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Abstract

Understanding the dynamic responses of living cells upon genetic and environmental perturbations
is crucial to decipher the metabolic functions of organisms. The rates of enzymatic reactions and their
evolution are key to this understanding, as metabolic fluxes are limited by enzymatic activity. In this
work, we investigate the optimal modes of operations for enzymes with regard that the evolutionary
pressure drives enzyme kinetics toward increased catalytic efficiency. We use an efficient mixed-
integer formulation to decipher the principles of optimal catalytic properties at various operating
points. Our framework allows assessing the distribution of the thermodynamic forces and enzyme
states, providing detailed insight into the mode of operation. Our results confirm earlier theoretical
studies on the optimal kinetic design using a reversible Michaelis-Menten mechanism. The results
further explored the optimal modes of operation for random-ordered multi-substrate mechanisms.
We show that optimal enzyme utilization is achieved by unique or alternative modes of operations
depending on the reactant's concentrations. Our novel formulation allows investigating the optimal
catalytic properties of all enzyme mechanisms with known elementary reactions. We propose that
our novel framework provides the means to guide and evaluate directed evolution studies and

estimate the limits of the direct evolution of enzymes.
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Introduction

Describing the dynamic and adaptive responses of living organisms upon genetic or environmental
perturbations requires understanding the dynamics of the underlying biochemical and biophysical
processes. It is well known that cells constantly break down energy-rich molecules from the
environment and use the energy and products from these reactions to construct the building blocks
to replicate themselves. These reactions can occur at moderate temperatures and proceed faster
because they are catalyzed by enzymes reducing energy barriers. Understanding how genetic and
environmental perturbations propagate in the large reaction networks that comprise the cell's
metabolism requires capturing the reaction kinetics of the enzymes in the context of the cell. To this
end, metabolic kinetic models have been used to assess how changes in the enzyme levels 1-9 and the
environmental conditions affect the intracellular reaction rates and concentrations 111 and how

these changes propagate dynamically!2-14,

Such metabolic kinetic models require a mathematical description of the enzymatic reaction rates,
i.e., a function of the metabolite concentrations and kinetic parameters. This reaction Kinetics of an
enzyme can be defined precisely using the elementary binding and catalytic steps of the reaction.
However, to reduce the number of kinetic parameters, the resulting rate equations are often
simplified using an approximate reaction rate law such as quasi-steady-state approximation and

quasi-equilibrium approximation 11516,

Kinetic models use parameter estimation methods 112131718 or Monte Carlo sampling methods 25-
710111920 to overcome the scarcity of kinetic data if the experimental measurement is not available.
Although these methods have proven useful for estimating kinetic parameters, a complete
understanding of the estimated parameters with biological and mechanistic details is generally not
provided?t.22, However, unlike chemical systems, biological systems are an outcome of natural
selection, and they should be studied accordingly. These systems have evolved to achieve states
where they can fulfill their biological functions efficiently23-26. The crucial point to investigate
biological systems in the light of evolution is to formulate appropriate fitness functions whose

maximum or minimum value potentially corresponds to an evolutionary outcome of the metabolism

21,27,

Various studies previously addressed the application of evolutionary principles to biological systems
based on specific selective pressures. These studies range from explaining isolated enzymes' kinetic
parameters 242528 to the structural design of metabolic networks 27, e.g., maximization of steady-state
fluxes 2428, minimization of transient times 29, metabolic concentrations of intermediates 39, or
maximization of thermodynamic efficiency?2. These studies showed that exploring these parameters
considering they are an outcome of the evolutionary process, can help us decipher the underlying

design principles that govern enzyme catalytic rates.
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One of the targets of natural selection on cellular metabolism is to make efficient use of its resources
to grow, reproduce and respond to changes in their environments 2131, As metabolic reactions are
catalyzed by cellular enzymes, this selection will translate to evolutionary pressure toward
maximizing the catalytic efficiency of these enzymes, such that the enzyme utilization is optimized.
The hypothesis is strongly supported by the high reaction rates observed for the enzyme catalyzed
reactions compared to their corresponding uncatalyzed reactions 22. One of the early examples of a
catalytically efficient enzyme is the triosephosphate isomerase (TIM/TPI) shown by Knowles and
Albery?6. Although recent meta-studies analyzing a large dataset of available enzyme Kkinetic
parameters suggest that the evolution drives most enzymes toward "good enough" rather than
perfect, 3233 we still have limited information on the driving forces and the constraints that have
shaped natural enzymes. Understanding the fitness landscape of enzymes toward catalytic optimality
can improve our understanding of the parameters that govern the design of enzymes and potentially

overcome the scarcity of kinetic parameters.

Previous studies have addressed the hypothesis of catalytic optimality by solving a nonlinear
optimization problem maximizing the reaction rates for unbranched enzymatic reactions. These
studies investigated kinetic parameters of ordered enzyme-mechanisms at enzyme constrained
maximal catalytic activity. Their results indicated that reactant concentrations significantly impacted
the optimal rate constants, dividing the concentration space into different sub-regions, with distinct
binding characteristics?!.2428. Furthermore, they have shown that the reactant concentrations and
Michaelis constants change in the same direction in an evolutionary time-scale 2428. Their findings are

corroborated by experimental observations34:35,

Although these studies were useful for understanding enzyme evolution, they rely on assuming
ordered enzyme mechanisms and do not account for the general topology of enzyme Kkinetics.
Furthermore, as cells contain hundreds to thousands of enzymatic reactions with different
mechanisms, deriving solutions for all possible combinations for numerous mechanisms can be
cumbersome and, in some cases, not possible with the analytical formulation. For this reason, there
is aneed to develop computational methods to analyze the enzymes' catalytic efficiency. In this study,
we have developed a novel computationally efficient MILP formulation to overcome this challenge.
Our framework estimates optimal Kinetic parameters of complex enzyme mechanisms and assesses
the coupling between thermodynamic displacements, saturation, and elementary rate constants at
the optimal state. The presented framework provides novel insights into the selective pressures that
shape the catalytic efficiency of enzymes. Furthermore, it can be used to estimate kinetic parameters

for kinetic models, filling in the knowledge gaps in enzyme kinetics from an evolutionary perspective.
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Results and Discussion

A generalized framework to study optimal enzyme utilization for arbitrary
elementary mechanisms

In the presented work, we study how enzymatic reactions operate if the total amount of enzyme is
utilized optimally under the biophysical constraints posed by nature. We, therefore, use an
optimization formulation to maximize the net steady-state flux given a fixed amount of enzymes, as
has been done in previous studies 242836, Maximizing the flux subject to enzyme level and biophysical
constraints allows us to assess the operating conditions at a catalytically optimal state. These
operating conditions are comprised of i) a set of elementary rate constants, ii) elementary
thermodynamic displacements, i.e., equivalent to the thermodynamic driving forces, and iii) the
distribution of the enzyme states, i.e., the relative allocation of the total amount of enzyme to

substrate-bound, product-bound or free states.

In contrast to previous work, we formulate our optimization problem using elementary reactions,
thermodynamic displacements, and enzyme state distribution, allowing our framework to apply to all
enzymatic mechanisms with known elementary reaction schemes. The framework further allows to
directly assess the distribution of the thermodynamic forces and enzyme states, providing detailed

insight into the mode of operation.

The proposed framework allows us to compute these modes of operation given: i) The elementary
enzyme mechanism, ii) the intracellular concentrations of the substrates and products, and iii) their
thermodynamic properties in the form of the reactions standard Gibbs free energy (Figure 1).

We formulate four sets of biophysical constraints. First, we assume that the enzyme operates at a
quasi-steady state. Thus, the concentrations of substrates, product, and enzyme-states are time-
invariant, resulting in a set of equality constraints (Figure 1). Secondly, we assume that transcription
and translation dynamics of the enzyme are sufficiently slow compared to the metabolic dynamics
meaning that the total amount of enzyme is constant. Further, we link the ratio of the elementary
forward and reverse fluxes to their respective thermodynamic force y;37. Finally, we consider
biophysical limits27.38 for the elementary rate constants by limiting bimolecular rate constants by
their diffusion limit, varying within the range 10% — 101° M~1s7127.33 | The monomolecular rate
constants are limited by the frequency of molecular vibrations, which was found to vary in the interval
104-106 st for enzymatic reactions 2836,

The formulation of the biophysical constraints encompasses four sets of variables and two sets of
parameters for a given enzyme mechanism. The variables consist of the elementary rate constants
kz; (Ei,f ,Ei_b), thermodynamic displacements y; and enzyme states é;, and parameters are the
metabolite concentrations and the overall equilibrium constant K., (or the overall thermodynamic

displacement I').
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To obtain dimensionless quantities, we normalize certain variables and parameters, namely rate
constants k;r and k;,, enzyme states e;, metabolite concentrations [P] [S], and the overall
equilibrium constant K,,. We normalize the elementary rate constants by their respective biophysical
limits as done previously by Wilhelm et al28, We also used the aforementioned limits and introduced
a characteristic concentration [C]s. to normalize metabolite concentrations and the overall
equilibrium constant. Lastly, we used the total enzyme concentration to normalize the enzyme states.
Normalization yields S, P, Eeq as parameters and Ei,f ,Ei,b, é; and y; as variables (see Materials and
Methods and Figure 1).

In the next step, we linearized the bilinear terms and the nonlinear constraints to overcome the
nonlinear nature of the problem. As the normalized elementary rate constants E;i(fci,f , Ei,b) are well-

bounded between 0 and 1, we replaced the bilinear terms kz;é; for each elementary step by one new
variable and one new constraint. To replace the nonlinear constraint posed by the thermodynamics,
we eliminated one of the displacements using the overall thermodynamic displacement from
equilibrium. We estimate the remaining elementary displacements or mechanistically meaningful
independent combinations of them by a piecewise-constant function. The resulting problem is
piecewise-linear and can be solved efficiently with a MILP formulation using the Peterson
linearization scheme 3949(See Materials and Methods). The reformulation of the problem as a MILP

ensures global optimality and enumeration of alternative solutions.

Finally, the resulting mixed-integer linear program (MILP) allows us to optimize the net enzyme flux
for the respective operating conditions, i.e., substrate, product concentrations, and standard Gibbs
free-energy. The optimization results will yield a set of elementary rate constants, displacements, and
an enzyme distribution that allow for this optimal flux. The constraint-based formulation of the
problem then allows assessing potential alternative modes of operation by constraining the flux to its
maximum and applying variability analysis on the operational variables. Using the same principle
further allows exploring the suboptimal space enabling us to study the fitness landscape of optimal

enzyme utilization for specific operating conditions.
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Figure 1: Workflow to formulate optimal enzyme utilization as a MILP for arbitrary elementary

mechanisms. Inputs: Elementary

reaction mechanism,

operating

conditions: metabolite

concentrations, and standard Gibbs free-energy. Formulate biophysical constraints based on i) quasi-
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steady-state operation, ii) total enzyme conservation, iii) thermodynamics and iii) upper limits of the
rate constants. Normalize parameters and variables to yield dimensionless quantities using i) kT:**,
subscripts +,- refer to forward and backward rate constants respectively. ii) [C]a iii) [Er]. Linearize
constraints to overcome the nonlinearity of the problem by applying i) change of variables ii)
piecewise-constant approximation of the independent displacement variables. Optimize enzyme
utilization with the MILP formulation, by maximizing the net steady-state flux of the enzymatic

reaction, applications: Perform analysis: mode of operation at optimality, sub-optimality analysis


https://doi.org/10.1101/2022.04.12.488028
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.12.488028; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Optimally used Michaelis-Menten enzymes require condition-specific saturation

regimes

We first applied our novel framework to study the modes of operation of the prototypical three-step
reversible Michaelis-Menten (Scheme 1) mechanism. Our results show that the elementary MILP
formulation presented here captures the results previously obtained by Wilhelm et al 28.
(Supplementary Figure S1).

kl,f kz‘f k3’f
E+S<=ES<=EP=E+P Scheme 1
kip kap k3 p

Additionally, our novel formulation allowed us to assess optimal enzyme state distributions and
thermodynamic forces directly. Our results show that the operating conditions govern the enzyme

state and thermodynamic force distribution at a catalytically optimal state.

A comprehensive analysis of enzyme-state distributions showed that optimal enzyme utilization
requires the enzyme to operate at a low enzyme saturation if the substrate and product
concentrations are small compared to the characteristic concentration of the system. With increasing
substrate and product concentrations, the optimal operating conditions require increasing enzyme
saturation. The optimal saturation increases rapidly with substrate and product concentration when
both substrate and product concentrations are below the characteristic concentration [C]c,, whereas
for larger substrate or product concentrations, this increase is significantly smaller (Figure 2a). To
our surprise, this phenomenon appears to be independent of the thermodynamic displacement I'

(Figure 2a).

To understand the precise mechanism by which this strong dependence of the optimal saturations
emerges, we analyzed the characteristic operating conditions for the low-mid and high saturation
regimes (Figure 2b ). The data revealed three optimal prototypical mechanisms by which the optimal

enzyme utilization is achieved:

In the low saturation regime, we observe that the thermodynamic potential of the reaction is mainly
used to drive the substrate association reaction as about 60% of the potential is allocated to drive this
reaction. Most of the remaining thermodynamic potential is used to drive the product dissociation,
and only a minimal amount is allocated to displace the biotransformation step from equilibrium. This
distribution of the thermodynamic forces manifests itself in a fast turnover between the enzyme-
bound substrate and product and a comparatively slow turnover for substrate and product
association and dissociation. As indicated by the low saturation, most enzymes are free enzymes,

providing the necessary driving force to capture the substrate molecules present in low quantities.

At intermediate saturations , the thermodynamic driving forces (AG') of the biotransformation step

increase to the same order of magnitude as the product dissociation. This shift in thermodynamic
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forces comes mainly at the expense of the driving force for the substrate association reaction, with
some contribution from reducing the driving force of the product dissociation reaction. This
redistribution results in an overall reduced contribution of the substrate association and product
binding steps compared to the low saturation case, with the substrate association being the slowest
step. Still, most enzymes are free enzymes indicating that capturing the substrate molecules is a

limiting factor.

In the high saturation regime, the thermodynamic driving forces are equally distributed, resulting in
a similar turnover between the three steps. Comparing the actual elementary fluxes shows that the
product dissociation association has become the slowest step after the biotransformation and the
substrate product association dissociation exhibits the fastest turnover. Further, in the high
saturation regime, the free enzyme is the least abundant species, showing that with increasing
substrate concentrations capturing substrate molecules becomes less of a limiting factor.
Nevertheless, the decreasing dependency of the enzyme saturation on product and substrate
concentration also indicates the minimum amount of free enzyme is required for the enzyme to

operate optimally.
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Figure 2: Optimal modes of operations of the reversible Michaelis-Menten mechanism (Scheme 1) a)

Enzyme saturation (o) of the reversible Michaelis-Menten mechanism at a catalytically optimal state
b) Three different operating points along the I'=0.6 isoline with low (blue), medium (nude), and high
(red) saturations c) Prototypical operating conditions for optimal enzyme utilization, net-flux,
elementary fluxes, enzyme state, and free energy distribution, for I?Qq = 2 ( data for different I?eq’s
can be found in Supplementary Figure S4) . Subscripts refer to the elementary steps denoted in
Scheme 1.
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Optimality principles of multi-substrate enzymes indicate concentrations
dependent binding preferences

We also applied our framework to multi-substrate enzymes to investigate the optimal modes of
operation for more complex mechanisms. To this end, we first studied the Bi-Uni mechanism ( Scheme
2) with a compulsory order for substrate binding. Our MILP formulation can capture subdivision of
the concentration space into different regions classified based on the rate-constants, which was
previously derived by Wilhelm et al. 28. (Supplementary Figure S5)

kl,f kz’f k3'f k4’f
E+A<=FEA+B <= FEAB <=FEP <=E+P Scheme 2
k1,p kap k3 p kap

In addition to the elementary rate constants, our framework can capture saturation at different
operating conditions for the optimally utilized enzyme. The analysis of the enzyme-state distributions
revealed that similar to the reversible three-step Michaelis-Menten mechanism, saturation at optimal
state increases with product concentration. Interestingly, we observed that the order in which the
substrates bind to the enzyme plays a role in saturation at a catalytically optimal state. Our results
show that saturation increases with the increasing substrate concentration that binds first to the
enzyme. In contrast, the concentration of the second substrate does not result in any significant

change in saturation (See Supplementary Figure S6).

Since our generalized MILP formulation allows us to study any kind of elementary mechanisms in an
unbiased fashion we extended the scope to investigate a generalized Bi-Uni mechanism, where any

substrate can bind first to the enzyme, resulting in the following branched mechanism (Scheme 3).

li
E+A=—EA
+ kLh +
B B Scheme 3

k;4.1 Tkah kz,h'[ lkz,. .

6, K¢
EB+AL‘:§EAB =2 EP==E+P

Our results suggest that optimal enzyme have a preferential binding mechanism dependent on their
operating conditions. To quantify this preference, we introduced the splitting ratio, @ = Vyerup / Vnet,
which is defined as the fraction of the flux that goes through the upper branch, where the substrate A
binds first to the enzyme (Scheme 3).

A detailed analysis of the optimal splitting ratio at various operating points revealed three
phenomenological features for the substrate binding preference. Our results show that if operating
points for the substrate concentrations are interchanged symmetrically (4,8 — B, A), optimal

splitting ratio a switches, leaving ag 4 = 1 — a, g (Fig 3 a,b,c). This finding demonstrates that the

10
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splitting ratio shows an antisymmetric behavior with symmetric changes in the substrate

concentrations.

Secondly, we observe that the splitting ratio and the optimal modes of operation are unique for
distinct concentrations of the substrates (4 # B). However, when both substrates are equally
available (4 = B), we observe flexibility of the splitting ratio, leading to alternative modes of
operation considering the net fluxes through the upper and lower branch and enzyme state
distributions. Performing variability analysis for these operating conditions revealed that this
flexibility is always around a = 0.5, suggesting at optimal state equal distribution of the net steady-
state flux is always a solution when substrate concentrations are identical. Interestingly, this
flexibility does not occur at all operating points where the substrate concentrations are equal (Figure
3 a,b,c). Our results suggest that flexibility appears when substrate concentrations are comparable or
slightly higher than the product concentration. Indicating that the product concentration affects the
flexibility of preferential binding for the unbiased Bi-Uni mechanism.

Lastly, our findings reveal that there exists a relation between the preferential binding mechanism
and reactant concentrations. As mentioned above, the preferential binding mechanism shows an
antisymmetric behavior over the substrate concentration space. However, for the operating
conditions where one substrate concentration is greater than the other (B > Aor A > B), i.e., upper
or lower concentration spaces, the data reveals two characteristic behaviors for the preference of the
binding mechanism. To our surprise, substrate concentrations are not the sole determinants for these

behaviors (Figure 3a).

The data shows that when the concentration of the least abundant substrate (e.g. B for the lower and
A for the upper concentration space) is lower than the product concentration P, preferential binding
is through the mechanism where the most abundant substrate binds first to the enzyme. On the
contrary, when the concentration of the least abundant substrate is comparable or higher than the
concentration of the product, most of the flux is carried through the branch where the least abundant
substrate binds first to the enzyme. The shift between the two behaviors can be seen clearly when the
product concentration is equal to 1 P = 1 (Figure 3a). Whereas when the product concentration is
low P = 0.1, we do not see this shift but rather the convergence of all operating points to the latter
behavior where the lowest substrate concentration defines the preference for the binding (Figure
3b). Likewise, when the product concentration is high P = 5, we see that the results converge to the
behavior where the concentration of the most abundant substrate defines the preferential binding
mechanism (Figure 3c). Our results suggest that contrary to the common belief, the preferential
binding mechanism is not only determined by the substrate concentrations but also by their relative

magnitudes to the product concentration.

To decipher the mechanistic details behind the phenomenological features, we performed a detailed
analysis of the modes of operation at an optimal state. Similar to the reversible Michaelis-Menten

mechanism, we analyzed three prototypical operating conditions: two symmetric operating

11
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conditions for distinct substrate concentrations and one with identical concentrations for the

substrates.

Our results indicate that symmetric operating conditions result in symmetric modes of operation at
an optimal state. In other words, thermodynamic forces, net fluxes, and enzyme state distributions
are interchanged between the upper and lower branch for the substrate associations dissociations.
On the other hand, modes of operation for the biotransformation and the product association

dissociation steps remain identical (Figure 3d).

For the selected symmetric operating conditions, preferential binding is through the mechanism
where the most abundant substrate binds first to the enzyme. When B concentration is high, 68% of
the net flux goes through the lower branch resulting in « = 0.32 (Figure 3d upper ). Around 40% of
the thermodynamic potential is used to drive the association-dissociation steps for the substrate A
(steps 1 or 6), which can be attributed to the low concentration of A at this operating condition. Most
of the remaining potential is used to drive the biotransformation and the product association-
dissociation steps, whereas a minimal amount of potential is allocated to the binding of substrate B.
The distribution of the thermodynamic forces can also be explained from the fastest turnover
observed for the association dissociation step of the substrate B to the free enzyme, which is then
followed by the biotransformation and product association-dissociation steps. The slowest turnover
is observed for the association and dissociation steps for substrate A (steps 1 or 6). A similar analysis
also applies for the symmetric operating condition when A concentration is high. In this case, 68% of
the net flux goes through the upper branch, which leads to @ = 0.68 (Figure 3d lower). Nearly 40%
of the thermodynamic potential is allocated to drive the association-dissociation reactions for
substrate B, followed by the biotransformation and the product association-dissociation steps. The
minimal amount of potential is used to drive the reactions for the association-dissociation of the
substrate A.

As a result of the symmetric modes of operations, identical optimal saturation is observed for
symmetric operating conditions. Further analysis of the enzyme-state distributions revealed that the
total concentration allocated to the substrate-bound and product-bound enzyme states stays the
same, leaving the saturation unchanged between symmetric operating conditions. The only difference
arises for the specific substrate-bound enzyme states, namely EA and EB, which interchange for
symmetric operating conditions. If most of the flux goes through the branch where the substrate B
binds first to the enzyme, B- bound enzyme state, EB, will be more occupied than the A-bound enzyme
state, EA ( Figure 3d upper). Likewise, for the symmetric operating condition, EA concentration will

increase at the expense of reducing the amount attributed to the EB concentration (Figure 3d upper

).

A detailed analysis of the modes of operation at flexible operating points shows that the saturation
and the thermodynamic force displacement remain the same across the alternative solutions (Figure
3d lower ). On the other hand, the flexibility in splitting ratio expresses itself as alternating flux
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distributions for the branched pathway and on the distribution of the substrate-bound enzyme states,
EA and EB. The occupancy of the remaining enzyme states or the flux distributions through the

biocatalysis and product dissociation steps remain the same for all alternative solutions.
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Figure 3: Optimal splitting ratio a = THetup for the general bi-uni mechanism on the concentration

Vnet
space of the substrates 4 and B for K,; = 2. a) for P =1 b) for P=0.1 and c) for P=5, colors indicate
the magnitude of «, if @ > 0.5 (red) most of the flux at optimal state goes through the branch where
A binds first to the enzyme, and similarly if @ < 0.5 (blue) most of the flux goes through the branch
where B binds first. A splitting ratio of 0.5 (white) indicates that the flux is equally distributed
between both branches. Dashed line style for the scatters indicates the flexibility of the splitting ratio
at optimal state. Solid line indicates the equilibrium, dashed isolines indicate the displacements from
equilibrium d)Prototypical operating conditions for optimal enzyme utilization, net-flsux, elementary
fluxes, enzyme state, and free energy distribution, for the selected data points (triangles) indicated in

part a, for P=1. Subscripts refer to the elementary steps denoted in Scheme 3
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Conclusion

In this study, we presented a novel computational framework to explore the catalytically optimal
modes of operations of enzymatic reactions. We formulated a MILP problem maximizing the net-
steady state reaction rate at a given total enzyme concentration, and estimated the optimal kinetic
parameters, saturation and thermodynamic-force displacements for the three-step reversible

Michaelis-Menten mechanism and the random-ordered multi-substrate mechanism.

We showed that our framework can capture the results from the previous studies283¢, for the optimal
elementary rate-constants. In addition, we showed that the optimal enzyme utilization requires
condition-specific saturations. Our results demonstrate that Michaelis-Menten enzyme operates at
low-saturation to compensate for the low-reactant concentrations. The saturation increases rapidly
with the increasing substrate and product concentrations and is above 50% for most of the reactant
space at optimal state. To show that our formulation can be applied to any enzyme mechanism, we
estimated the optimal modes of operations of a random-ordered multi-substrate mechanism, which
to our knowledge is provided for the first time. Our results demonstrate that differing from the
ordered mechanisms, optimal state can be achieved by alternative modes of operations if both
substrates are equally available. We showed that the multiplicity of solutions manifests itself in
flexible splitting-ratios, which was found to vary around 0.5, indicating that the equal distribution of

the net steady-state flux is always a solution at optimal state.

A key advantage of our formulation is the independence of a priori knowledge of different solution
types for the optimization problem. By describing the problem as a MILP, we don't need to derive
solutions for all possible types of kinetic designs, as was done in previous studies2836, Instead, we
showed the emergence of diverse kinetic designs by solving the optimization problem at given

reactant concentrations and thermodynamic constraints.

Throughout the study, we used normalized values for all variables and parameters, without direct
comparison of the estimated kinetic parameters with their experimentally measured counterpart. By
estimating the standard Gibbs free energies of metabolic reactions using group contribution
method4!, and the experimentally measured metabolite concentrations3* our computational
framework can be extended in the future to study cellular enzymes from an evolutionary perspective.
Furthermore, identifying the correspondence between the optimal kinetic parameters and the
experimentally measured values can allow assessing how far the in vivo enzymes operate from their
optimally utilized counterparts. The presented framework can be further used to estimate the missing
kinetic parameters for the given steady-state flux profiles, and thereby overcome the scarcity of
kinetic parameters and advance development of Kinetic models. In addition, the estimated modes of
operation at a catalytically optimal state can be translated into enzyme engineering strategies and

guide the design of enzymes for maximal catalytic activity.
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The results presented in this study are based on the assumption that the evolution drives cellular
enzymes toward maximal reaction rates. However, for a comprehensive understanding of enzyme
evolution, several optimality criteria have to be considered, which can be accounted for with
multiobjective programming. Moreover, biochemical reactions within cells do not occur in dilute
solution but in highly crowded environments altering the enzyme kinetics, which was recently shown
to decrease the effective Michaelis-Menten parameters significantly42. Therefore, in the future our
formulation can be extended to account for the influence of crowding and provide insights on how

evolution and physicochemical constraints have shaped enzyme catalysis.

It was previously suggested that although nearly optimal enzymes exist, most enzymes show
moderate catalytic efficiencies and are far from catalytic perfection3233. Most of these studies have
focused on "composite" efficiency quantities to study the evolutionary pressure, neglecting the
independent effect of each dimension on the evolutionary processes#344, In this study, our analysis
was focused and limited to the kinetic design and modes of operations of enzymes at maximal
reaction-rates. However, we proposed an efficient computational framework, which alternatively
allows to explore the suboptimal solutions using traditional sampling methods. Therefore, the
presented study can serve as a valuable tool to decipher the fitness landscape of "moderately efficient
enzymes", and shed light into the driving forces and constraints that have shaped the natural enzymes

considering their detailed kinetic mechanism.

Overall, the framework presented here allows us to study complex enzyme mechanisms in the light

of evolution, paving the way to fill in the knowledge gaps in enzyme kinetics.
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Materials and Methods

Normalization of parameters

For our formulation, we used the normalized parameters and variables as was done in previous
studies?836. Additionally. we also normalized the concentrations of the enzyme states with the total
enzyme concentration (See Figure 1). We considered two limits considering the elementary rate-

max,2
k+i

constants, one for the bimolecular (second-order) rate constants, and one for the

monomolecular (first-order) rate constants, kj:**"

+i - In the current analysis we didn't make any
distinction between the isomerization and dissociation steps and constrained both with the same
upper-limit. However, the methodology presented can be generalized by introducing different upper
limits for different types of monomolecular rate constants as was done previously by Klipp and

Heinrich 2436,
Describing the rate of reaction

We describe the reaction rate at the elementary reaction level using mass-action kinetics. Considering
that all the elementary steps are reversible, at steady-state, reaction rates are written by decomposing
each reversible flux into two separate irreversible fluxes. To do so, we introduce displacements from
thermodynamic equilibrium y; for each elementary step, fori = 1, ..., N, where N, is the number of

elementary reactions.

For convenience the subscripts fand b are used to denote forward and backward variables
respectively instead of +,- throughout this section. Where v; ; and v;;, denotes the forward and
backward reaction rates for the ith elementary step respectively. We assume that the net rate of
reaction is positive, that is the reaction operates in the forward direction. This implies that y; < 1 for
i €{1,..,N,}.

The displacement of a reaction from its thermodynamic equilibrium T, is defined as the ratio between
the backward reaction rate %, to the forward reaction rate, ; for the overall reaction and is defined

as follows for a reaction with n substrates and m products: 3745

1 [, By
Up Keq I1121S;
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Vrp = Vp = Unet 3
~ e, B9 r o
K.q stands for the reaction equilibrium constant and is defined as n‘—s"eq = e 4G /RT \where A,G'
j=1°j

is the standard Gibbs free energy of the reaction; R is the ideal gas constant and T is the temperature.
Unet 1S the net steady-state flux for the overall reaction and is defined as the difference between the

forward and backward reaction rates. The Gibbs free energy of the reaction can be written as:

1 ”° H;cn: Pk
AG' =A.G" +RT 1nn71§ 4
j=1°j
Using equations 1 and 4, I can also be expressed as :
[ = MG /RT 5

Consequently, for reactions operating toward the production of products, Gibbs free energy of the
reaction is negative and I' € [0,1]. Similarly, if the reaction operates in the reverse direction, A,.G ' is

positive and I" € [1, +o0]. Note that I close to 1 indicates a reaction operating close to equilibrium.

[" is linked to the elementary displacements according to the following equation:

= []n :

kecC

The multiplication is over a set C, and its content depends on the kinetic mechanism of the reaction.
In the case of unbranched enzymatic reactions (e.g. ordered mechanisms), set C contains all
elementary reactions. On the other hand, for a random-ordered mechanism equation 6 needs to be
satisfied for each fundamental cycle 46, VC € Cr, where set C is a subset of Cr, which contains all

fundamental cycles.

As we assume that the reaction proceeds toward the production of products, equation 6 constraints
the thermodynamic displacements of elementary reactions as follows: I' <y, < 1. Without loss-of-

generality the presented framework can also be applied for the reactions operating in the reverse

direction (toward production of the substrates) by applying: I' —» % ,Yi = Yii, ?eq - ; and ¥, —
eq

“Vnet
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The net steady-state reaction rate can be written from 2N, equality constraints, where N, is the

number of elementary steps.

Uip = kif€i_1C; = a-7) 7
l
- = . VinetVi
Vip = ki,bel i— ﬁ 8
13
Vinet — kifi1G(1—y) =0 9
VineeVi — kip€i&i(1—v:) =0 10

Tner; denotes net steady-state flux for the elementary reaction i, k; ; and k;, stand for the forward
and backward elementary rate constants of the ith elementary step (i € {1,...,N,}), & is the
corresponding enzyme state abundance for the ith elementary step, and &, = &,. The cyclic notation
holds for ordered enzyme mechanisms, whereas for random-ordered mechanisms corresponding
enzyme state can be generated using the King-Altman method4’. & is the concentration of the
reactants, which is a parameter in our formulation, ¢ is equal to 1 for all dissociation steps and
interconversion steps, whereas it is equal to the concentration of the substrates or the product for the

ith association step, to account for the substrate or product binding.

Note that the net steady-state fluxes for elementary reactions are the same as the net flux for the
overall reaction, for unbranched mechanisms ¥; o, = U, . Whereas it is different for the random-
ordered mechanisms (See Scheme 3), adding the following relation: U0 = Uperj € M,
Yir € B, Urnet = Vnet- The set M contains all the elementary steps in the unbranched pathway and the
set B contains all combinations for the elementary steps (Bj) from each branch in the mechanism (for
Scheme 3 B € [{1,5},{2,5},{1,6},{2,6}]), Using the ratio ¥, ¢t /Tpner We also define the splitting ratio

a for the random-ordered mechanisms.

Considering conservation of the total enzyme adds an additional constraint:

N
e, =1 11
=1

n

The sum is over all enzyme mechanistic states for a given mechanism, where N is the total number of
enzyme states. N = N, for ordered mechanisms, and N = N, — n;, for random-ordered mechanisms,
where ny, is the number of branching points in a mechanism. As enzyme states are normalized with

the total enzyme concentration right hand side of Equation 11 is equal to 1.
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With all the constraints described our optimization problem can be stated as follows:

max ﬁnet
s.t.
Tinee = Kif€aGi(1—=y) =0 Vi=1-,N,
DinetVi — kip&i&(1—y;) =0 Vi=1,,N,
ﬁj,net — Upet =0 vVie M
~ VB, € B
z Urnet — Vnet =0 k
€EB
TETk 12
1—[ V=T vC e C;
kecC
N
Z &, =1
n=1
]‘Ei,fsl, ki_bﬁl VL=1; ';Ne
r<y <1 Vi=1,-,N,
Vinets Kipr kip €,y € Ry vi=1,-,N,

Change of Variables

Due to the non-linearity of the rate equation given by equations 9 and 10, we first apply the change
of variables. We replaced each of the bilinear terms, denoting the multiplication of elementary rate
constants and the corresponding enzyme state variables by a new variable (Z; and %) and a
constraint. As described above, elementary rate constants are normalized with their corresponding
biophysical limit; hence they can take values in the interval [0,1]. Thus, replacing the bilinear terms
with new variables implies that they (Z; f and Z; ,) are bounded above by their corresponding enzyme
states. Reformulation of equations 9 and 10 with the change of variables results in the following

constraints.
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Vinet — ZifCi(1—v;) =0 13
Vinet Vi — ZipCGi(L—y;) =0 14
Zif =€-1=0 15

Zip— € <0 16

Introduction of new variables removes elementary rate constants from the rate equation, leaving the

Z, € y's and ¥,,, as variables of the optimization problem.

Approximation of the elementary displacements from thermodynamic equilibrium

To remove the remaining non-linearity in Equations 13 and 14, we approximate the elementary
displacements from thermodynamic equilibrium (y;'s) with a piecewise-constant function #; or in
other words with a 0t order approximation. If ¥; is piecewise-constant, then the products ;.. ¥,
Z f¥; and Z;,7; are piecewise-linear and can be described in MILP form. This approximation converts
the continuous bilinear terms into mixed bilinear terms which is a product of an integer and a
continuous term. This simplifies the problem as these mixed bilinear terms can be linearized in an
MILP formulation, using the Petersen linearization scheme3949, which was previously used in the area

of metabolic engineering 4849,

Approximation of the thermodynamic displacements also needs to satisfy the overall thermodynamic
constraint, stated in equation 6. We have an explicit definition of elementary displacements in the
rate equations. Therefore equation 6 also accounts for the ratio of the elementary rate constants
satisfying the overall equilibrium constant. First, we eliminate one of the elementary displacements
using the overall thermodynamic displacement (I'). Then we approximate the independent
elementary displacements or their mechanistically meaningful combinations with a piecewise-

constant function.

As we are interested in the reactions operating toward the production of products: y; € [T, 1]. Then
we can approximate the y; with the following equation:
(1-T)

ViV, =T+p—0p— 17

-T) . . o : : .
Where, % is the resolution of the approximation, N is the number of bins that §; has been

discretized, and p enables to choose which bin is selected for the solution, here k € I. and set I,

denotes the chosen elementary displacement variables or their combinations to be approximated

20


https://doi.org/10.1101/2022.04.12.488028
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.12.488028; this version posted April 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

with a Oth order approximation. To linearize the problem, we express p by using binary variables. For

this, we represent p with its binary expansion.

[l"gz N ]

p= Z 255, 18

s=0

In equation 18, [log, N] indicates the smallest majoring integer to log, N, and §; is the binary variable
6, €{0,1}. As we perform binary expansion of p, the complexity of the model increases with
O(log, N) instead of O(N), which was also previously used by Salvy and Hatzimanikatis 49. We also

need to ensure that p does not exceed N:

[log2 N]

OSZZS6SSN 19

s=0

For the sake of simplicity, in our formulation, we approximate meaningful combinations of
elementary displacements to reduce the number of linearization to be performed. For example, for
the reversible Michaelis-Menten reaction given in Scheme 1, we choose 2 independent displacement
variables to linearize as ¥; and y; , where the latter represents the product of y; and ¥, ( V12 = )71]72),

which also adds the constraint #,, —7; <0 . This way we can represent each elementary

. - % r o
displacement as y; = ¥4, V> ::y];—z and Y3 b Any other combination of the elementary
1 1,2

displacements from equilibrium works for this mechanism. Overall, we perform the piecewise-

constant approximation for the chosen independent elementary displacement variables y, ~ 7, , k €

I.. The approximation for the combination of elementary displacements becomes more important
when we study random-ordered mechanisms. For the random-ordered mechanism given in Scheme
3, by approximating the combination of elementary displacements for the cycle e.g Vcycle = 1,2 =
756 we can directly satisfy constraint 6 for each fundamental cycle describing the principle of
microscopic reversibility 4¢. Thus for the random-ordered Bi-Uni mechanism we can express all six
elementary displacements (y;) by approximating four independent displacement variables, namely :
Veycles V1, V5, V3 (I = cycle, 1,5,3) which yields y1 = 71, ¥5 ® 75, V2 = Veyale/V1 Yo = Veycle/Vs V3 =
73 and y, = T/ (?Cycle?g) . Note that the constraints ycycle — 71 < 0 and P¢ycle — 75 < 0 also need to

be considered.

. o -T .
For the results, the resolution of the approximation 1T of elementary displacements was set to
10~* and 1073 for the Michaelis-Menten and random-ordered Bi-Uni mechanisms respectively. If the

: S 1-T _ .
reaction operates close-to equilibrium I' = 0.9, - = 10~* for both mechanisms.
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Petersen Linearization

After approximating elementary displacements from equilibrium, the rate equation contains the

bilinear terms arising from the products ¥,..7; , Z¥; and Z;,¥, We can approximate these

continuous products as follows:

For the reasons of simplicity, a detailed derivation is only shown based on the product #,,;7;. The

same linearization scheme also applies for the remaining nonlinearities of the form Z;,,¥; and

Zi,bwd?i-
Uinet Y, = Ui net ?i 20
[logz N]
s a-n, .
Vinet yi = Vinet I+ TZ Ssvi,net
s=0

The product 657; ¢ is bilinear, however it is a product of a binary and a continuous variable.
Assuming a constant M > ¥; ., we can apply the Petersen linearization scheme 3°40 and linearize
the bilinearity. Replacing 67; . with another non-negative variable t!, where s stands for the index
of the binary variable and i for the elementary step, we can represent the bilinear product by one new

variable and three new constraints:

tsi =& ﬁi,net 22

Dpeti + MSs—th <M
th—Mé&;, <0 23
té' - ﬁi,net <0

Note that when N, > 3, we need an additional linearization to account for the product of two binary
variables. As an example, consider the random-ordered Bi-Uni mechanism given in Scheme 3. By
approximating 4 elementary displacement variables (Pcycie,71,¥5,73) we can express all 6
elementary displacements as explained in the previous section. To describe the reaction rate from the

product dissociation step, we can use the following equations:
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Ugnet — Z4,f(1 —¥) =0
Ugmet Va — Zap(1 — ¥a)[P]1=0
Z,s—[EP]< 0
Zip—[E]<0
Note that U, o = Uper as the product-dissociation step isnot in the branched pathway of the reaction

mechanism. Z, = E4_f [EP] and Zyp = E4,b [E]. We then need to represent y, from the approximated

elementary displacementsas ¥, = I'/ (?Cycle)?3).
We can rewrite the constraints above with the following equations:
Unet ?Cycle?3 — Zyg (?Cycle?3 -N=0
Unet ' — Zyp (?cycle?3 - [ﬁ] =0
Z,;—[EP]< 0

Zyp —[E] <0

Here 7¢ycle and 73 are the approximations by a piecewise-constant function as described by equations

17—21. As both approximations contain binary variables, their product needs to be considered. This

product can be linearized by representing it with a new binary variable and three new constraints as

follows:
(s,p = 55/11) 24
{,,—6,<0
qs,p - AP S 0 25

(=8 —2,+1=0

Where {,,, §; and 1, are binary variables, {s ,, 85,4, € {0,1}. §; and A, are the binary variables in the binary
expansion for J¢ycle and y5 respectively. After this linearization, the remaining bilinearity is of the form

continuous X binary, which can be linearized using Petersen's theorem3°40, (Equations 22—23)

Using the change of variables and the piecewise-constant approximation as described above, we have
translated the non-linear optimization problem given in Equation 12 to a MILP which can be

summarized as follows:
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max U,
s.t.
Dinet — ZipCi(1—7;) =0

VinetVi — ZipCi(1—9:) =0

< Vi= 1,“ ,Ne
Z~i,f —-€6_41<0
Zip—€6<0
17j,net — Unet =0 vie M
B B 26
- ~ VB, €
Z Urnet — Unet = 0 g
T € By
[log, N Yk € IC
~ (1 - F) sk
Yk = r+ Z 2 651{
s=0
N
Z &, =1
n=1
r<y<i vi=1,--,N,
f7'i,net"2’i,f!2’i,b'éi'),/\i € ]R+ Vi = 1!""Ne
55',( €{0,1} vk € I

Note that, the overall thermodynamic constraint is dropped in the final formulation, as
approximations of the independent elementary displacement variables (y,) are performed

accordingly as explained before.
Variability analysis

The optimality in mixed-integer linear problems ensures that there is a unique global optimum value
for the objective function (¥*,,; ), but not a unique optimal value for the variables, therefore there
can be multiplicity of solutions. To account for this multiplicity, variability analysis is performed for
the variables of the problem, by finding the maximum and minimum values of each variable at a given

state (e.g. optimal state).
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Back calculation of elementary rate-constants

Our MILP formulation does not consider the elementary rate constants Ei’f and Ei_b as explicit
variables of the optimization problem. Instead, they are embedded in the linearized variables Z; r and
Z; p, the product of the elementary rate constants with their corresponding enzyme states. To
backcalculate the elementary-rate constants we perform variability analysis for the variables Z; ¢, Z; j,
and ¢;,, where i € {1, ..., N} at optimal state (¥,,o; =7,e)- For the ordered mechanisms, we observe
that the optimal state is achieved by unique values for the Z, & y's. This implies that the values for the
elementary rate constants are also unique and can be calculated by dividing Z; r and Z; , by ;_; and ¢
respectively. The uniqueness of the solution for the ordered-mechanisms was also previously shown
by Wilhelm et al 28.

For the random-ordered mechanisms, maximal catalytic activity is achieved by unique or alternative
solutions depending on the reactant concentrations. First, we perform variability analysis on the
steady-state fluxes of the branched elementary steps and calculate the flexibility of the splitting ratio
(@ = Vynet / Vner). For the flexible operating points, elementary displacements are uniformly
sampled within their allowed range (calculated with variability analysis) and their values are (y;'s)
are fixed for each feasible thermodynamic displacement distribution. Then the model becomes solely
linear, and we perform sampling of the variables with traditional sampling techniques such as
artificially centered hit and run (ACHR)>? or optGpSamplers!i. After the sampling we can back
calculate the elementary rate-constants and study alternative modes of operations at the given

reactant concentrations. (Figure 3)
Sampling suboptimal solutions

In this study, we focus on the modes of operations of enzymes achieving maximal net steady-state
flux (at optimal state). Alternatively, we can also study suboptimal solutions. As we formulated the
problem as a MILP, we can look into the suboptimal solutions that are at or beyond a given cut-off
value with the constraint: ¥,,; = ¢;7",.; where c; denotes the cut-off limit. Thereby, using a similar
procedure (see the previous section), we can explore the suboptimal space with sampling. This way
we can explore the modes of operations of "moderately efficient” enzymes and study their fitness-
landscape toward catalytic perfection.

Calculation of macroscopic kinetic parameters

We described the reaction rates from their elementary reaction mechanisms and estimated the
corresponding microscopic rate constants for each elementary step. Translation of the microscopic
parameters to macroscopic ones (Ku's and keat's) can be performed using Cleland's notation 52 (See
Supplementary Information). or equivalently by performing in silico initial rate experiments 42. This
way, estimated macroscopic parameters at optimal state can be directly compared with available

experimental data
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Implementation

The implementation of this framework was performed in Python 3.6 using the optlang package53 and
using commercial solvers as ILOG CPLEX or Gurobi. Code was run in Docker (20.10.6) containers.
OptGP and ACHR samplers are adapted from their implementation in cobrapy version 0.17.1.

Data Availability

The code and all the results presented here are available in the repository https://github.com /EPFL-
LCSB/open
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Supplementary Information

Figure S1: The net steady-state flux (¥,,.;) and the regions based on different kinetic designs at
optimal state for the reversible Michaelis-Menten mechanism (Reproduction of the regions from

previous theoretical studies?83¢.)

Table S1: Optimal solution types for the elementary rate constants for the 3-step reversible

Michaelis-Menten mechanism
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Figure S2: Michaelis-Menten constants Kusand Kwpin optimal states for the reversible Michaelis-

Menten mechanism.
Figure S3: ke and keagh in optimal states for the reversible Michaelis-Menten mechanism.

Figure S4: Saturation(c = 1 — [E]) in optimal states for the reversible Michaelis-Menten mechanism,

for different equilibrium constants.

Figure S5: The net steady-state flux (¥,,.;) and the regions based on different kinetic designs at
optimal state for the ordered Bi-Uni mechanism (Reproduction of the regions from previous

theoretical studies283s,)
Table S2: Optimal solution types for the elementary rate constants for the ordered Bi-Uni mechanism.

Figure S6: Saturation(c = 1 — [E]) in optimal states for the compulsory-ordered and general Bi-Uni

mechanism
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