piecewise-linear and can be described in MILP form. This approximation converts 

the continuous bilinear terms into mixed bilinear terms which is a product of an integer and a 

continuous term. This simplifies the problem as these mixed bilinear terms can be linearized in an 

MILP formulation, using the Petersen linearization scheme39,40, which was previously used in the area 

of metabolic engineering 48,49.  

Approximation of the thermodynamic displacements also needs to satisfy the overall thermodynamic 

constraint, stated in equation 6. We have an explicit definition of elementary displacements in the 

rate equations. Therefore equation 6 also accounts for the ratio of the elementary rate constants 

satisfying the overall equilibrium constant. First, we eliminate one of the elementary displacements 

using the overall thermodynamic displacement (Γ). Then we approximate the independent 

elementary displacements or their mechanistically meaningful combinations with a piecewise-

constant function. 

As we are interested in the reactions operating toward the production of products:  𝛾𝑖 ∈ [Γ, 1]. Then 

we can approximate the 𝛾𝑖 with the following equation:  

𝛾𝑘 ≈ 𝛾̂𝑘 = Γ + 𝑝
(1 − Γ)

𝑁
      17 

Where, 
(1−Γ)

𝑁
 is the resolution of the approximation, N is the number of bins that 𝛾̂𝑖 has been 

discretized, and p enables to choose which bin is selected for the solution, here  𝑘 ∈ 𝐼𝑐 and set 𝐼𝑐 

denotes the chosen elementary displacement variables or their combinations to be approximated 
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with a 0th order approximation.  To linearize the problem, we express 𝑝 by using binary variables. For 

this, we represent p with its binary expansion.  

𝑝 = ∑ 2𝑠

⌈log2 𝑁⌉

𝑠=0

𝛿𝑠      18 

In equation 18, ⌈log2𝑁⌉ indicates the smallest majoring integer to log2𝑁, and 𝛿𝑠 is the binary variable 

𝛿𝑠  ∈ {0,1}. As we perform binary expansion of p, the complexity of the model increases with 

𝒪(log2𝑁) instead of 𝒪(N), which was also previously used by Salvy and Hatzimanikatis 49. We also 

need to ensure that p does not exceed N: 

0 ≤ ∑ 2𝑠

⌈log2𝑁⌉

𝑠=0

𝛿𝑠 ≤ 𝑁     19 

For the sake of simplicity, in our formulation, we approximate meaningful combinations of 

elementary displacements to reduce the number of linearization to be performed. For example, for 

the reversible Michaelis-Menten reaction given in Scheme 1, we choose 2 independent displacement 

variables to linearize as 𝛾̂1 and 𝛾̂1,2 where the latter represents the product of 𝛾̂1 and 𝛾̂2 ( 𝛾̂1,2 = 𝛾̂1𝛾̂2), 

which also adds the constraint 𝛾̂1,2 − 𝛾̂1 ≤ 0 . This way we can represent each elementary 

displacement as 𝛾1 ≈ 𝛾̂1, 𝛾2 ≈
𝛾̂1,2

𝛾̂1
 and 𝛾3 ≈

Γ

𝛾̂1,2
. Any other combination of the elementary 

displacements from equilibrium works for this mechanism. Overall, we perform the piecewise-

constant approximation for the chosen independent elementary displacement variables 𝛾𝑘 ≈ 𝛾̂𝑘 , 𝑘 ∈

𝐼𝑐 . The approximation for the combination of elementary displacements becomes more important 

when we study random-ordered mechanisms. For the random-ordered mechanism given in Scheme 

3, by approximating the combination of elementary displacements for the cycle e.g 𝛾̂cycle = 𝛾̂1,2 =

𝛾̂5,6, we can directly satisfy constraint 6 for each fundamental cycle describing the principle of 

microscopic reversibility 46. Thus for the random-ordered Bi-Uni mechanism we can express all six 

elementary displacements (𝛾𝑖) by approximating four independent displacement variables, namely : 

𝛾̂cycle, 𝛾̂1, 𝛾̂5, 𝛾̂3 (𝐼𝑐 = cycle, 1,5,3) which yields 𝛾1 ≈ 𝛾̂1, 𝛾5 ≈ 𝛾̂5,  𝛾2 ≈ 𝛾̂cycle/𝛾̂1, 𝛾6 ≈ 𝛾̂cycle/𝛾̂5, 𝛾3 ≈

𝛾̂3 and 𝛾4 ≈ Γ/ (𝛾̂cycle𝛾̂3) . Note that the constraints 𝛾̂cycle − 𝛾̂1 ≤ 0 and 𝛾̂cycle − 𝛾̂5 ≤ 0 also need to 

be considered. 

For the results, the resolution of the approximation 
1−Γ

𝑁
 of elementary displacements was set to 

10−4 and 10−3 for the Michaelis-Menten and random-ordered Bi-Uni mechanisms respectively. If the 

reaction operates close-to equilibrium Γ ≥  0.9, 
1−Γ

𝑁
= 10−4 for both mechanisms. 
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Petersen Linearization 

After approximating elementary displacements from equilibrium, the rate equation contains the 

bilinear terms arising from the products 𝑣̃𝑖,𝑛𝑒𝑡 𝛾̂𝑖 , 𝑧̃𝑖,𝑓𝛾̂𝑖 and 𝑧̃𝑖,𝑏𝛾̂𝑖. We can approximate these 

continuous products as follows:  

For the reasons of simplicity, a detailed derivation is only shown based on the product 𝑣̃𝑛𝑒𝑡,𝑖 𝛾̂𝑖. The 

same linearization scheme also applies for the remaining nonlinearities of the form 𝑧̃𝑖,𝑓𝑤𝑑𝛾̂𝑖 and 

𝑧̃𝑖,𝑏𝑤𝑑𝛾̂𝑖.  

𝑣̃𝑖,𝑛𝑒𝑡 𝛾𝑖 ≈ 𝑣̃𝑖,𝑛𝑒𝑡 𝛾̂𝑖 20 

𝑣̃𝑖,𝑛𝑒𝑡 𝛾̂𝑖 = 𝑣̃𝑖,𝑛𝑒𝑡 Γ + ∑
(1 − Γ)

𝑁

⌈log2𝑁⌉

𝑠=0

2𝑠𝛿𝑠𝑣̃𝑖,𝑛𝑒𝑡  21 

 

The product 𝛿𝑠𝑣𝑖,𝑛𝑒𝑡 is bilinear, however it is a product of a binary and a continuous variable. 

Assuming a constant 𝑀 > 𝑣𝑖,𝑛𝑒𝑡   we can apply the Petersen linearization scheme 39,40 and linearize 

the bilinearity. Replacing 𝛿𝑠𝑣̃𝑖,𝑛𝑒𝑡 with another non-negative variable 𝑡𝑠
𝑖 , where 𝑠 stands for the index 

of the binary variable and 𝑖 for the elementary step, we can represent the bilinear product by one new 

variable and three new constraints:  

 

𝑡𝑠
𝑖 = 𝛿𝑠𝑣̃𝑖,𝑛𝑒𝑡  22 

{

𝑣𝑛𝑒𝑡,𝑖 +𝑀𝛿𝑠 − 𝑡𝑠
𝑖 ≤ 𝑀

𝑡𝑠
𝑖 −𝑀𝛿𝑠 ≤ 0

𝑡𝑠
𝑖 − 𝑣𝑖,𝑛𝑒𝑡 ≤ 0

 23 

 

Note that when 𝑁𝑒 > 3, we need an additional linearization to account for the product of two binary 

variables. As an example, consider the random-ordered Bi-Uni mechanism given in Scheme 3. By 

approximating 4 elementary displacement variables (𝛾̂cycle, 𝛾̂1, 𝛾̂5, 𝛾̂3) we can express all 6 

elementary displacements as explained in the previous section. To describe the reaction rate from the 

product dissociation step, we can use the following equations: 
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 𝑣̃4,𝑛𝑒𝑡 − 𝑧̃4,𝑓(1 − 𝛾4) = 0   

𝑣̃4,𝑛𝑒𝑡 𝛾4 − 𝑧̃4,𝑏(1 − 𝛾4)[𝑃̃] = 0  

𝑧̃4,𝑓 − [𝐸𝑃̃] ≤  0  

𝑧̃4,𝑏 − [𝐸̃] ≤ 0  

Note that 𝑣4,𝑛𝑒𝑡 = 𝑣𝑛𝑒𝑡  as the product-dissociation step is not in the branched pathway of the reaction 

mechanism. 𝑧̃4,𝑓 = 𝑘̃4,𝑓[𝐸𝑃̃] and 𝑧̃4,𝑏 = 𝑘̃4,𝑏[𝐸̃]. We then need to represent 𝛾4 from the approximated 

elementary displacements as 𝛾̂4 = Γ/ (𝛾̂cycle𝛾̂3). 

We can rewrite the constraints above with the following equations: 

𝑣̃𝑛𝑒𝑡 𝛾̂cycle𝛾̂3 − 𝑧̃4,𝑓(𝛾̂cycle𝛾̂3 − Γ) = 0    

𝑣̃𝑛𝑒𝑡 Γ − 𝑧̃4,𝑏(𝛾̂cycle𝛾̂3 − Γ)[𝑃̃] = 0  

𝑧̃4,𝑓 − [𝐸𝑃̃] ≤  0  

𝑧̃4,𝑏 − [𝐸̃] ≤ 0  

 

Here 𝛾̂cycle and 𝛾̂3 are the approximations by a piecewise-constant function as described by equations 

17−21. As both approximations contain binary variables, their product needs to be considered. This 

product can be linearized by representing it with a new binary variable and three new constraints as 

follows: 

𝜁𝑠,𝑝 = 𝛿𝑠𝜆𝑝 24 

{

𝜁
𝑠,𝑝
− 𝛿𝑠 ≤ 0

𝜁
𝑠,𝑝
− 𝜆𝑝 ≤ 0

𝜁
𝑠,𝑝
− 𝛿𝑠 − 𝜆𝑝 + 1 ≥  0

 25 

 

Where 𝜁𝑠,𝑝, 𝛿𝑠 and 𝜆𝑝 are binary variables, 𝜁𝑠,𝑝 , 𝛿𝑠 , 𝜆𝑝  ∈ {0,1}. 𝛿𝑠 and 𝜆𝑝 are the binary variables in the binary 

expansion for 𝛾̂cycle and 𝛾̂3 respectively. After this linearization, the remaining bilinearity is of the form 

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ×  𝑏𝑖𝑛𝑎𝑟𝑦, which can be linearized using Petersen's theorem39,40. (Equations 22−23) 

Using the change of variables and the piecewise-constant approximation as described above, we have 

translated the non-linear optimization problem given in Equation 12 to a MILP which can be 

summarized as follows: 
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max 𝑣𝑛𝑒𝑡  

26 

s.t.   

 𝑣̃𝑖,𝑛𝑒𝑡 − 𝑧̃𝑖,𝑓 𝑐̃𝑖(1 − 𝛾𝑖) = 0 

 

{
 
 
 

 
 
 

 
 
 
 

 ∀𝑖 = 1,⋯ ,𝑁𝑒
 
 
 
 

 

 𝑣̃𝑖,𝑛𝑒𝑡𝛾𝑖 − 𝑧̃𝑖,𝑏 𝑐̃𝑖(1 − 𝛾𝑖) = 0 

 𝑧̃𝑖,𝑓 − 𝑒̃𝑖−1 ≤  0 

 𝑧̃𝑖,𝑏 − 𝑒̃𝑖 ≤  0 

 𝑣𝑗,𝑛𝑒𝑡 − 𝑣𝑛𝑒𝑡 = 0 ∀𝑗 ∈  𝑀 

 ∑ 𝑣𝑟,𝑛𝑒𝑡 
𝑟 ∈ 𝐵𝑘

− 𝑣𝑛𝑒𝑡 = 0 
∀𝐵𝑘  ∈  B 

 

𝛾𝑘 = Γ + ∑
(1− Γ)

𝑁

⌈log2𝑁⌉

𝑠=0

2𝑠,𝑘𝛿𝑠,𝑘 

∀𝑘 ∈   𝐼𝐶  

 
∑𝑒̃𝑛 = 1

𝑁

𝑛=1

 
 

 Γ ≤ 𝛾𝑖 ≤ 1 ∀𝑖 = 1,⋯ ,𝑁𝑒  

 𝑣̃𝑖,𝑛𝑒𝑡 , 𝑧̃𝑖,𝑓 , 𝑧̃𝑖,𝑏 , 𝑒̃𝑖 , 𝛾𝑖  ∈ ℝ+ ∀𝑖 = 1,⋯ ,𝑁𝑒  

 𝛿𝑠,𝑘 ∈ {0, 1} ∀𝑘 ∈   𝐼𝐶   

 

Note that, the overall thermodynamic constraint is dropped in the final formulation, as 

approximations of the independent elementary displacement variables (𝛾𝑘) are performed 

accordingly as explained before. 

Variability analysis  

The optimality in mixed-integer linear problems ensures that there is a unique global optimum value 

for the objective function (𝑣∗𝑛𝑒𝑡 ), but not a unique optimal value for the variables, therefore there 

can be multiplicity of solutions. To account for this multiplicity, variability analysis is performed for 

the variables of the problem, by finding the maximum and minimum values of each variable at a given 

state (e.g. optimal state).  
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Back calculation of elementary rate-constants 

Our MILP formulation does not consider the elementary rate constants 𝑘̃𝑖,𝑓 and 𝑘̃𝑖,𝑏 as explicit 

variables of the optimization problem. Instead, they are embedded in the linearized variables 𝑧̃𝑖,𝑓 and 

𝑧̃𝑖,𝑏, the product of the elementary rate constants with their corresponding enzyme states. To 

backcalculate the elementary-rate constants we perform variability analysis for the variables 𝑧̃𝑖,𝑓 , 𝑧̃𝑖,𝑏 

and 𝑒̃𝑖 , where 𝑖 ∈ {1,… , 𝑁𝑒} at optimal state (𝑣𝑛𝑒𝑡 =𝑣net
∗ ). For the ordered mechanisms, we observe 

that the optimal state is achieved by unique values for the 𝑧̃, 𝑒̃ 𝛾′𝑠. This implies that the values for the 

elementary rate constants are also unique and can be calculated by dividing 𝑧̃𝑖,𝑓 and 𝑧̃𝑖,𝑏 by 𝑒̃𝑖−1 and 𝑒̃𝑖 

respectively. The uniqueness of the solution for the ordered-mechanisms was also previously shown 

by Wilhelm et al 28 . 

For the random-ordered mechanisms, maximal catalytic activity is achieved by unique or alternative 

solutions depending on the reactant concentrations. First, we perform variability analysis on the 

steady-state fluxes of the branched elementary steps and calculate the flexibility of the splitting ratio 

(𝛼 = 𝑣𝑟,𝑛𝑒𝑡  / 𝑣𝑛𝑒𝑡). For the flexible operating points, elementary displacements are uniformly 

sampled within their allowed range (calculated with variability analysis) and their values are (𝛾𝑖′𝑠) 

are fixed for each feasible thermodynamic displacement distribution. Then the model becomes solely 

linear, and we perform sampling of the variables with traditional sampling techniques such as 

artificially centered hit and run (ACHR)50 or optGpSampler51.  After the sampling we can back 

calculate the elementary rate-constants and study alternative modes of operations at the given 

reactant concentrations. (Figure 3) 

Sampling suboptimal solutions 

In this study, we focus on the modes of operations of enzymes achieving maximal net steady-state 

flux (at optimal state). Alternatively, we can also study suboptimal solutions. As we formulated the 

problem as a MILP, we can look into the suboptimal solutions that are at or beyond a given cut-off 

value with the constraint:  𝑣𝑛𝑒𝑡 ≥ 𝑐𝑙𝑣
∗
𝑛𝑒𝑡 where 𝑐𝑙 denotes the cut-off limit. Thereby, using a similar 

procedure (see the previous section), we can explore the suboptimal space with sampling. This way 

we can explore the modes of operations of "moderately efficient" enzymes and study their fitness-

landscape toward catalytic perfection.  

Calculation of macroscopic kinetic parameters 

We described the reaction rates from their elementary reaction mechanisms and estimated the 

corresponding microscopic rate constants for each elementary step. Translation of the microscopic 

parameters to macroscopic ones (KM's and kcat's) can be performed using Cleland's notation 52 (See 

Supplementary Information). or equivalently by performing in silico initial rate experiments 42. This 

way, estimated macroscopic parameters at optimal state can be directly compared with available 

experimental data  
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Implementation 

The implementation of this framework was performed in Python 3.6 using the optlang package53 and 

using commercial solvers as ILOG CPLEX or Gurobi. Code was run in Docker (20.10.6) containers. 

OptGP and ACHR samplers are adapted from their implementation in cobrapy version 0.17.1. 

Data Availability 

The code and all the results presented here are available in the repository https://github.com/EPFL-

LCSB/open 
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Supplementary Information 

Figure S1: The net steady-state flux (𝑣𝑛𝑒𝑡) and the regions based on different kinetic designs at 

optimal state for the reversible Michaelis-Menten mechanism (Reproduction of the regions from 

previous theoretical studies28,36.) 

Table S1: Optimal solution types for the elementary rate constants for the 3-step reversible 

Michaelis-Menten mechanism 
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Figure S2: Michaelis-Menten constants KM,S and KM,P in optimal states for the reversible Michaelis-

Menten mechanism. 

Figure S3: kcat,f and kcat,b in optimal states for the reversible Michaelis-Menten mechanism. 

Figure S4: Saturation(σ = 1 − [Ẽ]) in optimal states for the reversible Michaelis-Menten mechanism, 

for different equilibrium constants. 

Figure S5: The net steady-state flux (𝑣𝑛𝑒𝑡) and the regions based on different kinetic designs at 

optimal state for the ordered Bi-Uni mechanism (Reproduction of the regions from previous 

theoretical studies28,36.) 

Table S2: Optimal solution types for the elementary rate constants for the ordered Bi-Uni mechanism. 

Figure S6: Saturation(σ = 1 − [Ẽ]) in optimal states for the compulsory-ordered and general Bi-Uni 

mechanism 
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